summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86ISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86ISelLowering.cpp10448
1 files changed, 10448 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
new file mode 100644
index 0000000..b02c33d
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp
@@ -0,0 +1,10448 @@
+//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that X86 uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "x86-isel"
+#include "X86.h"
+#include "X86InstrBuilder.h"
+#include "X86ISelLowering.h"
+#include "X86TargetMachine.h"
+#include "X86TargetObjectFile.h"
+#include "llvm/CallingConv.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/GlobalAlias.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Function.h"
+#include "llvm/Instructions.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/VectorExtras.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Dwarf.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+using namespace dwarf;
+
+STATISTIC(NumTailCalls, "Number of tail calls");
+
+static cl::opt<bool>
+DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX"));
+
+// Forward declarations.
+static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
+ SDValue V2);
+
+static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
+ switch (TM.getSubtarget<X86Subtarget>().TargetType) {
+ default: llvm_unreachable("unknown subtarget type");
+ case X86Subtarget::isDarwin:
+ if (TM.getSubtarget<X86Subtarget>().is64Bit())
+ return new X8664_MachoTargetObjectFile();
+ return new TargetLoweringObjectFileMachO();
+ case X86Subtarget::isELF:
+ if (TM.getSubtarget<X86Subtarget>().is64Bit())
+ return new X8664_ELFTargetObjectFile(TM);
+ return new X8632_ELFTargetObjectFile(TM);
+ case X86Subtarget::isMingw:
+ case X86Subtarget::isCygwin:
+ case X86Subtarget::isWindows:
+ return new TargetLoweringObjectFileCOFF();
+ }
+}
+
+X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
+ : TargetLowering(TM, createTLOF(TM)) {
+ Subtarget = &TM.getSubtarget<X86Subtarget>();
+ X86ScalarSSEf64 = Subtarget->hasSSE2();
+ X86ScalarSSEf32 = Subtarget->hasSSE1();
+ X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
+
+ RegInfo = TM.getRegisterInfo();
+ TD = getTargetData();
+
+ // Set up the TargetLowering object.
+
+ // X86 is weird, it always uses i8 for shift amounts and setcc results.
+ setShiftAmountType(MVT::i8);
+ setBooleanContents(ZeroOrOneBooleanContent);
+ setSchedulingPreference(Sched::RegPressure);
+ setStackPointerRegisterToSaveRestore(X86StackPtr);
+
+ if (Subtarget->isTargetDarwin()) {
+ // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
+ setUseUnderscoreSetJmp(false);
+ setUseUnderscoreLongJmp(false);
+ } else if (Subtarget->isTargetMingw()) {
+ // MS runtime is weird: it exports _setjmp, but longjmp!
+ setUseUnderscoreSetJmp(true);
+ setUseUnderscoreLongJmp(false);
+ } else {
+ setUseUnderscoreSetJmp(true);
+ setUseUnderscoreLongJmp(true);
+ }
+
+ // Set up the register classes.
+ addRegisterClass(MVT::i8, X86::GR8RegisterClass);
+ addRegisterClass(MVT::i16, X86::GR16RegisterClass);
+ addRegisterClass(MVT::i32, X86::GR32RegisterClass);
+ if (Subtarget->is64Bit())
+ addRegisterClass(MVT::i64, X86::GR64RegisterClass);
+
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+
+ // We don't accept any truncstore of integer registers.
+ setTruncStoreAction(MVT::i64, MVT::i32, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i16, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
+ setTruncStoreAction(MVT::i32, MVT::i16, Expand);
+ setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
+ setTruncStoreAction(MVT::i16, MVT::i8, Expand);
+
+ // SETOEQ and SETUNE require checking two conditions.
+ setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
+ setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
+ setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
+
+ // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
+ // operation.
+ setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
+ setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
+ setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
+
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
+ setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
+ } else if (!UseSoftFloat) {
+ // We have an algorithm for SSE2->double, and we turn this into a
+ // 64-bit FILD followed by conditional FADD for other targets.
+ setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
+ // We have an algorithm for SSE2, and we turn this into a 64-bit
+ // FILD for other targets.
+ setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
+ }
+
+ // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
+ // this operation.
+ setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
+
+ if (!UseSoftFloat) {
+ // SSE has no i16 to fp conversion, only i32
+ if (X86ScalarSSEf32) {
+ setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
+ // f32 and f64 cases are Legal, f80 case is not
+ setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
+ } else {
+ setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
+ }
+ } else {
+ setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
+ }
+
+ // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
+ // are Legal, f80 is custom lowered.
+ setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
+ setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
+
+ // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
+ // this operation.
+ setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
+ setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
+
+ if (X86ScalarSSEf32) {
+ setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
+ // f32 and f64 cases are Legal, f80 case is not
+ setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
+ } else {
+ setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
+ setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
+ }
+
+ // Handle FP_TO_UINT by promoting the destination to a larger signed
+ // conversion.
+ setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
+ setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
+ setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
+
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
+ setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
+ } else if (!UseSoftFloat) {
+ if (X86ScalarSSEf32 && !Subtarget->hasSSE3())
+ // Expand FP_TO_UINT into a select.
+ // FIXME: We would like to use a Custom expander here eventually to do
+ // the optimal thing for SSE vs. the default expansion in the legalizer.
+ setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
+ else
+ // With SSE3 we can use fisttpll to convert to a signed i64; without
+ // SSE, we're stuck with a fistpll.
+ setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
+ }
+
+ // TODO: when we have SSE, these could be more efficient, by using movd/movq.
+ if (!X86ScalarSSEf64) {
+ setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand);
+ setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::BIT_CONVERT , MVT::f64 , Expand);
+ // Without SSE, i64->f64 goes through memory; i64->MMX is Legal.
+ if (Subtarget->hasMMX() && !DisableMMX)
+ setOperationAction(ISD::BIT_CONVERT , MVT::i64 , Custom);
+ else
+ setOperationAction(ISD::BIT_CONVERT , MVT::i64 , Expand);
+ }
+ }
+
+ // Scalar integer divide and remainder are lowered to use operations that
+ // produce two results, to match the available instructions. This exposes
+ // the two-result form to trivial CSE, which is able to combine x/y and x%y
+ // into a single instruction.
+ //
+ // Scalar integer multiply-high is also lowered to use two-result
+ // operations, to match the available instructions. However, plain multiply
+ // (low) operations are left as Legal, as there are single-result
+ // instructions for this in x86. Using the two-result multiply instructions
+ // when both high and low results are needed must be arranged by dagcombine.
+ setOperationAction(ISD::MULHS , MVT::i8 , Expand);
+ setOperationAction(ISD::MULHU , MVT::i8 , Expand);
+ setOperationAction(ISD::SDIV , MVT::i8 , Expand);
+ setOperationAction(ISD::UDIV , MVT::i8 , Expand);
+ setOperationAction(ISD::SREM , MVT::i8 , Expand);
+ setOperationAction(ISD::UREM , MVT::i8 , Expand);
+ setOperationAction(ISD::MULHS , MVT::i16 , Expand);
+ setOperationAction(ISD::MULHU , MVT::i16 , Expand);
+ setOperationAction(ISD::SDIV , MVT::i16 , Expand);
+ setOperationAction(ISD::UDIV , MVT::i16 , Expand);
+ setOperationAction(ISD::SREM , MVT::i16 , Expand);
+ setOperationAction(ISD::UREM , MVT::i16 , Expand);
+ setOperationAction(ISD::MULHS , MVT::i32 , Expand);
+ setOperationAction(ISD::MULHU , MVT::i32 , Expand);
+ setOperationAction(ISD::SDIV , MVT::i32 , Expand);
+ setOperationAction(ISD::UDIV , MVT::i32 , Expand);
+ setOperationAction(ISD::SREM , MVT::i32 , Expand);
+ setOperationAction(ISD::UREM , MVT::i32 , Expand);
+ setOperationAction(ISD::MULHS , MVT::i64 , Expand);
+ setOperationAction(ISD::MULHU , MVT::i64 , Expand);
+ setOperationAction(ISD::SDIV , MVT::i64 , Expand);
+ setOperationAction(ISD::UDIV , MVT::i64 , Expand);
+ setOperationAction(ISD::SREM , MVT::i64 , Expand);
+ setOperationAction(ISD::UREM , MVT::i64 , Expand);
+
+ setOperationAction(ISD::BR_JT , MVT::Other, Expand);
+ setOperationAction(ISD::BRCOND , MVT::Other, Custom);
+ setOperationAction(ISD::BR_CC , MVT::Other, Expand);
+ setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
+ if (Subtarget->is64Bit())
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
+ setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
+ setOperationAction(ISD::FREM , MVT::f32 , Expand);
+ setOperationAction(ISD::FREM , MVT::f64 , Expand);
+ setOperationAction(ISD::FREM , MVT::f80 , Expand);
+ setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
+
+ setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
+ setOperationAction(ISD::CTTZ , MVT::i8 , Custom);
+ setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
+ setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
+ setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
+ setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
+ setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
+ setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
+ setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
+ setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
+ setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
+ }
+
+ setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
+ setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
+
+ // These should be promoted to a larger select which is supported.
+ setOperationAction(ISD::SELECT , MVT::i1 , Promote);
+ // X86 wants to expand cmov itself.
+ setOperationAction(ISD::SELECT , MVT::i8 , Custom);
+ setOperationAction(ISD::SELECT , MVT::i16 , Custom);
+ setOperationAction(ISD::SELECT , MVT::i32 , Custom);
+ setOperationAction(ISD::SELECT , MVT::f32 , Custom);
+ setOperationAction(ISD::SELECT , MVT::f64 , Custom);
+ setOperationAction(ISD::SELECT , MVT::f80 , Custom);
+ setOperationAction(ISD::SETCC , MVT::i8 , Custom);
+ setOperationAction(ISD::SETCC , MVT::i16 , Custom);
+ setOperationAction(ISD::SETCC , MVT::i32 , Custom);
+ setOperationAction(ISD::SETCC , MVT::f32 , Custom);
+ setOperationAction(ISD::SETCC , MVT::f64 , Custom);
+ setOperationAction(ISD::SETCC , MVT::f80 , Custom);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::SELECT , MVT::i64 , Custom);
+ setOperationAction(ISD::SETCC , MVT::i64 , Custom);
+ }
+ setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
+
+ // Darwin ABI issue.
+ setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
+ setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
+ setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
+ if (Subtarget->is64Bit())
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
+ setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
+ setOperationAction(ISD::BlockAddress , MVT::i32 , Custom);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
+ setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
+ setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
+ setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
+ setOperationAction(ISD::BlockAddress , MVT::i64 , Custom);
+ }
+ // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
+ setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
+ setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
+ setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
+ setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
+ setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
+ }
+
+ if (Subtarget->hasSSE1())
+ setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
+
+ if (!Subtarget->hasSSE2())
+ setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand);
+
+ // Expand certain atomics
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom);
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom);
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
+
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
+
+ if (!Subtarget->is64Bit()) {
+ setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
+ setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
+ }
+
+ // FIXME - use subtarget debug flags
+ if (!Subtarget->isTargetDarwin() &&
+ !Subtarget->isTargetELF() &&
+ !Subtarget->isTargetCygMing()) {
+ setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
+ }
+
+ setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
+ setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
+ setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
+ setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
+ if (Subtarget->is64Bit()) {
+ setExceptionPointerRegister(X86::RAX);
+ setExceptionSelectorRegister(X86::RDX);
+ } else {
+ setExceptionPointerRegister(X86::EAX);
+ setExceptionSelectorRegister(X86::EDX);
+ }
+ setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
+ setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
+
+ setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom);
+
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+
+ // VASTART needs to be custom lowered to use the VarArgsFrameIndex
+ setOperationAction(ISD::VASTART , MVT::Other, Custom);
+ setOperationAction(ISD::VAEND , MVT::Other, Expand);
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::VAARG , MVT::Other, Custom);
+ setOperationAction(ISD::VACOPY , MVT::Other, Custom);
+ } else {
+ setOperationAction(ISD::VAARG , MVT::Other, Expand);
+ setOperationAction(ISD::VACOPY , MVT::Other, Expand);
+ }
+
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+ if (Subtarget->is64Bit())
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
+ if (Subtarget->isTargetCygMing())
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
+ else
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
+
+ if (!UseSoftFloat && X86ScalarSSEf64) {
+ // f32 and f64 use SSE.
+ // Set up the FP register classes.
+ addRegisterClass(MVT::f32, X86::FR32RegisterClass);
+ addRegisterClass(MVT::f64, X86::FR64RegisterClass);
+
+ // Use ANDPD to simulate FABS.
+ setOperationAction(ISD::FABS , MVT::f64, Custom);
+ setOperationAction(ISD::FABS , MVT::f32, Custom);
+
+ // Use XORP to simulate FNEG.
+ setOperationAction(ISD::FNEG , MVT::f64, Custom);
+ setOperationAction(ISD::FNEG , MVT::f32, Custom);
+
+ // Use ANDPD and ORPD to simulate FCOPYSIGN.
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+
+ // We don't support sin/cos/fmod
+ setOperationAction(ISD::FSIN , MVT::f64, Expand);
+ setOperationAction(ISD::FCOS , MVT::f64, Expand);
+ setOperationAction(ISD::FSIN , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f32, Expand);
+
+ // Expand FP immediates into loads from the stack, except for the special
+ // cases we handle.
+ addLegalFPImmediate(APFloat(+0.0)); // xorpd
+ addLegalFPImmediate(APFloat(+0.0f)); // xorps
+ } else if (!UseSoftFloat && X86ScalarSSEf32) {
+ // Use SSE for f32, x87 for f64.
+ // Set up the FP register classes.
+ addRegisterClass(MVT::f32, X86::FR32RegisterClass);
+ addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
+
+ // Use ANDPS to simulate FABS.
+ setOperationAction(ISD::FABS , MVT::f32, Custom);
+
+ // Use XORP to simulate FNEG.
+ setOperationAction(ISD::FNEG , MVT::f32, Custom);
+
+ setOperationAction(ISD::UNDEF, MVT::f64, Expand);
+
+ // Use ANDPS and ORPS to simulate FCOPYSIGN.
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+
+ // We don't support sin/cos/fmod
+ setOperationAction(ISD::FSIN , MVT::f32, Expand);
+ setOperationAction(ISD::FCOS , MVT::f32, Expand);
+
+ // Special cases we handle for FP constants.
+ addLegalFPImmediate(APFloat(+0.0f)); // xorps
+ addLegalFPImmediate(APFloat(+0.0)); // FLD0
+ addLegalFPImmediate(APFloat(+1.0)); // FLD1
+ addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
+ addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
+
+ if (!UnsafeFPMath) {
+ setOperationAction(ISD::FSIN , MVT::f64 , Expand);
+ setOperationAction(ISD::FCOS , MVT::f64 , Expand);
+ }
+ } else if (!UseSoftFloat) {
+ // f32 and f64 in x87.
+ // Set up the FP register classes.
+ addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
+ addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
+
+ setOperationAction(ISD::UNDEF, MVT::f64, Expand);
+ setOperationAction(ISD::UNDEF, MVT::f32, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+
+ if (!UnsafeFPMath) {
+ setOperationAction(ISD::FSIN , MVT::f64 , Expand);
+ setOperationAction(ISD::FCOS , MVT::f64 , Expand);
+ }
+ addLegalFPImmediate(APFloat(+0.0)); // FLD0
+ addLegalFPImmediate(APFloat(+1.0)); // FLD1
+ addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
+ addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
+ addLegalFPImmediate(APFloat(+0.0f)); // FLD0
+ addLegalFPImmediate(APFloat(+1.0f)); // FLD1
+ addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
+ addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
+ }
+
+ // Long double always uses X87.
+ if (!UseSoftFloat) {
+ addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
+ setOperationAction(ISD::UNDEF, MVT::f80, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
+ {
+ bool ignored;
+ APFloat TmpFlt(+0.0);
+ TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
+ &ignored);
+ addLegalFPImmediate(TmpFlt); // FLD0
+ TmpFlt.changeSign();
+ addLegalFPImmediate(TmpFlt); // FLD0/FCHS
+ APFloat TmpFlt2(+1.0);
+ TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
+ &ignored);
+ addLegalFPImmediate(TmpFlt2); // FLD1
+ TmpFlt2.changeSign();
+ addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
+ }
+
+ if (!UnsafeFPMath) {
+ setOperationAction(ISD::FSIN , MVT::f80 , Expand);
+ setOperationAction(ISD::FCOS , MVT::f80 , Expand);
+ }
+ }
+
+ // Always use a library call for pow.
+ setOperationAction(ISD::FPOW , MVT::f32 , Expand);
+ setOperationAction(ISD::FPOW , MVT::f64 , Expand);
+ setOperationAction(ISD::FPOW , MVT::f80 , Expand);
+
+ setOperationAction(ISD::FLOG, MVT::f80, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f80, Expand);
+ setOperationAction(ISD::FLOG10, MVT::f80, Expand);
+ setOperationAction(ISD::FEXP, MVT::f80, Expand);
+ setOperationAction(ISD::FEXP2, MVT::f80, Expand);
+
+ // First set operation action for all vector types to either promote
+ // (for widening) or expand (for scalarization). Then we will selectively
+ // turn on ones that can be effectively codegen'd.
+ for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
+ setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
+ setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
+ setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand);
+ setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand);
+ for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
+ InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
+ setTruncStoreAction((MVT::SimpleValueType)VT,
+ (MVT::SimpleValueType)InnerVT, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
+ }
+
+ // FIXME: In order to prevent SSE instructions being expanded to MMX ones
+ // with -msoft-float, disable use of MMX as well.
+ if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) {
+ addRegisterClass(MVT::v8i8, X86::VR64RegisterClass, false);
+ addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false);
+ addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false);
+ addRegisterClass(MVT::v2f32, X86::VR64RegisterClass, false);
+ addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false);
+
+ setOperationAction(ISD::ADD, MVT::v8i8, Legal);
+ setOperationAction(ISD::ADD, MVT::v4i16, Legal);
+ setOperationAction(ISD::ADD, MVT::v2i32, Legal);
+ setOperationAction(ISD::ADD, MVT::v1i64, Legal);
+
+ setOperationAction(ISD::SUB, MVT::v8i8, Legal);
+ setOperationAction(ISD::SUB, MVT::v4i16, Legal);
+ setOperationAction(ISD::SUB, MVT::v2i32, Legal);
+ setOperationAction(ISD::SUB, MVT::v1i64, Legal);
+
+ setOperationAction(ISD::MULHS, MVT::v4i16, Legal);
+ setOperationAction(ISD::MUL, MVT::v4i16, Legal);
+
+ setOperationAction(ISD::AND, MVT::v8i8, Promote);
+ AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64);
+ setOperationAction(ISD::AND, MVT::v4i16, Promote);
+ AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64);
+ setOperationAction(ISD::AND, MVT::v2i32, Promote);
+ AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64);
+ setOperationAction(ISD::AND, MVT::v1i64, Legal);
+
+ setOperationAction(ISD::OR, MVT::v8i8, Promote);
+ AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64);
+ setOperationAction(ISD::OR, MVT::v4i16, Promote);
+ AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64);
+ setOperationAction(ISD::OR, MVT::v2i32, Promote);
+ AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64);
+ setOperationAction(ISD::OR, MVT::v1i64, Legal);
+
+ setOperationAction(ISD::XOR, MVT::v8i8, Promote);
+ AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64);
+ setOperationAction(ISD::XOR, MVT::v4i16, Promote);
+ AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64);
+ setOperationAction(ISD::XOR, MVT::v2i32, Promote);
+ AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64);
+ setOperationAction(ISD::XOR, MVT::v1i64, Legal);
+
+ setOperationAction(ISD::LOAD, MVT::v8i8, Promote);
+ AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64);
+ setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
+ AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64);
+ setOperationAction(ISD::LOAD, MVT::v2i32, Promote);
+ AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64);
+ setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
+ AddPromotedToType (ISD::LOAD, MVT::v2f32, MVT::v1i64);
+ setOperationAction(ISD::LOAD, MVT::v1i64, Legal);
+
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom);
+
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom);
+
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f32, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom);
+
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
+
+ setOperationAction(ISD::SELECT, MVT::v8i8, Promote);
+ setOperationAction(ISD::SELECT, MVT::v4i16, Promote);
+ setOperationAction(ISD::SELECT, MVT::v2i32, Promote);
+ setOperationAction(ISD::SELECT, MVT::v1i64, Custom);
+ setOperationAction(ISD::VSETCC, MVT::v8i8, Custom);
+ setOperationAction(ISD::VSETCC, MVT::v4i16, Custom);
+ setOperationAction(ISD::VSETCC, MVT::v2i32, Custom);
+
+ if (!X86ScalarSSEf64 && Subtarget->is64Bit()) {
+ setOperationAction(ISD::BIT_CONVERT, MVT::v8i8, Custom);
+ setOperationAction(ISD::BIT_CONVERT, MVT::v4i16, Custom);
+ setOperationAction(ISD::BIT_CONVERT, MVT::v2i32, Custom);
+ setOperationAction(ISD::BIT_CONVERT, MVT::v2f32, Custom);
+ setOperationAction(ISD::BIT_CONVERT, MVT::v1i64, Custom);
+ }
+ }
+
+ if (!UseSoftFloat && Subtarget->hasSSE1()) {
+ addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
+
+ setOperationAction(ISD::FADD, MVT::v4f32, Legal);
+ setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
+ setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
+ setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
+ setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
+ setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
+ setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
+ setOperationAction(ISD::VSETCC, MVT::v4f32, Custom);
+ }
+
+ if (!UseSoftFloat && Subtarget->hasSSE2()) {
+ addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
+
+ // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
+ // registers cannot be used even for integer operations.
+ addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
+ addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
+ addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
+ addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
+
+ setOperationAction(ISD::ADD, MVT::v16i8, Legal);
+ setOperationAction(ISD::ADD, MVT::v8i16, Legal);
+ setOperationAction(ISD::ADD, MVT::v4i32, Legal);
+ setOperationAction(ISD::ADD, MVT::v2i64, Legal);
+ setOperationAction(ISD::MUL, MVT::v2i64, Custom);
+ setOperationAction(ISD::SUB, MVT::v16i8, Legal);
+ setOperationAction(ISD::SUB, MVT::v8i16, Legal);
+ setOperationAction(ISD::SUB, MVT::v4i32, Legal);
+ setOperationAction(ISD::SUB, MVT::v2i64, Legal);
+ setOperationAction(ISD::MUL, MVT::v8i16, Legal);
+ setOperationAction(ISD::FADD, MVT::v2f64, Legal);
+ setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
+ setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
+ setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
+ setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
+
+ setOperationAction(ISD::VSETCC, MVT::v2f64, Custom);
+ setOperationAction(ISD::VSETCC, MVT::v16i8, Custom);
+ setOperationAction(ISD::VSETCC, MVT::v8i16, Custom);
+ setOperationAction(ISD::VSETCC, MVT::v4i32, Custom);
+
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
+ setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
+
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
+
+ // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
+ for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
+ EVT VT = (MVT::SimpleValueType)i;
+ // Do not attempt to custom lower non-power-of-2 vectors
+ if (!isPowerOf2_32(VT.getVectorNumElements()))
+ continue;
+ // Do not attempt to custom lower non-128-bit vectors
+ if (!VT.is128BitVector())
+ continue;
+ setOperationAction(ISD::BUILD_VECTOR,
+ VT.getSimpleVT().SimpleTy, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE,
+ VT.getSimpleVT().SimpleTy, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT,
+ VT.getSimpleVT().SimpleTy, Custom);
+ }
+
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
+
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
+ }
+
+ // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
+ for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
+ MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
+ EVT VT = SVT;
+
+ // Do not attempt to promote non-128-bit vectors
+ if (!VT.is128BitVector()) {
+ continue;
+ }
+
+ setOperationAction(ISD::AND, SVT, Promote);
+ AddPromotedToType (ISD::AND, SVT, MVT::v2i64);
+ setOperationAction(ISD::OR, SVT, Promote);
+ AddPromotedToType (ISD::OR, SVT, MVT::v2i64);
+ setOperationAction(ISD::XOR, SVT, Promote);
+ AddPromotedToType (ISD::XOR, SVT, MVT::v2i64);
+ setOperationAction(ISD::LOAD, SVT, Promote);
+ AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64);
+ setOperationAction(ISD::SELECT, SVT, Promote);
+ AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
+ }
+
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
+ // Custom lower v2i64 and v2f64 selects.
+ setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
+ setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
+ setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
+
+ setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
+ if (!DisableMMX && Subtarget->hasMMX()) {
+ setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
+ }
+ }
+
+ if (Subtarget->hasSSE41()) {
+ // FIXME: Do we need to handle scalar-to-vector here?
+ setOperationAction(ISD::MUL, MVT::v4i32, Legal);
+
+ // i8 and i16 vectors are custom , because the source register and source
+ // source memory operand types are not the same width. f32 vectors are
+ // custom since the immediate controlling the insert encodes additional
+ // information.
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
+
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
+
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
+ }
+ }
+
+ if (Subtarget->hasSSE42()) {
+ setOperationAction(ISD::VSETCC, MVT::v2i64, Custom);
+ }
+
+ if (!UseSoftFloat && Subtarget->hasAVX()) {
+ addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
+ addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
+ addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
+ addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
+
+ setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
+ setOperationAction(ISD::LOAD, MVT::v8i32, Legal);
+ setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
+ setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
+ setOperationAction(ISD::FADD, MVT::v8f32, Legal);
+ setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
+ setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
+ setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
+ setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
+ //setOperationAction(ISD::BUILD_VECTOR, MVT::v8f32, Custom);
+ //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom);
+ //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom);
+ //setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
+ //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom);
+
+ // Operations to consider commented out -v16i16 v32i8
+ //setOperationAction(ISD::ADD, MVT::v16i16, Legal);
+ setOperationAction(ISD::ADD, MVT::v8i32, Custom);
+ setOperationAction(ISD::ADD, MVT::v4i64, Custom);
+ //setOperationAction(ISD::SUB, MVT::v32i8, Legal);
+ //setOperationAction(ISD::SUB, MVT::v16i16, Legal);
+ setOperationAction(ISD::SUB, MVT::v8i32, Custom);
+ setOperationAction(ISD::SUB, MVT::v4i64, Custom);
+ //setOperationAction(ISD::MUL, MVT::v16i16, Legal);
+ setOperationAction(ISD::FADD, MVT::v4f64, Legal);
+ setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
+ setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
+ setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
+ setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
+ setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
+
+ setOperationAction(ISD::VSETCC, MVT::v4f64, Custom);
+ // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom);
+ // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom);
+ setOperationAction(ISD::VSETCC, MVT::v8i32, Custom);
+
+ // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom);
+ // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom);
+ // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i32, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8f32, Custom);
+
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom);
+ setOperationAction(ISD::BUILD_VECTOR, MVT::v4i64, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f64, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i64, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f64, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom);
+
+#if 0
+ // Not sure we want to do this since there are no 256-bit integer
+ // operations in AVX
+
+ // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
+ // This includes 256-bit vectors
+ for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) {
+ EVT VT = (MVT::SimpleValueType)i;
+
+ // Do not attempt to custom lower non-power-of-2 vectors
+ if (!isPowerOf2_32(VT.getVectorNumElements()))
+ continue;
+
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ }
+
+ if (Subtarget->is64Bit()) {
+ setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i64, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom);
+ }
+#endif
+
+#if 0
+ // Not sure we want to do this since there are no 256-bit integer
+ // operations in AVX
+
+ // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64.
+ // Including 256-bit vectors
+ for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) {
+ EVT VT = (MVT::SimpleValueType)i;
+
+ if (!VT.is256BitVector()) {
+ continue;
+ }
+ setOperationAction(ISD::AND, VT, Promote);
+ AddPromotedToType (ISD::AND, VT, MVT::v4i64);
+ setOperationAction(ISD::OR, VT, Promote);
+ AddPromotedToType (ISD::OR, VT, MVT::v4i64);
+ setOperationAction(ISD::XOR, VT, Promote);
+ AddPromotedToType (ISD::XOR, VT, MVT::v4i64);
+ setOperationAction(ISD::LOAD, VT, Promote);
+ AddPromotedToType (ISD::LOAD, VT, MVT::v4i64);
+ setOperationAction(ISD::SELECT, VT, Promote);
+ AddPromotedToType (ISD::SELECT, VT, MVT::v4i64);
+ }
+
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+#endif
+ }
+
+ // We want to custom lower some of our intrinsics.
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+
+ // Add/Sub/Mul with overflow operations are custom lowered.
+ setOperationAction(ISD::SADDO, MVT::i32, Custom);
+ setOperationAction(ISD::SADDO, MVT::i64, Custom);
+ setOperationAction(ISD::UADDO, MVT::i32, Custom);
+ setOperationAction(ISD::UADDO, MVT::i64, Custom);
+ setOperationAction(ISD::SSUBO, MVT::i32, Custom);
+ setOperationAction(ISD::SSUBO, MVT::i64, Custom);
+ setOperationAction(ISD::USUBO, MVT::i32, Custom);
+ setOperationAction(ISD::USUBO, MVT::i64, Custom);
+ setOperationAction(ISD::SMULO, MVT::i32, Custom);
+ setOperationAction(ISD::SMULO, MVT::i64, Custom);
+
+ if (!Subtarget->is64Bit()) {
+ // These libcalls are not available in 32-bit.
+ setLibcallName(RTLIB::SHL_I128, 0);
+ setLibcallName(RTLIB::SRL_I128, 0);
+ setLibcallName(RTLIB::SRA_I128, 0);
+ }
+
+ // We have target-specific dag combine patterns for the following nodes:
+ setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
+ setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
+ setTargetDAGCombine(ISD::BUILD_VECTOR);
+ setTargetDAGCombine(ISD::SELECT);
+ setTargetDAGCombine(ISD::SHL);
+ setTargetDAGCombine(ISD::SRA);
+ setTargetDAGCombine(ISD::SRL);
+ setTargetDAGCombine(ISD::OR);
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::MEMBARRIER);
+ setTargetDAGCombine(ISD::ZERO_EXTEND);
+ if (Subtarget->is64Bit())
+ setTargetDAGCombine(ISD::MUL);
+
+ computeRegisterProperties();
+
+ // FIXME: These should be based on subtarget info. Plus, the values should
+ // be smaller when we are in optimizing for size mode.
+ maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
+ maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
+ maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
+ setPrefLoopAlignment(16);
+ benefitFromCodePlacementOpt = true;
+}
+
+
+MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const {
+ return MVT::i8;
+}
+
+
+/// getMaxByValAlign - Helper for getByValTypeAlignment to determine
+/// the desired ByVal argument alignment.
+static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) {
+ if (MaxAlign == 16)
+ return;
+ if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
+ if (VTy->getBitWidth() == 128)
+ MaxAlign = 16;
+ } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
+ unsigned EltAlign = 0;
+ getMaxByValAlign(ATy->getElementType(), EltAlign);
+ if (EltAlign > MaxAlign)
+ MaxAlign = EltAlign;
+ } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ unsigned EltAlign = 0;
+ getMaxByValAlign(STy->getElementType(i), EltAlign);
+ if (EltAlign > MaxAlign)
+ MaxAlign = EltAlign;
+ if (MaxAlign == 16)
+ break;
+ }
+ }
+ return;
+}
+
+/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
+/// function arguments in the caller parameter area. For X86, aggregates
+/// that contain SSE vectors are placed at 16-byte boundaries while the rest
+/// are at 4-byte boundaries.
+unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const {
+ if (Subtarget->is64Bit()) {
+ // Max of 8 and alignment of type.
+ unsigned TyAlign = TD->getABITypeAlignment(Ty);
+ if (TyAlign > 8)
+ return TyAlign;
+ return 8;
+ }
+
+ unsigned Align = 4;
+ if (Subtarget->hasSSE1())
+ getMaxByValAlign(Ty, Align);
+ return Align;
+}
+
+/// getOptimalMemOpType - Returns the target specific optimal type for load
+/// and store operations as a result of memset, memcpy, and memmove
+/// lowering. If DstAlign is zero that means it's safe to destination
+/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
+/// means there isn't a need to check it against alignment requirement,
+/// probably because the source does not need to be loaded. If
+/// 'NonScalarIntSafe' is true, that means it's safe to return a
+/// non-scalar-integer type, e.g. empty string source, constant, or loaded
+/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
+/// constant so it does not need to be loaded.
+/// It returns EVT::Other if the type should be determined using generic
+/// target-independent logic.
+EVT
+X86TargetLowering::getOptimalMemOpType(uint64_t Size,
+ unsigned DstAlign, unsigned SrcAlign,
+ bool NonScalarIntSafe,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const {
+ // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
+ // linux. This is because the stack realignment code can't handle certain
+ // cases like PR2962. This should be removed when PR2962 is fixed.
+ const Function *F = MF.getFunction();
+ if (NonScalarIntSafe &&
+ !F->hasFnAttr(Attribute::NoImplicitFloat)) {
+ if (Size >= 16 &&
+ (Subtarget->isUnalignedMemAccessFast() ||
+ ((DstAlign == 0 || DstAlign >= 16) &&
+ (SrcAlign == 0 || SrcAlign >= 16))) &&
+ Subtarget->getStackAlignment() >= 16) {
+ if (Subtarget->hasSSE2())
+ return MVT::v4i32;
+ if (Subtarget->hasSSE1())
+ return MVT::v4f32;
+ } else if (!MemcpyStrSrc && Size >= 8 &&
+ !Subtarget->is64Bit() &&
+ Subtarget->getStackAlignment() >= 8 &&
+ Subtarget->hasSSE2()) {
+ // Do not use f64 to lower memcpy if source is string constant. It's
+ // better to use i32 to avoid the loads.
+ return MVT::f64;
+ }
+ }
+ if (Subtarget->is64Bit() && Size >= 8)
+ return MVT::i64;
+ return MVT::i32;
+}
+
+/// getJumpTableEncoding - Return the entry encoding for a jump table in the
+/// current function. The returned value is a member of the
+/// MachineJumpTableInfo::JTEntryKind enum.
+unsigned X86TargetLowering::getJumpTableEncoding() const {
+ // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
+ // symbol.
+ if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
+ Subtarget->isPICStyleGOT())
+ return MachineJumpTableInfo::EK_Custom32;
+
+ // Otherwise, use the normal jump table encoding heuristics.
+ return TargetLowering::getJumpTableEncoding();
+}
+
+/// getPICBaseSymbol - Return the X86-32 PIC base.
+MCSymbol *
+X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF,
+ MCContext &Ctx) const {
+ const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo();
+ return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+
+ Twine(MF->getFunctionNumber())+"$pb");
+}
+
+
+const MCExpr *
+X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
+ const MachineBasicBlock *MBB,
+ unsigned uid,MCContext &Ctx) const{
+ assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
+ Subtarget->isPICStyleGOT());
+ // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
+ // entries.
+ return MCSymbolRefExpr::Create(MBB->getSymbol(),
+ MCSymbolRefExpr::VK_GOTOFF, Ctx);
+}
+
+/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
+/// jumptable.
+SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
+ SelectionDAG &DAG) const {
+ if (!Subtarget->is64Bit())
+ // This doesn't have DebugLoc associated with it, but is not really the
+ // same as a Register.
+ return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
+ return Table;
+}
+
+/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
+/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
+/// MCExpr.
+const MCExpr *X86TargetLowering::
+getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
+ MCContext &Ctx) const {
+ // X86-64 uses RIP relative addressing based on the jump table label.
+ if (Subtarget->isPICStyleRIPRel())
+ return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
+
+ // Otherwise, the reference is relative to the PIC base.
+ return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx);
+}
+
+/// getFunctionAlignment - Return the Log2 alignment of this function.
+unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const {
+ return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4;
+}
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "X86GenCallingConv.inc"
+
+bool
+X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<EVT> &OutTys,
+ const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags,
+ SelectionDAG &DAG) const {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
+ return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86);
+}
+
+SDValue
+X86TargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeReturn(Outs, RetCC_X86);
+
+ // Add the regs to the liveout set for the function.
+ MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
+ for (unsigned i = 0; i != RVLocs.size(); ++i)
+ if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
+ MRI.addLiveOut(RVLocs[i].getLocReg());
+
+ SDValue Flag;
+
+ SmallVector<SDValue, 6> RetOps;
+ RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
+ // Operand #1 = Bytes To Pop
+ RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
+ MVT::i16));
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+ SDValue ValToCopy = Outs[i].Val;
+
+ // Returns in ST0/ST1 are handled specially: these are pushed as operands to
+ // the RET instruction and handled by the FP Stackifier.
+ if (VA.getLocReg() == X86::ST0 ||
+ VA.getLocReg() == X86::ST1) {
+ // If this is a copy from an xmm register to ST(0), use an FPExtend to
+ // change the value to the FP stack register class.
+ if (isScalarFPTypeInSSEReg(VA.getValVT()))
+ ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
+ RetOps.push_back(ValToCopy);
+ // Don't emit a copytoreg.
+ continue;
+ }
+
+ // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
+ // which is returned in RAX / RDX.
+ if (Subtarget->is64Bit()) {
+ EVT ValVT = ValToCopy.getValueType();
+ if (ValVT.isVector() && ValVT.getSizeInBits() == 64) {
+ ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy);
+ if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1)
+ ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy);
+ }
+ }
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
+ Flag = Chain.getValue(1);
+ }
+
+ // The x86-64 ABI for returning structs by value requires that we copy
+ // the sret argument into %rax for the return. We saved the argument into
+ // a virtual register in the entry block, so now we copy the value out
+ // and into %rax.
+ if (Subtarget->is64Bit() &&
+ DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+ unsigned Reg = FuncInfo->getSRetReturnReg();
+ assert(Reg &&
+ "SRetReturnReg should have been set in LowerFormalArguments().");
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
+
+ Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
+ Flag = Chain.getValue(1);
+
+ // RAX now acts like a return value.
+ MRI.addLiveOut(X86::RAX);
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(X86ISD::RET_FLAG, dl,
+ MVT::Other, &RetOps[0], RetOps.size());
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+///
+SDValue
+X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ bool Is64Bit = Subtarget->is64Bit();
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ EVT CopyVT = VA.getValVT();
+
+ // If this is x86-64, and we disabled SSE, we can't return FP values
+ if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
+ ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) {
+ report_fatal_error("SSE register return with SSE disabled");
+ }
+
+ // If this is a call to a function that returns an fp value on the floating
+ // point stack, but where we prefer to use the value in xmm registers, copy
+ // it out as F80 and use a truncate to move it from fp stack reg to xmm reg.
+ if ((VA.getLocReg() == X86::ST0 ||
+ VA.getLocReg() == X86::ST1) &&
+ isScalarFPTypeInSSEReg(VA.getValVT())) {
+ CopyVT = MVT::f80;
+ }
+
+ SDValue Val;
+ if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) {
+ // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64.
+ if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
+ Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
+ MVT::v2i64, InFlag).getValue(1);
+ Val = Chain.getValue(0);
+ Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
+ Val, DAG.getConstant(0, MVT::i64));
+ } else {
+ Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
+ MVT::i64, InFlag).getValue(1);
+ Val = Chain.getValue(0);
+ }
+ Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val);
+ } else {
+ Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
+ CopyVT, InFlag).getValue(1);
+ Val = Chain.getValue(0);
+ }
+ InFlag = Chain.getValue(2);
+
+ if (CopyVT != VA.getValVT()) {
+ // Round the F80 the right size, which also moves to the appropriate xmm
+ // register.
+ Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
+ // This truncation won't change the value.
+ DAG.getIntPtrConstant(1));
+ }
+
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+
+//===----------------------------------------------------------------------===//
+// C & StdCall & Fast Calling Convention implementation
+//===----------------------------------------------------------------------===//
+// StdCall calling convention seems to be standard for many Windows' API
+// routines and around. It differs from C calling convention just a little:
+// callee should clean up the stack, not caller. Symbols should be also
+// decorated in some fancy way :) It doesn't support any vector arguments.
+// For info on fast calling convention see Fast Calling Convention (tail call)
+// implementation LowerX86_32FastCCCallTo.
+
+/// CallIsStructReturn - Determines whether a call uses struct return
+/// semantics.
+static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
+ if (Outs.empty())
+ return false;
+
+ return Outs[0].Flags.isSRet();
+}
+
+/// ArgsAreStructReturn - Determines whether a function uses struct
+/// return semantics.
+static bool
+ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
+ if (Ins.empty())
+ return false;
+
+ return Ins[0].Flags.isSRet();
+}
+
+/// IsCalleePop - Determines whether the callee is required to pop its
+/// own arguments. Callee pop is necessary to support tail calls.
+bool X86TargetLowering::IsCalleePop(bool IsVarArg,
+ CallingConv::ID CallingConv) const {
+ if (IsVarArg)
+ return false;
+
+ switch (CallingConv) {
+ default:
+ return false;
+ case CallingConv::X86_StdCall:
+ return !Subtarget->is64Bit();
+ case CallingConv::X86_FastCall:
+ return !Subtarget->is64Bit();
+ case CallingConv::X86_ThisCall:
+ return !Subtarget->is64Bit();
+ case CallingConv::Fast:
+ return GuaranteedTailCallOpt;
+ case CallingConv::GHC:
+ return GuaranteedTailCallOpt;
+ }
+}
+
+/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
+/// given CallingConvention value.
+CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const {
+ if (Subtarget->is64Bit()) {
+ if (CC == CallingConv::GHC)
+ return CC_X86_64_GHC;
+ else if (Subtarget->isTargetWin64())
+ return CC_X86_Win64_C;
+ else
+ return CC_X86_64_C;
+ }
+
+ if (CC == CallingConv::X86_FastCall)
+ return CC_X86_32_FastCall;
+ else if (CC == CallingConv::X86_ThisCall)
+ return CC_X86_32_ThisCall;
+ else if (CC == CallingConv::Fast)
+ return CC_X86_32_FastCC;
+ else if (CC == CallingConv::GHC)
+ return CC_X86_32_GHC;
+ else
+ return CC_X86_32_C;
+}
+
+/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
+/// by "Src" to address "Dst" with size and alignment information specified by
+/// the specific parameter attribute. The copy will be passed as a byval
+/// function parameter.
+static SDValue
+CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
+ ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
+ DebugLoc dl) {
+ SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
+ return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
+ /*isVolatile*/false, /*AlwaysInline=*/true,
+ NULL, 0, NULL, 0);
+}
+
+/// IsTailCallConvention - Return true if the calling convention is one that
+/// supports tail call optimization.
+static bool IsTailCallConvention(CallingConv::ID CC) {
+ return (CC == CallingConv::Fast || CC == CallingConv::GHC);
+}
+
+/// FuncIsMadeTailCallSafe - Return true if the function is being made into
+/// a tailcall target by changing its ABI.
+static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
+ return GuaranteedTailCallOpt && IsTailCallConvention(CC);
+}
+
+SDValue
+X86TargetLowering::LowerMemArgument(SDValue Chain,
+ CallingConv::ID CallConv,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ MachineFrameInfo *MFI,
+ unsigned i) const {
+ // Create the nodes corresponding to a load from this parameter slot.
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
+ bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
+ bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
+ EVT ValVT;
+
+ // If value is passed by pointer we have address passed instead of the value
+ // itself.
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ ValVT = VA.getLocVT();
+ else
+ ValVT = VA.getValVT();
+
+ // FIXME: For now, all byval parameter objects are marked mutable. This can be
+ // changed with more analysis.
+ // In case of tail call optimization mark all arguments mutable. Since they
+ // could be overwritten by lowering of arguments in case of a tail call.
+ if (Flags.isByVal()) {
+ int FI = MFI->CreateFixedObject(Flags.getByValSize(),
+ VA.getLocMemOffset(), isImmutable, false);
+ return DAG.getFrameIndex(FI, getPointerTy());
+ } else {
+ int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
+ VA.getLocMemOffset(), isImmutable, false);
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ return DAG.getLoad(ValVT, dl, Chain, FIN,
+ PseudoSourceValue::getFixedStack(FI), 0,
+ false, false, 0);
+ }
+}
+
+SDValue
+X86TargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+ const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+
+ const Function* Fn = MF.getFunction();
+ if (Fn->hasExternalLinkage() &&
+ Subtarget->isTargetCygMing() &&
+ Fn->getName() == "main")
+ FuncInfo->setForceFramePointer(true);
+
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ bool Is64Bit = Subtarget->is64Bit();
+ bool IsWin64 = Subtarget->isTargetWin64();
+
+ assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
+ "Var args not supported with calling convention fastcc or ghc");
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
+ CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv));
+
+ unsigned LastVal = ~0U;
+ SDValue ArgValue;
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
+ // places.
+ assert(VA.getValNo() != LastVal &&
+ "Don't support value assigned to multiple locs yet");
+ LastVal = VA.getValNo();
+
+ if (VA.isRegLoc()) {
+ EVT RegVT = VA.getLocVT();
+ TargetRegisterClass *RC = NULL;
+ if (RegVT == MVT::i32)
+ RC = X86::GR32RegisterClass;
+ else if (Is64Bit && RegVT == MVT::i64)
+ RC = X86::GR64RegisterClass;
+ else if (RegVT == MVT::f32)
+ RC = X86::FR32RegisterClass;
+ else if (RegVT == MVT::f64)
+ RC = X86::FR64RegisterClass;
+ else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
+ RC = X86::VR128RegisterClass;
+ else if (RegVT.isVector() && RegVT.getSizeInBits() == 64)
+ RC = X86::VR64RegisterClass;
+ else
+ llvm_unreachable("Unknown argument type!");
+
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
+
+ // If this is an 8 or 16-bit value, it is really passed promoted to 32
+ // bits. Insert an assert[sz]ext to capture this, then truncate to the
+ // right size.
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ else if (VA.getLocInfo() == CCValAssign::BCvt)
+ ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
+
+ if (VA.isExtInLoc()) {
+ // Handle MMX values passed in XMM regs.
+ if (RegVT.isVector()) {
+ ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64,
+ ArgValue, DAG.getConstant(0, MVT::i64));
+ ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue);
+ } else
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+ }
+ } else {
+ assert(VA.isMemLoc());
+ ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
+ }
+
+ // If value is passed via pointer - do a load.
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0,
+ false, false, 0);
+
+ InVals.push_back(ArgValue);
+ }
+
+ // The x86-64 ABI for returning structs by value requires that we copy
+ // the sret argument into %rax for the return. Save the argument into
+ // a virtual register so that we can access it from the return points.
+ if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+ unsigned Reg = FuncInfo->getSRetReturnReg();
+ if (!Reg) {
+ Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
+ FuncInfo->setSRetReturnReg(Reg);
+ }
+ SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
+ }
+
+ unsigned StackSize = CCInfo.getNextStackOffset();
+ // Align stack specially for tail calls.
+ if (FuncIsMadeTailCallSafe(CallConv))
+ StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
+
+ // If the function takes variable number of arguments, make a frame index for
+ // the start of the first vararg value... for expansion of llvm.va_start.
+ if (isVarArg) {
+ if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
+ CallConv != CallingConv::X86_ThisCall)) {
+ FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,
+ true, false));
+ }
+ if (Is64Bit) {
+ unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
+
+ // FIXME: We should really autogenerate these arrays
+ static const unsigned GPR64ArgRegsWin64[] = {
+ X86::RCX, X86::RDX, X86::R8, X86::R9
+ };
+ static const unsigned XMMArgRegsWin64[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3
+ };
+ static const unsigned GPR64ArgRegs64Bit[] = {
+ X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
+ };
+ static const unsigned XMMArgRegs64Bit[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+ X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+ };
+ const unsigned *GPR64ArgRegs, *XMMArgRegs;
+
+ if (IsWin64) {
+ TotalNumIntRegs = 4; TotalNumXMMRegs = 4;
+ GPR64ArgRegs = GPR64ArgRegsWin64;
+ XMMArgRegs = XMMArgRegsWin64;
+ } else {
+ TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
+ GPR64ArgRegs = GPR64ArgRegs64Bit;
+ XMMArgRegs = XMMArgRegs64Bit;
+ }
+ unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
+ TotalNumIntRegs);
+ unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs,
+ TotalNumXMMRegs);
+
+ bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
+ assert(!(NumXMMRegs && !Subtarget->hasSSE1()) &&
+ "SSE register cannot be used when SSE is disabled!");
+ assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
+ "SSE register cannot be used when SSE is disabled!");
+ if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1())
+ // Kernel mode asks for SSE to be disabled, so don't push them
+ // on the stack.
+ TotalNumXMMRegs = 0;
+
+ // For X86-64, if there are vararg parameters that are passed via
+ // registers, then we must store them to their spots on the stack so they
+ // may be loaded by deferencing the result of va_next.
+ FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
+ FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
+ FuncInfo->setRegSaveFrameIndex(
+ MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
+ false));
+
+ // Store the integer parameter registers.
+ SmallVector<SDValue, 8> MemOps;
+ SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
+ getPointerTy());
+ unsigned Offset = FuncInfo->getVarArgsGPOffset();
+ for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
+ SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
+ DAG.getIntPtrConstant(Offset));
+ unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
+ X86::GR64RegisterClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
+ SDValue Store =
+ DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ PseudoSourceValue::getFixedStack(
+ FuncInfo->getRegSaveFrameIndex()),
+ Offset, false, false, 0);
+ MemOps.push_back(Store);
+ Offset += 8;
+ }
+
+ if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
+ // Now store the XMM (fp + vector) parameter registers.
+ SmallVector<SDValue, 11> SaveXMMOps;
+ SaveXMMOps.push_back(Chain);
+
+ unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
+ SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
+ SaveXMMOps.push_back(ALVal);
+
+ SaveXMMOps.push_back(DAG.getIntPtrConstant(
+ FuncInfo->getRegSaveFrameIndex()));
+ SaveXMMOps.push_back(DAG.getIntPtrConstant(
+ FuncInfo->getVarArgsFPOffset()));
+
+ for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
+ unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs],
+ X86::VR128RegisterClass);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
+ SaveXMMOps.push_back(Val);
+ }
+ MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
+ MVT::Other,
+ &SaveXMMOps[0], SaveXMMOps.size()));
+ }
+
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOps[0], MemOps.size());
+ }
+ }
+
+ // Some CCs need callee pop.
+ if (IsCalleePop(isVarArg, CallConv)) {
+ FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
+ } else {
+ FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
+ // If this is an sret function, the return should pop the hidden pointer.
+ if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
+ FuncInfo->setBytesToPopOnReturn(4);
+ }
+
+ if (!Is64Bit) {
+ // RegSaveFrameIndex is X86-64 only.
+ FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
+ if (CallConv == CallingConv::X86_FastCall ||
+ CallConv == CallingConv::X86_ThisCall)
+ // fastcc functions can't have varargs.
+ FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
+ }
+
+ return Chain;
+}
+
+SDValue
+X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
+ SDValue StackPtr, SDValue Arg,
+ DebugLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ ISD::ArgFlagsTy Flags) const {
+ const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0);
+ unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset();
+ SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
+ PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
+ if (Flags.isByVal()) {
+ return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
+ }
+ return DAG.getStore(Chain, dl, Arg, PtrOff,
+ PseudoSourceValue::getStack(), LocMemOffset,
+ false, false, 0);
+}
+
+/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
+/// optimization is performed and it is required.
+SDValue
+X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
+ SDValue &OutRetAddr, SDValue Chain,
+ bool IsTailCall, bool Is64Bit,
+ int FPDiff, DebugLoc dl) const {
+ // Adjust the Return address stack slot.
+ EVT VT = getPointerTy();
+ OutRetAddr = getReturnAddressFrameIndex(DAG);
+
+ // Load the "old" Return address.
+ OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0);
+ return SDValue(OutRetAddr.getNode(), 1);
+}
+
+/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call
+/// optimization is performed and it is required (FPDiff!=0).
+static SDValue
+EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
+ SDValue Chain, SDValue RetAddrFrIdx,
+ bool Is64Bit, int FPDiff, DebugLoc dl) {
+ // Store the return address to the appropriate stack slot.
+ if (!FPDiff) return Chain;
+ // Calculate the new stack slot for the return address.
+ int SlotSize = Is64Bit ? 8 : 4;
+ int NewReturnAddrFI =
+ MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false, false);
+ EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
+ SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
+ Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
+ PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0,
+ false, false, 0);
+ return Chain;
+}
+
+SDValue
+X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool &isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool Is64Bit = Subtarget->is64Bit();
+ bool IsStructRet = CallIsStructReturn(Outs);
+ bool IsSibcall = false;
+
+ if (isTailCall) {
+ // Check if it's really possible to do a tail call.
+ isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
+ isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
+ Outs, Ins, DAG);
+
+ // Sibcalls are automatically detected tailcalls which do not require
+ // ABI changes.
+ if (!GuaranteedTailCallOpt && isTailCall)
+ IsSibcall = true;
+
+ if (isTailCall)
+ ++NumTailCalls;
+ }
+
+ assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
+ "Var args not supported with calling convention fastcc or ghc");
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv));
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+ if (IsSibcall)
+ // This is a sibcall. The memory operands are available in caller's
+ // own caller's stack.
+ NumBytes = 0;
+ else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
+ NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
+
+ int FPDiff = 0;
+ if (isTailCall && !IsSibcall) {
+ // Lower arguments at fp - stackoffset + fpdiff.
+ unsigned NumBytesCallerPushed =
+ MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
+ FPDiff = NumBytesCallerPushed - NumBytes;
+
+ // Set the delta of movement of the returnaddr stackslot.
+ // But only set if delta is greater than previous delta.
+ if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
+ MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
+ }
+
+ if (!IsSibcall)
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
+
+ SDValue RetAddrFrIdx;
+ // Load return adress for tail calls.
+ if (isTailCall && FPDiff)
+ Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
+ Is64Bit, FPDiff, dl);
+
+ SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+ SDValue StackPtr;
+
+ // Walk the register/memloc assignments, inserting copies/loads. In the case
+ // of tail call optimization arguments are handle later.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ EVT RegVT = VA.getLocVT();
+ SDValue Arg = Outs[i].Val;
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ bool isByVal = Flags.isByVal();
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
+ break;
+ case CCValAssign::AExt:
+ if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
+ // Special case: passing MMX values in XMM registers.
+ Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
+ Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
+ Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
+ } else
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg);
+ break;
+ case CCValAssign::Indirect: {
+ // Store the argument.
+ SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
+ int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
+ Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
+ PseudoSourceValue::getFixedStack(FI), 0,
+ false, false, 0);
+ Arg = SpillSlot;
+ break;
+ }
+ }
+
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else if (!IsSibcall && (!isTailCall || isByVal)) {
+ assert(VA.isMemLoc());
+ if (StackPtr.getNode() == 0)
+ StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
+ dl, DAG, VA, Flags));
+ }
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOpChains[0], MemOpChains.size());
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into registers.
+ SDValue InFlag;
+ // Tail call byval lowering might overwrite argument registers so in case of
+ // tail call optimization the copies to registers are lowered later.
+ if (!isTailCall)
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ if (Subtarget->isPICStyleGOT()) {
+ // ELF / PIC requires GOT in the EBX register before function calls via PLT
+ // GOT pointer.
+ if (!isTailCall) {
+ Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
+ DAG.getNode(X86ISD::GlobalBaseReg,
+ DebugLoc(), getPointerTy()),
+ InFlag);
+ InFlag = Chain.getValue(1);
+ } else {
+ // If we are tail calling and generating PIC/GOT style code load the
+ // address of the callee into ECX. The value in ecx is used as target of
+ // the tail jump. This is done to circumvent the ebx/callee-saved problem
+ // for tail calls on PIC/GOT architectures. Normally we would just put the
+ // address of GOT into ebx and then call target@PLT. But for tail calls
+ // ebx would be restored (since ebx is callee saved) before jumping to the
+ // target@PLT.
+
+ // Note: The actual moving to ECX is done further down.
+ GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
+ if (G && !G->getGlobal()->hasHiddenVisibility() &&
+ !G->getGlobal()->hasProtectedVisibility())
+ Callee = LowerGlobalAddress(Callee, DAG);
+ else if (isa<ExternalSymbolSDNode>(Callee))
+ Callee = LowerExternalSymbol(Callee, DAG);
+ }
+ }
+
+ if (Is64Bit && isVarArg) {
+ // From AMD64 ABI document:
+ // For calls that may call functions that use varargs or stdargs
+ // (prototype-less calls or calls to functions containing ellipsis (...) in
+ // the declaration) %al is used as hidden argument to specify the number
+ // of SSE registers used. The contents of %al do not need to match exactly
+ // the number of registers, but must be an ubound on the number of SSE
+ // registers used and is in the range 0 - 8 inclusive.
+
+ // FIXME: Verify this on Win64
+ // Count the number of XMM registers allocated.
+ static const unsigned XMMArgRegs[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+ X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+ };
+ unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
+ assert((Subtarget->hasSSE1() || !NumXMMRegs)
+ && "SSE registers cannot be used when SSE is disabled");
+
+ Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
+ DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+
+ // For tail calls lower the arguments to the 'real' stack slot.
+ if (isTailCall) {
+ // Force all the incoming stack arguments to be loaded from the stack
+ // before any new outgoing arguments are stored to the stack, because the
+ // outgoing stack slots may alias the incoming argument stack slots, and
+ // the alias isn't otherwise explicit. This is slightly more conservative
+ // than necessary, because it means that each store effectively depends
+ // on every argument instead of just those arguments it would clobber.
+ SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
+
+ SmallVector<SDValue, 8> MemOpChains2;
+ SDValue FIN;
+ int FI = 0;
+ // Do not flag preceeding copytoreg stuff together with the following stuff.
+ InFlag = SDValue();
+ if (GuaranteedTailCallOpt) {
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ if (VA.isRegLoc())
+ continue;
+ assert(VA.isMemLoc());
+ SDValue Arg = Outs[i].Val;
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ // Create frame index.
+ int32_t Offset = VA.getLocMemOffset()+FPDiff;
+ uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
+ FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false);
+ FIN = DAG.getFrameIndex(FI, getPointerTy());
+
+ if (Flags.isByVal()) {
+ // Copy relative to framepointer.
+ SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
+ if (StackPtr.getNode() == 0)
+ StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
+ getPointerTy());
+ Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
+
+ MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
+ ArgChain,
+ Flags, DAG, dl));
+ } else {
+ // Store relative to framepointer.
+ MemOpChains2.push_back(
+ DAG.getStore(ArgChain, dl, Arg, FIN,
+ PseudoSourceValue::getFixedStack(FI), 0,
+ false, false, 0));
+ }
+ }
+ }
+
+ if (!MemOpChains2.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOpChains2[0], MemOpChains2.size());
+
+ // Copy arguments to their registers.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+ InFlag =SDValue();
+
+ // Store the return address to the appropriate stack slot.
+ Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
+ FPDiff, dl);
+ }
+
+ bool WasGlobalOrExternal = false;
+ if (getTargetMachine().getCodeModel() == CodeModel::Large) {
+ assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
+ // In the 64-bit large code model, we have to make all calls
+ // through a register, since the call instruction's 32-bit
+ // pc-relative offset may not be large enough to hold the whole
+ // address.
+ } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ WasGlobalOrExternal = true;
+ // If the callee is a GlobalAddress node (quite common, every direct call
+ // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
+ // it.
+
+ // We should use extra load for direct calls to dllimported functions in
+ // non-JIT mode.
+ const GlobalValue *GV = G->getGlobal();
+ if (!GV->hasDLLImportLinkage()) {
+ unsigned char OpFlags = 0;
+
+ // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
+ // external symbols most go through the PLT in PIC mode. If the symbol
+ // has hidden or protected visibility, or if it is static or local, then
+ // we don't need to use the PLT - we can directly call it.
+ if (Subtarget->isTargetELF() &&
+ getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
+ GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
+ OpFlags = X86II::MO_PLT;
+ } else if (Subtarget->isPICStyleStubAny() &&
+ (GV->isDeclaration() || GV->isWeakForLinker()) &&
+ Subtarget->getDarwinVers() < 9) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = X86II::MO_DARWIN_STUB;
+ }
+
+ Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(),
+ G->getOffset(), OpFlags);
+ }
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ WasGlobalOrExternal = true;
+ unsigned char OpFlags = 0;
+
+ // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external
+ // symbols should go through the PLT.
+ if (Subtarget->isTargetELF() &&
+ getTargetMachine().getRelocationModel() == Reloc::PIC_) {
+ OpFlags = X86II::MO_PLT;
+ } else if (Subtarget->isPICStyleStubAny() &&
+ Subtarget->getDarwinVers() < 9) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = X86II::MO_DARWIN_STUB;
+ }
+
+ Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
+ OpFlags);
+ }
+
+ // Returns a chain & a flag for retval copy to use.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
+ SmallVector<SDValue, 8> Ops;
+
+ if (!IsSibcall && isTailCall) {
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(0, true), InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ if (isTailCall)
+ Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ // Add an implicit use GOT pointer in EBX.
+ if (!isTailCall && Subtarget->isPICStyleGOT())
+ Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
+
+ // Add an implicit use of AL for x86 vararg functions.
+ if (Is64Bit && isVarArg)
+ Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ if (isTailCall) {
+ // If this is the first return lowered for this function, add the regs
+ // to the liveout set for the function.
+ if (MF.getRegInfo().liveout_empty()) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
+ *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
+ for (unsigned i = 0; i != RVLocs.size(); ++i)
+ if (RVLocs[i].isRegLoc())
+ MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
+ }
+ return DAG.getNode(X86ISD::TC_RETURN, dl,
+ NodeTys, &Ops[0], Ops.size());
+ }
+
+ Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
+ InFlag = Chain.getValue(1);
+
+ // Create the CALLSEQ_END node.
+ unsigned NumBytesForCalleeToPush;
+ if (IsCalleePop(isVarArg, CallConv))
+ NumBytesForCalleeToPush = NumBytes; // Callee pops everything
+ else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
+ // If this is a call to a struct-return function, the callee
+ // pops the hidden struct pointer, so we have to push it back.
+ // This is common for Darwin/X86, Linux & Mingw32 targets.
+ NumBytesForCalleeToPush = 4;
+ else
+ NumBytesForCalleeToPush = 0; // Callee pops nothing.
+
+ // Returns a flag for retval copy to use.
+ if (!IsSibcall) {
+ Chain = DAG.getCALLSEQ_END(Chain,
+ DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(NumBytesForCalleeToPush,
+ true),
+ InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
+ Ins, dl, DAG, InVals);
+}
+
+
+//===----------------------------------------------------------------------===//
+// Fast Calling Convention (tail call) implementation
+//===----------------------------------------------------------------------===//
+
+// Like std call, callee cleans arguments, convention except that ECX is
+// reserved for storing the tail called function address. Only 2 registers are
+// free for argument passing (inreg). Tail call optimization is performed
+// provided:
+// * tailcallopt is enabled
+// * caller/callee are fastcc
+// On X86_64 architecture with GOT-style position independent code only local
+// (within module) calls are supported at the moment.
+// To keep the stack aligned according to platform abi the function
+// GetAlignedArgumentStackSize ensures that argument delta is always multiples
+// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
+// If a tail called function callee has more arguments than the caller the
+// caller needs to make sure that there is room to move the RETADDR to. This is
+// achieved by reserving an area the size of the argument delta right after the
+// original REtADDR, but before the saved framepointer or the spilled registers
+// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
+// stack layout:
+// arg1
+// arg2
+// RETADDR
+// [ new RETADDR
+// move area ]
+// (possible EBP)
+// ESI
+// EDI
+// local1 ..
+
+/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
+/// for a 16 byte align requirement.
+unsigned
+X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
+ SelectionDAG& DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ const TargetMachine &TM = MF.getTarget();
+ const TargetFrameInfo &TFI = *TM.getFrameInfo();
+ unsigned StackAlignment = TFI.getStackAlignment();
+ uint64_t AlignMask = StackAlignment - 1;
+ int64_t Offset = StackSize;
+ uint64_t SlotSize = TD->getPointerSize();
+ if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
+ // Number smaller than 12 so just add the difference.
+ Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
+ } else {
+ // Mask out lower bits, add stackalignment once plus the 12 bytes.
+ Offset = ((~AlignMask) & Offset) + StackAlignment +
+ (StackAlignment-SlotSize);
+ }
+ return Offset;
+}
+
+/// MatchingStackOffset - Return true if the given stack call argument is
+/// already available in the same position (relatively) of the caller's
+/// incoming argument stack.
+static
+bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
+ MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
+ const X86InstrInfo *TII) {
+ unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
+ int FI = INT_MAX;
+ if (Arg.getOpcode() == ISD::CopyFromReg) {
+ unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
+ if (!VR || TargetRegisterInfo::isPhysicalRegister(VR))
+ return false;
+ MachineInstr *Def = MRI->getVRegDef(VR);
+ if (!Def)
+ return false;
+ if (!Flags.isByVal()) {
+ if (!TII->isLoadFromStackSlot(Def, FI))
+ return false;
+ } else {
+ unsigned Opcode = Def->getOpcode();
+ if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
+ Def->getOperand(1).isFI()) {
+ FI = Def->getOperand(1).getIndex();
+ Bytes = Flags.getByValSize();
+ } else
+ return false;
+ }
+ } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
+ if (Flags.isByVal())
+ // ByVal argument is passed in as a pointer but it's now being
+ // dereferenced. e.g.
+ // define @foo(%struct.X* %A) {
+ // tail call @bar(%struct.X* byval %A)
+ // }
+ return false;
+ SDValue Ptr = Ld->getBasePtr();
+ FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
+ if (!FINode)
+ return false;
+ FI = FINode->getIndex();
+ } else
+ return false;
+
+ assert(FI != INT_MAX);
+ if (!MFI->isFixedObjectIndex(FI))
+ return false;
+ return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
+}
+
+/// IsEligibleForTailCallOptimization - Check whether the call is eligible
+/// for tail call optimization. Targets which want to do tail call
+/// optimization should implement this function.
+bool
+X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ bool isCalleeStructRet,
+ bool isCallerStructRet,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const {
+ if (!IsTailCallConvention(CalleeCC) &&
+ CalleeCC != CallingConv::C)
+ return false;
+
+ // If -tailcallopt is specified, make fastcc functions tail-callable.
+ const MachineFunction &MF = DAG.getMachineFunction();
+ const Function *CallerF = DAG.getMachineFunction().getFunction();
+ CallingConv::ID CallerCC = CallerF->getCallingConv();
+ bool CCMatch = CallerCC == CalleeCC;
+
+ if (GuaranteedTailCallOpt) {
+ if (IsTailCallConvention(CalleeCC) && CCMatch)
+ return true;
+ return false;
+ }
+
+ // Look for obvious safe cases to perform tail call optimization that does not
+ // requite ABI changes. This is what gcc calls sibcall.
+
+ // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
+ // emit a special epilogue.
+ if (RegInfo->needsStackRealignment(MF))
+ return false;
+
+ // Do not sibcall optimize vararg calls unless the call site is not passing any
+ // arguments.
+ if (isVarArg && !Outs.empty())
+ return false;
+
+ // Also avoid sibcall optimization if either caller or callee uses struct
+ // return semantics.
+ if (isCalleeStructRet || isCallerStructRet)
+ return false;
+
+ // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
+ // Therefore if it's not used by the call it is not safe to optimize this into
+ // a sibcall.
+ bool Unused = false;
+ for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
+ if (!Ins[i].Used) {
+ Unused = true;
+ break;
+ }
+ }
+ if (Unused) {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CalleeCC, false, getTargetMachine(),
+ RVLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
+ for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
+ CCValAssign &VA = RVLocs[i];
+ if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
+ return false;
+ }
+ }
+
+ // If the calling conventions do not match, then we'd better make sure the
+ // results are returned in the same way as what the caller expects.
+ if (!CCMatch) {
+ SmallVector<CCValAssign, 16> RVLocs1;
+ CCState CCInfo1(CalleeCC, false, getTargetMachine(),
+ RVLocs1, *DAG.getContext());
+ CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
+
+ SmallVector<CCValAssign, 16> RVLocs2;
+ CCState CCInfo2(CallerCC, false, getTargetMachine(),
+ RVLocs2, *DAG.getContext());
+ CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
+
+ if (RVLocs1.size() != RVLocs2.size())
+ return false;
+ for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
+ if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
+ return false;
+ if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
+ return false;
+ if (RVLocs1[i].isRegLoc()) {
+ if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
+ return false;
+ } else {
+ if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
+ return false;
+ }
+ }
+ }
+
+ // If the callee takes no arguments then go on to check the results of the
+ // call.
+ if (!Outs.empty()) {
+ // Check if stack adjustment is needed. For now, do not do this if any
+ // argument is passed on the stack.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
+ CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC));
+ if (CCInfo.getNextStackOffset()) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
+ return false;
+ if (Subtarget->isTargetWin64())
+ // Win64 ABI has additional complications.
+ return false;
+
+ // Check if the arguments are already laid out in the right way as
+ // the caller's fixed stack objects.
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const MachineRegisterInfo *MRI = &MF.getRegInfo();
+ const X86InstrInfo *TII =
+ ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ EVT RegVT = VA.getLocVT();
+ SDValue Arg = Outs[i].Val;
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ return false;
+ if (!VA.isRegLoc()) {
+ if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
+ MFI, MRI, TII))
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+FastISel *
+X86TargetLowering::createFastISel(MachineFunction &mf,
+ DenseMap<const Value *, unsigned> &vm,
+ DenseMap<const BasicBlock*, MachineBasicBlock*> &bm,
+ DenseMap<const AllocaInst *, int> &am,
+ std::vector<std::pair<MachineInstr*, unsigned> > &pn
+#ifndef NDEBUG
+ , SmallSet<const Instruction *, 8> &cil
+#endif
+ ) const {
+ return X86::createFastISel(mf, vm, bm, am, pn
+#ifndef NDEBUG
+ , cil
+#endif
+ );
+}
+
+
+//===----------------------------------------------------------------------===//
+// Other Lowering Hooks
+//===----------------------------------------------------------------------===//
+
+
+SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+ int ReturnAddrIndex = FuncInfo->getRAIndex();
+
+ if (ReturnAddrIndex == 0) {
+ // Set up a frame object for the return address.
+ uint64_t SlotSize = TD->getPointerSize();
+ ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
+ false, false);
+ FuncInfo->setRAIndex(ReturnAddrIndex);
+ }
+
+ return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
+}
+
+
+bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
+ bool hasSymbolicDisplacement) {
+ // Offset should fit into 32 bit immediate field.
+ if (!isInt<32>(Offset))
+ return false;
+
+ // If we don't have a symbolic displacement - we don't have any extra
+ // restrictions.
+ if (!hasSymbolicDisplacement)
+ return true;
+
+ // FIXME: Some tweaks might be needed for medium code model.
+ if (M != CodeModel::Small && M != CodeModel::Kernel)
+ return false;
+
+ // For small code model we assume that latest object is 16MB before end of 31
+ // bits boundary. We may also accept pretty large negative constants knowing
+ // that all objects are in the positive half of address space.
+ if (M == CodeModel::Small && Offset < 16*1024*1024)
+ return true;
+
+ // For kernel code model we know that all object resist in the negative half
+ // of 32bits address space. We may not accept negative offsets, since they may
+ // be just off and we may accept pretty large positive ones.
+ if (M == CodeModel::Kernel && Offset > 0)
+ return true;
+
+ return false;
+}
+
+/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
+/// specific condition code, returning the condition code and the LHS/RHS of the
+/// comparison to make.
+static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
+ SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
+ if (!isFP) {
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
+ if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
+ // X > -1 -> X == 0, jump !sign.
+ RHS = DAG.getConstant(0, RHS.getValueType());
+ return X86::COND_NS;
+ } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
+ // X < 0 -> X == 0, jump on sign.
+ return X86::COND_S;
+ } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
+ // X < 1 -> X <= 0
+ RHS = DAG.getConstant(0, RHS.getValueType());
+ return X86::COND_LE;
+ }
+ }
+
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Invalid integer condition!");
+ case ISD::SETEQ: return X86::COND_E;
+ case ISD::SETGT: return X86::COND_G;
+ case ISD::SETGE: return X86::COND_GE;
+ case ISD::SETLT: return X86::COND_L;
+ case ISD::SETLE: return X86::COND_LE;
+ case ISD::SETNE: return X86::COND_NE;
+ case ISD::SETULT: return X86::COND_B;
+ case ISD::SETUGT: return X86::COND_A;
+ case ISD::SETULE: return X86::COND_BE;
+ case ISD::SETUGE: return X86::COND_AE;
+ }
+ }
+
+ // First determine if it is required or is profitable to flip the operands.
+
+ // If LHS is a foldable load, but RHS is not, flip the condition.
+ if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) &&
+ !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) {
+ SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
+ std::swap(LHS, RHS);
+ }
+
+ switch (SetCCOpcode) {
+ default: break;
+ case ISD::SETOLT:
+ case ISD::SETOLE:
+ case ISD::SETUGT:
+ case ISD::SETUGE:
+ std::swap(LHS, RHS);
+ break;
+ }
+
+ // On a floating point condition, the flags are set as follows:
+ // ZF PF CF op
+ // 0 | 0 | 0 | X > Y
+ // 0 | 0 | 1 | X < Y
+ // 1 | 0 | 0 | X == Y
+ // 1 | 1 | 1 | unordered
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Condcode should be pre-legalized away");
+ case ISD::SETUEQ:
+ case ISD::SETEQ: return X86::COND_E;
+ case ISD::SETOLT: // flipped
+ case ISD::SETOGT:
+ case ISD::SETGT: return X86::COND_A;
+ case ISD::SETOLE: // flipped
+ case ISD::SETOGE:
+ case ISD::SETGE: return X86::COND_AE;
+ case ISD::SETUGT: // flipped
+ case ISD::SETULT:
+ case ISD::SETLT: return X86::COND_B;
+ case ISD::SETUGE: // flipped
+ case ISD::SETULE:
+ case ISD::SETLE: return X86::COND_BE;
+ case ISD::SETONE:
+ case ISD::SETNE: return X86::COND_NE;
+ case ISD::SETUO: return X86::COND_P;
+ case ISD::SETO: return X86::COND_NP;
+ case ISD::SETOEQ:
+ case ISD::SETUNE: return X86::COND_INVALID;
+ }
+}
+
+/// hasFPCMov - is there a floating point cmov for the specific X86 condition
+/// code. Current x86 isa includes the following FP cmov instructions:
+/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
+static bool hasFPCMov(unsigned X86CC) {
+ switch (X86CC) {
+ default:
+ return false;
+ case X86::COND_B:
+ case X86::COND_BE:
+ case X86::COND_E:
+ case X86::COND_P:
+ case X86::COND_A:
+ case X86::COND_AE:
+ case X86::COND_NE:
+ case X86::COND_NP:
+ return true;
+ }
+}
+
+/// isFPImmLegal - Returns true if the target can instruction select the
+/// specified FP immediate natively. If false, the legalizer will
+/// materialize the FP immediate as a load from a constant pool.
+bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
+ if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
+ return true;
+ }
+ return false;
+}
+
+/// isUndefOrInRange - Return true if Val is undef or if its value falls within
+/// the specified range (L, H].
+static bool isUndefOrInRange(int Val, int Low, int Hi) {
+ return (Val < 0) || (Val >= Low && Val < Hi);
+}
+
+/// isUndefOrEqual - Val is either less than zero (undef) or equal to the
+/// specified value.
+static bool isUndefOrEqual(int Val, int CmpVal) {
+ if (Val < 0 || Val == CmpVal)
+ return true;
+ return false;
+}
+
+/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
+/// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
+/// the second operand.
+static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
+ if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16)
+ return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
+ if (VT == MVT::v2f64 || VT == MVT::v2i64)
+ return (Mask[0] < 2 && Mask[1] < 2);
+ return false;
+}
+
+bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
+ SmallVector<int, 8> M;
+ N->getMask(M);
+ return ::isPSHUFDMask(M, N->getValueType(0));
+}
+
+/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
+/// is suitable for input to PSHUFHW.
+static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
+ if (VT != MVT::v8i16)
+ return false;
+
+ // Lower quadword copied in order or undef.
+ for (int i = 0; i != 4; ++i)
+ if (Mask[i] >= 0 && Mask[i] != i)
+ return false;
+
+ // Upper quadword shuffled.
+ for (int i = 4; i != 8; ++i)
+ if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
+ return false;
+
+ return true;
+}
+
+bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
+ SmallVector<int, 8> M;
+ N->getMask(M);
+ return ::isPSHUFHWMask(M, N->getValueType(0));
+}
+
+/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
+/// is suitable for input to PSHUFLW.
+static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
+ if (VT != MVT::v8i16)
+ return false;
+
+ // Upper quadword copied in order.
+ for (int i = 4; i != 8; ++i)
+ if (Mask[i] >= 0 && Mask[i] != i)
+ return false;
+
+ // Lower quadword shuffled.
+ for (int i = 0; i != 4; ++i)
+ if (Mask[i] >= 4)
+ return false;
+
+ return true;
+}
+
+bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
+ SmallVector<int, 8> M;
+ N->getMask(M);
+ return ::isPSHUFLWMask(M, N->getValueType(0));
+}
+
+/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
+/// is suitable for input to PALIGNR.
+static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
+ bool hasSSSE3) {
+ int i, e = VT.getVectorNumElements();
+
+ // Do not handle v2i64 / v2f64 shuffles with palignr.
+ if (e < 4 || !hasSSSE3)
+ return false;
+
+ for (i = 0; i != e; ++i)
+ if (Mask[i] >= 0)
+ break;
+
+ // All undef, not a palignr.
+ if (i == e)
+ return false;
+
+ // Determine if it's ok to perform a palignr with only the LHS, since we
+ // don't have access to the actual shuffle elements to see if RHS is undef.
+ bool Unary = Mask[i] < (int)e;
+ bool NeedsUnary = false;
+
+ int s = Mask[i] - i;
+
+ // Check the rest of the elements to see if they are consecutive.
+ for (++i; i != e; ++i) {
+ int m = Mask[i];
+ if (m < 0)
+ continue;
+
+ Unary = Unary && (m < (int)e);
+ NeedsUnary = NeedsUnary || (m < s);
+
+ if (NeedsUnary && !Unary)
+ return false;
+ if (Unary && m != ((s+i) & (e-1)))
+ return false;
+ if (!Unary && m != (s+i))
+ return false;
+ }
+ return true;
+}
+
+bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) {
+ SmallVector<int, 8> M;
+ N->getMask(M);
+ return ::isPALIGNRMask(M, N->getValueType(0), true);
+}
+
+/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to SHUFP*.
+static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
+ int NumElems = VT.getVectorNumElements();
+ if (NumElems != 2 && NumElems != 4)
+ return false;
+
+ int Half = NumElems / 2;
+ for (int i = 0; i < Half; ++i)
+ if (!isUndefOrInRange(Mask[i], 0, NumElems))
+ return false;
+ for (int i = Half; i < NumElems; ++i)
+ if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
+ return false;
+
+ return true;
+}
+
+bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
+ SmallVector<int, 8> M;
+ N->getMask(M);
+ return ::isSHUFPMask(M, N->getValueType(0));
+}
+
+/// isCommutedSHUFP - Returns true if the shuffle mask is exactly
+/// the reverse of what x86 shuffles want. x86 shuffles requires the lower
+/// half elements to come from vector 1 (which would equal the dest.) and
+/// the upper half to come from vector 2.
+static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
+ int NumElems = VT.getVectorNumElements();
+
+ if (NumElems != 2 && NumElems != 4)
+ return false;
+
+ int Half = NumElems / 2;
+ for (int i = 0; i < Half; ++i)
+ if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
+ return false;
+ for (int i = Half; i < NumElems; ++i)
+ if (!isUndefOrInRange(Mask[i], 0, NumElems))
+ return false;
+ return true;
+}
+
+static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
+ SmallVector<int, 8> M;
+ N->getMask(M);
+ return isCommutedSHUFPMask(M, N->getValueType(0));
+}
+
+/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVHLPS.
+bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
+ if (N->getValueType(0).getVectorNumElements() != 4)
+ return false;
+
+ // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
+ return isUndefOrEqual(N->getMaskElt(0), 6) &&
+ isUndefOrEqual(N->getMaskElt(1), 7) &&
+ isUndefOrEqual(N->getMaskElt(2), 2) &&
+ isUndefOrEqual(N->getMaskElt(3), 3);
+}
+
+/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
+/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
+/// <2, 3, 2, 3>
+bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
+ unsigned NumElems = N->getValueType(0).getVectorNumElements();
+
+ if (NumElems != 4)
+ return false;
+
+ return isUndefOrEqual(N->getMaskElt(0), 2) &&
+ isUndefOrEqual(N->getMaskElt(1), 3) &&
+ isUndefOrEqual(N->getMaskElt(2), 2) &&
+ isUndefOrEqual(N->getMaskElt(3), 3);
+}
+
+/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
+bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
+ unsigned NumElems = N->getValueType(0).getVectorNumElements();
+
+ if (NumElems != 2 && NumElems != 4)
+ return false;
+
+ for (unsigned i = 0; i < NumElems/2; ++i)
+ if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
+ return false;
+
+ for (unsigned i = NumElems/2; i < NumElems; ++i)
+ if (!isUndefOrEqual(N->getMaskElt(i), i))
+ return false;
+
+ return true;
+}
+
+/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVLHPS.
+bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
+ unsigned NumElems = N->getValueType(0).getVectorNumElements();
+
+ if (NumElems != 2 && NumElems != 4)
+ return false;
+
+ for (unsigned i = 0; i < NumElems/2; ++i)
+ if (!isUndefOrEqual(N->getMaskElt(i), i))
+ return false;
+
+ for (unsigned i = 0; i < NumElems/2; ++i)
+ if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
+ return false;
+
+ return true;
+}
+
+/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to UNPCKL.
+static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
+ bool V2IsSplat = false) {
+ int NumElts = VT.getVectorNumElements();
+ if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
+ return false;
+
+ for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
+ int BitI = Mask[i];
+ int BitI1 = Mask[i+1];
+ if (!isUndefOrEqual(BitI, j))
+ return false;
+ if (V2IsSplat) {
+ if (!isUndefOrEqual(BitI1, NumElts))
+ return false;
+ } else {
+ if (!isUndefOrEqual(BitI1, j + NumElts))
+ return false;
+ }
+ }
+ return true;
+}
+
+bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
+ SmallVector<int, 8> M;
+ N->getMask(M);
+ return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
+}
+
+/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to UNPCKH.
+static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
+ bool V2IsSplat = false) {
+ int NumElts = VT.getVectorNumElements();
+ if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16)
+ return false;
+
+ for (int i = 0, j = 0; i != NumElts; i += 2, ++j) {
+ int BitI = Mask[i];
+ int BitI1 = Mask[i+1];
+ if (!isUndefOrEqual(BitI, j + NumElts/2))
+ return false;
+ if (V2IsSplat) {
+ if (isUndefOrEqual(BitI1, NumElts))
+ return false;
+ } else {
+ if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts))
+ return false;
+ }
+ }
+ return true;
+}
+
+bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
+ SmallVector<int, 8> M;
+ N->getMask(M);
+ return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
+}
+
+/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
+/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
+/// <0, 0, 1, 1>
+static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
+ int NumElems = VT.getVectorNumElements();
+ if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
+ return false;
+
+ for (int i = 0, j = 0; i != NumElems; i += 2, ++j) {
+ int BitI = Mask[i];
+ int BitI1 = Mask[i+1];
+ if (!isUndefOrEqual(BitI, j))
+ return false;
+ if (!isUndefOrEqual(BitI1, j))
+ return false;
+ }
+ return true;
+}
+
+bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
+ SmallVector<int, 8> M;
+ N->getMask(M);
+ return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
+}
+
+/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
+/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
+/// <2, 2, 3, 3>
+static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
+ int NumElems = VT.getVectorNumElements();
+ if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
+ return false;
+
+ for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
+ int BitI = Mask[i];
+ int BitI1 = Mask[i+1];
+ if (!isUndefOrEqual(BitI, j))
+ return false;
+ if (!isUndefOrEqual(BitI1, j))
+ return false;
+ }
+ return true;
+}
+
+bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
+ SmallVector<int, 8> M;
+ N->getMask(M);
+ return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
+}
+
+/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVSS,
+/// MOVSD, and MOVD, i.e. setting the lowest element.
+static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
+ if (VT.getVectorElementType().getSizeInBits() < 32)
+ return false;
+
+ int NumElts = VT.getVectorNumElements();
+
+ if (!isUndefOrEqual(Mask[0], NumElts))
+ return false;
+
+ for (int i = 1; i < NumElts; ++i)
+ if (!isUndefOrEqual(Mask[i], i))
+ return false;
+
+ return true;
+}
+
+bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
+ SmallVector<int, 8> M;
+ N->getMask(M);
+ return ::isMOVLMask(M, N->getValueType(0));
+}
+
+/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
+/// of what x86 movss want. X86 movs requires the lowest element to be lowest
+/// element of vector 2 and the other elements to come from vector 1 in order.
+static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
+ bool V2IsSplat = false, bool V2IsUndef = false) {
+ int NumOps = VT.getVectorNumElements();
+ if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
+ return false;
+
+ if (!isUndefOrEqual(Mask[0], 0))
+ return false;
+
+ for (int i = 1; i < NumOps; ++i)
+ if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
+ (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
+ (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
+ return false;
+
+ return true;
+}
+
+static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
+ bool V2IsUndef = false) {
+ SmallVector<int, 8> M;
+ N->getMask(M);
+ return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
+}
+
+/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
+bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) {
+ if (N->getValueType(0).getVectorNumElements() != 4)
+ return false;
+
+ // Expect 1, 1, 3, 3
+ for (unsigned i = 0; i < 2; ++i) {
+ int Elt = N->getMaskElt(i);
+ if (Elt >= 0 && Elt != 1)
+ return false;
+ }
+
+ bool HasHi = false;
+ for (unsigned i = 2; i < 4; ++i) {
+ int Elt = N->getMaskElt(i);
+ if (Elt >= 0 && Elt != 3)
+ return false;
+ if (Elt == 3)
+ HasHi = true;
+ }
+ // Don't use movshdup if it can be done with a shufps.
+ // FIXME: verify that matching u, u, 3, 3 is what we want.
+ return HasHi;
+}
+
+/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
+bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) {
+ if (N->getValueType(0).getVectorNumElements() != 4)
+ return false;
+
+ // Expect 0, 0, 2, 2
+ for (unsigned i = 0; i < 2; ++i)
+ if (N->getMaskElt(i) > 0)
+ return false;
+
+ bool HasHi = false;
+ for (unsigned i = 2; i < 4; ++i) {
+ int Elt = N->getMaskElt(i);
+ if (Elt >= 0 && Elt != 2)
+ return false;
+ if (Elt == 2)
+ HasHi = true;
+ }
+ // Don't use movsldup if it can be done with a shufps.
+ return HasHi;
+}
+
+/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
+/// specifies a shuffle of elements that is suitable for input to MOVDDUP.
+bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
+ int e = N->getValueType(0).getVectorNumElements() / 2;
+
+ for (int i = 0; i < e; ++i)
+ if (!isUndefOrEqual(N->getMaskElt(i), i))
+ return false;
+ for (int i = 0; i < e; ++i)
+ if (!isUndefOrEqual(N->getMaskElt(e+i), i))
+ return false;
+ return true;
+}
+
+/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
+/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
+unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ int NumOperands = SVOp->getValueType(0).getVectorNumElements();
+
+ unsigned Shift = (NumOperands == 4) ? 2 : 1;
+ unsigned Mask = 0;
+ for (int i = 0; i < NumOperands; ++i) {
+ int Val = SVOp->getMaskElt(NumOperands-i-1);
+ if (Val < 0) Val = 0;
+ if (Val >= NumOperands) Val -= NumOperands;
+ Mask |= Val;
+ if (i != NumOperands - 1)
+ Mask <<= Shift;
+ }
+ return Mask;
+}
+
+/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
+/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
+unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ unsigned Mask = 0;
+ // 8 nodes, but we only care about the last 4.
+ for (unsigned i = 7; i >= 4; --i) {
+ int Val = SVOp->getMaskElt(i);
+ if (Val >= 0)
+ Mask |= (Val - 4);
+ if (i != 4)
+ Mask <<= 2;
+ }
+ return Mask;
+}
+
+/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
+/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
+unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ unsigned Mask = 0;
+ // 8 nodes, but we only care about the first 4.
+ for (int i = 3; i >= 0; --i) {
+ int Val = SVOp->getMaskElt(i);
+ if (Val >= 0)
+ Mask |= Val;
+ if (i != 0)
+ Mask <<= 2;
+ }
+ return Mask;
+}
+
+/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
+/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
+unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
+ EVT VVT = N->getValueType(0);
+ unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
+ int Val = 0;
+
+ unsigned i, e;
+ for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
+ Val = SVOp->getMaskElt(i);
+ if (Val >= 0)
+ break;
+ }
+ return (Val - i) * EltSize;
+}
+
+/// isZeroNode - Returns true if Elt is a constant zero or a floating point
+/// constant +0.0.
+bool X86::isZeroNode(SDValue Elt) {
+ return ((isa<ConstantSDNode>(Elt) &&
+ cast<ConstantSDNode>(Elt)->getZExtValue() == 0) ||
+ (isa<ConstantFPSDNode>(Elt) &&
+ cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
+}
+
+/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
+/// their permute mask.
+static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
+ SelectionDAG &DAG) {
+ EVT VT = SVOp->getValueType(0);
+ unsigned NumElems = VT.getVectorNumElements();
+ SmallVector<int, 8> MaskVec;
+
+ for (unsigned i = 0; i != NumElems; ++i) {
+ int idx = SVOp->getMaskElt(i);
+ if (idx < 0)
+ MaskVec.push_back(idx);
+ else if (idx < (int)NumElems)
+ MaskVec.push_back(idx + NumElems);
+ else
+ MaskVec.push_back(idx - NumElems);
+ }
+ return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
+ SVOp->getOperand(0), &MaskVec[0]);
+}
+
+/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
+/// the two vector operands have swapped position.
+static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
+ unsigned NumElems = VT.getVectorNumElements();
+ for (unsigned i = 0; i != NumElems; ++i) {
+ int idx = Mask[i];
+ if (idx < 0)
+ continue;
+ else if (idx < (int)NumElems)
+ Mask[i] = idx + NumElems;
+ else
+ Mask[i] = idx - NumElems;
+ }
+}
+
+/// ShouldXformToMOVHLPS - Return true if the node should be transformed to
+/// match movhlps. The lower half elements should come from upper half of
+/// V1 (and in order), and the upper half elements should come from the upper
+/// half of V2 (and in order).
+static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
+ if (Op->getValueType(0).getVectorNumElements() != 4)
+ return false;
+ for (unsigned i = 0, e = 2; i != e; ++i)
+ if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
+ return false;
+ for (unsigned i = 2; i != 4; ++i)
+ if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
+ return false;
+ return true;
+}
+
+/// isScalarLoadToVector - Returns true if the node is a scalar load that
+/// is promoted to a vector. It also returns the LoadSDNode by reference if
+/// required.
+static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
+ if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
+ return false;
+ N = N->getOperand(0).getNode();
+ if (!ISD::isNON_EXTLoad(N))
+ return false;
+ if (LD)
+ *LD = cast<LoadSDNode>(N);
+ return true;
+}
+
+/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
+/// match movlp{s|d}. The lower half elements should come from lower half of
+/// V1 (and in order), and the upper half elements should come from the upper
+/// half of V2 (and in order). And since V1 will become the source of the
+/// MOVLP, it must be either a vector load or a scalar load to vector.
+static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
+ ShuffleVectorSDNode *Op) {
+ if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
+ return false;
+ // Is V2 is a vector load, don't do this transformation. We will try to use
+ // load folding shufps op.
+ if (ISD::isNON_EXTLoad(V2))
+ return false;
+
+ unsigned NumElems = Op->getValueType(0).getVectorNumElements();
+
+ if (NumElems != 2 && NumElems != 4)
+ return false;
+ for (unsigned i = 0, e = NumElems/2; i != e; ++i)
+ if (!isUndefOrEqual(Op->getMaskElt(i), i))
+ return false;
+ for (unsigned i = NumElems/2; i != NumElems; ++i)
+ if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
+ return false;
+ return true;
+}
+
+/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
+/// all the same.
+static bool isSplatVector(SDNode *N) {
+ if (N->getOpcode() != ISD::BUILD_VECTOR)
+ return false;
+
+ SDValue SplatValue = N->getOperand(0);
+ for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
+ if (N->getOperand(i) != SplatValue)
+ return false;
+ return true;
+}
+
+/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
+/// to an zero vector.
+/// FIXME: move to dag combiner / method on ShuffleVectorSDNode
+static bool isZeroShuffle(ShuffleVectorSDNode *N) {
+ SDValue V1 = N->getOperand(0);
+ SDValue V2 = N->getOperand(1);
+ unsigned NumElems = N->getValueType(0).getVectorNumElements();
+ for (unsigned i = 0; i != NumElems; ++i) {
+ int Idx = N->getMaskElt(i);
+ if (Idx >= (int)NumElems) {
+ unsigned Opc = V2.getOpcode();
+ if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
+ continue;
+ if (Opc != ISD::BUILD_VECTOR ||
+ !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
+ return false;
+ } else if (Idx >= 0) {
+ unsigned Opc = V1.getOpcode();
+ if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
+ continue;
+ if (Opc != ISD::BUILD_VECTOR ||
+ !X86::isZeroNode(V1.getOperand(Idx)))
+ return false;
+ }
+ }
+ return true;
+}
+
+/// getZeroVector - Returns a vector of specified type with all zero elements.
+///
+static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG,
+ DebugLoc dl) {
+ assert(VT.isVector() && "Expected a vector type");
+
+ // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest
+ // type. This ensures they get CSE'd.
+ SDValue Vec;
+ if (VT.getSizeInBits() == 64) { // MMX
+ SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
+ } else if (HasSSE2) { // SSE2
+ SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
+ } else { // SSE1
+ SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
+ }
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
+}
+
+/// getOnesVector - Returns a vector of specified type with all bits set.
+///
+static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
+ assert(VT.isVector() && "Expected a vector type");
+
+ // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest
+ // type. This ensures they get CSE'd.
+ SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
+ SDValue Vec;
+ if (VT.getSizeInBits() == 64) // MMX
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst);
+ else // SSE
+ Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec);
+}
+
+
+/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
+/// that point to V2 points to its first element.
+static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
+ EVT VT = SVOp->getValueType(0);
+ unsigned NumElems = VT.getVectorNumElements();
+
+ bool Changed = false;
+ SmallVector<int, 8> MaskVec;
+ SVOp->getMask(MaskVec);
+
+ for (unsigned i = 0; i != NumElems; ++i) {
+ if (MaskVec[i] > (int)NumElems) {
+ MaskVec[i] = NumElems;
+ Changed = true;
+ }
+ }
+ if (Changed)
+ return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
+ SVOp->getOperand(1), &MaskVec[0]);
+ return SDValue(SVOp, 0);
+}
+
+/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
+/// operation of specified width.
+static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
+ SDValue V2) {
+ unsigned NumElems = VT.getVectorNumElements();
+ SmallVector<int, 8> Mask;
+ Mask.push_back(NumElems);
+ for (unsigned i = 1; i != NumElems; ++i)
+ Mask.push_back(i);
+ return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+}
+
+/// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
+static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
+ SDValue V2) {
+ unsigned NumElems = VT.getVectorNumElements();
+ SmallVector<int, 8> Mask;
+ for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
+ Mask.push_back(i);
+ Mask.push_back(i + NumElems);
+ }
+ return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+}
+
+/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation.
+static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
+ SDValue V2) {
+ unsigned NumElems = VT.getVectorNumElements();
+ unsigned Half = NumElems/2;
+ SmallVector<int, 8> Mask;
+ for (unsigned i = 0; i != Half; ++i) {
+ Mask.push_back(i + Half);
+ Mask.push_back(i + NumElems + Half);
+ }
+ return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
+}
+
+/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32.
+static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG,
+ bool HasSSE2) {
+ if (SV->getValueType(0).getVectorNumElements() <= 4)
+ return SDValue(SV, 0);
+
+ EVT PVT = MVT::v4f32;
+ EVT VT = SV->getValueType(0);
+ DebugLoc dl = SV->getDebugLoc();
+ SDValue V1 = SV->getOperand(0);
+ int NumElems = VT.getVectorNumElements();
+ int EltNo = SV->getSplatIndex();
+
+ // unpack elements to the correct location
+ while (NumElems > 4) {
+ if (EltNo < NumElems/2) {
+ V1 = getUnpackl(DAG, dl, VT, V1, V1);
+ } else {
+ V1 = getUnpackh(DAG, dl, VT, V1, V1);
+ EltNo -= NumElems/2;
+ }
+ NumElems >>= 1;
+ }
+
+ // Perform the splat.
+ int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
+ V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1);
+ V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]);
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1);
+}
+
+/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
+/// vector of zero or undef vector. This produces a shuffle where the low
+/// element of V2 is swizzled into the zero/undef vector, landing at element
+/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
+static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
+ bool isZero, bool HasSSE2,
+ SelectionDAG &DAG) {
+ EVT VT = V2.getValueType();
+ SDValue V1 = isZero
+ ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
+ unsigned NumElems = VT.getVectorNumElements();
+ SmallVector<int, 16> MaskVec;
+ for (unsigned i = 0; i != NumElems; ++i)
+ // If this is the insertion idx, put the low elt of V2 here.
+ MaskVec.push_back(i == Idx ? NumElems : i);
+ return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
+}
+
+/// getNumOfConsecutiveZeros - Return the number of elements in a result of
+/// a shuffle that is zero.
+static
+unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems,
+ bool Low, SelectionDAG &DAG) {
+ unsigned NumZeros = 0;
+ for (int i = 0; i < NumElems; ++i) {
+ unsigned Index = Low ? i : NumElems-i-1;
+ int Idx = SVOp->getMaskElt(Index);
+ if (Idx < 0) {
+ ++NumZeros;
+ continue;
+ }
+ SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index);
+ if (Elt.getNode() && X86::isZeroNode(Elt))
+ ++NumZeros;
+ else
+ break;
+ }
+ return NumZeros;
+}
+
+/// isVectorShift - Returns true if the shuffle can be implemented as a
+/// logical left or right shift of a vector.
+/// FIXME: split into pslldqi, psrldqi, palignr variants.
+static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
+ bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
+ unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
+
+ isLeft = true;
+ unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG);
+ if (!NumZeros) {
+ isLeft = false;
+ NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG);
+ if (!NumZeros)
+ return false;
+ }
+ bool SeenV1 = false;
+ bool SeenV2 = false;
+ for (unsigned i = NumZeros; i < NumElems; ++i) {
+ unsigned Val = isLeft ? (i - NumZeros) : i;
+ int Idx_ = SVOp->getMaskElt(isLeft ? i : (i - NumZeros));
+ if (Idx_ < 0)
+ continue;
+ unsigned Idx = (unsigned) Idx_;
+ if (Idx < NumElems)
+ SeenV1 = true;
+ else {
+ Idx -= NumElems;
+ SeenV2 = true;
+ }
+ if (Idx != Val)
+ return false;
+ }
+ if (SeenV1 && SeenV2)
+ return false;
+
+ ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1);
+ ShAmt = NumZeros;
+ return true;
+}
+
+
+/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
+///
+static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
+ unsigned NumNonZero, unsigned NumZero,
+ SelectionDAG &DAG,
+ const TargetLowering &TLI) {
+ if (NumNonZero > 8)
+ return SDValue();
+
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue V(0, 0);
+ bool First = true;
+ for (unsigned i = 0; i < 16; ++i) {
+ bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
+ if (ThisIsNonZero && First) {
+ if (NumZero)
+ V = getZeroVector(MVT::v8i16, true, DAG, dl);
+ else
+ V = DAG.getUNDEF(MVT::v8i16);
+ First = false;
+ }
+
+ if ((i & 1) != 0) {
+ SDValue ThisElt(0, 0), LastElt(0, 0);
+ bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
+ if (LastIsNonZero) {
+ LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
+ MVT::i16, Op.getOperand(i-1));
+ }
+ if (ThisIsNonZero) {
+ ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
+ ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
+ ThisElt, DAG.getConstant(8, MVT::i8));
+ if (LastIsNonZero)
+ ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
+ } else
+ ThisElt = LastElt;
+
+ if (ThisElt.getNode())
+ V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
+ DAG.getIntPtrConstant(i/2));
+ }
+ }
+
+ return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V);
+}
+
+/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
+///
+static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
+ unsigned NumNonZero, unsigned NumZero,
+ SelectionDAG &DAG,
+ const TargetLowering &TLI) {
+ if (NumNonZero > 4)
+ return SDValue();
+
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue V(0, 0);
+ bool First = true;
+ for (unsigned i = 0; i < 8; ++i) {
+ bool isNonZero = (NonZeros & (1 << i)) != 0;
+ if (isNonZero) {
+ if (First) {
+ if (NumZero)
+ V = getZeroVector(MVT::v8i16, true, DAG, dl);
+ else
+ V = DAG.getUNDEF(MVT::v8i16);
+ First = false;
+ }
+ V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
+ MVT::v8i16, V, Op.getOperand(i),
+ DAG.getIntPtrConstant(i));
+ }
+ }
+
+ return V;
+}
+
+/// getVShift - Return a vector logical shift node.
+///
+static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
+ unsigned NumBits, SelectionDAG &DAG,
+ const TargetLowering &TLI, DebugLoc dl) {
+ bool isMMX = VT.getSizeInBits() == 64;
+ EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64;
+ unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
+ SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp);
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
+ DAG.getNode(Opc, dl, ShVT, SrcOp,
+ DAG.getConstant(NumBits, TLI.getShiftAmountTy())));
+}
+
+SDValue
+X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
+ SelectionDAG &DAG) const {
+
+ // Check if the scalar load can be widened into a vector load. And if
+ // the address is "base + cst" see if the cst can be "absorbed" into
+ // the shuffle mask.
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
+ SDValue Ptr = LD->getBasePtr();
+ if (!ISD::isNormalLoad(LD) || LD->isVolatile())
+ return SDValue();
+ EVT PVT = LD->getValueType(0);
+ if (PVT != MVT::i32 && PVT != MVT::f32)
+ return SDValue();
+
+ int FI = -1;
+ int64_t Offset = 0;
+ if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
+ FI = FINode->getIndex();
+ Offset = 0;
+ } else if (Ptr.getOpcode() == ISD::ADD &&
+ isa<ConstantSDNode>(Ptr.getOperand(1)) &&
+ isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
+ FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
+ Offset = Ptr.getConstantOperandVal(1);
+ Ptr = Ptr.getOperand(0);
+ } else {
+ return SDValue();
+ }
+
+ SDValue Chain = LD->getChain();
+ // Make sure the stack object alignment is at least 16.
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ if (DAG.InferPtrAlignment(Ptr) < 16) {
+ if (MFI->isFixedObjectIndex(FI)) {
+ // Can't change the alignment. FIXME: It's possible to compute
+ // the exact stack offset and reference FI + adjust offset instead.
+ // If someone *really* cares about this. That's the way to implement it.
+ return SDValue();
+ } else {
+ MFI->setObjectAlignment(FI, 16);
+ }
+ }
+
+ // (Offset % 16) must be multiple of 4. Then address is then
+ // Ptr + (Offset & ~15).
+ if (Offset < 0)
+ return SDValue();
+ if ((Offset % 16) & 3)
+ return SDValue();
+ int64_t StartOffset = Offset & ~15;
+ if (StartOffset)
+ Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
+ Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
+
+ int EltNo = (Offset - StartOffset) >> 2;
+ int Mask[4] = { EltNo, EltNo, EltNo, EltNo };
+ EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32;
+ SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0,
+ false, false, 0);
+ // Canonicalize it to a v4i32 shuffle.
+ V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1);
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
+ DAG.getVectorShuffle(MVT::v4i32, dl, V1,
+ DAG.getUNDEF(MVT::v4i32), &Mask[0]));
+ }
+
+ return SDValue();
+}
+
+/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
+/// vector of type 'VT', see if the elements can be replaced by a single large
+/// load which has the same value as a build_vector whose operands are 'elts'.
+///
+/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
+///
+/// FIXME: we'd also like to handle the case where the last elements are zero
+/// rather than undef via VZEXT_LOAD, but we do not detect that case today.
+/// There's even a handy isZeroNode for that purpose.
+static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
+ DebugLoc &dl, SelectionDAG &DAG) {
+ EVT EltVT = VT.getVectorElementType();
+ unsigned NumElems = Elts.size();
+
+ LoadSDNode *LDBase = NULL;
+ unsigned LastLoadedElt = -1U;
+
+ // For each element in the initializer, see if we've found a load or an undef.
+ // If we don't find an initial load element, or later load elements are
+ // non-consecutive, bail out.
+ for (unsigned i = 0; i < NumElems; ++i) {
+ SDValue Elt = Elts[i];
+
+ if (!Elt.getNode() ||
+ (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
+ return SDValue();
+ if (!LDBase) {
+ if (Elt.getNode()->getOpcode() == ISD::UNDEF)
+ return SDValue();
+ LDBase = cast<LoadSDNode>(Elt.getNode());
+ LastLoadedElt = i;
+ continue;
+ }
+ if (Elt.getOpcode() == ISD::UNDEF)
+ continue;
+
+ LoadSDNode *LD = cast<LoadSDNode>(Elt);
+ if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
+ return SDValue();
+ LastLoadedElt = i;
+ }
+
+ // If we have found an entire vector of loads and undefs, then return a large
+ // load of the entire vector width starting at the base pointer. If we found
+ // consecutive loads for the low half, generate a vzext_load node.
+ if (LastLoadedElt == NumElems - 1) {
+ if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
+ return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
+ LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
+ LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
+ return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(),
+ LDBase->getSrcValue(), LDBase->getSrcValueOffset(),
+ LDBase->isVolatile(), LDBase->isNonTemporal(),
+ LDBase->getAlignment());
+ } else if (NumElems == 4 && LastLoadedElt == 1) {
+ SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
+ SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
+ SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2);
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode);
+ }
+ return SDValue();
+}
+
+SDValue
+X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+ // All zero's are handled with pxor, all one's are handled with pcmpeqd.
+ if (ISD::isBuildVectorAllZeros(Op.getNode())
+ || ISD::isBuildVectorAllOnes(Op.getNode())) {
+ // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to
+ // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are
+ // eliminated on x86-32 hosts.
+ if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32)
+ return Op;
+
+ if (ISD::isBuildVectorAllOnes(Op.getNode()))
+ return getOnesVector(Op.getValueType(), DAG, dl);
+ return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl);
+ }
+
+ EVT VT = Op.getValueType();
+ EVT ExtVT = VT.getVectorElementType();
+ unsigned EVTBits = ExtVT.getSizeInBits();
+
+ unsigned NumElems = Op.getNumOperands();
+ unsigned NumZero = 0;
+ unsigned NumNonZero = 0;
+ unsigned NonZeros = 0;
+ bool IsAllConstants = true;
+ SmallSet<SDValue, 8> Values;
+ for (unsigned i = 0; i < NumElems; ++i) {
+ SDValue Elt = Op.getOperand(i);
+ if (Elt.getOpcode() == ISD::UNDEF)
+ continue;
+ Values.insert(Elt);
+ if (Elt.getOpcode() != ISD::Constant &&
+ Elt.getOpcode() != ISD::ConstantFP)
+ IsAllConstants = false;
+ if (X86::isZeroNode(Elt))
+ NumZero++;
+ else {
+ NonZeros |= (1 << i);
+ NumNonZero++;
+ }
+ }
+
+ if (NumNonZero == 0) {
+ // All undef vector. Return an UNDEF. All zero vectors were handled above.
+ return DAG.getUNDEF(VT);
+ }
+
+ // Special case for single non-zero, non-undef, element.
+ if (NumNonZero == 1) {
+ unsigned Idx = CountTrailingZeros_32(NonZeros);
+ SDValue Item = Op.getOperand(Idx);
+
+ // If this is an insertion of an i64 value on x86-32, and if the top bits of
+ // the value are obviously zero, truncate the value to i32 and do the
+ // insertion that way. Only do this if the value is non-constant or if the
+ // value is a constant being inserted into element 0. It is cheaper to do
+ // a constant pool load than it is to do a movd + shuffle.
+ if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
+ (!IsAllConstants || Idx == 0)) {
+ if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
+ // Handle MMX and SSE both.
+ EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32;
+ unsigned VecElts = VT == MVT::v2i64 ? 4 : 2;
+
+ // Truncate the value (which may itself be a constant) to i32, and
+ // convert it to a vector with movd (S2V+shuffle to zero extend).
+ Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
+ Item = getShuffleVectorZeroOrUndef(Item, 0, true,
+ Subtarget->hasSSE2(), DAG);
+
+ // Now we have our 32-bit value zero extended in the low element of
+ // a vector. If Idx != 0, swizzle it into place.
+ if (Idx != 0) {
+ SmallVector<int, 4> Mask;
+ Mask.push_back(Idx);
+ for (unsigned i = 1; i != VecElts; ++i)
+ Mask.push_back(i);
+ Item = DAG.getVectorShuffle(VecVT, dl, Item,
+ DAG.getUNDEF(Item.getValueType()),
+ &Mask[0]);
+ }
+ return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item);
+ }
+ }
+
+ // If we have a constant or non-constant insertion into the low element of
+ // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
+ // the rest of the elements. This will be matched as movd/movq/movss/movsd
+ // depending on what the source datatype is.
+ if (Idx == 0) {
+ if (NumZero == 0) {
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
+ } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
+ (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
+ // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
+ return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(),
+ DAG);
+ } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
+ Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
+ EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32;
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
+ Item = getShuffleVectorZeroOrUndef(Item, 0, true,
+ Subtarget->hasSSE2(), DAG);
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item);
+ }
+ }
+
+ // Is it a vector logical left shift?
+ if (NumElems == 2 && Idx == 1 &&
+ X86::isZeroNode(Op.getOperand(0)) &&
+ !X86::isZeroNode(Op.getOperand(1))) {
+ unsigned NumBits = VT.getSizeInBits();
+ return getVShift(true, VT,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
+ VT, Op.getOperand(1)),
+ NumBits/2, DAG, *this, dl);
+ }
+
+ if (IsAllConstants) // Otherwise, it's better to do a constpool load.
+ return SDValue();
+
+ // Otherwise, if this is a vector with i32 or f32 elements, and the element
+ // is a non-constant being inserted into an element other than the low one,
+ // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
+ // movd/movss) to move this into the low element, then shuffle it into
+ // place.
+ if (EVTBits == 32) {
+ Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
+
+ // Turn it into a shuffle of zero and zero-extended scalar to vector.
+ Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
+ Subtarget->hasSSE2(), DAG);
+ SmallVector<int, 8> MaskVec;
+ for (unsigned i = 0; i < NumElems; i++)
+ MaskVec.push_back(i == Idx ? 0 : 1);
+ return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
+ }
+ }
+
+ // Splat is obviously ok. Let legalizer expand it to a shuffle.
+ if (Values.size() == 1) {
+ if (EVTBits == 32) {
+ // Instead of a shuffle like this:
+ // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
+ // Check if it's possible to issue this instead.
+ // shuffle (vload ptr)), undef, <1, 1, 1, 1>
+ unsigned Idx = CountTrailingZeros_32(NonZeros);
+ SDValue Item = Op.getOperand(Idx);
+ if (Op.getNode()->isOnlyUserOf(Item.getNode()))
+ return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
+ }
+ return SDValue();
+ }
+
+ // A vector full of immediates; various special cases are already
+ // handled, so this is best done with a single constant-pool load.
+ if (IsAllConstants)
+ return SDValue();
+
+ // Let legalizer expand 2-wide build_vectors.
+ if (EVTBits == 64) {
+ if (NumNonZero == 1) {
+ // One half is zero or undef.
+ unsigned Idx = CountTrailingZeros_32(NonZeros);
+ SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
+ Op.getOperand(Idx));
+ return getShuffleVectorZeroOrUndef(V2, Idx, true,
+ Subtarget->hasSSE2(), DAG);
+ }
+ return SDValue();
+ }
+
+ // If element VT is < 32 bits, convert it to inserts into a zero vector.
+ if (EVTBits == 8 && NumElems == 16) {
+ SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
+ *this);
+ if (V.getNode()) return V;
+ }
+
+ if (EVTBits == 16 && NumElems == 8) {
+ SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
+ *this);
+ if (V.getNode()) return V;
+ }
+
+ // If element VT is == 32 bits, turn it into a number of shuffles.
+ SmallVector<SDValue, 8> V;
+ V.resize(NumElems);
+ if (NumElems == 4 && NumZero > 0) {
+ for (unsigned i = 0; i < 4; ++i) {
+ bool isZero = !(NonZeros & (1 << i));
+ if (isZero)
+ V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
+ else
+ V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
+ }
+
+ for (unsigned i = 0; i < 2; ++i) {
+ switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
+ default: break;
+ case 0:
+ V[i] = V[i*2]; // Must be a zero vector.
+ break;
+ case 1:
+ V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
+ break;
+ case 2:
+ V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
+ break;
+ case 3:
+ V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
+ break;
+ }
+ }
+
+ SmallVector<int, 8> MaskVec;
+ bool Reverse = (NonZeros & 0x3) == 2;
+ for (unsigned i = 0; i < 2; ++i)
+ MaskVec.push_back(Reverse ? 1-i : i);
+ Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
+ for (unsigned i = 0; i < 2; ++i)
+ MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
+ return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
+ }
+
+ if (Values.size() > 1 && VT.getSizeInBits() == 128) {
+ // Check for a build vector of consecutive loads.
+ for (unsigned i = 0; i < NumElems; ++i)
+ V[i] = Op.getOperand(i);
+
+ // Check for elements which are consecutive loads.
+ SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
+ if (LD.getNode())
+ return LD;
+
+ // For SSE 4.1, use inserts into undef.
+ if (getSubtarget()->hasSSE41()) {
+ V[0] = DAG.getUNDEF(VT);
+ for (unsigned i = 0; i < NumElems; ++i)
+ if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
+ V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0],
+ Op.getOperand(i), DAG.getIntPtrConstant(i));
+ return V[0];
+ }
+
+ // Otherwise, expand into a number of unpckl*
+ // e.g. for v4f32
+ // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
+ // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
+ // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
+ for (unsigned i = 0; i < NumElems; ++i)
+ V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
+ NumElems >>= 1;
+ while (NumElems != 0) {
+ for (unsigned i = 0; i < NumElems; ++i)
+ V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]);
+ NumElems >>= 1;
+ }
+ return V[0];
+ }
+ return SDValue();
+}
+
+SDValue
+X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
+ // We support concatenate two MMX registers and place them in a MMX
+ // register. This is better than doing a stack convert.
+ DebugLoc dl = Op.getDebugLoc();
+ EVT ResVT = Op.getValueType();
+ assert(Op.getNumOperands() == 2);
+ assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
+ ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
+ int Mask[2];
+ SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0));
+ SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
+ InVec = Op.getOperand(1);
+ if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
+ unsigned NumElts = ResVT.getVectorNumElements();
+ VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
+ VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
+ InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
+ } else {
+ InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec);
+ SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
+ Mask[0] = 0; Mask[1] = 2;
+ VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
+ }
+ return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp);
+}
+
+// v8i16 shuffles - Prefer shuffles in the following order:
+// 1. [all] pshuflw, pshufhw, optional move
+// 2. [ssse3] 1 x pshufb
+// 3. [ssse3] 2 x pshufb + 1 x por
+// 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
+static
+SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp,
+ SelectionDAG &DAG,
+ const X86TargetLowering &TLI) {
+ SDValue V1 = SVOp->getOperand(0);
+ SDValue V2 = SVOp->getOperand(1);
+ DebugLoc dl = SVOp->getDebugLoc();
+ SmallVector<int, 8> MaskVals;
+
+ // Determine if more than 1 of the words in each of the low and high quadwords
+ // of the result come from the same quadword of one of the two inputs. Undef
+ // mask values count as coming from any quadword, for better codegen.
+ SmallVector<unsigned, 4> LoQuad(4);
+ SmallVector<unsigned, 4> HiQuad(4);
+ BitVector InputQuads(4);
+ for (unsigned i = 0; i < 8; ++i) {
+ SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
+ int EltIdx = SVOp->getMaskElt(i);
+ MaskVals.push_back(EltIdx);
+ if (EltIdx < 0) {
+ ++Quad[0];
+ ++Quad[1];
+ ++Quad[2];
+ ++Quad[3];
+ continue;
+ }
+ ++Quad[EltIdx / 4];
+ InputQuads.set(EltIdx / 4);
+ }
+
+ int BestLoQuad = -1;
+ unsigned MaxQuad = 1;
+ for (unsigned i = 0; i < 4; ++i) {
+ if (LoQuad[i] > MaxQuad) {
+ BestLoQuad = i;
+ MaxQuad = LoQuad[i];
+ }
+ }
+
+ int BestHiQuad = -1;
+ MaxQuad = 1;
+ for (unsigned i = 0; i < 4; ++i) {
+ if (HiQuad[i] > MaxQuad) {
+ BestHiQuad = i;
+ MaxQuad = HiQuad[i];
+ }
+ }
+
+ // For SSSE3, If all 8 words of the result come from only 1 quadword of each
+ // of the two input vectors, shuffle them into one input vector so only a
+ // single pshufb instruction is necessary. If There are more than 2 input
+ // quads, disable the next transformation since it does not help SSSE3.
+ bool V1Used = InputQuads[0] || InputQuads[1];
+ bool V2Used = InputQuads[2] || InputQuads[3];
+ if (TLI.getSubtarget()->hasSSSE3()) {
+ if (InputQuads.count() == 2 && V1Used && V2Used) {
+ BestLoQuad = InputQuads.find_first();
+ BestHiQuad = InputQuads.find_next(BestLoQuad);
+ }
+ if (InputQuads.count() > 2) {
+ BestLoQuad = -1;
+ BestHiQuad = -1;
+ }
+ }
+
+ // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
+ // the shuffle mask. If a quad is scored as -1, that means that it contains
+ // words from all 4 input quadwords.
+ SDValue NewV;
+ if (BestLoQuad >= 0 || BestHiQuad >= 0) {
+ SmallVector<int, 8> MaskV;
+ MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
+ MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
+ NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1),
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]);
+ NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV);
+
+ // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
+ // source words for the shuffle, to aid later transformations.
+ bool AllWordsInNewV = true;
+ bool InOrder[2] = { true, true };
+ for (unsigned i = 0; i != 8; ++i) {
+ int idx = MaskVals[i];
+ if (idx != (int)i)
+ InOrder[i/4] = false;
+ if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
+ continue;
+ AllWordsInNewV = false;
+ break;
+ }
+
+ bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
+ if (AllWordsInNewV) {
+ for (int i = 0; i != 8; ++i) {
+ int idx = MaskVals[i];
+ if (idx < 0)
+ continue;
+ idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
+ if ((idx != i) && idx < 4)
+ pshufhw = false;
+ if ((idx != i) && idx > 3)
+ pshuflw = false;
+ }
+ V1 = NewV;
+ V2Used = false;
+ BestLoQuad = 0;
+ BestHiQuad = 1;
+ }
+
+ // If we've eliminated the use of V2, and the new mask is a pshuflw or
+ // pshufhw, that's as cheap as it gets. Return the new shuffle.
+ if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
+ return DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
+ DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
+ }
+ }
+
+ // If we have SSSE3, and all words of the result are from 1 input vector,
+ // case 2 is generated, otherwise case 3 is generated. If no SSSE3
+ // is present, fall back to case 4.
+ if (TLI.getSubtarget()->hasSSSE3()) {
+ SmallVector<SDValue,16> pshufbMask;
+
+ // If we have elements from both input vectors, set the high bit of the
+ // shuffle mask element to zero out elements that come from V2 in the V1
+ // mask, and elements that come from V1 in the V2 mask, so that the two
+ // results can be OR'd together.
+ bool TwoInputs = V1Used && V2Used;
+ for (unsigned i = 0; i != 8; ++i) {
+ int EltIdx = MaskVals[i] * 2;
+ if (TwoInputs && (EltIdx >= 16)) {
+ pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
+ continue;
+ }
+ pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
+ }
+ V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1);
+ V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
+ DAG.getNode(ISD::BUILD_VECTOR, dl,
+ MVT::v16i8, &pshufbMask[0], 16));
+ if (!TwoInputs)
+ return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
+
+ // Calculate the shuffle mask for the second input, shuffle it, and
+ // OR it with the first shuffled input.
+ pshufbMask.clear();
+ for (unsigned i = 0; i != 8; ++i) {
+ int EltIdx = MaskVals[i] * 2;
+ if (EltIdx < 16) {
+ pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
+ continue;
+ }
+ pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
+ pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
+ }
+ V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2);
+ V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
+ DAG.getNode(ISD::BUILD_VECTOR, dl,
+ MVT::v16i8, &pshufbMask[0], 16));
+ V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
+ return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
+ }
+
+ // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
+ // and update MaskVals with new element order.
+ BitVector InOrder(8);
+ if (BestLoQuad >= 0) {
+ SmallVector<int, 8> MaskV;
+ for (int i = 0; i != 4; ++i) {
+ int idx = MaskVals[i];
+ if (idx < 0) {
+ MaskV.push_back(-1);
+ InOrder.set(i);
+ } else if ((idx / 4) == BestLoQuad) {
+ MaskV.push_back(idx & 3);
+ InOrder.set(i);
+ } else {
+ MaskV.push_back(-1);
+ }
+ }
+ for (unsigned i = 4; i != 8; ++i)
+ MaskV.push_back(i);
+ NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
+ &MaskV[0]);
+ }
+
+ // If BestHi >= 0, generate a pshufhw to put the high elements in order,
+ // and update MaskVals with the new element order.
+ if (BestHiQuad >= 0) {
+ SmallVector<int, 8> MaskV;
+ for (unsigned i = 0; i != 4; ++i)
+ MaskV.push_back(i);
+ for (unsigned i = 4; i != 8; ++i) {
+ int idx = MaskVals[i];
+ if (idx < 0) {
+ MaskV.push_back(-1);
+ InOrder.set(i);
+ } else if ((idx / 4) == BestHiQuad) {
+ MaskV.push_back((idx & 3) + 4);
+ InOrder.set(i);
+ } else {
+ MaskV.push_back(-1);
+ }
+ }
+ NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
+ &MaskV[0]);
+ }
+
+ // In case BestHi & BestLo were both -1, which means each quadword has a word
+ // from each of the four input quadwords, calculate the InOrder bitvector now
+ // before falling through to the insert/extract cleanup.
+ if (BestLoQuad == -1 && BestHiQuad == -1) {
+ NewV = V1;
+ for (int i = 0; i != 8; ++i)
+ if (MaskVals[i] < 0 || MaskVals[i] == i)
+ InOrder.set(i);
+ }
+
+ // The other elements are put in the right place using pextrw and pinsrw.
+ for (unsigned i = 0; i != 8; ++i) {
+ if (InOrder[i])
+ continue;
+ int EltIdx = MaskVals[i];
+ if (EltIdx < 0)
+ continue;
+ SDValue ExtOp = (EltIdx < 8)
+ ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
+ DAG.getIntPtrConstant(EltIdx))
+ : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
+ DAG.getIntPtrConstant(EltIdx - 8));
+ NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
+ DAG.getIntPtrConstant(i));
+ }
+ return NewV;
+}
+
+// v16i8 shuffles - Prefer shuffles in the following order:
+// 1. [ssse3] 1 x pshufb
+// 2. [ssse3] 2 x pshufb + 1 x por
+// 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
+static
+SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
+ SelectionDAG &DAG,
+ const X86TargetLowering &TLI) {
+ SDValue V1 = SVOp->getOperand(0);
+ SDValue V2 = SVOp->getOperand(1);
+ DebugLoc dl = SVOp->getDebugLoc();
+ SmallVector<int, 16> MaskVals;
+ SVOp->getMask(MaskVals);
+
+ // If we have SSSE3, case 1 is generated when all result bytes come from
+ // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
+ // present, fall back to case 3.
+ // FIXME: kill V2Only once shuffles are canonizalized by getNode.
+ bool V1Only = true;
+ bool V2Only = true;
+ for (unsigned i = 0; i < 16; ++i) {
+ int EltIdx = MaskVals[i];
+ if (EltIdx < 0)
+ continue;
+ if (EltIdx < 16)
+ V2Only = false;
+ else
+ V1Only = false;
+ }
+
+ // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
+ if (TLI.getSubtarget()->hasSSSE3()) {
+ SmallVector<SDValue,16> pshufbMask;
+
+ // If all result elements are from one input vector, then only translate
+ // undef mask values to 0x80 (zero out result) in the pshufb mask.
+ //
+ // Otherwise, we have elements from both input vectors, and must zero out
+ // elements that come from V2 in the first mask, and V1 in the second mask
+ // so that we can OR them together.
+ bool TwoInputs = !(V1Only || V2Only);
+ for (unsigned i = 0; i != 16; ++i) {
+ int EltIdx = MaskVals[i];
+ if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
+ pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
+ continue;
+ }
+ pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
+ }
+ // If all the elements are from V2, assign it to V1 and return after
+ // building the first pshufb.
+ if (V2Only)
+ V1 = V2;
+ V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
+ DAG.getNode(ISD::BUILD_VECTOR, dl,
+ MVT::v16i8, &pshufbMask[0], 16));
+ if (!TwoInputs)
+ return V1;
+
+ // Calculate the shuffle mask for the second input, shuffle it, and
+ // OR it with the first shuffled input.
+ pshufbMask.clear();
+ for (unsigned i = 0; i != 16; ++i) {
+ int EltIdx = MaskVals[i];
+ if (EltIdx < 16) {
+ pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
+ continue;
+ }
+ pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
+ }
+ V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
+ DAG.getNode(ISD::BUILD_VECTOR, dl,
+ MVT::v16i8, &pshufbMask[0], 16));
+ return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
+ }
+
+ // No SSSE3 - Calculate in place words and then fix all out of place words
+ // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
+ // the 16 different words that comprise the two doublequadword input vectors.
+ V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1);
+ V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2);
+ SDValue NewV = V2Only ? V2 : V1;
+ for (int i = 0; i != 8; ++i) {
+ int Elt0 = MaskVals[i*2];
+ int Elt1 = MaskVals[i*2+1];
+
+ // This word of the result is all undef, skip it.
+ if (Elt0 < 0 && Elt1 < 0)
+ continue;
+
+ // This word of the result is already in the correct place, skip it.
+ if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
+ continue;
+ if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
+ continue;
+
+ SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
+ SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
+ SDValue InsElt;
+
+ // If Elt0 and Elt1 are defined, are consecutive, and can be load
+ // using a single extract together, load it and store it.
+ if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
+ InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
+ DAG.getIntPtrConstant(Elt1 / 2));
+ NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
+ DAG.getIntPtrConstant(i));
+ continue;
+ }
+
+ // If Elt1 is defined, extract it from the appropriate source. If the
+ // source byte is not also odd, shift the extracted word left 8 bits
+ // otherwise clear the bottom 8 bits if we need to do an or.
+ if (Elt1 >= 0) {
+ InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
+ DAG.getIntPtrConstant(Elt1 / 2));
+ if ((Elt1 & 1) == 0)
+ InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
+ DAG.getConstant(8, TLI.getShiftAmountTy()));
+ else if (Elt0 >= 0)
+ InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
+ DAG.getConstant(0xFF00, MVT::i16));
+ }
+ // If Elt0 is defined, extract it from the appropriate source. If the
+ // source byte is not also even, shift the extracted word right 8 bits. If
+ // Elt1 was also defined, OR the extracted values together before
+ // inserting them in the result.
+ if (Elt0 >= 0) {
+ SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
+ Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
+ if ((Elt0 & 1) != 0)
+ InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
+ DAG.getConstant(8, TLI.getShiftAmountTy()));
+ else if (Elt1 >= 0)
+ InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
+ DAG.getConstant(0x00FF, MVT::i16));
+ InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
+ : InsElt0;
+ }
+ NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
+ DAG.getIntPtrConstant(i));
+ }
+ return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV);
+}
+
+/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
+/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be
+/// done when every pair / quad of shuffle mask elements point to elements in
+/// the right sequence. e.g.
+/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15>
+static
+SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
+ SelectionDAG &DAG,
+ const TargetLowering &TLI, DebugLoc dl) {
+ EVT VT = SVOp->getValueType(0);
+ SDValue V1 = SVOp->getOperand(0);
+ SDValue V2 = SVOp->getOperand(1);
+ unsigned NumElems = VT.getVectorNumElements();
+ unsigned NewWidth = (NumElems == 4) ? 2 : 4;
+ EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth);
+ EVT MaskEltVT = MaskVT.getVectorElementType();
+ EVT NewVT = MaskVT;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: assert(false && "Unexpected!");
+ case MVT::v4f32: NewVT = MVT::v2f64; break;
+ case MVT::v4i32: NewVT = MVT::v2i64; break;
+ case MVT::v8i16: NewVT = MVT::v4i32; break;
+ case MVT::v16i8: NewVT = MVT::v4i32; break;
+ }
+
+ if (NewWidth == 2) {
+ if (VT.isInteger())
+ NewVT = MVT::v2i64;
+ else
+ NewVT = MVT::v2f64;
+ }
+ int Scale = NumElems / NewWidth;
+ SmallVector<int, 8> MaskVec;
+ for (unsigned i = 0; i < NumElems; i += Scale) {
+ int StartIdx = -1;
+ for (int j = 0; j < Scale; ++j) {
+ int EltIdx = SVOp->getMaskElt(i+j);
+ if (EltIdx < 0)
+ continue;
+ if (StartIdx == -1)
+ StartIdx = EltIdx - (EltIdx % Scale);
+ if (EltIdx != StartIdx + j)
+ return SDValue();
+ }
+ if (StartIdx == -1)
+ MaskVec.push_back(-1);
+ else
+ MaskVec.push_back(StartIdx / Scale);
+ }
+
+ V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1);
+ V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2);
+ return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
+}
+
+/// getVZextMovL - Return a zero-extending vector move low node.
+///
+static SDValue getVZextMovL(EVT VT, EVT OpVT,
+ SDValue SrcOp, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget, DebugLoc dl) {
+ if (VT == MVT::v2f64 || VT == MVT::v4f32) {
+ LoadSDNode *LD = NULL;
+ if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
+ LD = dyn_cast<LoadSDNode>(SrcOp);
+ if (!LD) {
+ // movssrr and movsdrr do not clear top bits. Try to use movd, movq
+ // instead.
+ MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
+ if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) &&
+ SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
+ SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT &&
+ SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
+ // PR2108
+ OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
+ DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
+ OpVT,
+ SrcOp.getOperand(0)
+ .getOperand(0))));
+ }
+ }
+ }
+
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
+ DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
+ DAG.getNode(ISD::BIT_CONVERT, dl,
+ OpVT, SrcOp)));
+}
+
+/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of
+/// shuffles.
+static SDValue
+LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
+ SDValue V1 = SVOp->getOperand(0);
+ SDValue V2 = SVOp->getOperand(1);
+ DebugLoc dl = SVOp->getDebugLoc();
+ EVT VT = SVOp->getValueType(0);
+
+ SmallVector<std::pair<int, int>, 8> Locs;
+ Locs.resize(4);
+ SmallVector<int, 8> Mask1(4U, -1);
+ SmallVector<int, 8> PermMask;
+ SVOp->getMask(PermMask);
+
+ unsigned NumHi = 0;
+ unsigned NumLo = 0;
+ for (unsigned i = 0; i != 4; ++i) {
+ int Idx = PermMask[i];
+ if (Idx < 0) {
+ Locs[i] = std::make_pair(-1, -1);
+ } else {
+ assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
+ if (Idx < 4) {
+ Locs[i] = std::make_pair(0, NumLo);
+ Mask1[NumLo] = Idx;
+ NumLo++;
+ } else {
+ Locs[i] = std::make_pair(1, NumHi);
+ if (2+NumHi < 4)
+ Mask1[2+NumHi] = Idx;
+ NumHi++;
+ }
+ }
+ }
+
+ if (NumLo <= 2 && NumHi <= 2) {
+ // If no more than two elements come from either vector. This can be
+ // implemented with two shuffles. First shuffle gather the elements.
+ // The second shuffle, which takes the first shuffle as both of its
+ // vector operands, put the elements into the right order.
+ V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
+
+ SmallVector<int, 8> Mask2(4U, -1);
+
+ for (unsigned i = 0; i != 4; ++i) {
+ if (Locs[i].first == -1)
+ continue;
+ else {
+ unsigned Idx = (i < 2) ? 0 : 4;
+ Idx += Locs[i].first * 2 + Locs[i].second;
+ Mask2[i] = Idx;
+ }
+ }
+
+ return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
+ } else if (NumLo == 3 || NumHi == 3) {
+ // Otherwise, we must have three elements from one vector, call it X, and
+ // one element from the other, call it Y. First, use a shufps to build an
+ // intermediate vector with the one element from Y and the element from X
+ // that will be in the same half in the final destination (the indexes don't
+ // matter). Then, use a shufps to build the final vector, taking the half
+ // containing the element from Y from the intermediate, and the other half
+ // from X.
+ if (NumHi == 3) {
+ // Normalize it so the 3 elements come from V1.
+ CommuteVectorShuffleMask(PermMask, VT);
+ std::swap(V1, V2);
+ }
+
+ // Find the element from V2.
+ unsigned HiIndex;
+ for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
+ int Val = PermMask[HiIndex];
+ if (Val < 0)
+ continue;
+ if (Val >= 4)
+ break;
+ }
+
+ Mask1[0] = PermMask[HiIndex];
+ Mask1[1] = -1;
+ Mask1[2] = PermMask[HiIndex^1];
+ Mask1[3] = -1;
+ V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
+
+ if (HiIndex >= 2) {
+ Mask1[0] = PermMask[0];
+ Mask1[1] = PermMask[1];
+ Mask1[2] = HiIndex & 1 ? 6 : 4;
+ Mask1[3] = HiIndex & 1 ? 4 : 6;
+ return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
+ } else {
+ Mask1[0] = HiIndex & 1 ? 2 : 0;
+ Mask1[1] = HiIndex & 1 ? 0 : 2;
+ Mask1[2] = PermMask[2];
+ Mask1[3] = PermMask[3];
+ if (Mask1[2] >= 0)
+ Mask1[2] += 4;
+ if (Mask1[3] >= 0)
+ Mask1[3] += 4;
+ return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
+ }
+ }
+
+ // Break it into (shuffle shuffle_hi, shuffle_lo).
+ Locs.clear();
+ SmallVector<int,8> LoMask(4U, -1);
+ SmallVector<int,8> HiMask(4U, -1);
+
+ SmallVector<int,8> *MaskPtr = &LoMask;
+ unsigned MaskIdx = 0;
+ unsigned LoIdx = 0;
+ unsigned HiIdx = 2;
+ for (unsigned i = 0; i != 4; ++i) {
+ if (i == 2) {
+ MaskPtr = &HiMask;
+ MaskIdx = 1;
+ LoIdx = 0;
+ HiIdx = 2;
+ }
+ int Idx = PermMask[i];
+ if (Idx < 0) {
+ Locs[i] = std::make_pair(-1, -1);
+ } else if (Idx < 4) {
+ Locs[i] = std::make_pair(MaskIdx, LoIdx);
+ (*MaskPtr)[LoIdx] = Idx;
+ LoIdx++;
+ } else {
+ Locs[i] = std::make_pair(MaskIdx, HiIdx);
+ (*MaskPtr)[HiIdx] = Idx;
+ HiIdx++;
+ }
+ }
+
+ SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
+ SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
+ SmallVector<int, 8> MaskOps;
+ for (unsigned i = 0; i != 4; ++i) {
+ if (Locs[i].first == -1) {
+ MaskOps.push_back(-1);
+ } else {
+ unsigned Idx = Locs[i].first * 4 + Locs[i].second;
+ MaskOps.push_back(Idx);
+ }
+ }
+ return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
+}
+
+SDValue
+X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
+ ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ EVT VT = Op.getValueType();
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned NumElems = VT.getVectorNumElements();
+ bool isMMX = VT.getSizeInBits() == 64;
+ bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
+ bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
+ bool V1IsSplat = false;
+ bool V2IsSplat = false;
+
+ if (isZeroShuffle(SVOp))
+ return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl);
+
+ // Promote splats to v4f32.
+ if (SVOp->isSplat()) {
+ if (isMMX || NumElems < 4)
+ return Op;
+ return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2());
+ }
+
+ // If the shuffle can be profitably rewritten as a narrower shuffle, then
+ // do it!
+ if (VT == MVT::v8i16 || VT == MVT::v16i8) {
+ SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
+ if (NewOp.getNode())
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
+ LowerVECTOR_SHUFFLE(NewOp, DAG));
+ } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) {
+ // FIXME: Figure out a cleaner way to do this.
+ // Try to make use of movq to zero out the top part.
+ if (ISD::isBuildVectorAllZeros(V2.getNode())) {
+ SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
+ if (NewOp.getNode()) {
+ if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
+ return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
+ DAG, Subtarget, dl);
+ }
+ } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
+ SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl);
+ if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
+ return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
+ DAG, Subtarget, dl);
+ }
+ }
+
+ if (X86::isPSHUFDMask(SVOp))
+ return Op;
+
+ // Check if this can be converted into a logical shift.
+ bool isLeft = false;
+ unsigned ShAmt = 0;
+ SDValue ShVal;
+ bool isShift = getSubtarget()->hasSSE2() &&
+ isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
+ if (isShift && ShVal.hasOneUse()) {
+ // If the shifted value has multiple uses, it may be cheaper to use
+ // v_set0 + movlhps or movhlps, etc.
+ EVT EltVT = VT.getVectorElementType();
+ ShAmt *= EltVT.getSizeInBits();
+ return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
+ }
+
+ if (X86::isMOVLMask(SVOp)) {
+ if (V1IsUndef)
+ return V2;
+ if (ISD::isBuildVectorAllZeros(V1.getNode()))
+ return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
+ if (!isMMX)
+ return Op;
+ }
+
+ // FIXME: fold these into legal mask.
+ if (!isMMX && (X86::isMOVSHDUPMask(SVOp) ||
+ X86::isMOVSLDUPMask(SVOp) ||
+ X86::isMOVHLPSMask(SVOp) ||
+ X86::isMOVLHPSMask(SVOp) ||
+ X86::isMOVLPMask(SVOp)))
+ return Op;
+
+ if (ShouldXformToMOVHLPS(SVOp) ||
+ ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
+ return CommuteVectorShuffle(SVOp, DAG);
+
+ if (isShift) {
+ // No better options. Use a vshl / vsrl.
+ EVT EltVT = VT.getVectorElementType();
+ ShAmt *= EltVT.getSizeInBits();
+ return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
+ }
+
+ bool Commuted = false;
+ // FIXME: This should also accept a bitcast of a splat? Be careful, not
+ // 1,1,1,1 -> v8i16 though.
+ V1IsSplat = isSplatVector(V1.getNode());
+ V2IsSplat = isSplatVector(V2.getNode());
+
+ // Canonicalize the splat or undef, if present, to be on the RHS.
+ if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
+ Op = CommuteVectorShuffle(SVOp, DAG);
+ SVOp = cast<ShuffleVectorSDNode>(Op);
+ V1 = SVOp->getOperand(0);
+ V2 = SVOp->getOperand(1);
+ std::swap(V1IsSplat, V2IsSplat);
+ std::swap(V1IsUndef, V2IsUndef);
+ Commuted = true;
+ }
+
+ if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
+ // Shuffling low element of v1 into undef, just return v1.
+ if (V2IsUndef)
+ return V1;
+ // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
+ // the instruction selector will not match, so get a canonical MOVL with
+ // swapped operands to undo the commute.
+ return getMOVL(DAG, dl, VT, V2, V1);
+ }
+
+ if (X86::isUNPCKL_v_undef_Mask(SVOp) ||
+ X86::isUNPCKH_v_undef_Mask(SVOp) ||
+ X86::isUNPCKLMask(SVOp) ||
+ X86::isUNPCKHMask(SVOp))
+ return Op;
+
+ if (V2IsSplat) {
+ // Normalize mask so all entries that point to V2 points to its first
+ // element then try to match unpck{h|l} again. If match, return a
+ // new vector_shuffle with the corrected mask.
+ SDValue NewMask = NormalizeMask(SVOp, DAG);
+ ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
+ if (NSVOp != SVOp) {
+ if (X86::isUNPCKLMask(NSVOp, true)) {
+ return NewMask;
+ } else if (X86::isUNPCKHMask(NSVOp, true)) {
+ return NewMask;
+ }
+ }
+ }
+
+ if (Commuted) {
+ // Commute is back and try unpck* again.
+ // FIXME: this seems wrong.
+ SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
+ ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
+ if (X86::isUNPCKL_v_undef_Mask(NewSVOp) ||
+ X86::isUNPCKH_v_undef_Mask(NewSVOp) ||
+ X86::isUNPCKLMask(NewSVOp) ||
+ X86::isUNPCKHMask(NewSVOp))
+ return NewOp;
+ }
+
+ // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle.
+
+ // Normalize the node to match x86 shuffle ops if needed
+ if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
+ return CommuteVectorShuffle(SVOp, DAG);
+
+ // Check for legal shuffle and return?
+ SmallVector<int, 16> PermMask;
+ SVOp->getMask(PermMask);
+ if (isShuffleMaskLegal(PermMask, VT))
+ return Op;
+
+ // Handle v8i16 specifically since SSE can do byte extraction and insertion.
+ if (VT == MVT::v8i16) {
+ SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this);
+ if (NewOp.getNode())
+ return NewOp;
+ }
+
+ if (VT == MVT::v16i8) {
+ SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
+ if (NewOp.getNode())
+ return NewOp;
+ }
+
+ // Handle all 4 wide cases with a number of shuffles except for MMX.
+ if (NumElems == 4 && !isMMX)
+ return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG);
+
+ return SDValue();
+}
+
+SDValue
+X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ DebugLoc dl = Op.getDebugLoc();
+ if (VT.getSizeInBits() == 8) {
+ SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
+ Op.getOperand(0), Op.getOperand(1));
+ SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
+ DAG.getValueType(VT));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
+ } else if (VT.getSizeInBits() == 16) {
+ unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ // If Idx is 0, it's cheaper to do a move instead of a pextrw.
+ if (Idx == 0)
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ DAG.getNode(ISD::BIT_CONVERT, dl,
+ MVT::v4i32,
+ Op.getOperand(0)),
+ Op.getOperand(1)));
+ SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
+ Op.getOperand(0), Op.getOperand(1));
+ SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
+ DAG.getValueType(VT));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
+ } else if (VT == MVT::f32) {
+ // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
+ // the result back to FR32 register. It's only worth matching if the
+ // result has a single use which is a store or a bitcast to i32. And in
+ // the case of a store, it's not worth it if the index is a constant 0,
+ // because a MOVSSmr can be used instead, which is smaller and faster.
+ if (!Op.hasOneUse())
+ return SDValue();
+ SDNode *User = *Op.getNode()->use_begin();
+ if ((User->getOpcode() != ISD::STORE ||
+ (isa<ConstantSDNode>(Op.getOperand(1)) &&
+ cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
+ (User->getOpcode() != ISD::BIT_CONVERT ||
+ User->getValueType(0) != MVT::i32))
+ return SDValue();
+ SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32,
+ Op.getOperand(0)),
+ Op.getOperand(1));
+ return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract);
+ } else if (VT == MVT::i32) {
+ // ExtractPS works with constant index.
+ if (isa<ConstantSDNode>(Op.getOperand(1)))
+ return Op;
+ }
+ return SDValue();
+}
+
+
+SDValue
+X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
+ SelectionDAG &DAG) const {
+ if (!isa<ConstantSDNode>(Op.getOperand(1)))
+ return SDValue();
+
+ if (Subtarget->hasSSE41()) {
+ SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
+ if (Res.getNode())
+ return Res;
+ }
+
+ EVT VT = Op.getValueType();
+ DebugLoc dl = Op.getDebugLoc();
+ // TODO: handle v16i8.
+ if (VT.getSizeInBits() == 16) {
+ SDValue Vec = Op.getOperand(0);
+ unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ if (Idx == 0)
+ return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
+ DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
+ DAG.getNode(ISD::BIT_CONVERT, dl,
+ MVT::v4i32, Vec),
+ Op.getOperand(1)));
+ // Transform it so it match pextrw which produces a 32-bit result.
+ EVT EltVT = MVT::i32;
+ SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
+ Op.getOperand(0), Op.getOperand(1));
+ SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
+ DAG.getValueType(VT));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
+ } else if (VT.getSizeInBits() == 32) {
+ unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ if (Idx == 0)
+ return Op;
+
+ // SHUFPS the element to the lowest double word, then movss.
+ int Mask[4] = { Idx, -1, -1, -1 };
+ EVT VVT = Op.getOperand(0).getValueType();
+ SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
+ DAG.getUNDEF(VVT), Mask);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
+ DAG.getIntPtrConstant(0));
+ } else if (VT.getSizeInBits() == 64) {
+ // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
+ // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
+ // to match extract_elt for f64.
+ unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ if (Idx == 0)
+ return Op;
+
+ // UNPCKHPD the element to the lowest double word, then movsd.
+ // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
+ // to a f64mem, the whole operation is folded into a single MOVHPDmr.
+ int Mask[2] = { 1, -1 };
+ EVT VVT = Op.getOperand(0).getValueType();
+ SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
+ DAG.getUNDEF(VVT), Mask);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
+ DAG.getIntPtrConstant(0));
+ }
+
+ return SDValue();
+}
+
+SDValue
+X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ EVT EltVT = VT.getVectorElementType();
+ DebugLoc dl = Op.getDebugLoc();
+
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue N2 = Op.getOperand(2);
+
+ if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
+ isa<ConstantSDNode>(N2)) {
+ unsigned Opc;
+ if (VT == MVT::v8i16)
+ Opc = X86ISD::PINSRW;
+ else if (VT == MVT::v4i16)
+ Opc = X86ISD::MMX_PINSRW;
+ else if (VT == MVT::v16i8)
+ Opc = X86ISD::PINSRB;
+ else
+ Opc = X86ISD::PINSRB;
+
+ // Transform it so it match pinsr{b,w} which expects a GR32 as its second
+ // argument.
+ if (N1.getValueType() != MVT::i32)
+ N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
+ if (N2.getValueType() != MVT::i32)
+ N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
+ return DAG.getNode(Opc, dl, VT, N0, N1, N2);
+ } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
+ // Bits [7:6] of the constant are the source select. This will always be
+ // zero here. The DAG Combiner may combine an extract_elt index into these
+ // bits. For example (insert (extract, 3), 2) could be matched by putting
+ // the '3' into bits [7:6] of X86ISD::INSERTPS.
+ // Bits [5:4] of the constant are the destination select. This is the
+ // value of the incoming immediate.
+ // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
+ // combine either bitwise AND or insert of float 0.0 to set these bits.
+ N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
+ // Create this as a scalar to vector..
+ N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
+ return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
+ } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
+ // PINSR* works with constant index.
+ return Op;
+ }
+ return SDValue();
+}
+
+SDValue
+X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ EVT EltVT = VT.getVectorElementType();
+
+ if (Subtarget->hasSSE41())
+ return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
+
+ if (EltVT == MVT::i8)
+ return SDValue();
+
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue N2 = Op.getOperand(2);
+
+ if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
+ // Transform it so it match pinsrw which expects a 16-bit value in a GR32
+ // as its second argument.
+ if (N1.getValueType() != MVT::i32)
+ N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
+ if (N2.getValueType() != MVT::i32)
+ N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
+ return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW,
+ dl, VT, N0, N1, N2);
+ }
+ return SDValue();
+}
+
+SDValue
+X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+ if (Op.getValueType() == MVT::v2f32)
+ return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32,
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32,
+ Op.getOperand(0))));
+
+ if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64)
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
+
+ SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
+ EVT VT = MVT::v2i32;
+ switch (Op.getValueType().getSimpleVT().SimpleTy) {
+ default: break;
+ case MVT::v16i8:
+ case MVT::v8i16:
+ VT = MVT::v4i32;
+ break;
+ }
+ return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(),
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt));
+}
+
+// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
+// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
+// one of the above mentioned nodes. It has to be wrapped because otherwise
+// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
+// be used to form addressing mode. These wrapped nodes will be selected
+// into MOV32ri.
+SDValue
+X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+
+ // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
+ // global base reg.
+ unsigned char OpFlag = 0;
+ unsigned WrapperKind = X86ISD::Wrapper;
+ CodeModel::Model M = getTargetMachine().getCodeModel();
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ WrapperKind = X86ISD::WrapperRIP;
+ else if (Subtarget->isPICStyleGOT())
+ OpFlag = X86II::MO_GOTOFF;
+ else if (Subtarget->isPICStyleStubPIC())
+ OpFlag = X86II::MO_PIC_BASE_OFFSET;
+
+ SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
+ CP->getAlignment(),
+ CP->getOffset(), OpFlag);
+ DebugLoc DL = CP->getDebugLoc();
+ Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
+ // With PIC, the address is actually $g + Offset.
+ if (OpFlag) {
+ Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
+ DAG.getNode(X86ISD::GlobalBaseReg,
+ DebugLoc(), getPointerTy()),
+ Result);
+ }
+
+ return Result;
+}
+
+SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
+
+ // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
+ // global base reg.
+ unsigned char OpFlag = 0;
+ unsigned WrapperKind = X86ISD::Wrapper;
+ CodeModel::Model M = getTargetMachine().getCodeModel();
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ WrapperKind = X86ISD::WrapperRIP;
+ else if (Subtarget->isPICStyleGOT())
+ OpFlag = X86II::MO_GOTOFF;
+ else if (Subtarget->isPICStyleStubPIC())
+ OpFlag = X86II::MO_PIC_BASE_OFFSET;
+
+ SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
+ OpFlag);
+ DebugLoc DL = JT->getDebugLoc();
+ Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
+
+ // With PIC, the address is actually $g + Offset.
+ if (OpFlag) {
+ Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
+ DAG.getNode(X86ISD::GlobalBaseReg,
+ DebugLoc(), getPointerTy()),
+ Result);
+ }
+
+ return Result;
+}
+
+SDValue
+X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
+ const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
+
+ // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
+ // global base reg.
+ unsigned char OpFlag = 0;
+ unsigned WrapperKind = X86ISD::Wrapper;
+ CodeModel::Model M = getTargetMachine().getCodeModel();
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ WrapperKind = X86ISD::WrapperRIP;
+ else if (Subtarget->isPICStyleGOT())
+ OpFlag = X86II::MO_GOTOFF;
+ else if (Subtarget->isPICStyleStubPIC())
+ OpFlag = X86II::MO_PIC_BASE_OFFSET;
+
+ SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
+
+ DebugLoc DL = Op.getDebugLoc();
+ Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
+
+
+ // With PIC, the address is actually $g + Offset.
+ if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
+ !Subtarget->is64Bit()) {
+ Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
+ DAG.getNode(X86ISD::GlobalBaseReg,
+ DebugLoc(), getPointerTy()),
+ Result);
+ }
+
+ return Result;
+}
+
+SDValue
+X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
+ // Create the TargetBlockAddressAddress node.
+ unsigned char OpFlags =
+ Subtarget->ClassifyBlockAddressReference();
+ CodeModel::Model M = getTargetMachine().getCodeModel();
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
+ /*isTarget=*/true, OpFlags);
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
+ else
+ Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
+
+ // With PIC, the address is actually $g + Offset.
+ if (isGlobalRelativeToPICBase(OpFlags)) {
+ Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
+ Result);
+ }
+
+ return Result;
+}
+
+SDValue
+X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
+ int64_t Offset,
+ SelectionDAG &DAG) const {
+ // Create the TargetGlobalAddress node, folding in the constant
+ // offset if it is legal.
+ unsigned char OpFlags =
+ Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
+ CodeModel::Model M = getTargetMachine().getCodeModel();
+ SDValue Result;
+ if (OpFlags == X86II::MO_NO_FLAG &&
+ X86::isOffsetSuitableForCodeModel(Offset, M)) {
+ // A direct static reference to a global.
+ Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
+ Offset = 0;
+ } else {
+ Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
+ }
+
+ if (Subtarget->isPICStyleRIPRel() &&
+ (M == CodeModel::Small || M == CodeModel::Kernel))
+ Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
+ else
+ Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
+
+ // With PIC, the address is actually $g + Offset.
+ if (isGlobalRelativeToPICBase(OpFlags)) {
+ Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
+ Result);
+ }
+
+ // For globals that require a load from a stub to get the address, emit the
+ // load.
+ if (isGlobalStubReference(OpFlags))
+ Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
+ PseudoSourceValue::getGOT(), 0, false, false, 0);
+
+ // If there was a non-zero offset that we didn't fold, create an explicit
+ // addition for it.
+ if (Offset != 0)
+ Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
+ DAG.getConstant(Offset, getPointerTy()));
+
+ return Result;
+}
+
+SDValue
+X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
+ return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
+}
+
+static SDValue
+GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
+ SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
+ unsigned char OperandFlags) {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
+ DebugLoc dl = GA->getDebugLoc();
+ SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(),
+ GA->getValueType(0),
+ GA->getOffset(),
+ OperandFlags);
+ if (InFlag) {
+ SDValue Ops[] = { Chain, TGA, *InFlag };
+ Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
+ } else {
+ SDValue Ops[] = { Chain, TGA };
+ Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
+ }
+
+ // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
+ MFI->setAdjustsStack(true);
+
+ SDValue Flag = Chain.getValue(1);
+ return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
+}
+
+// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
+static SDValue
+LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
+ const EVT PtrVT) {
+ SDValue InFlag;
+ DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
+ SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
+ DAG.getNode(X86ISD::GlobalBaseReg,
+ DebugLoc(), PtrVT), InFlag);
+ InFlag = Chain.getValue(1);
+
+ return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
+}
+
+// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
+static SDValue
+LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
+ const EVT PtrVT) {
+ return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
+ X86::RAX, X86II::MO_TLSGD);
+}
+
+// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
+// "local exec" model.
+static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
+ const EVT PtrVT, TLSModel::Model model,
+ bool is64Bit) {
+ DebugLoc dl = GA->getDebugLoc();
+ // Get the Thread Pointer
+ SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress,
+ DebugLoc(), PtrVT,
+ DAG.getRegister(is64Bit? X86::FS : X86::GS,
+ MVT::i32));
+
+ SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base,
+ NULL, 0, false, false, 0);
+
+ unsigned char OperandFlags = 0;
+ // Most TLS accesses are not RIP relative, even on x86-64. One exception is
+ // initialexec.
+ unsigned WrapperKind = X86ISD::Wrapper;
+ if (model == TLSModel::LocalExec) {
+ OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
+ } else if (is64Bit) {
+ assert(model == TLSModel::InitialExec);
+ OperandFlags = X86II::MO_GOTTPOFF;
+ WrapperKind = X86ISD::WrapperRIP;
+ } else {
+ assert(model == TLSModel::InitialExec);
+ OperandFlags = X86II::MO_INDNTPOFF;
+ }
+
+ // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
+ // exec)
+ SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0),
+ GA->getOffset(), OperandFlags);
+ SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
+
+ if (model == TLSModel::InitialExec)
+ Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
+ PseudoSourceValue::getGOT(), 0, false, false, 0);
+
+ // The address of the thread local variable is the add of the thread
+ // pointer with the offset of the variable.
+ return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
+}
+
+SDValue
+X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
+ // TODO: implement the "local dynamic" model
+ // TODO: implement the "initial exec"model for pic executables
+ assert(Subtarget->isTargetELF() &&
+ "TLS not implemented for non-ELF targets");
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+ const GlobalValue *GV = GA->getGlobal();
+
+ // If GV is an alias then use the aliasee for determining
+ // thread-localness.
+ if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
+ GV = GA->resolveAliasedGlobal(false);
+
+ TLSModel::Model model = getTLSModel(GV,
+ getTargetMachine().getRelocationModel());
+
+ switch (model) {
+ case TLSModel::GeneralDynamic:
+ case TLSModel::LocalDynamic: // not implemented
+ if (Subtarget->is64Bit())
+ return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
+ return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
+
+ case TLSModel::InitialExec:
+ case TLSModel::LocalExec:
+ return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
+ Subtarget->is64Bit());
+ }
+
+ llvm_unreachable("Unreachable");
+ return SDValue();
+}
+
+
+/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and
+/// take a 2 x i32 value to shift plus a shift amount.
+SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ EVT VT = Op.getValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ DebugLoc dl = Op.getDebugLoc();
+ bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
+ DAG.getConstant(VTBits - 1, MVT::i8))
+ : DAG.getConstant(0, VT);
+
+ SDValue Tmp2, Tmp3;
+ if (Op.getOpcode() == ISD::SHL_PARTS) {
+ Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
+ Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
+ } else {
+ Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
+ Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
+ }
+
+ SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
+ DAG.getConstant(VTBits, MVT::i8));
+ SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
+ AndNode, DAG.getConstant(0, MVT::i8));
+
+ SDValue Hi, Lo;
+ SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
+ SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
+ SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
+
+ if (Op.getOpcode() == ISD::SHL_PARTS) {
+ Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
+ Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
+ } else {
+ Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
+ Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
+ }
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, 2, dl);
+}
+
+SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT SrcVT = Op.getOperand(0).getValueType();
+
+ if (SrcVT.isVector()) {
+ if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) {
+ return Op;
+ }
+ return SDValue();
+ }
+
+ assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
+ "Unknown SINT_TO_FP to lower!");
+
+ // These are really Legal; return the operand so the caller accepts it as
+ // Legal.
+ if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
+ return Op;
+ if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
+ Subtarget->is64Bit()) {
+ return Op;
+ }
+
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned Size = SrcVT.getSizeInBits()/8;
+ MachineFunction &MF = DAG.getMachineFunction();
+ int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+ SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
+ StackSlot,
+ PseudoSourceValue::getFixedStack(SSFI), 0,
+ false, false, 0);
+ return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
+}
+
+SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
+ SDValue StackSlot,
+ SelectionDAG &DAG) const {
+ // Build the FILD
+ DebugLoc dl = Op.getDebugLoc();
+ SDVTList Tys;
+ bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
+ if (useSSE)
+ Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag);
+ else
+ Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
+ SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
+ SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl,
+ Tys, Ops, array_lengthof(Ops));
+
+ if (useSSE) {
+ Chain = Result.getValue(1);
+ SDValue InFlag = Result.getValue(2);
+
+ // FIXME: Currently the FST is flagged to the FILD_FLAG. This
+ // shouldn't be necessary except that RFP cannot be live across
+ // multiple blocks. When stackifier is fixed, they can be uncoupled.
+ MachineFunction &MF = DAG.getMachineFunction();
+ int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+ Tys = DAG.getVTList(MVT::Other);
+ SDValue Ops[] = {
+ Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
+ };
+ Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops));
+ Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot,
+ PseudoSourceValue::getFixedStack(SSFI), 0,
+ false, false, 0);
+ }
+
+ return Result;
+}
+
+// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
+SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
+ SelectionDAG &DAG) const {
+ // This algorithm is not obvious. Here it is in C code, more or less:
+ /*
+ double uint64_to_double( uint32_t hi, uint32_t lo ) {
+ static const __m128i exp = { 0x4330000045300000ULL, 0 };
+ static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
+
+ // Copy ints to xmm registers.
+ __m128i xh = _mm_cvtsi32_si128( hi );
+ __m128i xl = _mm_cvtsi32_si128( lo );
+
+ // Combine into low half of a single xmm register.
+ __m128i x = _mm_unpacklo_epi32( xh, xl );
+ __m128d d;
+ double sd;
+
+ // Merge in appropriate exponents to give the integer bits the right
+ // magnitude.
+ x = _mm_unpacklo_epi32( x, exp );
+
+ // Subtract away the biases to deal with the IEEE-754 double precision
+ // implicit 1.
+ d = _mm_sub_pd( (__m128d) x, bias );
+
+ // All conversions up to here are exact. The correctly rounded result is
+ // calculated using the current rounding mode using the following
+ // horizontal add.
+ d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
+ _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
+ // store doesn't really need to be here (except
+ // maybe to zero the other double)
+ return sd;
+ }
+ */
+
+ DebugLoc dl = Op.getDebugLoc();
+ LLVMContext *Context = DAG.getContext();
+
+ // Build some magic constants.
+ std::vector<Constant*> CV0;
+ CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
+ CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
+ CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
+ CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
+ Constant *C0 = ConstantVector::get(CV0);
+ SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
+
+ std::vector<Constant*> CV1;
+ CV1.push_back(
+ ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
+ CV1.push_back(
+ ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
+ Constant *C1 = ConstantVector::get(CV1);
+ SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
+
+ SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
+ DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Op.getOperand(0),
+ DAG.getIntPtrConstant(1)));
+ SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
+ DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Op.getOperand(0),
+ DAG.getIntPtrConstant(0)));
+ SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
+ SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 16);
+ SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
+ SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2);
+ SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 16);
+ SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
+
+ // Add the halves; easiest way is to swap them into another reg first.
+ int ShufMask[2] = { 1, -1 };
+ SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
+ DAG.getUNDEF(MVT::v2f64), ShufMask);
+ SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
+ DAG.getIntPtrConstant(0));
+}
+
+// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
+SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
+ SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+ // FP constant to bias correct the final result.
+ SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
+ MVT::f64);
+
+ // Load the 32-bit value into an XMM register.
+ SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
+ DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Op.getOperand(0),
+ DAG.getIntPtrConstant(0)));
+
+ Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load),
+ DAG.getIntPtrConstant(0));
+
+ // Or the load with the bias.
+ SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
+ MVT::v2f64, Load)),
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
+ DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
+ MVT::v2f64, Bias)));
+ Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or),
+ DAG.getIntPtrConstant(0));
+
+ // Subtract the bias.
+ SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
+
+ // Handle final rounding.
+ EVT DestVT = Op.getValueType();
+
+ if (DestVT.bitsLT(MVT::f64)) {
+ return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
+ DAG.getIntPtrConstant(0));
+ } else if (DestVT.bitsGT(MVT::f64)) {
+ return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
+ }
+
+ // Handle final rounding.
+ return Sub;
+}
+
+SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue N0 = Op.getOperand(0);
+ DebugLoc dl = Op.getDebugLoc();
+
+ // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
+ // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
+ // the optimization here.
+ if (DAG.SignBitIsZero(N0))
+ return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
+
+ EVT SrcVT = N0.getValueType();
+ EVT DstVT = Op.getValueType();
+ if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
+ return LowerUINT_TO_FP_i64(Op, DAG);
+ else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
+ return LowerUINT_TO_FP_i32(Op, DAG);
+
+ // Make a 64-bit buffer, and use it to build an FILD.
+ SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
+ if (SrcVT == MVT::i32) {
+ SDValue WordOff = DAG.getConstant(4, getPointerTy());
+ SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
+ getPointerTy(), StackSlot, WordOff);
+ SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
+ StackSlot, NULL, 0, false, false, 0);
+ SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
+ OffsetSlot, NULL, 0, false, false, 0);
+ SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
+ return Fild;
+ }
+
+ assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
+ SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
+ StackSlot, NULL, 0, false, false, 0);
+ // For i64 source, we need to add the appropriate power of 2 if the input
+ // was negative. This is the same as the optimization in
+ // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
+ // we must be careful to do the computation in x87 extended precision, not
+ // in SSE. (The generic code can't know it's OK to do this, or how to.)
+ SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
+ SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
+ SDValue Fild = DAG.getNode(X86ISD::FILD, dl, Tys, Ops, 3);
+
+ APInt FF(32, 0x5F800000ULL);
+
+ // Check whether the sign bit is set.
+ SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
+ Op.getOperand(0), DAG.getConstant(0, MVT::i64),
+ ISD::SETLT);
+
+ // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
+ SDValue FudgePtr = DAG.getConstantPool(
+ ConstantInt::get(*DAG.getContext(), FF.zext(64)),
+ getPointerTy());
+
+ // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
+ SDValue Zero = DAG.getIntPtrConstant(0);
+ SDValue Four = DAG.getIntPtrConstant(4);
+ SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
+ Zero, Four);
+ FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
+
+ // Load the value out, extending it from f32 to f80.
+ // FIXME: Avoid the extend by constructing the right constant pool?
+ SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
+ FudgePtr, PseudoSourceValue::getConstantPool(),
+ 0, MVT::f32, false, false, 4);
+ // Extend everything to 80 bits to force it to be done on x87.
+ SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
+ return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
+}
+
+std::pair<SDValue,SDValue> X86TargetLowering::
+FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
+ DebugLoc dl = Op.getDebugLoc();
+
+ EVT DstTy = Op.getValueType();
+
+ if (!IsSigned) {
+ assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
+ DstTy = MVT::i64;
+ }
+
+ assert(DstTy.getSimpleVT() <= MVT::i64 &&
+ DstTy.getSimpleVT() >= MVT::i16 &&
+ "Unknown FP_TO_SINT to lower!");
+
+ // These are really Legal.
+ if (DstTy == MVT::i32 &&
+ isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
+ return std::make_pair(SDValue(), SDValue());
+ if (Subtarget->is64Bit() &&
+ DstTy == MVT::i64 &&
+ isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
+ return std::make_pair(SDValue(), SDValue());
+
+ // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
+ // stack slot.
+ MachineFunction &MF = DAG.getMachineFunction();
+ unsigned MemSize = DstTy.getSizeInBits()/8;
+ int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+
+ unsigned Opc;
+ switch (DstTy.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
+ case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
+ case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
+ case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
+ }
+
+ SDValue Chain = DAG.getEntryNode();
+ SDValue Value = Op.getOperand(0);
+ if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) {
+ assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
+ Chain = DAG.getStore(Chain, dl, Value, StackSlot,
+ PseudoSourceValue::getFixedStack(SSFI), 0,
+ false, false, 0);
+ SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
+ SDValue Ops[] = {
+ Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType())
+ };
+ Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3);
+ Chain = Value.getValue(1);
+ SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
+ StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+ }
+
+ // Build the FP_TO_INT*_IN_MEM
+ SDValue Ops[] = { Chain, Value, StackSlot };
+ SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3);
+
+ return std::make_pair(FIST, StackSlot);
+}
+
+SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
+ SelectionDAG &DAG) const {
+ if (Op.getValueType().isVector()) {
+ if (Op.getValueType() == MVT::v2i32 &&
+ Op.getOperand(0).getValueType() == MVT::v2f64) {
+ return Op;
+ }
+ return SDValue();
+ }
+
+ std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
+ SDValue FIST = Vals.first, StackSlot = Vals.second;
+ // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
+ if (FIST.getNode() == 0) return Op;
+
+ // Load the result.
+ return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
+ FIST, StackSlot, NULL, 0, false, false, 0);
+}
+
+SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
+ SelectionDAG &DAG) const {
+ std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
+ SDValue FIST = Vals.first, StackSlot = Vals.second;
+ assert(FIST.getNode() && "Unexpected failure");
+
+ // Load the result.
+ return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
+ FIST, StackSlot, NULL, 0, false, false, 0);
+}
+
+SDValue X86TargetLowering::LowerFABS(SDValue Op,
+ SelectionDAG &DAG) const {
+ LLVMContext *Context = DAG.getContext();
+ DebugLoc dl = Op.getDebugLoc();
+ EVT VT = Op.getValueType();
+ EVT EltVT = VT;
+ if (VT.isVector())
+ EltVT = VT.getVectorElementType();
+ std::vector<Constant*> CV;
+ if (EltVT == MVT::f64) {
+ Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
+ CV.push_back(C);
+ CV.push_back(C);
+ } else {
+ Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
+ CV.push_back(C);
+ CV.push_back(C);
+ CV.push_back(C);
+ CV.push_back(C);
+ }
+ Constant *C = ConstantVector::get(CV);
+ SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
+ SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 16);
+ return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
+}
+
+SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
+ LLVMContext *Context = DAG.getContext();
+ DebugLoc dl = Op.getDebugLoc();
+ EVT VT = Op.getValueType();
+ EVT EltVT = VT;
+ if (VT.isVector())
+ EltVT = VT.getVectorElementType();
+ std::vector<Constant*> CV;
+ if (EltVT == MVT::f64) {
+ Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
+ CV.push_back(C);
+ CV.push_back(C);
+ } else {
+ Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
+ CV.push_back(C);
+ CV.push_back(C);
+ CV.push_back(C);
+ CV.push_back(C);
+ }
+ Constant *C = ConstantVector::get(CV);
+ SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
+ SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 16);
+ if (VT.isVector()) {
+ return DAG.getNode(ISD::BIT_CONVERT, dl, VT,
+ DAG.getNode(ISD::XOR, dl, MVT::v2i64,
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64,
+ Op.getOperand(0)),
+ DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask)));
+ } else {
+ return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
+ }
+}
+
+SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
+ LLVMContext *Context = DAG.getContext();
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ DebugLoc dl = Op.getDebugLoc();
+ EVT VT = Op.getValueType();
+ EVT SrcVT = Op1.getValueType();
+
+ // If second operand is smaller, extend it first.
+ if (SrcVT.bitsLT(VT)) {
+ Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
+ SrcVT = VT;
+ }
+ // And if it is bigger, shrink it first.
+ if (SrcVT.bitsGT(VT)) {
+ Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
+ SrcVT = VT;
+ }
+
+ // At this point the operands and the result should have the same
+ // type, and that won't be f80 since that is not custom lowered.
+
+ // First get the sign bit of second operand.
+ std::vector<Constant*> CV;
+ if (SrcVT == MVT::f64) {
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
+ } else {
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
+ }
+ Constant *C = ConstantVector::get(CV);
+ SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
+ SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 16);
+ SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
+
+ // Shift sign bit right or left if the two operands have different types.
+ if (SrcVT.bitsGT(VT)) {
+ // Op0 is MVT::f32, Op1 is MVT::f64.
+ SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
+ SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
+ DAG.getConstant(32, MVT::i32));
+ SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit);
+ SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
+ DAG.getIntPtrConstant(0));
+ }
+
+ // Clear first operand sign bit.
+ CV.clear();
+ if (VT == MVT::f64) {
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
+ } else {
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
+ CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
+ }
+ C = ConstantVector::get(CV);
+ CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
+ SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
+ PseudoSourceValue::getConstantPool(), 0,
+ false, false, 16);
+ SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
+
+ // Or the value with the sign bit.
+ return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
+}
+
+/// Emit nodes that will be selected as "test Op0,Op0", or something
+/// equivalent.
+SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
+ SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+
+ // CF and OF aren't always set the way we want. Determine which
+ // of these we need.
+ bool NeedCF = false;
+ bool NeedOF = false;
+ switch (X86CC) {
+ case X86::COND_A: case X86::COND_AE:
+ case X86::COND_B: case X86::COND_BE:
+ NeedCF = true;
+ break;
+ case X86::COND_G: case X86::COND_GE:
+ case X86::COND_L: case X86::COND_LE:
+ case X86::COND_O: case X86::COND_NO:
+ NeedOF = true;
+ break;
+ default: break;
+ }
+
+ // See if we can use the EFLAGS value from the operand instead of
+ // doing a separate TEST. TEST always sets OF and CF to 0, so unless
+ // we prove that the arithmetic won't overflow, we can't use OF or CF.
+ if (Op.getResNo() == 0 && !NeedOF && !NeedCF) {
+ unsigned Opcode = 0;
+ unsigned NumOperands = 0;
+ switch (Op.getNode()->getOpcode()) {
+ case ISD::ADD:
+ // Due to an isel shortcoming, be conservative if this add is
+ // likely to be selected as part of a load-modify-store
+ // instruction. When the root node in a match is a store, isel
+ // doesn't know how to remap non-chain non-flag uses of other
+ // nodes in the match, such as the ADD in this case. This leads
+ // to the ADD being left around and reselected, with the result
+ // being two adds in the output. Alas, even if none our users
+ // are stores, that doesn't prove we're O.K. Ergo, if we have
+ // any parents that aren't CopyToReg or SETCC, eschew INC/DEC.
+ // A better fix seems to require climbing the DAG back to the
+ // root, and it doesn't seem to be worth the effort.
+ for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
+ UE = Op.getNode()->use_end(); UI != UE; ++UI)
+ if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
+ goto default_case;
+ if (ConstantSDNode *C =
+ dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
+ // An add of one will be selected as an INC.
+ if (C->getAPIntValue() == 1) {
+ Opcode = X86ISD::INC;
+ NumOperands = 1;
+ break;
+ }
+ // An add of negative one (subtract of one) will be selected as a DEC.
+ if (C->getAPIntValue().isAllOnesValue()) {
+ Opcode = X86ISD::DEC;
+ NumOperands = 1;
+ break;
+ }
+ }
+ // Otherwise use a regular EFLAGS-setting add.
+ Opcode = X86ISD::ADD;
+ NumOperands = 2;
+ break;
+ case ISD::AND: {
+ // If the primary and result isn't used, don't bother using X86ISD::AND,
+ // because a TEST instruction will be better.
+ bool NonFlagUse = false;
+ for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
+ UE = Op.getNode()->use_end(); UI != UE; ++UI) {
+ SDNode *User = *UI;
+ unsigned UOpNo = UI.getOperandNo();
+ if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
+ // Look pass truncate.
+ UOpNo = User->use_begin().getOperandNo();
+ User = *User->use_begin();
+ }
+ if (User->getOpcode() != ISD::BRCOND &&
+ User->getOpcode() != ISD::SETCC &&
+ (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
+ NonFlagUse = true;
+ break;
+ }
+ }
+ if (!NonFlagUse)
+ break;
+ }
+ // FALL THROUGH
+ case ISD::SUB:
+ case ISD::OR:
+ case ISD::XOR:
+ // Due to the ISEL shortcoming noted above, be conservative if this op is
+ // likely to be selected as part of a load-modify-store instruction.
+ for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
+ UE = Op.getNode()->use_end(); UI != UE; ++UI)
+ if (UI->getOpcode() == ISD::STORE)
+ goto default_case;
+ // Otherwise use a regular EFLAGS-setting instruction.
+ switch (Op.getNode()->getOpcode()) {
+ case ISD::SUB: Opcode = X86ISD::SUB; break;
+ case ISD::OR: Opcode = X86ISD::OR; break;
+ case ISD::XOR: Opcode = X86ISD::XOR; break;
+ case ISD::AND: Opcode = X86ISD::AND; break;
+ default: llvm_unreachable("unexpected operator!");
+ }
+ NumOperands = 2;
+ break;
+ case X86ISD::ADD:
+ case X86ISD::SUB:
+ case X86ISD::INC:
+ case X86ISD::DEC:
+ case X86ISD::OR:
+ case X86ISD::XOR:
+ case X86ISD::AND:
+ return SDValue(Op.getNode(), 1);
+ default:
+ default_case:
+ break;
+ }
+ if (Opcode != 0) {
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
+ SmallVector<SDValue, 4> Ops;
+ for (unsigned i = 0; i != NumOperands; ++i)
+ Ops.push_back(Op.getOperand(i));
+ SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
+ DAG.ReplaceAllUsesWith(Op, New);
+ return SDValue(New.getNode(), 1);
+ }
+ }
+
+ // Otherwise just emit a CMP with 0, which is the TEST pattern.
+ return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
+ DAG.getConstant(0, Op.getValueType()));
+}
+
+/// Emit nodes that will be selected as "cmp Op0,Op1", or something
+/// equivalent.
+SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
+ SelectionDAG &DAG) const {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
+ if (C->getAPIntValue() == 0)
+ return EmitTest(Op0, X86CC, DAG);
+
+ DebugLoc dl = Op0.getDebugLoc();
+ return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
+}
+
+/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
+/// if it's possible.
+SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
+ DebugLoc dl, SelectionDAG &DAG) const {
+ SDValue Op0 = And.getOperand(0);
+ SDValue Op1 = And.getOperand(1);
+ if (Op0.getOpcode() == ISD::TRUNCATE)
+ Op0 = Op0.getOperand(0);
+ if (Op1.getOpcode() == ISD::TRUNCATE)
+ Op1 = Op1.getOperand(0);
+
+ SDValue LHS, RHS;
+ if (Op1.getOpcode() == ISD::SHL) {
+ if (ConstantSDNode *And10C = dyn_cast<ConstantSDNode>(Op1.getOperand(0)))
+ if (And10C->getZExtValue() == 1) {
+ LHS = Op0;
+ RHS = Op1.getOperand(1);
+ }
+ } else if (Op0.getOpcode() == ISD::SHL) {
+ if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
+ if (And00C->getZExtValue() == 1) {
+ LHS = Op1;
+ RHS = Op0.getOperand(1);
+ }
+ } else if (Op1.getOpcode() == ISD::Constant) {
+ ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
+ SDValue AndLHS = Op0;
+ if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
+ LHS = AndLHS.getOperand(0);
+ RHS = AndLHS.getOperand(1);
+ }
+ }
+
+ if (LHS.getNode()) {
+ // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
+ // instruction. Since the shift amount is in-range-or-undefined, we know
+ // that doing a bittest on the i32 value is ok. We extend to i32 because
+ // the encoding for the i16 version is larger than the i32 version.
+ // Also promote i16 to i32 for performance / code size reason.
+ if (LHS.getValueType() == MVT::i8 ||
+ LHS.getValueType() == MVT::i16)
+ LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
+
+ // If the operand types disagree, extend the shift amount to match. Since
+ // BT ignores high bits (like shifts) we can use anyextend.
+ if (LHS.getValueType() != RHS.getValueType())
+ RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
+
+ SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
+ unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
+ return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(Cond, MVT::i8), BT);
+ }
+
+ return SDValue();
+}
+
+SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
+ assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ DebugLoc dl = Op.getDebugLoc();
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+
+ // Optimize to BT if possible.
+ // Lower (X & (1 << N)) == 0 to BT(X, N).
+ // Lower ((X >>u N) & 1) != 0 to BT(X, N).
+ // Lower ((X >>s N) & 1) != 0 to BT(X, N).
+ if (Op0.getOpcode() == ISD::AND &&
+ Op0.hasOneUse() &&
+ Op1.getOpcode() == ISD::Constant &&
+ cast<ConstantSDNode>(Op1)->getZExtValue() == 0 &&
+ (CC == ISD::SETEQ || CC == ISD::SETNE)) {
+ SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
+ if (NewSetCC.getNode())
+ return NewSetCC;
+ }
+
+ // Look for "(setcc) == / != 1" to avoid unncessary setcc.
+ if (Op0.getOpcode() == X86ISD::SETCC &&
+ Op1.getOpcode() == ISD::Constant &&
+ (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
+ cast<ConstantSDNode>(Op1)->isNullValue()) &&
+ (CC == ISD::SETEQ || CC == ISD::SETNE)) {
+ X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
+ bool Invert = (CC == ISD::SETNE) ^
+ cast<ConstantSDNode>(Op1)->isNullValue();
+ if (Invert)
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
+ }
+
+ bool isFP = Op1.getValueType().isFloatingPoint();
+ unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
+ if (X86CC == X86::COND_INVALID)
+ return SDValue();
+
+ SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG);
+
+ // Use sbb x, x to materialize carry bit into a GPR.
+ if (X86CC == X86::COND_B)
+ return DAG.getNode(ISD::AND, dl, MVT::i8,
+ DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8,
+ DAG.getConstant(X86CC, MVT::i8), Cond),
+ DAG.getConstant(1, MVT::i8));
+
+ return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(X86CC, MVT::i8), Cond);
+}
+
+SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Cond;
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue CC = Op.getOperand(2);
+ EVT VT = Op.getValueType();
+ ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
+ bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
+ DebugLoc dl = Op.getDebugLoc();
+
+ if (isFP) {
+ unsigned SSECC = 8;
+ EVT VT0 = Op0.getValueType();
+ assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64);
+ unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
+ bool Swap = false;
+
+ switch (SetCCOpcode) {
+ default: break;
+ case ISD::SETOEQ:
+ case ISD::SETEQ: SSECC = 0; break;
+ case ISD::SETOGT:
+ case ISD::SETGT: Swap = true; // Fallthrough
+ case ISD::SETLT:
+ case ISD::SETOLT: SSECC = 1; break;
+ case ISD::SETOGE:
+ case ISD::SETGE: Swap = true; // Fallthrough
+ case ISD::SETLE:
+ case ISD::SETOLE: SSECC = 2; break;
+ case ISD::SETUO: SSECC = 3; break;
+ case ISD::SETUNE:
+ case ISD::SETNE: SSECC = 4; break;
+ case ISD::SETULE: Swap = true;
+ case ISD::SETUGE: SSECC = 5; break;
+ case ISD::SETULT: Swap = true;
+ case ISD::SETUGT: SSECC = 6; break;
+ case ISD::SETO: SSECC = 7; break;
+ }
+ if (Swap)
+ std::swap(Op0, Op1);
+
+ // In the two special cases we can't handle, emit two comparisons.
+ if (SSECC == 8) {
+ if (SetCCOpcode == ISD::SETUEQ) {
+ SDValue UNORD, EQ;
+ UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
+ EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
+ return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
+ }
+ else if (SetCCOpcode == ISD::SETONE) {
+ SDValue ORD, NEQ;
+ ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
+ NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
+ return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
+ }
+ llvm_unreachable("Illegal FP comparison");
+ }
+ // Handle all other FP comparisons here.
+ return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
+ }
+
+ // We are handling one of the integer comparisons here. Since SSE only has
+ // GT and EQ comparisons for integer, swapping operands and multiple
+ // operations may be required for some comparisons.
+ unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
+ bool Swap = false, Invert = false, FlipSigns = false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: break;
+ case MVT::v8i8:
+ case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
+ case MVT::v4i16:
+ case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
+ case MVT::v2i32:
+ case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
+ case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
+ }
+
+ switch (SetCCOpcode) {
+ default: break;
+ case ISD::SETNE: Invert = true;
+ case ISD::SETEQ: Opc = EQOpc; break;
+ case ISD::SETLT: Swap = true;
+ case ISD::SETGT: Opc = GTOpc; break;
+ case ISD::SETGE: Swap = true;
+ case ISD::SETLE: Opc = GTOpc; Invert = true; break;
+ case ISD::SETULT: Swap = true;
+ case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
+ case ISD::SETUGE: Swap = true;
+ case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
+ }
+ if (Swap)
+ std::swap(Op0, Op1);
+
+ // Since SSE has no unsigned integer comparisons, we need to flip the sign
+ // bits of the inputs before performing those operations.
+ if (FlipSigns) {
+ EVT EltVT = VT.getVectorElementType();
+ SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
+ EltVT);
+ std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
+ SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
+ SignBits.size());
+ Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
+ Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
+ }
+
+ SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
+
+ // If the logical-not of the result is required, perform that now.
+ if (Invert)
+ Result = DAG.getNOT(dl, Result, VT);
+
+ return Result;
+}
+
+// isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
+static bool isX86LogicalCmp(SDValue Op) {
+ unsigned Opc = Op.getNode()->getOpcode();
+ if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
+ return true;
+ if (Op.getResNo() == 1 &&
+ (Opc == X86ISD::ADD ||
+ Opc == X86ISD::SUB ||
+ Opc == X86ISD::SMUL ||
+ Opc == X86ISD::UMUL ||
+ Opc == X86ISD::INC ||
+ Opc == X86ISD::DEC ||
+ Opc == X86ISD::OR ||
+ Opc == X86ISD::XOR ||
+ Opc == X86ISD::AND))
+ return true;
+
+ return false;
+}
+
+SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
+ bool addTest = true;
+ SDValue Cond = Op.getOperand(0);
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue CC;
+
+ if (Cond.getOpcode() == ISD::SETCC) {
+ SDValue NewCond = LowerSETCC(Cond, DAG);
+ if (NewCond.getNode())
+ Cond = NewCond;
+ }
+
+ // (select (x == 0), -1, 0) -> (sign_bit (x - 1))
+ SDValue Op1 = Op.getOperand(1);
+ SDValue Op2 = Op.getOperand(2);
+ if (Cond.getOpcode() == X86ISD::SETCC &&
+ cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) {
+ SDValue Cmp = Cond.getOperand(1);
+ if (Cmp.getOpcode() == X86ISD::CMP) {
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1);
+ ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
+ ConstantSDNode *RHSC =
+ dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode());
+ if (N1C && N1C->isAllOnesValue() &&
+ N2C && N2C->isNullValue() &&
+ RHSC && RHSC->isNullValue()) {
+ SDValue CmpOp0 = Cmp.getOperand(0);
+ Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
+ CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
+ return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(),
+ DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
+ }
+ }
+ }
+
+ // Look pass (and (setcc_carry (cmp ...)), 1).
+ if (Cond.getOpcode() == ISD::AND &&
+ Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
+ if (C && C->getAPIntValue() == 1)
+ Cond = Cond.getOperand(0);
+ }
+
+ // If condition flag is set by a X86ISD::CMP, then use it as the condition
+ // setting operand in place of the X86ISD::SETCC.
+ if (Cond.getOpcode() == X86ISD::SETCC ||
+ Cond.getOpcode() == X86ISD::SETCC_CARRY) {
+ CC = Cond.getOperand(0);
+
+ SDValue Cmp = Cond.getOperand(1);
+ unsigned Opc = Cmp.getOpcode();
+ EVT VT = Op.getValueType();
+
+ bool IllegalFPCMov = false;
+ if (VT.isFloatingPoint() && !VT.isVector() &&
+ !isScalarFPTypeInSSEReg(VT)) // FPStack?
+ IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
+
+ if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
+ Opc == X86ISD::BT) { // FIXME
+ Cond = Cmp;
+ addTest = false;
+ }
+ }
+
+ if (addTest) {
+ // Look pass the truncate.
+ if (Cond.getOpcode() == ISD::TRUNCATE)
+ Cond = Cond.getOperand(0);
+
+ // We know the result of AND is compared against zero. Try to match
+ // it to BT.
+ if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
+ SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
+ if (NewSetCC.getNode()) {
+ CC = NewSetCC.getOperand(0);
+ Cond = NewSetCC.getOperand(1);
+ addTest = false;
+ }
+ }
+ }
+
+ if (addTest) {
+ CC = DAG.getConstant(X86::COND_NE, MVT::i8);
+ Cond = EmitTest(Cond, X86::COND_NE, DAG);
+ }
+
+ // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
+ // condition is true.
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
+ SDValue Ops[] = { Op2, Op1, CC, Cond };
+ return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops));
+}
+
+// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
+// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
+// from the AND / OR.
+static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
+ Opc = Op.getOpcode();
+ if (Opc != ISD::OR && Opc != ISD::AND)
+ return false;
+ return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
+ Op.getOperand(0).hasOneUse() &&
+ Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
+ Op.getOperand(1).hasOneUse());
+}
+
+// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
+// 1 and that the SETCC node has a single use.
+static bool isXor1OfSetCC(SDValue Op) {
+ if (Op.getOpcode() != ISD::XOR)
+ return false;
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ if (N1C && N1C->getAPIntValue() == 1) {
+ return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
+ Op.getOperand(0).hasOneUse();
+ }
+ return false;
+}
+
+SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
+ bool addTest = true;
+ SDValue Chain = Op.getOperand(0);
+ SDValue Cond = Op.getOperand(1);
+ SDValue Dest = Op.getOperand(2);
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue CC;
+
+ if (Cond.getOpcode() == ISD::SETCC) {
+ SDValue NewCond = LowerSETCC(Cond, DAG);
+ if (NewCond.getNode())
+ Cond = NewCond;
+ }
+#if 0
+ // FIXME: LowerXALUO doesn't handle these!!
+ else if (Cond.getOpcode() == X86ISD::ADD ||
+ Cond.getOpcode() == X86ISD::SUB ||
+ Cond.getOpcode() == X86ISD::SMUL ||
+ Cond.getOpcode() == X86ISD::UMUL)
+ Cond = LowerXALUO(Cond, DAG);
+#endif
+
+ // Look pass (and (setcc_carry (cmp ...)), 1).
+ if (Cond.getOpcode() == ISD::AND &&
+ Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
+ if (C && C->getAPIntValue() == 1)
+ Cond = Cond.getOperand(0);
+ }
+
+ // If condition flag is set by a X86ISD::CMP, then use it as the condition
+ // setting operand in place of the X86ISD::SETCC.
+ if (Cond.getOpcode() == X86ISD::SETCC ||
+ Cond.getOpcode() == X86ISD::SETCC_CARRY) {
+ CC = Cond.getOperand(0);
+
+ SDValue Cmp = Cond.getOperand(1);
+ unsigned Opc = Cmp.getOpcode();
+ // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
+ if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
+ Cond = Cmp;
+ addTest = false;
+ } else {
+ switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
+ default: break;
+ case X86::COND_O:
+ case X86::COND_B:
+ // These can only come from an arithmetic instruction with overflow,
+ // e.g. SADDO, UADDO.
+ Cond = Cond.getNode()->getOperand(1);
+ addTest = false;
+ break;
+ }
+ }
+ } else {
+ unsigned CondOpc;
+ if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
+ SDValue Cmp = Cond.getOperand(0).getOperand(1);
+ if (CondOpc == ISD::OR) {
+ // Also, recognize the pattern generated by an FCMP_UNE. We can emit
+ // two branches instead of an explicit OR instruction with a
+ // separate test.
+ if (Cmp == Cond.getOperand(1).getOperand(1) &&
+ isX86LogicalCmp(Cmp)) {
+ CC = Cond.getOperand(0).getOperand(0);
+ Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cmp);
+ CC = Cond.getOperand(1).getOperand(0);
+ Cond = Cmp;
+ addTest = false;
+ }
+ } else { // ISD::AND
+ // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
+ // two branches instead of an explicit AND instruction with a
+ // separate test. However, we only do this if this block doesn't
+ // have a fall-through edge, because this requires an explicit
+ // jmp when the condition is false.
+ if (Cmp == Cond.getOperand(1).getOperand(1) &&
+ isX86LogicalCmp(Cmp) &&
+ Op.getNode()->hasOneUse()) {
+ X86::CondCode CCode =
+ (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ CC = DAG.getConstant(CCode, MVT::i8);
+ SDValue User = SDValue(*Op.getNode()->use_begin(), 0);
+ // Look for an unconditional branch following this conditional branch.
+ // We need this because we need to reverse the successors in order
+ // to implement FCMP_OEQ.
+ if (User.getOpcode() == ISD::BR) {
+ SDValue FalseBB = User.getOperand(1);
+ SDValue NewBR =
+ DAG.UpdateNodeOperands(User, User.getOperand(0), Dest);
+ assert(NewBR == User);
+ Dest = FalseBB;
+
+ Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cmp);
+ X86::CondCode CCode =
+ (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ CC = DAG.getConstant(CCode, MVT::i8);
+ Cond = Cmp;
+ addTest = false;
+ }
+ }
+ }
+ } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
+ // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
+ // It should be transformed during dag combiner except when the condition
+ // is set by a arithmetics with overflow node.
+ X86::CondCode CCode =
+ (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
+ CCode = X86::GetOppositeBranchCondition(CCode);
+ CC = DAG.getConstant(CCode, MVT::i8);
+ Cond = Cond.getOperand(0).getOperand(1);
+ addTest = false;
+ }
+ }
+
+ if (addTest) {
+ // Look pass the truncate.
+ if (Cond.getOpcode() == ISD::TRUNCATE)
+ Cond = Cond.getOperand(0);
+
+ // We know the result of AND is compared against zero. Try to match
+ // it to BT.
+ if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
+ SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
+ if (NewSetCC.getNode()) {
+ CC = NewSetCC.getOperand(0);
+ Cond = NewSetCC.getOperand(1);
+ addTest = false;
+ }
+ }
+ }
+
+ if (addTest) {
+ CC = DAG.getConstant(X86::COND_NE, MVT::i8);
+ Cond = EmitTest(Cond, X86::COND_NE, DAG);
+ }
+ return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
+ Chain, Dest, CC, Cond);
+}
+
+
+// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
+// Calls to _alloca is needed to probe the stack when allocating more than 4k
+// bytes in one go. Touching the stack at 4K increments is necessary to ensure
+// that the guard pages used by the OS virtual memory manager are allocated in
+// correct sequence.
+SDValue
+X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetCygMing() &&
+ "This should be used only on Cygwin/Mingw targets");
+ DebugLoc dl = Op.getDebugLoc();
+
+ // Get the inputs.
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+ // FIXME: Ensure alignment here
+
+ SDValue Flag;
+
+ EVT IntPtr = getPointerTy();
+ EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
+
+ Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag);
+ Flag = Chain.getValue(1);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
+
+ Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag);
+ Flag = Chain.getValue(1);
+
+ Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
+
+ SDValue Ops1[2] = { Chain.getValue(0), Chain };
+ return DAG.getMergeValues(Ops1, 2, dl);
+}
+
+SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
+
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ DebugLoc dl = Op.getDebugLoc();
+
+ if (!Subtarget->is64Bit()) {
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
+ getPointerTy());
+ return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0,
+ false, false, 0);
+ }
+
+ // __va_list_tag:
+ // gp_offset (0 - 6 * 8)
+ // fp_offset (48 - 48 + 8 * 16)
+ // overflow_arg_area (point to parameters coming in memory).
+ // reg_save_area
+ SmallVector<SDValue, 8> MemOps;
+ SDValue FIN = Op.getOperand(1);
+ // Store gp_offset
+ SDValue Store = DAG.getStore(Op.getOperand(0), dl,
+ DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
+ MVT::i32),
+ FIN, SV, 0, false, false, 0);
+ MemOps.push_back(Store);
+
+ // Store fp_offset
+ FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ FIN, DAG.getIntPtrConstant(4));
+ Store = DAG.getStore(Op.getOperand(0), dl,
+ DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
+ MVT::i32),
+ FIN, SV, 0, false, false, 0);
+ MemOps.push_back(Store);
+
+ // Store ptr to overflow_arg_area
+ FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ FIN, DAG.getIntPtrConstant(4));
+ SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
+ getPointerTy());
+ Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0,
+ false, false, 0);
+ MemOps.push_back(Store);
+
+ // Store ptr to reg_save_area.
+ FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ FIN, DAG.getIntPtrConstant(8));
+ SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
+ getPointerTy());
+ Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0,
+ false, false, 0);
+ MemOps.push_back(Store);
+ return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOps[0], MemOps.size());
+}
+
+SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
+ // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
+ assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!");
+ SDValue Chain = Op.getOperand(0);
+ SDValue SrcPtr = Op.getOperand(1);
+ SDValue SrcSV = Op.getOperand(2);
+
+ report_fatal_error("VAArgInst is not yet implemented for x86-64!");
+ return SDValue();
+}
+
+SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
+ // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
+ assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
+ SDValue Chain = Op.getOperand(0);
+ SDValue DstPtr = Op.getOperand(1);
+ SDValue SrcPtr = Op.getOperand(2);
+ const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
+ const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
+ DebugLoc dl = Op.getDebugLoc();
+
+ return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr,
+ DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
+ false, DstSV, 0, SrcSV, 0);
+}
+
+SDValue
+X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ default: return SDValue(); // Don't custom lower most intrinsics.
+ // Comparison intrinsics.
+ case Intrinsic::x86_sse_comieq_ss:
+ case Intrinsic::x86_sse_comilt_ss:
+ case Intrinsic::x86_sse_comile_ss:
+ case Intrinsic::x86_sse_comigt_ss:
+ case Intrinsic::x86_sse_comige_ss:
+ case Intrinsic::x86_sse_comineq_ss:
+ case Intrinsic::x86_sse_ucomieq_ss:
+ case Intrinsic::x86_sse_ucomilt_ss:
+ case Intrinsic::x86_sse_ucomile_ss:
+ case Intrinsic::x86_sse_ucomigt_ss:
+ case Intrinsic::x86_sse_ucomige_ss:
+ case Intrinsic::x86_sse_ucomineq_ss:
+ case Intrinsic::x86_sse2_comieq_sd:
+ case Intrinsic::x86_sse2_comilt_sd:
+ case Intrinsic::x86_sse2_comile_sd:
+ case Intrinsic::x86_sse2_comigt_sd:
+ case Intrinsic::x86_sse2_comige_sd:
+ case Intrinsic::x86_sse2_comineq_sd:
+ case Intrinsic::x86_sse2_ucomieq_sd:
+ case Intrinsic::x86_sse2_ucomilt_sd:
+ case Intrinsic::x86_sse2_ucomile_sd:
+ case Intrinsic::x86_sse2_ucomigt_sd:
+ case Intrinsic::x86_sse2_ucomige_sd:
+ case Intrinsic::x86_sse2_ucomineq_sd: {
+ unsigned Opc = 0;
+ ISD::CondCode CC = ISD::SETCC_INVALID;
+ switch (IntNo) {
+ default: break;
+ case Intrinsic::x86_sse_comieq_ss:
+ case Intrinsic::x86_sse2_comieq_sd:
+ Opc = X86ISD::COMI;
+ CC = ISD::SETEQ;
+ break;
+ case Intrinsic::x86_sse_comilt_ss:
+ case Intrinsic::x86_sse2_comilt_sd:
+ Opc = X86ISD::COMI;
+ CC = ISD::SETLT;
+ break;
+ case Intrinsic::x86_sse_comile_ss:
+ case Intrinsic::x86_sse2_comile_sd:
+ Opc = X86ISD::COMI;
+ CC = ISD::SETLE;
+ break;
+ case Intrinsic::x86_sse_comigt_ss:
+ case Intrinsic::x86_sse2_comigt_sd:
+ Opc = X86ISD::COMI;
+ CC = ISD::SETGT;
+ break;
+ case Intrinsic::x86_sse_comige_ss:
+ case Intrinsic::x86_sse2_comige_sd:
+ Opc = X86ISD::COMI;
+ CC = ISD::SETGE;
+ break;
+ case Intrinsic::x86_sse_comineq_ss:
+ case Intrinsic::x86_sse2_comineq_sd:
+ Opc = X86ISD::COMI;
+ CC = ISD::SETNE;
+ break;
+ case Intrinsic::x86_sse_ucomieq_ss:
+ case Intrinsic::x86_sse2_ucomieq_sd:
+ Opc = X86ISD::UCOMI;
+ CC = ISD::SETEQ;
+ break;
+ case Intrinsic::x86_sse_ucomilt_ss:
+ case Intrinsic::x86_sse2_ucomilt_sd:
+ Opc = X86ISD::UCOMI;
+ CC = ISD::SETLT;
+ break;
+ case Intrinsic::x86_sse_ucomile_ss:
+ case Intrinsic::x86_sse2_ucomile_sd:
+ Opc = X86ISD::UCOMI;
+ CC = ISD::SETLE;
+ break;
+ case Intrinsic::x86_sse_ucomigt_ss:
+ case Intrinsic::x86_sse2_ucomigt_sd:
+ Opc = X86ISD::UCOMI;
+ CC = ISD::SETGT;
+ break;
+ case Intrinsic::x86_sse_ucomige_ss:
+ case Intrinsic::x86_sse2_ucomige_sd:
+ Opc = X86ISD::UCOMI;
+ CC = ISD::SETGE;
+ break;
+ case Intrinsic::x86_sse_ucomineq_ss:
+ case Intrinsic::x86_sse2_ucomineq_sd:
+ Opc = X86ISD::UCOMI;
+ CC = ISD::SETNE;
+ break;
+ }
+
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+ unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
+ assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
+ SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
+ DAG.getConstant(X86CC, MVT::i8), Cond);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+ // ptest intrinsics. The intrinsic these come from are designed to return
+ // an integer value, not just an instruction so lower it to the ptest
+ // pattern and a setcc for the result.
+ case Intrinsic::x86_sse41_ptestz:
+ case Intrinsic::x86_sse41_ptestc:
+ case Intrinsic::x86_sse41_ptestnzc:{
+ unsigned X86CC = 0;
+ switch (IntNo) {
+ default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
+ case Intrinsic::x86_sse41_ptestz:
+ // ZF = 1
+ X86CC = X86::COND_E;
+ break;
+ case Intrinsic::x86_sse41_ptestc:
+ // CF = 1
+ X86CC = X86::COND_B;
+ break;
+ case Intrinsic::x86_sse41_ptestnzc:
+ // ZF and CF = 0
+ X86CC = X86::COND_A;
+ break;
+ }
+
+ SDValue LHS = Op.getOperand(1);
+ SDValue RHS = Op.getOperand(2);
+ SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS);
+ SDValue CC = DAG.getConstant(X86CC, MVT::i8);
+ SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
+ }
+
+ // Fix vector shift instructions where the last operand is a non-immediate
+ // i32 value.
+ case Intrinsic::x86_sse2_pslli_w:
+ case Intrinsic::x86_sse2_pslli_d:
+ case Intrinsic::x86_sse2_pslli_q:
+ case Intrinsic::x86_sse2_psrli_w:
+ case Intrinsic::x86_sse2_psrli_d:
+ case Intrinsic::x86_sse2_psrli_q:
+ case Intrinsic::x86_sse2_psrai_w:
+ case Intrinsic::x86_sse2_psrai_d:
+ case Intrinsic::x86_mmx_pslli_w:
+ case Intrinsic::x86_mmx_pslli_d:
+ case Intrinsic::x86_mmx_pslli_q:
+ case Intrinsic::x86_mmx_psrli_w:
+ case Intrinsic::x86_mmx_psrli_d:
+ case Intrinsic::x86_mmx_psrli_q:
+ case Intrinsic::x86_mmx_psrai_w:
+ case Intrinsic::x86_mmx_psrai_d: {
+ SDValue ShAmt = Op.getOperand(2);
+ if (isa<ConstantSDNode>(ShAmt))
+ return SDValue();
+
+ unsigned NewIntNo = 0;
+ EVT ShAmtVT = MVT::v4i32;
+ switch (IntNo) {
+ case Intrinsic::x86_sse2_pslli_w:
+ NewIntNo = Intrinsic::x86_sse2_psll_w;
+ break;
+ case Intrinsic::x86_sse2_pslli_d:
+ NewIntNo = Intrinsic::x86_sse2_psll_d;
+ break;
+ case Intrinsic::x86_sse2_pslli_q:
+ NewIntNo = Intrinsic::x86_sse2_psll_q;
+ break;
+ case Intrinsic::x86_sse2_psrli_w:
+ NewIntNo = Intrinsic::x86_sse2_psrl_w;
+ break;
+ case Intrinsic::x86_sse2_psrli_d:
+ NewIntNo = Intrinsic::x86_sse2_psrl_d;
+ break;
+ case Intrinsic::x86_sse2_psrli_q:
+ NewIntNo = Intrinsic::x86_sse2_psrl_q;
+ break;
+ case Intrinsic::x86_sse2_psrai_w:
+ NewIntNo = Intrinsic::x86_sse2_psra_w;
+ break;
+ case Intrinsic::x86_sse2_psrai_d:
+ NewIntNo = Intrinsic::x86_sse2_psra_d;
+ break;
+ default: {
+ ShAmtVT = MVT::v2i32;
+ switch (IntNo) {
+ case Intrinsic::x86_mmx_pslli_w:
+ NewIntNo = Intrinsic::x86_mmx_psll_w;
+ break;
+ case Intrinsic::x86_mmx_pslli_d:
+ NewIntNo = Intrinsic::x86_mmx_psll_d;
+ break;
+ case Intrinsic::x86_mmx_pslli_q:
+ NewIntNo = Intrinsic::x86_mmx_psll_q;
+ break;
+ case Intrinsic::x86_mmx_psrli_w:
+ NewIntNo = Intrinsic::x86_mmx_psrl_w;
+ break;
+ case Intrinsic::x86_mmx_psrli_d:
+ NewIntNo = Intrinsic::x86_mmx_psrl_d;
+ break;
+ case Intrinsic::x86_mmx_psrli_q:
+ NewIntNo = Intrinsic::x86_mmx_psrl_q;
+ break;
+ case Intrinsic::x86_mmx_psrai_w:
+ NewIntNo = Intrinsic::x86_mmx_psra_w;
+ break;
+ case Intrinsic::x86_mmx_psrai_d:
+ NewIntNo = Intrinsic::x86_mmx_psra_d;
+ break;
+ default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
+ }
+ break;
+ }
+ }
+
+ // The vector shift intrinsics with scalars uses 32b shift amounts but
+ // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
+ // to be zero.
+ SDValue ShOps[4];
+ ShOps[0] = ShAmt;
+ ShOps[1] = DAG.getConstant(0, MVT::i32);
+ if (ShAmtVT == MVT::v4i32) {
+ ShOps[2] = DAG.getUNDEF(MVT::i32);
+ ShOps[3] = DAG.getUNDEF(MVT::i32);
+ ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
+ } else {
+ ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
+ }
+
+ EVT VT = Op.getValueType();
+ ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt);
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(NewIntNo, MVT::i32),
+ Op.getOperand(1), ShAmt);
+ }
+ }
+}
+
+SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setReturnAddressIsTaken(true);
+
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ DebugLoc dl = Op.getDebugLoc();
+
+ if (Depth > 0) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ SDValue Offset =
+ DAG.getConstant(TD->getPointerSize(),
+ Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
+ return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, dl, getPointerTy(),
+ FrameAddr, Offset),
+ NULL, 0, false, false, 0);
+ }
+
+ // Just load the return address.
+ SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
+ return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
+ RetAddrFI, NULL, 0, false, false, 0);
+}
+
+SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
+ MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
+ SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0,
+ false, false, 0);
+ return FrameAddr;
+}
+
+SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
+ SelectionDAG &DAG) const {
+ return DAG.getIntPtrConstant(2*TD->getPointerSize());
+}
+
+SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ SDValue Chain = Op.getOperand(0);
+ SDValue Offset = Op.getOperand(1);
+ SDValue Handler = Op.getOperand(2);
+ DebugLoc dl = Op.getDebugLoc();
+
+ SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP,
+ getPointerTy());
+ unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
+
+ SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame,
+ DAG.getIntPtrConstant(-TD->getPointerSize()));
+ StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
+ Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0);
+ Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
+ MF.getRegInfo().addLiveOut(StoreAddrReg);
+
+ return DAG.getNode(X86ISD::EH_RETURN, dl,
+ MVT::Other,
+ Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
+}
+
+SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Root = Op.getOperand(0);
+ SDValue Trmp = Op.getOperand(1); // trampoline
+ SDValue FPtr = Op.getOperand(2); // nested function
+ SDValue Nest = Op.getOperand(3); // 'nest' parameter value
+ DebugLoc dl = Op.getDebugLoc();
+
+ const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
+
+ if (Subtarget->is64Bit()) {
+ SDValue OutChains[6];
+
+ // Large code-model.
+ const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
+ const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
+
+ const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10);
+ const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11);
+
+ const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
+
+ // Load the pointer to the nested function into R11.
+ unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
+ SDValue Addr = Trmp;
+ OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
+ Addr, TrmpAddr, 0, false, false, 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(2, MVT::i64));
+ OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2,
+ false, false, 2);
+
+ // Load the 'nest' parameter value into R10.
+ // R10 is specified in X86CallingConv.td
+ OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(10, MVT::i64));
+ OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
+ Addr, TrmpAddr, 10, false, false, 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(12, MVT::i64));
+ OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12,
+ false, false, 2);
+
+ // Jump to the nested function.
+ OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(20, MVT::i64));
+ OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
+ Addr, TrmpAddr, 20, false, false, 0);
+
+ unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
+ DAG.getConstant(22, MVT::i64));
+ OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
+ TrmpAddr, 22, false, false, 0);
+
+ SDValue Ops[] =
+ { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) };
+ return DAG.getMergeValues(Ops, 2, dl);
+ } else {
+ const Function *Func =
+ cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
+ CallingConv::ID CC = Func->getCallingConv();
+ unsigned NestReg;
+
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::C:
+ case CallingConv::X86_StdCall: {
+ // Pass 'nest' parameter in ECX.
+ // Must be kept in sync with X86CallingConv.td
+ NestReg = X86::ECX;
+
+ // Check that ECX wasn't needed by an 'inreg' parameter.
+ const FunctionType *FTy = Func->getFunctionType();
+ const AttrListPtr &Attrs = Func->getAttributes();
+
+ if (!Attrs.isEmpty() && !Func->isVarArg()) {
+ unsigned InRegCount = 0;
+ unsigned Idx = 1;
+
+ for (FunctionType::param_iterator I = FTy->param_begin(),
+ E = FTy->param_end(); I != E; ++I, ++Idx)
+ if (Attrs.paramHasAttr(Idx, Attribute::InReg))
+ // FIXME: should only count parameters that are lowered to integers.
+ InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
+
+ if (InRegCount > 2) {
+ report_fatal_error("Nest register in use - reduce number of inreg parameters!");
+ }
+ }
+ break;
+ }
+ case CallingConv::X86_FastCall:
+ case CallingConv::X86_ThisCall:
+ case CallingConv::Fast:
+ // Pass 'nest' parameter in EAX.
+ // Must be kept in sync with X86CallingConv.td
+ NestReg = X86::EAX;
+ break;
+ }
+
+ SDValue OutChains[4];
+ SDValue Addr, Disp;
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(10, MVT::i32));
+ Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
+
+ // This is storing the opcode for MOV32ri.
+ const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
+ const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg);
+ OutChains[0] = DAG.getStore(Root, dl,
+ DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
+ Trmp, TrmpAddr, 0, false, false, 0);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(1, MVT::i32));
+ OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1,
+ false, false, 1);
+
+ const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(5, MVT::i32));
+ OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
+ TrmpAddr, 5, false, false, 1);
+
+ Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
+ DAG.getConstant(6, MVT::i32));
+ OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6,
+ false, false, 1);
+
+ SDValue Ops[] =
+ { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) };
+ return DAG.getMergeValues(Ops, 2, dl);
+ }
+}
+
+SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
+ SelectionDAG &DAG) const {
+ /*
+ The rounding mode is in bits 11:10 of FPSR, and has the following
+ settings:
+ 00 Round to nearest
+ 01 Round to -inf
+ 10 Round to +inf
+ 11 Round to 0
+
+ FLT_ROUNDS, on the other hand, expects the following:
+ -1 Undefined
+ 0 Round to 0
+ 1 Round to nearest
+ 2 Round to +inf
+ 3 Round to -inf
+
+ To perform the conversion, we do:
+ (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
+ */
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ const TargetMachine &TM = MF.getTarget();
+ const TargetFrameInfo &TFI = *TM.getFrameInfo();
+ unsigned StackAlignment = TFI.getStackAlignment();
+ EVT VT = Op.getValueType();
+ DebugLoc dl = Op.getDebugLoc();
+
+ // Save FP Control Word to stack slot
+ int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
+ SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
+
+ SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other,
+ DAG.getEntryNode(), StackSlot);
+
+ // Load FP Control Word from stack slot
+ SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0,
+ false, false, 0);
+
+ // Transform as necessary
+ SDValue CWD1 =
+ DAG.getNode(ISD::SRL, dl, MVT::i16,
+ DAG.getNode(ISD::AND, dl, MVT::i16,
+ CWD, DAG.getConstant(0x800, MVT::i16)),
+ DAG.getConstant(11, MVT::i8));
+ SDValue CWD2 =
+ DAG.getNode(ISD::SRL, dl, MVT::i16,
+ DAG.getNode(ISD::AND, dl, MVT::i16,
+ CWD, DAG.getConstant(0x400, MVT::i16)),
+ DAG.getConstant(9, MVT::i8));
+
+ SDValue RetVal =
+ DAG.getNode(ISD::AND, dl, MVT::i16,
+ DAG.getNode(ISD::ADD, dl, MVT::i16,
+ DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2),
+ DAG.getConstant(1, MVT::i16)),
+ DAG.getConstant(3, MVT::i16));
+
+
+ return DAG.getNode((VT.getSizeInBits() < 16 ?
+ ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
+}
+
+SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ EVT OpVT = VT;
+ unsigned NumBits = VT.getSizeInBits();
+ DebugLoc dl = Op.getDebugLoc();
+
+ Op = Op.getOperand(0);
+ if (VT == MVT::i8) {
+ // Zero extend to i32 since there is not an i8 bsr.
+ OpVT = MVT::i32;
+ Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
+ }
+
+ // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
+ SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
+ Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
+
+ // If src is zero (i.e. bsr sets ZF), returns NumBits.
+ SDValue Ops[] = {
+ Op,
+ DAG.getConstant(NumBits+NumBits-1, OpVT),
+ DAG.getConstant(X86::COND_E, MVT::i8),
+ Op.getValue(1)
+ };
+ Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
+
+ // Finally xor with NumBits-1.
+ Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
+
+ if (VT == MVT::i8)
+ Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
+ return Op;
+}
+
+SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ EVT OpVT = VT;
+ unsigned NumBits = VT.getSizeInBits();
+ DebugLoc dl = Op.getDebugLoc();
+
+ Op = Op.getOperand(0);
+ if (VT == MVT::i8) {
+ OpVT = MVT::i32;
+ Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
+ }
+
+ // Issue a bsf (scan bits forward) which also sets EFLAGS.
+ SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
+ Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
+
+ // If src is zero (i.e. bsf sets ZF), returns NumBits.
+ SDValue Ops[] = {
+ Op,
+ DAG.getConstant(NumBits, OpVT),
+ DAG.getConstant(X86::COND_E, MVT::i8),
+ Op.getValue(1)
+ };
+ Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
+
+ if (VT == MVT::i8)
+ Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
+ return Op;
+}
+
+SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
+ DebugLoc dl = Op.getDebugLoc();
+
+ // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
+ // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
+ // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
+ // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
+ // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
+ //
+ // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
+ // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
+ // return AloBlo + AloBhi + AhiBlo;
+
+ SDValue A = Op.getOperand(0);
+ SDValue B = Op.getOperand(1);
+
+ SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
+ A, DAG.getConstant(32, MVT::i32));
+ SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
+ B, DAG.getConstant(32, MVT::i32));
+ SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
+ A, B);
+ SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
+ A, Bhi);
+ SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
+ Ahi, B);
+ AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
+ AloBhi, DAG.getConstant(32, MVT::i32));
+ AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
+ AhiBlo, DAG.getConstant(32, MVT::i32));
+ SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
+ Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
+ return Res;
+}
+
+
+SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
+ // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
+ // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
+ // looks for this combo and may remove the "setcc" instruction if the "setcc"
+ // has only one use.
+ SDNode *N = Op.getNode();
+ SDValue LHS = N->getOperand(0);
+ SDValue RHS = N->getOperand(1);
+ unsigned BaseOp = 0;
+ unsigned Cond = 0;
+ DebugLoc dl = Op.getDebugLoc();
+
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Unknown ovf instruction!");
+ case ISD::SADDO:
+ // A subtract of one will be selected as a INC. Note that INC doesn't
+ // set CF, so we can't do this for UADDO.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
+ if (C->getAPIntValue() == 1) {
+ BaseOp = X86ISD::INC;
+ Cond = X86::COND_O;
+ break;
+ }
+ BaseOp = X86ISD::ADD;
+ Cond = X86::COND_O;
+ break;
+ case ISD::UADDO:
+ BaseOp = X86ISD::ADD;
+ Cond = X86::COND_B;
+ break;
+ case ISD::SSUBO:
+ // A subtract of one will be selected as a DEC. Note that DEC doesn't
+ // set CF, so we can't do this for USUBO.
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
+ if (C->getAPIntValue() == 1) {
+ BaseOp = X86ISD::DEC;
+ Cond = X86::COND_O;
+ break;
+ }
+ BaseOp = X86ISD::SUB;
+ Cond = X86::COND_O;
+ break;
+ case ISD::USUBO:
+ BaseOp = X86ISD::SUB;
+ Cond = X86::COND_B;
+ break;
+ case ISD::SMULO:
+ BaseOp = X86ISD::SMUL;
+ Cond = X86::COND_O;
+ break;
+ case ISD::UMULO:
+ BaseOp = X86ISD::UMUL;
+ Cond = X86::COND_B;
+ break;
+ }
+
+ // Also sets EFLAGS.
+ SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
+ SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS);
+
+ SDValue SetCC =
+ DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1),
+ DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1));
+
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC);
+ return Sum;
+}
+
+SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
+ EVT T = Op.getValueType();
+ DebugLoc dl = Op.getDebugLoc();
+ unsigned Reg = 0;
+ unsigned size = 0;
+ switch(T.getSimpleVT().SimpleTy) {
+ default:
+ assert(false && "Invalid value type!");
+ case MVT::i8: Reg = X86::AL; size = 1; break;
+ case MVT::i16: Reg = X86::AX; size = 2; break;
+ case MVT::i32: Reg = X86::EAX; size = 4; break;
+ case MVT::i64:
+ assert(Subtarget->is64Bit() && "Node not type legal!");
+ Reg = X86::RAX; size = 8;
+ break;
+ }
+ SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg,
+ Op.getOperand(2), SDValue());
+ SDValue Ops[] = { cpIn.getValue(0),
+ Op.getOperand(1),
+ Op.getOperand(3),
+ DAG.getTargetConstant(size, MVT::i8),
+ cpIn.getValue(1) };
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
+ SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5);
+ SDValue cpOut =
+ DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1));
+ return cpOut;
+}
+
+SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Subtarget->is64Bit() && "Result not type legalized?");
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
+ SDValue TheChain = Op.getOperand(0);
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
+ SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
+ SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
+ rax.getValue(2));
+ SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
+ DAG.getConstant(32, MVT::i8));
+ SDValue Ops[] = {
+ DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
+ rdx.getValue(1)
+ };
+ return DAG.getMergeValues(Ops, 2, dl);
+}
+
+SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT SrcVT = Op.getOperand(0).getValueType();
+ EVT DstVT = Op.getValueType();
+ assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() &&
+ Subtarget->hasMMX() && !DisableMMX) &&
+ "Unexpected custom BIT_CONVERT");
+ assert((DstVT == MVT::i64 ||
+ (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
+ "Unexpected custom BIT_CONVERT");
+ // i64 <=> MMX conversions are Legal.
+ if (SrcVT==MVT::i64 && DstVT.isVector())
+ return Op;
+ if (DstVT==MVT::i64 && SrcVT.isVector())
+ return Op;
+ // MMX <=> MMX conversions are Legal.
+ if (SrcVT.isVector() && DstVT.isVector())
+ return Op;
+ // All other conversions need to be expanded.
+ return SDValue();
+}
+SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
+ SDNode *Node = Op.getNode();
+ DebugLoc dl = Node->getDebugLoc();
+ EVT T = Node->getValueType(0);
+ SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
+ DAG.getConstant(0, T), Node->getOperand(2));
+ return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
+ cast<AtomicSDNode>(Node)->getMemoryVT(),
+ Node->getOperand(0),
+ Node->getOperand(1), negOp,
+ cast<AtomicSDNode>(Node)->getSrcValue(),
+ cast<AtomicSDNode>(Node)->getAlignment());
+}
+
+/// LowerOperation - Provide custom lowering hooks for some operations.
+///
+SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Should not custom lower this!");
+ case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
+ case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
+ case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
+ case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
+ case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
+ case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
+ case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
+ case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::SHL_PARTS:
+ case ISD::SRA_PARTS:
+ case ISD::SRL_PARTS: return LowerShift(Op, DAG);
+ case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
+ case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
+ case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
+ case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
+ case ISD::FABS: return LowerFABS(Op, DAG);
+ case ISD::FNEG: return LowerFNEG(Op, DAG);
+ case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
+ case ISD::SETCC: return LowerSETCC(Op, DAG);
+ case ISD::VSETCC: return LowerVSETCC(Op, DAG);
+ case ISD::SELECT: return LowerSELECT(Op, DAG);
+ case ISD::BRCOND: return LowerBRCOND(Op, DAG);
+ case ISD::JumpTable: return LowerJumpTable(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG);
+ case ISD::VAARG: return LowerVAARG(Op, DAG);
+ case ISD::VACOPY: return LowerVACOPY(Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ case ISD::FRAME_TO_ARGS_OFFSET:
+ return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
+ case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
+ case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
+ case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG);
+ case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
+ case ISD::CTLZ: return LowerCTLZ(Op, DAG);
+ case ISD::CTTZ: return LowerCTTZ(Op, DAG);
+ case ISD::MUL: return LowerMUL_V2I64(Op, DAG);
+ case ISD::SADDO:
+ case ISD::UADDO:
+ case ISD::SSUBO:
+ case ISD::USUBO:
+ case ISD::SMULO:
+ case ISD::UMULO: return LowerXALUO(Op, DAG);
+ case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
+ case ISD::BIT_CONVERT: return LowerBIT_CONVERT(Op, DAG);
+ }
+}
+
+void X86TargetLowering::
+ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG, unsigned NewOp) const {
+ EVT T = Node->getValueType(0);
+ DebugLoc dl = Node->getDebugLoc();
+ assert (T == MVT::i64 && "Only know how to expand i64 atomics");
+
+ SDValue Chain = Node->getOperand(0);
+ SDValue In1 = Node->getOperand(1);
+ SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Node->getOperand(2), DAG.getIntPtrConstant(0));
+ SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
+ Node->getOperand(2), DAG.getIntPtrConstant(1));
+ SDValue Ops[] = { Chain, In1, In2L, In2H };
+ SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
+ SDValue Result =
+ DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
+ cast<MemSDNode>(Node)->getMemOperand());
+ SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
+ Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
+ Results.push_back(Result.getValue(2));
+}
+
+/// ReplaceNodeResults - Replace a node with an illegal result type
+/// with a new node built out of custom code.
+void X86TargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue>&Results,
+ SelectionDAG &DAG) const {
+ DebugLoc dl = N->getDebugLoc();
+ switch (N->getOpcode()) {
+ default:
+ assert(false && "Do not know how to custom type legalize this operation!");
+ return;
+ case ISD::FP_TO_SINT: {
+ std::pair<SDValue,SDValue> Vals =
+ FP_TO_INTHelper(SDValue(N, 0), DAG, true);
+ SDValue FIST = Vals.first, StackSlot = Vals.second;
+ if (FIST.getNode() != 0) {
+ EVT VT = N->getValueType(0);
+ // Return a load from the stack slot.
+ Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0,
+ false, false, 0));
+ }
+ return;
+ }
+ case ISD::READCYCLECOUNTER: {
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
+ SDValue TheChain = N->getOperand(0);
+ SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
+ SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
+ rd.getValue(1));
+ SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
+ eax.getValue(2));
+ // Use a buildpair to merge the two 32-bit values into a 64-bit one.
+ SDValue Ops[] = { eax, edx };
+ Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
+ Results.push_back(edx.getValue(1));
+ return;
+ }
+ case ISD::ATOMIC_CMP_SWAP: {
+ EVT T = N->getValueType(0);
+ assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap");
+ SDValue cpInL, cpInH;
+ cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
+ DAG.getConstant(0, MVT::i32));
+ cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2),
+ DAG.getConstant(1, MVT::i32));
+ cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue());
+ cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH,
+ cpInL.getValue(1));
+ SDValue swapInL, swapInH;
+ swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
+ DAG.getConstant(0, MVT::i32));
+ swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3),
+ DAG.getConstant(1, MVT::i32));
+ swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL,
+ cpInH.getValue(1));
+ swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH,
+ swapInL.getValue(1));
+ SDValue Ops[] = { swapInH.getValue(0),
+ N->getOperand(1),
+ swapInH.getValue(1) };
+ SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag);
+ SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3);
+ SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX,
+ MVT::i32, Result.getValue(1));
+ SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX,
+ MVT::i32, cpOutL.getValue(2));
+ SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
+ Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
+ Results.push_back(cpOutH.getValue(1));
+ return;
+ }
+ case ISD::ATOMIC_LOAD_ADD:
+ ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
+ return;
+ case ISD::ATOMIC_LOAD_AND:
+ ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
+ return;
+ case ISD::ATOMIC_LOAD_NAND:
+ ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
+ return;
+ case ISD::ATOMIC_LOAD_OR:
+ ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
+ return;
+ case ISD::ATOMIC_LOAD_SUB:
+ ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
+ return;
+ case ISD::ATOMIC_LOAD_XOR:
+ ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
+ return;
+ case ISD::ATOMIC_SWAP:
+ ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
+ return;
+ }
+}
+
+const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ default: return NULL;
+ case X86ISD::BSF: return "X86ISD::BSF";
+ case X86ISD::BSR: return "X86ISD::BSR";
+ case X86ISD::SHLD: return "X86ISD::SHLD";
+ case X86ISD::SHRD: return "X86ISD::SHRD";
+ case X86ISD::FAND: return "X86ISD::FAND";
+ case X86ISD::FOR: return "X86ISD::FOR";
+ case X86ISD::FXOR: return "X86ISD::FXOR";
+ case X86ISD::FSRL: return "X86ISD::FSRL";
+ case X86ISD::FILD: return "X86ISD::FILD";
+ case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
+ case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
+ case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
+ case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
+ case X86ISD::FLD: return "X86ISD::FLD";
+ case X86ISD::FST: return "X86ISD::FST";
+ case X86ISD::CALL: return "X86ISD::CALL";
+ case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
+ case X86ISD::BT: return "X86ISD::BT";
+ case X86ISD::CMP: return "X86ISD::CMP";
+ case X86ISD::COMI: return "X86ISD::COMI";
+ case X86ISD::UCOMI: return "X86ISD::UCOMI";
+ case X86ISD::SETCC: return "X86ISD::SETCC";
+ case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
+ case X86ISD::CMOV: return "X86ISD::CMOV";
+ case X86ISD::BRCOND: return "X86ISD::BRCOND";
+ case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
+ case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
+ case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
+ case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
+ case X86ISD::Wrapper: return "X86ISD::Wrapper";
+ case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
+ case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
+ case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
+ case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
+ case X86ISD::PINSRB: return "X86ISD::PINSRB";
+ case X86ISD::PINSRW: return "X86ISD::PINSRW";
+ case X86ISD::MMX_PINSRW: return "X86ISD::MMX_PINSRW";
+ case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
+ case X86ISD::FMAX: return "X86ISD::FMAX";
+ case X86ISD::FMIN: return "X86ISD::FMIN";
+ case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
+ case X86ISD::FRCP: return "X86ISD::FRCP";
+ case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
+ case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress";
+ case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
+ case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
+ case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
+ case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
+ case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
+ case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG";
+ case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG";
+ case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG";
+ case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG";
+ case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG";
+ case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG";
+ case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
+ case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
+ case X86ISD::VSHL: return "X86ISD::VSHL";
+ case X86ISD::VSRL: return "X86ISD::VSRL";
+ case X86ISD::CMPPD: return "X86ISD::CMPPD";
+ case X86ISD::CMPPS: return "X86ISD::CMPPS";
+ case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB";
+ case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW";
+ case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD";
+ case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ";
+ case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB";
+ case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW";
+ case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD";
+ case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ";
+ case X86ISD::ADD: return "X86ISD::ADD";
+ case X86ISD::SUB: return "X86ISD::SUB";
+ case X86ISD::SMUL: return "X86ISD::SMUL";
+ case X86ISD::UMUL: return "X86ISD::UMUL";
+ case X86ISD::INC: return "X86ISD::INC";
+ case X86ISD::DEC: return "X86ISD::DEC";
+ case X86ISD::OR: return "X86ISD::OR";
+ case X86ISD::XOR: return "X86ISD::XOR";
+ case X86ISD::AND: return "X86ISD::AND";
+ case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
+ case X86ISD::PTEST: return "X86ISD::PTEST";
+ case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
+ case X86ISD::MINGW_ALLOCA: return "X86ISD::MINGW_ALLOCA";
+ }
+}
+
+// isLegalAddressingMode - Return true if the addressing mode represented
+// by AM is legal for this target, for a load/store of the specified type.
+bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
+ const Type *Ty) const {
+ // X86 supports extremely general addressing modes.
+ CodeModel::Model M = getTargetMachine().getCodeModel();
+
+ // X86 allows a sign-extended 32-bit immediate field as a displacement.
+ if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
+ return false;
+
+ if (AM.BaseGV) {
+ unsigned GVFlags =
+ Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
+
+ // If a reference to this global requires an extra load, we can't fold it.
+ if (isGlobalStubReference(GVFlags))
+ return false;
+
+ // If BaseGV requires a register for the PIC base, we cannot also have a
+ // BaseReg specified.
+ if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
+ return false;
+
+ // If lower 4G is not available, then we must use rip-relative addressing.
+ if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
+ return false;
+ }
+
+ switch (AM.Scale) {
+ case 0:
+ case 1:
+ case 2:
+ case 4:
+ case 8:
+ // These scales always work.
+ break;
+ case 3:
+ case 5:
+ case 9:
+ // These scales are formed with basereg+scalereg. Only accept if there is
+ // no basereg yet.
+ if (AM.HasBaseReg)
+ return false;
+ break;
+ default: // Other stuff never works.
+ return false;
+ }
+
+ return true;
+}
+
+
+bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+ unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
+ unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
+ if (NumBits1 <= NumBits2)
+ return false;
+ return true;
+}
+
+bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
+ if (!VT1.isInteger() || !VT2.isInteger())
+ return false;
+ unsigned NumBits1 = VT1.getSizeInBits();
+ unsigned NumBits2 = VT2.getSizeInBits();
+ if (NumBits1 <= NumBits2)
+ return false;
+ return true;
+}
+
+bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const {
+ // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
+ return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
+}
+
+bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
+ // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
+ return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
+}
+
+bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
+ // i16 instructions are longer (0x66 prefix) and potentially slower.
+ return !(VT1 == MVT::i32 && VT2 == MVT::i16);
+}
+
+/// isShuffleMaskLegal - Targets can use this to indicate that they only
+/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
+/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
+/// are assumed to be legal.
+bool
+X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
+ EVT VT) const {
+ // Very little shuffling can be done for 64-bit vectors right now.
+ if (VT.getSizeInBits() == 64)
+ return isPALIGNRMask(M, VT, Subtarget->hasSSSE3());
+
+ // FIXME: pshufb, blends, shifts.
+ return (VT.getVectorNumElements() == 2 ||
+ ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
+ isMOVLMask(M, VT) ||
+ isSHUFPMask(M, VT) ||
+ isPSHUFDMask(M, VT) ||
+ isPSHUFHWMask(M, VT) ||
+ isPSHUFLWMask(M, VT) ||
+ isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) ||
+ isUNPCKLMask(M, VT) ||
+ isUNPCKHMask(M, VT) ||
+ isUNPCKL_v_undef_Mask(M, VT) ||
+ isUNPCKH_v_undef_Mask(M, VT));
+}
+
+bool
+X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
+ EVT VT) const {
+ unsigned NumElts = VT.getVectorNumElements();
+ // FIXME: This collection of masks seems suspect.
+ if (NumElts == 2)
+ return true;
+ if (NumElts == 4 && VT.getSizeInBits() == 128) {
+ return (isMOVLMask(Mask, VT) ||
+ isCommutedMOVLMask(Mask, VT, true) ||
+ isSHUFPMask(Mask, VT) ||
+ isCommutedSHUFPMask(Mask, VT));
+ }
+ return false;
+}
+
+//===----------------------------------------------------------------------===//
+// X86 Scheduler Hooks
+//===----------------------------------------------------------------------===//
+
+// private utility function
+MachineBasicBlock *
+X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
+ MachineBasicBlock *MBB,
+ unsigned regOpc,
+ unsigned immOpc,
+ unsigned LoadOpc,
+ unsigned CXchgOpc,
+ unsigned copyOpc,
+ unsigned notOpc,
+ unsigned EAXreg,
+ TargetRegisterClass *RC,
+ bool invSrc) const {
+ // For the atomic bitwise operator, we generate
+ // thisMBB:
+ // newMBB:
+ // ld t1 = [bitinstr.addr]
+ // op t2 = t1, [bitinstr.val]
+ // mov EAX = t1
+ // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
+ // bz newMBB
+ // fallthrough -->nextMBB
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ MachineFunction::iterator MBBIter = MBB;
+ ++MBBIter;
+
+ /// First build the CFG
+ MachineFunction *F = MBB->getParent();
+ MachineBasicBlock *thisMBB = MBB;
+ MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(MBBIter, newMBB);
+ F->insert(MBBIter, nextMBB);
+
+ // Move all successors to thisMBB to nextMBB
+ nextMBB->transferSuccessors(thisMBB);
+
+ // Update thisMBB to fall through to newMBB
+ thisMBB->addSuccessor(newMBB);
+
+ // newMBB jumps to itself and fall through to nextMBB
+ newMBB->addSuccessor(nextMBB);
+ newMBB->addSuccessor(newMBB);
+
+ // Insert instructions into newMBB based on incoming instruction
+ assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 &&
+ "unexpected number of operands");
+ DebugLoc dl = bInstr->getDebugLoc();
+ MachineOperand& destOper = bInstr->getOperand(0);
+ MachineOperand* argOpers[2 + X86AddrNumOperands];
+ int numArgs = bInstr->getNumOperands() - 1;
+ for (int i=0; i < numArgs; ++i)
+ argOpers[i] = &bInstr->getOperand(i+1);
+
+ // x86 address has 4 operands: base, index, scale, and displacement
+ int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
+ int valArgIndx = lastAddrIndx + 1;
+
+ unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
+ MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
+ for (int i=0; i <= lastAddrIndx; ++i)
+ (*MIB).addOperand(*argOpers[i]);
+
+ unsigned tt = F->getRegInfo().createVirtualRegister(RC);
+ if (invSrc) {
+ MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
+ }
+ else
+ tt = t1;
+
+ unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
+ assert((argOpers[valArgIndx]->isReg() ||
+ argOpers[valArgIndx]->isImm()) &&
+ "invalid operand");
+ if (argOpers[valArgIndx]->isReg())
+ MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
+ else
+ MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
+ MIB.addReg(tt);
+ (*MIB).addOperand(*argOpers[valArgIndx]);
+
+ MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg);
+ MIB.addReg(t1);
+
+ MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
+ for (int i=0; i <= lastAddrIndx; ++i)
+ (*MIB).addOperand(*argOpers[i]);
+ MIB.addReg(t2);
+ assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
+ (*MIB).setMemRefs(bInstr->memoperands_begin(),
+ bInstr->memoperands_end());
+
+ MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg());
+ MIB.addReg(EAXreg);
+
+ // insert branch
+ BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
+
+ F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now.
+ return nextMBB;
+}
+
+// private utility function: 64 bit atomics on 32 bit host.
+MachineBasicBlock *
+X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
+ MachineBasicBlock *MBB,
+ unsigned regOpcL,
+ unsigned regOpcH,
+ unsigned immOpcL,
+ unsigned immOpcH,
+ bool invSrc) const {
+ // For the atomic bitwise operator, we generate
+ // thisMBB (instructions are in pairs, except cmpxchg8b)
+ // ld t1,t2 = [bitinstr.addr]
+ // newMBB:
+ // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
+ // op t5, t6 <- out1, out2, [bitinstr.val]
+ // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
+ // mov ECX, EBX <- t5, t6
+ // mov EAX, EDX <- t1, t2
+ // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
+ // mov t3, t4 <- EAX, EDX
+ // bz newMBB
+ // result in out1, out2
+ // fallthrough -->nextMBB
+
+ const TargetRegisterClass *RC = X86::GR32RegisterClass;
+ const unsigned LoadOpc = X86::MOV32rm;
+ const unsigned copyOpc = X86::MOV32rr;
+ const unsigned NotOpc = X86::NOT32r;
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ MachineFunction::iterator MBBIter = MBB;
+ ++MBBIter;
+
+ /// First build the CFG
+ MachineFunction *F = MBB->getParent();
+ MachineBasicBlock *thisMBB = MBB;
+ MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(MBBIter, newMBB);
+ F->insert(MBBIter, nextMBB);
+
+ // Move all successors to thisMBB to nextMBB
+ nextMBB->transferSuccessors(thisMBB);
+
+ // Update thisMBB to fall through to newMBB
+ thisMBB->addSuccessor(newMBB);
+
+ // newMBB jumps to itself and fall through to nextMBB
+ newMBB->addSuccessor(nextMBB);
+ newMBB->addSuccessor(newMBB);
+
+ DebugLoc dl = bInstr->getDebugLoc();
+ // Insert instructions into newMBB based on incoming instruction
+ // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
+ assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 &&
+ "unexpected number of operands");
+ MachineOperand& dest1Oper = bInstr->getOperand(0);
+ MachineOperand& dest2Oper = bInstr->getOperand(1);
+ MachineOperand* argOpers[2 + X86AddrNumOperands];
+ for (int i=0; i < 2 + X86AddrNumOperands; ++i) {
+ argOpers[i] = &bInstr->getOperand(i+2);
+
+ // We use some of the operands multiple times, so conservatively just
+ // clear any kill flags that might be present.
+ if (argOpers[i]->isReg() && argOpers[i]->isUse())
+ argOpers[i]->setIsKill(false);
+ }
+
+ // x86 address has 5 operands: base, index, scale, displacement, and segment.
+ int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
+
+ unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
+ MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
+ for (int i=0; i <= lastAddrIndx; ++i)
+ (*MIB).addOperand(*argOpers[i]);
+ unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
+ MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
+ // add 4 to displacement.
+ for (int i=0; i <= lastAddrIndx-2; ++i)
+ (*MIB).addOperand(*argOpers[i]);
+ MachineOperand newOp3 = *(argOpers[3]);
+ if (newOp3.isImm())
+ newOp3.setImm(newOp3.getImm()+4);
+ else
+ newOp3.setOffset(newOp3.getOffset()+4);
+ (*MIB).addOperand(newOp3);
+ (*MIB).addOperand(*argOpers[lastAddrIndx]);
+
+ // t3/4 are defined later, at the bottom of the loop
+ unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
+ unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
+ BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
+ .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
+ BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
+ .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
+
+ // The subsequent operations should be using the destination registers of
+ //the PHI instructions.
+ if (invSrc) {
+ t1 = F->getRegInfo().createVirtualRegister(RC);
+ t2 = F->getRegInfo().createVirtualRegister(RC);
+ MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
+ MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
+ } else {
+ t1 = dest1Oper.getReg();
+ t2 = dest2Oper.getReg();
+ }
+
+ int valArgIndx = lastAddrIndx + 1;
+ assert((argOpers[valArgIndx]->isReg() ||
+ argOpers[valArgIndx]->isImm()) &&
+ "invalid operand");
+ unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
+ unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
+ if (argOpers[valArgIndx]->isReg())
+ MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
+ else
+ MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
+ if (regOpcL != X86::MOV32rr)
+ MIB.addReg(t1);
+ (*MIB).addOperand(*argOpers[valArgIndx]);
+ assert(argOpers[valArgIndx + 1]->isReg() ==
+ argOpers[valArgIndx]->isReg());
+ assert(argOpers[valArgIndx + 1]->isImm() ==
+ argOpers[valArgIndx]->isImm());
+ if (argOpers[valArgIndx + 1]->isReg())
+ MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
+ else
+ MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
+ if (regOpcH != X86::MOV32rr)
+ MIB.addReg(t2);
+ (*MIB).addOperand(*argOpers[valArgIndx + 1]);
+
+ MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX);
+ MIB.addReg(t1);
+ MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX);
+ MIB.addReg(t2);
+
+ MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX);
+ MIB.addReg(t5);
+ MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX);
+ MIB.addReg(t6);
+
+ MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
+ for (int i=0; i <= lastAddrIndx; ++i)
+ (*MIB).addOperand(*argOpers[i]);
+
+ assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
+ (*MIB).setMemRefs(bInstr->memoperands_begin(),
+ bInstr->memoperands_end());
+
+ MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3);
+ MIB.addReg(X86::EAX);
+ MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4);
+ MIB.addReg(X86::EDX);
+
+ // insert branch
+ BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
+
+ F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now.
+ return nextMBB;
+}
+
+// private utility function
+MachineBasicBlock *
+X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
+ MachineBasicBlock *MBB,
+ unsigned cmovOpc) const {
+ // For the atomic min/max operator, we generate
+ // thisMBB:
+ // newMBB:
+ // ld t1 = [min/max.addr]
+ // mov t2 = [min/max.val]
+ // cmp t1, t2
+ // cmov[cond] t2 = t1
+ // mov EAX = t1
+ // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
+ // bz newMBB
+ // fallthrough -->nextMBB
+ //
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ MachineFunction::iterator MBBIter = MBB;
+ ++MBBIter;
+
+ /// First build the CFG
+ MachineFunction *F = MBB->getParent();
+ MachineBasicBlock *thisMBB = MBB;
+ MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(MBBIter, newMBB);
+ F->insert(MBBIter, nextMBB);
+
+ // Move all successors of thisMBB to nextMBB
+ nextMBB->transferSuccessors(thisMBB);
+
+ // Update thisMBB to fall through to newMBB
+ thisMBB->addSuccessor(newMBB);
+
+ // newMBB jumps to newMBB and fall through to nextMBB
+ newMBB->addSuccessor(nextMBB);
+ newMBB->addSuccessor(newMBB);
+
+ DebugLoc dl = mInstr->getDebugLoc();
+ // Insert instructions into newMBB based on incoming instruction
+ assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 &&
+ "unexpected number of operands");
+ MachineOperand& destOper = mInstr->getOperand(0);
+ MachineOperand* argOpers[2 + X86AddrNumOperands];
+ int numArgs = mInstr->getNumOperands() - 1;
+ for (int i=0; i < numArgs; ++i)
+ argOpers[i] = &mInstr->getOperand(i+1);
+
+ // x86 address has 4 operands: base, index, scale, and displacement
+ int lastAddrIndx = X86AddrNumOperands - 1; // [0,3]
+ int valArgIndx = lastAddrIndx + 1;
+
+ unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
+ MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
+ for (int i=0; i <= lastAddrIndx; ++i)
+ (*MIB).addOperand(*argOpers[i]);
+
+ // We only support register and immediate values
+ assert((argOpers[valArgIndx]->isReg() ||
+ argOpers[valArgIndx]->isImm()) &&
+ "invalid operand");
+
+ unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
+ if (argOpers[valArgIndx]->isReg())
+ MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
+ else
+ MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
+ (*MIB).addOperand(*argOpers[valArgIndx]);
+
+ MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX);
+ MIB.addReg(t1);
+
+ MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
+ MIB.addReg(t1);
+ MIB.addReg(t2);
+
+ // Generate movc
+ unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
+ MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
+ MIB.addReg(t2);
+ MIB.addReg(t1);
+
+ // Cmp and exchange if none has modified the memory location
+ MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
+ for (int i=0; i <= lastAddrIndx; ++i)
+ (*MIB).addOperand(*argOpers[i]);
+ MIB.addReg(t3);
+ assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
+ (*MIB).setMemRefs(mInstr->memoperands_begin(),
+ mInstr->memoperands_end());
+
+ MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg());
+ MIB.addReg(X86::EAX);
+
+ // insert branch
+ BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
+
+ F->DeleteMachineInstr(mInstr); // The pseudo instruction is gone now.
+ return nextMBB;
+}
+
+// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
+// all of this code can be replaced with that in the .td file.
+MachineBasicBlock *
+X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
+ unsigned numArgs, bool memArg) const {
+
+ MachineFunction *F = BB->getParent();
+ DebugLoc dl = MI->getDebugLoc();
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+
+ unsigned Opc;
+ if (memArg)
+ Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
+ else
+ Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
+
+ MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc));
+
+ for (unsigned i = 0; i < numArgs; ++i) {
+ MachineOperand &Op = MI->getOperand(i+1);
+
+ if (!(Op.isReg() && Op.isImplicit()))
+ MIB.addOperand(Op);
+ }
+
+ BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg())
+ .addReg(X86::XMM0);
+
+ F->DeleteMachineInstr(MI);
+
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
+ MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ // Emit code to save XMM registers to the stack. The ABI says that the
+ // number of registers to save is given in %al, so it's theoretically
+ // possible to do an indirect jump trick to avoid saving all of them,
+ // however this code takes a simpler approach and just executes all
+ // of the stores if %al is non-zero. It's less code, and it's probably
+ // easier on the hardware branch predictor, and stores aren't all that
+ // expensive anyway.
+
+ // Create the new basic blocks. One block contains all the XMM stores,
+ // and one block is the final destination regardless of whether any
+ // stores were performed.
+ const BasicBlock *LLVM_BB = MBB->getBasicBlock();
+ MachineFunction *F = MBB->getParent();
+ MachineFunction::iterator MBBIter = MBB;
+ ++MBBIter;
+ MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(MBBIter, XMMSaveMBB);
+ F->insert(MBBIter, EndMBB);
+
+ // Set up the CFG.
+ // Move any original successors of MBB to the end block.
+ EndMBB->transferSuccessors(MBB);
+ // The original block will now fall through to the XMM save block.
+ MBB->addSuccessor(XMMSaveMBB);
+ // The XMMSaveMBB will fall through to the end block.
+ XMMSaveMBB->addSuccessor(EndMBB);
+
+ // Now add the instructions.
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ unsigned CountReg = MI->getOperand(0).getReg();
+ int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
+ int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
+
+ if (!Subtarget->isTargetWin64()) {
+ // If %al is 0, branch around the XMM save block.
+ BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
+ BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
+ MBB->addSuccessor(EndMBB);
+ }
+
+ // In the XMM save block, save all the XMM argument registers.
+ for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
+ int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
+ MachineMemOperand *MMO =
+ F->getMachineMemOperand(
+ PseudoSourceValue::getFixedStack(RegSaveFrameIndex),
+ MachineMemOperand::MOStore, Offset,
+ /*Size=*/16, /*Align=*/16);
+ BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr))
+ .addFrameIndex(RegSaveFrameIndex)
+ .addImm(/*Scale=*/1)
+ .addReg(/*IndexReg=*/0)
+ .addImm(/*Disp=*/Offset)
+ .addReg(/*Segment=*/0)
+ .addReg(MI->getOperand(i).getReg())
+ .addMemOperand(MMO);
+ }
+
+ F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
+
+ return EndMBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ // To "insert" a SELECT_CC instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ unsigned Opc =
+ X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
+ BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+ // Update machine-CFG edges by first adding all successors of the current
+ // block to the new block which will contain the Phi node for the select.
+ for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),
+ E = BB->succ_end(); I != E; ++I)
+ sinkMBB->addSuccessor(*I);
+ // Next, remove all successors of the current block, and add the true
+ // and fallthrough blocks as its successors.
+ while (!BB->succ_empty())
+ BB->removeSuccessor(BB->succ_begin());
+ // Add the true and fallthrough blocks as its successors.
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ copy0MBB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BuildMI(sinkMBB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+
+ F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
+ return sinkMBB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+ MachineFunction *F = BB->getParent();
+
+ // The lowering is pretty easy: we're just emitting the call to _alloca. The
+ // non-trivial part is impdef of ESP.
+ // FIXME: The code should be tweaked as soon as we'll try to do codegen for
+ // mingw-w64.
+
+ BuildMI(BB, DL, TII->get(X86::CALLpcrel32))
+ .addExternalSymbol("_alloca")
+ .addReg(X86::EAX, RegState::Implicit)
+ .addReg(X86::ESP, RegState::Implicit)
+ .addReg(X86::EAX, RegState::Define | RegState::Implicit)
+ .addReg(X86::ESP, RegState::Define | RegState::Implicit);
+
+ F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
+ return BB;
+}
+
+MachineBasicBlock *
+X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ switch (MI->getOpcode()) {
+ default: assert(false && "Unexpected instr type to insert");
+ case X86::MINGW_ALLOCA:
+ return EmitLoweredMingwAlloca(MI, BB);
+ case X86::CMOV_GR8:
+ case X86::CMOV_V1I64:
+ case X86::CMOV_FR32:
+ case X86::CMOV_FR64:
+ case X86::CMOV_V4F32:
+ case X86::CMOV_V2F64:
+ case X86::CMOV_V2I64:
+ case X86::CMOV_GR16:
+ case X86::CMOV_GR32:
+ case X86::CMOV_RFP32:
+ case X86::CMOV_RFP64:
+ case X86::CMOV_RFP80:
+ return EmitLoweredSelect(MI, BB);
+
+ case X86::FP32_TO_INT16_IN_MEM:
+ case X86::FP32_TO_INT32_IN_MEM:
+ case X86::FP32_TO_INT64_IN_MEM:
+ case X86::FP64_TO_INT16_IN_MEM:
+ case X86::FP64_TO_INT32_IN_MEM:
+ case X86::FP64_TO_INT64_IN_MEM:
+ case X86::FP80_TO_INT16_IN_MEM:
+ case X86::FP80_TO_INT32_IN_MEM:
+ case X86::FP80_TO_INT64_IN_MEM: {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ // Change the floating point control register to use "round towards zero"
+ // mode when truncating to an integer value.
+ MachineFunction *F = BB->getParent();
+ int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
+ addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx);
+
+ // Load the old value of the high byte of the control word...
+ unsigned OldCW =
+ F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
+ addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW),
+ CWFrameIdx);
+
+ // Set the high part to be round to zero...
+ addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
+ .addImm(0xC7F);
+
+ // Reload the modified control word now...
+ addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
+
+ // Restore the memory image of control word to original value
+ addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
+ .addReg(OldCW);
+
+ // Get the X86 opcode to use.
+ unsigned Opc;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("illegal opcode!");
+ case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
+ case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
+ case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
+ case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
+ case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
+ case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
+ case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
+ case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
+ case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
+ }
+
+ X86AddressMode AM;
+ MachineOperand &Op = MI->getOperand(0);
+ if (Op.isReg()) {
+ AM.BaseType = X86AddressMode::RegBase;
+ AM.Base.Reg = Op.getReg();
+ } else {
+ AM.BaseType = X86AddressMode::FrameIndexBase;
+ AM.Base.FrameIndex = Op.getIndex();
+ }
+ Op = MI->getOperand(1);
+ if (Op.isImm())
+ AM.Scale = Op.getImm();
+ Op = MI->getOperand(2);
+ if (Op.isImm())
+ AM.IndexReg = Op.getImm();
+ Op = MI->getOperand(3);
+ if (Op.isGlobal()) {
+ AM.GV = Op.getGlobal();
+ } else {
+ AM.Disp = Op.getImm();
+ }
+ addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM)
+ .addReg(MI->getOperand(X86AddrNumOperands).getReg());
+
+ // Reload the original control word now.
+ addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx);
+
+ F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
+ return BB;
+ }
+ // String/text processing lowering.
+ case X86::PCMPISTRM128REG:
+ return EmitPCMP(MI, BB, 3, false /* in-mem */);
+ case X86::PCMPISTRM128MEM:
+ return EmitPCMP(MI, BB, 3, true /* in-mem */);
+ case X86::PCMPESTRM128REG:
+ return EmitPCMP(MI, BB, 5, false /* in mem */);
+ case X86::PCMPESTRM128MEM:
+ return EmitPCMP(MI, BB, 5, true /* in mem */);
+
+ // Atomic Lowering.
+ case X86::ATOMAND32:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
+ X86::AND32ri, X86::MOV32rm,
+ X86::LCMPXCHG32, X86::MOV32rr,
+ X86::NOT32r, X86::EAX,
+ X86::GR32RegisterClass);
+ case X86::ATOMOR32:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
+ X86::OR32ri, X86::MOV32rm,
+ X86::LCMPXCHG32, X86::MOV32rr,
+ X86::NOT32r, X86::EAX,
+ X86::GR32RegisterClass);
+ case X86::ATOMXOR32:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
+ X86::XOR32ri, X86::MOV32rm,
+ X86::LCMPXCHG32, X86::MOV32rr,
+ X86::NOT32r, X86::EAX,
+ X86::GR32RegisterClass);
+ case X86::ATOMNAND32:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
+ X86::AND32ri, X86::MOV32rm,
+ X86::LCMPXCHG32, X86::MOV32rr,
+ X86::NOT32r, X86::EAX,
+ X86::GR32RegisterClass, true);
+ case X86::ATOMMIN32:
+ return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
+ case X86::ATOMMAX32:
+ return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
+ case X86::ATOMUMIN32:
+ return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
+ case X86::ATOMUMAX32:
+ return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
+
+ case X86::ATOMAND16:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
+ X86::AND16ri, X86::MOV16rm,
+ X86::LCMPXCHG16, X86::MOV16rr,
+ X86::NOT16r, X86::AX,
+ X86::GR16RegisterClass);
+ case X86::ATOMOR16:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
+ X86::OR16ri, X86::MOV16rm,
+ X86::LCMPXCHG16, X86::MOV16rr,
+ X86::NOT16r, X86::AX,
+ X86::GR16RegisterClass);
+ case X86::ATOMXOR16:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
+ X86::XOR16ri, X86::MOV16rm,
+ X86::LCMPXCHG16, X86::MOV16rr,
+ X86::NOT16r, X86::AX,
+ X86::GR16RegisterClass);
+ case X86::ATOMNAND16:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
+ X86::AND16ri, X86::MOV16rm,
+ X86::LCMPXCHG16, X86::MOV16rr,
+ X86::NOT16r, X86::AX,
+ X86::GR16RegisterClass, true);
+ case X86::ATOMMIN16:
+ return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
+ case X86::ATOMMAX16:
+ return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
+ case X86::ATOMUMIN16:
+ return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
+ case X86::ATOMUMAX16:
+ return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
+
+ case X86::ATOMAND8:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
+ X86::AND8ri, X86::MOV8rm,
+ X86::LCMPXCHG8, X86::MOV8rr,
+ X86::NOT8r, X86::AL,
+ X86::GR8RegisterClass);
+ case X86::ATOMOR8:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
+ X86::OR8ri, X86::MOV8rm,
+ X86::LCMPXCHG8, X86::MOV8rr,
+ X86::NOT8r, X86::AL,
+ X86::GR8RegisterClass);
+ case X86::ATOMXOR8:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
+ X86::XOR8ri, X86::MOV8rm,
+ X86::LCMPXCHG8, X86::MOV8rr,
+ X86::NOT8r, X86::AL,
+ X86::GR8RegisterClass);
+ case X86::ATOMNAND8:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
+ X86::AND8ri, X86::MOV8rm,
+ X86::LCMPXCHG8, X86::MOV8rr,
+ X86::NOT8r, X86::AL,
+ X86::GR8RegisterClass, true);
+ // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
+ // This group is for 64-bit host.
+ case X86::ATOMAND64:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
+ X86::AND64ri32, X86::MOV64rm,
+ X86::LCMPXCHG64, X86::MOV64rr,
+ X86::NOT64r, X86::RAX,
+ X86::GR64RegisterClass);
+ case X86::ATOMOR64:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
+ X86::OR64ri32, X86::MOV64rm,
+ X86::LCMPXCHG64, X86::MOV64rr,
+ X86::NOT64r, X86::RAX,
+ X86::GR64RegisterClass);
+ case X86::ATOMXOR64:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
+ X86::XOR64ri32, X86::MOV64rm,
+ X86::LCMPXCHG64, X86::MOV64rr,
+ X86::NOT64r, X86::RAX,
+ X86::GR64RegisterClass);
+ case X86::ATOMNAND64:
+ return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
+ X86::AND64ri32, X86::MOV64rm,
+ X86::LCMPXCHG64, X86::MOV64rr,
+ X86::NOT64r, X86::RAX,
+ X86::GR64RegisterClass, true);
+ case X86::ATOMMIN64:
+ return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
+ case X86::ATOMMAX64:
+ return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
+ case X86::ATOMUMIN64:
+ return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
+ case X86::ATOMUMAX64:
+ return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
+
+ // This group does 64-bit operations on a 32-bit host.
+ case X86::ATOMAND6432:
+ return EmitAtomicBit6432WithCustomInserter(MI, BB,
+ X86::AND32rr, X86::AND32rr,
+ X86::AND32ri, X86::AND32ri,
+ false);
+ case X86::ATOMOR6432:
+ return EmitAtomicBit6432WithCustomInserter(MI, BB,
+ X86::OR32rr, X86::OR32rr,
+ X86::OR32ri, X86::OR32ri,
+ false);
+ case X86::ATOMXOR6432:
+ return EmitAtomicBit6432WithCustomInserter(MI, BB,
+ X86::XOR32rr, X86::XOR32rr,
+ X86::XOR32ri, X86::XOR32ri,
+ false);
+ case X86::ATOMNAND6432:
+ return EmitAtomicBit6432WithCustomInserter(MI, BB,
+ X86::AND32rr, X86::AND32rr,
+ X86::AND32ri, X86::AND32ri,
+ true);
+ case X86::ATOMADD6432:
+ return EmitAtomicBit6432WithCustomInserter(MI, BB,
+ X86::ADD32rr, X86::ADC32rr,
+ X86::ADD32ri, X86::ADC32ri,
+ false);
+ case X86::ATOMSUB6432:
+ return EmitAtomicBit6432WithCustomInserter(MI, BB,
+ X86::SUB32rr, X86::SBB32rr,
+ X86::SUB32ri, X86::SBB32ri,
+ false);
+ case X86::ATOMSWAP6432:
+ return EmitAtomicBit6432WithCustomInserter(MI, BB,
+ X86::MOV32rr, X86::MOV32rr,
+ X86::MOV32ri, X86::MOV32ri,
+ false);
+ case X86::VASTART_SAVE_XMM_REGS:
+ return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// X86 Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
+ const APInt &Mask,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ unsigned Opc = Op.getOpcode();
+ assert((Opc >= ISD::BUILTIN_OP_END ||
+ Opc == ISD::INTRINSIC_WO_CHAIN ||
+ Opc == ISD::INTRINSIC_W_CHAIN ||
+ Opc == ISD::INTRINSIC_VOID) &&
+ "Should use MaskedValueIsZero if you don't know whether Op"
+ " is a target node!");
+
+ KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything.
+ switch (Opc) {
+ default: break;
+ case X86ISD::ADD:
+ case X86ISD::SUB:
+ case X86ISD::SMUL:
+ case X86ISD::UMUL:
+ case X86ISD::INC:
+ case X86ISD::DEC:
+ case X86ISD::OR:
+ case X86ISD::XOR:
+ case X86ISD::AND:
+ // These nodes' second result is a boolean.
+ if (Op.getResNo() == 0)
+ break;
+ // Fallthrough
+ case X86ISD::SETCC:
+ KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
+ Mask.getBitWidth() - 1);
+ break;
+ }
+}
+
+/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
+/// node is a GlobalAddress + offset.
+bool X86TargetLowering::isGAPlusOffset(SDNode *N,
+ const GlobalValue* &GA,
+ int64_t &Offset) const {
+ if (N->getOpcode() == X86ISD::Wrapper) {
+ if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
+ GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
+ Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
+ return true;
+ }
+ }
+ return TargetLowering::isGAPlusOffset(N, GA, Offset);
+}
+
+/// PerformShuffleCombine - Combine a vector_shuffle that is equal to
+/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load
+/// if the load addresses are consecutive, non-overlapping, and in the right
+/// order.
+static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
+ const TargetLowering &TLI) {
+ DebugLoc dl = N->getDebugLoc();
+ EVT VT = N->getValueType(0);
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
+
+ if (VT.getSizeInBits() != 128)
+ return SDValue();
+
+ SmallVector<SDValue, 16> Elts;
+ for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
+ Elts.push_back(DAG.getShuffleScalarElt(SVN, i));
+
+ return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
+}
+
+/// PerformShuffleCombine - Detect vector gather/scatter index generation
+/// and convert it from being a bunch of shuffles and extracts to a simple
+/// store and scalar loads to extract the elements.
+static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
+ const TargetLowering &TLI) {
+ SDValue InputVector = N->getOperand(0);
+
+ // Only operate on vectors of 4 elements, where the alternative shuffling
+ // gets to be more expensive.
+ if (InputVector.getValueType() != MVT::v4i32)
+ return SDValue();
+
+ // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
+ // single use which is a sign-extend or zero-extend, and all elements are
+ // used.
+ SmallVector<SDNode *, 4> Uses;
+ unsigned ExtractedElements = 0;
+ for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
+ UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
+ if (UI.getUse().getResNo() != InputVector.getResNo())
+ return SDValue();
+
+ SDNode *Extract = *UI;
+ if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+
+ if (Extract->getValueType(0) != MVT::i32)
+ return SDValue();
+ if (!Extract->hasOneUse())
+ return SDValue();
+ if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
+ Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
+ return SDValue();
+ if (!isa<ConstantSDNode>(Extract->getOperand(1)))
+ return SDValue();
+
+ // Record which element was extracted.
+ ExtractedElements |=
+ 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
+
+ Uses.push_back(Extract);
+ }
+
+ // If not all the elements were used, this may not be worthwhile.
+ if (ExtractedElements != 15)
+ return SDValue();
+
+ // Ok, we've now decided to do the transformation.
+ DebugLoc dl = InputVector.getDebugLoc();
+
+ // Store the value to a temporary stack slot.
+ SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
+ SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL, 0,
+ false, false, 0);
+
+ // Replace each use (extract) with a load of the appropriate element.
+ for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
+ UE = Uses.end(); UI != UE; ++UI) {
+ SDNode *Extract = *UI;
+
+ // Compute the element's address.
+ SDValue Idx = Extract->getOperand(1);
+ unsigned EltSize =
+ InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
+ uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
+ SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
+
+ SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), OffsetVal, StackPtr);
+
+ // Load the scalar.
+ SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, ScalarAddr,
+ NULL, 0, false, false, 0);
+
+ // Replace the exact with the load.
+ DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
+ }
+
+ // The replacement was made in place; don't return anything.
+ return SDValue();
+}
+
+/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes.
+static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ DebugLoc DL = N->getDebugLoc();
+ SDValue Cond = N->getOperand(0);
+ // Get the LHS/RHS of the select.
+ SDValue LHS = N->getOperand(1);
+ SDValue RHS = N->getOperand(2);
+
+ // If we have SSE[12] support, try to form min/max nodes. SSE min/max
+ // instructions match the semantics of the common C idiom x<y?x:y but not
+ // x<=y?x:y, because of how they handle negative zero (which can be
+ // ignored in unsafe-math mode).
+ if (Subtarget->hasSSE2() &&
+ (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) &&
+ Cond.getOpcode() == ISD::SETCC) {
+ ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
+
+ unsigned Opcode = 0;
+ // Check for x CC y ? x : y.
+ if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
+ DAG.isEqualTo(RHS, Cond.getOperand(1))) {
+ switch (CC) {
+ default: break;
+ case ISD::SETULT:
+ // Converting this to a min would handle NaNs incorrectly, and swapping
+ // the operands would cause it to handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!FiniteOnlyFPMath() &&
+ (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
+ if (!UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETOLE:
+ // Converting this to a min would handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!UnsafeFPMath &&
+ !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
+ break;
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETULE:
+ // Converting this to a min would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ case ISD::SETOLT:
+ case ISD::SETLT:
+ case ISD::SETLE:
+ Opcode = X86ISD::FMIN;
+ break;
+
+ case ISD::SETOGE:
+ // Converting this to a max would handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!UnsafeFPMath &&
+ !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS))
+ break;
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETUGT:
+ // Converting this to a max would handle NaNs incorrectly, and swapping
+ // the operands would cause it to handle comparisons between positive
+ // and negative zero incorrectly.
+ if (!FiniteOnlyFPMath() &&
+ (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) {
+ if (!UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETUGE:
+ // Converting this to a max would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ case ISD::SETOGT:
+ case ISD::SETGT:
+ case ISD::SETGE:
+ Opcode = X86ISD::FMAX;
+ break;
+ }
+ // Check for x CC y ? y : x -- a min/max with reversed arms.
+ } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
+ DAG.isEqualTo(RHS, Cond.getOperand(0))) {
+ switch (CC) {
+ default: break;
+ case ISD::SETOGE:
+ // Converting this to a min would handle comparisons between positive
+ // and negative zero incorrectly, and swapping the operands would
+ // cause it to handle NaNs incorrectly.
+ if (!UnsafeFPMath &&
+ !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
+ if (!FiniteOnlyFPMath() &&
+ (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETUGT:
+ // Converting this to a min would handle NaNs incorrectly.
+ if (!UnsafeFPMath &&
+ (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
+ break;
+ Opcode = X86ISD::FMIN;
+ break;
+ case ISD::SETUGE:
+ // Converting this to a min would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ case ISD::SETOGT:
+ case ISD::SETGT:
+ case ISD::SETGE:
+ Opcode = X86ISD::FMIN;
+ break;
+
+ case ISD::SETULT:
+ // Converting this to a max would handle NaNs incorrectly.
+ if (!FiniteOnlyFPMath() &&
+ (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
+ break;
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETOLE:
+ // Converting this to a max would handle comparisons between positive
+ // and negative zero incorrectly, and swapping the operands would
+ // cause it to handle NaNs incorrectly.
+ if (!UnsafeFPMath &&
+ !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
+ if (!FiniteOnlyFPMath() &&
+ (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
+ break;
+ std::swap(LHS, RHS);
+ }
+ Opcode = X86ISD::FMAX;
+ break;
+ case ISD::SETULE:
+ // Converting this to a max would handle both negative zeros and NaNs
+ // incorrectly, but we can swap the operands to fix both.
+ std::swap(LHS, RHS);
+ case ISD::SETOLT:
+ case ISD::SETLT:
+ case ISD::SETLE:
+ Opcode = X86ISD::FMAX;
+ break;
+ }
+ }
+
+ if (Opcode)
+ return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
+ }
+
+ // If this is a select between two integer constants, try to do some
+ // optimizations.
+ if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
+ if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
+ // Don't do this for crazy integer types.
+ if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
+ // If this is efficiently invertible, canonicalize the LHSC/RHSC values
+ // so that TrueC (the true value) is larger than FalseC.
+ bool NeedsCondInvert = false;
+
+ if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
+ // Efficiently invertible.
+ (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
+ (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
+ isa<ConstantSDNode>(Cond.getOperand(1))))) {
+ NeedsCondInvert = true;
+ std::swap(TrueC, FalseC);
+ }
+
+ // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
+ if (FalseC->getAPIntValue() == 0 &&
+ TrueC->getAPIntValue().isPowerOf2()) {
+ if (NeedsCondInvert) // Invert the condition if needed.
+ Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(1, Cond.getValueType()));
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
+
+ unsigned ShAmt = TrueC->getAPIntValue().logBase2();
+ return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
+ DAG.getConstant(ShAmt, MVT::i8));
+ }
+
+ // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
+ if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
+ if (NeedsCondInvert) // Invert the condition if needed.
+ Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(1, Cond.getValueType()));
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
+ FalseC->getValueType(0), Cond);
+ return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
+ SDValue(FalseC, 0));
+ }
+
+ // Optimize cases that will turn into an LEA instruction. This requires
+ // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
+ if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
+ uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
+ if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
+
+ bool isFastMultiplier = false;
+ if (Diff < 10) {
+ switch ((unsigned char)Diff) {
+ default: break;
+ case 1: // result = add base, cond
+ case 2: // result = lea base( , cond*2)
+ case 3: // result = lea base(cond, cond*2)
+ case 4: // result = lea base( , cond*4)
+ case 5: // result = lea base(cond, cond*4)
+ case 8: // result = lea base( , cond*8)
+ case 9: // result = lea base(cond, cond*8)
+ isFastMultiplier = true;
+ break;
+ }
+ }
+
+ if (isFastMultiplier) {
+ APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
+ if (NeedsCondInvert) // Invert the condition if needed.
+ Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(1, Cond.getValueType()));
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
+ Cond);
+ // Scale the condition by the difference.
+ if (Diff != 1)
+ Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(Diff, Cond.getValueType()));
+
+ // Add the base if non-zero.
+ if (FalseC->getAPIntValue() != 0)
+ Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
+ SDValue(FalseC, 0));
+ return Cond;
+ }
+ }
+ }
+ }
+
+ return SDValue();
+}
+
+/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
+static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ DebugLoc DL = N->getDebugLoc();
+
+ // If the flag operand isn't dead, don't touch this CMOV.
+ if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
+ return SDValue();
+
+ // If this is a select between two integer constants, try to do some
+ // optimizations. Note that the operands are ordered the opposite of SELECT
+ // operands.
+ if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
+ if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
+ // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
+ // larger than FalseC (the false value).
+ X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
+
+ if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
+ CC = X86::GetOppositeBranchCondition(CC);
+ std::swap(TrueC, FalseC);
+ }
+
+ // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
+ // This is efficient for any integer data type (including i8/i16) and
+ // shift amount.
+ if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
+ SDValue Cond = N->getOperand(3);
+ Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
+ DAG.getConstant(CC, MVT::i8), Cond);
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
+
+ unsigned ShAmt = TrueC->getAPIntValue().logBase2();
+ Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(ShAmt, MVT::i8));
+ if (N->getNumValues() == 2) // Dead flag value?
+ return DCI.CombineTo(N, Cond, SDValue());
+ return Cond;
+ }
+
+ // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
+ // for any integer data type, including i8/i16.
+ if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
+ SDValue Cond = N->getOperand(3);
+ Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
+ DAG.getConstant(CC, MVT::i8), Cond);
+
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
+ FalseC->getValueType(0), Cond);
+ Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
+ SDValue(FalseC, 0));
+
+ if (N->getNumValues() == 2) // Dead flag value?
+ return DCI.CombineTo(N, Cond, SDValue());
+ return Cond;
+ }
+
+ // Optimize cases that will turn into an LEA instruction. This requires
+ // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
+ if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
+ uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
+ if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
+
+ bool isFastMultiplier = false;
+ if (Diff < 10) {
+ switch ((unsigned char)Diff) {
+ default: break;
+ case 1: // result = add base, cond
+ case 2: // result = lea base( , cond*2)
+ case 3: // result = lea base(cond, cond*2)
+ case 4: // result = lea base( , cond*4)
+ case 5: // result = lea base(cond, cond*4)
+ case 8: // result = lea base( , cond*8)
+ case 9: // result = lea base(cond, cond*8)
+ isFastMultiplier = true;
+ break;
+ }
+ }
+
+ if (isFastMultiplier) {
+ APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
+ SDValue Cond = N->getOperand(3);
+ Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
+ DAG.getConstant(CC, MVT::i8), Cond);
+ // Zero extend the condition if needed.
+ Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
+ Cond);
+ // Scale the condition by the difference.
+ if (Diff != 1)
+ Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
+ DAG.getConstant(Diff, Cond.getValueType()));
+
+ // Add the base if non-zero.
+ if (FalseC->getAPIntValue() != 0)
+ Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
+ SDValue(FalseC, 0));
+ if (N->getNumValues() == 2) // Dead flag value?
+ return DCI.CombineTo(N, Cond, SDValue());
+ return Cond;
+ }
+ }
+ }
+ }
+ return SDValue();
+}
+
+
+/// PerformMulCombine - Optimize a single multiply with constant into two
+/// in order to implement it with two cheaper instructions, e.g.
+/// LEA + SHL, LEA + LEA.
+static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::i64)
+ return SDValue();
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!C)
+ return SDValue();
+ uint64_t MulAmt = C->getZExtValue();
+ if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
+ return SDValue();
+
+ uint64_t MulAmt1 = 0;
+ uint64_t MulAmt2 = 0;
+ if ((MulAmt % 9) == 0) {
+ MulAmt1 = 9;
+ MulAmt2 = MulAmt / 9;
+ } else if ((MulAmt % 5) == 0) {
+ MulAmt1 = 5;
+ MulAmt2 = MulAmt / 5;
+ } else if ((MulAmt % 3) == 0) {
+ MulAmt1 = 3;
+ MulAmt2 = MulAmt / 3;
+ }
+ if (MulAmt2 &&
+ (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
+ DebugLoc DL = N->getDebugLoc();
+
+ if (isPowerOf2_64(MulAmt2) &&
+ !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
+ // If second multiplifer is pow2, issue it first. We want the multiply by
+ // 3, 5, or 9 to be folded into the addressing mode unless the lone use
+ // is an add.
+ std::swap(MulAmt1, MulAmt2);
+
+ SDValue NewMul;
+ if (isPowerOf2_64(MulAmt1))
+ NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
+ DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
+ else
+ NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
+ DAG.getConstant(MulAmt1, VT));
+
+ if (isPowerOf2_64(MulAmt2))
+ NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
+ DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
+ else
+ NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
+ DAG.getConstant(MulAmt2, VT));
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, NewMul, false);
+ }
+ return SDValue();
+}
+
+static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ EVT VT = N0.getValueType();
+
+ // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
+ // since the result of setcc_c is all zero's or all ones.
+ if (N1C && N0.getOpcode() == ISD::AND &&
+ N0.getOperand(1).getOpcode() == ISD::Constant) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
+ ((N00.getOpcode() == ISD::ANY_EXTEND ||
+ N00.getOpcode() == ISD::ZERO_EXTEND) &&
+ N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
+ APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
+ APInt ShAmt = N1C->getAPIntValue();
+ Mask = Mask.shl(ShAmt);
+ if (Mask != 0)
+ return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
+ N00, DAG.getConstant(Mask, VT));
+ }
+ }
+
+ return SDValue();
+}
+
+/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
+/// when possible.
+static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ if (!VT.isVector() && VT.isInteger() &&
+ N->getOpcode() == ISD::SHL)
+ return PerformSHLCombine(N, DAG);
+
+ // On X86 with SSE2 support, we can transform this to a vector shift if
+ // all elements are shifted by the same amount. We can't do this in legalize
+ // because the a constant vector is typically transformed to a constant pool
+ // so we have no knowledge of the shift amount.
+ if (!Subtarget->hasSSE2())
+ return SDValue();
+
+ if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
+ return SDValue();
+
+ SDValue ShAmtOp = N->getOperand(1);
+ EVT EltVT = VT.getVectorElementType();
+ DebugLoc DL = N->getDebugLoc();
+ SDValue BaseShAmt = SDValue();
+ if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned i = 0;
+ for (; i != NumElts; ++i) {
+ SDValue Arg = ShAmtOp.getOperand(i);
+ if (Arg.getOpcode() == ISD::UNDEF) continue;
+ BaseShAmt = Arg;
+ break;
+ }
+ for (; i != NumElts; ++i) {
+ SDValue Arg = ShAmtOp.getOperand(i);
+ if (Arg.getOpcode() == ISD::UNDEF) continue;
+ if (Arg != BaseShAmt) {
+ return SDValue();
+ }
+ }
+ } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
+ cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
+ SDValue InVec = ShAmtOp.getOperand(0);
+ if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
+ unsigned NumElts = InVec.getValueType().getVectorNumElements();
+ unsigned i = 0;
+ for (; i != NumElts; ++i) {
+ SDValue Arg = InVec.getOperand(i);
+ if (Arg.getOpcode() == ISD::UNDEF) continue;
+ BaseShAmt = Arg;
+ break;
+ }
+ } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
+ unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
+ if (C->getZExtValue() == SplatIdx)
+ BaseShAmt = InVec.getOperand(1);
+ }
+ }
+ if (BaseShAmt.getNode() == 0)
+ BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
+ DAG.getIntPtrConstant(0));
+ } else
+ return SDValue();
+
+ // The shift amount is an i32.
+ if (EltVT.bitsGT(MVT::i32))
+ BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
+ else if (EltVT.bitsLT(MVT::i32))
+ BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
+
+ // The shift amount is identical so we can do a vector shift.
+ SDValue ValOp = N->getOperand(0);
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Unknown shift opcode!");
+ break;
+ case ISD::SHL:
+ if (VT == MVT::v2i64)
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
+ DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
+ ValOp, BaseShAmt);
+ if (VT == MVT::v4i32)
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
+ DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
+ ValOp, BaseShAmt);
+ if (VT == MVT::v8i16)
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
+ DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
+ ValOp, BaseShAmt);
+ break;
+ case ISD::SRA:
+ if (VT == MVT::v4i32)
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
+ DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
+ ValOp, BaseShAmt);
+ if (VT == MVT::v8i16)
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
+ DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
+ ValOp, BaseShAmt);
+ break;
+ case ISD::SRL:
+ if (VT == MVT::v2i64)
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
+ DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
+ ValOp, BaseShAmt);
+ if (VT == MVT::v4i32)
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
+ DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
+ ValOp, BaseShAmt);
+ if (VT == MVT::v8i16)
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
+ DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
+ ValOp, BaseShAmt);
+ break;
+ }
+ return SDValue();
+}
+
+static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const X86Subtarget *Subtarget) {
+ if (DCI.isBeforeLegalizeOps())
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
+ return SDValue();
+
+ // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
+ std::swap(N0, N1);
+ if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
+ return SDValue();
+ if (!N0.hasOneUse() || !N1.hasOneUse())
+ return SDValue();
+
+ SDValue ShAmt0 = N0.getOperand(1);
+ if (ShAmt0.getValueType() != MVT::i8)
+ return SDValue();
+ SDValue ShAmt1 = N1.getOperand(1);
+ if (ShAmt1.getValueType() != MVT::i8)
+ return SDValue();
+ if (ShAmt0.getOpcode() == ISD::TRUNCATE)
+ ShAmt0 = ShAmt0.getOperand(0);
+ if (ShAmt1.getOpcode() == ISD::TRUNCATE)
+ ShAmt1 = ShAmt1.getOperand(0);
+
+ DebugLoc DL = N->getDebugLoc();
+ unsigned Opc = X86ISD::SHLD;
+ SDValue Op0 = N0.getOperand(0);
+ SDValue Op1 = N1.getOperand(0);
+ if (ShAmt0.getOpcode() == ISD::SUB) {
+ Opc = X86ISD::SHRD;
+ std::swap(Op0, Op1);
+ std::swap(ShAmt0, ShAmt1);
+ }
+
+ unsigned Bits = VT.getSizeInBits();
+ if (ShAmt1.getOpcode() == ISD::SUB) {
+ SDValue Sum = ShAmt1.getOperand(0);
+ if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
+ if (SumC->getSExtValue() == Bits &&
+ ShAmt1.getOperand(1) == ShAmt0)
+ return DAG.getNode(Opc, DL, VT,
+ Op0, Op1,
+ DAG.getNode(ISD::TRUNCATE, DL,
+ MVT::i8, ShAmt0));
+ }
+ } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
+ ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
+ if (ShAmt0C &&
+ ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
+ return DAG.getNode(Opc, DL, VT,
+ N0.getOperand(0), N1.getOperand(0),
+ DAG.getNode(ISD::TRUNCATE, DL,
+ MVT::i8, ShAmt0));
+ }
+
+ return SDValue();
+}
+
+/// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
+static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
+ const X86Subtarget *Subtarget) {
+ // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
+ // the FP state in cases where an emms may be missing.
+ // A preferable solution to the general problem is to figure out the right
+ // places to insert EMMS. This qualifies as a quick hack.
+
+ // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
+ StoreSDNode *St = cast<StoreSDNode>(N);
+ EVT VT = St->getValue().getValueType();
+ if (VT.getSizeInBits() != 64)
+ return SDValue();
+
+ const Function *F = DAG.getMachineFunction().getFunction();
+ bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
+ bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
+ && Subtarget->hasSSE2();
+ if ((VT.isVector() ||
+ (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
+ isa<LoadSDNode>(St->getValue()) &&
+ !cast<LoadSDNode>(St->getValue())->isVolatile() &&
+ St->getChain().hasOneUse() && !St->isVolatile()) {
+ SDNode* LdVal = St->getValue().getNode();
+ LoadSDNode *Ld = 0;
+ int TokenFactorIndex = -1;
+ SmallVector<SDValue, 8> Ops;
+ SDNode* ChainVal = St->getChain().getNode();
+ // Must be a store of a load. We currently handle two cases: the load
+ // is a direct child, and it's under an intervening TokenFactor. It is
+ // possible to dig deeper under nested TokenFactors.
+ if (ChainVal == LdVal)
+ Ld = cast<LoadSDNode>(St->getChain());
+ else if (St->getValue().hasOneUse() &&
+ ChainVal->getOpcode() == ISD::TokenFactor) {
+ for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
+ if (ChainVal->getOperand(i).getNode() == LdVal) {
+ TokenFactorIndex = i;
+ Ld = cast<LoadSDNode>(St->getValue());
+ } else
+ Ops.push_back(ChainVal->getOperand(i));
+ }
+ }
+
+ if (!Ld || !ISD::isNormalLoad(Ld))
+ return SDValue();
+
+ // If this is not the MMX case, i.e. we are just turning i64 load/store
+ // into f64 load/store, avoid the transformation if there are multiple
+ // uses of the loaded value.
+ if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
+ return SDValue();
+
+ DebugLoc LdDL = Ld->getDebugLoc();
+ DebugLoc StDL = N->getDebugLoc();
+ // If we are a 64-bit capable x86, lower to a single movq load/store pair.
+ // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
+ // pair instead.
+ if (Subtarget->is64Bit() || F64IsLegal) {
+ EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
+ SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(),
+ Ld->getBasePtr(), Ld->getSrcValue(),
+ Ld->getSrcValueOffset(), Ld->isVolatile(),
+ Ld->isNonTemporal(), Ld->getAlignment());
+ SDValue NewChain = NewLd.getValue(1);
+ if (TokenFactorIndex != -1) {
+ Ops.push_back(NewChain);
+ NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
+ Ops.size());
+ }
+ return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
+ St->getSrcValue(), St->getSrcValueOffset(),
+ St->isVolatile(), St->isNonTemporal(),
+ St->getAlignment());
+ }
+
+ // Otherwise, lower to two pairs of 32-bit loads / stores.
+ SDValue LoAddr = Ld->getBasePtr();
+ SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
+ DAG.getConstant(4, MVT::i32));
+
+ SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
+ Ld->getSrcValue(), Ld->getSrcValueOffset(),
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->getAlignment());
+ SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
+ Ld->getSrcValue(), Ld->getSrcValueOffset()+4,
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ MinAlign(Ld->getAlignment(), 4));
+
+ SDValue NewChain = LoLd.getValue(1);
+ if (TokenFactorIndex != -1) {
+ Ops.push_back(LoLd);
+ Ops.push_back(HiLd);
+ NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
+ Ops.size());
+ }
+
+ LoAddr = St->getBasePtr();
+ HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
+ DAG.getConstant(4, MVT::i32));
+
+ SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
+ St->getSrcValue(), St->getSrcValueOffset(),
+ St->isVolatile(), St->isNonTemporal(),
+ St->getAlignment());
+ SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
+ St->getSrcValue(),
+ St->getSrcValueOffset() + 4,
+ St->isVolatile(),
+ St->isNonTemporal(),
+ MinAlign(St->getAlignment(), 4));
+ return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
+ }
+ return SDValue();
+}
+
+/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
+/// X86ISD::FXOR nodes.
+static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
+ assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
+ // F[X]OR(0.0, x) -> x
+ // F[X]OR(x, 0.0) -> x
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(1);
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(0);
+ return SDValue();
+}
+
+/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
+static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
+ // FAND(0.0, x) -> 0.0
+ // FAND(x, 0.0) -> 0.0
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(0);
+ if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
+ if (C->getValueAPF().isPosZero())
+ return N->getOperand(1);
+ return SDValue();
+}
+
+static SDValue PerformBTCombine(SDNode *N,
+ SelectionDAG &DAG,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // BT ignores high bits in the bit index operand.
+ SDValue Op1 = N->getOperand(1);
+ if (Op1.hasOneUse()) {
+ unsigned BitWidth = Op1.getValueSizeInBits();
+ APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
+ TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+ return SDValue();
+}
+
+static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
+ SDValue Op = N->getOperand(0);
+ if (Op.getOpcode() == ISD::BIT_CONVERT)
+ Op = Op.getOperand(0);
+ EVT VT = N->getValueType(0), OpVT = Op.getValueType();
+ if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
+ VT.getVectorElementType().getSizeInBits() ==
+ OpVT.getVectorElementType().getSizeInBits()) {
+ return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op);
+ }
+ return SDValue();
+}
+
+// On X86 and X86-64, atomic operations are lowered to locked instructions.
+// Locked instructions, in turn, have implicit fence semantics (all memory
+// operations are flushed before issuing the locked instruction, and the
+// are not buffered), so we can fold away the common pattern of
+// fence-atomic-fence.
+static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) {
+ SDValue atomic = N->getOperand(0);
+ switch (atomic.getOpcode()) {
+ case ISD::ATOMIC_CMP_SWAP:
+ case ISD::ATOMIC_SWAP:
+ case ISD::ATOMIC_LOAD_ADD:
+ case ISD::ATOMIC_LOAD_SUB:
+ case ISD::ATOMIC_LOAD_AND:
+ case ISD::ATOMIC_LOAD_OR:
+ case ISD::ATOMIC_LOAD_XOR:
+ case ISD::ATOMIC_LOAD_NAND:
+ case ISD::ATOMIC_LOAD_MIN:
+ case ISD::ATOMIC_LOAD_MAX:
+ case ISD::ATOMIC_LOAD_UMIN:
+ case ISD::ATOMIC_LOAD_UMAX:
+ break;
+ default:
+ return SDValue();
+ }
+
+ SDValue fence = atomic.getOperand(0);
+ if (fence.getOpcode() != ISD::MEMBARRIER)
+ return SDValue();
+
+ switch (atomic.getOpcode()) {
+ case ISD::ATOMIC_CMP_SWAP:
+ return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
+ atomic.getOperand(1), atomic.getOperand(2),
+ atomic.getOperand(3));
+ case ISD::ATOMIC_SWAP:
+ case ISD::ATOMIC_LOAD_ADD:
+ case ISD::ATOMIC_LOAD_SUB:
+ case ISD::ATOMIC_LOAD_AND:
+ case ISD::ATOMIC_LOAD_OR:
+ case ISD::ATOMIC_LOAD_XOR:
+ case ISD::ATOMIC_LOAD_NAND:
+ case ISD::ATOMIC_LOAD_MIN:
+ case ISD::ATOMIC_LOAD_MAX:
+ case ISD::ATOMIC_LOAD_UMIN:
+ case ISD::ATOMIC_LOAD_UMAX:
+ return DAG.UpdateNodeOperands(atomic, fence.getOperand(0),
+ atomic.getOperand(1), atomic.getOperand(2));
+ default:
+ return SDValue();
+ }
+}
+
+static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
+ // (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
+ // (and (i32 x86isd::setcc_carry), 1)
+ // This eliminates the zext. This transformation is necessary because
+ // ISD::SETCC is always legalized to i8.
+ DebugLoc dl = N->getDebugLoc();
+ SDValue N0 = N->getOperand(0);
+ EVT VT = N->getValueType(0);
+ if (N0.getOpcode() == ISD::AND &&
+ N0.hasOneUse() &&
+ N0.getOperand(0).hasOneUse()) {
+ SDValue N00 = N0.getOperand(0);
+ if (N00.getOpcode() != X86ISD::SETCC_CARRY)
+ return SDValue();
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
+ if (!C || C->getZExtValue() != 1)
+ return SDValue();
+ return DAG.getNode(ISD::AND, dl, VT,
+ DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
+ N00.getOperand(0), N00.getOperand(1)),
+ DAG.getConstant(1, VT));
+ }
+
+ return SDValue();
+}
+
+SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this);
+ case ISD::EXTRACT_VECTOR_ELT:
+ return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
+ case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget);
+ case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI);
+ case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget);
+ case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget);
+ case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
+ case X86ISD::FXOR:
+ case X86ISD::FOR: return PerformFORCombine(N, DAG);
+ case X86ISD::FAND: return PerformFANDCombine(N, DAG);
+ case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
+ case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
+ case ISD::MEMBARRIER: return PerformMEMBARRIERCombine(N, DAG);
+ case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG);
+ }
+
+ return SDValue();
+}
+
+/// isTypeDesirableForOp - Return true if the target has native support for
+/// the specified value type and it is 'desirable' to use the type for the
+/// given node type. e.g. On x86 i16 is legal, but undesirable since i16
+/// instruction encodings are longer and some i16 instructions are slow.
+bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
+ if (!isTypeLegal(VT))
+ return false;
+ if (VT != MVT::i16)
+ return true;
+
+ switch (Opc) {
+ default:
+ return true;
+ case ISD::LOAD:
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::SUB:
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ return false;
+ }
+}
+
+static bool MayFoldLoad(SDValue Op) {
+ return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
+}
+
+static bool MayFoldIntoStore(SDValue Op) {
+ return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
+}
+
+/// IsDesirableToPromoteOp - This method query the target whether it is
+/// beneficial for dag combiner to promote the specified node. If true, it
+/// should return the desired promotion type by reference.
+bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
+ EVT VT = Op.getValueType();
+ if (VT != MVT::i16)
+ return false;
+
+ bool Promote = false;
+ bool Commute = false;
+ switch (Op.getOpcode()) {
+ default: break;
+ case ISD::LOAD: {
+ LoadSDNode *LD = cast<LoadSDNode>(Op);
+ // If the non-extending load has a single use and it's not live out, then it
+ // might be folded.
+ if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
+ Op.hasOneUse()*/) {
+ for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
+ UE = Op.getNode()->use_end(); UI != UE; ++UI) {
+ // The only case where we'd want to promote LOAD (rather then it being
+ // promoted as an operand is when it's only use is liveout.
+ if (UI->getOpcode() != ISD::CopyToReg)
+ return false;
+ }
+ }
+ Promote = true;
+ break;
+ }
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ Promote = true;
+ break;
+ case ISD::SHL:
+ case ISD::SRL: {
+ SDValue N0 = Op.getOperand(0);
+ // Look out for (store (shl (load), x)).
+ if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
+ return false;
+ Promote = true;
+ break;
+ }
+ case ISD::ADD:
+ case ISD::MUL:
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ Commute = true;
+ // fallthrough
+ case ISD::SUB: {
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ if (!Commute && MayFoldLoad(N1))
+ return false;
+ // Avoid disabling potential load folding opportunities.
+ if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
+ return false;
+ if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
+ return false;
+ Promote = true;
+ }
+ }
+
+ PVT = MVT::i32;
+ return Promote;
+}
+
+//===----------------------------------------------------------------------===//
+// X86 Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+static bool LowerToBSwap(CallInst *CI) {
+ // FIXME: this should verify that we are targetting a 486 or better. If not,
+ // we will turn this bswap into something that will be lowered to logical ops
+ // instead of emitting the bswap asm. For now, we don't support 486 or lower
+ // so don't worry about this.
+
+ // Verify this is a simple bswap.
+ if (CI->getNumOperands() != 2 ||
+ CI->getType() != CI->getOperand(1)->getType() ||
+ !CI->getType()->isIntegerTy())
+ return false;
+
+ const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
+ if (!Ty || Ty->getBitWidth() % 16 != 0)
+ return false;
+
+ // Okay, we can do this xform, do so now.
+ const Type *Tys[] = { Ty };
+ Module *M = CI->getParent()->getParent()->getParent();
+ Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
+
+ Value *Op = CI->getOperand(1);
+ Op = CallInst::Create(Int, Op, CI->getName(), CI);
+
+ CI->replaceAllUsesWith(Op);
+ CI->eraseFromParent();
+ return true;
+}
+
+bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
+ InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
+ std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
+
+ std::string AsmStr = IA->getAsmString();
+
+ // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
+ SmallVector<StringRef, 4> AsmPieces;
+ SplitString(AsmStr, AsmPieces, "\n"); // ; as separator?
+
+ switch (AsmPieces.size()) {
+ default: return false;
+ case 1:
+ AsmStr = AsmPieces[0];
+ AsmPieces.clear();
+ SplitString(AsmStr, AsmPieces, " \t"); // Split with whitespace.
+
+ // bswap $0
+ if (AsmPieces.size() == 2 &&
+ (AsmPieces[0] == "bswap" ||
+ AsmPieces[0] == "bswapq" ||
+ AsmPieces[0] == "bswapl") &&
+ (AsmPieces[1] == "$0" ||
+ AsmPieces[1] == "${0:q}")) {
+ // No need to check constraints, nothing other than the equivalent of
+ // "=r,0" would be valid here.
+ return LowerToBSwap(CI);
+ }
+ // rorw $$8, ${0:w} --> llvm.bswap.i16
+ if (CI->getType()->isIntegerTy(16) &&
+ AsmPieces.size() == 3 &&
+ (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
+ AsmPieces[1] == "$$8," &&
+ AsmPieces[2] == "${0:w}" &&
+ IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
+ AsmPieces.clear();
+ const std::string &Constraints = IA->getConstraintString();
+ SplitString(StringRef(Constraints).substr(5), AsmPieces, ",");
+ std::sort(AsmPieces.begin(), AsmPieces.end());
+ if (AsmPieces.size() == 4 &&
+ AsmPieces[0] == "~{cc}" &&
+ AsmPieces[1] == "~{dirflag}" &&
+ AsmPieces[2] == "~{flags}" &&
+ AsmPieces[3] == "~{fpsr}") {
+ return LowerToBSwap(CI);
+ }
+ }
+ break;
+ case 3:
+ if (CI->getType()->isIntegerTy(64) &&
+ Constraints.size() >= 2 &&
+ Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
+ Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
+ // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
+ SmallVector<StringRef, 4> Words;
+ SplitString(AsmPieces[0], Words, " \t");
+ if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
+ Words.clear();
+ SplitString(AsmPieces[1], Words, " \t");
+ if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
+ Words.clear();
+ SplitString(AsmPieces[2], Words, " \t,");
+ if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
+ Words[2] == "%edx") {
+ return LowerToBSwap(CI);
+ }
+ }
+ }
+ }
+ break;
+ }
+ return false;
+}
+
+
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+X86TargetLowering::ConstraintType
+X86TargetLowering::getConstraintType(const std::string &Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'A':
+ return C_Register;
+ case 'f':
+ case 'r':
+ case 'R':
+ case 'l':
+ case 'q':
+ case 'Q':
+ case 'x':
+ case 'y':
+ case 'Y':
+ return C_RegisterClass;
+ case 'e':
+ case 'Z':
+ return C_Other;
+ default:
+ break;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+/// LowerXConstraint - try to replace an X constraint, which matches anything,
+/// with another that has more specific requirements based on the type of the
+/// corresponding operand.
+const char *X86TargetLowering::
+LowerXConstraint(EVT ConstraintVT) const {
+ // FP X constraints get lowered to SSE1/2 registers if available, otherwise
+ // 'f' like normal targets.
+ if (ConstraintVT.isFloatingPoint()) {
+ if (Subtarget->hasSSE2())
+ return "Y";
+ if (Subtarget->hasSSE1())
+ return "x";
+ }
+
+ return TargetLowering::LowerXConstraint(ConstraintVT);
+}
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ char Constraint,
+ bool hasMemory,
+ std::vector<SDValue>&Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result(0, 0);
+
+ switch (Constraint) {
+ default: break;
+ case 'I':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 31) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'J':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 63) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'K':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'N':
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ if (C->getZExtValue() <= 255) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+ break;
+ }
+ }
+ return;
+ case 'e': {
+ // 32-bit signed value
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ const ConstantInt *CI = C->getConstantIntValue();
+ if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
+ C->getSExtValue())) {
+ // Widen to 64 bits here to get it sign extended.
+ Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
+ break;
+ }
+ // FIXME gcc accepts some relocatable values here too, but only in certain
+ // memory models; it's complicated.
+ }
+ return;
+ }
+ case 'Z': {
+ // 32-bit unsigned value
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ const ConstantInt *CI = C->getConstantIntValue();
+ if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
+ C->getZExtValue())) {
+ Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
+ break;
+ }
+ }
+ // FIXME gcc accepts some relocatable values here too, but only in certain
+ // memory models; it's complicated.
+ return;
+ }
+ case 'i': {
+ // Literal immediates are always ok.
+ if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
+ // Widen to 64 bits here to get it sign extended.
+ Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
+ break;
+ }
+
+ // If we are in non-pic codegen mode, we allow the address of a global (with
+ // an optional displacement) to be used with 'i'.
+ GlobalAddressSDNode *GA = 0;
+ int64_t Offset = 0;
+
+ // Match either (GA), (GA+C), (GA+C1+C2), etc.
+ while (1) {
+ if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
+ Offset += GA->getOffset();
+ break;
+ } else if (Op.getOpcode() == ISD::ADD) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ Offset += C->getZExtValue();
+ Op = Op.getOperand(0);
+ continue;
+ }
+ } else if (Op.getOpcode() == ISD::SUB) {
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
+ Offset += -C->getZExtValue();
+ Op = Op.getOperand(0);
+ continue;
+ }
+ }
+
+ // Otherwise, this isn't something we can handle, reject it.
+ return;
+ }
+
+ const GlobalValue *GV = GA->getGlobal();
+ // If we require an extra load to get this address, as in PIC mode, we
+ // can't accept it.
+ if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
+ getTargetMachine())))
+ return;
+
+ if (hasMemory)
+ Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
+ else
+ Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset);
+ Result = Op;
+ break;
+ }
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+ return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory,
+ Ops, DAG);
+}
+
+std::vector<unsigned> X86TargetLowering::
+getRegClassForInlineAsmConstraint(const std::string &Constraint,
+ EVT VT) const {
+ if (Constraint.size() == 1) {
+ // FIXME: not handling fp-stack yet!
+ switch (Constraint[0]) { // GCC X86 Constraint Letters
+ default: break; // Unknown constraint letter
+ case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
+ if (Subtarget->is64Bit()) {
+ if (VT == MVT::i32)
+ return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX,
+ X86::ESI, X86::EDI, X86::R8D, X86::R9D,
+ X86::R10D,X86::R11D,X86::R12D,
+ X86::R13D,X86::R14D,X86::R15D,
+ X86::EBP, X86::ESP, 0);
+ else if (VT == MVT::i16)
+ return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX,
+ X86::SI, X86::DI, X86::R8W,X86::R9W,
+ X86::R10W,X86::R11W,X86::R12W,
+ X86::R13W,X86::R14W,X86::R15W,
+ X86::BP, X86::SP, 0);
+ else if (VT == MVT::i8)
+ return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL,
+ X86::SIL, X86::DIL, X86::R8B,X86::R9B,
+ X86::R10B,X86::R11B,X86::R12B,
+ X86::R13B,X86::R14B,X86::R15B,
+ X86::BPL, X86::SPL, 0);
+
+ else if (VT == MVT::i64)
+ return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX,
+ X86::RSI, X86::RDI, X86::R8, X86::R9,
+ X86::R10, X86::R11, X86::R12,
+ X86::R13, X86::R14, X86::R15,
+ X86::RBP, X86::RSP, 0);
+
+ break;
+ }
+ // 32-bit fallthrough
+ case 'Q': // Q_REGS
+ if (VT == MVT::i32)
+ return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0);
+ else if (VT == MVT::i16)
+ return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0);
+ else if (VT == MVT::i8)
+ return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0);
+ else if (VT == MVT::i64)
+ return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0);
+ break;
+ }
+ }
+
+ return std::vector<unsigned>();
+}
+
+std::pair<unsigned, const TargetRegisterClass*>
+X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
+ EVT VT) const {
+ // First, see if this is a constraint that directly corresponds to an LLVM
+ // register class.
+ if (Constraint.size() == 1) {
+ // GCC Constraint Letters
+ switch (Constraint[0]) {
+ default: break;
+ case 'r': // GENERAL_REGS
+ case 'l': // INDEX_REGS
+ if (VT == MVT::i8)
+ return std::make_pair(0U, X86::GR8RegisterClass);
+ if (VT == MVT::i16)
+ return std::make_pair(0U, X86::GR16RegisterClass);
+ if (VT == MVT::i32 || !Subtarget->is64Bit())
+ return std::make_pair(0U, X86::GR32RegisterClass);
+ return std::make_pair(0U, X86::GR64RegisterClass);
+ case 'R': // LEGACY_REGS
+ if (VT == MVT::i8)
+ return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
+ if (VT == MVT::i16)
+ return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
+ if (VT == MVT::i32 || !Subtarget->is64Bit())
+ return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
+ return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
+ case 'f': // FP Stack registers.
+ // If SSE is enabled for this VT, use f80 to ensure the isel moves the
+ // value to the correct fpstack register class.
+ if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
+ return std::make_pair(0U, X86::RFP32RegisterClass);
+ if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
+ return std::make_pair(0U, X86::RFP64RegisterClass);
+ return std::make_pair(0U, X86::RFP80RegisterClass);
+ case 'y': // MMX_REGS if MMX allowed.
+ if (!Subtarget->hasMMX()) break;
+ return std::make_pair(0U, X86::VR64RegisterClass);
+ case 'Y': // SSE_REGS if SSE2 allowed
+ if (!Subtarget->hasSSE2()) break;
+ // FALL THROUGH.
+ case 'x': // SSE_REGS if SSE1 allowed
+ if (!Subtarget->hasSSE1()) break;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: break;
+ // Scalar SSE types.
+ case MVT::f32:
+ case MVT::i32:
+ return std::make_pair(0U, X86::FR32RegisterClass);
+ case MVT::f64:
+ case MVT::i64:
+ return std::make_pair(0U, X86::FR64RegisterClass);
+ // Vector types.
+ case MVT::v16i8:
+ case MVT::v8i16:
+ case MVT::v4i32:
+ case MVT::v2i64:
+ case MVT::v4f32:
+ case MVT::v2f64:
+ return std::make_pair(0U, X86::VR128RegisterClass);
+ }
+ break;
+ }
+ }
+
+ // Use the default implementation in TargetLowering to convert the register
+ // constraint into a member of a register class.
+ std::pair<unsigned, const TargetRegisterClass*> Res;
+ Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+
+ // Not found as a standard register?
+ if (Res.second == 0) {
+ // Map st(0) -> st(7) -> ST0
+ if (Constraint.size() == 7 && Constraint[0] == '{' &&
+ tolower(Constraint[1]) == 's' &&
+ tolower(Constraint[2]) == 't' &&
+ Constraint[3] == '(' &&
+ (Constraint[4] >= '0' && Constraint[4] <= '7') &&
+ Constraint[5] == ')' &&
+ Constraint[6] == '}') {
+
+ Res.first = X86::ST0+Constraint[4]-'0';
+ Res.second = X86::RFP80RegisterClass;
+ return Res;
+ }
+
+ // GCC allows "st(0)" to be called just plain "st".
+ if (StringRef("{st}").equals_lower(Constraint)) {
+ Res.first = X86::ST0;
+ Res.second = X86::RFP80RegisterClass;
+ return Res;
+ }
+
+ // flags -> EFLAGS
+ if (StringRef("{flags}").equals_lower(Constraint)) {
+ Res.first = X86::EFLAGS;
+ Res.second = X86::CCRRegisterClass;
+ return Res;
+ }
+
+ // 'A' means EAX + EDX.
+ if (Constraint == "A") {
+ Res.first = X86::EAX;
+ Res.second = X86::GR32_ADRegisterClass;
+ return Res;
+ }
+ return Res;
+ }
+
+ // Otherwise, check to see if this is a register class of the wrong value
+ // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
+ // turn into {ax},{dx}.
+ if (Res.second->hasType(VT))
+ return Res; // Correct type already, nothing to do.
+
+ // All of the single-register GCC register classes map their values onto
+ // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
+ // really want an 8-bit or 32-bit register, map to the appropriate register
+ // class and return the appropriate register.
+ if (Res.second == X86::GR16RegisterClass) {
+ if (VT == MVT::i8) {
+ unsigned DestReg = 0;
+ switch (Res.first) {
+ default: break;
+ case X86::AX: DestReg = X86::AL; break;
+ case X86::DX: DestReg = X86::DL; break;
+ case X86::CX: DestReg = X86::CL; break;
+ case X86::BX: DestReg = X86::BL; break;
+ }
+ if (DestReg) {
+ Res.first = DestReg;
+ Res.second = X86::GR8RegisterClass;
+ }
+ } else if (VT == MVT::i32) {
+ unsigned DestReg = 0;
+ switch (Res.first) {
+ default: break;
+ case X86::AX: DestReg = X86::EAX; break;
+ case X86::DX: DestReg = X86::EDX; break;
+ case X86::CX: DestReg = X86::ECX; break;
+ case X86::BX: DestReg = X86::EBX; break;
+ case X86::SI: DestReg = X86::ESI; break;
+ case X86::DI: DestReg = X86::EDI; break;
+ case X86::BP: DestReg = X86::EBP; break;
+ case X86::SP: DestReg = X86::ESP; break;
+ }
+ if (DestReg) {
+ Res.first = DestReg;
+ Res.second = X86::GR32RegisterClass;
+ }
+ } else if (VT == MVT::i64) {
+ unsigned DestReg = 0;
+ switch (Res.first) {
+ default: break;
+ case X86::AX: DestReg = X86::RAX; break;
+ case X86::DX: DestReg = X86::RDX; break;
+ case X86::CX: DestReg = X86::RCX; break;
+ case X86::BX: DestReg = X86::RBX; break;
+ case X86::SI: DestReg = X86::RSI; break;
+ case X86::DI: DestReg = X86::RDI; break;
+ case X86::BP: DestReg = X86::RBP; break;
+ case X86::SP: DestReg = X86::RSP; break;
+ }
+ if (DestReg) {
+ Res.first = DestReg;
+ Res.second = X86::GR64RegisterClass;
+ }
+ }
+ } else if (Res.second == X86::FR32RegisterClass ||
+ Res.second == X86::FR64RegisterClass ||
+ Res.second == X86::VR128RegisterClass) {
+ // Handle references to XMM physical registers that got mapped into the
+ // wrong class. This can happen with constraints like {xmm0} where the
+ // target independent register mapper will just pick the first match it can
+ // find, ignoring the required type.
+ if (VT == MVT::f32)
+ Res.second = X86::FR32RegisterClass;
+ else if (VT == MVT::f64)
+ Res.second = X86::FR64RegisterClass;
+ else if (X86::VR128RegisterClass->hasType(VT))
+ Res.second = X86::VR128RegisterClass;
+ }
+
+ return Res;
+}
OpenPOWER on IntegriCloud