diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86ISelLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86ISelLowering.cpp | 10448 |
1 files changed, 10448 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp new file mode 100644 index 0000000..b02c33d --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86ISelLowering.cpp @@ -0,0 +1,10448 @@ +//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the interfaces that X86 uses to lower LLVM code into a +// selection DAG. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "x86-isel" +#include "X86.h" +#include "X86InstrBuilder.h" +#include "X86ISelLowering.h" +#include "X86TargetMachine.h" +#include "X86TargetObjectFile.h" +#include "llvm/CallingConv.h" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/GlobalAlias.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Function.h" +#include "llvm/Instructions.h" +#include "llvm/Intrinsics.h" +#include "llvm/LLVMContext.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/MC/MCAsmInfo.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/VectorExtras.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Dwarf.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; +using namespace dwarf; + +STATISTIC(NumTailCalls, "Number of tail calls"); + +static cl::opt<bool> +DisableMMX("disable-mmx", cl::Hidden, cl::desc("Disable use of MMX")); + +// Forward declarations. +static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, + SDValue V2); + +static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) { + switch (TM.getSubtarget<X86Subtarget>().TargetType) { + default: llvm_unreachable("unknown subtarget type"); + case X86Subtarget::isDarwin: + if (TM.getSubtarget<X86Subtarget>().is64Bit()) + return new X8664_MachoTargetObjectFile(); + return new TargetLoweringObjectFileMachO(); + case X86Subtarget::isELF: + if (TM.getSubtarget<X86Subtarget>().is64Bit()) + return new X8664_ELFTargetObjectFile(TM); + return new X8632_ELFTargetObjectFile(TM); + case X86Subtarget::isMingw: + case X86Subtarget::isCygwin: + case X86Subtarget::isWindows: + return new TargetLoweringObjectFileCOFF(); + } +} + +X86TargetLowering::X86TargetLowering(X86TargetMachine &TM) + : TargetLowering(TM, createTLOF(TM)) { + Subtarget = &TM.getSubtarget<X86Subtarget>(); + X86ScalarSSEf64 = Subtarget->hasSSE2(); + X86ScalarSSEf32 = Subtarget->hasSSE1(); + X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; + + RegInfo = TM.getRegisterInfo(); + TD = getTargetData(); + + // Set up the TargetLowering object. + + // X86 is weird, it always uses i8 for shift amounts and setcc results. + setShiftAmountType(MVT::i8); + setBooleanContents(ZeroOrOneBooleanContent); + setSchedulingPreference(Sched::RegPressure); + setStackPointerRegisterToSaveRestore(X86StackPtr); + + if (Subtarget->isTargetDarwin()) { + // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp. + setUseUnderscoreSetJmp(false); + setUseUnderscoreLongJmp(false); + } else if (Subtarget->isTargetMingw()) { + // MS runtime is weird: it exports _setjmp, but longjmp! + setUseUnderscoreSetJmp(true); + setUseUnderscoreLongJmp(false); + } else { + setUseUnderscoreSetJmp(true); + setUseUnderscoreLongJmp(true); + } + + // Set up the register classes. + addRegisterClass(MVT::i8, X86::GR8RegisterClass); + addRegisterClass(MVT::i16, X86::GR16RegisterClass); + addRegisterClass(MVT::i32, X86::GR32RegisterClass); + if (Subtarget->is64Bit()) + addRegisterClass(MVT::i64, X86::GR64RegisterClass); + + setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); + + // We don't accept any truncstore of integer registers. + setTruncStoreAction(MVT::i64, MVT::i32, Expand); + setTruncStoreAction(MVT::i64, MVT::i16, Expand); + setTruncStoreAction(MVT::i64, MVT::i8 , Expand); + setTruncStoreAction(MVT::i32, MVT::i16, Expand); + setTruncStoreAction(MVT::i32, MVT::i8 , Expand); + setTruncStoreAction(MVT::i16, MVT::i8, Expand); + + // SETOEQ and SETUNE require checking two conditions. + setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); + setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); + setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand); + setCondCodeAction(ISD::SETUNE, MVT::f32, Expand); + setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); + setCondCodeAction(ISD::SETUNE, MVT::f80, Expand); + + // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this + // operation. + setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote); + setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote); + setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote); + + if (Subtarget->is64Bit()) { + setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote); + setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand); + } else if (!UseSoftFloat) { + // We have an algorithm for SSE2->double, and we turn this into a + // 64-bit FILD followed by conditional FADD for other targets. + setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom); + // We have an algorithm for SSE2, and we turn this into a 64-bit + // FILD for other targets. + setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom); + } + + // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have + // this operation. + setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote); + setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote); + + if (!UseSoftFloat) { + // SSE has no i16 to fp conversion, only i32 + if (X86ScalarSSEf32) { + setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); + // f32 and f64 cases are Legal, f80 case is not + setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); + } else { + setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom); + setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom); + } + } else { + setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote); + setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote); + } + + // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64 + // are Legal, f80 is custom lowered. + setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom); + setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom); + + // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have + // this operation. + setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote); + setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote); + + if (X86ScalarSSEf32) { + setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote); + // f32 and f64 cases are Legal, f80 case is not + setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); + } else { + setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom); + setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom); + } + + // Handle FP_TO_UINT by promoting the destination to a larger signed + // conversion. + setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote); + setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote); + setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote); + + if (Subtarget->is64Bit()) { + setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand); + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote); + } else if (!UseSoftFloat) { + if (X86ScalarSSEf32 && !Subtarget->hasSSE3()) + // Expand FP_TO_UINT into a select. + // FIXME: We would like to use a Custom expander here eventually to do + // the optimal thing for SSE vs. the default expansion in the legalizer. + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand); + else + // With SSE3 we can use fisttpll to convert to a signed i64; without + // SSE, we're stuck with a fistpll. + setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom); + } + + // TODO: when we have SSE, these could be more efficient, by using movd/movq. + if (!X86ScalarSSEf64) { + setOperationAction(ISD::BIT_CONVERT , MVT::f32 , Expand); + setOperationAction(ISD::BIT_CONVERT , MVT::i32 , Expand); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::BIT_CONVERT , MVT::f64 , Expand); + // Without SSE, i64->f64 goes through memory; i64->MMX is Legal. + if (Subtarget->hasMMX() && !DisableMMX) + setOperationAction(ISD::BIT_CONVERT , MVT::i64 , Custom); + else + setOperationAction(ISD::BIT_CONVERT , MVT::i64 , Expand); + } + } + + // Scalar integer divide and remainder are lowered to use operations that + // produce two results, to match the available instructions. This exposes + // the two-result form to trivial CSE, which is able to combine x/y and x%y + // into a single instruction. + // + // Scalar integer multiply-high is also lowered to use two-result + // operations, to match the available instructions. However, plain multiply + // (low) operations are left as Legal, as there are single-result + // instructions for this in x86. Using the two-result multiply instructions + // when both high and low results are needed must be arranged by dagcombine. + setOperationAction(ISD::MULHS , MVT::i8 , Expand); + setOperationAction(ISD::MULHU , MVT::i8 , Expand); + setOperationAction(ISD::SDIV , MVT::i8 , Expand); + setOperationAction(ISD::UDIV , MVT::i8 , Expand); + setOperationAction(ISD::SREM , MVT::i8 , Expand); + setOperationAction(ISD::UREM , MVT::i8 , Expand); + setOperationAction(ISD::MULHS , MVT::i16 , Expand); + setOperationAction(ISD::MULHU , MVT::i16 , Expand); + setOperationAction(ISD::SDIV , MVT::i16 , Expand); + setOperationAction(ISD::UDIV , MVT::i16 , Expand); + setOperationAction(ISD::SREM , MVT::i16 , Expand); + setOperationAction(ISD::UREM , MVT::i16 , Expand); + setOperationAction(ISD::MULHS , MVT::i32 , Expand); + setOperationAction(ISD::MULHU , MVT::i32 , Expand); + setOperationAction(ISD::SDIV , MVT::i32 , Expand); + setOperationAction(ISD::UDIV , MVT::i32 , Expand); + setOperationAction(ISD::SREM , MVT::i32 , Expand); + setOperationAction(ISD::UREM , MVT::i32 , Expand); + setOperationAction(ISD::MULHS , MVT::i64 , Expand); + setOperationAction(ISD::MULHU , MVT::i64 , Expand); + setOperationAction(ISD::SDIV , MVT::i64 , Expand); + setOperationAction(ISD::UDIV , MVT::i64 , Expand); + setOperationAction(ISD::SREM , MVT::i64 , Expand); + setOperationAction(ISD::UREM , MVT::i64 , Expand); + + setOperationAction(ISD::BR_JT , MVT::Other, Expand); + setOperationAction(ISD::BRCOND , MVT::Other, Custom); + setOperationAction(ISD::BR_CC , MVT::Other, Expand); + setOperationAction(ISD::SELECT_CC , MVT::Other, Expand); + if (Subtarget->is64Bit()) + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); + setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand); + setOperationAction(ISD::FREM , MVT::f32 , Expand); + setOperationAction(ISD::FREM , MVT::f64 , Expand); + setOperationAction(ISD::FREM , MVT::f80 , Expand); + setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom); + + setOperationAction(ISD::CTPOP , MVT::i8 , Expand); + setOperationAction(ISD::CTTZ , MVT::i8 , Custom); + setOperationAction(ISD::CTLZ , MVT::i8 , Custom); + setOperationAction(ISD::CTPOP , MVT::i16 , Expand); + setOperationAction(ISD::CTTZ , MVT::i16 , Custom); + setOperationAction(ISD::CTLZ , MVT::i16 , Custom); + setOperationAction(ISD::CTPOP , MVT::i32 , Expand); + setOperationAction(ISD::CTTZ , MVT::i32 , Custom); + setOperationAction(ISD::CTLZ , MVT::i32 , Custom); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::CTPOP , MVT::i64 , Expand); + setOperationAction(ISD::CTTZ , MVT::i64 , Custom); + setOperationAction(ISD::CTLZ , MVT::i64 , Custom); + } + + setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom); + setOperationAction(ISD::BSWAP , MVT::i16 , Expand); + + // These should be promoted to a larger select which is supported. + setOperationAction(ISD::SELECT , MVT::i1 , Promote); + // X86 wants to expand cmov itself. + setOperationAction(ISD::SELECT , MVT::i8 , Custom); + setOperationAction(ISD::SELECT , MVT::i16 , Custom); + setOperationAction(ISD::SELECT , MVT::i32 , Custom); + setOperationAction(ISD::SELECT , MVT::f32 , Custom); + setOperationAction(ISD::SELECT , MVT::f64 , Custom); + setOperationAction(ISD::SELECT , MVT::f80 , Custom); + setOperationAction(ISD::SETCC , MVT::i8 , Custom); + setOperationAction(ISD::SETCC , MVT::i16 , Custom); + setOperationAction(ISD::SETCC , MVT::i32 , Custom); + setOperationAction(ISD::SETCC , MVT::f32 , Custom); + setOperationAction(ISD::SETCC , MVT::f64 , Custom); + setOperationAction(ISD::SETCC , MVT::f80 , Custom); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::SELECT , MVT::i64 , Custom); + setOperationAction(ISD::SETCC , MVT::i64 , Custom); + } + setOperationAction(ISD::EH_RETURN , MVT::Other, Custom); + + // Darwin ABI issue. + setOperationAction(ISD::ConstantPool , MVT::i32 , Custom); + setOperationAction(ISD::JumpTable , MVT::i32 , Custom); + setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom); + setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom); + if (Subtarget->is64Bit()) + setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); + setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom); + setOperationAction(ISD::BlockAddress , MVT::i32 , Custom); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::ConstantPool , MVT::i64 , Custom); + setOperationAction(ISD::JumpTable , MVT::i64 , Custom); + setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom); + setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom); + setOperationAction(ISD::BlockAddress , MVT::i64 , Custom); + } + // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) + setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom); + setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom); + setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom); + setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom); + setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom); + } + + if (Subtarget->hasSSE1()) + setOperationAction(ISD::PREFETCH , MVT::Other, Legal); + + if (!Subtarget->hasSSE2()) + setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand); + + // Expand certain atomics + setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i8, Custom); + setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i16, Custom); + setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom); + + setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i8, Custom); + setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i16, Custom); + setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); + + if (!Subtarget->is64Bit()) { + setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom); + setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom); + setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom); + setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom); + setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom); + setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom); + setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom); + } + + // FIXME - use subtarget debug flags + if (!Subtarget->isTargetDarwin() && + !Subtarget->isTargetELF() && + !Subtarget->isTargetCygMing()) { + setOperationAction(ISD::EH_LABEL, MVT::Other, Expand); + } + + setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); + setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); + setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); + setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); + if (Subtarget->is64Bit()) { + setExceptionPointerRegister(X86::RAX); + setExceptionSelectorRegister(X86::RDX); + } else { + setExceptionPointerRegister(X86::EAX); + setExceptionSelectorRegister(X86::EDX); + } + setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); + setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom); + + setOperationAction(ISD::TRAMPOLINE, MVT::Other, Custom); + + setOperationAction(ISD::TRAP, MVT::Other, Legal); + + // VASTART needs to be custom lowered to use the VarArgsFrameIndex + setOperationAction(ISD::VASTART , MVT::Other, Custom); + setOperationAction(ISD::VAEND , MVT::Other, Expand); + if (Subtarget->is64Bit()) { + setOperationAction(ISD::VAARG , MVT::Other, Custom); + setOperationAction(ISD::VACOPY , MVT::Other, Custom); + } else { + setOperationAction(ISD::VAARG , MVT::Other, Expand); + setOperationAction(ISD::VACOPY , MVT::Other, Expand); + } + + setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); + if (Subtarget->is64Bit()) + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand); + if (Subtarget->isTargetCygMing()) + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); + else + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); + + if (!UseSoftFloat && X86ScalarSSEf64) { + // f32 and f64 use SSE. + // Set up the FP register classes. + addRegisterClass(MVT::f32, X86::FR32RegisterClass); + addRegisterClass(MVT::f64, X86::FR64RegisterClass); + + // Use ANDPD to simulate FABS. + setOperationAction(ISD::FABS , MVT::f64, Custom); + setOperationAction(ISD::FABS , MVT::f32, Custom); + + // Use XORP to simulate FNEG. + setOperationAction(ISD::FNEG , MVT::f64, Custom); + setOperationAction(ISD::FNEG , MVT::f32, Custom); + + // Use ANDPD and ORPD to simulate FCOPYSIGN. + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); + + // We don't support sin/cos/fmod + setOperationAction(ISD::FSIN , MVT::f64, Expand); + setOperationAction(ISD::FCOS , MVT::f64, Expand); + setOperationAction(ISD::FSIN , MVT::f32, Expand); + setOperationAction(ISD::FCOS , MVT::f32, Expand); + + // Expand FP immediates into loads from the stack, except for the special + // cases we handle. + addLegalFPImmediate(APFloat(+0.0)); // xorpd + addLegalFPImmediate(APFloat(+0.0f)); // xorps + } else if (!UseSoftFloat && X86ScalarSSEf32) { + // Use SSE for f32, x87 for f64. + // Set up the FP register classes. + addRegisterClass(MVT::f32, X86::FR32RegisterClass); + addRegisterClass(MVT::f64, X86::RFP64RegisterClass); + + // Use ANDPS to simulate FABS. + setOperationAction(ISD::FABS , MVT::f32, Custom); + + // Use XORP to simulate FNEG. + setOperationAction(ISD::FNEG , MVT::f32, Custom); + + setOperationAction(ISD::UNDEF, MVT::f64, Expand); + + // Use ANDPS and ORPS to simulate FCOPYSIGN. + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); + + // We don't support sin/cos/fmod + setOperationAction(ISD::FSIN , MVT::f32, Expand); + setOperationAction(ISD::FCOS , MVT::f32, Expand); + + // Special cases we handle for FP constants. + addLegalFPImmediate(APFloat(+0.0f)); // xorps + addLegalFPImmediate(APFloat(+0.0)); // FLD0 + addLegalFPImmediate(APFloat(+1.0)); // FLD1 + addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS + addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS + + if (!UnsafeFPMath) { + setOperationAction(ISD::FSIN , MVT::f64 , Expand); + setOperationAction(ISD::FCOS , MVT::f64 , Expand); + } + } else if (!UseSoftFloat) { + // f32 and f64 in x87. + // Set up the FP register classes. + addRegisterClass(MVT::f64, X86::RFP64RegisterClass); + addRegisterClass(MVT::f32, X86::RFP32RegisterClass); + + setOperationAction(ISD::UNDEF, MVT::f64, Expand); + setOperationAction(ISD::UNDEF, MVT::f32, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); + + if (!UnsafeFPMath) { + setOperationAction(ISD::FSIN , MVT::f64 , Expand); + setOperationAction(ISD::FCOS , MVT::f64 , Expand); + } + addLegalFPImmediate(APFloat(+0.0)); // FLD0 + addLegalFPImmediate(APFloat(+1.0)); // FLD1 + addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS + addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS + addLegalFPImmediate(APFloat(+0.0f)); // FLD0 + addLegalFPImmediate(APFloat(+1.0f)); // FLD1 + addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS + addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS + } + + // Long double always uses X87. + if (!UseSoftFloat) { + addRegisterClass(MVT::f80, X86::RFP80RegisterClass); + setOperationAction(ISD::UNDEF, MVT::f80, Expand); + setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand); + { + bool ignored; + APFloat TmpFlt(+0.0); + TmpFlt.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, + &ignored); + addLegalFPImmediate(TmpFlt); // FLD0 + TmpFlt.changeSign(); + addLegalFPImmediate(TmpFlt); // FLD0/FCHS + APFloat TmpFlt2(+1.0); + TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven, + &ignored); + addLegalFPImmediate(TmpFlt2); // FLD1 + TmpFlt2.changeSign(); + addLegalFPImmediate(TmpFlt2); // FLD1/FCHS + } + + if (!UnsafeFPMath) { + setOperationAction(ISD::FSIN , MVT::f80 , Expand); + setOperationAction(ISD::FCOS , MVT::f80 , Expand); + } + } + + // Always use a library call for pow. + setOperationAction(ISD::FPOW , MVT::f32 , Expand); + setOperationAction(ISD::FPOW , MVT::f64 , Expand); + setOperationAction(ISD::FPOW , MVT::f80 , Expand); + + setOperationAction(ISD::FLOG, MVT::f80, Expand); + setOperationAction(ISD::FLOG2, MVT::f80, Expand); + setOperationAction(ISD::FLOG10, MVT::f80, Expand); + setOperationAction(ISD::FEXP, MVT::f80, Expand); + setOperationAction(ISD::FEXP2, MVT::f80, Expand); + + // First set operation action for all vector types to either promote + // (for widening) or expand (for scalarization). Then we will selectively + // turn on ones that can be effectively codegen'd. + for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; + VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) { + setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand); + setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand); + setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::VSETCC, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand); + setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand); + setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand); + for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE; + InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT) + setTruncStoreAction((MVT::SimpleValueType)VT, + (MVT::SimpleValueType)InnerVT, Expand); + setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand); + setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand); + setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand); + } + + // FIXME: In order to prevent SSE instructions being expanded to MMX ones + // with -msoft-float, disable use of MMX as well. + if (!UseSoftFloat && !DisableMMX && Subtarget->hasMMX()) { + addRegisterClass(MVT::v8i8, X86::VR64RegisterClass, false); + addRegisterClass(MVT::v4i16, X86::VR64RegisterClass, false); + addRegisterClass(MVT::v2i32, X86::VR64RegisterClass, false); + addRegisterClass(MVT::v2f32, X86::VR64RegisterClass, false); + addRegisterClass(MVT::v1i64, X86::VR64RegisterClass, false); + + setOperationAction(ISD::ADD, MVT::v8i8, Legal); + setOperationAction(ISD::ADD, MVT::v4i16, Legal); + setOperationAction(ISD::ADD, MVT::v2i32, Legal); + setOperationAction(ISD::ADD, MVT::v1i64, Legal); + + setOperationAction(ISD::SUB, MVT::v8i8, Legal); + setOperationAction(ISD::SUB, MVT::v4i16, Legal); + setOperationAction(ISD::SUB, MVT::v2i32, Legal); + setOperationAction(ISD::SUB, MVT::v1i64, Legal); + + setOperationAction(ISD::MULHS, MVT::v4i16, Legal); + setOperationAction(ISD::MUL, MVT::v4i16, Legal); + + setOperationAction(ISD::AND, MVT::v8i8, Promote); + AddPromotedToType (ISD::AND, MVT::v8i8, MVT::v1i64); + setOperationAction(ISD::AND, MVT::v4i16, Promote); + AddPromotedToType (ISD::AND, MVT::v4i16, MVT::v1i64); + setOperationAction(ISD::AND, MVT::v2i32, Promote); + AddPromotedToType (ISD::AND, MVT::v2i32, MVT::v1i64); + setOperationAction(ISD::AND, MVT::v1i64, Legal); + + setOperationAction(ISD::OR, MVT::v8i8, Promote); + AddPromotedToType (ISD::OR, MVT::v8i8, MVT::v1i64); + setOperationAction(ISD::OR, MVT::v4i16, Promote); + AddPromotedToType (ISD::OR, MVT::v4i16, MVT::v1i64); + setOperationAction(ISD::OR, MVT::v2i32, Promote); + AddPromotedToType (ISD::OR, MVT::v2i32, MVT::v1i64); + setOperationAction(ISD::OR, MVT::v1i64, Legal); + + setOperationAction(ISD::XOR, MVT::v8i8, Promote); + AddPromotedToType (ISD::XOR, MVT::v8i8, MVT::v1i64); + setOperationAction(ISD::XOR, MVT::v4i16, Promote); + AddPromotedToType (ISD::XOR, MVT::v4i16, MVT::v1i64); + setOperationAction(ISD::XOR, MVT::v2i32, Promote); + AddPromotedToType (ISD::XOR, MVT::v2i32, MVT::v1i64); + setOperationAction(ISD::XOR, MVT::v1i64, Legal); + + setOperationAction(ISD::LOAD, MVT::v8i8, Promote); + AddPromotedToType (ISD::LOAD, MVT::v8i8, MVT::v1i64); + setOperationAction(ISD::LOAD, MVT::v4i16, Promote); + AddPromotedToType (ISD::LOAD, MVT::v4i16, MVT::v1i64); + setOperationAction(ISD::LOAD, MVT::v2i32, Promote); + AddPromotedToType (ISD::LOAD, MVT::v2i32, MVT::v1i64); + setOperationAction(ISD::LOAD, MVT::v2f32, Promote); + AddPromotedToType (ISD::LOAD, MVT::v2f32, MVT::v1i64); + setOperationAction(ISD::LOAD, MVT::v1i64, Legal); + + setOperationAction(ISD::BUILD_VECTOR, MVT::v8i8, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v2i32, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v2f32, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v1i64, Custom); + + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i32, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v1i64, Custom); + + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f32, Custom); + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Custom); + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Custom); + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Custom); + + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom); + + setOperationAction(ISD::SELECT, MVT::v8i8, Promote); + setOperationAction(ISD::SELECT, MVT::v4i16, Promote); + setOperationAction(ISD::SELECT, MVT::v2i32, Promote); + setOperationAction(ISD::SELECT, MVT::v1i64, Custom); + setOperationAction(ISD::VSETCC, MVT::v8i8, Custom); + setOperationAction(ISD::VSETCC, MVT::v4i16, Custom); + setOperationAction(ISD::VSETCC, MVT::v2i32, Custom); + + if (!X86ScalarSSEf64 && Subtarget->is64Bit()) { + setOperationAction(ISD::BIT_CONVERT, MVT::v8i8, Custom); + setOperationAction(ISD::BIT_CONVERT, MVT::v4i16, Custom); + setOperationAction(ISD::BIT_CONVERT, MVT::v2i32, Custom); + setOperationAction(ISD::BIT_CONVERT, MVT::v2f32, Custom); + setOperationAction(ISD::BIT_CONVERT, MVT::v1i64, Custom); + } + } + + if (!UseSoftFloat && Subtarget->hasSSE1()) { + addRegisterClass(MVT::v4f32, X86::VR128RegisterClass); + + setOperationAction(ISD::FADD, MVT::v4f32, Legal); + setOperationAction(ISD::FSUB, MVT::v4f32, Legal); + setOperationAction(ISD::FMUL, MVT::v4f32, Legal); + setOperationAction(ISD::FDIV, MVT::v4f32, Legal); + setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); + setOperationAction(ISD::FNEG, MVT::v4f32, Custom); + setOperationAction(ISD::LOAD, MVT::v4f32, Legal); + setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); + setOperationAction(ISD::SELECT, MVT::v4f32, Custom); + setOperationAction(ISD::VSETCC, MVT::v4f32, Custom); + } + + if (!UseSoftFloat && Subtarget->hasSSE2()) { + addRegisterClass(MVT::v2f64, X86::VR128RegisterClass); + + // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM + // registers cannot be used even for integer operations. + addRegisterClass(MVT::v16i8, X86::VR128RegisterClass); + addRegisterClass(MVT::v8i16, X86::VR128RegisterClass); + addRegisterClass(MVT::v4i32, X86::VR128RegisterClass); + addRegisterClass(MVT::v2i64, X86::VR128RegisterClass); + + setOperationAction(ISD::ADD, MVT::v16i8, Legal); + setOperationAction(ISD::ADD, MVT::v8i16, Legal); + setOperationAction(ISD::ADD, MVT::v4i32, Legal); + setOperationAction(ISD::ADD, MVT::v2i64, Legal); + setOperationAction(ISD::MUL, MVT::v2i64, Custom); + setOperationAction(ISD::SUB, MVT::v16i8, Legal); + setOperationAction(ISD::SUB, MVT::v8i16, Legal); + setOperationAction(ISD::SUB, MVT::v4i32, Legal); + setOperationAction(ISD::SUB, MVT::v2i64, Legal); + setOperationAction(ISD::MUL, MVT::v8i16, Legal); + setOperationAction(ISD::FADD, MVT::v2f64, Legal); + setOperationAction(ISD::FSUB, MVT::v2f64, Legal); + setOperationAction(ISD::FMUL, MVT::v2f64, Legal); + setOperationAction(ISD::FDIV, MVT::v2f64, Legal); + setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); + setOperationAction(ISD::FNEG, MVT::v2f64, Custom); + + setOperationAction(ISD::VSETCC, MVT::v2f64, Custom); + setOperationAction(ISD::VSETCC, MVT::v16i8, Custom); + setOperationAction(ISD::VSETCC, MVT::v8i16, Custom); + setOperationAction(ISD::VSETCC, MVT::v4i32, Custom); + + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom); + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); + + setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); + + // Custom lower build_vector, vector_shuffle, and extract_vector_elt. + for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) { + EVT VT = (MVT::SimpleValueType)i; + // Do not attempt to custom lower non-power-of-2 vectors + if (!isPowerOf2_32(VT.getVectorNumElements())) + continue; + // Do not attempt to custom lower non-128-bit vectors + if (!VT.is128BitVector()) + continue; + setOperationAction(ISD::BUILD_VECTOR, + VT.getSimpleVT().SimpleTy, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, + VT.getSimpleVT().SimpleTy, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, + VT.getSimpleVT().SimpleTy, Custom); + } + + setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); + + if (Subtarget->is64Bit()) { + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom); + } + + // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64. + for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) { + MVT::SimpleValueType SVT = (MVT::SimpleValueType)i; + EVT VT = SVT; + + // Do not attempt to promote non-128-bit vectors + if (!VT.is128BitVector()) { + continue; + } + + setOperationAction(ISD::AND, SVT, Promote); + AddPromotedToType (ISD::AND, SVT, MVT::v2i64); + setOperationAction(ISD::OR, SVT, Promote); + AddPromotedToType (ISD::OR, SVT, MVT::v2i64); + setOperationAction(ISD::XOR, SVT, Promote); + AddPromotedToType (ISD::XOR, SVT, MVT::v2i64); + setOperationAction(ISD::LOAD, SVT, Promote); + AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64); + setOperationAction(ISD::SELECT, SVT, Promote); + AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64); + } + + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + + // Custom lower v2i64 and v2f64 selects. + setOperationAction(ISD::LOAD, MVT::v2f64, Legal); + setOperationAction(ISD::LOAD, MVT::v2i64, Legal); + setOperationAction(ISD::SELECT, MVT::v2f64, Custom); + setOperationAction(ISD::SELECT, MVT::v2i64, Custom); + + setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); + setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); + if (!DisableMMX && Subtarget->hasMMX()) { + setOperationAction(ISD::FP_TO_SINT, MVT::v2i32, Custom); + setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom); + } + } + + if (Subtarget->hasSSE41()) { + // FIXME: Do we need to handle scalar-to-vector here? + setOperationAction(ISD::MUL, MVT::v4i32, Legal); + + // i8 and i16 vectors are custom , because the source register and source + // source memory operand types are not the same width. f32 vectors are + // custom since the immediate controlling the insert encodes additional + // information. + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); + + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); + + if (Subtarget->is64Bit()) { + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); + } + } + + if (Subtarget->hasSSE42()) { + setOperationAction(ISD::VSETCC, MVT::v2i64, Custom); + } + + if (!UseSoftFloat && Subtarget->hasAVX()) { + addRegisterClass(MVT::v8f32, X86::VR256RegisterClass); + addRegisterClass(MVT::v4f64, X86::VR256RegisterClass); + addRegisterClass(MVT::v8i32, X86::VR256RegisterClass); + addRegisterClass(MVT::v4i64, X86::VR256RegisterClass); + + setOperationAction(ISD::LOAD, MVT::v8f32, Legal); + setOperationAction(ISD::LOAD, MVT::v8i32, Legal); + setOperationAction(ISD::LOAD, MVT::v4f64, Legal); + setOperationAction(ISD::LOAD, MVT::v4i64, Legal); + setOperationAction(ISD::FADD, MVT::v8f32, Legal); + setOperationAction(ISD::FSUB, MVT::v8f32, Legal); + setOperationAction(ISD::FMUL, MVT::v8f32, Legal); + setOperationAction(ISD::FDIV, MVT::v8f32, Legal); + setOperationAction(ISD::FSQRT, MVT::v8f32, Legal); + setOperationAction(ISD::FNEG, MVT::v8f32, Custom); + //setOperationAction(ISD::BUILD_VECTOR, MVT::v8f32, Custom); + //setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Custom); + //setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8f32, Custom); + //setOperationAction(ISD::SELECT, MVT::v8f32, Custom); + //setOperationAction(ISD::VSETCC, MVT::v8f32, Custom); + + // Operations to consider commented out -v16i16 v32i8 + //setOperationAction(ISD::ADD, MVT::v16i16, Legal); + setOperationAction(ISD::ADD, MVT::v8i32, Custom); + setOperationAction(ISD::ADD, MVT::v4i64, Custom); + //setOperationAction(ISD::SUB, MVT::v32i8, Legal); + //setOperationAction(ISD::SUB, MVT::v16i16, Legal); + setOperationAction(ISD::SUB, MVT::v8i32, Custom); + setOperationAction(ISD::SUB, MVT::v4i64, Custom); + //setOperationAction(ISD::MUL, MVT::v16i16, Legal); + setOperationAction(ISD::FADD, MVT::v4f64, Legal); + setOperationAction(ISD::FSUB, MVT::v4f64, Legal); + setOperationAction(ISD::FMUL, MVT::v4f64, Legal); + setOperationAction(ISD::FDIV, MVT::v4f64, Legal); + setOperationAction(ISD::FSQRT, MVT::v4f64, Legal); + setOperationAction(ISD::FNEG, MVT::v4f64, Custom); + + setOperationAction(ISD::VSETCC, MVT::v4f64, Custom); + // setOperationAction(ISD::VSETCC, MVT::v32i8, Custom); + // setOperationAction(ISD::VSETCC, MVT::v16i16, Custom); + setOperationAction(ISD::VSETCC, MVT::v8i32, Custom); + + // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i8, Custom); + // setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i16, Custom); + // setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i16, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i32, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8f32, Custom); + + setOperationAction(ISD::BUILD_VECTOR, MVT::v4f64, Custom); + setOperationAction(ISD::BUILD_VECTOR, MVT::v4i64, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f64, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i64, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f64, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f64, Custom); + +#if 0 + // Not sure we want to do this since there are no 256-bit integer + // operations in AVX + + // Custom lower build_vector, vector_shuffle, and extract_vector_elt. + // This includes 256-bit vectors + for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; ++i) { + EVT VT = (MVT::SimpleValueType)i; + + // Do not attempt to custom lower non-power-of-2 vectors + if (!isPowerOf2_32(VT.getVectorNumElements())) + continue; + + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); + } + + if (Subtarget->is64Bit()) { + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i64, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i64, Custom); + } +#endif + +#if 0 + // Not sure we want to do this since there are no 256-bit integer + // operations in AVX + + // Promote v32i8, v16i16, v8i32 load, select, and, or, xor to v4i64. + // Including 256-bit vectors + for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v4i64; i++) { + EVT VT = (MVT::SimpleValueType)i; + + if (!VT.is256BitVector()) { + continue; + } + setOperationAction(ISD::AND, VT, Promote); + AddPromotedToType (ISD::AND, VT, MVT::v4i64); + setOperationAction(ISD::OR, VT, Promote); + AddPromotedToType (ISD::OR, VT, MVT::v4i64); + setOperationAction(ISD::XOR, VT, Promote); + AddPromotedToType (ISD::XOR, VT, MVT::v4i64); + setOperationAction(ISD::LOAD, VT, Promote); + AddPromotedToType (ISD::LOAD, VT, MVT::v4i64); + setOperationAction(ISD::SELECT, VT, Promote); + AddPromotedToType (ISD::SELECT, VT, MVT::v4i64); + } + + setTruncStoreAction(MVT::f64, MVT::f32, Expand); +#endif + } + + // We want to custom lower some of our intrinsics. + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); + + // Add/Sub/Mul with overflow operations are custom lowered. + setOperationAction(ISD::SADDO, MVT::i32, Custom); + setOperationAction(ISD::SADDO, MVT::i64, Custom); + setOperationAction(ISD::UADDO, MVT::i32, Custom); + setOperationAction(ISD::UADDO, MVT::i64, Custom); + setOperationAction(ISD::SSUBO, MVT::i32, Custom); + setOperationAction(ISD::SSUBO, MVT::i64, Custom); + setOperationAction(ISD::USUBO, MVT::i32, Custom); + setOperationAction(ISD::USUBO, MVT::i64, Custom); + setOperationAction(ISD::SMULO, MVT::i32, Custom); + setOperationAction(ISD::SMULO, MVT::i64, Custom); + + if (!Subtarget->is64Bit()) { + // These libcalls are not available in 32-bit. + setLibcallName(RTLIB::SHL_I128, 0); + setLibcallName(RTLIB::SRL_I128, 0); + setLibcallName(RTLIB::SRA_I128, 0); + } + + // We have target-specific dag combine patterns for the following nodes: + setTargetDAGCombine(ISD::VECTOR_SHUFFLE); + setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); + setTargetDAGCombine(ISD::BUILD_VECTOR); + setTargetDAGCombine(ISD::SELECT); + setTargetDAGCombine(ISD::SHL); + setTargetDAGCombine(ISD::SRA); + setTargetDAGCombine(ISD::SRL); + setTargetDAGCombine(ISD::OR); + setTargetDAGCombine(ISD::STORE); + setTargetDAGCombine(ISD::MEMBARRIER); + setTargetDAGCombine(ISD::ZERO_EXTEND); + if (Subtarget->is64Bit()) + setTargetDAGCombine(ISD::MUL); + + computeRegisterProperties(); + + // FIXME: These should be based on subtarget info. Plus, the values should + // be smaller when we are in optimizing for size mode. + maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores + maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores + maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores + setPrefLoopAlignment(16); + benefitFromCodePlacementOpt = true; +} + + +MVT::SimpleValueType X86TargetLowering::getSetCCResultType(EVT VT) const { + return MVT::i8; +} + + +/// getMaxByValAlign - Helper for getByValTypeAlignment to determine +/// the desired ByVal argument alignment. +static void getMaxByValAlign(const Type *Ty, unsigned &MaxAlign) { + if (MaxAlign == 16) + return; + if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) { + if (VTy->getBitWidth() == 128) + MaxAlign = 16; + } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { + unsigned EltAlign = 0; + getMaxByValAlign(ATy->getElementType(), EltAlign); + if (EltAlign > MaxAlign) + MaxAlign = EltAlign; + } else if (const StructType *STy = dyn_cast<StructType>(Ty)) { + for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { + unsigned EltAlign = 0; + getMaxByValAlign(STy->getElementType(i), EltAlign); + if (EltAlign > MaxAlign) + MaxAlign = EltAlign; + if (MaxAlign == 16) + break; + } + } + return; +} + +/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate +/// function arguments in the caller parameter area. For X86, aggregates +/// that contain SSE vectors are placed at 16-byte boundaries while the rest +/// are at 4-byte boundaries. +unsigned X86TargetLowering::getByValTypeAlignment(const Type *Ty) const { + if (Subtarget->is64Bit()) { + // Max of 8 and alignment of type. + unsigned TyAlign = TD->getABITypeAlignment(Ty); + if (TyAlign > 8) + return TyAlign; + return 8; + } + + unsigned Align = 4; + if (Subtarget->hasSSE1()) + getMaxByValAlign(Ty, Align); + return Align; +} + +/// getOptimalMemOpType - Returns the target specific optimal type for load +/// and store operations as a result of memset, memcpy, and memmove +/// lowering. If DstAlign is zero that means it's safe to destination +/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it +/// means there isn't a need to check it against alignment requirement, +/// probably because the source does not need to be loaded. If +/// 'NonScalarIntSafe' is true, that means it's safe to return a +/// non-scalar-integer type, e.g. empty string source, constant, or loaded +/// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is +/// constant so it does not need to be loaded. +/// It returns EVT::Other if the type should be determined using generic +/// target-independent logic. +EVT +X86TargetLowering::getOptimalMemOpType(uint64_t Size, + unsigned DstAlign, unsigned SrcAlign, + bool NonScalarIntSafe, + bool MemcpyStrSrc, + MachineFunction &MF) const { + // FIXME: This turns off use of xmm stores for memset/memcpy on targets like + // linux. This is because the stack realignment code can't handle certain + // cases like PR2962. This should be removed when PR2962 is fixed. + const Function *F = MF.getFunction(); + if (NonScalarIntSafe && + !F->hasFnAttr(Attribute::NoImplicitFloat)) { + if (Size >= 16 && + (Subtarget->isUnalignedMemAccessFast() || + ((DstAlign == 0 || DstAlign >= 16) && + (SrcAlign == 0 || SrcAlign >= 16))) && + Subtarget->getStackAlignment() >= 16) { + if (Subtarget->hasSSE2()) + return MVT::v4i32; + if (Subtarget->hasSSE1()) + return MVT::v4f32; + } else if (!MemcpyStrSrc && Size >= 8 && + !Subtarget->is64Bit() && + Subtarget->getStackAlignment() >= 8 && + Subtarget->hasSSE2()) { + // Do not use f64 to lower memcpy if source is string constant. It's + // better to use i32 to avoid the loads. + return MVT::f64; + } + } + if (Subtarget->is64Bit() && Size >= 8) + return MVT::i64; + return MVT::i32; +} + +/// getJumpTableEncoding - Return the entry encoding for a jump table in the +/// current function. The returned value is a member of the +/// MachineJumpTableInfo::JTEntryKind enum. +unsigned X86TargetLowering::getJumpTableEncoding() const { + // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF + // symbol. + if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && + Subtarget->isPICStyleGOT()) + return MachineJumpTableInfo::EK_Custom32; + + // Otherwise, use the normal jump table encoding heuristics. + return TargetLowering::getJumpTableEncoding(); +} + +/// getPICBaseSymbol - Return the X86-32 PIC base. +MCSymbol * +X86TargetLowering::getPICBaseSymbol(const MachineFunction *MF, + MCContext &Ctx) const { + const MCAsmInfo &MAI = *getTargetMachine().getMCAsmInfo(); + return Ctx.GetOrCreateSymbol(Twine(MAI.getPrivateGlobalPrefix())+ + Twine(MF->getFunctionNumber())+"$pb"); +} + + +const MCExpr * +X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI, + const MachineBasicBlock *MBB, + unsigned uid,MCContext &Ctx) const{ + assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ && + Subtarget->isPICStyleGOT()); + // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF + // entries. + return MCSymbolRefExpr::Create(MBB->getSymbol(), + MCSymbolRefExpr::VK_GOTOFF, Ctx); +} + +/// getPICJumpTableRelocaBase - Returns relocation base for the given PIC +/// jumptable. +SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table, + SelectionDAG &DAG) const { + if (!Subtarget->is64Bit()) + // This doesn't have DebugLoc associated with it, but is not really the + // same as a Register. + return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy()); + return Table; +} + +/// getPICJumpTableRelocBaseExpr - This returns the relocation base for the +/// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an +/// MCExpr. +const MCExpr *X86TargetLowering:: +getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, + MCContext &Ctx) const { + // X86-64 uses RIP relative addressing based on the jump table label. + if (Subtarget->isPICStyleRIPRel()) + return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); + + // Otherwise, the reference is relative to the PIC base. + return MCSymbolRefExpr::Create(getPICBaseSymbol(MF, Ctx), Ctx); +} + +/// getFunctionAlignment - Return the Log2 alignment of this function. +unsigned X86TargetLowering::getFunctionAlignment(const Function *F) const { + return F->hasFnAttr(Attribute::OptimizeForSize) ? 0 : 4; +} + +//===----------------------------------------------------------------------===// +// Return Value Calling Convention Implementation +//===----------------------------------------------------------------------===// + +#include "X86GenCallingConv.inc" + +bool +X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<EVT> &OutTys, + const SmallVectorImpl<ISD::ArgFlagsTy> &ArgsFlags, + SelectionDAG &DAG) const { + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, getTargetMachine(), + RVLocs, *DAG.getContext()); + return CCInfo.CheckReturn(OutTys, ArgsFlags, RetCC_X86); +} + +SDValue +X86TargetLowering::LowerReturn(SDValue Chain, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + DebugLoc dl, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, getTargetMachine(), + RVLocs, *DAG.getContext()); + CCInfo.AnalyzeReturn(Outs, RetCC_X86); + + // Add the regs to the liveout set for the function. + MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); + for (unsigned i = 0; i != RVLocs.size(); ++i) + if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg())) + MRI.addLiveOut(RVLocs[i].getLocReg()); + + SDValue Flag; + + SmallVector<SDValue, 6> RetOps; + RetOps.push_back(Chain); // Operand #0 = Chain (updated below) + // Operand #1 = Bytes To Pop + RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), + MVT::i16)); + + // Copy the result values into the output registers. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + SDValue ValToCopy = Outs[i].Val; + + // Returns in ST0/ST1 are handled specially: these are pushed as operands to + // the RET instruction and handled by the FP Stackifier. + if (VA.getLocReg() == X86::ST0 || + VA.getLocReg() == X86::ST1) { + // If this is a copy from an xmm register to ST(0), use an FPExtend to + // change the value to the FP stack register class. + if (isScalarFPTypeInSSEReg(VA.getValVT())) + ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy); + RetOps.push_back(ValToCopy); + // Don't emit a copytoreg. + continue; + } + + // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64 + // which is returned in RAX / RDX. + if (Subtarget->is64Bit()) { + EVT ValVT = ValToCopy.getValueType(); + if (ValVT.isVector() && ValVT.getSizeInBits() == 64) { + ValToCopy = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, ValToCopy); + if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) + ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, ValToCopy); + } + } + + Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag); + Flag = Chain.getValue(1); + } + + // The x86-64 ABI for returning structs by value requires that we copy + // the sret argument into %rax for the return. We saved the argument into + // a virtual register in the entry block, so now we copy the value out + // and into %rax. + if (Subtarget->is64Bit() && + DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { + MachineFunction &MF = DAG.getMachineFunction(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + unsigned Reg = FuncInfo->getSRetReturnReg(); + assert(Reg && + "SRetReturnReg should have been set in LowerFormalArguments()."); + SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); + + Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag); + Flag = Chain.getValue(1); + + // RAX now acts like a return value. + MRI.addLiveOut(X86::RAX); + } + + RetOps[0] = Chain; // Update chain. + + // Add the flag if we have it. + if (Flag.getNode()) + RetOps.push_back(Flag); + + return DAG.getNode(X86ISD::RET_FLAG, dl, + MVT::Other, &RetOps[0], RetOps.size()); +} + +/// LowerCallResult - Lower the result values of a call into the +/// appropriate copies out of appropriate physical registers. +/// +SDValue +X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + bool Is64Bit = Subtarget->is64Bit(); + CCState CCInfo(CallConv, isVarArg, getTargetMachine(), + RVLocs, *DAG.getContext()); + CCInfo.AnalyzeCallResult(Ins, RetCC_X86); + + // Copy all of the result registers out of their specified physreg. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + EVT CopyVT = VA.getValVT(); + + // If this is x86-64, and we disabled SSE, we can't return FP values + if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) && + ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasSSE1())) { + report_fatal_error("SSE register return with SSE disabled"); + } + + // If this is a call to a function that returns an fp value on the floating + // point stack, but where we prefer to use the value in xmm registers, copy + // it out as F80 and use a truncate to move it from fp stack reg to xmm reg. + if ((VA.getLocReg() == X86::ST0 || + VA.getLocReg() == X86::ST1) && + isScalarFPTypeInSSEReg(VA.getValVT())) { + CopyVT = MVT::f80; + } + + SDValue Val; + if (Is64Bit && CopyVT.isVector() && CopyVT.getSizeInBits() == 64) { + // For x86-64, MMX values are returned in XMM0 / XMM1 except for v1i64. + if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) { + Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), + MVT::v2i64, InFlag).getValue(1); + Val = Chain.getValue(0); + Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, + Val, DAG.getConstant(0, MVT::i64)); + } else { + Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), + MVT::i64, InFlag).getValue(1); + Val = Chain.getValue(0); + } + Val = DAG.getNode(ISD::BIT_CONVERT, dl, CopyVT, Val); + } else { + Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), + CopyVT, InFlag).getValue(1); + Val = Chain.getValue(0); + } + InFlag = Chain.getValue(2); + + if (CopyVT != VA.getValVT()) { + // Round the F80 the right size, which also moves to the appropriate xmm + // register. + Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val, + // This truncation won't change the value. + DAG.getIntPtrConstant(1)); + } + + InVals.push_back(Val); + } + + return Chain; +} + + +//===----------------------------------------------------------------------===// +// C & StdCall & Fast Calling Convention implementation +//===----------------------------------------------------------------------===// +// StdCall calling convention seems to be standard for many Windows' API +// routines and around. It differs from C calling convention just a little: +// callee should clean up the stack, not caller. Symbols should be also +// decorated in some fancy way :) It doesn't support any vector arguments. +// For info on fast calling convention see Fast Calling Convention (tail call) +// implementation LowerX86_32FastCCCallTo. + +/// CallIsStructReturn - Determines whether a call uses struct return +/// semantics. +static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) { + if (Outs.empty()) + return false; + + return Outs[0].Flags.isSRet(); +} + +/// ArgsAreStructReturn - Determines whether a function uses struct +/// return semantics. +static bool +ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) { + if (Ins.empty()) + return false; + + return Ins[0].Flags.isSRet(); +} + +/// IsCalleePop - Determines whether the callee is required to pop its +/// own arguments. Callee pop is necessary to support tail calls. +bool X86TargetLowering::IsCalleePop(bool IsVarArg, + CallingConv::ID CallingConv) const { + if (IsVarArg) + return false; + + switch (CallingConv) { + default: + return false; + case CallingConv::X86_StdCall: + return !Subtarget->is64Bit(); + case CallingConv::X86_FastCall: + return !Subtarget->is64Bit(); + case CallingConv::X86_ThisCall: + return !Subtarget->is64Bit(); + case CallingConv::Fast: + return GuaranteedTailCallOpt; + case CallingConv::GHC: + return GuaranteedTailCallOpt; + } +} + +/// CCAssignFnForNode - Selects the correct CCAssignFn for a the +/// given CallingConvention value. +CCAssignFn *X86TargetLowering::CCAssignFnForNode(CallingConv::ID CC) const { + if (Subtarget->is64Bit()) { + if (CC == CallingConv::GHC) + return CC_X86_64_GHC; + else if (Subtarget->isTargetWin64()) + return CC_X86_Win64_C; + else + return CC_X86_64_C; + } + + if (CC == CallingConv::X86_FastCall) + return CC_X86_32_FastCall; + else if (CC == CallingConv::X86_ThisCall) + return CC_X86_32_ThisCall; + else if (CC == CallingConv::Fast) + return CC_X86_32_FastCC; + else if (CC == CallingConv::GHC) + return CC_X86_32_GHC; + else + return CC_X86_32_C; +} + +/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified +/// by "Src" to address "Dst" with size and alignment information specified by +/// the specific parameter attribute. The copy will be passed as a byval +/// function parameter. +static SDValue +CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, + ISD::ArgFlagsTy Flags, SelectionDAG &DAG, + DebugLoc dl) { + SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); + return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), + /*isVolatile*/false, /*AlwaysInline=*/true, + NULL, 0, NULL, 0); +} + +/// IsTailCallConvention - Return true if the calling convention is one that +/// supports tail call optimization. +static bool IsTailCallConvention(CallingConv::ID CC) { + return (CC == CallingConv::Fast || CC == CallingConv::GHC); +} + +/// FuncIsMadeTailCallSafe - Return true if the function is being made into +/// a tailcall target by changing its ABI. +static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) { + return GuaranteedTailCallOpt && IsTailCallConvention(CC); +} + +SDValue +X86TargetLowering::LowerMemArgument(SDValue Chain, + CallingConv::ID CallConv, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, SelectionDAG &DAG, + const CCValAssign &VA, + MachineFrameInfo *MFI, + unsigned i) const { + // Create the nodes corresponding to a load from this parameter slot. + ISD::ArgFlagsTy Flags = Ins[i].Flags; + bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv); + bool isImmutable = !AlwaysUseMutable && !Flags.isByVal(); + EVT ValVT; + + // If value is passed by pointer we have address passed instead of the value + // itself. + if (VA.getLocInfo() == CCValAssign::Indirect) + ValVT = VA.getLocVT(); + else + ValVT = VA.getValVT(); + + // FIXME: For now, all byval parameter objects are marked mutable. This can be + // changed with more analysis. + // In case of tail call optimization mark all arguments mutable. Since they + // could be overwritten by lowering of arguments in case of a tail call. + if (Flags.isByVal()) { + int FI = MFI->CreateFixedObject(Flags.getByValSize(), + VA.getLocMemOffset(), isImmutable, false); + return DAG.getFrameIndex(FI, getPointerTy()); + } else { + int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, + VA.getLocMemOffset(), isImmutable, false); + SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); + return DAG.getLoad(ValVT, dl, Chain, FIN, + PseudoSourceValue::getFixedStack(FI), 0, + false, false, 0); + } +} + +SDValue +X86TargetLowering::LowerFormalArguments(SDValue Chain, + CallingConv::ID CallConv, + bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, + SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) + const { + MachineFunction &MF = DAG.getMachineFunction(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + + const Function* Fn = MF.getFunction(); + if (Fn->hasExternalLinkage() && + Subtarget->isTargetCygMing() && + Fn->getName() == "main") + FuncInfo->setForceFramePointer(true); + + MachineFrameInfo *MFI = MF.getFrameInfo(); + bool Is64Bit = Subtarget->is64Bit(); + bool IsWin64 = Subtarget->isTargetWin64(); + + assert(!(isVarArg && IsTailCallConvention(CallConv)) && + "Var args not supported with calling convention fastcc or ghc"); + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, getTargetMachine(), + ArgLocs, *DAG.getContext()); + CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForNode(CallConv)); + + unsigned LastVal = ~0U; + SDValue ArgValue; + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + // TODO: If an arg is passed in two places (e.g. reg and stack), skip later + // places. + assert(VA.getValNo() != LastVal && + "Don't support value assigned to multiple locs yet"); + LastVal = VA.getValNo(); + + if (VA.isRegLoc()) { + EVT RegVT = VA.getLocVT(); + TargetRegisterClass *RC = NULL; + if (RegVT == MVT::i32) + RC = X86::GR32RegisterClass; + else if (Is64Bit && RegVT == MVT::i64) + RC = X86::GR64RegisterClass; + else if (RegVT == MVT::f32) + RC = X86::FR32RegisterClass; + else if (RegVT == MVT::f64) + RC = X86::FR64RegisterClass; + else if (RegVT.isVector() && RegVT.getSizeInBits() == 128) + RC = X86::VR128RegisterClass; + else if (RegVT.isVector() && RegVT.getSizeInBits() == 64) + RC = X86::VR64RegisterClass; + else + llvm_unreachable("Unknown argument type!"); + + unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); + ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); + + // If this is an 8 or 16-bit value, it is really passed promoted to 32 + // bits. Insert an assert[sz]ext to capture this, then truncate to the + // right size. + if (VA.getLocInfo() == CCValAssign::SExt) + ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, + DAG.getValueType(VA.getValVT())); + else if (VA.getLocInfo() == CCValAssign::ZExt) + ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, + DAG.getValueType(VA.getValVT())); + else if (VA.getLocInfo() == CCValAssign::BCvt) + ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue); + + if (VA.isExtInLoc()) { + // Handle MMX values passed in XMM regs. + if (RegVT.isVector()) { + ArgValue = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, + ArgValue, DAG.getConstant(0, MVT::i64)); + ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue); + } else + ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); + } + } else { + assert(VA.isMemLoc()); + ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i); + } + + // If value is passed via pointer - do a load. + if (VA.getLocInfo() == CCValAssign::Indirect) + ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue, NULL, 0, + false, false, 0); + + InVals.push_back(ArgValue); + } + + // The x86-64 ABI for returning structs by value requires that we copy + // the sret argument into %rax for the return. Save the argument into + // a virtual register so that we can access it from the return points. + if (Is64Bit && MF.getFunction()->hasStructRetAttr()) { + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + unsigned Reg = FuncInfo->getSRetReturnReg(); + if (!Reg) { + Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64)); + FuncInfo->setSRetReturnReg(Reg); + } + SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); + } + + unsigned StackSize = CCInfo.getNextStackOffset(); + // Align stack specially for tail calls. + if (FuncIsMadeTailCallSafe(CallConv)) + StackSize = GetAlignedArgumentStackSize(StackSize, DAG); + + // If the function takes variable number of arguments, make a frame index for + // the start of the first vararg value... for expansion of llvm.va_start. + if (isVarArg) { + if (Is64Bit || (CallConv != CallingConv::X86_FastCall && + CallConv != CallingConv::X86_ThisCall)) { + FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, + true, false)); + } + if (Is64Bit) { + unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0; + + // FIXME: We should really autogenerate these arrays + static const unsigned GPR64ArgRegsWin64[] = { + X86::RCX, X86::RDX, X86::R8, X86::R9 + }; + static const unsigned XMMArgRegsWin64[] = { + X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3 + }; + static const unsigned GPR64ArgRegs64Bit[] = { + X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9 + }; + static const unsigned XMMArgRegs64Bit[] = { + X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, + X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 + }; + const unsigned *GPR64ArgRegs, *XMMArgRegs; + + if (IsWin64) { + TotalNumIntRegs = 4; TotalNumXMMRegs = 4; + GPR64ArgRegs = GPR64ArgRegsWin64; + XMMArgRegs = XMMArgRegsWin64; + } else { + TotalNumIntRegs = 6; TotalNumXMMRegs = 8; + GPR64ArgRegs = GPR64ArgRegs64Bit; + XMMArgRegs = XMMArgRegs64Bit; + } + unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs, + TotalNumIntRegs); + unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, + TotalNumXMMRegs); + + bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat); + assert(!(NumXMMRegs && !Subtarget->hasSSE1()) && + "SSE register cannot be used when SSE is disabled!"); + assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) && + "SSE register cannot be used when SSE is disabled!"); + if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasSSE1()) + // Kernel mode asks for SSE to be disabled, so don't push them + // on the stack. + TotalNumXMMRegs = 0; + + // For X86-64, if there are vararg parameters that are passed via + // registers, then we must store them to their spots on the stack so they + // may be loaded by deferencing the result of va_next. + FuncInfo->setVarArgsGPOffset(NumIntRegs * 8); + FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16); + FuncInfo->setRegSaveFrameIndex( + MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16, + false)); + + // Store the integer parameter registers. + SmallVector<SDValue, 8> MemOps; + SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), + getPointerTy()); + unsigned Offset = FuncInfo->getVarArgsGPOffset(); + for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) { + SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN, + DAG.getIntPtrConstant(Offset)); + unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs], + X86::GR64RegisterClass); + SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); + SDValue Store = + DAG.getStore(Val.getValue(1), dl, Val, FIN, + PseudoSourceValue::getFixedStack( + FuncInfo->getRegSaveFrameIndex()), + Offset, false, false, 0); + MemOps.push_back(Store); + Offset += 8; + } + + if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) { + // Now store the XMM (fp + vector) parameter registers. + SmallVector<SDValue, 11> SaveXMMOps; + SaveXMMOps.push_back(Chain); + + unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass); + SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8); + SaveXMMOps.push_back(ALVal); + + SaveXMMOps.push_back(DAG.getIntPtrConstant( + FuncInfo->getRegSaveFrameIndex())); + SaveXMMOps.push_back(DAG.getIntPtrConstant( + FuncInfo->getVarArgsFPOffset())); + + for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) { + unsigned VReg = MF.addLiveIn(XMMArgRegs[NumXMMRegs], + X86::VR128RegisterClass); + SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32); + SaveXMMOps.push_back(Val); + } + MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl, + MVT::Other, + &SaveXMMOps[0], SaveXMMOps.size())); + } + + if (!MemOps.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &MemOps[0], MemOps.size()); + } + } + + // Some CCs need callee pop. + if (IsCalleePop(isVarArg, CallConv)) { + FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything. + } else { + FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing. + // If this is an sret function, the return should pop the hidden pointer. + if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins)) + FuncInfo->setBytesToPopOnReturn(4); + } + + if (!Is64Bit) { + // RegSaveFrameIndex is X86-64 only. + FuncInfo->setRegSaveFrameIndex(0xAAAAAAA); + if (CallConv == CallingConv::X86_FastCall || + CallConv == CallingConv::X86_ThisCall) + // fastcc functions can't have varargs. + FuncInfo->setVarArgsFrameIndex(0xAAAAAAA); + } + + return Chain; +} + +SDValue +X86TargetLowering::LowerMemOpCallTo(SDValue Chain, + SDValue StackPtr, SDValue Arg, + DebugLoc dl, SelectionDAG &DAG, + const CCValAssign &VA, + ISD::ArgFlagsTy Flags) const { + const unsigned FirstStackArgOffset = (Subtarget->isTargetWin64() ? 32 : 0); + unsigned LocMemOffset = FirstStackArgOffset + VA.getLocMemOffset(); + SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); + PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); + if (Flags.isByVal()) { + return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); + } + return DAG.getStore(Chain, dl, Arg, PtrOff, + PseudoSourceValue::getStack(), LocMemOffset, + false, false, 0); +} + +/// EmitTailCallLoadRetAddr - Emit a load of return address if tail call +/// optimization is performed and it is required. +SDValue +X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG, + SDValue &OutRetAddr, SDValue Chain, + bool IsTailCall, bool Is64Bit, + int FPDiff, DebugLoc dl) const { + // Adjust the Return address stack slot. + EVT VT = getPointerTy(); + OutRetAddr = getReturnAddressFrameIndex(DAG); + + // Load the "old" Return address. + OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, NULL, 0, false, false, 0); + return SDValue(OutRetAddr.getNode(), 1); +} + +/// EmitTailCallStoreRetAddr - Emit a store of the return adress if tail call +/// optimization is performed and it is required (FPDiff!=0). +static SDValue +EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF, + SDValue Chain, SDValue RetAddrFrIdx, + bool Is64Bit, int FPDiff, DebugLoc dl) { + // Store the return address to the appropriate stack slot. + if (!FPDiff) return Chain; + // Calculate the new stack slot for the return address. + int SlotSize = Is64Bit ? 8 : 4; + int NewReturnAddrFI = + MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false, false); + EVT VT = Is64Bit ? MVT::i64 : MVT::i32; + SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT); + Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx, + PseudoSourceValue::getFixedStack(NewReturnAddrFI), 0, + false, false, 0); + return Chain; +} + +SDValue +X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee, + CallingConv::ID CallConv, bool isVarArg, + bool &isTailCall, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + MachineFunction &MF = DAG.getMachineFunction(); + bool Is64Bit = Subtarget->is64Bit(); + bool IsStructRet = CallIsStructReturn(Outs); + bool IsSibcall = false; + + if (isTailCall) { + // Check if it's really possible to do a tail call. + isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, + isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(), + Outs, Ins, DAG); + + // Sibcalls are automatically detected tailcalls which do not require + // ABI changes. + if (!GuaranteedTailCallOpt && isTailCall) + IsSibcall = true; + + if (isTailCall) + ++NumTailCalls; + } + + assert(!(isVarArg && IsTailCallConvention(CallConv)) && + "Var args not supported with calling convention fastcc or ghc"); + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, getTargetMachine(), + ArgLocs, *DAG.getContext()); + CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CallConv)); + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = CCInfo.getNextStackOffset(); + if (IsSibcall) + // This is a sibcall. The memory operands are available in caller's + // own caller's stack. + NumBytes = 0; + else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv)) + NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG); + + int FPDiff = 0; + if (isTailCall && !IsSibcall) { + // Lower arguments at fp - stackoffset + fpdiff. + unsigned NumBytesCallerPushed = + MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn(); + FPDiff = NumBytesCallerPushed - NumBytes; + + // Set the delta of movement of the returnaddr stackslot. + // But only set if delta is greater than previous delta. + if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta())) + MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff); + } + + if (!IsSibcall) + Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); + + SDValue RetAddrFrIdx; + // Load return adress for tail calls. + if (isTailCall && FPDiff) + Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall, + Is64Bit, FPDiff, dl); + + SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass; + SmallVector<SDValue, 8> MemOpChains; + SDValue StackPtr; + + // Walk the register/memloc assignments, inserting copies/loads. In the case + // of tail call optimization arguments are handle later. + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + EVT RegVT = VA.getLocVT(); + SDValue Arg = Outs[i].Val; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + bool isByVal = Flags.isByVal(); + + // Promote the value if needed. + switch (VA.getLocInfo()) { + default: llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg); + break; + case CCValAssign::AExt: + if (RegVT.isVector() && RegVT.getSizeInBits() == 128) { + // Special case: passing MMX values in XMM registers. + Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg); + Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg); + Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg); + } else + Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg); + break; + case CCValAssign::BCvt: + Arg = DAG.getNode(ISD::BIT_CONVERT, dl, RegVT, Arg); + break; + case CCValAssign::Indirect: { + // Store the argument. + SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); + int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); + Chain = DAG.getStore(Chain, dl, Arg, SpillSlot, + PseudoSourceValue::getFixedStack(FI), 0, + false, false, 0); + Arg = SpillSlot; + break; + } + } + + if (VA.isRegLoc()) { + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + } else if (!IsSibcall && (!isTailCall || isByVal)) { + assert(VA.isMemLoc()); + if (StackPtr.getNode() == 0) + StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy()); + MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, + dl, DAG, VA, Flags)); + } + } + + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &MemOpChains[0], MemOpChains.size()); + + // Build a sequence of copy-to-reg nodes chained together with token chain + // and flag operands which copy the outgoing args into registers. + SDValue InFlag; + // Tail call byval lowering might overwrite argument registers so in case of + // tail call optimization the copies to registers are lowered later. + if (!isTailCall) + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, + RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + + if (Subtarget->isPICStyleGOT()) { + // ELF / PIC requires GOT in the EBX register before function calls via PLT + // GOT pointer. + if (!isTailCall) { + Chain = DAG.getCopyToReg(Chain, dl, X86::EBX, + DAG.getNode(X86ISD::GlobalBaseReg, + DebugLoc(), getPointerTy()), + InFlag); + InFlag = Chain.getValue(1); + } else { + // If we are tail calling and generating PIC/GOT style code load the + // address of the callee into ECX. The value in ecx is used as target of + // the tail jump. This is done to circumvent the ebx/callee-saved problem + // for tail calls on PIC/GOT architectures. Normally we would just put the + // address of GOT into ebx and then call target@PLT. But for tail calls + // ebx would be restored (since ebx is callee saved) before jumping to the + // target@PLT. + + // Note: The actual moving to ECX is done further down. + GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee); + if (G && !G->getGlobal()->hasHiddenVisibility() && + !G->getGlobal()->hasProtectedVisibility()) + Callee = LowerGlobalAddress(Callee, DAG); + else if (isa<ExternalSymbolSDNode>(Callee)) + Callee = LowerExternalSymbol(Callee, DAG); + } + } + + if (Is64Bit && isVarArg) { + // From AMD64 ABI document: + // For calls that may call functions that use varargs or stdargs + // (prototype-less calls or calls to functions containing ellipsis (...) in + // the declaration) %al is used as hidden argument to specify the number + // of SSE registers used. The contents of %al do not need to match exactly + // the number of registers, but must be an ubound on the number of SSE + // registers used and is in the range 0 - 8 inclusive. + + // FIXME: Verify this on Win64 + // Count the number of XMM registers allocated. + static const unsigned XMMArgRegs[] = { + X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, + X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 + }; + unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); + assert((Subtarget->hasSSE1() || !NumXMMRegs) + && "SSE registers cannot be used when SSE is disabled"); + + Chain = DAG.getCopyToReg(Chain, dl, X86::AL, + DAG.getConstant(NumXMMRegs, MVT::i8), InFlag); + InFlag = Chain.getValue(1); + } + + + // For tail calls lower the arguments to the 'real' stack slot. + if (isTailCall) { + // Force all the incoming stack arguments to be loaded from the stack + // before any new outgoing arguments are stored to the stack, because the + // outgoing stack slots may alias the incoming argument stack slots, and + // the alias isn't otherwise explicit. This is slightly more conservative + // than necessary, because it means that each store effectively depends + // on every argument instead of just those arguments it would clobber. + SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain); + + SmallVector<SDValue, 8> MemOpChains2; + SDValue FIN; + int FI = 0; + // Do not flag preceeding copytoreg stuff together with the following stuff. + InFlag = SDValue(); + if (GuaranteedTailCallOpt) { + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + if (VA.isRegLoc()) + continue; + assert(VA.isMemLoc()); + SDValue Arg = Outs[i].Val; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + // Create frame index. + int32_t Offset = VA.getLocMemOffset()+FPDiff; + uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8; + FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true, false); + FIN = DAG.getFrameIndex(FI, getPointerTy()); + + if (Flags.isByVal()) { + // Copy relative to framepointer. + SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset()); + if (StackPtr.getNode() == 0) + StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, + getPointerTy()); + Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source); + + MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN, + ArgChain, + Flags, DAG, dl)); + } else { + // Store relative to framepointer. + MemOpChains2.push_back( + DAG.getStore(ArgChain, dl, Arg, FIN, + PseudoSourceValue::getFixedStack(FI), 0, + false, false, 0)); + } + } + } + + if (!MemOpChains2.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &MemOpChains2[0], MemOpChains2.size()); + + // Copy arguments to their registers. + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, + RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + InFlag =SDValue(); + + // Store the return address to the appropriate stack slot. + Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit, + FPDiff, dl); + } + + bool WasGlobalOrExternal = false; + if (getTargetMachine().getCodeModel() == CodeModel::Large) { + assert(Is64Bit && "Large code model is only legal in 64-bit mode."); + // In the 64-bit large code model, we have to make all calls + // through a register, since the call instruction's 32-bit + // pc-relative offset may not be large enough to hold the whole + // address. + } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + WasGlobalOrExternal = true; + // If the callee is a GlobalAddress node (quite common, every direct call + // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack + // it. + + // We should use extra load for direct calls to dllimported functions in + // non-JIT mode. + const GlobalValue *GV = G->getGlobal(); + if (!GV->hasDLLImportLinkage()) { + unsigned char OpFlags = 0; + + // On ELF targets, in both X86-64 and X86-32 mode, direct calls to + // external symbols most go through the PLT in PIC mode. If the symbol + // has hidden or protected visibility, or if it is static or local, then + // we don't need to use the PLT - we can directly call it. + if (Subtarget->isTargetELF() && + getTargetMachine().getRelocationModel() == Reloc::PIC_ && + GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { + OpFlags = X86II::MO_PLT; + } else if (Subtarget->isPICStyleStubAny() && + (GV->isDeclaration() || GV->isWeakForLinker()) && + Subtarget->getDarwinVers() < 9) { + // PC-relative references to external symbols should go through $stub, + // unless we're building with the leopard linker or later, which + // automatically synthesizes these stubs. + OpFlags = X86II::MO_DARWIN_STUB; + } + + Callee = DAG.getTargetGlobalAddress(GV, getPointerTy(), + G->getOffset(), OpFlags); + } + } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { + WasGlobalOrExternal = true; + unsigned char OpFlags = 0; + + // On ELF targets, in either X86-64 or X86-32 mode, direct calls to external + // symbols should go through the PLT. + if (Subtarget->isTargetELF() && + getTargetMachine().getRelocationModel() == Reloc::PIC_) { + OpFlags = X86II::MO_PLT; + } else if (Subtarget->isPICStyleStubAny() && + Subtarget->getDarwinVers() < 9) { + // PC-relative references to external symbols should go through $stub, + // unless we're building with the leopard linker or later, which + // automatically synthesizes these stubs. + OpFlags = X86II::MO_DARWIN_STUB; + } + + Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(), + OpFlags); + } + + // Returns a chain & a flag for retval copy to use. + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); + SmallVector<SDValue, 8> Ops; + + if (!IsSibcall && isTailCall) { + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), + DAG.getIntPtrConstant(0, true), InFlag); + InFlag = Chain.getValue(1); + } + + Ops.push_back(Chain); + Ops.push_back(Callee); + + if (isTailCall) + Ops.push_back(DAG.getConstant(FPDiff, MVT::i32)); + + // Add argument registers to the end of the list so that they are known live + // into the call. + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) + Ops.push_back(DAG.getRegister(RegsToPass[i].first, + RegsToPass[i].second.getValueType())); + + // Add an implicit use GOT pointer in EBX. + if (!isTailCall && Subtarget->isPICStyleGOT()) + Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy())); + + // Add an implicit use of AL for x86 vararg functions. + if (Is64Bit && isVarArg) + Ops.push_back(DAG.getRegister(X86::AL, MVT::i8)); + + if (InFlag.getNode()) + Ops.push_back(InFlag); + + if (isTailCall) { + // If this is the first return lowered for this function, add the regs + // to the liveout set for the function. + if (MF.getRegInfo().liveout_empty()) { + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, + *DAG.getContext()); + CCInfo.AnalyzeCallResult(Ins, RetCC_X86); + for (unsigned i = 0; i != RVLocs.size(); ++i) + if (RVLocs[i].isRegLoc()) + MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg()); + } + return DAG.getNode(X86ISD::TC_RETURN, dl, + NodeTys, &Ops[0], Ops.size()); + } + + Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size()); + InFlag = Chain.getValue(1); + + // Create the CALLSEQ_END node. + unsigned NumBytesForCalleeToPush; + if (IsCalleePop(isVarArg, CallConv)) + NumBytesForCalleeToPush = NumBytes; // Callee pops everything + else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet) + // If this is a call to a struct-return function, the callee + // pops the hidden struct pointer, so we have to push it back. + // This is common for Darwin/X86, Linux & Mingw32 targets. + NumBytesForCalleeToPush = 4; + else + NumBytesForCalleeToPush = 0; // Callee pops nothing. + + // Returns a flag for retval copy to use. + if (!IsSibcall) { + Chain = DAG.getCALLSEQ_END(Chain, + DAG.getIntPtrConstant(NumBytes, true), + DAG.getIntPtrConstant(NumBytesForCalleeToPush, + true), + InFlag); + InFlag = Chain.getValue(1); + } + + // Handle result values, copying them out of physregs into vregs that we + // return. + return LowerCallResult(Chain, InFlag, CallConv, isVarArg, + Ins, dl, DAG, InVals); +} + + +//===----------------------------------------------------------------------===// +// Fast Calling Convention (tail call) implementation +//===----------------------------------------------------------------------===// + +// Like std call, callee cleans arguments, convention except that ECX is +// reserved for storing the tail called function address. Only 2 registers are +// free for argument passing (inreg). Tail call optimization is performed +// provided: +// * tailcallopt is enabled +// * caller/callee are fastcc +// On X86_64 architecture with GOT-style position independent code only local +// (within module) calls are supported at the moment. +// To keep the stack aligned according to platform abi the function +// GetAlignedArgumentStackSize ensures that argument delta is always multiples +// of stack alignment. (Dynamic linkers need this - darwin's dyld for example) +// If a tail called function callee has more arguments than the caller the +// caller needs to make sure that there is room to move the RETADDR to. This is +// achieved by reserving an area the size of the argument delta right after the +// original REtADDR, but before the saved framepointer or the spilled registers +// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4) +// stack layout: +// arg1 +// arg2 +// RETADDR +// [ new RETADDR +// move area ] +// (possible EBP) +// ESI +// EDI +// local1 .. + +/// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned +/// for a 16 byte align requirement. +unsigned +X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize, + SelectionDAG& DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + const TargetMachine &TM = MF.getTarget(); + const TargetFrameInfo &TFI = *TM.getFrameInfo(); + unsigned StackAlignment = TFI.getStackAlignment(); + uint64_t AlignMask = StackAlignment - 1; + int64_t Offset = StackSize; + uint64_t SlotSize = TD->getPointerSize(); + if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) { + // Number smaller than 12 so just add the difference. + Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask)); + } else { + // Mask out lower bits, add stackalignment once plus the 12 bytes. + Offset = ((~AlignMask) & Offset) + StackAlignment + + (StackAlignment-SlotSize); + } + return Offset; +} + +/// MatchingStackOffset - Return true if the given stack call argument is +/// already available in the same position (relatively) of the caller's +/// incoming argument stack. +static +bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, + MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, + const X86InstrInfo *TII) { + unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; + int FI = INT_MAX; + if (Arg.getOpcode() == ISD::CopyFromReg) { + unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); + if (!VR || TargetRegisterInfo::isPhysicalRegister(VR)) + return false; + MachineInstr *Def = MRI->getVRegDef(VR); + if (!Def) + return false; + if (!Flags.isByVal()) { + if (!TII->isLoadFromStackSlot(Def, FI)) + return false; + } else { + unsigned Opcode = Def->getOpcode(); + if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) && + Def->getOperand(1).isFI()) { + FI = Def->getOperand(1).getIndex(); + Bytes = Flags.getByValSize(); + } else + return false; + } + } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { + if (Flags.isByVal()) + // ByVal argument is passed in as a pointer but it's now being + // dereferenced. e.g. + // define @foo(%struct.X* %A) { + // tail call @bar(%struct.X* byval %A) + // } + return false; + SDValue Ptr = Ld->getBasePtr(); + FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); + if (!FINode) + return false; + FI = FINode->getIndex(); + } else + return false; + + assert(FI != INT_MAX); + if (!MFI->isFixedObjectIndex(FI)) + return false; + return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); +} + +/// IsEligibleForTailCallOptimization - Check whether the call is eligible +/// for tail call optimization. Targets which want to do tail call +/// optimization should implement this function. +bool +X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, + CallingConv::ID CalleeCC, + bool isVarArg, + bool isCalleeStructRet, + bool isCallerStructRet, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<ISD::InputArg> &Ins, + SelectionDAG& DAG) const { + if (!IsTailCallConvention(CalleeCC) && + CalleeCC != CallingConv::C) + return false; + + // If -tailcallopt is specified, make fastcc functions tail-callable. + const MachineFunction &MF = DAG.getMachineFunction(); + const Function *CallerF = DAG.getMachineFunction().getFunction(); + CallingConv::ID CallerCC = CallerF->getCallingConv(); + bool CCMatch = CallerCC == CalleeCC; + + if (GuaranteedTailCallOpt) { + if (IsTailCallConvention(CalleeCC) && CCMatch) + return true; + return false; + } + + // Look for obvious safe cases to perform tail call optimization that does not + // requite ABI changes. This is what gcc calls sibcall. + + // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to + // emit a special epilogue. + if (RegInfo->needsStackRealignment(MF)) + return false; + + // Do not sibcall optimize vararg calls unless the call site is not passing any + // arguments. + if (isVarArg && !Outs.empty()) + return false; + + // Also avoid sibcall optimization if either caller or callee uses struct + // return semantics. + if (isCalleeStructRet || isCallerStructRet) + return false; + + // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack. + // Therefore if it's not used by the call it is not safe to optimize this into + // a sibcall. + bool Unused = false; + for (unsigned i = 0, e = Ins.size(); i != e; ++i) { + if (!Ins[i].Used) { + Unused = true; + break; + } + } + if (Unused) { + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CalleeCC, false, getTargetMachine(), + RVLocs, *DAG.getContext()); + CCInfo.AnalyzeCallResult(Ins, RetCC_X86); + for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { + CCValAssign &VA = RVLocs[i]; + if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) + return false; + } + } + + // If the calling conventions do not match, then we'd better make sure the + // results are returned in the same way as what the caller expects. + if (!CCMatch) { + SmallVector<CCValAssign, 16> RVLocs1; + CCState CCInfo1(CalleeCC, false, getTargetMachine(), + RVLocs1, *DAG.getContext()); + CCInfo1.AnalyzeCallResult(Ins, RetCC_X86); + + SmallVector<CCValAssign, 16> RVLocs2; + CCState CCInfo2(CallerCC, false, getTargetMachine(), + RVLocs2, *DAG.getContext()); + CCInfo2.AnalyzeCallResult(Ins, RetCC_X86); + + if (RVLocs1.size() != RVLocs2.size()) + return false; + for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { + if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) + return false; + if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) + return false; + if (RVLocs1[i].isRegLoc()) { + if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) + return false; + } else { + if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) + return false; + } + } + } + + // If the callee takes no arguments then go on to check the results of the + // call. + if (!Outs.empty()) { + // Check if stack adjustment is needed. For now, do not do this if any + // argument is passed on the stack. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CalleeCC, isVarArg, getTargetMachine(), + ArgLocs, *DAG.getContext()); + CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForNode(CalleeCC)); + if (CCInfo.getNextStackOffset()) { + MachineFunction &MF = DAG.getMachineFunction(); + if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) + return false; + if (Subtarget->isTargetWin64()) + // Win64 ABI has additional complications. + return false; + + // Check if the arguments are already laid out in the right way as + // the caller's fixed stack objects. + MachineFrameInfo *MFI = MF.getFrameInfo(); + const MachineRegisterInfo *MRI = &MF.getRegInfo(); + const X86InstrInfo *TII = + ((X86TargetMachine&)getTargetMachine()).getInstrInfo(); + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + EVT RegVT = VA.getLocVT(); + SDValue Arg = Outs[i].Val; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + if (VA.getLocInfo() == CCValAssign::Indirect) + return false; + if (!VA.isRegLoc()) { + if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, + MFI, MRI, TII)) + return false; + } + } + } + } + + return true; +} + +FastISel * +X86TargetLowering::createFastISel(MachineFunction &mf, + DenseMap<const Value *, unsigned> &vm, + DenseMap<const BasicBlock*, MachineBasicBlock*> &bm, + DenseMap<const AllocaInst *, int> &am, + std::vector<std::pair<MachineInstr*, unsigned> > &pn +#ifndef NDEBUG + , SmallSet<const Instruction *, 8> &cil +#endif + ) const { + return X86::createFastISel(mf, vm, bm, am, pn +#ifndef NDEBUG + , cil +#endif + ); +} + + +//===----------------------------------------------------------------------===// +// Other Lowering Hooks +//===----------------------------------------------------------------------===// + + +SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + int ReturnAddrIndex = FuncInfo->getRAIndex(); + + if (ReturnAddrIndex == 0) { + // Set up a frame object for the return address. + uint64_t SlotSize = TD->getPointerSize(); + ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize, + false, false); + FuncInfo->setRAIndex(ReturnAddrIndex); + } + + return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy()); +} + + +bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M, + bool hasSymbolicDisplacement) { + // Offset should fit into 32 bit immediate field. + if (!isInt<32>(Offset)) + return false; + + // If we don't have a symbolic displacement - we don't have any extra + // restrictions. + if (!hasSymbolicDisplacement) + return true; + + // FIXME: Some tweaks might be needed for medium code model. + if (M != CodeModel::Small && M != CodeModel::Kernel) + return false; + + // For small code model we assume that latest object is 16MB before end of 31 + // bits boundary. We may also accept pretty large negative constants knowing + // that all objects are in the positive half of address space. + if (M == CodeModel::Small && Offset < 16*1024*1024) + return true; + + // For kernel code model we know that all object resist in the negative half + // of 32bits address space. We may not accept negative offsets, since they may + // be just off and we may accept pretty large positive ones. + if (M == CodeModel::Kernel && Offset > 0) + return true; + + return false; +} + +/// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86 +/// specific condition code, returning the condition code and the LHS/RHS of the +/// comparison to make. +static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP, + SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) { + if (!isFP) { + if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { + if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) { + // X > -1 -> X == 0, jump !sign. + RHS = DAG.getConstant(0, RHS.getValueType()); + return X86::COND_NS; + } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) { + // X < 0 -> X == 0, jump on sign. + return X86::COND_S; + } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) { + // X < 1 -> X <= 0 + RHS = DAG.getConstant(0, RHS.getValueType()); + return X86::COND_LE; + } + } + + switch (SetCCOpcode) { + default: llvm_unreachable("Invalid integer condition!"); + case ISD::SETEQ: return X86::COND_E; + case ISD::SETGT: return X86::COND_G; + case ISD::SETGE: return X86::COND_GE; + case ISD::SETLT: return X86::COND_L; + case ISD::SETLE: return X86::COND_LE; + case ISD::SETNE: return X86::COND_NE; + case ISD::SETULT: return X86::COND_B; + case ISD::SETUGT: return X86::COND_A; + case ISD::SETULE: return X86::COND_BE; + case ISD::SETUGE: return X86::COND_AE; + } + } + + // First determine if it is required or is profitable to flip the operands. + + // If LHS is a foldable load, but RHS is not, flip the condition. + if ((ISD::isNON_EXTLoad(LHS.getNode()) && LHS.hasOneUse()) && + !(ISD::isNON_EXTLoad(RHS.getNode()) && RHS.hasOneUse())) { + SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode); + std::swap(LHS, RHS); + } + + switch (SetCCOpcode) { + default: break; + case ISD::SETOLT: + case ISD::SETOLE: + case ISD::SETUGT: + case ISD::SETUGE: + std::swap(LHS, RHS); + break; + } + + // On a floating point condition, the flags are set as follows: + // ZF PF CF op + // 0 | 0 | 0 | X > Y + // 0 | 0 | 1 | X < Y + // 1 | 0 | 0 | X == Y + // 1 | 1 | 1 | unordered + switch (SetCCOpcode) { + default: llvm_unreachable("Condcode should be pre-legalized away"); + case ISD::SETUEQ: + case ISD::SETEQ: return X86::COND_E; + case ISD::SETOLT: // flipped + case ISD::SETOGT: + case ISD::SETGT: return X86::COND_A; + case ISD::SETOLE: // flipped + case ISD::SETOGE: + case ISD::SETGE: return X86::COND_AE; + case ISD::SETUGT: // flipped + case ISD::SETULT: + case ISD::SETLT: return X86::COND_B; + case ISD::SETUGE: // flipped + case ISD::SETULE: + case ISD::SETLE: return X86::COND_BE; + case ISD::SETONE: + case ISD::SETNE: return X86::COND_NE; + case ISD::SETUO: return X86::COND_P; + case ISD::SETO: return X86::COND_NP; + case ISD::SETOEQ: + case ISD::SETUNE: return X86::COND_INVALID; + } +} + +/// hasFPCMov - is there a floating point cmov for the specific X86 condition +/// code. Current x86 isa includes the following FP cmov instructions: +/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. +static bool hasFPCMov(unsigned X86CC) { + switch (X86CC) { + default: + return false; + case X86::COND_B: + case X86::COND_BE: + case X86::COND_E: + case X86::COND_P: + case X86::COND_A: + case X86::COND_AE: + case X86::COND_NE: + case X86::COND_NP: + return true; + } +} + +/// isFPImmLegal - Returns true if the target can instruction select the +/// specified FP immediate natively. If false, the legalizer will +/// materialize the FP immediate as a load from a constant pool. +bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { + for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) { + if (Imm.bitwiseIsEqual(LegalFPImmediates[i])) + return true; + } + return false; +} + +/// isUndefOrInRange - Return true if Val is undef or if its value falls within +/// the specified range (L, H]. +static bool isUndefOrInRange(int Val, int Low, int Hi) { + return (Val < 0) || (Val >= Low && Val < Hi); +} + +/// isUndefOrEqual - Val is either less than zero (undef) or equal to the +/// specified value. +static bool isUndefOrEqual(int Val, int CmpVal) { + if (Val < 0 || Val == CmpVal) + return true; + return false; +} + +/// isPSHUFDMask - Return true if the node specifies a shuffle of elements that +/// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference +/// the second operand. +static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) { + if (VT == MVT::v4f32 || VT == MVT::v4i32 || VT == MVT::v4i16) + return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4); + if (VT == MVT::v2f64 || VT == MVT::v2i64) + return (Mask[0] < 2 && Mask[1] < 2); + return false; +} + +bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) { + SmallVector<int, 8> M; + N->getMask(M); + return ::isPSHUFDMask(M, N->getValueType(0)); +} + +/// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that +/// is suitable for input to PSHUFHW. +static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) { + if (VT != MVT::v8i16) + return false; + + // Lower quadword copied in order or undef. + for (int i = 0; i != 4; ++i) + if (Mask[i] >= 0 && Mask[i] != i) + return false; + + // Upper quadword shuffled. + for (int i = 4; i != 8; ++i) + if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7)) + return false; + + return true; +} + +bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) { + SmallVector<int, 8> M; + N->getMask(M); + return ::isPSHUFHWMask(M, N->getValueType(0)); +} + +/// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that +/// is suitable for input to PSHUFLW. +static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) { + if (VT != MVT::v8i16) + return false; + + // Upper quadword copied in order. + for (int i = 4; i != 8; ++i) + if (Mask[i] >= 0 && Mask[i] != i) + return false; + + // Lower quadword shuffled. + for (int i = 0; i != 4; ++i) + if (Mask[i] >= 4) + return false; + + return true; +} + +bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) { + SmallVector<int, 8> M; + N->getMask(M); + return ::isPSHUFLWMask(M, N->getValueType(0)); +} + +/// isPALIGNRMask - Return true if the node specifies a shuffle of elements that +/// is suitable for input to PALIGNR. +static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT, + bool hasSSSE3) { + int i, e = VT.getVectorNumElements(); + + // Do not handle v2i64 / v2f64 shuffles with palignr. + if (e < 4 || !hasSSSE3) + return false; + + for (i = 0; i != e; ++i) + if (Mask[i] >= 0) + break; + + // All undef, not a palignr. + if (i == e) + return false; + + // Determine if it's ok to perform a palignr with only the LHS, since we + // don't have access to the actual shuffle elements to see if RHS is undef. + bool Unary = Mask[i] < (int)e; + bool NeedsUnary = false; + + int s = Mask[i] - i; + + // Check the rest of the elements to see if they are consecutive. + for (++i; i != e; ++i) { + int m = Mask[i]; + if (m < 0) + continue; + + Unary = Unary && (m < (int)e); + NeedsUnary = NeedsUnary || (m < s); + + if (NeedsUnary && !Unary) + return false; + if (Unary && m != ((s+i) & (e-1))) + return false; + if (!Unary && m != (s+i)) + return false; + } + return true; +} + +bool X86::isPALIGNRMask(ShuffleVectorSDNode *N) { + SmallVector<int, 8> M; + N->getMask(M); + return ::isPALIGNRMask(M, N->getValueType(0), true); +} + +/// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to SHUFP*. +static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) { + int NumElems = VT.getVectorNumElements(); + if (NumElems != 2 && NumElems != 4) + return false; + + int Half = NumElems / 2; + for (int i = 0; i < Half; ++i) + if (!isUndefOrInRange(Mask[i], 0, NumElems)) + return false; + for (int i = Half; i < NumElems; ++i) + if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2)) + return false; + + return true; +} + +bool X86::isSHUFPMask(ShuffleVectorSDNode *N) { + SmallVector<int, 8> M; + N->getMask(M); + return ::isSHUFPMask(M, N->getValueType(0)); +} + +/// isCommutedSHUFP - Returns true if the shuffle mask is exactly +/// the reverse of what x86 shuffles want. x86 shuffles requires the lower +/// half elements to come from vector 1 (which would equal the dest.) and +/// the upper half to come from vector 2. +static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) { + int NumElems = VT.getVectorNumElements(); + + if (NumElems != 2 && NumElems != 4) + return false; + + int Half = NumElems / 2; + for (int i = 0; i < Half; ++i) + if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2)) + return false; + for (int i = Half; i < NumElems; ++i) + if (!isUndefOrInRange(Mask[i], 0, NumElems)) + return false; + return true; +} + +static bool isCommutedSHUFP(ShuffleVectorSDNode *N) { + SmallVector<int, 8> M; + N->getMask(M); + return isCommutedSHUFPMask(M, N->getValueType(0)); +} + +/// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to MOVHLPS. +bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) { + if (N->getValueType(0).getVectorNumElements() != 4) + return false; + + // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3 + return isUndefOrEqual(N->getMaskElt(0), 6) && + isUndefOrEqual(N->getMaskElt(1), 7) && + isUndefOrEqual(N->getMaskElt(2), 2) && + isUndefOrEqual(N->getMaskElt(3), 3); +} + +/// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form +/// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef, +/// <2, 3, 2, 3> +bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) { + unsigned NumElems = N->getValueType(0).getVectorNumElements(); + + if (NumElems != 4) + return false; + + return isUndefOrEqual(N->getMaskElt(0), 2) && + isUndefOrEqual(N->getMaskElt(1), 3) && + isUndefOrEqual(N->getMaskElt(2), 2) && + isUndefOrEqual(N->getMaskElt(3), 3); +} + +/// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}. +bool X86::isMOVLPMask(ShuffleVectorSDNode *N) { + unsigned NumElems = N->getValueType(0).getVectorNumElements(); + + if (NumElems != 2 && NumElems != 4) + return false; + + for (unsigned i = 0; i < NumElems/2; ++i) + if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems)) + return false; + + for (unsigned i = NumElems/2; i < NumElems; ++i) + if (!isUndefOrEqual(N->getMaskElt(i), i)) + return false; + + return true; +} + +/// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to MOVLHPS. +bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) { + unsigned NumElems = N->getValueType(0).getVectorNumElements(); + + if (NumElems != 2 && NumElems != 4) + return false; + + for (unsigned i = 0; i < NumElems/2; ++i) + if (!isUndefOrEqual(N->getMaskElt(i), i)) + return false; + + for (unsigned i = 0; i < NumElems/2; ++i) + if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems)) + return false; + + return true; +} + +/// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to UNPCKL. +static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT, + bool V2IsSplat = false) { + int NumElts = VT.getVectorNumElements(); + if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) + return false; + + for (int i = 0, j = 0; i != NumElts; i += 2, ++j) { + int BitI = Mask[i]; + int BitI1 = Mask[i+1]; + if (!isUndefOrEqual(BitI, j)) + return false; + if (V2IsSplat) { + if (!isUndefOrEqual(BitI1, NumElts)) + return false; + } else { + if (!isUndefOrEqual(BitI1, j + NumElts)) + return false; + } + } + return true; +} + +bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) { + SmallVector<int, 8> M; + N->getMask(M); + return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat); +} + +/// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to UNPCKH. +static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT, + bool V2IsSplat = false) { + int NumElts = VT.getVectorNumElements(); + if (NumElts != 2 && NumElts != 4 && NumElts != 8 && NumElts != 16) + return false; + + for (int i = 0, j = 0; i != NumElts; i += 2, ++j) { + int BitI = Mask[i]; + int BitI1 = Mask[i+1]; + if (!isUndefOrEqual(BitI, j + NumElts/2)) + return false; + if (V2IsSplat) { + if (isUndefOrEqual(BitI1, NumElts)) + return false; + } else { + if (!isUndefOrEqual(BitI1, j + NumElts/2 + NumElts)) + return false; + } + } + return true; +} + +bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) { + SmallVector<int, 8> M; + N->getMask(M); + return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat); +} + +/// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form +/// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef, +/// <0, 0, 1, 1> +static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) { + int NumElems = VT.getVectorNumElements(); + if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) + return false; + + for (int i = 0, j = 0; i != NumElems; i += 2, ++j) { + int BitI = Mask[i]; + int BitI1 = Mask[i+1]; + if (!isUndefOrEqual(BitI, j)) + return false; + if (!isUndefOrEqual(BitI1, j)) + return false; + } + return true; +} + +bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) { + SmallVector<int, 8> M; + N->getMask(M); + return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0)); +} + +/// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form +/// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef, +/// <2, 2, 3, 3> +static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) { + int NumElems = VT.getVectorNumElements(); + if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16) + return false; + + for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) { + int BitI = Mask[i]; + int BitI1 = Mask[i+1]; + if (!isUndefOrEqual(BitI, j)) + return false; + if (!isUndefOrEqual(BitI1, j)) + return false; + } + return true; +} + +bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) { + SmallVector<int, 8> M; + N->getMask(M); + return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0)); +} + +/// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to MOVSS, +/// MOVSD, and MOVD, i.e. setting the lowest element. +static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) { + if (VT.getVectorElementType().getSizeInBits() < 32) + return false; + + int NumElts = VT.getVectorNumElements(); + + if (!isUndefOrEqual(Mask[0], NumElts)) + return false; + + for (int i = 1; i < NumElts; ++i) + if (!isUndefOrEqual(Mask[i], i)) + return false; + + return true; +} + +bool X86::isMOVLMask(ShuffleVectorSDNode *N) { + SmallVector<int, 8> M; + N->getMask(M); + return ::isMOVLMask(M, N->getValueType(0)); +} + +/// isCommutedMOVL - Returns true if the shuffle mask is except the reverse +/// of what x86 movss want. X86 movs requires the lowest element to be lowest +/// element of vector 2 and the other elements to come from vector 1 in order. +static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT, + bool V2IsSplat = false, bool V2IsUndef = false) { + int NumOps = VT.getVectorNumElements(); + if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16) + return false; + + if (!isUndefOrEqual(Mask[0], 0)) + return false; + + for (int i = 1; i < NumOps; ++i) + if (!(isUndefOrEqual(Mask[i], i+NumOps) || + (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) || + (V2IsSplat && isUndefOrEqual(Mask[i], NumOps)))) + return false; + + return true; +} + +static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false, + bool V2IsUndef = false) { + SmallVector<int, 8> M; + N->getMask(M); + return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef); +} + +/// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to MOVSHDUP. +bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N) { + if (N->getValueType(0).getVectorNumElements() != 4) + return false; + + // Expect 1, 1, 3, 3 + for (unsigned i = 0; i < 2; ++i) { + int Elt = N->getMaskElt(i); + if (Elt >= 0 && Elt != 1) + return false; + } + + bool HasHi = false; + for (unsigned i = 2; i < 4; ++i) { + int Elt = N->getMaskElt(i); + if (Elt >= 0 && Elt != 3) + return false; + if (Elt == 3) + HasHi = true; + } + // Don't use movshdup if it can be done with a shufps. + // FIXME: verify that matching u, u, 3, 3 is what we want. + return HasHi; +} + +/// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to MOVSLDUP. +bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N) { + if (N->getValueType(0).getVectorNumElements() != 4) + return false; + + // Expect 0, 0, 2, 2 + for (unsigned i = 0; i < 2; ++i) + if (N->getMaskElt(i) > 0) + return false; + + bool HasHi = false; + for (unsigned i = 2; i < 4; ++i) { + int Elt = N->getMaskElt(i); + if (Elt >= 0 && Elt != 2) + return false; + if (Elt == 2) + HasHi = true; + } + // Don't use movsldup if it can be done with a shufps. + return HasHi; +} + +/// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand +/// specifies a shuffle of elements that is suitable for input to MOVDDUP. +bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) { + int e = N->getValueType(0).getVectorNumElements() / 2; + + for (int i = 0; i < e; ++i) + if (!isUndefOrEqual(N->getMaskElt(i), i)) + return false; + for (int i = 0; i < e; ++i) + if (!isUndefOrEqual(N->getMaskElt(e+i), i)) + return false; + return true; +} + +/// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle +/// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions. +unsigned X86::getShuffleSHUFImmediate(SDNode *N) { + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); + int NumOperands = SVOp->getValueType(0).getVectorNumElements(); + + unsigned Shift = (NumOperands == 4) ? 2 : 1; + unsigned Mask = 0; + for (int i = 0; i < NumOperands; ++i) { + int Val = SVOp->getMaskElt(NumOperands-i-1); + if (Val < 0) Val = 0; + if (Val >= NumOperands) Val -= NumOperands; + Mask |= Val; + if (i != NumOperands - 1) + Mask <<= Shift; + } + return Mask; +} + +/// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle +/// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction. +unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) { + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); + unsigned Mask = 0; + // 8 nodes, but we only care about the last 4. + for (unsigned i = 7; i >= 4; --i) { + int Val = SVOp->getMaskElt(i); + if (Val >= 0) + Mask |= (Val - 4); + if (i != 4) + Mask <<= 2; + } + return Mask; +} + +/// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle +/// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction. +unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) { + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); + unsigned Mask = 0; + // 8 nodes, but we only care about the first 4. + for (int i = 3; i >= 0; --i) { + int Val = SVOp->getMaskElt(i); + if (Val >= 0) + Mask |= Val; + if (i != 0) + Mask <<= 2; + } + return Mask; +} + +/// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle +/// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction. +unsigned X86::getShufflePALIGNRImmediate(SDNode *N) { + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N); + EVT VVT = N->getValueType(0); + unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3; + int Val = 0; + + unsigned i, e; + for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) { + Val = SVOp->getMaskElt(i); + if (Val >= 0) + break; + } + return (Val - i) * EltSize; +} + +/// isZeroNode - Returns true if Elt is a constant zero or a floating point +/// constant +0.0. +bool X86::isZeroNode(SDValue Elt) { + return ((isa<ConstantSDNode>(Elt) && + cast<ConstantSDNode>(Elt)->getZExtValue() == 0) || + (isa<ConstantFPSDNode>(Elt) && + cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero())); +} + +/// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in +/// their permute mask. +static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp, + SelectionDAG &DAG) { + EVT VT = SVOp->getValueType(0); + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<int, 8> MaskVec; + + for (unsigned i = 0; i != NumElems; ++i) { + int idx = SVOp->getMaskElt(i); + if (idx < 0) + MaskVec.push_back(idx); + else if (idx < (int)NumElems) + MaskVec.push_back(idx + NumElems); + else + MaskVec.push_back(idx - NumElems); + } + return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1), + SVOp->getOperand(0), &MaskVec[0]); +} + +/// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming +/// the two vector operands have swapped position. +static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) { + unsigned NumElems = VT.getVectorNumElements(); + for (unsigned i = 0; i != NumElems; ++i) { + int idx = Mask[i]; + if (idx < 0) + continue; + else if (idx < (int)NumElems) + Mask[i] = idx + NumElems; + else + Mask[i] = idx - NumElems; + } +} + +/// ShouldXformToMOVHLPS - Return true if the node should be transformed to +/// match movhlps. The lower half elements should come from upper half of +/// V1 (and in order), and the upper half elements should come from the upper +/// half of V2 (and in order). +static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) { + if (Op->getValueType(0).getVectorNumElements() != 4) + return false; + for (unsigned i = 0, e = 2; i != e; ++i) + if (!isUndefOrEqual(Op->getMaskElt(i), i+2)) + return false; + for (unsigned i = 2; i != 4; ++i) + if (!isUndefOrEqual(Op->getMaskElt(i), i+4)) + return false; + return true; +} + +/// isScalarLoadToVector - Returns true if the node is a scalar load that +/// is promoted to a vector. It also returns the LoadSDNode by reference if +/// required. +static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) { + if (N->getOpcode() != ISD::SCALAR_TO_VECTOR) + return false; + N = N->getOperand(0).getNode(); + if (!ISD::isNON_EXTLoad(N)) + return false; + if (LD) + *LD = cast<LoadSDNode>(N); + return true; +} + +/// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to +/// match movlp{s|d}. The lower half elements should come from lower half of +/// V1 (and in order), and the upper half elements should come from the upper +/// half of V2 (and in order). And since V1 will become the source of the +/// MOVLP, it must be either a vector load or a scalar load to vector. +static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2, + ShuffleVectorSDNode *Op) { + if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1)) + return false; + // Is V2 is a vector load, don't do this transformation. We will try to use + // load folding shufps op. + if (ISD::isNON_EXTLoad(V2)) + return false; + + unsigned NumElems = Op->getValueType(0).getVectorNumElements(); + + if (NumElems != 2 && NumElems != 4) + return false; + for (unsigned i = 0, e = NumElems/2; i != e; ++i) + if (!isUndefOrEqual(Op->getMaskElt(i), i)) + return false; + for (unsigned i = NumElems/2; i != NumElems; ++i) + if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems)) + return false; + return true; +} + +/// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are +/// all the same. +static bool isSplatVector(SDNode *N) { + if (N->getOpcode() != ISD::BUILD_VECTOR) + return false; + + SDValue SplatValue = N->getOperand(0); + for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i) + if (N->getOperand(i) != SplatValue) + return false; + return true; +} + +/// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved +/// to an zero vector. +/// FIXME: move to dag combiner / method on ShuffleVectorSDNode +static bool isZeroShuffle(ShuffleVectorSDNode *N) { + SDValue V1 = N->getOperand(0); + SDValue V2 = N->getOperand(1); + unsigned NumElems = N->getValueType(0).getVectorNumElements(); + for (unsigned i = 0; i != NumElems; ++i) { + int Idx = N->getMaskElt(i); + if (Idx >= (int)NumElems) { + unsigned Opc = V2.getOpcode(); + if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode())) + continue; + if (Opc != ISD::BUILD_VECTOR || + !X86::isZeroNode(V2.getOperand(Idx-NumElems))) + return false; + } else if (Idx >= 0) { + unsigned Opc = V1.getOpcode(); + if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode())) + continue; + if (Opc != ISD::BUILD_VECTOR || + !X86::isZeroNode(V1.getOperand(Idx))) + return false; + } + } + return true; +} + +/// getZeroVector - Returns a vector of specified type with all zero elements. +/// +static SDValue getZeroVector(EVT VT, bool HasSSE2, SelectionDAG &DAG, + DebugLoc dl) { + assert(VT.isVector() && "Expected a vector type"); + + // Always build zero vectors as <4 x i32> or <2 x i32> bitcasted to their dest + // type. This ensures they get CSE'd. + SDValue Vec; + if (VT.getSizeInBits() == 64) { // MMX + SDValue Cst = DAG.getTargetConstant(0, MVT::i32); + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst); + } else if (HasSSE2) { // SSE2 + SDValue Cst = DAG.getTargetConstant(0, MVT::i32); + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); + } else { // SSE1 + SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32); + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst); + } + return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec); +} + +/// getOnesVector - Returns a vector of specified type with all bits set. +/// +static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) { + assert(VT.isVector() && "Expected a vector type"); + + // Always build ones vectors as <4 x i32> or <2 x i32> bitcasted to their dest + // type. This ensures they get CSE'd. + SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32); + SDValue Vec; + if (VT.getSizeInBits() == 64) // MMX + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i32, Cst, Cst); + else // SSE + Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst); + return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec); +} + + +/// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements +/// that point to V2 points to its first element. +static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { + EVT VT = SVOp->getValueType(0); + unsigned NumElems = VT.getVectorNumElements(); + + bool Changed = false; + SmallVector<int, 8> MaskVec; + SVOp->getMask(MaskVec); + + for (unsigned i = 0; i != NumElems; ++i) { + if (MaskVec[i] > (int)NumElems) { + MaskVec[i] = NumElems; + Changed = true; + } + } + if (Changed) + return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0), + SVOp->getOperand(1), &MaskVec[0]); + return SDValue(SVOp, 0); +} + +/// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd +/// operation of specified width. +static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, + SDValue V2) { + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<int, 8> Mask; + Mask.push_back(NumElems); + for (unsigned i = 1; i != NumElems; ++i) + Mask.push_back(i); + return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); +} + +/// getUnpackl - Returns a vector_shuffle node for an unpackl operation. +static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, + SDValue V2) { + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<int, 8> Mask; + for (unsigned i = 0, e = NumElems/2; i != e; ++i) { + Mask.push_back(i); + Mask.push_back(i + NumElems); + } + return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); +} + +/// getUnpackhMask - Returns a vector_shuffle node for an unpackh operation. +static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1, + SDValue V2) { + unsigned NumElems = VT.getVectorNumElements(); + unsigned Half = NumElems/2; + SmallVector<int, 8> Mask; + for (unsigned i = 0; i != Half; ++i) { + Mask.push_back(i + Half); + Mask.push_back(i + NumElems + Half); + } + return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]); +} + +/// PromoteSplat - Promote a splat of v4f32, v8i16 or v16i8 to v4i32. +static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG, + bool HasSSE2) { + if (SV->getValueType(0).getVectorNumElements() <= 4) + return SDValue(SV, 0); + + EVT PVT = MVT::v4f32; + EVT VT = SV->getValueType(0); + DebugLoc dl = SV->getDebugLoc(); + SDValue V1 = SV->getOperand(0); + int NumElems = VT.getVectorNumElements(); + int EltNo = SV->getSplatIndex(); + + // unpack elements to the correct location + while (NumElems > 4) { + if (EltNo < NumElems/2) { + V1 = getUnpackl(DAG, dl, VT, V1, V1); + } else { + V1 = getUnpackh(DAG, dl, VT, V1, V1); + EltNo -= NumElems/2; + } + NumElems >>= 1; + } + + // Perform the splat. + int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo }; + V1 = DAG.getNode(ISD::BIT_CONVERT, dl, PVT, V1); + V1 = DAG.getVectorShuffle(PVT, dl, V1, DAG.getUNDEF(PVT), &SplatMask[0]); + return DAG.getNode(ISD::BIT_CONVERT, dl, VT, V1); +} + +/// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified +/// vector of zero or undef vector. This produces a shuffle where the low +/// element of V2 is swizzled into the zero/undef vector, landing at element +/// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3). +static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx, + bool isZero, bool HasSSE2, + SelectionDAG &DAG) { + EVT VT = V2.getValueType(); + SDValue V1 = isZero + ? getZeroVector(VT, HasSSE2, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT); + unsigned NumElems = VT.getVectorNumElements(); + SmallVector<int, 16> MaskVec; + for (unsigned i = 0; i != NumElems; ++i) + // If this is the insertion idx, put the low elt of V2 here. + MaskVec.push_back(i == Idx ? NumElems : i); + return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]); +} + +/// getNumOfConsecutiveZeros - Return the number of elements in a result of +/// a shuffle that is zero. +static +unsigned getNumOfConsecutiveZeros(ShuffleVectorSDNode *SVOp, int NumElems, + bool Low, SelectionDAG &DAG) { + unsigned NumZeros = 0; + for (int i = 0; i < NumElems; ++i) { + unsigned Index = Low ? i : NumElems-i-1; + int Idx = SVOp->getMaskElt(Index); + if (Idx < 0) { + ++NumZeros; + continue; + } + SDValue Elt = DAG.getShuffleScalarElt(SVOp, Index); + if (Elt.getNode() && X86::isZeroNode(Elt)) + ++NumZeros; + else + break; + } + return NumZeros; +} + +/// isVectorShift - Returns true if the shuffle can be implemented as a +/// logical left or right shift of a vector. +/// FIXME: split into pslldqi, psrldqi, palignr variants. +static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG, + bool &isLeft, SDValue &ShVal, unsigned &ShAmt) { + unsigned NumElems = SVOp->getValueType(0).getVectorNumElements(); + + isLeft = true; + unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, true, DAG); + if (!NumZeros) { + isLeft = false; + NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems, false, DAG); + if (!NumZeros) + return false; + } + bool SeenV1 = false; + bool SeenV2 = false; + for (unsigned i = NumZeros; i < NumElems; ++i) { + unsigned Val = isLeft ? (i - NumZeros) : i; + int Idx_ = SVOp->getMaskElt(isLeft ? i : (i - NumZeros)); + if (Idx_ < 0) + continue; + unsigned Idx = (unsigned) Idx_; + if (Idx < NumElems) + SeenV1 = true; + else { + Idx -= NumElems; + SeenV2 = true; + } + if (Idx != Val) + return false; + } + if (SeenV1 && SeenV2) + return false; + + ShVal = SeenV1 ? SVOp->getOperand(0) : SVOp->getOperand(1); + ShAmt = NumZeros; + return true; +} + + +/// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8. +/// +static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros, + unsigned NumNonZero, unsigned NumZero, + SelectionDAG &DAG, + const TargetLowering &TLI) { + if (NumNonZero > 8) + return SDValue(); + + DebugLoc dl = Op.getDebugLoc(); + SDValue V(0, 0); + bool First = true; + for (unsigned i = 0; i < 16; ++i) { + bool ThisIsNonZero = (NonZeros & (1 << i)) != 0; + if (ThisIsNonZero && First) { + if (NumZero) + V = getZeroVector(MVT::v8i16, true, DAG, dl); + else + V = DAG.getUNDEF(MVT::v8i16); + First = false; + } + + if ((i & 1) != 0) { + SDValue ThisElt(0, 0), LastElt(0, 0); + bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0; + if (LastIsNonZero) { + LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl, + MVT::i16, Op.getOperand(i-1)); + } + if (ThisIsNonZero) { + ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i)); + ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16, + ThisElt, DAG.getConstant(8, MVT::i8)); + if (LastIsNonZero) + ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt); + } else + ThisElt = LastElt; + + if (ThisElt.getNode()) + V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt, + DAG.getIntPtrConstant(i/2)); + } + } + + return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V); +} + +/// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16. +/// +static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros, + unsigned NumNonZero, unsigned NumZero, + SelectionDAG &DAG, + const TargetLowering &TLI) { + if (NumNonZero > 4) + return SDValue(); + + DebugLoc dl = Op.getDebugLoc(); + SDValue V(0, 0); + bool First = true; + for (unsigned i = 0; i < 8; ++i) { + bool isNonZero = (NonZeros & (1 << i)) != 0; + if (isNonZero) { + if (First) { + if (NumZero) + V = getZeroVector(MVT::v8i16, true, DAG, dl); + else + V = DAG.getUNDEF(MVT::v8i16); + First = false; + } + V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, + MVT::v8i16, V, Op.getOperand(i), + DAG.getIntPtrConstant(i)); + } + } + + return V; +} + +/// getVShift - Return a vector logical shift node. +/// +static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp, + unsigned NumBits, SelectionDAG &DAG, + const TargetLowering &TLI, DebugLoc dl) { + bool isMMX = VT.getSizeInBits() == 64; + EVT ShVT = isMMX ? MVT::v1i64 : MVT::v2i64; + unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL; + SrcOp = DAG.getNode(ISD::BIT_CONVERT, dl, ShVT, SrcOp); + return DAG.getNode(ISD::BIT_CONVERT, dl, VT, + DAG.getNode(Opc, dl, ShVT, SrcOp, + DAG.getConstant(NumBits, TLI.getShiftAmountTy()))); +} + +SDValue +X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl, + SelectionDAG &DAG) const { + + // Check if the scalar load can be widened into a vector load. And if + // the address is "base + cst" see if the cst can be "absorbed" into + // the shuffle mask. + if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) { + SDValue Ptr = LD->getBasePtr(); + if (!ISD::isNormalLoad(LD) || LD->isVolatile()) + return SDValue(); + EVT PVT = LD->getValueType(0); + if (PVT != MVT::i32 && PVT != MVT::f32) + return SDValue(); + + int FI = -1; + int64_t Offset = 0; + if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) { + FI = FINode->getIndex(); + Offset = 0; + } else if (Ptr.getOpcode() == ISD::ADD && + isa<ConstantSDNode>(Ptr.getOperand(1)) && + isa<FrameIndexSDNode>(Ptr.getOperand(0))) { + FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex(); + Offset = Ptr.getConstantOperandVal(1); + Ptr = Ptr.getOperand(0); + } else { + return SDValue(); + } + + SDValue Chain = LD->getChain(); + // Make sure the stack object alignment is at least 16. + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + if (DAG.InferPtrAlignment(Ptr) < 16) { + if (MFI->isFixedObjectIndex(FI)) { + // Can't change the alignment. FIXME: It's possible to compute + // the exact stack offset and reference FI + adjust offset instead. + // If someone *really* cares about this. That's the way to implement it. + return SDValue(); + } else { + MFI->setObjectAlignment(FI, 16); + } + } + + // (Offset % 16) must be multiple of 4. Then address is then + // Ptr + (Offset & ~15). + if (Offset < 0) + return SDValue(); + if ((Offset % 16) & 3) + return SDValue(); + int64_t StartOffset = Offset & ~15; + if (StartOffset) + Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(), + Ptr,DAG.getConstant(StartOffset, Ptr.getValueType())); + + int EltNo = (Offset - StartOffset) >> 2; + int Mask[4] = { EltNo, EltNo, EltNo, EltNo }; + EVT VT = (PVT == MVT::i32) ? MVT::v4i32 : MVT::v4f32; + SDValue V1 = DAG.getLoad(VT, dl, Chain, Ptr,LD->getSrcValue(),0, + false, false, 0); + // Canonicalize it to a v4i32 shuffle. + V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, V1); + return DAG.getNode(ISD::BIT_CONVERT, dl, VT, + DAG.getVectorShuffle(MVT::v4i32, dl, V1, + DAG.getUNDEF(MVT::v4i32), &Mask[0])); + } + + return SDValue(); +} + +/// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a +/// vector of type 'VT', see if the elements can be replaced by a single large +/// load which has the same value as a build_vector whose operands are 'elts'. +/// +/// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a +/// +/// FIXME: we'd also like to handle the case where the last elements are zero +/// rather than undef via VZEXT_LOAD, but we do not detect that case today. +/// There's even a handy isZeroNode for that purpose. +static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts, + DebugLoc &dl, SelectionDAG &DAG) { + EVT EltVT = VT.getVectorElementType(); + unsigned NumElems = Elts.size(); + + LoadSDNode *LDBase = NULL; + unsigned LastLoadedElt = -1U; + + // For each element in the initializer, see if we've found a load or an undef. + // If we don't find an initial load element, or later load elements are + // non-consecutive, bail out. + for (unsigned i = 0; i < NumElems; ++i) { + SDValue Elt = Elts[i]; + + if (!Elt.getNode() || + (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode()))) + return SDValue(); + if (!LDBase) { + if (Elt.getNode()->getOpcode() == ISD::UNDEF) + return SDValue(); + LDBase = cast<LoadSDNode>(Elt.getNode()); + LastLoadedElt = i; + continue; + } + if (Elt.getOpcode() == ISD::UNDEF) + continue; + + LoadSDNode *LD = cast<LoadSDNode>(Elt); + if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i)) + return SDValue(); + LastLoadedElt = i; + } + + // If we have found an entire vector of loads and undefs, then return a large + // load of the entire vector width starting at the base pointer. If we found + // consecutive loads for the low half, generate a vzext_load node. + if (LastLoadedElt == NumElems - 1) { + if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16) + return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(), + LDBase->getSrcValue(), LDBase->getSrcValueOffset(), + LDBase->isVolatile(), LDBase->isNonTemporal(), 0); + return DAG.getLoad(VT, dl, LDBase->getChain(), LDBase->getBasePtr(), + LDBase->getSrcValue(), LDBase->getSrcValueOffset(), + LDBase->isVolatile(), LDBase->isNonTemporal(), + LDBase->getAlignment()); + } else if (NumElems == 4 && LastLoadedElt == 1) { + SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other); + SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() }; + SDValue ResNode = DAG.getNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops, 2); + return DAG.getNode(ISD::BIT_CONVERT, dl, VT, ResNode); + } + return SDValue(); +} + +SDValue +X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + // All zero's are handled with pxor, all one's are handled with pcmpeqd. + if (ISD::isBuildVectorAllZeros(Op.getNode()) + || ISD::isBuildVectorAllOnes(Op.getNode())) { + // Canonicalize this to either <4 x i32> or <2 x i32> (SSE vs MMX) to + // 1) ensure the zero vectors are CSE'd, and 2) ensure that i64 scalars are + // eliminated on x86-32 hosts. + if (Op.getValueType() == MVT::v4i32 || Op.getValueType() == MVT::v2i32) + return Op; + + if (ISD::isBuildVectorAllOnes(Op.getNode())) + return getOnesVector(Op.getValueType(), DAG, dl); + return getZeroVector(Op.getValueType(), Subtarget->hasSSE2(), DAG, dl); + } + + EVT VT = Op.getValueType(); + EVT ExtVT = VT.getVectorElementType(); + unsigned EVTBits = ExtVT.getSizeInBits(); + + unsigned NumElems = Op.getNumOperands(); + unsigned NumZero = 0; + unsigned NumNonZero = 0; + unsigned NonZeros = 0; + bool IsAllConstants = true; + SmallSet<SDValue, 8> Values; + for (unsigned i = 0; i < NumElems; ++i) { + SDValue Elt = Op.getOperand(i); + if (Elt.getOpcode() == ISD::UNDEF) + continue; + Values.insert(Elt); + if (Elt.getOpcode() != ISD::Constant && + Elt.getOpcode() != ISD::ConstantFP) + IsAllConstants = false; + if (X86::isZeroNode(Elt)) + NumZero++; + else { + NonZeros |= (1 << i); + NumNonZero++; + } + } + + if (NumNonZero == 0) { + // All undef vector. Return an UNDEF. All zero vectors were handled above. + return DAG.getUNDEF(VT); + } + + // Special case for single non-zero, non-undef, element. + if (NumNonZero == 1) { + unsigned Idx = CountTrailingZeros_32(NonZeros); + SDValue Item = Op.getOperand(Idx); + + // If this is an insertion of an i64 value on x86-32, and if the top bits of + // the value are obviously zero, truncate the value to i32 and do the + // insertion that way. Only do this if the value is non-constant or if the + // value is a constant being inserted into element 0. It is cheaper to do + // a constant pool load than it is to do a movd + shuffle. + if (ExtVT == MVT::i64 && !Subtarget->is64Bit() && + (!IsAllConstants || Idx == 0)) { + if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) { + // Handle MMX and SSE both. + EVT VecVT = VT == MVT::v2i64 ? MVT::v4i32 : MVT::v2i32; + unsigned VecElts = VT == MVT::v2i64 ? 4 : 2; + + // Truncate the value (which may itself be a constant) to i32, and + // convert it to a vector with movd (S2V+shuffle to zero extend). + Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item); + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item); + Item = getShuffleVectorZeroOrUndef(Item, 0, true, + Subtarget->hasSSE2(), DAG); + + // Now we have our 32-bit value zero extended in the low element of + // a vector. If Idx != 0, swizzle it into place. + if (Idx != 0) { + SmallVector<int, 4> Mask; + Mask.push_back(Idx); + for (unsigned i = 1; i != VecElts; ++i) + Mask.push_back(i); + Item = DAG.getVectorShuffle(VecVT, dl, Item, + DAG.getUNDEF(Item.getValueType()), + &Mask[0]); + } + return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Item); + } + } + + // If we have a constant or non-constant insertion into the low element of + // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into + // the rest of the elements. This will be matched as movd/movq/movss/movsd + // depending on what the source datatype is. + if (Idx == 0) { + if (NumZero == 0) { + return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); + } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 || + (ExtVT == MVT::i64 && Subtarget->is64Bit())) { + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); + // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector. + return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget->hasSSE2(), + DAG); + } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) { + Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item); + EVT MiddleVT = VT.getSizeInBits() == 64 ? MVT::v2i32 : MVT::v4i32; + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item); + Item = getShuffleVectorZeroOrUndef(Item, 0, true, + Subtarget->hasSSE2(), DAG); + return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Item); + } + } + + // Is it a vector logical left shift? + if (NumElems == 2 && Idx == 1 && + X86::isZeroNode(Op.getOperand(0)) && + !X86::isZeroNode(Op.getOperand(1))) { + unsigned NumBits = VT.getSizeInBits(); + return getVShift(true, VT, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, + VT, Op.getOperand(1)), + NumBits/2, DAG, *this, dl); + } + + if (IsAllConstants) // Otherwise, it's better to do a constpool load. + return SDValue(); + + // Otherwise, if this is a vector with i32 or f32 elements, and the element + // is a non-constant being inserted into an element other than the low one, + // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka + // movd/movss) to move this into the low element, then shuffle it into + // place. + if (EVTBits == 32) { + Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item); + + // Turn it into a shuffle of zero and zero-extended scalar to vector. + Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0, + Subtarget->hasSSE2(), DAG); + SmallVector<int, 8> MaskVec; + for (unsigned i = 0; i < NumElems; i++) + MaskVec.push_back(i == Idx ? 0 : 1); + return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]); + } + } + + // Splat is obviously ok. Let legalizer expand it to a shuffle. + if (Values.size() == 1) { + if (EVTBits == 32) { + // Instead of a shuffle like this: + // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0> + // Check if it's possible to issue this instead. + // shuffle (vload ptr)), undef, <1, 1, 1, 1> + unsigned Idx = CountTrailingZeros_32(NonZeros); + SDValue Item = Op.getOperand(Idx); + if (Op.getNode()->isOnlyUserOf(Item.getNode())) + return LowerAsSplatVectorLoad(Item, VT, dl, DAG); + } + return SDValue(); + } + + // A vector full of immediates; various special cases are already + // handled, so this is best done with a single constant-pool load. + if (IsAllConstants) + return SDValue(); + + // Let legalizer expand 2-wide build_vectors. + if (EVTBits == 64) { + if (NumNonZero == 1) { + // One half is zero or undef. + unsigned Idx = CountTrailingZeros_32(NonZeros); + SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, + Op.getOperand(Idx)); + return getShuffleVectorZeroOrUndef(V2, Idx, true, + Subtarget->hasSSE2(), DAG); + } + return SDValue(); + } + + // If element VT is < 32 bits, convert it to inserts into a zero vector. + if (EVTBits == 8 && NumElems == 16) { + SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG, + *this); + if (V.getNode()) return V; + } + + if (EVTBits == 16 && NumElems == 8) { + SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG, + *this); + if (V.getNode()) return V; + } + + // If element VT is == 32 bits, turn it into a number of shuffles. + SmallVector<SDValue, 8> V; + V.resize(NumElems); + if (NumElems == 4 && NumZero > 0) { + for (unsigned i = 0; i < 4; ++i) { + bool isZero = !(NonZeros & (1 << i)); + if (isZero) + V[i] = getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl); + else + V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); + } + + for (unsigned i = 0; i < 2; ++i) { + switch ((NonZeros & (0x3 << i*2)) >> (i*2)) { + default: break; + case 0: + V[i] = V[i*2]; // Must be a zero vector. + break; + case 1: + V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]); + break; + case 2: + V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]); + break; + case 3: + V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]); + break; + } + } + + SmallVector<int, 8> MaskVec; + bool Reverse = (NonZeros & 0x3) == 2; + for (unsigned i = 0; i < 2; ++i) + MaskVec.push_back(Reverse ? 1-i : i); + Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2; + for (unsigned i = 0; i < 2; ++i) + MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems); + return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]); + } + + if (Values.size() > 1 && VT.getSizeInBits() == 128) { + // Check for a build vector of consecutive loads. + for (unsigned i = 0; i < NumElems; ++i) + V[i] = Op.getOperand(i); + + // Check for elements which are consecutive loads. + SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG); + if (LD.getNode()) + return LD; + + // For SSE 4.1, use inserts into undef. + if (getSubtarget()->hasSSE41()) { + V[0] = DAG.getUNDEF(VT); + for (unsigned i = 0; i < NumElems; ++i) + if (Op.getOperand(i).getOpcode() != ISD::UNDEF) + V[0] = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, V[0], + Op.getOperand(i), DAG.getIntPtrConstant(i)); + return V[0]; + } + + // Otherwise, expand into a number of unpckl* + // e.g. for v4f32 + // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0> + // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1> + // Step 2: unpcklps X, Y ==> <3, 2, 1, 0> + for (unsigned i = 0; i < NumElems; ++i) + V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i)); + NumElems >>= 1; + while (NumElems != 0) { + for (unsigned i = 0; i < NumElems; ++i) + V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + NumElems]); + NumElems >>= 1; + } + return V[0]; + } + return SDValue(); +} + +SDValue +X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const { + // We support concatenate two MMX registers and place them in a MMX + // register. This is better than doing a stack convert. + DebugLoc dl = Op.getDebugLoc(); + EVT ResVT = Op.getValueType(); + assert(Op.getNumOperands() == 2); + assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 || + ResVT == MVT::v8i16 || ResVT == MVT::v16i8); + int Mask[2]; + SDValue InVec = DAG.getNode(ISD::BIT_CONVERT,dl, MVT::v1i64, Op.getOperand(0)); + SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec); + InVec = Op.getOperand(1); + if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) { + unsigned NumElts = ResVT.getVectorNumElements(); + VecOp = DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp); + VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp, + InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1)); + } else { + InVec = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v1i64, InVec); + SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec); + Mask[0] = 0; Mask[1] = 2; + VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask); + } + return DAG.getNode(ISD::BIT_CONVERT, dl, ResVT, VecOp); +} + +// v8i16 shuffles - Prefer shuffles in the following order: +// 1. [all] pshuflw, pshufhw, optional move +// 2. [ssse3] 1 x pshufb +// 3. [ssse3] 2 x pshufb + 1 x por +// 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw) +static +SDValue LowerVECTOR_SHUFFLEv8i16(ShuffleVectorSDNode *SVOp, + SelectionDAG &DAG, + const X86TargetLowering &TLI) { + SDValue V1 = SVOp->getOperand(0); + SDValue V2 = SVOp->getOperand(1); + DebugLoc dl = SVOp->getDebugLoc(); + SmallVector<int, 8> MaskVals; + + // Determine if more than 1 of the words in each of the low and high quadwords + // of the result come from the same quadword of one of the two inputs. Undef + // mask values count as coming from any quadword, for better codegen. + SmallVector<unsigned, 4> LoQuad(4); + SmallVector<unsigned, 4> HiQuad(4); + BitVector InputQuads(4); + for (unsigned i = 0; i < 8; ++i) { + SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad; + int EltIdx = SVOp->getMaskElt(i); + MaskVals.push_back(EltIdx); + if (EltIdx < 0) { + ++Quad[0]; + ++Quad[1]; + ++Quad[2]; + ++Quad[3]; + continue; + } + ++Quad[EltIdx / 4]; + InputQuads.set(EltIdx / 4); + } + + int BestLoQuad = -1; + unsigned MaxQuad = 1; + for (unsigned i = 0; i < 4; ++i) { + if (LoQuad[i] > MaxQuad) { + BestLoQuad = i; + MaxQuad = LoQuad[i]; + } + } + + int BestHiQuad = -1; + MaxQuad = 1; + for (unsigned i = 0; i < 4; ++i) { + if (HiQuad[i] > MaxQuad) { + BestHiQuad = i; + MaxQuad = HiQuad[i]; + } + } + + // For SSSE3, If all 8 words of the result come from only 1 quadword of each + // of the two input vectors, shuffle them into one input vector so only a + // single pshufb instruction is necessary. If There are more than 2 input + // quads, disable the next transformation since it does not help SSSE3. + bool V1Used = InputQuads[0] || InputQuads[1]; + bool V2Used = InputQuads[2] || InputQuads[3]; + if (TLI.getSubtarget()->hasSSSE3()) { + if (InputQuads.count() == 2 && V1Used && V2Used) { + BestLoQuad = InputQuads.find_first(); + BestHiQuad = InputQuads.find_next(BestLoQuad); + } + if (InputQuads.count() > 2) { + BestLoQuad = -1; + BestHiQuad = -1; + } + } + + // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update + // the shuffle mask. If a quad is scored as -1, that means that it contains + // words from all 4 input quadwords. + SDValue NewV; + if (BestLoQuad >= 0 || BestHiQuad >= 0) { + SmallVector<int, 8> MaskV; + MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad); + MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad); + NewV = DAG.getVectorShuffle(MVT::v2i64, dl, + DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V1), + DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, V2), &MaskV[0]); + NewV = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, NewV); + + // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the + // source words for the shuffle, to aid later transformations. + bool AllWordsInNewV = true; + bool InOrder[2] = { true, true }; + for (unsigned i = 0; i != 8; ++i) { + int idx = MaskVals[i]; + if (idx != (int)i) + InOrder[i/4] = false; + if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad) + continue; + AllWordsInNewV = false; + break; + } + + bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV; + if (AllWordsInNewV) { + for (int i = 0; i != 8; ++i) { + int idx = MaskVals[i]; + if (idx < 0) + continue; + idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4; + if ((idx != i) && idx < 4) + pshufhw = false; + if ((idx != i) && idx > 3) + pshuflw = false; + } + V1 = NewV; + V2Used = false; + BestLoQuad = 0; + BestHiQuad = 1; + } + + // If we've eliminated the use of V2, and the new mask is a pshuflw or + // pshufhw, that's as cheap as it gets. Return the new shuffle. + if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) { + return DAG.getVectorShuffle(MVT::v8i16, dl, NewV, + DAG.getUNDEF(MVT::v8i16), &MaskVals[0]); + } + } + + // If we have SSSE3, and all words of the result are from 1 input vector, + // case 2 is generated, otherwise case 3 is generated. If no SSSE3 + // is present, fall back to case 4. + if (TLI.getSubtarget()->hasSSSE3()) { + SmallVector<SDValue,16> pshufbMask; + + // If we have elements from both input vectors, set the high bit of the + // shuffle mask element to zero out elements that come from V2 in the V1 + // mask, and elements that come from V1 in the V2 mask, so that the two + // results can be OR'd together. + bool TwoInputs = V1Used && V2Used; + for (unsigned i = 0; i != 8; ++i) { + int EltIdx = MaskVals[i] * 2; + if (TwoInputs && (EltIdx >= 16)) { + pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); + continue; + } + pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8)); + } + V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V1); + V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, + DAG.getNode(ISD::BUILD_VECTOR, dl, + MVT::v16i8, &pshufbMask[0], 16)); + if (!TwoInputs) + return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1); + + // Calculate the shuffle mask for the second input, shuffle it, and + // OR it with the first shuffled input. + pshufbMask.clear(); + for (unsigned i = 0; i != 8; ++i) { + int EltIdx = MaskVals[i] * 2; + if (EltIdx < 16) { + pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); + continue; + } + pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8)); + pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8)); + } + V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, V2); + V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, + DAG.getNode(ISD::BUILD_VECTOR, dl, + MVT::v16i8, &pshufbMask[0], 16)); + V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); + return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1); + } + + // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order, + // and update MaskVals with new element order. + BitVector InOrder(8); + if (BestLoQuad >= 0) { + SmallVector<int, 8> MaskV; + for (int i = 0; i != 4; ++i) { + int idx = MaskVals[i]; + if (idx < 0) { + MaskV.push_back(-1); + InOrder.set(i); + } else if ((idx / 4) == BestLoQuad) { + MaskV.push_back(idx & 3); + InOrder.set(i); + } else { + MaskV.push_back(-1); + } + } + for (unsigned i = 4; i != 8; ++i) + MaskV.push_back(i); + NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), + &MaskV[0]); + } + + // If BestHi >= 0, generate a pshufhw to put the high elements in order, + // and update MaskVals with the new element order. + if (BestHiQuad >= 0) { + SmallVector<int, 8> MaskV; + for (unsigned i = 0; i != 4; ++i) + MaskV.push_back(i); + for (unsigned i = 4; i != 8; ++i) { + int idx = MaskVals[i]; + if (idx < 0) { + MaskV.push_back(-1); + InOrder.set(i); + } else if ((idx / 4) == BestHiQuad) { + MaskV.push_back((idx & 3) + 4); + InOrder.set(i); + } else { + MaskV.push_back(-1); + } + } + NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16), + &MaskV[0]); + } + + // In case BestHi & BestLo were both -1, which means each quadword has a word + // from each of the four input quadwords, calculate the InOrder bitvector now + // before falling through to the insert/extract cleanup. + if (BestLoQuad == -1 && BestHiQuad == -1) { + NewV = V1; + for (int i = 0; i != 8; ++i) + if (MaskVals[i] < 0 || MaskVals[i] == i) + InOrder.set(i); + } + + // The other elements are put in the right place using pextrw and pinsrw. + for (unsigned i = 0; i != 8; ++i) { + if (InOrder[i]) + continue; + int EltIdx = MaskVals[i]; + if (EltIdx < 0) + continue; + SDValue ExtOp = (EltIdx < 8) + ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1, + DAG.getIntPtrConstant(EltIdx)) + : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2, + DAG.getIntPtrConstant(EltIdx - 8)); + NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp, + DAG.getIntPtrConstant(i)); + } + return NewV; +} + +// v16i8 shuffles - Prefer shuffles in the following order: +// 1. [ssse3] 1 x pshufb +// 2. [ssse3] 2 x pshufb + 1 x por +// 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw +static +SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp, + SelectionDAG &DAG, + const X86TargetLowering &TLI) { + SDValue V1 = SVOp->getOperand(0); + SDValue V2 = SVOp->getOperand(1); + DebugLoc dl = SVOp->getDebugLoc(); + SmallVector<int, 16> MaskVals; + SVOp->getMask(MaskVals); + + // If we have SSSE3, case 1 is generated when all result bytes come from + // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is + // present, fall back to case 3. + // FIXME: kill V2Only once shuffles are canonizalized by getNode. + bool V1Only = true; + bool V2Only = true; + for (unsigned i = 0; i < 16; ++i) { + int EltIdx = MaskVals[i]; + if (EltIdx < 0) + continue; + if (EltIdx < 16) + V2Only = false; + else + V1Only = false; + } + + // If SSSE3, use 1 pshufb instruction per vector with elements in the result. + if (TLI.getSubtarget()->hasSSSE3()) { + SmallVector<SDValue,16> pshufbMask; + + // If all result elements are from one input vector, then only translate + // undef mask values to 0x80 (zero out result) in the pshufb mask. + // + // Otherwise, we have elements from both input vectors, and must zero out + // elements that come from V2 in the first mask, and V1 in the second mask + // so that we can OR them together. + bool TwoInputs = !(V1Only || V2Only); + for (unsigned i = 0; i != 16; ++i) { + int EltIdx = MaskVals[i]; + if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) { + pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); + continue; + } + pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8)); + } + // If all the elements are from V2, assign it to V1 and return after + // building the first pshufb. + if (V2Only) + V1 = V2; + V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1, + DAG.getNode(ISD::BUILD_VECTOR, dl, + MVT::v16i8, &pshufbMask[0], 16)); + if (!TwoInputs) + return V1; + + // Calculate the shuffle mask for the second input, shuffle it, and + // OR it with the first shuffled input. + pshufbMask.clear(); + for (unsigned i = 0; i != 16; ++i) { + int EltIdx = MaskVals[i]; + if (EltIdx < 16) { + pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8)); + continue; + } + pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8)); + } + V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2, + DAG.getNode(ISD::BUILD_VECTOR, dl, + MVT::v16i8, &pshufbMask[0], 16)); + return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2); + } + + // No SSSE3 - Calculate in place words and then fix all out of place words + // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from + // the 16 different words that comprise the two doublequadword input vectors. + V1 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V1); + V2 = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v8i16, V2); + SDValue NewV = V2Only ? V2 : V1; + for (int i = 0; i != 8; ++i) { + int Elt0 = MaskVals[i*2]; + int Elt1 = MaskVals[i*2+1]; + + // This word of the result is all undef, skip it. + if (Elt0 < 0 && Elt1 < 0) + continue; + + // This word of the result is already in the correct place, skip it. + if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1)) + continue; + if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17)) + continue; + + SDValue Elt0Src = Elt0 < 16 ? V1 : V2; + SDValue Elt1Src = Elt1 < 16 ? V1 : V2; + SDValue InsElt; + + // If Elt0 and Elt1 are defined, are consecutive, and can be load + // using a single extract together, load it and store it. + if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) { + InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, + DAG.getIntPtrConstant(Elt1 / 2)); + NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, + DAG.getIntPtrConstant(i)); + continue; + } + + // If Elt1 is defined, extract it from the appropriate source. If the + // source byte is not also odd, shift the extracted word left 8 bits + // otherwise clear the bottom 8 bits if we need to do an or. + if (Elt1 >= 0) { + InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src, + DAG.getIntPtrConstant(Elt1 / 2)); + if ((Elt1 & 1) == 0) + InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt, + DAG.getConstant(8, TLI.getShiftAmountTy())); + else if (Elt0 >= 0) + InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt, + DAG.getConstant(0xFF00, MVT::i16)); + } + // If Elt0 is defined, extract it from the appropriate source. If the + // source byte is not also even, shift the extracted word right 8 bits. If + // Elt1 was also defined, OR the extracted values together before + // inserting them in the result. + if (Elt0 >= 0) { + SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, + Elt0Src, DAG.getIntPtrConstant(Elt0 / 2)); + if ((Elt0 & 1) != 0) + InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0, + DAG.getConstant(8, TLI.getShiftAmountTy())); + else if (Elt1 >= 0) + InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0, + DAG.getConstant(0x00FF, MVT::i16)); + InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0) + : InsElt0; + } + NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt, + DAG.getIntPtrConstant(i)); + } + return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v16i8, NewV); +} + +/// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide +/// ones, or rewriting v4i32 / v2f32 as 2 wide ones if possible. This can be +/// done when every pair / quad of shuffle mask elements point to elements in +/// the right sequence. e.g. +/// vector_shuffle <>, <>, < 3, 4, | 10, 11, | 0, 1, | 14, 15> +static +SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp, + SelectionDAG &DAG, + const TargetLowering &TLI, DebugLoc dl) { + EVT VT = SVOp->getValueType(0); + SDValue V1 = SVOp->getOperand(0); + SDValue V2 = SVOp->getOperand(1); + unsigned NumElems = VT.getVectorNumElements(); + unsigned NewWidth = (NumElems == 4) ? 2 : 4; + EVT MaskVT = MVT::getIntVectorWithNumElements(NewWidth); + EVT MaskEltVT = MaskVT.getVectorElementType(); + EVT NewVT = MaskVT; + switch (VT.getSimpleVT().SimpleTy) { + default: assert(false && "Unexpected!"); + case MVT::v4f32: NewVT = MVT::v2f64; break; + case MVT::v4i32: NewVT = MVT::v2i64; break; + case MVT::v8i16: NewVT = MVT::v4i32; break; + case MVT::v16i8: NewVT = MVT::v4i32; break; + } + + if (NewWidth == 2) { + if (VT.isInteger()) + NewVT = MVT::v2i64; + else + NewVT = MVT::v2f64; + } + int Scale = NumElems / NewWidth; + SmallVector<int, 8> MaskVec; + for (unsigned i = 0; i < NumElems; i += Scale) { + int StartIdx = -1; + for (int j = 0; j < Scale; ++j) { + int EltIdx = SVOp->getMaskElt(i+j); + if (EltIdx < 0) + continue; + if (StartIdx == -1) + StartIdx = EltIdx - (EltIdx % Scale); + if (EltIdx != StartIdx + j) + return SDValue(); + } + if (StartIdx == -1) + MaskVec.push_back(-1); + else + MaskVec.push_back(StartIdx / Scale); + } + + V1 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V1); + V2 = DAG.getNode(ISD::BIT_CONVERT, dl, NewVT, V2); + return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]); +} + +/// getVZextMovL - Return a zero-extending vector move low node. +/// +static SDValue getVZextMovL(EVT VT, EVT OpVT, + SDValue SrcOp, SelectionDAG &DAG, + const X86Subtarget *Subtarget, DebugLoc dl) { + if (VT == MVT::v2f64 || VT == MVT::v4f32) { + LoadSDNode *LD = NULL; + if (!isScalarLoadToVector(SrcOp.getNode(), &LD)) + LD = dyn_cast<LoadSDNode>(SrcOp); + if (!LD) { + // movssrr and movsdrr do not clear top bits. Try to use movd, movq + // instead. + MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32; + if ((ExtVT.SimpleTy != MVT::i64 || Subtarget->is64Bit()) && + SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR && + SrcOp.getOperand(0).getOpcode() == ISD::BIT_CONVERT && + SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) { + // PR2108 + OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32; + return DAG.getNode(ISD::BIT_CONVERT, dl, VT, + DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, + OpVT, + SrcOp.getOperand(0) + .getOperand(0)))); + } + } + } + + return DAG.getNode(ISD::BIT_CONVERT, dl, VT, + DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT, + DAG.getNode(ISD::BIT_CONVERT, dl, + OpVT, SrcOp))); +} + +/// LowerVECTOR_SHUFFLE_4wide - Handle all 4 wide cases with a number of +/// shuffles. +static SDValue +LowerVECTOR_SHUFFLE_4wide(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) { + SDValue V1 = SVOp->getOperand(0); + SDValue V2 = SVOp->getOperand(1); + DebugLoc dl = SVOp->getDebugLoc(); + EVT VT = SVOp->getValueType(0); + + SmallVector<std::pair<int, int>, 8> Locs; + Locs.resize(4); + SmallVector<int, 8> Mask1(4U, -1); + SmallVector<int, 8> PermMask; + SVOp->getMask(PermMask); + + unsigned NumHi = 0; + unsigned NumLo = 0; + for (unsigned i = 0; i != 4; ++i) { + int Idx = PermMask[i]; + if (Idx < 0) { + Locs[i] = std::make_pair(-1, -1); + } else { + assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!"); + if (Idx < 4) { + Locs[i] = std::make_pair(0, NumLo); + Mask1[NumLo] = Idx; + NumLo++; + } else { + Locs[i] = std::make_pair(1, NumHi); + if (2+NumHi < 4) + Mask1[2+NumHi] = Idx; + NumHi++; + } + } + } + + if (NumLo <= 2 && NumHi <= 2) { + // If no more than two elements come from either vector. This can be + // implemented with two shuffles. First shuffle gather the elements. + // The second shuffle, which takes the first shuffle as both of its + // vector operands, put the elements into the right order. + V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); + + SmallVector<int, 8> Mask2(4U, -1); + + for (unsigned i = 0; i != 4; ++i) { + if (Locs[i].first == -1) + continue; + else { + unsigned Idx = (i < 2) ? 0 : 4; + Idx += Locs[i].first * 2 + Locs[i].second; + Mask2[i] = Idx; + } + } + + return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]); + } else if (NumLo == 3 || NumHi == 3) { + // Otherwise, we must have three elements from one vector, call it X, and + // one element from the other, call it Y. First, use a shufps to build an + // intermediate vector with the one element from Y and the element from X + // that will be in the same half in the final destination (the indexes don't + // matter). Then, use a shufps to build the final vector, taking the half + // containing the element from Y from the intermediate, and the other half + // from X. + if (NumHi == 3) { + // Normalize it so the 3 elements come from V1. + CommuteVectorShuffleMask(PermMask, VT); + std::swap(V1, V2); + } + + // Find the element from V2. + unsigned HiIndex; + for (HiIndex = 0; HiIndex < 3; ++HiIndex) { + int Val = PermMask[HiIndex]; + if (Val < 0) + continue; + if (Val >= 4) + break; + } + + Mask1[0] = PermMask[HiIndex]; + Mask1[1] = -1; + Mask1[2] = PermMask[HiIndex^1]; + Mask1[3] = -1; + V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); + + if (HiIndex >= 2) { + Mask1[0] = PermMask[0]; + Mask1[1] = PermMask[1]; + Mask1[2] = HiIndex & 1 ? 6 : 4; + Mask1[3] = HiIndex & 1 ? 4 : 6; + return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]); + } else { + Mask1[0] = HiIndex & 1 ? 2 : 0; + Mask1[1] = HiIndex & 1 ? 0 : 2; + Mask1[2] = PermMask[2]; + Mask1[3] = PermMask[3]; + if (Mask1[2] >= 0) + Mask1[2] += 4; + if (Mask1[3] >= 0) + Mask1[3] += 4; + return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]); + } + } + + // Break it into (shuffle shuffle_hi, shuffle_lo). + Locs.clear(); + SmallVector<int,8> LoMask(4U, -1); + SmallVector<int,8> HiMask(4U, -1); + + SmallVector<int,8> *MaskPtr = &LoMask; + unsigned MaskIdx = 0; + unsigned LoIdx = 0; + unsigned HiIdx = 2; + for (unsigned i = 0; i != 4; ++i) { + if (i == 2) { + MaskPtr = &HiMask; + MaskIdx = 1; + LoIdx = 0; + HiIdx = 2; + } + int Idx = PermMask[i]; + if (Idx < 0) { + Locs[i] = std::make_pair(-1, -1); + } else if (Idx < 4) { + Locs[i] = std::make_pair(MaskIdx, LoIdx); + (*MaskPtr)[LoIdx] = Idx; + LoIdx++; + } else { + Locs[i] = std::make_pair(MaskIdx, HiIdx); + (*MaskPtr)[HiIdx] = Idx; + HiIdx++; + } + } + + SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]); + SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]); + SmallVector<int, 8> MaskOps; + for (unsigned i = 0; i != 4; ++i) { + if (Locs[i].first == -1) { + MaskOps.push_back(-1); + } else { + unsigned Idx = Locs[i].first * 4 + Locs[i].second; + MaskOps.push_back(Idx); + } + } + return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]); +} + +SDValue +X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { + ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op); + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + EVT VT = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); + unsigned NumElems = VT.getVectorNumElements(); + bool isMMX = VT.getSizeInBits() == 64; + bool V1IsUndef = V1.getOpcode() == ISD::UNDEF; + bool V2IsUndef = V2.getOpcode() == ISD::UNDEF; + bool V1IsSplat = false; + bool V2IsSplat = false; + + if (isZeroShuffle(SVOp)) + return getZeroVector(VT, Subtarget->hasSSE2(), DAG, dl); + + // Promote splats to v4f32. + if (SVOp->isSplat()) { + if (isMMX || NumElems < 4) + return Op; + return PromoteSplat(SVOp, DAG, Subtarget->hasSSE2()); + } + + // If the shuffle can be profitably rewritten as a narrower shuffle, then + // do it! + if (VT == MVT::v8i16 || VT == MVT::v16i8) { + SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl); + if (NewOp.getNode()) + return DAG.getNode(ISD::BIT_CONVERT, dl, VT, + LowerVECTOR_SHUFFLE(NewOp, DAG)); + } else if ((VT == MVT::v4i32 || (VT == MVT::v4f32 && Subtarget->hasSSE2()))) { + // FIXME: Figure out a cleaner way to do this. + // Try to make use of movq to zero out the top part. + if (ISD::isBuildVectorAllZeros(V2.getNode())) { + SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl); + if (NewOp.getNode()) { + if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false)) + return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0), + DAG, Subtarget, dl); + } + } else if (ISD::isBuildVectorAllZeros(V1.getNode())) { + SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, *this, dl); + if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp))) + return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1), + DAG, Subtarget, dl); + } + } + + if (X86::isPSHUFDMask(SVOp)) + return Op; + + // Check if this can be converted into a logical shift. + bool isLeft = false; + unsigned ShAmt = 0; + SDValue ShVal; + bool isShift = getSubtarget()->hasSSE2() && + isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt); + if (isShift && ShVal.hasOneUse()) { + // If the shifted value has multiple uses, it may be cheaper to use + // v_set0 + movlhps or movhlps, etc. + EVT EltVT = VT.getVectorElementType(); + ShAmt *= EltVT.getSizeInBits(); + return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); + } + + if (X86::isMOVLMask(SVOp)) { + if (V1IsUndef) + return V2; + if (ISD::isBuildVectorAllZeros(V1.getNode())) + return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl); + if (!isMMX) + return Op; + } + + // FIXME: fold these into legal mask. + if (!isMMX && (X86::isMOVSHDUPMask(SVOp) || + X86::isMOVSLDUPMask(SVOp) || + X86::isMOVHLPSMask(SVOp) || + X86::isMOVLHPSMask(SVOp) || + X86::isMOVLPMask(SVOp))) + return Op; + + if (ShouldXformToMOVHLPS(SVOp) || + ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp)) + return CommuteVectorShuffle(SVOp, DAG); + + if (isShift) { + // No better options. Use a vshl / vsrl. + EVT EltVT = VT.getVectorElementType(); + ShAmt *= EltVT.getSizeInBits(); + return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl); + } + + bool Commuted = false; + // FIXME: This should also accept a bitcast of a splat? Be careful, not + // 1,1,1,1 -> v8i16 though. + V1IsSplat = isSplatVector(V1.getNode()); + V2IsSplat = isSplatVector(V2.getNode()); + + // Canonicalize the splat or undef, if present, to be on the RHS. + if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) { + Op = CommuteVectorShuffle(SVOp, DAG); + SVOp = cast<ShuffleVectorSDNode>(Op); + V1 = SVOp->getOperand(0); + V2 = SVOp->getOperand(1); + std::swap(V1IsSplat, V2IsSplat); + std::swap(V1IsUndef, V2IsUndef); + Commuted = true; + } + + if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) { + // Shuffling low element of v1 into undef, just return v1. + if (V2IsUndef) + return V1; + // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which + // the instruction selector will not match, so get a canonical MOVL with + // swapped operands to undo the commute. + return getMOVL(DAG, dl, VT, V2, V1); + } + + if (X86::isUNPCKL_v_undef_Mask(SVOp) || + X86::isUNPCKH_v_undef_Mask(SVOp) || + X86::isUNPCKLMask(SVOp) || + X86::isUNPCKHMask(SVOp)) + return Op; + + if (V2IsSplat) { + // Normalize mask so all entries that point to V2 points to its first + // element then try to match unpck{h|l} again. If match, return a + // new vector_shuffle with the corrected mask. + SDValue NewMask = NormalizeMask(SVOp, DAG); + ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask); + if (NSVOp != SVOp) { + if (X86::isUNPCKLMask(NSVOp, true)) { + return NewMask; + } else if (X86::isUNPCKHMask(NSVOp, true)) { + return NewMask; + } + } + } + + if (Commuted) { + // Commute is back and try unpck* again. + // FIXME: this seems wrong. + SDValue NewOp = CommuteVectorShuffle(SVOp, DAG); + ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp); + if (X86::isUNPCKL_v_undef_Mask(NewSVOp) || + X86::isUNPCKH_v_undef_Mask(NewSVOp) || + X86::isUNPCKLMask(NewSVOp) || + X86::isUNPCKHMask(NewSVOp)) + return NewOp; + } + + // FIXME: for mmx, bitcast v2i32 to v4i16 for shuffle. + + // Normalize the node to match x86 shuffle ops if needed + if (!isMMX && V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp)) + return CommuteVectorShuffle(SVOp, DAG); + + // Check for legal shuffle and return? + SmallVector<int, 16> PermMask; + SVOp->getMask(PermMask); + if (isShuffleMaskLegal(PermMask, VT)) + return Op; + + // Handle v8i16 specifically since SSE can do byte extraction and insertion. + if (VT == MVT::v8i16) { + SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(SVOp, DAG, *this); + if (NewOp.getNode()) + return NewOp; + } + + if (VT == MVT::v16i8) { + SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this); + if (NewOp.getNode()) + return NewOp; + } + + // Handle all 4 wide cases with a number of shuffles except for MMX. + if (NumElems == 4 && !isMMX) + return LowerVECTOR_SHUFFLE_4wide(SVOp, DAG); + + return SDValue(); +} + +SDValue +X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); + if (VT.getSizeInBits() == 8) { + SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32, + Op.getOperand(0), Op.getOperand(1)); + SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, + DAG.getValueType(VT)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); + } else if (VT.getSizeInBits() == 16) { + unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + // If Idx is 0, it's cheaper to do a move instead of a pextrw. + if (Idx == 0) + return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, + DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::v4i32, + Op.getOperand(0)), + Op.getOperand(1))); + SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32, + Op.getOperand(0), Op.getOperand(1)); + SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract, + DAG.getValueType(VT)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); + } else if (VT == MVT::f32) { + // EXTRACTPS outputs to a GPR32 register which will require a movd to copy + // the result back to FR32 register. It's only worth matching if the + // result has a single use which is a store or a bitcast to i32. And in + // the case of a store, it's not worth it if the index is a constant 0, + // because a MOVSSmr can be used instead, which is smaller and faster. + if (!Op.hasOneUse()) + return SDValue(); + SDNode *User = *Op.getNode()->use_begin(); + if ((User->getOpcode() != ISD::STORE || + (isa<ConstantSDNode>(Op.getOperand(1)) && + cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) && + (User->getOpcode() != ISD::BIT_CONVERT || + User->getValueType(0) != MVT::i32)) + return SDValue(); + SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, + DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4i32, + Op.getOperand(0)), + Op.getOperand(1)); + return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Extract); + } else if (VT == MVT::i32) { + // ExtractPS works with constant index. + if (isa<ConstantSDNode>(Op.getOperand(1))) + return Op; + } + return SDValue(); +} + + +SDValue +X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const { + if (!isa<ConstantSDNode>(Op.getOperand(1))) + return SDValue(); + + if (Subtarget->hasSSE41()) { + SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG); + if (Res.getNode()) + return Res; + } + + EVT VT = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); + // TODO: handle v16i8. + if (VT.getSizeInBits() == 16) { + SDValue Vec = Op.getOperand(0); + unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + if (Idx == 0) + return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32, + DAG.getNode(ISD::BIT_CONVERT, dl, + MVT::v4i32, Vec), + Op.getOperand(1))); + // Transform it so it match pextrw which produces a 32-bit result. + EVT EltVT = MVT::i32; + SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT, + Op.getOperand(0), Op.getOperand(1)); + SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract, + DAG.getValueType(VT)); + return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert); + } else if (VT.getSizeInBits() == 32) { + unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + if (Idx == 0) + return Op; + + // SHUFPS the element to the lowest double word, then movss. + int Mask[4] = { Idx, -1, -1, -1 }; + EVT VVT = Op.getOperand(0).getValueType(); + SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), + DAG.getUNDEF(VVT), Mask); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, + DAG.getIntPtrConstant(0)); + } else if (VT.getSizeInBits() == 64) { + // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b + // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught + // to match extract_elt for f64. + unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + if (Idx == 0) + return Op; + + // UNPCKHPD the element to the lowest double word, then movsd. + // Note if the lower 64 bits of the result of the UNPCKHPD is then stored + // to a f64mem, the whole operation is folded into a single MOVHPDmr. + int Mask[2] = { 1, -1 }; + EVT VVT = Op.getOperand(0).getValueType(); + SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0), + DAG.getUNDEF(VVT), Mask); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec, + DAG.getIntPtrConstant(0)); + } + + return SDValue(); +} + +SDValue +X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + EVT EltVT = VT.getVectorElementType(); + DebugLoc dl = Op.getDebugLoc(); + + SDValue N0 = Op.getOperand(0); + SDValue N1 = Op.getOperand(1); + SDValue N2 = Op.getOperand(2); + + if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) && + isa<ConstantSDNode>(N2)) { + unsigned Opc; + if (VT == MVT::v8i16) + Opc = X86ISD::PINSRW; + else if (VT == MVT::v4i16) + Opc = X86ISD::MMX_PINSRW; + else if (VT == MVT::v16i8) + Opc = X86ISD::PINSRB; + else + Opc = X86ISD::PINSRB; + + // Transform it so it match pinsr{b,w} which expects a GR32 as its second + // argument. + if (N1.getValueType() != MVT::i32) + N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); + if (N2.getValueType() != MVT::i32) + N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); + return DAG.getNode(Opc, dl, VT, N0, N1, N2); + } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) { + // Bits [7:6] of the constant are the source select. This will always be + // zero here. The DAG Combiner may combine an extract_elt index into these + // bits. For example (insert (extract, 3), 2) could be matched by putting + // the '3' into bits [7:6] of X86ISD::INSERTPS. + // Bits [5:4] of the constant are the destination select. This is the + // value of the incoming immediate. + // Bits [3:0] of the constant are the zero mask. The DAG Combiner may + // combine either bitwise AND or insert of float 0.0 to set these bits. + N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4); + // Create this as a scalar to vector.. + N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1); + return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2); + } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) { + // PINSR* works with constant index. + return Op; + } + return SDValue(); +} + +SDValue +X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + EVT EltVT = VT.getVectorElementType(); + + if (Subtarget->hasSSE41()) + return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG); + + if (EltVT == MVT::i8) + return SDValue(); + + DebugLoc dl = Op.getDebugLoc(); + SDValue N0 = Op.getOperand(0); + SDValue N1 = Op.getOperand(1); + SDValue N2 = Op.getOperand(2); + + if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) { + // Transform it so it match pinsrw which expects a 16-bit value in a GR32 + // as its second argument. + if (N1.getValueType() != MVT::i32) + N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1); + if (N2.getValueType() != MVT::i32) + N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue()); + return DAG.getNode(VT == MVT::v8i16 ? X86ISD::PINSRW : X86ISD::MMX_PINSRW, + dl, VT, N0, N1, N2); + } + return SDValue(); +} + +SDValue +X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + if (Op.getValueType() == MVT::v2f32) + return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f32, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i32, + DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, + Op.getOperand(0)))); + + if (Op.getValueType() == MVT::v1i64 && Op.getOperand(0).getValueType() == MVT::i64) + return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0)); + + SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0)); + EVT VT = MVT::v2i32; + switch (Op.getValueType().getSimpleVT().SimpleTy) { + default: break; + case MVT::v16i8: + case MVT::v8i16: + VT = MVT::v4i32; + break; + } + return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, AnyExt)); +} + +// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as +// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is +// one of the above mentioned nodes. It has to be wrapped because otherwise +// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only +// be used to form addressing mode. These wrapped nodes will be selected +// into MOV32ri. +SDValue +X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { + ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + unsigned char OpFlag = 0; + unsigned WrapperKind = X86ISD::Wrapper; + CodeModel::Model M = getTargetMachine().getCodeModel(); + + if (Subtarget->isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) + WrapperKind = X86ISD::WrapperRIP; + else if (Subtarget->isPICStyleGOT()) + OpFlag = X86II::MO_GOTOFF; + else if (Subtarget->isPICStyleStubPIC()) + OpFlag = X86II::MO_PIC_BASE_OFFSET; + + SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(), + CP->getAlignment(), + CP->getOffset(), OpFlag); + DebugLoc DL = CP->getDebugLoc(); + Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); + // With PIC, the address is actually $g + Offset. + if (OpFlag) { + Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), + DAG.getNode(X86ISD::GlobalBaseReg, + DebugLoc(), getPointerTy()), + Result); + } + + return Result; +} + +SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { + JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + unsigned char OpFlag = 0; + unsigned WrapperKind = X86ISD::Wrapper; + CodeModel::Model M = getTargetMachine().getCodeModel(); + + if (Subtarget->isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) + WrapperKind = X86ISD::WrapperRIP; + else if (Subtarget->isPICStyleGOT()) + OpFlag = X86II::MO_GOTOFF; + else if (Subtarget->isPICStyleStubPIC()) + OpFlag = X86II::MO_PIC_BASE_OFFSET; + + SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(), + OpFlag); + DebugLoc DL = JT->getDebugLoc(); + Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); + + // With PIC, the address is actually $g + Offset. + if (OpFlag) { + Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), + DAG.getNode(X86ISD::GlobalBaseReg, + DebugLoc(), getPointerTy()), + Result); + } + + return Result; +} + +SDValue +X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const { + const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol(); + + // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the + // global base reg. + unsigned char OpFlag = 0; + unsigned WrapperKind = X86ISD::Wrapper; + CodeModel::Model M = getTargetMachine().getCodeModel(); + + if (Subtarget->isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) + WrapperKind = X86ISD::WrapperRIP; + else if (Subtarget->isPICStyleGOT()) + OpFlag = X86II::MO_GOTOFF; + else if (Subtarget->isPICStyleStubPIC()) + OpFlag = X86II::MO_PIC_BASE_OFFSET; + + SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag); + + DebugLoc DL = Op.getDebugLoc(); + Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result); + + + // With PIC, the address is actually $g + Offset. + if (getTargetMachine().getRelocationModel() == Reloc::PIC_ && + !Subtarget->is64Bit()) { + Result = DAG.getNode(ISD::ADD, DL, getPointerTy(), + DAG.getNode(X86ISD::GlobalBaseReg, + DebugLoc(), getPointerTy()), + Result); + } + + return Result; +} + +SDValue +X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { + // Create the TargetBlockAddressAddress node. + unsigned char OpFlags = + Subtarget->ClassifyBlockAddressReference(); + CodeModel::Model M = getTargetMachine().getCodeModel(); + const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); + DebugLoc dl = Op.getDebugLoc(); + SDValue Result = DAG.getBlockAddress(BA, getPointerTy(), + /*isTarget=*/true, OpFlags); + + if (Subtarget->isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) + Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); + else + Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); + + // With PIC, the address is actually $g + Offset. + if (isGlobalRelativeToPICBase(OpFlags)) { + Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), + DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), + Result); + } + + return Result; +} + +SDValue +X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl, + int64_t Offset, + SelectionDAG &DAG) const { + // Create the TargetGlobalAddress node, folding in the constant + // offset if it is legal. + unsigned char OpFlags = + Subtarget->ClassifyGlobalReference(GV, getTargetMachine()); + CodeModel::Model M = getTargetMachine().getCodeModel(); + SDValue Result; + if (OpFlags == X86II::MO_NO_FLAG && + X86::isOffsetSuitableForCodeModel(Offset, M)) { + // A direct static reference to a global. + Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset); + Offset = 0; + } else { + Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags); + } + + if (Subtarget->isPICStyleRIPRel() && + (M == CodeModel::Small || M == CodeModel::Kernel)) + Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result); + else + Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result); + + // With PIC, the address is actually $g + Offset. + if (isGlobalRelativeToPICBase(OpFlags)) { + Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), + DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()), + Result); + } + + // For globals that require a load from a stub to get the address, emit the + // load. + if (isGlobalStubReference(OpFlags)) + Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result, + PseudoSourceValue::getGOT(), 0, false, false, 0); + + // If there was a non-zero offset that we didn't fold, create an explicit + // addition for it. + if (Offset != 0) + Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result, + DAG.getConstant(Offset, getPointerTy())); + + return Result; +} + +SDValue +X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { + const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); + int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); + return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG); +} + +static SDValue +GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA, + SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg, + unsigned char OperandFlags) { + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); + DebugLoc dl = GA->getDebugLoc(); + SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), + GA->getValueType(0), + GA->getOffset(), + OperandFlags); + if (InFlag) { + SDValue Ops[] = { Chain, TGA, *InFlag }; + Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3); + } else { + SDValue Ops[] = { Chain, TGA }; + Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2); + } + + // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. + MFI->setAdjustsStack(true); + + SDValue Flag = Chain.getValue(1); + return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag); +} + +// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit +static SDValue +LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG, + const EVT PtrVT) { + SDValue InFlag; + DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better + SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX, + DAG.getNode(X86ISD::GlobalBaseReg, + DebugLoc(), PtrVT), InFlag); + InFlag = Chain.getValue(1); + + return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD); +} + +// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit +static SDValue +LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG, + const EVT PtrVT) { + return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT, + X86::RAX, X86II::MO_TLSGD); +} + +// Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or +// "local exec" model. +static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG, + const EVT PtrVT, TLSModel::Model model, + bool is64Bit) { + DebugLoc dl = GA->getDebugLoc(); + // Get the Thread Pointer + SDValue Base = DAG.getNode(X86ISD::SegmentBaseAddress, + DebugLoc(), PtrVT, + DAG.getRegister(is64Bit? X86::FS : X86::GS, + MVT::i32)); + + SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Base, + NULL, 0, false, false, 0); + + unsigned char OperandFlags = 0; + // Most TLS accesses are not RIP relative, even on x86-64. One exception is + // initialexec. + unsigned WrapperKind = X86ISD::Wrapper; + if (model == TLSModel::LocalExec) { + OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF; + } else if (is64Bit) { + assert(model == TLSModel::InitialExec); + OperandFlags = X86II::MO_GOTTPOFF; + WrapperKind = X86ISD::WrapperRIP; + } else { + assert(model == TLSModel::InitialExec); + OperandFlags = X86II::MO_INDNTPOFF; + } + + // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial + // exec) + SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), GA->getValueType(0), + GA->getOffset(), OperandFlags); + SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA); + + if (model == TLSModel::InitialExec) + Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset, + PseudoSourceValue::getGOT(), 0, false, false, 0); + + // The address of the thread local variable is the add of the thread + // pointer with the offset of the variable. + return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); +} + +SDValue +X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { + // TODO: implement the "local dynamic" model + // TODO: implement the "initial exec"model for pic executables + assert(Subtarget->isTargetELF() && + "TLS not implemented for non-ELF targets"); + GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); + const GlobalValue *GV = GA->getGlobal(); + + // If GV is an alias then use the aliasee for determining + // thread-localness. + if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) + GV = GA->resolveAliasedGlobal(false); + + TLSModel::Model model = getTLSModel(GV, + getTargetMachine().getRelocationModel()); + + switch (model) { + case TLSModel::GeneralDynamic: + case TLSModel::LocalDynamic: // not implemented + if (Subtarget->is64Bit()) + return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy()); + return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy()); + + case TLSModel::InitialExec: + case TLSModel::LocalExec: + return LowerToTLSExecModel(GA, DAG, getPointerTy(), model, + Subtarget->is64Bit()); + } + + llvm_unreachable("Unreachable"); + return SDValue(); +} + + +/// LowerShift - Lower SRA_PARTS and friends, which return two i32 values and +/// take a 2 x i32 value to shift plus a shift amount. +SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const { + assert(Op.getNumOperands() == 3 && "Not a double-shift!"); + EVT VT = Op.getValueType(); + unsigned VTBits = VT.getSizeInBits(); + DebugLoc dl = Op.getDebugLoc(); + bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; + SDValue ShOpLo = Op.getOperand(0); + SDValue ShOpHi = Op.getOperand(1); + SDValue ShAmt = Op.getOperand(2); + SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, + DAG.getConstant(VTBits - 1, MVT::i8)) + : DAG.getConstant(0, VT); + + SDValue Tmp2, Tmp3; + if (Op.getOpcode() == ISD::SHL_PARTS) { + Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt); + Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); + } else { + Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt); + Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt); + } + + SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt, + DAG.getConstant(VTBits, MVT::i8)); + SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32, + AndNode, DAG.getConstant(0, MVT::i8)); + + SDValue Hi, Lo; + SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8); + SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond }; + SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond }; + + if (Op.getOpcode() == ISD::SHL_PARTS) { + Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); + Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); + } else { + Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4); + Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4); + } + + SDValue Ops[2] = { Lo, Hi }; + return DAG.getMergeValues(Ops, 2, dl); +} + +SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op, + SelectionDAG &DAG) const { + EVT SrcVT = Op.getOperand(0).getValueType(); + + if (SrcVT.isVector()) { + if (SrcVT == MVT::v2i32 && Op.getValueType() == MVT::v2f64) { + return Op; + } + return SDValue(); + } + + assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 && + "Unknown SINT_TO_FP to lower!"); + + // These are really Legal; return the operand so the caller accepts it as + // Legal. + if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType())) + return Op; + if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) && + Subtarget->is64Bit()) { + return Op; + } + + DebugLoc dl = Op.getDebugLoc(); + unsigned Size = SrcVT.getSizeInBits()/8; + MachineFunction &MF = DAG.getMachineFunction(); + int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); + SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), + StackSlot, + PseudoSourceValue::getFixedStack(SSFI), 0, + false, false, 0); + return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG); +} + +SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, + SDValue StackSlot, + SelectionDAG &DAG) const { + // Build the FILD + DebugLoc dl = Op.getDebugLoc(); + SDVTList Tys; + bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType()); + if (useSSE) + Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Flag); + else + Tys = DAG.getVTList(Op.getValueType(), MVT::Other); + SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) }; + SDValue Result = DAG.getNode(useSSE ? X86ISD::FILD_FLAG : X86ISD::FILD, dl, + Tys, Ops, array_lengthof(Ops)); + + if (useSSE) { + Chain = Result.getValue(1); + SDValue InFlag = Result.getValue(2); + + // FIXME: Currently the FST is flagged to the FILD_FLAG. This + // shouldn't be necessary except that RFP cannot be live across + // multiple blocks. When stackifier is fixed, they can be uncoupled. + MachineFunction &MF = DAG.getMachineFunction(); + int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); + Tys = DAG.getVTList(MVT::Other); + SDValue Ops[] = { + Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag + }; + Chain = DAG.getNode(X86ISD::FST, dl, Tys, Ops, array_lengthof(Ops)); + Result = DAG.getLoad(Op.getValueType(), dl, Chain, StackSlot, + PseudoSourceValue::getFixedStack(SSFI), 0, + false, false, 0); + } + + return Result; +} + +// LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion. +SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op, + SelectionDAG &DAG) const { + // This algorithm is not obvious. Here it is in C code, more or less: + /* + double uint64_to_double( uint32_t hi, uint32_t lo ) { + static const __m128i exp = { 0x4330000045300000ULL, 0 }; + static const __m128d bias = { 0x1.0p84, 0x1.0p52 }; + + // Copy ints to xmm registers. + __m128i xh = _mm_cvtsi32_si128( hi ); + __m128i xl = _mm_cvtsi32_si128( lo ); + + // Combine into low half of a single xmm register. + __m128i x = _mm_unpacklo_epi32( xh, xl ); + __m128d d; + double sd; + + // Merge in appropriate exponents to give the integer bits the right + // magnitude. + x = _mm_unpacklo_epi32( x, exp ); + + // Subtract away the biases to deal with the IEEE-754 double precision + // implicit 1. + d = _mm_sub_pd( (__m128d) x, bias ); + + // All conversions up to here are exact. The correctly rounded result is + // calculated using the current rounding mode using the following + // horizontal add. + d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) ); + _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this + // store doesn't really need to be here (except + // maybe to zero the other double) + return sd; + } + */ + + DebugLoc dl = Op.getDebugLoc(); + LLVMContext *Context = DAG.getContext(); + + // Build some magic constants. + std::vector<Constant*> CV0; + CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000))); + CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000))); + CV0.push_back(ConstantInt::get(*Context, APInt(32, 0))); + CV0.push_back(ConstantInt::get(*Context, APInt(32, 0))); + Constant *C0 = ConstantVector::get(CV0); + SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16); + + std::vector<Constant*> CV1; + CV1.push_back( + ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL)))); + CV1.push_back( + ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL)))); + Constant *C1 = ConstantVector::get(CV1); + SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16); + + SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, + DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, + Op.getOperand(0), + DAG.getIntPtrConstant(1))); + SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, + DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, + Op.getOperand(0), + DAG.getIntPtrConstant(0))); + SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2); + SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0, + PseudoSourceValue::getConstantPool(), 0, + false, false, 16); + SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0); + SDValue XR2F = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Unpck2); + SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1, + PseudoSourceValue::getConstantPool(), 0, + false, false, 16); + SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1); + + // Add the halves; easiest way is to swap them into another reg first. + int ShufMask[2] = { 1, -1 }; + SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub, + DAG.getUNDEF(MVT::v2f64), ShufMask); + SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add, + DAG.getIntPtrConstant(0)); +} + +// LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion. +SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op, + SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + // FP constant to bias correct the final result. + SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), + MVT::f64); + + // Load the 32-bit value into an XMM register. + SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, + DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, + Op.getOperand(0), + DAG.getIntPtrConstant(0))); + + Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, + DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Load), + DAG.getIntPtrConstant(0)); + + // Or the load with the bias. + SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, + DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, + MVT::v2f64, Load)), + DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, + DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, + MVT::v2f64, Bias))); + Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, + DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2f64, Or), + DAG.getIntPtrConstant(0)); + + // Subtract the bias. + SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias); + + // Handle final rounding. + EVT DestVT = Op.getValueType(); + + if (DestVT.bitsLT(MVT::f64)) { + return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, + DAG.getIntPtrConstant(0)); + } else if (DestVT.bitsGT(MVT::f64)) { + return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); + } + + // Handle final rounding. + return Sub; +} + +SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op, + SelectionDAG &DAG) const { + SDValue N0 = Op.getOperand(0); + DebugLoc dl = Op.getDebugLoc(); + + // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't + // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform + // the optimization here. + if (DAG.SignBitIsZero(N0)) + return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0); + + EVT SrcVT = N0.getValueType(); + EVT DstVT = Op.getValueType(); + if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64) + return LowerUINT_TO_FP_i64(Op, DAG); + else if (SrcVT == MVT::i32 && X86ScalarSSEf64) + return LowerUINT_TO_FP_i32(Op, DAG); + + // Make a 64-bit buffer, and use it to build an FILD. + SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64); + if (SrcVT == MVT::i32) { + SDValue WordOff = DAG.getConstant(4, getPointerTy()); + SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl, + getPointerTy(), StackSlot, WordOff); + SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), + StackSlot, NULL, 0, false, false, 0); + SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32), + OffsetSlot, NULL, 0, false, false, 0); + SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG); + return Fild; + } + + assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP"); + SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), + StackSlot, NULL, 0, false, false, 0); + // For i64 source, we need to add the appropriate power of 2 if the input + // was negative. This is the same as the optimization in + // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here, + // we must be careful to do the computation in x87 extended precision, not + // in SSE. (The generic code can't know it's OK to do this, or how to.) + SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other); + SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) }; + SDValue Fild = DAG.getNode(X86ISD::FILD, dl, Tys, Ops, 3); + + APInt FF(32, 0x5F800000ULL); + + // Check whether the sign bit is set. + SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), + Op.getOperand(0), DAG.getConstant(0, MVT::i64), + ISD::SETLT); + + // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits. + SDValue FudgePtr = DAG.getConstantPool( + ConstantInt::get(*DAG.getContext(), FF.zext(64)), + getPointerTy()); + + // Get a pointer to FF if the sign bit was set, or to 0 otherwise. + SDValue Zero = DAG.getIntPtrConstant(0); + SDValue Four = DAG.getIntPtrConstant(4); + SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet, + Zero, Four); + FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset); + + // Load the value out, extending it from f32 to f80. + // FIXME: Avoid the extend by constructing the right constant pool? + SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), + FudgePtr, PseudoSourceValue::getConstantPool(), + 0, MVT::f32, false, false, 4); + // Extend everything to 80 bits to force it to be done on x87. + SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge); + return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0)); +} + +std::pair<SDValue,SDValue> X86TargetLowering:: +FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const { + DebugLoc dl = Op.getDebugLoc(); + + EVT DstTy = Op.getValueType(); + + if (!IsSigned) { + assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT"); + DstTy = MVT::i64; + } + + assert(DstTy.getSimpleVT() <= MVT::i64 && + DstTy.getSimpleVT() >= MVT::i16 && + "Unknown FP_TO_SINT to lower!"); + + // These are really Legal. + if (DstTy == MVT::i32 && + isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) + return std::make_pair(SDValue(), SDValue()); + if (Subtarget->is64Bit() && + DstTy == MVT::i64 && + isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) + return std::make_pair(SDValue(), SDValue()); + + // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary + // stack slot. + MachineFunction &MF = DAG.getMachineFunction(); + unsigned MemSize = DstTy.getSizeInBits()/8; + int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); + + unsigned Opc; + switch (DstTy.getSimpleVT().SimpleTy) { + default: llvm_unreachable("Invalid FP_TO_SINT to lower!"); + case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; + case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; + case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; + } + + SDValue Chain = DAG.getEntryNode(); + SDValue Value = Op.getOperand(0); + if (isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType())) { + assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!"); + Chain = DAG.getStore(Chain, dl, Value, StackSlot, + PseudoSourceValue::getFixedStack(SSFI), 0, + false, false, 0); + SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other); + SDValue Ops[] = { + Chain, StackSlot, DAG.getValueType(Op.getOperand(0).getValueType()) + }; + Value = DAG.getNode(X86ISD::FLD, dl, Tys, Ops, 3); + Chain = Value.getValue(1); + SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false); + StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); + } + + // Build the FP_TO_INT*_IN_MEM + SDValue Ops[] = { Chain, Value, StackSlot }; + SDValue FIST = DAG.getNode(Opc, dl, MVT::Other, Ops, 3); + + return std::make_pair(FIST, StackSlot); +} + +SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op, + SelectionDAG &DAG) const { + if (Op.getValueType().isVector()) { + if (Op.getValueType() == MVT::v2i32 && + Op.getOperand(0).getValueType() == MVT::v2f64) { + return Op; + } + return SDValue(); + } + + std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true); + SDValue FIST = Vals.first, StackSlot = Vals.second; + // If FP_TO_INTHelper failed, the node is actually supposed to be Legal. + if (FIST.getNode() == 0) return Op; + + // Load the result. + return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), + FIST, StackSlot, NULL, 0, false, false, 0); +} + +SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op, + SelectionDAG &DAG) const { + std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false); + SDValue FIST = Vals.first, StackSlot = Vals.second; + assert(FIST.getNode() && "Unexpected failure"); + + // Load the result. + return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(), + FIST, StackSlot, NULL, 0, false, false, 0); +} + +SDValue X86TargetLowering::LowerFABS(SDValue Op, + SelectionDAG &DAG) const { + LLVMContext *Context = DAG.getContext(); + DebugLoc dl = Op.getDebugLoc(); + EVT VT = Op.getValueType(); + EVT EltVT = VT; + if (VT.isVector()) + EltVT = VT.getVectorElementType(); + std::vector<Constant*> CV; + if (EltVT == MVT::f64) { + Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))); + CV.push_back(C); + CV.push_back(C); + } else { + Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))); + CV.push_back(C); + CV.push_back(C); + CV.push_back(C); + CV.push_back(C); + } + Constant *C = ConstantVector::get(CV); + SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); + SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, + PseudoSourceValue::getConstantPool(), 0, + false, false, 16); + return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask); +} + +SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const { + LLVMContext *Context = DAG.getContext(); + DebugLoc dl = Op.getDebugLoc(); + EVT VT = Op.getValueType(); + EVT EltVT = VT; + if (VT.isVector()) + EltVT = VT.getVectorElementType(); + std::vector<Constant*> CV; + if (EltVT == MVT::f64) { + Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))); + CV.push_back(C); + CV.push_back(C); + } else { + Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))); + CV.push_back(C); + CV.push_back(C); + CV.push_back(C); + CV.push_back(C); + } + Constant *C = ConstantVector::get(CV); + SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); + SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, + PseudoSourceValue::getConstantPool(), 0, + false, false, 16); + if (VT.isVector()) { + return DAG.getNode(ISD::BIT_CONVERT, dl, VT, + DAG.getNode(ISD::XOR, dl, MVT::v2i64, + DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, + Op.getOperand(0)), + DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v2i64, Mask))); + } else { + return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask); + } +} + +SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { + LLVMContext *Context = DAG.getContext(); + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + DebugLoc dl = Op.getDebugLoc(); + EVT VT = Op.getValueType(); + EVT SrcVT = Op1.getValueType(); + + // If second operand is smaller, extend it first. + if (SrcVT.bitsLT(VT)) { + Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1); + SrcVT = VT; + } + // And if it is bigger, shrink it first. + if (SrcVT.bitsGT(VT)) { + Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1)); + SrcVT = VT; + } + + // At this point the operands and the result should have the same + // type, and that won't be f80 since that is not custom lowered. + + // First get the sign bit of second operand. + std::vector<Constant*> CV; + if (SrcVT == MVT::f64) { + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); + } else { + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); + } + Constant *C = ConstantVector::get(CV); + SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); + SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx, + PseudoSourceValue::getConstantPool(), 0, + false, false, 16); + SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1); + + // Shift sign bit right or left if the two operands have different types. + if (SrcVT.bitsGT(VT)) { + // Op0 is MVT::f32, Op1 is MVT::f64. + SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit); + SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit, + DAG.getConstant(32, MVT::i32)); + SignBit = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::v4f32, SignBit); + SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit, + DAG.getIntPtrConstant(0)); + } + + // Clear first operand sign bit. + CV.clear(); + if (VT == MVT::f64) { + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0)))); + } else { + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); + CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0)))); + } + C = ConstantVector::get(CV); + CPIdx = DAG.getConstantPool(C, getPointerTy(), 16); + SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, + PseudoSourceValue::getConstantPool(), 0, + false, false, 16); + SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2); + + // Or the value with the sign bit. + return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit); +} + +/// Emit nodes that will be selected as "test Op0,Op0", or something +/// equivalent. +SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, + SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + + // CF and OF aren't always set the way we want. Determine which + // of these we need. + bool NeedCF = false; + bool NeedOF = false; + switch (X86CC) { + case X86::COND_A: case X86::COND_AE: + case X86::COND_B: case X86::COND_BE: + NeedCF = true; + break; + case X86::COND_G: case X86::COND_GE: + case X86::COND_L: case X86::COND_LE: + case X86::COND_O: case X86::COND_NO: + NeedOF = true; + break; + default: break; + } + + // See if we can use the EFLAGS value from the operand instead of + // doing a separate TEST. TEST always sets OF and CF to 0, so unless + // we prove that the arithmetic won't overflow, we can't use OF or CF. + if (Op.getResNo() == 0 && !NeedOF && !NeedCF) { + unsigned Opcode = 0; + unsigned NumOperands = 0; + switch (Op.getNode()->getOpcode()) { + case ISD::ADD: + // Due to an isel shortcoming, be conservative if this add is + // likely to be selected as part of a load-modify-store + // instruction. When the root node in a match is a store, isel + // doesn't know how to remap non-chain non-flag uses of other + // nodes in the match, such as the ADD in this case. This leads + // to the ADD being left around and reselected, with the result + // being two adds in the output. Alas, even if none our users + // are stores, that doesn't prove we're O.K. Ergo, if we have + // any parents that aren't CopyToReg or SETCC, eschew INC/DEC. + // A better fix seems to require climbing the DAG back to the + // root, and it doesn't seem to be worth the effort. + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = Op.getNode()->use_end(); UI != UE; ++UI) + if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC) + goto default_case; + if (ConstantSDNode *C = + dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) { + // An add of one will be selected as an INC. + if (C->getAPIntValue() == 1) { + Opcode = X86ISD::INC; + NumOperands = 1; + break; + } + // An add of negative one (subtract of one) will be selected as a DEC. + if (C->getAPIntValue().isAllOnesValue()) { + Opcode = X86ISD::DEC; + NumOperands = 1; + break; + } + } + // Otherwise use a regular EFLAGS-setting add. + Opcode = X86ISD::ADD; + NumOperands = 2; + break; + case ISD::AND: { + // If the primary and result isn't used, don't bother using X86ISD::AND, + // because a TEST instruction will be better. + bool NonFlagUse = false; + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = Op.getNode()->use_end(); UI != UE; ++UI) { + SDNode *User = *UI; + unsigned UOpNo = UI.getOperandNo(); + if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) { + // Look pass truncate. + UOpNo = User->use_begin().getOperandNo(); + User = *User->use_begin(); + } + if (User->getOpcode() != ISD::BRCOND && + User->getOpcode() != ISD::SETCC && + (User->getOpcode() != ISD::SELECT || UOpNo != 0)) { + NonFlagUse = true; + break; + } + } + if (!NonFlagUse) + break; + } + // FALL THROUGH + case ISD::SUB: + case ISD::OR: + case ISD::XOR: + // Due to the ISEL shortcoming noted above, be conservative if this op is + // likely to be selected as part of a load-modify-store instruction. + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = Op.getNode()->use_end(); UI != UE; ++UI) + if (UI->getOpcode() == ISD::STORE) + goto default_case; + // Otherwise use a regular EFLAGS-setting instruction. + switch (Op.getNode()->getOpcode()) { + case ISD::SUB: Opcode = X86ISD::SUB; break; + case ISD::OR: Opcode = X86ISD::OR; break; + case ISD::XOR: Opcode = X86ISD::XOR; break; + case ISD::AND: Opcode = X86ISD::AND; break; + default: llvm_unreachable("unexpected operator!"); + } + NumOperands = 2; + break; + case X86ISD::ADD: + case X86ISD::SUB: + case X86ISD::INC: + case X86ISD::DEC: + case X86ISD::OR: + case X86ISD::XOR: + case X86ISD::AND: + return SDValue(Op.getNode(), 1); + default: + default_case: + break; + } + if (Opcode != 0) { + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); + SmallVector<SDValue, 4> Ops; + for (unsigned i = 0; i != NumOperands; ++i) + Ops.push_back(Op.getOperand(i)); + SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands); + DAG.ReplaceAllUsesWith(Op, New); + return SDValue(New.getNode(), 1); + } + } + + // Otherwise just emit a CMP with 0, which is the TEST pattern. + return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op, + DAG.getConstant(0, Op.getValueType())); +} + +/// Emit nodes that will be selected as "cmp Op0,Op1", or something +/// equivalent. +SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, + SelectionDAG &DAG) const { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1)) + if (C->getAPIntValue() == 0) + return EmitTest(Op0, X86CC, DAG); + + DebugLoc dl = Op0.getDebugLoc(); + return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1); +} + +/// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node +/// if it's possible. +SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC, + DebugLoc dl, SelectionDAG &DAG) const { + SDValue Op0 = And.getOperand(0); + SDValue Op1 = And.getOperand(1); + if (Op0.getOpcode() == ISD::TRUNCATE) + Op0 = Op0.getOperand(0); + if (Op1.getOpcode() == ISD::TRUNCATE) + Op1 = Op1.getOperand(0); + + SDValue LHS, RHS; + if (Op1.getOpcode() == ISD::SHL) { + if (ConstantSDNode *And10C = dyn_cast<ConstantSDNode>(Op1.getOperand(0))) + if (And10C->getZExtValue() == 1) { + LHS = Op0; + RHS = Op1.getOperand(1); + } + } else if (Op0.getOpcode() == ISD::SHL) { + if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0))) + if (And00C->getZExtValue() == 1) { + LHS = Op1; + RHS = Op0.getOperand(1); + } + } else if (Op1.getOpcode() == ISD::Constant) { + ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1); + SDValue AndLHS = Op0; + if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) { + LHS = AndLHS.getOperand(0); + RHS = AndLHS.getOperand(1); + } + } + + if (LHS.getNode()) { + // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT + // instruction. Since the shift amount is in-range-or-undefined, we know + // that doing a bittest on the i32 value is ok. We extend to i32 because + // the encoding for the i16 version is larger than the i32 version. + // Also promote i16 to i32 for performance / code size reason. + if (LHS.getValueType() == MVT::i8 || + LHS.getValueType() == MVT::i16) + LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS); + + // If the operand types disagree, extend the shift amount to match. Since + // BT ignores high bits (like shifts) we can use anyextend. + if (LHS.getValueType() != RHS.getValueType()) + RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS); + + SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS); + unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B; + return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(Cond, MVT::i8), BT); + } + + return SDValue(); +} + +SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { + assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + DebugLoc dl = Op.getDebugLoc(); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + + // Optimize to BT if possible. + // Lower (X & (1 << N)) == 0 to BT(X, N). + // Lower ((X >>u N) & 1) != 0 to BT(X, N). + // Lower ((X >>s N) & 1) != 0 to BT(X, N). + if (Op0.getOpcode() == ISD::AND && + Op0.hasOneUse() && + Op1.getOpcode() == ISD::Constant && + cast<ConstantSDNode>(Op1)->getZExtValue() == 0 && + (CC == ISD::SETEQ || CC == ISD::SETNE)) { + SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG); + if (NewSetCC.getNode()) + return NewSetCC; + } + + // Look for "(setcc) == / != 1" to avoid unncessary setcc. + if (Op0.getOpcode() == X86ISD::SETCC && + Op1.getOpcode() == ISD::Constant && + (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 || + cast<ConstantSDNode>(Op1)->isNullValue()) && + (CC == ISD::SETEQ || CC == ISD::SETNE)) { + X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0); + bool Invert = (CC == ISD::SETNE) ^ + cast<ConstantSDNode>(Op1)->isNullValue(); + if (Invert) + CCode = X86::GetOppositeBranchCondition(CCode); + return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1)); + } + + bool isFP = Op1.getValueType().isFloatingPoint(); + unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG); + if (X86CC == X86::COND_INVALID) + return SDValue(); + + SDValue Cond = EmitCmp(Op0, Op1, X86CC, DAG); + + // Use sbb x, x to materialize carry bit into a GPR. + if (X86CC == X86::COND_B) + return DAG.getNode(ISD::AND, dl, MVT::i8, + DAG.getNode(X86ISD::SETCC_CARRY, dl, MVT::i8, + DAG.getConstant(X86CC, MVT::i8), Cond), + DAG.getConstant(1, MVT::i8)); + + return DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(X86CC, MVT::i8), Cond); +} + +SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const { + SDValue Cond; + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDValue CC = Op.getOperand(2); + EVT VT = Op.getValueType(); + ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); + bool isFP = Op.getOperand(1).getValueType().isFloatingPoint(); + DebugLoc dl = Op.getDebugLoc(); + + if (isFP) { + unsigned SSECC = 8; + EVT VT0 = Op0.getValueType(); + assert(VT0 == MVT::v4f32 || VT0 == MVT::v2f64); + unsigned Opc = VT0 == MVT::v4f32 ? X86ISD::CMPPS : X86ISD::CMPPD; + bool Swap = false; + + switch (SetCCOpcode) { + default: break; + case ISD::SETOEQ: + case ISD::SETEQ: SSECC = 0; break; + case ISD::SETOGT: + case ISD::SETGT: Swap = true; // Fallthrough + case ISD::SETLT: + case ISD::SETOLT: SSECC = 1; break; + case ISD::SETOGE: + case ISD::SETGE: Swap = true; // Fallthrough + case ISD::SETLE: + case ISD::SETOLE: SSECC = 2; break; + case ISD::SETUO: SSECC = 3; break; + case ISD::SETUNE: + case ISD::SETNE: SSECC = 4; break; + case ISD::SETULE: Swap = true; + case ISD::SETUGE: SSECC = 5; break; + case ISD::SETULT: Swap = true; + case ISD::SETUGT: SSECC = 6; break; + case ISD::SETO: SSECC = 7; break; + } + if (Swap) + std::swap(Op0, Op1); + + // In the two special cases we can't handle, emit two comparisons. + if (SSECC == 8) { + if (SetCCOpcode == ISD::SETUEQ) { + SDValue UNORD, EQ; + UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8)); + EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8)); + return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ); + } + else if (SetCCOpcode == ISD::SETONE) { + SDValue ORD, NEQ; + ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8)); + NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8)); + return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ); + } + llvm_unreachable("Illegal FP comparison"); + } + // Handle all other FP comparisons here. + return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8)); + } + + // We are handling one of the integer comparisons here. Since SSE only has + // GT and EQ comparisons for integer, swapping operands and multiple + // operations may be required for some comparisons. + unsigned Opc = 0, EQOpc = 0, GTOpc = 0; + bool Swap = false, Invert = false, FlipSigns = false; + + switch (VT.getSimpleVT().SimpleTy) { + default: break; + case MVT::v8i8: + case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break; + case MVT::v4i16: + case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break; + case MVT::v2i32: + case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break; + case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break; + } + + switch (SetCCOpcode) { + default: break; + case ISD::SETNE: Invert = true; + case ISD::SETEQ: Opc = EQOpc; break; + case ISD::SETLT: Swap = true; + case ISD::SETGT: Opc = GTOpc; break; + case ISD::SETGE: Swap = true; + case ISD::SETLE: Opc = GTOpc; Invert = true; break; + case ISD::SETULT: Swap = true; + case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break; + case ISD::SETUGE: Swap = true; + case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break; + } + if (Swap) + std::swap(Op0, Op1); + + // Since SSE has no unsigned integer comparisons, we need to flip the sign + // bits of the inputs before performing those operations. + if (FlipSigns) { + EVT EltVT = VT.getVectorElementType(); + SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), + EltVT); + std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit); + SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0], + SignBits.size()); + Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec); + Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec); + } + + SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); + + // If the logical-not of the result is required, perform that now. + if (Invert) + Result = DAG.getNOT(dl, Result, VT); + + return Result; +} + +// isX86LogicalCmp - Return true if opcode is a X86 logical comparison. +static bool isX86LogicalCmp(SDValue Op) { + unsigned Opc = Op.getNode()->getOpcode(); + if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI) + return true; + if (Op.getResNo() == 1 && + (Opc == X86ISD::ADD || + Opc == X86ISD::SUB || + Opc == X86ISD::SMUL || + Opc == X86ISD::UMUL || + Opc == X86ISD::INC || + Opc == X86ISD::DEC || + Opc == X86ISD::OR || + Opc == X86ISD::XOR || + Opc == X86ISD::AND)) + return true; + + return false; +} + +SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { + bool addTest = true; + SDValue Cond = Op.getOperand(0); + DebugLoc dl = Op.getDebugLoc(); + SDValue CC; + + if (Cond.getOpcode() == ISD::SETCC) { + SDValue NewCond = LowerSETCC(Cond, DAG); + if (NewCond.getNode()) + Cond = NewCond; + } + + // (select (x == 0), -1, 0) -> (sign_bit (x - 1)) + SDValue Op1 = Op.getOperand(1); + SDValue Op2 = Op.getOperand(2); + if (Cond.getOpcode() == X86ISD::SETCC && + cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue() == X86::COND_E) { + SDValue Cmp = Cond.getOperand(1); + if (Cmp.getOpcode() == X86ISD::CMP) { + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op1); + ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2); + ConstantSDNode *RHSC = + dyn_cast<ConstantSDNode>(Cmp.getOperand(1).getNode()); + if (N1C && N1C->isAllOnesValue() && + N2C && N2C->isNullValue() && + RHSC && RHSC->isNullValue()) { + SDValue CmpOp0 = Cmp.getOperand(0); + Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32, + CmpOp0, DAG.getConstant(1, CmpOp0.getValueType())); + return DAG.getNode(X86ISD::SETCC_CARRY, dl, Op.getValueType(), + DAG.getConstant(X86::COND_B, MVT::i8), Cmp); + } + } + } + + // Look pass (and (setcc_carry (cmp ...)), 1). + if (Cond.getOpcode() == ISD::AND && + Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); + if (C && C->getAPIntValue() == 1) + Cond = Cond.getOperand(0); + } + + // If condition flag is set by a X86ISD::CMP, then use it as the condition + // setting operand in place of the X86ISD::SETCC. + if (Cond.getOpcode() == X86ISD::SETCC || + Cond.getOpcode() == X86ISD::SETCC_CARRY) { + CC = Cond.getOperand(0); + + SDValue Cmp = Cond.getOperand(1); + unsigned Opc = Cmp.getOpcode(); + EVT VT = Op.getValueType(); + + bool IllegalFPCMov = false; + if (VT.isFloatingPoint() && !VT.isVector() && + !isScalarFPTypeInSSEReg(VT)) // FPStack? + IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue()); + + if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) || + Opc == X86ISD::BT) { // FIXME + Cond = Cmp; + addTest = false; + } + } + + if (addTest) { + // Look pass the truncate. + if (Cond.getOpcode() == ISD::TRUNCATE) + Cond = Cond.getOperand(0); + + // We know the result of AND is compared against zero. Try to match + // it to BT. + if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { + SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG); + if (NewSetCC.getNode()) { + CC = NewSetCC.getOperand(0); + Cond = NewSetCC.getOperand(1); + addTest = false; + } + } + } + + if (addTest) { + CC = DAG.getConstant(X86::COND_NE, MVT::i8); + Cond = EmitTest(Cond, X86::COND_NE, DAG); + } + + // X86ISD::CMOV means set the result (which is operand 1) to the RHS if + // condition is true. + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag); + SDValue Ops[] = { Op2, Op1, CC, Cond }; + return DAG.getNode(X86ISD::CMOV, dl, VTs, Ops, array_lengthof(Ops)); +} + +// isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or +// ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart +// from the AND / OR. +static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) { + Opc = Op.getOpcode(); + if (Opc != ISD::OR && Opc != ISD::AND) + return false; + return (Op.getOperand(0).getOpcode() == X86ISD::SETCC && + Op.getOperand(0).hasOneUse() && + Op.getOperand(1).getOpcode() == X86ISD::SETCC && + Op.getOperand(1).hasOneUse()); +} + +// isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and +// 1 and that the SETCC node has a single use. +static bool isXor1OfSetCC(SDValue Op) { + if (Op.getOpcode() != ISD::XOR) + return false; + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); + if (N1C && N1C->getAPIntValue() == 1) { + return Op.getOperand(0).getOpcode() == X86ISD::SETCC && + Op.getOperand(0).hasOneUse(); + } + return false; +} + +SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const { + bool addTest = true; + SDValue Chain = Op.getOperand(0); + SDValue Cond = Op.getOperand(1); + SDValue Dest = Op.getOperand(2); + DebugLoc dl = Op.getDebugLoc(); + SDValue CC; + + if (Cond.getOpcode() == ISD::SETCC) { + SDValue NewCond = LowerSETCC(Cond, DAG); + if (NewCond.getNode()) + Cond = NewCond; + } +#if 0 + // FIXME: LowerXALUO doesn't handle these!! + else if (Cond.getOpcode() == X86ISD::ADD || + Cond.getOpcode() == X86ISD::SUB || + Cond.getOpcode() == X86ISD::SMUL || + Cond.getOpcode() == X86ISD::UMUL) + Cond = LowerXALUO(Cond, DAG); +#endif + + // Look pass (and (setcc_carry (cmp ...)), 1). + if (Cond.getOpcode() == ISD::AND && + Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); + if (C && C->getAPIntValue() == 1) + Cond = Cond.getOperand(0); + } + + // If condition flag is set by a X86ISD::CMP, then use it as the condition + // setting operand in place of the X86ISD::SETCC. + if (Cond.getOpcode() == X86ISD::SETCC || + Cond.getOpcode() == X86ISD::SETCC_CARRY) { + CC = Cond.getOperand(0); + + SDValue Cmp = Cond.getOperand(1); + unsigned Opc = Cmp.getOpcode(); + // FIXME: WHY THE SPECIAL CASING OF LogicalCmp?? + if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) { + Cond = Cmp; + addTest = false; + } else { + switch (cast<ConstantSDNode>(CC)->getZExtValue()) { + default: break; + case X86::COND_O: + case X86::COND_B: + // These can only come from an arithmetic instruction with overflow, + // e.g. SADDO, UADDO. + Cond = Cond.getNode()->getOperand(1); + addTest = false; + break; + } + } + } else { + unsigned CondOpc; + if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) { + SDValue Cmp = Cond.getOperand(0).getOperand(1); + if (CondOpc == ISD::OR) { + // Also, recognize the pattern generated by an FCMP_UNE. We can emit + // two branches instead of an explicit OR instruction with a + // separate test. + if (Cmp == Cond.getOperand(1).getOperand(1) && + isX86LogicalCmp(Cmp)) { + CC = Cond.getOperand(0).getOperand(0); + Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cmp); + CC = Cond.getOperand(1).getOperand(0); + Cond = Cmp; + addTest = false; + } + } else { // ISD::AND + // Also, recognize the pattern generated by an FCMP_OEQ. We can emit + // two branches instead of an explicit AND instruction with a + // separate test. However, we only do this if this block doesn't + // have a fall-through edge, because this requires an explicit + // jmp when the condition is false. + if (Cmp == Cond.getOperand(1).getOperand(1) && + isX86LogicalCmp(Cmp) && + Op.getNode()->hasOneUse()) { + X86::CondCode CCode = + (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); + CCode = X86::GetOppositeBranchCondition(CCode); + CC = DAG.getConstant(CCode, MVT::i8); + SDValue User = SDValue(*Op.getNode()->use_begin(), 0); + // Look for an unconditional branch following this conditional branch. + // We need this because we need to reverse the successors in order + // to implement FCMP_OEQ. + if (User.getOpcode() == ISD::BR) { + SDValue FalseBB = User.getOperand(1); + SDValue NewBR = + DAG.UpdateNodeOperands(User, User.getOperand(0), Dest); + assert(NewBR == User); + Dest = FalseBB; + + Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cmp); + X86::CondCode CCode = + (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0); + CCode = X86::GetOppositeBranchCondition(CCode); + CC = DAG.getConstant(CCode, MVT::i8); + Cond = Cmp; + addTest = false; + } + } + } + } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) { + // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition. + // It should be transformed during dag combiner except when the condition + // is set by a arithmetics with overflow node. + X86::CondCode CCode = + (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0); + CCode = X86::GetOppositeBranchCondition(CCode); + CC = DAG.getConstant(CCode, MVT::i8); + Cond = Cond.getOperand(0).getOperand(1); + addTest = false; + } + } + + if (addTest) { + // Look pass the truncate. + if (Cond.getOpcode() == ISD::TRUNCATE) + Cond = Cond.getOperand(0); + + // We know the result of AND is compared against zero. Try to match + // it to BT. + if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) { + SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG); + if (NewSetCC.getNode()) { + CC = NewSetCC.getOperand(0); + Cond = NewSetCC.getOperand(1); + addTest = false; + } + } + } + + if (addTest) { + CC = DAG.getConstant(X86::COND_NE, MVT::i8); + Cond = EmitTest(Cond, X86::COND_NE, DAG); + } + return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(), + Chain, Dest, CC, Cond); +} + + +// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets. +// Calls to _alloca is needed to probe the stack when allocating more than 4k +// bytes in one go. Touching the stack at 4K increments is necessary to ensure +// that the guard pages used by the OS virtual memory manager are allocated in +// correct sequence. +SDValue +X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, + SelectionDAG &DAG) const { + assert(Subtarget->isTargetCygMing() && + "This should be used only on Cygwin/Mingw targets"); + DebugLoc dl = Op.getDebugLoc(); + + // Get the inputs. + SDValue Chain = Op.getOperand(0); + SDValue Size = Op.getOperand(1); + // FIXME: Ensure alignment here + + SDValue Flag; + + EVT IntPtr = getPointerTy(); + EVT SPTy = Subtarget->is64Bit() ? MVT::i64 : MVT::i32; + + Chain = DAG.getCopyToReg(Chain, dl, X86::EAX, Size, Flag); + Flag = Chain.getValue(1); + + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag); + + Chain = DAG.getNode(X86ISD::MINGW_ALLOCA, dl, NodeTys, Chain, Flag); + Flag = Chain.getValue(1); + + Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1); + + SDValue Ops1[2] = { Chain.getValue(0), Chain }; + return DAG.getMergeValues(Ops1, 2, dl); +} + +SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>(); + + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + DebugLoc dl = Op.getDebugLoc(); + + if (!Subtarget->is64Bit()) { + // vastart just stores the address of the VarArgsFrameIndex slot into the + // memory location argument. + SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), + getPointerTy()); + return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0, + false, false, 0); + } + + // __va_list_tag: + // gp_offset (0 - 6 * 8) + // fp_offset (48 - 48 + 8 * 16) + // overflow_arg_area (point to parameters coming in memory). + // reg_save_area + SmallVector<SDValue, 8> MemOps; + SDValue FIN = Op.getOperand(1); + // Store gp_offset + SDValue Store = DAG.getStore(Op.getOperand(0), dl, + DAG.getConstant(FuncInfo->getVarArgsGPOffset(), + MVT::i32), + FIN, SV, 0, false, false, 0); + MemOps.push_back(Store); + + // Store fp_offset + FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), + FIN, DAG.getIntPtrConstant(4)); + Store = DAG.getStore(Op.getOperand(0), dl, + DAG.getConstant(FuncInfo->getVarArgsFPOffset(), + MVT::i32), + FIN, SV, 0, false, false, 0); + MemOps.push_back(Store); + + // Store ptr to overflow_arg_area + FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), + FIN, DAG.getIntPtrConstant(4)); + SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), + getPointerTy()); + Store = DAG.getStore(Op.getOperand(0), dl, OVFIN, FIN, SV, 0, + false, false, 0); + MemOps.push_back(Store); + + // Store ptr to reg_save_area. + FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), + FIN, DAG.getIntPtrConstant(8)); + SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), + getPointerTy()); + Store = DAG.getStore(Op.getOperand(0), dl, RSFIN, FIN, SV, 0, + false, false, 0); + MemOps.push_back(Store); + return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &MemOps[0], MemOps.size()); +} + +SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { + // X86-64 va_list is a struct { i32, i32, i8*, i8* }. + assert(Subtarget->is64Bit() && "This code only handles 64-bit va_arg!"); + SDValue Chain = Op.getOperand(0); + SDValue SrcPtr = Op.getOperand(1); + SDValue SrcSV = Op.getOperand(2); + + report_fatal_error("VAArgInst is not yet implemented for x86-64!"); + return SDValue(); +} + +SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { + // X86-64 va_list is a struct { i32, i32, i8*, i8* }. + assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!"); + SDValue Chain = Op.getOperand(0); + SDValue DstPtr = Op.getOperand(1); + SDValue SrcPtr = Op.getOperand(2); + const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); + const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); + DebugLoc dl = Op.getDebugLoc(); + + return DAG.getMemcpy(Chain, dl, DstPtr, SrcPtr, + DAG.getIntPtrConstant(24), 8, /*isVolatile*/false, + false, DstSV, 0, SrcSV, 0); +} + +SDValue +X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { + DebugLoc dl = Op.getDebugLoc(); + unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + switch (IntNo) { + default: return SDValue(); // Don't custom lower most intrinsics. + // Comparison intrinsics. + case Intrinsic::x86_sse_comieq_ss: + case Intrinsic::x86_sse_comilt_ss: + case Intrinsic::x86_sse_comile_ss: + case Intrinsic::x86_sse_comigt_ss: + case Intrinsic::x86_sse_comige_ss: + case Intrinsic::x86_sse_comineq_ss: + case Intrinsic::x86_sse_ucomieq_ss: + case Intrinsic::x86_sse_ucomilt_ss: + case Intrinsic::x86_sse_ucomile_ss: + case Intrinsic::x86_sse_ucomigt_ss: + case Intrinsic::x86_sse_ucomige_ss: + case Intrinsic::x86_sse_ucomineq_ss: + case Intrinsic::x86_sse2_comieq_sd: + case Intrinsic::x86_sse2_comilt_sd: + case Intrinsic::x86_sse2_comile_sd: + case Intrinsic::x86_sse2_comigt_sd: + case Intrinsic::x86_sse2_comige_sd: + case Intrinsic::x86_sse2_comineq_sd: + case Intrinsic::x86_sse2_ucomieq_sd: + case Intrinsic::x86_sse2_ucomilt_sd: + case Intrinsic::x86_sse2_ucomile_sd: + case Intrinsic::x86_sse2_ucomigt_sd: + case Intrinsic::x86_sse2_ucomige_sd: + case Intrinsic::x86_sse2_ucomineq_sd: { + unsigned Opc = 0; + ISD::CondCode CC = ISD::SETCC_INVALID; + switch (IntNo) { + default: break; + case Intrinsic::x86_sse_comieq_ss: + case Intrinsic::x86_sse2_comieq_sd: + Opc = X86ISD::COMI; + CC = ISD::SETEQ; + break; + case Intrinsic::x86_sse_comilt_ss: + case Intrinsic::x86_sse2_comilt_sd: + Opc = X86ISD::COMI; + CC = ISD::SETLT; + break; + case Intrinsic::x86_sse_comile_ss: + case Intrinsic::x86_sse2_comile_sd: + Opc = X86ISD::COMI; + CC = ISD::SETLE; + break; + case Intrinsic::x86_sse_comigt_ss: + case Intrinsic::x86_sse2_comigt_sd: + Opc = X86ISD::COMI; + CC = ISD::SETGT; + break; + case Intrinsic::x86_sse_comige_ss: + case Intrinsic::x86_sse2_comige_sd: + Opc = X86ISD::COMI; + CC = ISD::SETGE; + break; + case Intrinsic::x86_sse_comineq_ss: + case Intrinsic::x86_sse2_comineq_sd: + Opc = X86ISD::COMI; + CC = ISD::SETNE; + break; + case Intrinsic::x86_sse_ucomieq_ss: + case Intrinsic::x86_sse2_ucomieq_sd: + Opc = X86ISD::UCOMI; + CC = ISD::SETEQ; + break; + case Intrinsic::x86_sse_ucomilt_ss: + case Intrinsic::x86_sse2_ucomilt_sd: + Opc = X86ISD::UCOMI; + CC = ISD::SETLT; + break; + case Intrinsic::x86_sse_ucomile_ss: + case Intrinsic::x86_sse2_ucomile_sd: + Opc = X86ISD::UCOMI; + CC = ISD::SETLE; + break; + case Intrinsic::x86_sse_ucomigt_ss: + case Intrinsic::x86_sse2_ucomigt_sd: + Opc = X86ISD::UCOMI; + CC = ISD::SETGT; + break; + case Intrinsic::x86_sse_ucomige_ss: + case Intrinsic::x86_sse2_ucomige_sd: + Opc = X86ISD::UCOMI; + CC = ISD::SETGE; + break; + case Intrinsic::x86_sse_ucomineq_ss: + case Intrinsic::x86_sse2_ucomineq_sd: + Opc = X86ISD::UCOMI; + CC = ISD::SETNE; + break; + } + + SDValue LHS = Op.getOperand(1); + SDValue RHS = Op.getOperand(2); + unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG); + assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!"); + SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS); + SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, + DAG.getConstant(X86CC, MVT::i8), Cond); + return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); + } + // ptest intrinsics. The intrinsic these come from are designed to return + // an integer value, not just an instruction so lower it to the ptest + // pattern and a setcc for the result. + case Intrinsic::x86_sse41_ptestz: + case Intrinsic::x86_sse41_ptestc: + case Intrinsic::x86_sse41_ptestnzc:{ + unsigned X86CC = 0; + switch (IntNo) { + default: llvm_unreachable("Bad fallthrough in Intrinsic lowering."); + case Intrinsic::x86_sse41_ptestz: + // ZF = 1 + X86CC = X86::COND_E; + break; + case Intrinsic::x86_sse41_ptestc: + // CF = 1 + X86CC = X86::COND_B; + break; + case Intrinsic::x86_sse41_ptestnzc: + // ZF and CF = 0 + X86CC = X86::COND_A; + break; + } + + SDValue LHS = Op.getOperand(1); + SDValue RHS = Op.getOperand(2); + SDValue Test = DAG.getNode(X86ISD::PTEST, dl, MVT::i32, LHS, RHS); + SDValue CC = DAG.getConstant(X86CC, MVT::i8); + SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test); + return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC); + } + + // Fix vector shift instructions where the last operand is a non-immediate + // i32 value. + case Intrinsic::x86_sse2_pslli_w: + case Intrinsic::x86_sse2_pslli_d: + case Intrinsic::x86_sse2_pslli_q: + case Intrinsic::x86_sse2_psrli_w: + case Intrinsic::x86_sse2_psrli_d: + case Intrinsic::x86_sse2_psrli_q: + case Intrinsic::x86_sse2_psrai_w: + case Intrinsic::x86_sse2_psrai_d: + case Intrinsic::x86_mmx_pslli_w: + case Intrinsic::x86_mmx_pslli_d: + case Intrinsic::x86_mmx_pslli_q: + case Intrinsic::x86_mmx_psrli_w: + case Intrinsic::x86_mmx_psrli_d: + case Intrinsic::x86_mmx_psrli_q: + case Intrinsic::x86_mmx_psrai_w: + case Intrinsic::x86_mmx_psrai_d: { + SDValue ShAmt = Op.getOperand(2); + if (isa<ConstantSDNode>(ShAmt)) + return SDValue(); + + unsigned NewIntNo = 0; + EVT ShAmtVT = MVT::v4i32; + switch (IntNo) { + case Intrinsic::x86_sse2_pslli_w: + NewIntNo = Intrinsic::x86_sse2_psll_w; + break; + case Intrinsic::x86_sse2_pslli_d: + NewIntNo = Intrinsic::x86_sse2_psll_d; + break; + case Intrinsic::x86_sse2_pslli_q: + NewIntNo = Intrinsic::x86_sse2_psll_q; + break; + case Intrinsic::x86_sse2_psrli_w: + NewIntNo = Intrinsic::x86_sse2_psrl_w; + break; + case Intrinsic::x86_sse2_psrli_d: + NewIntNo = Intrinsic::x86_sse2_psrl_d; + break; + case Intrinsic::x86_sse2_psrli_q: + NewIntNo = Intrinsic::x86_sse2_psrl_q; + break; + case Intrinsic::x86_sse2_psrai_w: + NewIntNo = Intrinsic::x86_sse2_psra_w; + break; + case Intrinsic::x86_sse2_psrai_d: + NewIntNo = Intrinsic::x86_sse2_psra_d; + break; + default: { + ShAmtVT = MVT::v2i32; + switch (IntNo) { + case Intrinsic::x86_mmx_pslli_w: + NewIntNo = Intrinsic::x86_mmx_psll_w; + break; + case Intrinsic::x86_mmx_pslli_d: + NewIntNo = Intrinsic::x86_mmx_psll_d; + break; + case Intrinsic::x86_mmx_pslli_q: + NewIntNo = Intrinsic::x86_mmx_psll_q; + break; + case Intrinsic::x86_mmx_psrli_w: + NewIntNo = Intrinsic::x86_mmx_psrl_w; + break; + case Intrinsic::x86_mmx_psrli_d: + NewIntNo = Intrinsic::x86_mmx_psrl_d; + break; + case Intrinsic::x86_mmx_psrli_q: + NewIntNo = Intrinsic::x86_mmx_psrl_q; + break; + case Intrinsic::x86_mmx_psrai_w: + NewIntNo = Intrinsic::x86_mmx_psra_w; + break; + case Intrinsic::x86_mmx_psrai_d: + NewIntNo = Intrinsic::x86_mmx_psra_d; + break; + default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. + } + break; + } + } + + // The vector shift intrinsics with scalars uses 32b shift amounts but + // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits + // to be zero. + SDValue ShOps[4]; + ShOps[0] = ShAmt; + ShOps[1] = DAG.getConstant(0, MVT::i32); + if (ShAmtVT == MVT::v4i32) { + ShOps[2] = DAG.getUNDEF(MVT::i32); + ShOps[3] = DAG.getUNDEF(MVT::i32); + ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4); + } else { + ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); + } + + EVT VT = Op.getValueType(); + ShAmt = DAG.getNode(ISD::BIT_CONVERT, dl, VT, ShAmt); + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, + DAG.getConstant(NewIntNo, MVT::i32), + Op.getOperand(1), ShAmt); + } + } +} + +SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op, + SelectionDAG &DAG) const { + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + MFI->setReturnAddressIsTaken(true); + + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + DebugLoc dl = Op.getDebugLoc(); + + if (Depth > 0) { + SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); + SDValue Offset = + DAG.getConstant(TD->getPointerSize(), + Subtarget->is64Bit() ? MVT::i64 : MVT::i32); + return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), + DAG.getNode(ISD::ADD, dl, getPointerTy(), + FrameAddr, Offset), + NULL, 0, false, false, 0); + } + + // Just load the return address. + SDValue RetAddrFI = getReturnAddressFrameIndex(DAG); + return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), + RetAddrFI, NULL, 0, false, false, 0); +} + +SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + MFI->setFrameAddressIsTaken(true); + + EVT VT = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP; + SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); + while (Depth--) + FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0, + false, false, 0); + return FrameAddr; +} + +SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op, + SelectionDAG &DAG) const { + return DAG.getIntPtrConstant(2*TD->getPointerSize()); +} + +SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + SDValue Chain = Op.getOperand(0); + SDValue Offset = Op.getOperand(1); + SDValue Handler = Op.getOperand(2); + DebugLoc dl = Op.getDebugLoc(); + + SDValue Frame = DAG.getRegister(Subtarget->is64Bit() ? X86::RBP : X86::EBP, + getPointerTy()); + unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX); + + SDValue StoreAddr = DAG.getNode(ISD::SUB, dl, getPointerTy(), Frame, + DAG.getIntPtrConstant(-TD->getPointerSize())); + StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset); + Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, NULL, 0, false, false, 0); + Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr); + MF.getRegInfo().addLiveOut(StoreAddrReg); + + return DAG.getNode(X86ISD::EH_RETURN, dl, + MVT::Other, + Chain, DAG.getRegister(StoreAddrReg, getPointerTy())); +} + +SDValue X86TargetLowering::LowerTRAMPOLINE(SDValue Op, + SelectionDAG &DAG) const { + SDValue Root = Op.getOperand(0); + SDValue Trmp = Op.getOperand(1); // trampoline + SDValue FPtr = Op.getOperand(2); // nested function + SDValue Nest = Op.getOperand(3); // 'nest' parameter value + DebugLoc dl = Op.getDebugLoc(); + + const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); + + if (Subtarget->is64Bit()) { + SDValue OutChains[6]; + + // Large code-model. + const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode. + const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode. + + const unsigned char N86R10 = RegInfo->getX86RegNum(X86::R10); + const unsigned char N86R11 = RegInfo->getX86RegNum(X86::R11); + + const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix + + // Load the pointer to the nested function into R11. + unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11 + SDValue Addr = Trmp; + OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), + Addr, TrmpAddr, 0, false, false, 0); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(2, MVT::i64)); + OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr, TrmpAddr, 2, + false, false, 2); + + // Load the 'nest' parameter value into R10. + // R10 is specified in X86CallingConv.td + OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10 + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(10, MVT::i64)); + OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), + Addr, TrmpAddr, 10, false, false, 0); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(12, MVT::i64)); + OutChains[3] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 12, + false, false, 2); + + // Jump to the nested function. + OpCode = (JMP64r << 8) | REX_WB; // jmpq *... + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(20, MVT::i64)); + OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16), + Addr, TrmpAddr, 20, false, false, 0); + + unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11 + Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp, + DAG.getConstant(22, MVT::i64)); + OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr, + TrmpAddr, 22, false, false, 0); + + SDValue Ops[] = + { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6) }; + return DAG.getMergeValues(Ops, 2, dl); + } else { + const Function *Func = + cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue()); + CallingConv::ID CC = Func->getCallingConv(); + unsigned NestReg; + + switch (CC) { + default: + llvm_unreachable("Unsupported calling convention"); + case CallingConv::C: + case CallingConv::X86_StdCall: { + // Pass 'nest' parameter in ECX. + // Must be kept in sync with X86CallingConv.td + NestReg = X86::ECX; + + // Check that ECX wasn't needed by an 'inreg' parameter. + const FunctionType *FTy = Func->getFunctionType(); + const AttrListPtr &Attrs = Func->getAttributes(); + + if (!Attrs.isEmpty() && !Func->isVarArg()) { + unsigned InRegCount = 0; + unsigned Idx = 1; + + for (FunctionType::param_iterator I = FTy->param_begin(), + E = FTy->param_end(); I != E; ++I, ++Idx) + if (Attrs.paramHasAttr(Idx, Attribute::InReg)) + // FIXME: should only count parameters that are lowered to integers. + InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32; + + if (InRegCount > 2) { + report_fatal_error("Nest register in use - reduce number of inreg parameters!"); + } + } + break; + } + case CallingConv::X86_FastCall: + case CallingConv::X86_ThisCall: + case CallingConv::Fast: + // Pass 'nest' parameter in EAX. + // Must be kept in sync with X86CallingConv.td + NestReg = X86::EAX; + break; + } + + SDValue OutChains[4]; + SDValue Addr, Disp; + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(10, MVT::i32)); + Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr); + + // This is storing the opcode for MOV32ri. + const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte. + const unsigned char N86Reg = RegInfo->getX86RegNum(NestReg); + OutChains[0] = DAG.getStore(Root, dl, + DAG.getConstant(MOV32ri|N86Reg, MVT::i8), + Trmp, TrmpAddr, 0, false, false, 0); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(1, MVT::i32)); + OutChains[1] = DAG.getStore(Root, dl, Nest, Addr, TrmpAddr, 1, + false, false, 1); + + const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode. + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(5, MVT::i32)); + OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr, + TrmpAddr, 5, false, false, 1); + + Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, + DAG.getConstant(6, MVT::i32)); + OutChains[3] = DAG.getStore(Root, dl, Disp, Addr, TrmpAddr, 6, + false, false, 1); + + SDValue Ops[] = + { Trmp, DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4) }; + return DAG.getMergeValues(Ops, 2, dl); + } +} + +SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op, + SelectionDAG &DAG) const { + /* + The rounding mode is in bits 11:10 of FPSR, and has the following + settings: + 00 Round to nearest + 01 Round to -inf + 10 Round to +inf + 11 Round to 0 + + FLT_ROUNDS, on the other hand, expects the following: + -1 Undefined + 0 Round to 0 + 1 Round to nearest + 2 Round to +inf + 3 Round to -inf + + To perform the conversion, we do: + (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3) + */ + + MachineFunction &MF = DAG.getMachineFunction(); + const TargetMachine &TM = MF.getTarget(); + const TargetFrameInfo &TFI = *TM.getFrameInfo(); + unsigned StackAlignment = TFI.getStackAlignment(); + EVT VT = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); + + // Save FP Control Word to stack slot + int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false); + SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); + + SDValue Chain = DAG.getNode(X86ISD::FNSTCW16m, dl, MVT::Other, + DAG.getEntryNode(), StackSlot); + + // Load FP Control Word from stack slot + SDValue CWD = DAG.getLoad(MVT::i16, dl, Chain, StackSlot, NULL, 0, + false, false, 0); + + // Transform as necessary + SDValue CWD1 = + DAG.getNode(ISD::SRL, dl, MVT::i16, + DAG.getNode(ISD::AND, dl, MVT::i16, + CWD, DAG.getConstant(0x800, MVT::i16)), + DAG.getConstant(11, MVT::i8)); + SDValue CWD2 = + DAG.getNode(ISD::SRL, dl, MVT::i16, + DAG.getNode(ISD::AND, dl, MVT::i16, + CWD, DAG.getConstant(0x400, MVT::i16)), + DAG.getConstant(9, MVT::i8)); + + SDValue RetVal = + DAG.getNode(ISD::AND, dl, MVT::i16, + DAG.getNode(ISD::ADD, dl, MVT::i16, + DAG.getNode(ISD::OR, dl, MVT::i16, CWD1, CWD2), + DAG.getConstant(1, MVT::i16)), + DAG.getConstant(3, MVT::i16)); + + + return DAG.getNode((VT.getSizeInBits() < 16 ? + ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); +} + +SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + EVT OpVT = VT; + unsigned NumBits = VT.getSizeInBits(); + DebugLoc dl = Op.getDebugLoc(); + + Op = Op.getOperand(0); + if (VT == MVT::i8) { + // Zero extend to i32 since there is not an i8 bsr. + OpVT = MVT::i32; + Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); + } + + // Issue a bsr (scan bits in reverse) which also sets EFLAGS. + SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); + Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op); + + // If src is zero (i.e. bsr sets ZF), returns NumBits. + SDValue Ops[] = { + Op, + DAG.getConstant(NumBits+NumBits-1, OpVT), + DAG.getConstant(X86::COND_E, MVT::i8), + Op.getValue(1) + }; + Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops)); + + // Finally xor with NumBits-1. + Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT)); + + if (VT == MVT::i8) + Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); + return Op; +} + +SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + EVT OpVT = VT; + unsigned NumBits = VT.getSizeInBits(); + DebugLoc dl = Op.getDebugLoc(); + + Op = Op.getOperand(0); + if (VT == MVT::i8) { + OpVT = MVT::i32; + Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op); + } + + // Issue a bsf (scan bits forward) which also sets EFLAGS. + SDVTList VTs = DAG.getVTList(OpVT, MVT::i32); + Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op); + + // If src is zero (i.e. bsf sets ZF), returns NumBits. + SDValue Ops[] = { + Op, + DAG.getConstant(NumBits, OpVT), + DAG.getConstant(X86::COND_E, MVT::i8), + Op.getValue(1) + }; + Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops)); + + if (VT == MVT::i8) + Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op); + return Op; +} + +SDValue X86TargetLowering::LowerMUL_V2I64(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply"); + DebugLoc dl = Op.getDebugLoc(); + + // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32); + // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32); + // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b ); + // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi ); + // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b ); + // + // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 ); + // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 ); + // return AloBlo + AloBhi + AhiBlo; + + SDValue A = Op.getOperand(0); + SDValue B = Op.getOperand(1); + + SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, + DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), + A, DAG.getConstant(32, MVT::i32)); + SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, + DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), + B, DAG.getConstant(32, MVT::i32)); + SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, + DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), + A, B); + SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, + DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), + A, Bhi); + SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, + DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32), + Ahi, B); + AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, + DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), + AloBhi, DAG.getConstant(32, MVT::i32)); + AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, + DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), + AhiBlo, DAG.getConstant(32, MVT::i32)); + SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi); + Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo); + return Res; +} + + +SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const { + // Lower the "add/sub/mul with overflow" instruction into a regular ins plus + // a "setcc" instruction that checks the overflow flag. The "brcond" lowering + // looks for this combo and may remove the "setcc" instruction if the "setcc" + // has only one use. + SDNode *N = Op.getNode(); + SDValue LHS = N->getOperand(0); + SDValue RHS = N->getOperand(1); + unsigned BaseOp = 0; + unsigned Cond = 0; + DebugLoc dl = Op.getDebugLoc(); + + switch (Op.getOpcode()) { + default: llvm_unreachable("Unknown ovf instruction!"); + case ISD::SADDO: + // A subtract of one will be selected as a INC. Note that INC doesn't + // set CF, so we can't do this for UADDO. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) + if (C->getAPIntValue() == 1) { + BaseOp = X86ISD::INC; + Cond = X86::COND_O; + break; + } + BaseOp = X86ISD::ADD; + Cond = X86::COND_O; + break; + case ISD::UADDO: + BaseOp = X86ISD::ADD; + Cond = X86::COND_B; + break; + case ISD::SSUBO: + // A subtract of one will be selected as a DEC. Note that DEC doesn't + // set CF, so we can't do this for USUBO. + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) + if (C->getAPIntValue() == 1) { + BaseOp = X86ISD::DEC; + Cond = X86::COND_O; + break; + } + BaseOp = X86ISD::SUB; + Cond = X86::COND_O; + break; + case ISD::USUBO: + BaseOp = X86ISD::SUB; + Cond = X86::COND_B; + break; + case ISD::SMULO: + BaseOp = X86ISD::SMUL; + Cond = X86::COND_O; + break; + case ISD::UMULO: + BaseOp = X86ISD::UMUL; + Cond = X86::COND_B; + break; + } + + // Also sets EFLAGS. + SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32); + SDValue Sum = DAG.getNode(BaseOp, dl, VTs, LHS, RHS); + + SDValue SetCC = + DAG.getNode(X86ISD::SETCC, dl, N->getValueType(1), + DAG.getConstant(Cond, MVT::i32), SDValue(Sum.getNode(), 1)); + + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SetCC); + return Sum; +} + +SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const { + EVT T = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); + unsigned Reg = 0; + unsigned size = 0; + switch(T.getSimpleVT().SimpleTy) { + default: + assert(false && "Invalid value type!"); + case MVT::i8: Reg = X86::AL; size = 1; break; + case MVT::i16: Reg = X86::AX; size = 2; break; + case MVT::i32: Reg = X86::EAX; size = 4; break; + case MVT::i64: + assert(Subtarget->is64Bit() && "Node not type legal!"); + Reg = X86::RAX; size = 8; + break; + } + SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), dl, Reg, + Op.getOperand(2), SDValue()); + SDValue Ops[] = { cpIn.getValue(0), + Op.getOperand(1), + Op.getOperand(3), + DAG.getTargetConstant(size, MVT::i8), + cpIn.getValue(1) }; + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); + SDValue Result = DAG.getNode(X86ISD::LCMPXCHG_DAG, dl, Tys, Ops, 5); + SDValue cpOut = + DAG.getCopyFromReg(Result.getValue(0), dl, Reg, T, Result.getValue(1)); + return cpOut; +} + +SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op, + SelectionDAG &DAG) const { + assert(Subtarget->is64Bit() && "Result not type legalized?"); + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); + SDValue TheChain = Op.getOperand(0); + DebugLoc dl = Op.getDebugLoc(); + SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); + SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1)); + SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64, + rax.getValue(2)); + SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx, + DAG.getConstant(32, MVT::i8)); + SDValue Ops[] = { + DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp), + rdx.getValue(1) + }; + return DAG.getMergeValues(Ops, 2, dl); +} + +SDValue X86TargetLowering::LowerBIT_CONVERT(SDValue Op, + SelectionDAG &DAG) const { + EVT SrcVT = Op.getOperand(0).getValueType(); + EVT DstVT = Op.getValueType(); + assert((Subtarget->is64Bit() && !Subtarget->hasSSE2() && + Subtarget->hasMMX() && !DisableMMX) && + "Unexpected custom BIT_CONVERT"); + assert((DstVT == MVT::i64 || + (DstVT.isVector() && DstVT.getSizeInBits()==64)) && + "Unexpected custom BIT_CONVERT"); + // i64 <=> MMX conversions are Legal. + if (SrcVT==MVT::i64 && DstVT.isVector()) + return Op; + if (DstVT==MVT::i64 && SrcVT.isVector()) + return Op; + // MMX <=> MMX conversions are Legal. + if (SrcVT.isVector() && DstVT.isVector()) + return Op; + // All other conversions need to be expanded. + return SDValue(); +} +SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const { + SDNode *Node = Op.getNode(); + DebugLoc dl = Node->getDebugLoc(); + EVT T = Node->getValueType(0); + SDValue negOp = DAG.getNode(ISD::SUB, dl, T, + DAG.getConstant(0, T), Node->getOperand(2)); + return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl, + cast<AtomicSDNode>(Node)->getMemoryVT(), + Node->getOperand(0), + Node->getOperand(1), negOp, + cast<AtomicSDNode>(Node)->getSrcValue(), + cast<AtomicSDNode>(Node)->getAlignment()); +} + +/// LowerOperation - Provide custom lowering hooks for some operations. +/// +SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { + switch (Op.getOpcode()) { + default: llvm_unreachable("Should not custom lower this!"); + case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG); + case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG); + case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); + case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); + case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); + case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); + case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); + case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); + case ISD::ConstantPool: return LowerConstantPool(Op, DAG); + case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); + case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); + case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG); + case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); + case ISD::SHL_PARTS: + case ISD::SRA_PARTS: + case ISD::SRL_PARTS: return LowerShift(Op, DAG); + case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); + case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); + case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); + case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); + case ISD::FABS: return LowerFABS(Op, DAG); + case ISD::FNEG: return LowerFNEG(Op, DAG); + case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); + case ISD::SETCC: return LowerSETCC(Op, DAG); + case ISD::VSETCC: return LowerVSETCC(Op, DAG); + case ISD::SELECT: return LowerSELECT(Op, DAG); + case ISD::BRCOND: return LowerBRCOND(Op, DAG); + case ISD::JumpTable: return LowerJumpTable(Op, DAG); + case ISD::VASTART: return LowerVASTART(Op, DAG); + case ISD::VAARG: return LowerVAARG(Op, DAG); + case ISD::VACOPY: return LowerVACOPY(Op, DAG); + case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); + case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); + case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); + case ISD::FRAME_TO_ARGS_OFFSET: + return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); + case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); + case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); + case ISD::TRAMPOLINE: return LowerTRAMPOLINE(Op, DAG); + case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); + case ISD::CTLZ: return LowerCTLZ(Op, DAG); + case ISD::CTTZ: return LowerCTTZ(Op, DAG); + case ISD::MUL: return LowerMUL_V2I64(Op, DAG); + case ISD::SADDO: + case ISD::UADDO: + case ISD::SSUBO: + case ISD::USUBO: + case ISD::SMULO: + case ISD::UMULO: return LowerXALUO(Op, DAG); + case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG); + case ISD::BIT_CONVERT: return LowerBIT_CONVERT(Op, DAG); + } +} + +void X86TargetLowering:: +ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results, + SelectionDAG &DAG, unsigned NewOp) const { + EVT T = Node->getValueType(0); + DebugLoc dl = Node->getDebugLoc(); + assert (T == MVT::i64 && "Only know how to expand i64 atomics"); + + SDValue Chain = Node->getOperand(0); + SDValue In1 = Node->getOperand(1); + SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, + Node->getOperand(2), DAG.getIntPtrConstant(0)); + SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, + Node->getOperand(2), DAG.getIntPtrConstant(1)); + SDValue Ops[] = { Chain, In1, In2L, In2H }; + SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); + SDValue Result = + DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64, + cast<MemSDNode>(Node)->getMemOperand()); + SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)}; + Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); + Results.push_back(Result.getValue(2)); +} + +/// ReplaceNodeResults - Replace a node with an illegal result type +/// with a new node built out of custom code. +void X86TargetLowering::ReplaceNodeResults(SDNode *N, + SmallVectorImpl<SDValue>&Results, + SelectionDAG &DAG) const { + DebugLoc dl = N->getDebugLoc(); + switch (N->getOpcode()) { + default: + assert(false && "Do not know how to custom type legalize this operation!"); + return; + case ISD::FP_TO_SINT: { + std::pair<SDValue,SDValue> Vals = + FP_TO_INTHelper(SDValue(N, 0), DAG, true); + SDValue FIST = Vals.first, StackSlot = Vals.second; + if (FIST.getNode() != 0) { + EVT VT = N->getValueType(0); + // Return a load from the stack slot. + Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot, NULL, 0, + false, false, 0)); + } + return; + } + case ISD::READCYCLECOUNTER: { + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); + SDValue TheChain = N->getOperand(0); + SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1); + SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32, + rd.getValue(1)); + SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32, + eax.getValue(2)); + // Use a buildpair to merge the two 32-bit values into a 64-bit one. + SDValue Ops[] = { eax, edx }; + Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2)); + Results.push_back(edx.getValue(1)); + return; + } + case ISD::ATOMIC_CMP_SWAP: { + EVT T = N->getValueType(0); + assert (T == MVT::i64 && "Only know how to expand i64 Cmp and Swap"); + SDValue cpInL, cpInH; + cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2), + DAG.getConstant(0, MVT::i32)); + cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(2), + DAG.getConstant(1, MVT::i32)); + cpInL = DAG.getCopyToReg(N->getOperand(0), dl, X86::EAX, cpInL, SDValue()); + cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl, X86::EDX, cpInH, + cpInL.getValue(1)); + SDValue swapInL, swapInH; + swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3), + DAG.getConstant(0, MVT::i32)); + swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(3), + DAG.getConstant(1, MVT::i32)); + swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl, X86::EBX, swapInL, + cpInH.getValue(1)); + swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl, X86::ECX, swapInH, + swapInL.getValue(1)); + SDValue Ops[] = { swapInH.getValue(0), + N->getOperand(1), + swapInH.getValue(1) }; + SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Flag); + SDValue Result = DAG.getNode(X86ISD::LCMPXCHG8_DAG, dl, Tys, Ops, 3); + SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl, X86::EAX, + MVT::i32, Result.getValue(1)); + SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl, X86::EDX, + MVT::i32, cpOutL.getValue(2)); + SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)}; + Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2)); + Results.push_back(cpOutH.getValue(1)); + return; + } + case ISD::ATOMIC_LOAD_ADD: + ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG); + return; + case ISD::ATOMIC_LOAD_AND: + ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG); + return; + case ISD::ATOMIC_LOAD_NAND: + ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG); + return; + case ISD::ATOMIC_LOAD_OR: + ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG); + return; + case ISD::ATOMIC_LOAD_SUB: + ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG); + return; + case ISD::ATOMIC_LOAD_XOR: + ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG); + return; + case ISD::ATOMIC_SWAP: + ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG); + return; + } +} + +const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { + switch (Opcode) { + default: return NULL; + case X86ISD::BSF: return "X86ISD::BSF"; + case X86ISD::BSR: return "X86ISD::BSR"; + case X86ISD::SHLD: return "X86ISD::SHLD"; + case X86ISD::SHRD: return "X86ISD::SHRD"; + case X86ISD::FAND: return "X86ISD::FAND"; + case X86ISD::FOR: return "X86ISD::FOR"; + case X86ISD::FXOR: return "X86ISD::FXOR"; + case X86ISD::FSRL: return "X86ISD::FSRL"; + case X86ISD::FILD: return "X86ISD::FILD"; + case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG"; + case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; + case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; + case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; + case X86ISD::FLD: return "X86ISD::FLD"; + case X86ISD::FST: return "X86ISD::FST"; + case X86ISD::CALL: return "X86ISD::CALL"; + case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG"; + case X86ISD::BT: return "X86ISD::BT"; + case X86ISD::CMP: return "X86ISD::CMP"; + case X86ISD::COMI: return "X86ISD::COMI"; + case X86ISD::UCOMI: return "X86ISD::UCOMI"; + case X86ISD::SETCC: return "X86ISD::SETCC"; + case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY"; + case X86ISD::CMOV: return "X86ISD::CMOV"; + case X86ISD::BRCOND: return "X86ISD::BRCOND"; + case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG"; + case X86ISD::REP_STOS: return "X86ISD::REP_STOS"; + case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS"; + case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg"; + case X86ISD::Wrapper: return "X86ISD::Wrapper"; + case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP"; + case X86ISD::PEXTRB: return "X86ISD::PEXTRB"; + case X86ISD::PEXTRW: return "X86ISD::PEXTRW"; + case X86ISD::INSERTPS: return "X86ISD::INSERTPS"; + case X86ISD::PINSRB: return "X86ISD::PINSRB"; + case X86ISD::PINSRW: return "X86ISD::PINSRW"; + case X86ISD::MMX_PINSRW: return "X86ISD::MMX_PINSRW"; + case X86ISD::PSHUFB: return "X86ISD::PSHUFB"; + case X86ISD::FMAX: return "X86ISD::FMAX"; + case X86ISD::FMIN: return "X86ISD::FMIN"; + case X86ISD::FRSQRT: return "X86ISD::FRSQRT"; + case X86ISD::FRCP: return "X86ISD::FRCP"; + case X86ISD::TLSADDR: return "X86ISD::TLSADDR"; + case X86ISD::SegmentBaseAddress: return "X86ISD::SegmentBaseAddress"; + case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN"; + case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN"; + case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m"; + case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG"; + case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG"; + case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG"; + case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG"; + case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG"; + case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG"; + case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG"; + case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG"; + case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL"; + case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD"; + case X86ISD::VSHL: return "X86ISD::VSHL"; + case X86ISD::VSRL: return "X86ISD::VSRL"; + case X86ISD::CMPPD: return "X86ISD::CMPPD"; + case X86ISD::CMPPS: return "X86ISD::CMPPS"; + case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB"; + case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW"; + case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD"; + case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ"; + case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB"; + case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW"; + case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD"; + case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ"; + case X86ISD::ADD: return "X86ISD::ADD"; + case X86ISD::SUB: return "X86ISD::SUB"; + case X86ISD::SMUL: return "X86ISD::SMUL"; + case X86ISD::UMUL: return "X86ISD::UMUL"; + case X86ISD::INC: return "X86ISD::INC"; + case X86ISD::DEC: return "X86ISD::DEC"; + case X86ISD::OR: return "X86ISD::OR"; + case X86ISD::XOR: return "X86ISD::XOR"; + case X86ISD::AND: return "X86ISD::AND"; + case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM"; + case X86ISD::PTEST: return "X86ISD::PTEST"; + case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS"; + case X86ISD::MINGW_ALLOCA: return "X86ISD::MINGW_ALLOCA"; + } +} + +// isLegalAddressingMode - Return true if the addressing mode represented +// by AM is legal for this target, for a load/store of the specified type. +bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM, + const Type *Ty) const { + // X86 supports extremely general addressing modes. + CodeModel::Model M = getTargetMachine().getCodeModel(); + + // X86 allows a sign-extended 32-bit immediate field as a displacement. + if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL)) + return false; + + if (AM.BaseGV) { + unsigned GVFlags = + Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine()); + + // If a reference to this global requires an extra load, we can't fold it. + if (isGlobalStubReference(GVFlags)) + return false; + + // If BaseGV requires a register for the PIC base, we cannot also have a + // BaseReg specified. + if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags)) + return false; + + // If lower 4G is not available, then we must use rip-relative addressing. + if (Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1)) + return false; + } + + switch (AM.Scale) { + case 0: + case 1: + case 2: + case 4: + case 8: + // These scales always work. + break; + case 3: + case 5: + case 9: + // These scales are formed with basereg+scalereg. Only accept if there is + // no basereg yet. + if (AM.HasBaseReg) + return false; + break; + default: // Other stuff never works. + return false; + } + + return true; +} + + +bool X86TargetLowering::isTruncateFree(const Type *Ty1, const Type *Ty2) const { + if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) + return false; + unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); + unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); + if (NumBits1 <= NumBits2) + return false; + return true; +} + +bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { + if (!VT1.isInteger() || !VT2.isInteger()) + return false; + unsigned NumBits1 = VT1.getSizeInBits(); + unsigned NumBits2 = VT2.getSizeInBits(); + if (NumBits1 <= NumBits2) + return false; + return true; +} + +bool X86TargetLowering::isZExtFree(const Type *Ty1, const Type *Ty2) const { + // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. + return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit(); +} + +bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const { + // x86-64 implicitly zero-extends 32-bit results in 64-bit registers. + return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit(); +} + +bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const { + // i16 instructions are longer (0x66 prefix) and potentially slower. + return !(VT1 == MVT::i32 && VT2 == MVT::i16); +} + +/// isShuffleMaskLegal - Targets can use this to indicate that they only +/// support *some* VECTOR_SHUFFLE operations, those with specific masks. +/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values +/// are assumed to be legal. +bool +X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, + EVT VT) const { + // Very little shuffling can be done for 64-bit vectors right now. + if (VT.getSizeInBits() == 64) + return isPALIGNRMask(M, VT, Subtarget->hasSSSE3()); + + // FIXME: pshufb, blends, shifts. + return (VT.getVectorNumElements() == 2 || + ShuffleVectorSDNode::isSplatMask(&M[0], VT) || + isMOVLMask(M, VT) || + isSHUFPMask(M, VT) || + isPSHUFDMask(M, VT) || + isPSHUFHWMask(M, VT) || + isPSHUFLWMask(M, VT) || + isPALIGNRMask(M, VT, Subtarget->hasSSSE3()) || + isUNPCKLMask(M, VT) || + isUNPCKHMask(M, VT) || + isUNPCKL_v_undef_Mask(M, VT) || + isUNPCKH_v_undef_Mask(M, VT)); +} + +bool +X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask, + EVT VT) const { + unsigned NumElts = VT.getVectorNumElements(); + // FIXME: This collection of masks seems suspect. + if (NumElts == 2) + return true; + if (NumElts == 4 && VT.getSizeInBits() == 128) { + return (isMOVLMask(Mask, VT) || + isCommutedMOVLMask(Mask, VT, true) || + isSHUFPMask(Mask, VT) || + isCommutedSHUFPMask(Mask, VT)); + } + return false; +} + +//===----------------------------------------------------------------------===// +// X86 Scheduler Hooks +//===----------------------------------------------------------------------===// + +// private utility function +MachineBasicBlock * +X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr, + MachineBasicBlock *MBB, + unsigned regOpc, + unsigned immOpc, + unsigned LoadOpc, + unsigned CXchgOpc, + unsigned copyOpc, + unsigned notOpc, + unsigned EAXreg, + TargetRegisterClass *RC, + bool invSrc) const { + // For the atomic bitwise operator, we generate + // thisMBB: + // newMBB: + // ld t1 = [bitinstr.addr] + // op t2 = t1, [bitinstr.val] + // mov EAX = t1 + // lcs dest = [bitinstr.addr], t2 [EAX is implicit] + // bz newMBB + // fallthrough -->nextMBB + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + const BasicBlock *LLVM_BB = MBB->getBasicBlock(); + MachineFunction::iterator MBBIter = MBB; + ++MBBIter; + + /// First build the CFG + MachineFunction *F = MBB->getParent(); + MachineBasicBlock *thisMBB = MBB; + MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(MBBIter, newMBB); + F->insert(MBBIter, nextMBB); + + // Move all successors to thisMBB to nextMBB + nextMBB->transferSuccessors(thisMBB); + + // Update thisMBB to fall through to newMBB + thisMBB->addSuccessor(newMBB); + + // newMBB jumps to itself and fall through to nextMBB + newMBB->addSuccessor(nextMBB); + newMBB->addSuccessor(newMBB); + + // Insert instructions into newMBB based on incoming instruction + assert(bInstr->getNumOperands() < X86AddrNumOperands + 4 && + "unexpected number of operands"); + DebugLoc dl = bInstr->getDebugLoc(); + MachineOperand& destOper = bInstr->getOperand(0); + MachineOperand* argOpers[2 + X86AddrNumOperands]; + int numArgs = bInstr->getNumOperands() - 1; + for (int i=0; i < numArgs; ++i) + argOpers[i] = &bInstr->getOperand(i+1); + + // x86 address has 4 operands: base, index, scale, and displacement + int lastAddrIndx = X86AddrNumOperands - 1; // [0,3] + int valArgIndx = lastAddrIndx + 1; + + unsigned t1 = F->getRegInfo().createVirtualRegister(RC); + MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1); + for (int i=0; i <= lastAddrIndx; ++i) + (*MIB).addOperand(*argOpers[i]); + + unsigned tt = F->getRegInfo().createVirtualRegister(RC); + if (invSrc) { + MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1); + } + else + tt = t1; + + unsigned t2 = F->getRegInfo().createVirtualRegister(RC); + assert((argOpers[valArgIndx]->isReg() || + argOpers[valArgIndx]->isImm()) && + "invalid operand"); + if (argOpers[valArgIndx]->isReg()) + MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2); + else + MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2); + MIB.addReg(tt); + (*MIB).addOperand(*argOpers[valArgIndx]); + + MIB = BuildMI(newMBB, dl, TII->get(copyOpc), EAXreg); + MIB.addReg(t1); + + MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc)); + for (int i=0; i <= lastAddrIndx; ++i) + (*MIB).addOperand(*argOpers[i]); + MIB.addReg(t2); + assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); + (*MIB).setMemRefs(bInstr->memoperands_begin(), + bInstr->memoperands_end()); + + MIB = BuildMI(newMBB, dl, TII->get(copyOpc), destOper.getReg()); + MIB.addReg(EAXreg); + + // insert branch + BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB); + + F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now. + return nextMBB; +} + +// private utility function: 64 bit atomics on 32 bit host. +MachineBasicBlock * +X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr, + MachineBasicBlock *MBB, + unsigned regOpcL, + unsigned regOpcH, + unsigned immOpcL, + unsigned immOpcH, + bool invSrc) const { + // For the atomic bitwise operator, we generate + // thisMBB (instructions are in pairs, except cmpxchg8b) + // ld t1,t2 = [bitinstr.addr] + // newMBB: + // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4) + // op t5, t6 <- out1, out2, [bitinstr.val] + // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val]) + // mov ECX, EBX <- t5, t6 + // mov EAX, EDX <- t1, t2 + // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit] + // mov t3, t4 <- EAX, EDX + // bz newMBB + // result in out1, out2 + // fallthrough -->nextMBB + + const TargetRegisterClass *RC = X86::GR32RegisterClass; + const unsigned LoadOpc = X86::MOV32rm; + const unsigned copyOpc = X86::MOV32rr; + const unsigned NotOpc = X86::NOT32r; + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + const BasicBlock *LLVM_BB = MBB->getBasicBlock(); + MachineFunction::iterator MBBIter = MBB; + ++MBBIter; + + /// First build the CFG + MachineFunction *F = MBB->getParent(); + MachineBasicBlock *thisMBB = MBB; + MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(MBBIter, newMBB); + F->insert(MBBIter, nextMBB); + + // Move all successors to thisMBB to nextMBB + nextMBB->transferSuccessors(thisMBB); + + // Update thisMBB to fall through to newMBB + thisMBB->addSuccessor(newMBB); + + // newMBB jumps to itself and fall through to nextMBB + newMBB->addSuccessor(nextMBB); + newMBB->addSuccessor(newMBB); + + DebugLoc dl = bInstr->getDebugLoc(); + // Insert instructions into newMBB based on incoming instruction + // There are 8 "real" operands plus 9 implicit def/uses, ignored here. + assert(bInstr->getNumOperands() < X86AddrNumOperands + 14 && + "unexpected number of operands"); + MachineOperand& dest1Oper = bInstr->getOperand(0); + MachineOperand& dest2Oper = bInstr->getOperand(1); + MachineOperand* argOpers[2 + X86AddrNumOperands]; + for (int i=0; i < 2 + X86AddrNumOperands; ++i) { + argOpers[i] = &bInstr->getOperand(i+2); + + // We use some of the operands multiple times, so conservatively just + // clear any kill flags that might be present. + if (argOpers[i]->isReg() && argOpers[i]->isUse()) + argOpers[i]->setIsKill(false); + } + + // x86 address has 5 operands: base, index, scale, displacement, and segment. + int lastAddrIndx = X86AddrNumOperands - 1; // [0,3] + + unsigned t1 = F->getRegInfo().createVirtualRegister(RC); + MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1); + for (int i=0; i <= lastAddrIndx; ++i) + (*MIB).addOperand(*argOpers[i]); + unsigned t2 = F->getRegInfo().createVirtualRegister(RC); + MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2); + // add 4 to displacement. + for (int i=0; i <= lastAddrIndx-2; ++i) + (*MIB).addOperand(*argOpers[i]); + MachineOperand newOp3 = *(argOpers[3]); + if (newOp3.isImm()) + newOp3.setImm(newOp3.getImm()+4); + else + newOp3.setOffset(newOp3.getOffset()+4); + (*MIB).addOperand(newOp3); + (*MIB).addOperand(*argOpers[lastAddrIndx]); + + // t3/4 are defined later, at the bottom of the loop + unsigned t3 = F->getRegInfo().createVirtualRegister(RC); + unsigned t4 = F->getRegInfo().createVirtualRegister(RC); + BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg()) + .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB); + BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg()) + .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB); + + // The subsequent operations should be using the destination registers of + //the PHI instructions. + if (invSrc) { + t1 = F->getRegInfo().createVirtualRegister(RC); + t2 = F->getRegInfo().createVirtualRegister(RC); + MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg()); + MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg()); + } else { + t1 = dest1Oper.getReg(); + t2 = dest2Oper.getReg(); + } + + int valArgIndx = lastAddrIndx + 1; + assert((argOpers[valArgIndx]->isReg() || + argOpers[valArgIndx]->isImm()) && + "invalid operand"); + unsigned t5 = F->getRegInfo().createVirtualRegister(RC); + unsigned t6 = F->getRegInfo().createVirtualRegister(RC); + if (argOpers[valArgIndx]->isReg()) + MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5); + else + MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5); + if (regOpcL != X86::MOV32rr) + MIB.addReg(t1); + (*MIB).addOperand(*argOpers[valArgIndx]); + assert(argOpers[valArgIndx + 1]->isReg() == + argOpers[valArgIndx]->isReg()); + assert(argOpers[valArgIndx + 1]->isImm() == + argOpers[valArgIndx]->isImm()); + if (argOpers[valArgIndx + 1]->isReg()) + MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6); + else + MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6); + if (regOpcH != X86::MOV32rr) + MIB.addReg(t2); + (*MIB).addOperand(*argOpers[valArgIndx + 1]); + + MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EAX); + MIB.addReg(t1); + MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EDX); + MIB.addReg(t2); + + MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::EBX); + MIB.addReg(t5); + MIB = BuildMI(newMBB, dl, TII->get(copyOpc), X86::ECX); + MIB.addReg(t6); + + MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B)); + for (int i=0; i <= lastAddrIndx; ++i) + (*MIB).addOperand(*argOpers[i]); + + assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand"); + (*MIB).setMemRefs(bInstr->memoperands_begin(), + bInstr->memoperands_end()); + + MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t3); + MIB.addReg(X86::EAX); + MIB = BuildMI(newMBB, dl, TII->get(copyOpc), t4); + MIB.addReg(X86::EDX); + + // insert branch + BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB); + + F->DeleteMachineInstr(bInstr); // The pseudo instruction is gone now. + return nextMBB; +} + +// private utility function +MachineBasicBlock * +X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr, + MachineBasicBlock *MBB, + unsigned cmovOpc) const { + // For the atomic min/max operator, we generate + // thisMBB: + // newMBB: + // ld t1 = [min/max.addr] + // mov t2 = [min/max.val] + // cmp t1, t2 + // cmov[cond] t2 = t1 + // mov EAX = t1 + // lcs dest = [bitinstr.addr], t2 [EAX is implicit] + // bz newMBB + // fallthrough -->nextMBB + // + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + const BasicBlock *LLVM_BB = MBB->getBasicBlock(); + MachineFunction::iterator MBBIter = MBB; + ++MBBIter; + + /// First build the CFG + MachineFunction *F = MBB->getParent(); + MachineBasicBlock *thisMBB = MBB; + MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(MBBIter, newMBB); + F->insert(MBBIter, nextMBB); + + // Move all successors of thisMBB to nextMBB + nextMBB->transferSuccessors(thisMBB); + + // Update thisMBB to fall through to newMBB + thisMBB->addSuccessor(newMBB); + + // newMBB jumps to newMBB and fall through to nextMBB + newMBB->addSuccessor(nextMBB); + newMBB->addSuccessor(newMBB); + + DebugLoc dl = mInstr->getDebugLoc(); + // Insert instructions into newMBB based on incoming instruction + assert(mInstr->getNumOperands() < X86AddrNumOperands + 4 && + "unexpected number of operands"); + MachineOperand& destOper = mInstr->getOperand(0); + MachineOperand* argOpers[2 + X86AddrNumOperands]; + int numArgs = mInstr->getNumOperands() - 1; + for (int i=0; i < numArgs; ++i) + argOpers[i] = &mInstr->getOperand(i+1); + + // x86 address has 4 operands: base, index, scale, and displacement + int lastAddrIndx = X86AddrNumOperands - 1; // [0,3] + int valArgIndx = lastAddrIndx + 1; + + unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); + MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1); + for (int i=0; i <= lastAddrIndx; ++i) + (*MIB).addOperand(*argOpers[i]); + + // We only support register and immediate values + assert((argOpers[valArgIndx]->isReg() || + argOpers[valArgIndx]->isImm()) && + "invalid operand"); + + unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); + if (argOpers[valArgIndx]->isReg()) + MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2); + else + MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2); + (*MIB).addOperand(*argOpers[valArgIndx]); + + MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), X86::EAX); + MIB.addReg(t1); + + MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr)); + MIB.addReg(t1); + MIB.addReg(t2); + + // Generate movc + unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass); + MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3); + MIB.addReg(t2); + MIB.addReg(t1); + + // Cmp and exchange if none has modified the memory location + MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32)); + for (int i=0; i <= lastAddrIndx; ++i) + (*MIB).addOperand(*argOpers[i]); + MIB.addReg(t3); + assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand"); + (*MIB).setMemRefs(mInstr->memoperands_begin(), + mInstr->memoperands_end()); + + MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), destOper.getReg()); + MIB.addReg(X86::EAX); + + // insert branch + BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB); + + F->DeleteMachineInstr(mInstr); // The pseudo instruction is gone now. + return nextMBB; +} + +// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8 +// all of this code can be replaced with that in the .td file. +MachineBasicBlock * +X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB, + unsigned numArgs, bool memArg) const { + + MachineFunction *F = BB->getParent(); + DebugLoc dl = MI->getDebugLoc(); + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + + unsigned Opc; + if (memArg) + Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm; + else + Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr; + + MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(Opc)); + + for (unsigned i = 0; i < numArgs; ++i) { + MachineOperand &Op = MI->getOperand(i+1); + + if (!(Op.isReg() && Op.isImplicit())) + MIB.addOperand(Op); + } + + BuildMI(BB, dl, TII->get(X86::MOVAPSrr), MI->getOperand(0).getReg()) + .addReg(X86::XMM0); + + F->DeleteMachineInstr(MI); + + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter( + MachineInstr *MI, + MachineBasicBlock *MBB) const { + // Emit code to save XMM registers to the stack. The ABI says that the + // number of registers to save is given in %al, so it's theoretically + // possible to do an indirect jump trick to avoid saving all of them, + // however this code takes a simpler approach and just executes all + // of the stores if %al is non-zero. It's less code, and it's probably + // easier on the hardware branch predictor, and stores aren't all that + // expensive anyway. + + // Create the new basic blocks. One block contains all the XMM stores, + // and one block is the final destination regardless of whether any + // stores were performed. + const BasicBlock *LLVM_BB = MBB->getBasicBlock(); + MachineFunction *F = MBB->getParent(); + MachineFunction::iterator MBBIter = MBB; + ++MBBIter; + MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(MBBIter, XMMSaveMBB); + F->insert(MBBIter, EndMBB); + + // Set up the CFG. + // Move any original successors of MBB to the end block. + EndMBB->transferSuccessors(MBB); + // The original block will now fall through to the XMM save block. + MBB->addSuccessor(XMMSaveMBB); + // The XMMSaveMBB will fall through to the end block. + XMMSaveMBB->addSuccessor(EndMBB); + + // Now add the instructions. + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + + unsigned CountReg = MI->getOperand(0).getReg(); + int64_t RegSaveFrameIndex = MI->getOperand(1).getImm(); + int64_t VarArgsFPOffset = MI->getOperand(2).getImm(); + + if (!Subtarget->isTargetWin64()) { + // If %al is 0, branch around the XMM save block. + BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg); + BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB); + MBB->addSuccessor(EndMBB); + } + + // In the XMM save block, save all the XMM argument registers. + for (int i = 3, e = MI->getNumOperands(); i != e; ++i) { + int64_t Offset = (i - 3) * 16 + VarArgsFPOffset; + MachineMemOperand *MMO = + F->getMachineMemOperand( + PseudoSourceValue::getFixedStack(RegSaveFrameIndex), + MachineMemOperand::MOStore, Offset, + /*Size=*/16, /*Align=*/16); + BuildMI(XMMSaveMBB, DL, TII->get(X86::MOVAPSmr)) + .addFrameIndex(RegSaveFrameIndex) + .addImm(/*Scale=*/1) + .addReg(/*IndexReg=*/0) + .addImm(/*Disp=*/Offset) + .addReg(/*Segment=*/0) + .addReg(MI->getOperand(i).getReg()) + .addMemOperand(MMO); + } + + F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. + + return EndMBB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredSelect(MachineInstr *MI, + MachineBasicBlock *BB) const { + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + + // To "insert" a SELECT_CC instruction, we actually have to insert the + // diamond control-flow pattern. The incoming instruction knows the + // destination vreg to set, the condition code register to branch on, the + // true/false values to select between, and a branch opcode to use. + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction::iterator It = BB; + ++It; + + // thisMBB: + // ... + // TrueVal = ... + // cmpTY ccX, r1, r2 + // bCC copy1MBB + // fallthrough --> copy0MBB + MachineBasicBlock *thisMBB = BB; + MachineFunction *F = BB->getParent(); + MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); + unsigned Opc = + X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm()); + BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB); + F->insert(It, copy0MBB); + F->insert(It, sinkMBB); + // Update machine-CFG edges by first adding all successors of the current + // block to the new block which will contain the Phi node for the select. + for (MachineBasicBlock::succ_iterator I = BB->succ_begin(), + E = BB->succ_end(); I != E; ++I) + sinkMBB->addSuccessor(*I); + // Next, remove all successors of the current block, and add the true + // and fallthrough blocks as its successors. + while (!BB->succ_empty()) + BB->removeSuccessor(BB->succ_begin()); + // Add the true and fallthrough blocks as its successors. + BB->addSuccessor(copy0MBB); + BB->addSuccessor(sinkMBB); + + // copy0MBB: + // %FalseValue = ... + // # fallthrough to sinkMBB + copy0MBB->addSuccessor(sinkMBB); + + // sinkMBB: + // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] + // ... + BuildMI(sinkMBB, DL, TII->get(X86::PHI), MI->getOperand(0).getReg()) + .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) + .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); + + F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. + return sinkMBB; +} + +MachineBasicBlock * +X86TargetLowering::EmitLoweredMingwAlloca(MachineInstr *MI, + MachineBasicBlock *BB) const { + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + MachineFunction *F = BB->getParent(); + + // The lowering is pretty easy: we're just emitting the call to _alloca. The + // non-trivial part is impdef of ESP. + // FIXME: The code should be tweaked as soon as we'll try to do codegen for + // mingw-w64. + + BuildMI(BB, DL, TII->get(X86::CALLpcrel32)) + .addExternalSymbol("_alloca") + .addReg(X86::EAX, RegState::Implicit) + .addReg(X86::ESP, RegState::Implicit) + .addReg(X86::EAX, RegState::Define | RegState::Implicit) + .addReg(X86::ESP, RegState::Define | RegState::Implicit); + + F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. + return BB; +} + +MachineBasicBlock * +X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, + MachineBasicBlock *BB) const { + switch (MI->getOpcode()) { + default: assert(false && "Unexpected instr type to insert"); + case X86::MINGW_ALLOCA: + return EmitLoweredMingwAlloca(MI, BB); + case X86::CMOV_GR8: + case X86::CMOV_V1I64: + case X86::CMOV_FR32: + case X86::CMOV_FR64: + case X86::CMOV_V4F32: + case X86::CMOV_V2F64: + case X86::CMOV_V2I64: + case X86::CMOV_GR16: + case X86::CMOV_GR32: + case X86::CMOV_RFP32: + case X86::CMOV_RFP64: + case X86::CMOV_RFP80: + return EmitLoweredSelect(MI, BB); + + case X86::FP32_TO_INT16_IN_MEM: + case X86::FP32_TO_INT32_IN_MEM: + case X86::FP32_TO_INT64_IN_MEM: + case X86::FP64_TO_INT16_IN_MEM: + case X86::FP64_TO_INT32_IN_MEM: + case X86::FP64_TO_INT64_IN_MEM: + case X86::FP80_TO_INT16_IN_MEM: + case X86::FP80_TO_INT32_IN_MEM: + case X86::FP80_TO_INT64_IN_MEM: { + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + DebugLoc DL = MI->getDebugLoc(); + + // Change the floating point control register to use "round towards zero" + // mode when truncating to an integer value. + MachineFunction *F = BB->getParent(); + int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false); + addFrameReference(BuildMI(BB, DL, TII->get(X86::FNSTCW16m)), CWFrameIdx); + + // Load the old value of the high byte of the control word... + unsigned OldCW = + F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass); + addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16rm), OldCW), + CWFrameIdx); + + // Set the high part to be round to zero... + addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mi)), CWFrameIdx) + .addImm(0xC7F); + + // Reload the modified control word now... + addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx); + + // Restore the memory image of control word to original value + addFrameReference(BuildMI(BB, DL, TII->get(X86::MOV16mr)), CWFrameIdx) + .addReg(OldCW); + + // Get the X86 opcode to use. + unsigned Opc; + switch (MI->getOpcode()) { + default: llvm_unreachable("illegal opcode!"); + case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break; + case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break; + case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break; + case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break; + case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break; + case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break; + case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break; + case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break; + case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break; + } + + X86AddressMode AM; + MachineOperand &Op = MI->getOperand(0); + if (Op.isReg()) { + AM.BaseType = X86AddressMode::RegBase; + AM.Base.Reg = Op.getReg(); + } else { + AM.BaseType = X86AddressMode::FrameIndexBase; + AM.Base.FrameIndex = Op.getIndex(); + } + Op = MI->getOperand(1); + if (Op.isImm()) + AM.Scale = Op.getImm(); + Op = MI->getOperand(2); + if (Op.isImm()) + AM.IndexReg = Op.getImm(); + Op = MI->getOperand(3); + if (Op.isGlobal()) { + AM.GV = Op.getGlobal(); + } else { + AM.Disp = Op.getImm(); + } + addFullAddress(BuildMI(BB, DL, TII->get(Opc)), AM) + .addReg(MI->getOperand(X86AddrNumOperands).getReg()); + + // Reload the original control word now. + addFrameReference(BuildMI(BB, DL, TII->get(X86::FLDCW16m)), CWFrameIdx); + + F->DeleteMachineInstr(MI); // The pseudo instruction is gone now. + return BB; + } + // String/text processing lowering. + case X86::PCMPISTRM128REG: + return EmitPCMP(MI, BB, 3, false /* in-mem */); + case X86::PCMPISTRM128MEM: + return EmitPCMP(MI, BB, 3, true /* in-mem */); + case X86::PCMPESTRM128REG: + return EmitPCMP(MI, BB, 5, false /* in mem */); + case X86::PCMPESTRM128MEM: + return EmitPCMP(MI, BB, 5, true /* in mem */); + + // Atomic Lowering. + case X86::ATOMAND32: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, + X86::AND32ri, X86::MOV32rm, + X86::LCMPXCHG32, X86::MOV32rr, + X86::NOT32r, X86::EAX, + X86::GR32RegisterClass); + case X86::ATOMOR32: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr, + X86::OR32ri, X86::MOV32rm, + X86::LCMPXCHG32, X86::MOV32rr, + X86::NOT32r, X86::EAX, + X86::GR32RegisterClass); + case X86::ATOMXOR32: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr, + X86::XOR32ri, X86::MOV32rm, + X86::LCMPXCHG32, X86::MOV32rr, + X86::NOT32r, X86::EAX, + X86::GR32RegisterClass); + case X86::ATOMNAND32: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr, + X86::AND32ri, X86::MOV32rm, + X86::LCMPXCHG32, X86::MOV32rr, + X86::NOT32r, X86::EAX, + X86::GR32RegisterClass, true); + case X86::ATOMMIN32: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr); + case X86::ATOMMAX32: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr); + case X86::ATOMUMIN32: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr); + case X86::ATOMUMAX32: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr); + + case X86::ATOMAND16: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, + X86::AND16ri, X86::MOV16rm, + X86::LCMPXCHG16, X86::MOV16rr, + X86::NOT16r, X86::AX, + X86::GR16RegisterClass); + case X86::ATOMOR16: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr, + X86::OR16ri, X86::MOV16rm, + X86::LCMPXCHG16, X86::MOV16rr, + X86::NOT16r, X86::AX, + X86::GR16RegisterClass); + case X86::ATOMXOR16: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr, + X86::XOR16ri, X86::MOV16rm, + X86::LCMPXCHG16, X86::MOV16rr, + X86::NOT16r, X86::AX, + X86::GR16RegisterClass); + case X86::ATOMNAND16: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr, + X86::AND16ri, X86::MOV16rm, + X86::LCMPXCHG16, X86::MOV16rr, + X86::NOT16r, X86::AX, + X86::GR16RegisterClass, true); + case X86::ATOMMIN16: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr); + case X86::ATOMMAX16: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr); + case X86::ATOMUMIN16: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr); + case X86::ATOMUMAX16: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr); + + case X86::ATOMAND8: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, + X86::AND8ri, X86::MOV8rm, + X86::LCMPXCHG8, X86::MOV8rr, + X86::NOT8r, X86::AL, + X86::GR8RegisterClass); + case X86::ATOMOR8: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr, + X86::OR8ri, X86::MOV8rm, + X86::LCMPXCHG8, X86::MOV8rr, + X86::NOT8r, X86::AL, + X86::GR8RegisterClass); + case X86::ATOMXOR8: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr, + X86::XOR8ri, X86::MOV8rm, + X86::LCMPXCHG8, X86::MOV8rr, + X86::NOT8r, X86::AL, + X86::GR8RegisterClass); + case X86::ATOMNAND8: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr, + X86::AND8ri, X86::MOV8rm, + X86::LCMPXCHG8, X86::MOV8rr, + X86::NOT8r, X86::AL, + X86::GR8RegisterClass, true); + // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way. + // This group is for 64-bit host. + case X86::ATOMAND64: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, + X86::AND64ri32, X86::MOV64rm, + X86::LCMPXCHG64, X86::MOV64rr, + X86::NOT64r, X86::RAX, + X86::GR64RegisterClass); + case X86::ATOMOR64: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr, + X86::OR64ri32, X86::MOV64rm, + X86::LCMPXCHG64, X86::MOV64rr, + X86::NOT64r, X86::RAX, + X86::GR64RegisterClass); + case X86::ATOMXOR64: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr, + X86::XOR64ri32, X86::MOV64rm, + X86::LCMPXCHG64, X86::MOV64rr, + X86::NOT64r, X86::RAX, + X86::GR64RegisterClass); + case X86::ATOMNAND64: + return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr, + X86::AND64ri32, X86::MOV64rm, + X86::LCMPXCHG64, X86::MOV64rr, + X86::NOT64r, X86::RAX, + X86::GR64RegisterClass, true); + case X86::ATOMMIN64: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr); + case X86::ATOMMAX64: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr); + case X86::ATOMUMIN64: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr); + case X86::ATOMUMAX64: + return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr); + + // This group does 64-bit operations on a 32-bit host. + case X86::ATOMAND6432: + return EmitAtomicBit6432WithCustomInserter(MI, BB, + X86::AND32rr, X86::AND32rr, + X86::AND32ri, X86::AND32ri, + false); + case X86::ATOMOR6432: + return EmitAtomicBit6432WithCustomInserter(MI, BB, + X86::OR32rr, X86::OR32rr, + X86::OR32ri, X86::OR32ri, + false); + case X86::ATOMXOR6432: + return EmitAtomicBit6432WithCustomInserter(MI, BB, + X86::XOR32rr, X86::XOR32rr, + X86::XOR32ri, X86::XOR32ri, + false); + case X86::ATOMNAND6432: + return EmitAtomicBit6432WithCustomInserter(MI, BB, + X86::AND32rr, X86::AND32rr, + X86::AND32ri, X86::AND32ri, + true); + case X86::ATOMADD6432: + return EmitAtomicBit6432WithCustomInserter(MI, BB, + X86::ADD32rr, X86::ADC32rr, + X86::ADD32ri, X86::ADC32ri, + false); + case X86::ATOMSUB6432: + return EmitAtomicBit6432WithCustomInserter(MI, BB, + X86::SUB32rr, X86::SBB32rr, + X86::SUB32ri, X86::SBB32ri, + false); + case X86::ATOMSWAP6432: + return EmitAtomicBit6432WithCustomInserter(MI, BB, + X86::MOV32rr, X86::MOV32rr, + X86::MOV32ri, X86::MOV32ri, + false); + case X86::VASTART_SAVE_XMM_REGS: + return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB); + } +} + +//===----------------------------------------------------------------------===// +// X86 Optimization Hooks +//===----------------------------------------------------------------------===// + +void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, + const APInt &Mask, + APInt &KnownZero, + APInt &KnownOne, + const SelectionDAG &DAG, + unsigned Depth) const { + unsigned Opc = Op.getOpcode(); + assert((Opc >= ISD::BUILTIN_OP_END || + Opc == ISD::INTRINSIC_WO_CHAIN || + Opc == ISD::INTRINSIC_W_CHAIN || + Opc == ISD::INTRINSIC_VOID) && + "Should use MaskedValueIsZero if you don't know whether Op" + " is a target node!"); + + KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything. + switch (Opc) { + default: break; + case X86ISD::ADD: + case X86ISD::SUB: + case X86ISD::SMUL: + case X86ISD::UMUL: + case X86ISD::INC: + case X86ISD::DEC: + case X86ISD::OR: + case X86ISD::XOR: + case X86ISD::AND: + // These nodes' second result is a boolean. + if (Op.getResNo() == 0) + break; + // Fallthrough + case X86ISD::SETCC: + KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(), + Mask.getBitWidth() - 1); + break; + } +} + +/// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the +/// node is a GlobalAddress + offset. +bool X86TargetLowering::isGAPlusOffset(SDNode *N, + const GlobalValue* &GA, + int64_t &Offset) const { + if (N->getOpcode() == X86ISD::Wrapper) { + if (isa<GlobalAddressSDNode>(N->getOperand(0))) { + GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal(); + Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset(); + return true; + } + } + return TargetLowering::isGAPlusOffset(N, GA, Offset); +} + +/// PerformShuffleCombine - Combine a vector_shuffle that is equal to +/// build_vector load1, load2, load3, load4, <0, 1, 2, 3> into a 128-bit load +/// if the load addresses are consecutive, non-overlapping, and in the right +/// order. +static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG, + const TargetLowering &TLI) { + DebugLoc dl = N->getDebugLoc(); + EVT VT = N->getValueType(0); + ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); + + if (VT.getSizeInBits() != 128) + return SDValue(); + + SmallVector<SDValue, 16> Elts; + for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) + Elts.push_back(DAG.getShuffleScalarElt(SVN, i)); + + return EltsFromConsecutiveLoads(VT, Elts, dl, DAG); +} + +/// PerformShuffleCombine - Detect vector gather/scatter index generation +/// and convert it from being a bunch of shuffles and extracts to a simple +/// store and scalar loads to extract the elements. +static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG, + const TargetLowering &TLI) { + SDValue InputVector = N->getOperand(0); + + // Only operate on vectors of 4 elements, where the alternative shuffling + // gets to be more expensive. + if (InputVector.getValueType() != MVT::v4i32) + return SDValue(); + + // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a + // single use which is a sign-extend or zero-extend, and all elements are + // used. + SmallVector<SDNode *, 4> Uses; + unsigned ExtractedElements = 0; + for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(), + UE = InputVector.getNode()->use_end(); UI != UE; ++UI) { + if (UI.getUse().getResNo() != InputVector.getResNo()) + return SDValue(); + + SDNode *Extract = *UI; + if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT) + return SDValue(); + + if (Extract->getValueType(0) != MVT::i32) + return SDValue(); + if (!Extract->hasOneUse()) + return SDValue(); + if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND && + Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND) + return SDValue(); + if (!isa<ConstantSDNode>(Extract->getOperand(1))) + return SDValue(); + + // Record which element was extracted. + ExtractedElements |= + 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue(); + + Uses.push_back(Extract); + } + + // If not all the elements were used, this may not be worthwhile. + if (ExtractedElements != 15) + return SDValue(); + + // Ok, we've now decided to do the transformation. + DebugLoc dl = InputVector.getDebugLoc(); + + // Store the value to a temporary stack slot. + SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType()); + SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr, NULL, 0, + false, false, 0); + + // Replace each use (extract) with a load of the appropriate element. + for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(), + UE = Uses.end(); UI != UE; ++UI) { + SDNode *Extract = *UI; + + // Compute the element's address. + SDValue Idx = Extract->getOperand(1); + unsigned EltSize = + InputVector.getValueType().getVectorElementType().getSizeInBits()/8; + uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue(); + SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy()); + + SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), OffsetVal, StackPtr); + + // Load the scalar. + SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch, ScalarAddr, + NULL, 0, false, false, 0); + + // Replace the exact with the load. + DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar); + } + + // The replacement was made in place; don't return anything. + return SDValue(); +} + +/// PerformSELECTCombine - Do target-specific dag combines on SELECT nodes. +static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + DebugLoc DL = N->getDebugLoc(); + SDValue Cond = N->getOperand(0); + // Get the LHS/RHS of the select. + SDValue LHS = N->getOperand(1); + SDValue RHS = N->getOperand(2); + + // If we have SSE[12] support, try to form min/max nodes. SSE min/max + // instructions match the semantics of the common C idiom x<y?x:y but not + // x<=y?x:y, because of how they handle negative zero (which can be + // ignored in unsafe-math mode). + if (Subtarget->hasSSE2() && + (LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64) && + Cond.getOpcode() == ISD::SETCC) { + ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); + + unsigned Opcode = 0; + // Check for x CC y ? x : y. + if (DAG.isEqualTo(LHS, Cond.getOperand(0)) && + DAG.isEqualTo(RHS, Cond.getOperand(1))) { + switch (CC) { + default: break; + case ISD::SETULT: + // Converting this to a min would handle NaNs incorrectly, and swapping + // the operands would cause it to handle comparisons between positive + // and negative zero incorrectly. + if (!FiniteOnlyFPMath() && + (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) { + if (!UnsafeFPMath && + !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMIN; + break; + case ISD::SETOLE: + // Converting this to a min would handle comparisons between positive + // and negative zero incorrectly. + if (!UnsafeFPMath && + !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) + break; + Opcode = X86ISD::FMIN; + break; + case ISD::SETULE: + // Converting this to a min would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + case ISD::SETOLT: + case ISD::SETLT: + case ISD::SETLE: + Opcode = X86ISD::FMIN; + break; + + case ISD::SETOGE: + // Converting this to a max would handle comparisons between positive + // and negative zero incorrectly. + if (!UnsafeFPMath && + !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(LHS)) + break; + Opcode = X86ISD::FMAX; + break; + case ISD::SETUGT: + // Converting this to a max would handle NaNs incorrectly, and swapping + // the operands would cause it to handle comparisons between positive + // and negative zero incorrectly. + if (!FiniteOnlyFPMath() && + (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) { + if (!UnsafeFPMath && + !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMAX; + break; + case ISD::SETUGE: + // Converting this to a max would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + case ISD::SETOGT: + case ISD::SETGT: + case ISD::SETGE: + Opcode = X86ISD::FMAX; + break; + } + // Check for x CC y ? y : x -- a min/max with reversed arms. + } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) && + DAG.isEqualTo(RHS, Cond.getOperand(0))) { + switch (CC) { + default: break; + case ISD::SETOGE: + // Converting this to a min would handle comparisons between positive + // and negative zero incorrectly, and swapping the operands would + // cause it to handle NaNs incorrectly. + if (!UnsafeFPMath && + !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) { + if (!FiniteOnlyFPMath() && + (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMIN; + break; + case ISD::SETUGT: + // Converting this to a min would handle NaNs incorrectly. + if (!UnsafeFPMath && + (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) + break; + Opcode = X86ISD::FMIN; + break; + case ISD::SETUGE: + // Converting this to a min would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + case ISD::SETOGT: + case ISD::SETGT: + case ISD::SETGE: + Opcode = X86ISD::FMIN; + break; + + case ISD::SETULT: + // Converting this to a max would handle NaNs incorrectly. + if (!FiniteOnlyFPMath() && + (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) + break; + Opcode = X86ISD::FMAX; + break; + case ISD::SETOLE: + // Converting this to a max would handle comparisons between positive + // and negative zero incorrectly, and swapping the operands would + // cause it to handle NaNs incorrectly. + if (!UnsafeFPMath && + !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) { + if (!FiniteOnlyFPMath() && + (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))) + break; + std::swap(LHS, RHS); + } + Opcode = X86ISD::FMAX; + break; + case ISD::SETULE: + // Converting this to a max would handle both negative zeros and NaNs + // incorrectly, but we can swap the operands to fix both. + std::swap(LHS, RHS); + case ISD::SETOLT: + case ISD::SETLT: + case ISD::SETLE: + Opcode = X86ISD::FMAX; + break; + } + } + + if (Opcode) + return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS); + } + + // If this is a select between two integer constants, try to do some + // optimizations. + if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) { + if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS)) + // Don't do this for crazy integer types. + if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) { + // If this is efficiently invertible, canonicalize the LHSC/RHSC values + // so that TrueC (the true value) is larger than FalseC. + bool NeedsCondInvert = false; + + if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) && + // Efficiently invertible. + (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible. + (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible. + isa<ConstantSDNode>(Cond.getOperand(1))))) { + NeedsCondInvert = true; + std::swap(TrueC, FalseC); + } + + // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0. + if (FalseC->getAPIntValue() == 0 && + TrueC->getAPIntValue().isPowerOf2()) { + if (NeedsCondInvert) // Invert the condition if needed. + Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, + DAG.getConstant(1, Cond.getValueType())); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond); + + unsigned ShAmt = TrueC->getAPIntValue().logBase2(); + return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond, + DAG.getConstant(ShAmt, MVT::i8)); + } + + // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. + if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { + if (NeedsCondInvert) // Invert the condition if needed. + Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, + DAG.getConstant(1, Cond.getValueType())); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, + FalseC->getValueType(0), Cond); + return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, + SDValue(FalseC, 0)); + } + + // Optimize cases that will turn into an LEA instruction. This requires + // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). + if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { + uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); + if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; + + bool isFastMultiplier = false; + if (Diff < 10) { + switch ((unsigned char)Diff) { + default: break; + case 1: // result = add base, cond + case 2: // result = lea base( , cond*2) + case 3: // result = lea base(cond, cond*2) + case 4: // result = lea base( , cond*4) + case 5: // result = lea base(cond, cond*4) + case 8: // result = lea base( , cond*8) + case 9: // result = lea base(cond, cond*8) + isFastMultiplier = true; + break; + } + } + + if (isFastMultiplier) { + APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); + if (NeedsCondInvert) // Invert the condition if needed. + Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond, + DAG.getConstant(1, Cond.getValueType())); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), + Cond); + // Scale the condition by the difference. + if (Diff != 1) + Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, + DAG.getConstant(Diff, Cond.getValueType())); + + // Add the base if non-zero. + if (FalseC->getAPIntValue() != 0) + Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, + SDValue(FalseC, 0)); + return Cond; + } + } + } + } + + return SDValue(); +} + +/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL] +static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + DebugLoc DL = N->getDebugLoc(); + + // If the flag operand isn't dead, don't touch this CMOV. + if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty()) + return SDValue(); + + // If this is a select between two integer constants, try to do some + // optimizations. Note that the operands are ordered the opposite of SELECT + // operands. + if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(N->getOperand(1))) { + if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(N->getOperand(0))) { + // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is + // larger than FalseC (the false value). + X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2); + + if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) { + CC = X86::GetOppositeBranchCondition(CC); + std::swap(TrueC, FalseC); + } + + // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0. + // This is efficient for any integer data type (including i8/i16) and + // shift amount. + if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) { + SDValue Cond = N->getOperand(3); + Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, + DAG.getConstant(CC, MVT::i8), Cond); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond); + + unsigned ShAmt = TrueC->getAPIntValue().logBase2(); + Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond, + DAG.getConstant(ShAmt, MVT::i8)); + if (N->getNumValues() == 2) // Dead flag value? + return DCI.CombineTo(N, Cond, SDValue()); + return Cond; + } + + // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient + // for any integer data type, including i8/i16. + if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) { + SDValue Cond = N->getOperand(3); + Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, + DAG.getConstant(CC, MVT::i8), Cond); + + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, + FalseC->getValueType(0), Cond); + Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, + SDValue(FalseC, 0)); + + if (N->getNumValues() == 2) // Dead flag value? + return DCI.CombineTo(N, Cond, SDValue()); + return Cond; + } + + // Optimize cases that will turn into an LEA instruction. This requires + // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9). + if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) { + uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue(); + if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff; + + bool isFastMultiplier = false; + if (Diff < 10) { + switch ((unsigned char)Diff) { + default: break; + case 1: // result = add base, cond + case 2: // result = lea base( , cond*2) + case 3: // result = lea base(cond, cond*2) + case 4: // result = lea base( , cond*4) + case 5: // result = lea base(cond, cond*4) + case 8: // result = lea base( , cond*8) + case 9: // result = lea base(cond, cond*8) + isFastMultiplier = true; + break; + } + } + + if (isFastMultiplier) { + APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue(); + SDValue Cond = N->getOperand(3); + Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8, + DAG.getConstant(CC, MVT::i8), Cond); + // Zero extend the condition if needed. + Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0), + Cond); + // Scale the condition by the difference. + if (Diff != 1) + Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond, + DAG.getConstant(Diff, Cond.getValueType())); + + // Add the base if non-zero. + if (FalseC->getAPIntValue() != 0) + Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond, + SDValue(FalseC, 0)); + if (N->getNumValues() == 2) // Dead flag value? + return DCI.CombineTo(N, Cond, SDValue()); + return Cond; + } + } + } + } + return SDValue(); +} + + +/// PerformMulCombine - Optimize a single multiply with constant into two +/// in order to implement it with two cheaper instructions, e.g. +/// LEA + SHL, LEA + LEA. +static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) + return SDValue(); + + EVT VT = N->getValueType(0); + if (VT != MVT::i64) + return SDValue(); + + ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); + if (!C) + return SDValue(); + uint64_t MulAmt = C->getZExtValue(); + if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9) + return SDValue(); + + uint64_t MulAmt1 = 0; + uint64_t MulAmt2 = 0; + if ((MulAmt % 9) == 0) { + MulAmt1 = 9; + MulAmt2 = MulAmt / 9; + } else if ((MulAmt % 5) == 0) { + MulAmt1 = 5; + MulAmt2 = MulAmt / 5; + } else if ((MulAmt % 3) == 0) { + MulAmt1 = 3; + MulAmt2 = MulAmt / 3; + } + if (MulAmt2 && + (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){ + DebugLoc DL = N->getDebugLoc(); + + if (isPowerOf2_64(MulAmt2) && + !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD)) + // If second multiplifer is pow2, issue it first. We want the multiply by + // 3, 5, or 9 to be folded into the addressing mode unless the lone use + // is an add. + std::swap(MulAmt1, MulAmt2); + + SDValue NewMul; + if (isPowerOf2_64(MulAmt1)) + NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), + DAG.getConstant(Log2_64(MulAmt1), MVT::i8)); + else + NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0), + DAG.getConstant(MulAmt1, VT)); + + if (isPowerOf2_64(MulAmt2)) + NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul, + DAG.getConstant(Log2_64(MulAmt2), MVT::i8)); + else + NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul, + DAG.getConstant(MulAmt2, VT)); + + // Do not add new nodes to DAG combiner worklist. + DCI.CombineTo(N, NewMul, false); + } + return SDValue(); +} + +static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) { + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); + EVT VT = N0.getValueType(); + + // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2)) + // since the result of setcc_c is all zero's or all ones. + if (N1C && N0.getOpcode() == ISD::AND && + N0.getOperand(1).getOpcode() == ISD::Constant) { + SDValue N00 = N0.getOperand(0); + if (N00.getOpcode() == X86ISD::SETCC_CARRY || + ((N00.getOpcode() == ISD::ANY_EXTEND || + N00.getOpcode() == ISD::ZERO_EXTEND) && + N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) { + APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); + APInt ShAmt = N1C->getAPIntValue(); + Mask = Mask.shl(ShAmt); + if (Mask != 0) + return DAG.getNode(ISD::AND, N->getDebugLoc(), VT, + N00, DAG.getConstant(Mask, VT)); + } + } + + return SDValue(); +} + +/// PerformShiftCombine - Transforms vector shift nodes to use vector shifts +/// when possible. +static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + EVT VT = N->getValueType(0); + if (!VT.isVector() && VT.isInteger() && + N->getOpcode() == ISD::SHL) + return PerformSHLCombine(N, DAG); + + // On X86 with SSE2 support, we can transform this to a vector shift if + // all elements are shifted by the same amount. We can't do this in legalize + // because the a constant vector is typically transformed to a constant pool + // so we have no knowledge of the shift amount. + if (!Subtarget->hasSSE2()) + return SDValue(); + + if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16) + return SDValue(); + + SDValue ShAmtOp = N->getOperand(1); + EVT EltVT = VT.getVectorElementType(); + DebugLoc DL = N->getDebugLoc(); + SDValue BaseShAmt = SDValue(); + if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) { + unsigned NumElts = VT.getVectorNumElements(); + unsigned i = 0; + for (; i != NumElts; ++i) { + SDValue Arg = ShAmtOp.getOperand(i); + if (Arg.getOpcode() == ISD::UNDEF) continue; + BaseShAmt = Arg; + break; + } + for (; i != NumElts; ++i) { + SDValue Arg = ShAmtOp.getOperand(i); + if (Arg.getOpcode() == ISD::UNDEF) continue; + if (Arg != BaseShAmt) { + return SDValue(); + } + } + } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE && + cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) { + SDValue InVec = ShAmtOp.getOperand(0); + if (InVec.getOpcode() == ISD::BUILD_VECTOR) { + unsigned NumElts = InVec.getValueType().getVectorNumElements(); + unsigned i = 0; + for (; i != NumElts; ++i) { + SDValue Arg = InVec.getOperand(i); + if (Arg.getOpcode() == ISD::UNDEF) continue; + BaseShAmt = Arg; + break; + } + } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) { + unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex(); + if (C->getZExtValue() == SplatIdx) + BaseShAmt = InVec.getOperand(1); + } + } + if (BaseShAmt.getNode() == 0) + BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp, + DAG.getIntPtrConstant(0)); + } else + return SDValue(); + + // The shift amount is an i32. + if (EltVT.bitsGT(MVT::i32)) + BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt); + else if (EltVT.bitsLT(MVT::i32)) + BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt); + + // The shift amount is identical so we can do a vector shift. + SDValue ValOp = N->getOperand(0); + switch (N->getOpcode()) { + default: + llvm_unreachable("Unknown shift opcode!"); + break; + case ISD::SHL: + if (VT == MVT::v2i64) + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, + DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32), + ValOp, BaseShAmt); + if (VT == MVT::v4i32) + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, + DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32), + ValOp, BaseShAmt); + if (VT == MVT::v8i16) + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, + DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), + ValOp, BaseShAmt); + break; + case ISD::SRA: + if (VT == MVT::v4i32) + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, + DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32), + ValOp, BaseShAmt); + if (VT == MVT::v8i16) + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, + DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32), + ValOp, BaseShAmt); + break; + case ISD::SRL: + if (VT == MVT::v2i64) + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, + DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32), + ValOp, BaseShAmt); + if (VT == MVT::v4i32) + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, + DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32), + ValOp, BaseShAmt); + if (VT == MVT::v8i16) + return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT, + DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32), + ValOp, BaseShAmt); + break; + } + return SDValue(); +} + +static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI, + const X86Subtarget *Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + EVT VT = N->getValueType(0); + if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64) + return SDValue(); + + // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c) + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); + if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL) + std::swap(N0, N1); + if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL) + return SDValue(); + if (!N0.hasOneUse() || !N1.hasOneUse()) + return SDValue(); + + SDValue ShAmt0 = N0.getOperand(1); + if (ShAmt0.getValueType() != MVT::i8) + return SDValue(); + SDValue ShAmt1 = N1.getOperand(1); + if (ShAmt1.getValueType() != MVT::i8) + return SDValue(); + if (ShAmt0.getOpcode() == ISD::TRUNCATE) + ShAmt0 = ShAmt0.getOperand(0); + if (ShAmt1.getOpcode() == ISD::TRUNCATE) + ShAmt1 = ShAmt1.getOperand(0); + + DebugLoc DL = N->getDebugLoc(); + unsigned Opc = X86ISD::SHLD; + SDValue Op0 = N0.getOperand(0); + SDValue Op1 = N1.getOperand(0); + if (ShAmt0.getOpcode() == ISD::SUB) { + Opc = X86ISD::SHRD; + std::swap(Op0, Op1); + std::swap(ShAmt0, ShAmt1); + } + + unsigned Bits = VT.getSizeInBits(); + if (ShAmt1.getOpcode() == ISD::SUB) { + SDValue Sum = ShAmt1.getOperand(0); + if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) { + if (SumC->getSExtValue() == Bits && + ShAmt1.getOperand(1) == ShAmt0) + return DAG.getNode(Opc, DL, VT, + Op0, Op1, + DAG.getNode(ISD::TRUNCATE, DL, + MVT::i8, ShAmt0)); + } + } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) { + ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0); + if (ShAmt0C && + ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits) + return DAG.getNode(Opc, DL, VT, + N0.getOperand(0), N1.getOperand(0), + DAG.getNode(ISD::TRUNCATE, DL, + MVT::i8, ShAmt0)); + } + + return SDValue(); +} + +/// PerformSTORECombine - Do target-specific dag combines on STORE nodes. +static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG, + const X86Subtarget *Subtarget) { + // Turn load->store of MMX types into GPR load/stores. This avoids clobbering + // the FP state in cases where an emms may be missing. + // A preferable solution to the general problem is to figure out the right + // places to insert EMMS. This qualifies as a quick hack. + + // Similarly, turn load->store of i64 into double load/stores in 32-bit mode. + StoreSDNode *St = cast<StoreSDNode>(N); + EVT VT = St->getValue().getValueType(); + if (VT.getSizeInBits() != 64) + return SDValue(); + + const Function *F = DAG.getMachineFunction().getFunction(); + bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat); + bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps + && Subtarget->hasSSE2(); + if ((VT.isVector() || + (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) && + isa<LoadSDNode>(St->getValue()) && + !cast<LoadSDNode>(St->getValue())->isVolatile() && + St->getChain().hasOneUse() && !St->isVolatile()) { + SDNode* LdVal = St->getValue().getNode(); + LoadSDNode *Ld = 0; + int TokenFactorIndex = -1; + SmallVector<SDValue, 8> Ops; + SDNode* ChainVal = St->getChain().getNode(); + // Must be a store of a load. We currently handle two cases: the load + // is a direct child, and it's under an intervening TokenFactor. It is + // possible to dig deeper under nested TokenFactors. + if (ChainVal == LdVal) + Ld = cast<LoadSDNode>(St->getChain()); + else if (St->getValue().hasOneUse() && + ChainVal->getOpcode() == ISD::TokenFactor) { + for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) { + if (ChainVal->getOperand(i).getNode() == LdVal) { + TokenFactorIndex = i; + Ld = cast<LoadSDNode>(St->getValue()); + } else + Ops.push_back(ChainVal->getOperand(i)); + } + } + + if (!Ld || !ISD::isNormalLoad(Ld)) + return SDValue(); + + // If this is not the MMX case, i.e. we are just turning i64 load/store + // into f64 load/store, avoid the transformation if there are multiple + // uses of the loaded value. + if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0)) + return SDValue(); + + DebugLoc LdDL = Ld->getDebugLoc(); + DebugLoc StDL = N->getDebugLoc(); + // If we are a 64-bit capable x86, lower to a single movq load/store pair. + // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store + // pair instead. + if (Subtarget->is64Bit() || F64IsLegal) { + EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64; + SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), + Ld->getBasePtr(), Ld->getSrcValue(), + Ld->getSrcValueOffset(), Ld->isVolatile(), + Ld->isNonTemporal(), Ld->getAlignment()); + SDValue NewChain = NewLd.getValue(1); + if (TokenFactorIndex != -1) { + Ops.push_back(NewChain); + NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], + Ops.size()); + } + return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(), + St->getSrcValue(), St->getSrcValueOffset(), + St->isVolatile(), St->isNonTemporal(), + St->getAlignment()); + } + + // Otherwise, lower to two pairs of 32-bit loads / stores. + SDValue LoAddr = Ld->getBasePtr(); + SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr, + DAG.getConstant(4, MVT::i32)); + + SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr, + Ld->getSrcValue(), Ld->getSrcValueOffset(), + Ld->isVolatile(), Ld->isNonTemporal(), + Ld->getAlignment()); + SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr, + Ld->getSrcValue(), Ld->getSrcValueOffset()+4, + Ld->isVolatile(), Ld->isNonTemporal(), + MinAlign(Ld->getAlignment(), 4)); + + SDValue NewChain = LoLd.getValue(1); + if (TokenFactorIndex != -1) { + Ops.push_back(LoLd); + Ops.push_back(HiLd); + NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0], + Ops.size()); + } + + LoAddr = St->getBasePtr(); + HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr, + DAG.getConstant(4, MVT::i32)); + + SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr, + St->getSrcValue(), St->getSrcValueOffset(), + St->isVolatile(), St->isNonTemporal(), + St->getAlignment()); + SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr, + St->getSrcValue(), + St->getSrcValueOffset() + 4, + St->isVolatile(), + St->isNonTemporal(), + MinAlign(St->getAlignment(), 4)); + return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt); + } + return SDValue(); +} + +/// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and +/// X86ISD::FXOR nodes. +static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) { + assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR); + // F[X]OR(0.0, x) -> x + // F[X]OR(x, 0.0) -> x + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) + if (C->getValueAPF().isPosZero()) + return N->getOperand(1); + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) + if (C->getValueAPF().isPosZero()) + return N->getOperand(0); + return SDValue(); +} + +/// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes. +static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) { + // FAND(0.0, x) -> 0.0 + // FAND(x, 0.0) -> 0.0 + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0))) + if (C->getValueAPF().isPosZero()) + return N->getOperand(0); + if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1))) + if (C->getValueAPF().isPosZero()) + return N->getOperand(1); + return SDValue(); +} + +static SDValue PerformBTCombine(SDNode *N, + SelectionDAG &DAG, + TargetLowering::DAGCombinerInfo &DCI) { + // BT ignores high bits in the bit index operand. + SDValue Op1 = N->getOperand(1); + if (Op1.hasOneUse()) { + unsigned BitWidth = Op1.getValueSizeInBits(); + APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth)); + APInt KnownZero, KnownOne; + TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), + !DCI.isBeforeLegalizeOps()); + const TargetLowering &TLI = DAG.getTargetLoweringInfo(); + if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) || + TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO)) + DCI.CommitTargetLoweringOpt(TLO); + } + return SDValue(); +} + +static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) { + SDValue Op = N->getOperand(0); + if (Op.getOpcode() == ISD::BIT_CONVERT) + Op = Op.getOperand(0); + EVT VT = N->getValueType(0), OpVT = Op.getValueType(); + if (Op.getOpcode() == X86ISD::VZEXT_LOAD && + VT.getVectorElementType().getSizeInBits() == + OpVT.getVectorElementType().getSizeInBits()) { + return DAG.getNode(ISD::BIT_CONVERT, N->getDebugLoc(), VT, Op); + } + return SDValue(); +} + +// On X86 and X86-64, atomic operations are lowered to locked instructions. +// Locked instructions, in turn, have implicit fence semantics (all memory +// operations are flushed before issuing the locked instruction, and the +// are not buffered), so we can fold away the common pattern of +// fence-atomic-fence. +static SDValue PerformMEMBARRIERCombine(SDNode* N, SelectionDAG &DAG) { + SDValue atomic = N->getOperand(0); + switch (atomic.getOpcode()) { + case ISD::ATOMIC_CMP_SWAP: + case ISD::ATOMIC_SWAP: + case ISD::ATOMIC_LOAD_ADD: + case ISD::ATOMIC_LOAD_SUB: + case ISD::ATOMIC_LOAD_AND: + case ISD::ATOMIC_LOAD_OR: + case ISD::ATOMIC_LOAD_XOR: + case ISD::ATOMIC_LOAD_NAND: + case ISD::ATOMIC_LOAD_MIN: + case ISD::ATOMIC_LOAD_MAX: + case ISD::ATOMIC_LOAD_UMIN: + case ISD::ATOMIC_LOAD_UMAX: + break; + default: + return SDValue(); + } + + SDValue fence = atomic.getOperand(0); + if (fence.getOpcode() != ISD::MEMBARRIER) + return SDValue(); + + switch (atomic.getOpcode()) { + case ISD::ATOMIC_CMP_SWAP: + return DAG.UpdateNodeOperands(atomic, fence.getOperand(0), + atomic.getOperand(1), atomic.getOperand(2), + atomic.getOperand(3)); + case ISD::ATOMIC_SWAP: + case ISD::ATOMIC_LOAD_ADD: + case ISD::ATOMIC_LOAD_SUB: + case ISD::ATOMIC_LOAD_AND: + case ISD::ATOMIC_LOAD_OR: + case ISD::ATOMIC_LOAD_XOR: + case ISD::ATOMIC_LOAD_NAND: + case ISD::ATOMIC_LOAD_MIN: + case ISD::ATOMIC_LOAD_MAX: + case ISD::ATOMIC_LOAD_UMIN: + case ISD::ATOMIC_LOAD_UMAX: + return DAG.UpdateNodeOperands(atomic, fence.getOperand(0), + atomic.getOperand(1), atomic.getOperand(2)); + default: + return SDValue(); + } +} + +static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) { + // (i32 zext (and (i8 x86isd::setcc_carry), 1)) -> + // (and (i32 x86isd::setcc_carry), 1) + // This eliminates the zext. This transformation is necessary because + // ISD::SETCC is always legalized to i8. + DebugLoc dl = N->getDebugLoc(); + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + if (N0.getOpcode() == ISD::AND && + N0.hasOneUse() && + N0.getOperand(0).hasOneUse()) { + SDValue N00 = N0.getOperand(0); + if (N00.getOpcode() != X86ISD::SETCC_CARRY) + return SDValue(); + ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1)); + if (!C || C->getZExtValue() != 1) + return SDValue(); + return DAG.getNode(ISD::AND, dl, VT, + DAG.getNode(X86ISD::SETCC_CARRY, dl, VT, + N00.getOperand(0), N00.getOperand(1)), + DAG.getConstant(1, VT)); + } + + return SDValue(); +} + +SDValue X86TargetLowering::PerformDAGCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + switch (N->getOpcode()) { + default: break; + case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, *this); + case ISD::EXTRACT_VECTOR_ELT: + return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this); + case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget); + case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI); + case ISD::MUL: return PerformMulCombine(N, DAG, DCI); + case ISD::SHL: + case ISD::SRA: + case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget); + case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget); + case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget); + case X86ISD::FXOR: + case X86ISD::FOR: return PerformFORCombine(N, DAG); + case X86ISD::FAND: return PerformFANDCombine(N, DAG); + case X86ISD::BT: return PerformBTCombine(N, DAG, DCI); + case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG); + case ISD::MEMBARRIER: return PerformMEMBARRIERCombine(N, DAG); + case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG); + } + + return SDValue(); +} + +/// isTypeDesirableForOp - Return true if the target has native support for +/// the specified value type and it is 'desirable' to use the type for the +/// given node type. e.g. On x86 i16 is legal, but undesirable since i16 +/// instruction encodings are longer and some i16 instructions are slow. +bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const { + if (!isTypeLegal(VT)) + return false; + if (VT != MVT::i16) + return true; + + switch (Opc) { + default: + return true; + case ISD::LOAD: + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::ANY_EXTEND: + case ISD::SHL: + case ISD::SRL: + case ISD::SUB: + case ISD::ADD: + case ISD::MUL: + case ISD::AND: + case ISD::OR: + case ISD::XOR: + return false; + } +} + +static bool MayFoldLoad(SDValue Op) { + return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode()); +} + +static bool MayFoldIntoStore(SDValue Op) { + return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin()); +} + +/// IsDesirableToPromoteOp - This method query the target whether it is +/// beneficial for dag combiner to promote the specified node. If true, it +/// should return the desired promotion type by reference. +bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const { + EVT VT = Op.getValueType(); + if (VT != MVT::i16) + return false; + + bool Promote = false; + bool Commute = false; + switch (Op.getOpcode()) { + default: break; + case ISD::LOAD: { + LoadSDNode *LD = cast<LoadSDNode>(Op); + // If the non-extending load has a single use and it's not live out, then it + // might be folded. + if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&& + Op.hasOneUse()*/) { + for (SDNode::use_iterator UI = Op.getNode()->use_begin(), + UE = Op.getNode()->use_end(); UI != UE; ++UI) { + // The only case where we'd want to promote LOAD (rather then it being + // promoted as an operand is when it's only use is liveout. + if (UI->getOpcode() != ISD::CopyToReg) + return false; + } + } + Promote = true; + break; + } + case ISD::SIGN_EXTEND: + case ISD::ZERO_EXTEND: + case ISD::ANY_EXTEND: + Promote = true; + break; + case ISD::SHL: + case ISD::SRL: { + SDValue N0 = Op.getOperand(0); + // Look out for (store (shl (load), x)). + if (MayFoldLoad(N0) && MayFoldIntoStore(Op)) + return false; + Promote = true; + break; + } + case ISD::ADD: + case ISD::MUL: + case ISD::AND: + case ISD::OR: + case ISD::XOR: + Commute = true; + // fallthrough + case ISD::SUB: { + SDValue N0 = Op.getOperand(0); + SDValue N1 = Op.getOperand(1); + if (!Commute && MayFoldLoad(N1)) + return false; + // Avoid disabling potential load folding opportunities. + if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op))) + return false; + if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op))) + return false; + Promote = true; + } + } + + PVT = MVT::i32; + return Promote; +} + +//===----------------------------------------------------------------------===// +// X86 Inline Assembly Support +//===----------------------------------------------------------------------===// + +static bool LowerToBSwap(CallInst *CI) { + // FIXME: this should verify that we are targetting a 486 or better. If not, + // we will turn this bswap into something that will be lowered to logical ops + // instead of emitting the bswap asm. For now, we don't support 486 or lower + // so don't worry about this. + + // Verify this is a simple bswap. + if (CI->getNumOperands() != 2 || + CI->getType() != CI->getOperand(1)->getType() || + !CI->getType()->isIntegerTy()) + return false; + + const IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); + if (!Ty || Ty->getBitWidth() % 16 != 0) + return false; + + // Okay, we can do this xform, do so now. + const Type *Tys[] = { Ty }; + Module *M = CI->getParent()->getParent()->getParent(); + Constant *Int = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1); + + Value *Op = CI->getOperand(1); + Op = CallInst::Create(Int, Op, CI->getName(), CI); + + CI->replaceAllUsesWith(Op); + CI->eraseFromParent(); + return true; +} + +bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const { + InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); + std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints(); + + std::string AsmStr = IA->getAsmString(); + + // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a" + SmallVector<StringRef, 4> AsmPieces; + SplitString(AsmStr, AsmPieces, "\n"); // ; as separator? + + switch (AsmPieces.size()) { + default: return false; + case 1: + AsmStr = AsmPieces[0]; + AsmPieces.clear(); + SplitString(AsmStr, AsmPieces, " \t"); // Split with whitespace. + + // bswap $0 + if (AsmPieces.size() == 2 && + (AsmPieces[0] == "bswap" || + AsmPieces[0] == "bswapq" || + AsmPieces[0] == "bswapl") && + (AsmPieces[1] == "$0" || + AsmPieces[1] == "${0:q}")) { + // No need to check constraints, nothing other than the equivalent of + // "=r,0" would be valid here. + return LowerToBSwap(CI); + } + // rorw $$8, ${0:w} --> llvm.bswap.i16 + if (CI->getType()->isIntegerTy(16) && + AsmPieces.size() == 3 && + (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") && + AsmPieces[1] == "$$8," && + AsmPieces[2] == "${0:w}" && + IA->getConstraintString().compare(0, 5, "=r,0,") == 0) { + AsmPieces.clear(); + const std::string &Constraints = IA->getConstraintString(); + SplitString(StringRef(Constraints).substr(5), AsmPieces, ","); + std::sort(AsmPieces.begin(), AsmPieces.end()); + if (AsmPieces.size() == 4 && + AsmPieces[0] == "~{cc}" && + AsmPieces[1] == "~{dirflag}" && + AsmPieces[2] == "~{flags}" && + AsmPieces[3] == "~{fpsr}") { + return LowerToBSwap(CI); + } + } + break; + case 3: + if (CI->getType()->isIntegerTy(64) && + Constraints.size() >= 2 && + Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" && + Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") { + // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64 + SmallVector<StringRef, 4> Words; + SplitString(AsmPieces[0], Words, " \t"); + if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") { + Words.clear(); + SplitString(AsmPieces[1], Words, " \t"); + if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") { + Words.clear(); + SplitString(AsmPieces[2], Words, " \t,"); + if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" && + Words[2] == "%edx") { + return LowerToBSwap(CI); + } + } + } + } + break; + } + return false; +} + + + +/// getConstraintType - Given a constraint letter, return the type of +/// constraint it is for this target. +X86TargetLowering::ConstraintType +X86TargetLowering::getConstraintType(const std::string &Constraint) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 'A': + return C_Register; + case 'f': + case 'r': + case 'R': + case 'l': + case 'q': + case 'Q': + case 'x': + case 'y': + case 'Y': + return C_RegisterClass; + case 'e': + case 'Z': + return C_Other; + default: + break; + } + } + return TargetLowering::getConstraintType(Constraint); +} + +/// LowerXConstraint - try to replace an X constraint, which matches anything, +/// with another that has more specific requirements based on the type of the +/// corresponding operand. +const char *X86TargetLowering:: +LowerXConstraint(EVT ConstraintVT) const { + // FP X constraints get lowered to SSE1/2 registers if available, otherwise + // 'f' like normal targets. + if (ConstraintVT.isFloatingPoint()) { + if (Subtarget->hasSSE2()) + return "Y"; + if (Subtarget->hasSSE1()) + return "x"; + } + + return TargetLowering::LowerXConstraint(ConstraintVT); +} + +/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops +/// vector. If it is invalid, don't add anything to Ops. +void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op, + char Constraint, + bool hasMemory, + std::vector<SDValue>&Ops, + SelectionDAG &DAG) const { + SDValue Result(0, 0); + + switch (Constraint) { + default: break; + case 'I': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 31) { + Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); + break; + } + } + return; + case 'J': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 63) { + Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); + break; + } + } + return; + case 'K': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if ((int8_t)C->getSExtValue() == C->getSExtValue()) { + Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); + break; + } + } + return; + case 'N': + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + if (C->getZExtValue() <= 255) { + Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); + break; + } + } + return; + case 'e': { + // 32-bit signed value + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + const ConstantInt *CI = C->getConstantIntValue(); + if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()), + C->getSExtValue())) { + // Widen to 64 bits here to get it sign extended. + Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64); + break; + } + // FIXME gcc accepts some relocatable values here too, but only in certain + // memory models; it's complicated. + } + return; + } + case 'Z': { + // 32-bit unsigned value + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) { + const ConstantInt *CI = C->getConstantIntValue(); + if (CI->isValueValidForType(Type::getInt32Ty(*DAG.getContext()), + C->getZExtValue())) { + Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType()); + break; + } + } + // FIXME gcc accepts some relocatable values here too, but only in certain + // memory models; it's complicated. + return; + } + case 'i': { + // Literal immediates are always ok. + if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) { + // Widen to 64 bits here to get it sign extended. + Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64); + break; + } + + // If we are in non-pic codegen mode, we allow the address of a global (with + // an optional displacement) to be used with 'i'. + GlobalAddressSDNode *GA = 0; + int64_t Offset = 0; + + // Match either (GA), (GA+C), (GA+C1+C2), etc. + while (1) { + if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) { + Offset += GA->getOffset(); + break; + } else if (Op.getOpcode() == ISD::ADD) { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + Offset += C->getZExtValue(); + Op = Op.getOperand(0); + continue; + } + } else if (Op.getOpcode() == ISD::SUB) { + if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + Offset += -C->getZExtValue(); + Op = Op.getOperand(0); + continue; + } + } + + // Otherwise, this isn't something we can handle, reject it. + return; + } + + const GlobalValue *GV = GA->getGlobal(); + // If we require an extra load to get this address, as in PIC mode, we + // can't accept it. + if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV, + getTargetMachine()))) + return; + + if (hasMemory) + Op = LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG); + else + Op = DAG.getTargetGlobalAddress(GV, GA->getValueType(0), Offset); + Result = Op; + break; + } + } + + if (Result.getNode()) { + Ops.push_back(Result); + return; + } + return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory, + Ops, DAG); +} + +std::vector<unsigned> X86TargetLowering:: +getRegClassForInlineAsmConstraint(const std::string &Constraint, + EVT VT) const { + if (Constraint.size() == 1) { + // FIXME: not handling fp-stack yet! + switch (Constraint[0]) { // GCC X86 Constraint Letters + default: break; // Unknown constraint letter + case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode. + if (Subtarget->is64Bit()) { + if (VT == MVT::i32) + return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, + X86::ESI, X86::EDI, X86::R8D, X86::R9D, + X86::R10D,X86::R11D,X86::R12D, + X86::R13D,X86::R14D,X86::R15D, + X86::EBP, X86::ESP, 0); + else if (VT == MVT::i16) + return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, + X86::SI, X86::DI, X86::R8W,X86::R9W, + X86::R10W,X86::R11W,X86::R12W, + X86::R13W,X86::R14W,X86::R15W, + X86::BP, X86::SP, 0); + else if (VT == MVT::i8) + return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, + X86::SIL, X86::DIL, X86::R8B,X86::R9B, + X86::R10B,X86::R11B,X86::R12B, + X86::R13B,X86::R14B,X86::R15B, + X86::BPL, X86::SPL, 0); + + else if (VT == MVT::i64) + return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, + X86::RSI, X86::RDI, X86::R8, X86::R9, + X86::R10, X86::R11, X86::R12, + X86::R13, X86::R14, X86::R15, + X86::RBP, X86::RSP, 0); + + break; + } + // 32-bit fallthrough + case 'Q': // Q_REGS + if (VT == MVT::i32) + return make_vector<unsigned>(X86::EAX, X86::EDX, X86::ECX, X86::EBX, 0); + else if (VT == MVT::i16) + return make_vector<unsigned>(X86::AX, X86::DX, X86::CX, X86::BX, 0); + else if (VT == MVT::i8) + return make_vector<unsigned>(X86::AL, X86::DL, X86::CL, X86::BL, 0); + else if (VT == MVT::i64) + return make_vector<unsigned>(X86::RAX, X86::RDX, X86::RCX, X86::RBX, 0); + break; + } + } + + return std::vector<unsigned>(); +} + +std::pair<unsigned, const TargetRegisterClass*> +X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, + EVT VT) const { + // First, see if this is a constraint that directly corresponds to an LLVM + // register class. + if (Constraint.size() == 1) { + // GCC Constraint Letters + switch (Constraint[0]) { + default: break; + case 'r': // GENERAL_REGS + case 'l': // INDEX_REGS + if (VT == MVT::i8) + return std::make_pair(0U, X86::GR8RegisterClass); + if (VT == MVT::i16) + return std::make_pair(0U, X86::GR16RegisterClass); + if (VT == MVT::i32 || !Subtarget->is64Bit()) + return std::make_pair(0U, X86::GR32RegisterClass); + return std::make_pair(0U, X86::GR64RegisterClass); + case 'R': // LEGACY_REGS + if (VT == MVT::i8) + return std::make_pair(0U, X86::GR8_NOREXRegisterClass); + if (VT == MVT::i16) + return std::make_pair(0U, X86::GR16_NOREXRegisterClass); + if (VT == MVT::i32 || !Subtarget->is64Bit()) + return std::make_pair(0U, X86::GR32_NOREXRegisterClass); + return std::make_pair(0U, X86::GR64_NOREXRegisterClass); + case 'f': // FP Stack registers. + // If SSE is enabled for this VT, use f80 to ensure the isel moves the + // value to the correct fpstack register class. + if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT)) + return std::make_pair(0U, X86::RFP32RegisterClass); + if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT)) + return std::make_pair(0U, X86::RFP64RegisterClass); + return std::make_pair(0U, X86::RFP80RegisterClass); + case 'y': // MMX_REGS if MMX allowed. + if (!Subtarget->hasMMX()) break; + return std::make_pair(0U, X86::VR64RegisterClass); + case 'Y': // SSE_REGS if SSE2 allowed + if (!Subtarget->hasSSE2()) break; + // FALL THROUGH. + case 'x': // SSE_REGS if SSE1 allowed + if (!Subtarget->hasSSE1()) break; + + switch (VT.getSimpleVT().SimpleTy) { + default: break; + // Scalar SSE types. + case MVT::f32: + case MVT::i32: + return std::make_pair(0U, X86::FR32RegisterClass); + case MVT::f64: + case MVT::i64: + return std::make_pair(0U, X86::FR64RegisterClass); + // Vector types. + case MVT::v16i8: + case MVT::v8i16: + case MVT::v4i32: + case MVT::v2i64: + case MVT::v4f32: + case MVT::v2f64: + return std::make_pair(0U, X86::VR128RegisterClass); + } + break; + } + } + + // Use the default implementation in TargetLowering to convert the register + // constraint into a member of a register class. + std::pair<unsigned, const TargetRegisterClass*> Res; + Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); + + // Not found as a standard register? + if (Res.second == 0) { + // Map st(0) -> st(7) -> ST0 + if (Constraint.size() == 7 && Constraint[0] == '{' && + tolower(Constraint[1]) == 's' && + tolower(Constraint[2]) == 't' && + Constraint[3] == '(' && + (Constraint[4] >= '0' && Constraint[4] <= '7') && + Constraint[5] == ')' && + Constraint[6] == '}') { + + Res.first = X86::ST0+Constraint[4]-'0'; + Res.second = X86::RFP80RegisterClass; + return Res; + } + + // GCC allows "st(0)" to be called just plain "st". + if (StringRef("{st}").equals_lower(Constraint)) { + Res.first = X86::ST0; + Res.second = X86::RFP80RegisterClass; + return Res; + } + + // flags -> EFLAGS + if (StringRef("{flags}").equals_lower(Constraint)) { + Res.first = X86::EFLAGS; + Res.second = X86::CCRRegisterClass; + return Res; + } + + // 'A' means EAX + EDX. + if (Constraint == "A") { + Res.first = X86::EAX; + Res.second = X86::GR32_ADRegisterClass; + return Res; + } + return Res; + } + + // Otherwise, check to see if this is a register class of the wrong value + // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to + // turn into {ax},{dx}. + if (Res.second->hasType(VT)) + return Res; // Correct type already, nothing to do. + + // All of the single-register GCC register classes map their values onto + // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we + // really want an 8-bit or 32-bit register, map to the appropriate register + // class and return the appropriate register. + if (Res.second == X86::GR16RegisterClass) { + if (VT == MVT::i8) { + unsigned DestReg = 0; + switch (Res.first) { + default: break; + case X86::AX: DestReg = X86::AL; break; + case X86::DX: DestReg = X86::DL; break; + case X86::CX: DestReg = X86::CL; break; + case X86::BX: DestReg = X86::BL; break; + } + if (DestReg) { + Res.first = DestReg; + Res.second = X86::GR8RegisterClass; + } + } else if (VT == MVT::i32) { + unsigned DestReg = 0; + switch (Res.first) { + default: break; + case X86::AX: DestReg = X86::EAX; break; + case X86::DX: DestReg = X86::EDX; break; + case X86::CX: DestReg = X86::ECX; break; + case X86::BX: DestReg = X86::EBX; break; + case X86::SI: DestReg = X86::ESI; break; + case X86::DI: DestReg = X86::EDI; break; + case X86::BP: DestReg = X86::EBP; break; + case X86::SP: DestReg = X86::ESP; break; + } + if (DestReg) { + Res.first = DestReg; + Res.second = X86::GR32RegisterClass; + } + } else if (VT == MVT::i64) { + unsigned DestReg = 0; + switch (Res.first) { + default: break; + case X86::AX: DestReg = X86::RAX; break; + case X86::DX: DestReg = X86::RDX; break; + case X86::CX: DestReg = X86::RCX; break; + case X86::BX: DestReg = X86::RBX; break; + case X86::SI: DestReg = X86::RSI; break; + case X86::DI: DestReg = X86::RDI; break; + case X86::BP: DestReg = X86::RBP; break; + case X86::SP: DestReg = X86::RSP; break; + } + if (DestReg) { + Res.first = DestReg; + Res.second = X86::GR64RegisterClass; + } + } + } else if (Res.second == X86::FR32RegisterClass || + Res.second == X86::FR64RegisterClass || + Res.second == X86::VR128RegisterClass) { + // Handle references to XMM physical registers that got mapped into the + // wrong class. This can happen with constraints like {xmm0} where the + // target independent register mapper will just pick the first match it can + // find, ignoring the required type. + if (VT == MVT::f32) + Res.second = X86::FR32RegisterClass; + else if (VT == MVT::f64) + Res.second = X86::FR64RegisterClass; + else if (X86::VR128RegisterClass->hasType(VT)) + Res.second = X86::VR128RegisterClass; + } + + return Res; +} |