diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp | 1208 |
1 files changed, 1208 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp b/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp new file mode 100644 index 0000000..93460ef --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86FloatingPoint.cpp @@ -0,0 +1,1208 @@ +//===-- X86FloatingPoint.cpp - Floating point Reg -> Stack converter ------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the pass which converts floating point instructions from +// virtual registers into register stack instructions. This pass uses live +// variable information to indicate where the FPn registers are used and their +// lifetimes. +// +// This pass is hampered by the lack of decent CFG manipulation routines for +// machine code. In particular, this wants to be able to split critical edges +// as necessary, traverse the machine basic block CFG in depth-first order, and +// allow there to be multiple machine basic blocks for each LLVM basicblock +// (needed for critical edge splitting). +// +// In particular, this pass currently barfs on critical edges. Because of this, +// it requires the instruction selector to insert FP_REG_KILL instructions on +// the exits of any basic block that has critical edges going from it, or which +// branch to a critical basic block. +// +// FIXME: this is not implemented yet. The stackifier pass only works on local +// basic blocks. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "x86-codegen" +#include "X86.h" +#include "X86InstrInfo.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +using namespace llvm; + +STATISTIC(NumFXCH, "Number of fxch instructions inserted"); +STATISTIC(NumFP , "Number of floating point instructions"); + +namespace { + struct FPS : public MachineFunctionPass { + static char ID; + FPS() : MachineFunctionPass(&ID) {} + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesCFG(); + AU.addPreservedID(MachineLoopInfoID); + AU.addPreservedID(MachineDominatorsID); + MachineFunctionPass::getAnalysisUsage(AU); + } + + virtual bool runOnMachineFunction(MachineFunction &MF); + + virtual const char *getPassName() const { return "X86 FP Stackifier"; } + + private: + const TargetInstrInfo *TII; // Machine instruction info. + MachineBasicBlock *MBB; // Current basic block + unsigned Stack[8]; // FP<n> Registers in each stack slot... + unsigned RegMap[8]; // Track which stack slot contains each register + unsigned StackTop; // The current top of the FP stack. + + void dumpStack() const { + dbgs() << "Stack contents:"; + for (unsigned i = 0; i != StackTop; ++i) { + dbgs() << " FP" << Stack[i]; + assert(RegMap[Stack[i]] == i && "Stack[] doesn't match RegMap[]!"); + } + dbgs() << "\n"; + } + private: + /// isStackEmpty - Return true if the FP stack is empty. + bool isStackEmpty() const { + return StackTop == 0; + } + + // getSlot - Return the stack slot number a particular register number is + // in. + unsigned getSlot(unsigned RegNo) const { + assert(RegNo < 8 && "Regno out of range!"); + return RegMap[RegNo]; + } + + // getStackEntry - Return the X86::FP<n> register in register ST(i). + unsigned getStackEntry(unsigned STi) const { + assert(STi < StackTop && "Access past stack top!"); + return Stack[StackTop-1-STi]; + } + + // getSTReg - Return the X86::ST(i) register which contains the specified + // FP<RegNo> register. + unsigned getSTReg(unsigned RegNo) const { + return StackTop - 1 - getSlot(RegNo) + llvm::X86::ST0; + } + + // pushReg - Push the specified FP<n> register onto the stack. + void pushReg(unsigned Reg) { + assert(Reg < 8 && "Register number out of range!"); + assert(StackTop < 8 && "Stack overflow!"); + Stack[StackTop] = Reg; + RegMap[Reg] = StackTop++; + } + + bool isAtTop(unsigned RegNo) const { return getSlot(RegNo) == StackTop-1; } + void moveToTop(unsigned RegNo, MachineBasicBlock::iterator I) { + MachineInstr *MI = I; + DebugLoc dl = MI->getDebugLoc(); + if (isAtTop(RegNo)) return; + + unsigned STReg = getSTReg(RegNo); + unsigned RegOnTop = getStackEntry(0); + + // Swap the slots the regs are in. + std::swap(RegMap[RegNo], RegMap[RegOnTop]); + + // Swap stack slot contents. + assert(RegMap[RegOnTop] < StackTop); + std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); + + // Emit an fxch to update the runtime processors version of the state. + BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(STReg); + NumFXCH++; + } + + void duplicateToTop(unsigned RegNo, unsigned AsReg, MachineInstr *I) { + DebugLoc dl = I->getDebugLoc(); + unsigned STReg = getSTReg(RegNo); + pushReg(AsReg); // New register on top of stack + + BuildMI(*MBB, I, dl, TII->get(X86::LD_Frr)).addReg(STReg); + } + + // popStackAfter - Pop the current value off of the top of the FP stack + // after the specified instruction. + void popStackAfter(MachineBasicBlock::iterator &I); + + // freeStackSlotAfter - Free the specified register from the register stack, + // so that it is no longer in a register. If the register is currently at + // the top of the stack, we just pop the current instruction, otherwise we + // store the current top-of-stack into the specified slot, then pop the top + // of stack. + void freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned Reg); + + bool processBasicBlock(MachineFunction &MF, MachineBasicBlock &MBB); + + void handleZeroArgFP(MachineBasicBlock::iterator &I); + void handleOneArgFP(MachineBasicBlock::iterator &I); + void handleOneArgFPRW(MachineBasicBlock::iterator &I); + void handleTwoArgFP(MachineBasicBlock::iterator &I); + void handleCompareFP(MachineBasicBlock::iterator &I); + void handleCondMovFP(MachineBasicBlock::iterator &I); + void handleSpecialFP(MachineBasicBlock::iterator &I); + }; + char FPS::ID = 0; +} + +FunctionPass *llvm::createX86FloatingPointStackifierPass() { return new FPS(); } + +/// getFPReg - Return the X86::FPx register number for the specified operand. +/// For example, this returns 3 for X86::FP3. +static unsigned getFPReg(const MachineOperand &MO) { + assert(MO.isReg() && "Expected an FP register!"); + unsigned Reg = MO.getReg(); + assert(Reg >= X86::FP0 && Reg <= X86::FP6 && "Expected FP register!"); + return Reg - X86::FP0; +} + + +/// runOnMachineFunction - Loop over all of the basic blocks, transforming FP +/// register references into FP stack references. +/// +bool FPS::runOnMachineFunction(MachineFunction &MF) { + // We only need to run this pass if there are any FP registers used in this + // function. If it is all integer, there is nothing for us to do! + bool FPIsUsed = false; + + assert(X86::FP6 == X86::FP0+6 && "Register enums aren't sorted right!"); + for (unsigned i = 0; i <= 6; ++i) + if (MF.getRegInfo().isPhysRegUsed(X86::FP0+i)) { + FPIsUsed = true; + break; + } + + // Early exit. + if (!FPIsUsed) return false; + + TII = MF.getTarget().getInstrInfo(); + StackTop = 0; + + // Process the function in depth first order so that we process at least one + // of the predecessors for every reachable block in the function. + SmallPtrSet<MachineBasicBlock*, 8> Processed; + MachineBasicBlock *Entry = MF.begin(); + + bool Changed = false; + for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 8> > + I = df_ext_begin(Entry, Processed), E = df_ext_end(Entry, Processed); + I != E; ++I) + Changed |= processBasicBlock(MF, **I); + + // Process any unreachable blocks in arbitrary order now. + if (MF.size() == Processed.size()) + return Changed; + + for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB) + if (Processed.insert(BB)) + Changed |= processBasicBlock(MF, *BB); + + return Changed; +} + +/// processBasicBlock - Loop over all of the instructions in the basic block, +/// transforming FP instructions into their stack form. +/// +bool FPS::processBasicBlock(MachineFunction &MF, MachineBasicBlock &BB) { + bool Changed = false; + MBB = &BB; + + for (MachineBasicBlock::iterator I = BB.begin(); I != BB.end(); ++I) { + MachineInstr *MI = I; + unsigned Flags = MI->getDesc().TSFlags; + + unsigned FPInstClass = Flags & X86II::FPTypeMask; + if (MI->isInlineAsm()) + FPInstClass = X86II::SpecialFP; + + if (FPInstClass == X86II::NotFP) + continue; // Efficiently ignore non-fp insts! + + MachineInstr *PrevMI = 0; + if (I != BB.begin()) + PrevMI = prior(I); + + ++NumFP; // Keep track of # of pseudo instrs + DEBUG(dbgs() << "\nFPInst:\t" << *MI); + + // Get dead variables list now because the MI pointer may be deleted as part + // of processing! + SmallVector<unsigned, 8> DeadRegs; + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isDead()) + DeadRegs.push_back(MO.getReg()); + } + + switch (FPInstClass) { + case X86II::ZeroArgFP: handleZeroArgFP(I); break; + case X86II::OneArgFP: handleOneArgFP(I); break; // fstp ST(0) + case X86II::OneArgFPRW: handleOneArgFPRW(I); break; // ST(0) = fsqrt(ST(0)) + case X86II::TwoArgFP: handleTwoArgFP(I); break; + case X86II::CompareFP: handleCompareFP(I); break; + case X86II::CondMovFP: handleCondMovFP(I); break; + case X86II::SpecialFP: handleSpecialFP(I); break; + default: llvm_unreachable("Unknown FP Type!"); + } + + // Check to see if any of the values defined by this instruction are dead + // after definition. If so, pop them. + for (unsigned i = 0, e = DeadRegs.size(); i != e; ++i) { + unsigned Reg = DeadRegs[i]; + if (Reg >= X86::FP0 && Reg <= X86::FP6) { + DEBUG(dbgs() << "Register FP#" << Reg-X86::FP0 << " is dead!\n"); + freeStackSlotAfter(I, Reg-X86::FP0); + } + } + + // Print out all of the instructions expanded to if -debug + DEBUG( + MachineBasicBlock::iterator PrevI(PrevMI); + if (I == PrevI) { + dbgs() << "Just deleted pseudo instruction\n"; + } else { + MachineBasicBlock::iterator Start = I; + // Rewind to first instruction newly inserted. + while (Start != BB.begin() && prior(Start) != PrevI) --Start; + dbgs() << "Inserted instructions:\n\t"; + Start->print(dbgs(), &MF.getTarget()); + while (++Start != llvm::next(I)) {} + } + dumpStack(); + ); + + Changed = true; + } + + assert(isStackEmpty() && "Stack not empty at end of basic block?"); + return Changed; +} + +//===----------------------------------------------------------------------===// +// Efficient Lookup Table Support +//===----------------------------------------------------------------------===// + +namespace { + struct TableEntry { + unsigned from; + unsigned to; + bool operator<(const TableEntry &TE) const { return from < TE.from; } + friend bool operator<(const TableEntry &TE, unsigned V) { + return TE.from < V; + } + friend bool operator<(unsigned V, const TableEntry &TE) { + return V < TE.from; + } + }; +} + +#ifndef NDEBUG +static bool TableIsSorted(const TableEntry *Table, unsigned NumEntries) { + for (unsigned i = 0; i != NumEntries-1; ++i) + if (!(Table[i] < Table[i+1])) return false; + return true; +} +#endif + +static int Lookup(const TableEntry *Table, unsigned N, unsigned Opcode) { + const TableEntry *I = std::lower_bound(Table, Table+N, Opcode); + if (I != Table+N && I->from == Opcode) + return I->to; + return -1; +} + +#ifdef NDEBUG +#define ASSERT_SORTED(TABLE) +#else +#define ASSERT_SORTED(TABLE) \ + { static bool TABLE##Checked = false; \ + if (!TABLE##Checked) { \ + assert(TableIsSorted(TABLE, array_lengthof(TABLE)) && \ + "All lookup tables must be sorted for efficient access!"); \ + TABLE##Checked = true; \ + } \ + } +#endif + +//===----------------------------------------------------------------------===// +// Register File -> Register Stack Mapping Methods +//===----------------------------------------------------------------------===// + +// OpcodeTable - Sorted map of register instructions to their stack version. +// The first element is an register file pseudo instruction, the second is the +// concrete X86 instruction which uses the register stack. +// +static const TableEntry OpcodeTable[] = { + { X86::ABS_Fp32 , X86::ABS_F }, + { X86::ABS_Fp64 , X86::ABS_F }, + { X86::ABS_Fp80 , X86::ABS_F }, + { X86::ADD_Fp32m , X86::ADD_F32m }, + { X86::ADD_Fp64m , X86::ADD_F64m }, + { X86::ADD_Fp64m32 , X86::ADD_F32m }, + { X86::ADD_Fp80m32 , X86::ADD_F32m }, + { X86::ADD_Fp80m64 , X86::ADD_F64m }, + { X86::ADD_FpI16m32 , X86::ADD_FI16m }, + { X86::ADD_FpI16m64 , X86::ADD_FI16m }, + { X86::ADD_FpI16m80 , X86::ADD_FI16m }, + { X86::ADD_FpI32m32 , X86::ADD_FI32m }, + { X86::ADD_FpI32m64 , X86::ADD_FI32m }, + { X86::ADD_FpI32m80 , X86::ADD_FI32m }, + { X86::CHS_Fp32 , X86::CHS_F }, + { X86::CHS_Fp64 , X86::CHS_F }, + { X86::CHS_Fp80 , X86::CHS_F }, + { X86::CMOVBE_Fp32 , X86::CMOVBE_F }, + { X86::CMOVBE_Fp64 , X86::CMOVBE_F }, + { X86::CMOVBE_Fp80 , X86::CMOVBE_F }, + { X86::CMOVB_Fp32 , X86::CMOVB_F }, + { X86::CMOVB_Fp64 , X86::CMOVB_F }, + { X86::CMOVB_Fp80 , X86::CMOVB_F }, + { X86::CMOVE_Fp32 , X86::CMOVE_F }, + { X86::CMOVE_Fp64 , X86::CMOVE_F }, + { X86::CMOVE_Fp80 , X86::CMOVE_F }, + { X86::CMOVNBE_Fp32 , X86::CMOVNBE_F }, + { X86::CMOVNBE_Fp64 , X86::CMOVNBE_F }, + { X86::CMOVNBE_Fp80 , X86::CMOVNBE_F }, + { X86::CMOVNB_Fp32 , X86::CMOVNB_F }, + { X86::CMOVNB_Fp64 , X86::CMOVNB_F }, + { X86::CMOVNB_Fp80 , X86::CMOVNB_F }, + { X86::CMOVNE_Fp32 , X86::CMOVNE_F }, + { X86::CMOVNE_Fp64 , X86::CMOVNE_F }, + { X86::CMOVNE_Fp80 , X86::CMOVNE_F }, + { X86::CMOVNP_Fp32 , X86::CMOVNP_F }, + { X86::CMOVNP_Fp64 , X86::CMOVNP_F }, + { X86::CMOVNP_Fp80 , X86::CMOVNP_F }, + { X86::CMOVP_Fp32 , X86::CMOVP_F }, + { X86::CMOVP_Fp64 , X86::CMOVP_F }, + { X86::CMOVP_Fp80 , X86::CMOVP_F }, + { X86::COS_Fp32 , X86::COS_F }, + { X86::COS_Fp64 , X86::COS_F }, + { X86::COS_Fp80 , X86::COS_F }, + { X86::DIVR_Fp32m , X86::DIVR_F32m }, + { X86::DIVR_Fp64m , X86::DIVR_F64m }, + { X86::DIVR_Fp64m32 , X86::DIVR_F32m }, + { X86::DIVR_Fp80m32 , X86::DIVR_F32m }, + { X86::DIVR_Fp80m64 , X86::DIVR_F64m }, + { X86::DIVR_FpI16m32, X86::DIVR_FI16m}, + { X86::DIVR_FpI16m64, X86::DIVR_FI16m}, + { X86::DIVR_FpI16m80, X86::DIVR_FI16m}, + { X86::DIVR_FpI32m32, X86::DIVR_FI32m}, + { X86::DIVR_FpI32m64, X86::DIVR_FI32m}, + { X86::DIVR_FpI32m80, X86::DIVR_FI32m}, + { X86::DIV_Fp32m , X86::DIV_F32m }, + { X86::DIV_Fp64m , X86::DIV_F64m }, + { X86::DIV_Fp64m32 , X86::DIV_F32m }, + { X86::DIV_Fp80m32 , X86::DIV_F32m }, + { X86::DIV_Fp80m64 , X86::DIV_F64m }, + { X86::DIV_FpI16m32 , X86::DIV_FI16m }, + { X86::DIV_FpI16m64 , X86::DIV_FI16m }, + { X86::DIV_FpI16m80 , X86::DIV_FI16m }, + { X86::DIV_FpI32m32 , X86::DIV_FI32m }, + { X86::DIV_FpI32m64 , X86::DIV_FI32m }, + { X86::DIV_FpI32m80 , X86::DIV_FI32m }, + { X86::ILD_Fp16m32 , X86::ILD_F16m }, + { X86::ILD_Fp16m64 , X86::ILD_F16m }, + { X86::ILD_Fp16m80 , X86::ILD_F16m }, + { X86::ILD_Fp32m32 , X86::ILD_F32m }, + { X86::ILD_Fp32m64 , X86::ILD_F32m }, + { X86::ILD_Fp32m80 , X86::ILD_F32m }, + { X86::ILD_Fp64m32 , X86::ILD_F64m }, + { X86::ILD_Fp64m64 , X86::ILD_F64m }, + { X86::ILD_Fp64m80 , X86::ILD_F64m }, + { X86::ISTT_Fp16m32 , X86::ISTT_FP16m}, + { X86::ISTT_Fp16m64 , X86::ISTT_FP16m}, + { X86::ISTT_Fp16m80 , X86::ISTT_FP16m}, + { X86::ISTT_Fp32m32 , X86::ISTT_FP32m}, + { X86::ISTT_Fp32m64 , X86::ISTT_FP32m}, + { X86::ISTT_Fp32m80 , X86::ISTT_FP32m}, + { X86::ISTT_Fp64m32 , X86::ISTT_FP64m}, + { X86::ISTT_Fp64m64 , X86::ISTT_FP64m}, + { X86::ISTT_Fp64m80 , X86::ISTT_FP64m}, + { X86::IST_Fp16m32 , X86::IST_F16m }, + { X86::IST_Fp16m64 , X86::IST_F16m }, + { X86::IST_Fp16m80 , X86::IST_F16m }, + { X86::IST_Fp32m32 , X86::IST_F32m }, + { X86::IST_Fp32m64 , X86::IST_F32m }, + { X86::IST_Fp32m80 , X86::IST_F32m }, + { X86::IST_Fp64m32 , X86::IST_FP64m }, + { X86::IST_Fp64m64 , X86::IST_FP64m }, + { X86::IST_Fp64m80 , X86::IST_FP64m }, + { X86::LD_Fp032 , X86::LD_F0 }, + { X86::LD_Fp064 , X86::LD_F0 }, + { X86::LD_Fp080 , X86::LD_F0 }, + { X86::LD_Fp132 , X86::LD_F1 }, + { X86::LD_Fp164 , X86::LD_F1 }, + { X86::LD_Fp180 , X86::LD_F1 }, + { X86::LD_Fp32m , X86::LD_F32m }, + { X86::LD_Fp32m64 , X86::LD_F32m }, + { X86::LD_Fp32m80 , X86::LD_F32m }, + { X86::LD_Fp64m , X86::LD_F64m }, + { X86::LD_Fp64m80 , X86::LD_F64m }, + { X86::LD_Fp80m , X86::LD_F80m }, + { X86::MUL_Fp32m , X86::MUL_F32m }, + { X86::MUL_Fp64m , X86::MUL_F64m }, + { X86::MUL_Fp64m32 , X86::MUL_F32m }, + { X86::MUL_Fp80m32 , X86::MUL_F32m }, + { X86::MUL_Fp80m64 , X86::MUL_F64m }, + { X86::MUL_FpI16m32 , X86::MUL_FI16m }, + { X86::MUL_FpI16m64 , X86::MUL_FI16m }, + { X86::MUL_FpI16m80 , X86::MUL_FI16m }, + { X86::MUL_FpI32m32 , X86::MUL_FI32m }, + { X86::MUL_FpI32m64 , X86::MUL_FI32m }, + { X86::MUL_FpI32m80 , X86::MUL_FI32m }, + { X86::SIN_Fp32 , X86::SIN_F }, + { X86::SIN_Fp64 , X86::SIN_F }, + { X86::SIN_Fp80 , X86::SIN_F }, + { X86::SQRT_Fp32 , X86::SQRT_F }, + { X86::SQRT_Fp64 , X86::SQRT_F }, + { X86::SQRT_Fp80 , X86::SQRT_F }, + { X86::ST_Fp32m , X86::ST_F32m }, + { X86::ST_Fp64m , X86::ST_F64m }, + { X86::ST_Fp64m32 , X86::ST_F32m }, + { X86::ST_Fp80m32 , X86::ST_F32m }, + { X86::ST_Fp80m64 , X86::ST_F64m }, + { X86::ST_FpP80m , X86::ST_FP80m }, + { X86::SUBR_Fp32m , X86::SUBR_F32m }, + { X86::SUBR_Fp64m , X86::SUBR_F64m }, + { X86::SUBR_Fp64m32 , X86::SUBR_F32m }, + { X86::SUBR_Fp80m32 , X86::SUBR_F32m }, + { X86::SUBR_Fp80m64 , X86::SUBR_F64m }, + { X86::SUBR_FpI16m32, X86::SUBR_FI16m}, + { X86::SUBR_FpI16m64, X86::SUBR_FI16m}, + { X86::SUBR_FpI16m80, X86::SUBR_FI16m}, + { X86::SUBR_FpI32m32, X86::SUBR_FI32m}, + { X86::SUBR_FpI32m64, X86::SUBR_FI32m}, + { X86::SUBR_FpI32m80, X86::SUBR_FI32m}, + { X86::SUB_Fp32m , X86::SUB_F32m }, + { X86::SUB_Fp64m , X86::SUB_F64m }, + { X86::SUB_Fp64m32 , X86::SUB_F32m }, + { X86::SUB_Fp80m32 , X86::SUB_F32m }, + { X86::SUB_Fp80m64 , X86::SUB_F64m }, + { X86::SUB_FpI16m32 , X86::SUB_FI16m }, + { X86::SUB_FpI16m64 , X86::SUB_FI16m }, + { X86::SUB_FpI16m80 , X86::SUB_FI16m }, + { X86::SUB_FpI32m32 , X86::SUB_FI32m }, + { X86::SUB_FpI32m64 , X86::SUB_FI32m }, + { X86::SUB_FpI32m80 , X86::SUB_FI32m }, + { X86::TST_Fp32 , X86::TST_F }, + { X86::TST_Fp64 , X86::TST_F }, + { X86::TST_Fp80 , X86::TST_F }, + { X86::UCOM_FpIr32 , X86::UCOM_FIr }, + { X86::UCOM_FpIr64 , X86::UCOM_FIr }, + { X86::UCOM_FpIr80 , X86::UCOM_FIr }, + { X86::UCOM_Fpr32 , X86::UCOM_Fr }, + { X86::UCOM_Fpr64 , X86::UCOM_Fr }, + { X86::UCOM_Fpr80 , X86::UCOM_Fr }, +}; + +static unsigned getConcreteOpcode(unsigned Opcode) { + ASSERT_SORTED(OpcodeTable); + int Opc = Lookup(OpcodeTable, array_lengthof(OpcodeTable), Opcode); + assert(Opc != -1 && "FP Stack instruction not in OpcodeTable!"); + return Opc; +} + +//===----------------------------------------------------------------------===// +// Helper Methods +//===----------------------------------------------------------------------===// + +// PopTable - Sorted map of instructions to their popping version. The first +// element is an instruction, the second is the version which pops. +// +static const TableEntry PopTable[] = { + { X86::ADD_FrST0 , X86::ADD_FPrST0 }, + + { X86::DIVR_FrST0, X86::DIVR_FPrST0 }, + { X86::DIV_FrST0 , X86::DIV_FPrST0 }, + + { X86::IST_F16m , X86::IST_FP16m }, + { X86::IST_F32m , X86::IST_FP32m }, + + { X86::MUL_FrST0 , X86::MUL_FPrST0 }, + + { X86::ST_F32m , X86::ST_FP32m }, + { X86::ST_F64m , X86::ST_FP64m }, + { X86::ST_Frr , X86::ST_FPrr }, + + { X86::SUBR_FrST0, X86::SUBR_FPrST0 }, + { X86::SUB_FrST0 , X86::SUB_FPrST0 }, + + { X86::UCOM_FIr , X86::UCOM_FIPr }, + + { X86::UCOM_FPr , X86::UCOM_FPPr }, + { X86::UCOM_Fr , X86::UCOM_FPr }, +}; + +/// popStackAfter - Pop the current value off of the top of the FP stack after +/// the specified instruction. This attempts to be sneaky and combine the pop +/// into the instruction itself if possible. The iterator is left pointing to +/// the last instruction, be it a new pop instruction inserted, or the old +/// instruction if it was modified in place. +/// +void FPS::popStackAfter(MachineBasicBlock::iterator &I) { + MachineInstr* MI = I; + DebugLoc dl = MI->getDebugLoc(); + ASSERT_SORTED(PopTable); + assert(StackTop > 0 && "Cannot pop empty stack!"); + RegMap[Stack[--StackTop]] = ~0; // Update state + + // Check to see if there is a popping version of this instruction... + int Opcode = Lookup(PopTable, array_lengthof(PopTable), I->getOpcode()); + if (Opcode != -1) { + I->setDesc(TII->get(Opcode)); + if (Opcode == X86::UCOM_FPPr) + I->RemoveOperand(0); + } else { // Insert an explicit pop + I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(X86::ST0); + } +} + +/// freeStackSlotAfter - Free the specified register from the register stack, so +/// that it is no longer in a register. If the register is currently at the top +/// of the stack, we just pop the current instruction, otherwise we store the +/// current top-of-stack into the specified slot, then pop the top of stack. +void FPS::freeStackSlotAfter(MachineBasicBlock::iterator &I, unsigned FPRegNo) { + if (getStackEntry(0) == FPRegNo) { // already at the top of stack? easy. + popStackAfter(I); + return; + } + + // Otherwise, store the top of stack into the dead slot, killing the operand + // without having to add in an explicit xchg then pop. + // + unsigned STReg = getSTReg(FPRegNo); + unsigned OldSlot = getSlot(FPRegNo); + unsigned TopReg = Stack[StackTop-1]; + Stack[OldSlot] = TopReg; + RegMap[TopReg] = OldSlot; + RegMap[FPRegNo] = ~0; + Stack[--StackTop] = ~0; + MachineInstr *MI = I; + DebugLoc dl = MI->getDebugLoc(); + I = BuildMI(*MBB, ++I, dl, TII->get(X86::ST_FPrr)).addReg(STReg); +} + + +//===----------------------------------------------------------------------===// +// Instruction transformation implementation +//===----------------------------------------------------------------------===// + +/// handleZeroArgFP - ST(0) = fld0 ST(0) = flds <mem> +/// +void FPS::handleZeroArgFP(MachineBasicBlock::iterator &I) { + MachineInstr *MI = I; + unsigned DestReg = getFPReg(MI->getOperand(0)); + + // Change from the pseudo instruction to the concrete instruction. + MI->RemoveOperand(0); // Remove the explicit ST(0) operand + MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); + + // Result gets pushed on the stack. + pushReg(DestReg); +} + +/// handleOneArgFP - fst <mem>, ST(0) +/// +void FPS::handleOneArgFP(MachineBasicBlock::iterator &I) { + MachineInstr *MI = I; + unsigned NumOps = MI->getDesc().getNumOperands(); + assert((NumOps == X86AddrNumOperands + 1 || NumOps == 1) && + "Can only handle fst* & ftst instructions!"); + + // Is this the last use of the source register? + unsigned Reg = getFPReg(MI->getOperand(NumOps-1)); + bool KillsSrc = MI->killsRegister(X86::FP0+Reg); + + // FISTP64m is strange because there isn't a non-popping versions. + // If we have one _and_ we don't want to pop the operand, duplicate the value + // on the stack instead of moving it. This ensure that popping the value is + // always ok. + // Ditto FISTTP16m, FISTTP32m, FISTTP64m, ST_FpP80m. + // + if (!KillsSrc && + (MI->getOpcode() == X86::IST_Fp64m32 || + MI->getOpcode() == X86::ISTT_Fp16m32 || + MI->getOpcode() == X86::ISTT_Fp32m32 || + MI->getOpcode() == X86::ISTT_Fp64m32 || + MI->getOpcode() == X86::IST_Fp64m64 || + MI->getOpcode() == X86::ISTT_Fp16m64 || + MI->getOpcode() == X86::ISTT_Fp32m64 || + MI->getOpcode() == X86::ISTT_Fp64m64 || + MI->getOpcode() == X86::IST_Fp64m80 || + MI->getOpcode() == X86::ISTT_Fp16m80 || + MI->getOpcode() == X86::ISTT_Fp32m80 || + MI->getOpcode() == X86::ISTT_Fp64m80 || + MI->getOpcode() == X86::ST_FpP80m)) { + duplicateToTop(Reg, 7 /*temp register*/, I); + } else { + moveToTop(Reg, I); // Move to the top of the stack... + } + + // Convert from the pseudo instruction to the concrete instruction. + MI->RemoveOperand(NumOps-1); // Remove explicit ST(0) operand + MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); + + if (MI->getOpcode() == X86::IST_FP64m || + MI->getOpcode() == X86::ISTT_FP16m || + MI->getOpcode() == X86::ISTT_FP32m || + MI->getOpcode() == X86::ISTT_FP64m || + MI->getOpcode() == X86::ST_FP80m) { + assert(StackTop > 0 && "Stack empty??"); + --StackTop; + } else if (KillsSrc) { // Last use of operand? + popStackAfter(I); + } +} + + +/// handleOneArgFPRW: Handle instructions that read from the top of stack and +/// replace the value with a newly computed value. These instructions may have +/// non-fp operands after their FP operands. +/// +/// Examples: +/// R1 = fchs R2 +/// R1 = fadd R2, [mem] +/// +void FPS::handleOneArgFPRW(MachineBasicBlock::iterator &I) { + MachineInstr *MI = I; +#ifndef NDEBUG + unsigned NumOps = MI->getDesc().getNumOperands(); + assert(NumOps >= 2 && "FPRW instructions must have 2 ops!!"); +#endif + + // Is this the last use of the source register? + unsigned Reg = getFPReg(MI->getOperand(1)); + bool KillsSrc = MI->killsRegister(X86::FP0+Reg); + + if (KillsSrc) { + // If this is the last use of the source register, just make sure it's on + // the top of the stack. + moveToTop(Reg, I); + assert(StackTop > 0 && "Stack cannot be empty!"); + --StackTop; + pushReg(getFPReg(MI->getOperand(0))); + } else { + // If this is not the last use of the source register, _copy_ it to the top + // of the stack. + duplicateToTop(Reg, getFPReg(MI->getOperand(0)), I); + } + + // Change from the pseudo instruction to the concrete instruction. + MI->RemoveOperand(1); // Drop the source operand. + MI->RemoveOperand(0); // Drop the destination operand. + MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); +} + + +//===----------------------------------------------------------------------===// +// Define tables of various ways to map pseudo instructions +// + +// ForwardST0Table - Map: A = B op C into: ST(0) = ST(0) op ST(i) +static const TableEntry ForwardST0Table[] = { + { X86::ADD_Fp32 , X86::ADD_FST0r }, + { X86::ADD_Fp64 , X86::ADD_FST0r }, + { X86::ADD_Fp80 , X86::ADD_FST0r }, + { X86::DIV_Fp32 , X86::DIV_FST0r }, + { X86::DIV_Fp64 , X86::DIV_FST0r }, + { X86::DIV_Fp80 , X86::DIV_FST0r }, + { X86::MUL_Fp32 , X86::MUL_FST0r }, + { X86::MUL_Fp64 , X86::MUL_FST0r }, + { X86::MUL_Fp80 , X86::MUL_FST0r }, + { X86::SUB_Fp32 , X86::SUB_FST0r }, + { X86::SUB_Fp64 , X86::SUB_FST0r }, + { X86::SUB_Fp80 , X86::SUB_FST0r }, +}; + +// ReverseST0Table - Map: A = B op C into: ST(0) = ST(i) op ST(0) +static const TableEntry ReverseST0Table[] = { + { X86::ADD_Fp32 , X86::ADD_FST0r }, // commutative + { X86::ADD_Fp64 , X86::ADD_FST0r }, // commutative + { X86::ADD_Fp80 , X86::ADD_FST0r }, // commutative + { X86::DIV_Fp32 , X86::DIVR_FST0r }, + { X86::DIV_Fp64 , X86::DIVR_FST0r }, + { X86::DIV_Fp80 , X86::DIVR_FST0r }, + { X86::MUL_Fp32 , X86::MUL_FST0r }, // commutative + { X86::MUL_Fp64 , X86::MUL_FST0r }, // commutative + { X86::MUL_Fp80 , X86::MUL_FST0r }, // commutative + { X86::SUB_Fp32 , X86::SUBR_FST0r }, + { X86::SUB_Fp64 , X86::SUBR_FST0r }, + { X86::SUB_Fp80 , X86::SUBR_FST0r }, +}; + +// ForwardSTiTable - Map: A = B op C into: ST(i) = ST(0) op ST(i) +static const TableEntry ForwardSTiTable[] = { + { X86::ADD_Fp32 , X86::ADD_FrST0 }, // commutative + { X86::ADD_Fp64 , X86::ADD_FrST0 }, // commutative + { X86::ADD_Fp80 , X86::ADD_FrST0 }, // commutative + { X86::DIV_Fp32 , X86::DIVR_FrST0 }, + { X86::DIV_Fp64 , X86::DIVR_FrST0 }, + { X86::DIV_Fp80 , X86::DIVR_FrST0 }, + { X86::MUL_Fp32 , X86::MUL_FrST0 }, // commutative + { X86::MUL_Fp64 , X86::MUL_FrST0 }, // commutative + { X86::MUL_Fp80 , X86::MUL_FrST0 }, // commutative + { X86::SUB_Fp32 , X86::SUBR_FrST0 }, + { X86::SUB_Fp64 , X86::SUBR_FrST0 }, + { X86::SUB_Fp80 , X86::SUBR_FrST0 }, +}; + +// ReverseSTiTable - Map: A = B op C into: ST(i) = ST(i) op ST(0) +static const TableEntry ReverseSTiTable[] = { + { X86::ADD_Fp32 , X86::ADD_FrST0 }, + { X86::ADD_Fp64 , X86::ADD_FrST0 }, + { X86::ADD_Fp80 , X86::ADD_FrST0 }, + { X86::DIV_Fp32 , X86::DIV_FrST0 }, + { X86::DIV_Fp64 , X86::DIV_FrST0 }, + { X86::DIV_Fp80 , X86::DIV_FrST0 }, + { X86::MUL_Fp32 , X86::MUL_FrST0 }, + { X86::MUL_Fp64 , X86::MUL_FrST0 }, + { X86::MUL_Fp80 , X86::MUL_FrST0 }, + { X86::SUB_Fp32 , X86::SUB_FrST0 }, + { X86::SUB_Fp64 , X86::SUB_FrST0 }, + { X86::SUB_Fp80 , X86::SUB_FrST0 }, +}; + + +/// handleTwoArgFP - Handle instructions like FADD and friends which are virtual +/// instructions which need to be simplified and possibly transformed. +/// +/// Result: ST(0) = fsub ST(0), ST(i) +/// ST(i) = fsub ST(0), ST(i) +/// ST(0) = fsubr ST(0), ST(i) +/// ST(i) = fsubr ST(0), ST(i) +/// +void FPS::handleTwoArgFP(MachineBasicBlock::iterator &I) { + ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); + ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); + MachineInstr *MI = I; + + unsigned NumOperands = MI->getDesc().getNumOperands(); + assert(NumOperands == 3 && "Illegal TwoArgFP instruction!"); + unsigned Dest = getFPReg(MI->getOperand(0)); + unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); + unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); + bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); + bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); + DebugLoc dl = MI->getDebugLoc(); + + unsigned TOS = getStackEntry(0); + + // One of our operands must be on the top of the stack. If neither is yet, we + // need to move one. + if (Op0 != TOS && Op1 != TOS) { // No operand at TOS? + // We can choose to move either operand to the top of the stack. If one of + // the operands is killed by this instruction, we want that one so that we + // can update right on top of the old version. + if (KillsOp0) { + moveToTop(Op0, I); // Move dead operand to TOS. + TOS = Op0; + } else if (KillsOp1) { + moveToTop(Op1, I); + TOS = Op1; + } else { + // All of the operands are live after this instruction executes, so we + // cannot update on top of any operand. Because of this, we must + // duplicate one of the stack elements to the top. It doesn't matter + // which one we pick. + // + duplicateToTop(Op0, Dest, I); + Op0 = TOS = Dest; + KillsOp0 = true; + } + } else if (!KillsOp0 && !KillsOp1) { + // If we DO have one of our operands at the top of the stack, but we don't + // have a dead operand, we must duplicate one of the operands to a new slot + // on the stack. + duplicateToTop(Op0, Dest, I); + Op0 = TOS = Dest; + KillsOp0 = true; + } + + // Now we know that one of our operands is on the top of the stack, and at + // least one of our operands is killed by this instruction. + assert((TOS == Op0 || TOS == Op1) && (KillsOp0 || KillsOp1) && + "Stack conditions not set up right!"); + + // We decide which form to use based on what is on the top of the stack, and + // which operand is killed by this instruction. + const TableEntry *InstTable; + bool isForward = TOS == Op0; + bool updateST0 = (TOS == Op0 && !KillsOp1) || (TOS == Op1 && !KillsOp0); + if (updateST0) { + if (isForward) + InstTable = ForwardST0Table; + else + InstTable = ReverseST0Table; + } else { + if (isForward) + InstTable = ForwardSTiTable; + else + InstTable = ReverseSTiTable; + } + + int Opcode = Lookup(InstTable, array_lengthof(ForwardST0Table), + MI->getOpcode()); + assert(Opcode != -1 && "Unknown TwoArgFP pseudo instruction!"); + + // NotTOS - The register which is not on the top of stack... + unsigned NotTOS = (TOS == Op0) ? Op1 : Op0; + + // Replace the old instruction with a new instruction + MBB->remove(I++); + I = BuildMI(*MBB, I, dl, TII->get(Opcode)).addReg(getSTReg(NotTOS)); + + // If both operands are killed, pop one off of the stack in addition to + // overwriting the other one. + if (KillsOp0 && KillsOp1 && Op0 != Op1) { + assert(!updateST0 && "Should have updated other operand!"); + popStackAfter(I); // Pop the top of stack + } + + // Update stack information so that we know the destination register is now on + // the stack. + unsigned UpdatedSlot = getSlot(updateST0 ? TOS : NotTOS); + assert(UpdatedSlot < StackTop && Dest < 7); + Stack[UpdatedSlot] = Dest; + RegMap[Dest] = UpdatedSlot; + MBB->getParent()->DeleteMachineInstr(MI); // Remove the old instruction +} + +/// handleCompareFP - Handle FUCOM and FUCOMI instructions, which have two FP +/// register arguments and no explicit destinations. +/// +void FPS::handleCompareFP(MachineBasicBlock::iterator &I) { + ASSERT_SORTED(ForwardST0Table); ASSERT_SORTED(ReverseST0Table); + ASSERT_SORTED(ForwardSTiTable); ASSERT_SORTED(ReverseSTiTable); + MachineInstr *MI = I; + + unsigned NumOperands = MI->getDesc().getNumOperands(); + assert(NumOperands == 2 && "Illegal FUCOM* instruction!"); + unsigned Op0 = getFPReg(MI->getOperand(NumOperands-2)); + unsigned Op1 = getFPReg(MI->getOperand(NumOperands-1)); + bool KillsOp0 = MI->killsRegister(X86::FP0+Op0); + bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); + + // Make sure the first operand is on the top of stack, the other one can be + // anywhere. + moveToTop(Op0, I); + + // Change from the pseudo instruction to the concrete instruction. + MI->getOperand(0).setReg(getSTReg(Op1)); + MI->RemoveOperand(1); + MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); + + // If any of the operands are killed by this instruction, free them. + if (KillsOp0) freeStackSlotAfter(I, Op0); + if (KillsOp1 && Op0 != Op1) freeStackSlotAfter(I, Op1); +} + +/// handleCondMovFP - Handle two address conditional move instructions. These +/// instructions move a st(i) register to st(0) iff a condition is true. These +/// instructions require that the first operand is at the top of the stack, but +/// otherwise don't modify the stack at all. +void FPS::handleCondMovFP(MachineBasicBlock::iterator &I) { + MachineInstr *MI = I; + + unsigned Op0 = getFPReg(MI->getOperand(0)); + unsigned Op1 = getFPReg(MI->getOperand(2)); + bool KillsOp1 = MI->killsRegister(X86::FP0+Op1); + + // The first operand *must* be on the top of the stack. + moveToTop(Op0, I); + + // Change the second operand to the stack register that the operand is in. + // Change from the pseudo instruction to the concrete instruction. + MI->RemoveOperand(0); + MI->RemoveOperand(1); + MI->getOperand(0).setReg(getSTReg(Op1)); + MI->setDesc(TII->get(getConcreteOpcode(MI->getOpcode()))); + + // If we kill the second operand, make sure to pop it from the stack. + if (Op0 != Op1 && KillsOp1) { + // Get this value off of the register stack. + freeStackSlotAfter(I, Op1); + } +} + + +/// handleSpecialFP - Handle special instructions which behave unlike other +/// floating point instructions. This is primarily intended for use by pseudo +/// instructions. +/// +void FPS::handleSpecialFP(MachineBasicBlock::iterator &I) { + MachineInstr *MI = I; + DebugLoc dl = MI->getDebugLoc(); + switch (MI->getOpcode()) { + default: llvm_unreachable("Unknown SpecialFP instruction!"); + case X86::FpGET_ST0_32:// Appears immediately after a call returning FP type! + case X86::FpGET_ST0_64:// Appears immediately after a call returning FP type! + case X86::FpGET_ST0_80:// Appears immediately after a call returning FP type! + assert(StackTop == 0 && "Stack should be empty after a call!"); + pushReg(getFPReg(MI->getOperand(0))); + break; + case X86::FpGET_ST1_32:// Appears immediately after a call returning FP type! + case X86::FpGET_ST1_64:// Appears immediately after a call returning FP type! + case X86::FpGET_ST1_80:{// Appears immediately after a call returning FP type! + // FpGET_ST1 should occur right after a FpGET_ST0 for a call or inline asm. + // The pattern we expect is: + // CALL + // FP1 = FpGET_ST0 + // FP4 = FpGET_ST1 + // + // At this point, we've pushed FP1 on the top of stack, so it should be + // present if it isn't dead. If it was dead, we already emitted a pop to + // remove it from the stack and StackTop = 0. + + // Push FP4 as top of stack next. + pushReg(getFPReg(MI->getOperand(0))); + + // If StackTop was 0 before we pushed our operand, then ST(0) must have been + // dead. In this case, the ST(1) value is the only thing that is live, so + // it should be on the TOS (after the pop that was emitted) and is. Just + // continue in this case. + if (StackTop == 1) + break; + + // Because pushReg just pushed ST(1) as TOS, we now have to swap the two top + // elements so that our accounting is correct. + unsigned RegOnTop = getStackEntry(0); + unsigned RegNo = getStackEntry(1); + + // Swap the slots the regs are in. + std::swap(RegMap[RegNo], RegMap[RegOnTop]); + + // Swap stack slot contents. + assert(RegMap[RegOnTop] < StackTop); + std::swap(Stack[RegMap[RegOnTop]], Stack[StackTop-1]); + break; + } + case X86::FpSET_ST0_32: + case X86::FpSET_ST0_64: + case X86::FpSET_ST0_80: { + unsigned Op0 = getFPReg(MI->getOperand(0)); + + // FpSET_ST0_80 is generated by copyRegToReg for both function return + // and inline assembly with the "st" constrain. In the latter case, + // it is possible for ST(0) to be alive after this instruction. + if (!MI->killsRegister(X86::FP0 + Op0)) { + // Duplicate Op0 + duplicateToTop(0, 7 /*temp register*/, I); + } else { + moveToTop(Op0, I); + } + --StackTop; // "Forget" we have something on the top of stack! + break; + } + case X86::FpSET_ST1_32: + case X86::FpSET_ST1_64: + case X86::FpSET_ST1_80: + // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them. + if (StackTop == 1) { + BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1); + NumFXCH++; + StackTop = 0; + break; + } + assert(StackTop == 2 && "Stack should have two element on it to return!"); + --StackTop; // "Forget" we have something on the top of stack! + break; + case X86::MOV_Fp3232: + case X86::MOV_Fp3264: + case X86::MOV_Fp6432: + case X86::MOV_Fp6464: + case X86::MOV_Fp3280: + case X86::MOV_Fp6480: + case X86::MOV_Fp8032: + case X86::MOV_Fp8064: + case X86::MOV_Fp8080: { + const MachineOperand &MO1 = MI->getOperand(1); + unsigned SrcReg = getFPReg(MO1); + + const MachineOperand &MO0 = MI->getOperand(0); + // These can be created due to inline asm. Two address pass can introduce + // copies from RFP registers to virtual registers. + if (MO0.getReg() == X86::ST0 && SrcReg == 0) { + assert(MO1.isKill()); + // Treat %ST0<def> = MOV_Fp8080 %FP0<kill> + // like FpSET_ST0_80 %FP0<kill>, %ST0<imp-def> + assert((StackTop == 1 || StackTop == 2) + && "Stack should have one or two element on it to return!"); + --StackTop; // "Forget" we have something on the top of stack! + break; + } else if (MO0.getReg() == X86::ST1 && SrcReg == 1) { + assert(MO1.isKill()); + // Treat %ST1<def> = MOV_Fp8080 %FP1<kill> + // like FpSET_ST1_80 %FP0<kill>, %ST1<imp-def> + // StackTop can be 1 if a FpSET_ST0_* was before this. Exchange them. + if (StackTop == 1) { + BuildMI(*MBB, I, dl, TII->get(X86::XCH_F)).addReg(X86::ST1); + NumFXCH++; + StackTop = 0; + break; + } + assert(StackTop == 2 && "Stack should have two element on it to return!"); + --StackTop; // "Forget" we have something on the top of stack! + break; + } + + unsigned DestReg = getFPReg(MO0); + if (MI->killsRegister(X86::FP0+SrcReg)) { + // If the input operand is killed, we can just change the owner of the + // incoming stack slot into the result. + unsigned Slot = getSlot(SrcReg); + assert(Slot < 7 && DestReg < 7 && "FpMOV operands invalid!"); + Stack[Slot] = DestReg; + RegMap[DestReg] = Slot; + + } else { + // For FMOV we just duplicate the specified value to a new stack slot. + // This could be made better, but would require substantial changes. + duplicateToTop(SrcReg, DestReg, I); + } + } + break; + case TargetOpcode::INLINEASM: { + // The inline asm MachineInstr currently only *uses* FP registers for the + // 'f' constraint. These should be turned into the current ST(x) register + // in the machine instr. Also, any kills should be explicitly popped after + // the inline asm. + unsigned Kills = 0; + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &Op = MI->getOperand(i); + if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) + continue; + assert(Op.isUse() && "Only handle inline asm uses right now"); + + unsigned FPReg = getFPReg(Op); + Op.setReg(getSTReg(FPReg)); + + // If we kill this operand, make sure to pop it from the stack after the + // asm. We just remember it for now, and pop them all off at the end in + // a batch. + if (Op.isKill()) + Kills |= 1U << FPReg; + } + + // If this asm kills any FP registers (is the last use of them) we must + // explicitly emit pop instructions for them. Do this now after the asm has + // executed so that the ST(x) numbers are not off (which would happen if we + // did this inline with operand rewriting). + // + // Note: this might be a non-optimal pop sequence. We might be able to do + // better by trying to pop in stack order or something. + MachineBasicBlock::iterator InsertPt = MI; + while (Kills) { + unsigned FPReg = CountTrailingZeros_32(Kills); + freeStackSlotAfter(InsertPt, FPReg); + Kills &= ~(1U << FPReg); + } + // Don't delete the inline asm! + return; + } + + case X86::RET: + case X86::RETI: + // If RET has an FP register use operand, pass the first one in ST(0) and + // the second one in ST(1). + if (isStackEmpty()) return; // Quick check to see if any are possible. + + // Find the register operands. + unsigned FirstFPRegOp = ~0U, SecondFPRegOp = ~0U; + + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &Op = MI->getOperand(i); + if (!Op.isReg() || Op.getReg() < X86::FP0 || Op.getReg() > X86::FP6) + continue; + // FP Register uses must be kills unless there are two uses of the same + // register, in which case only one will be a kill. + assert(Op.isUse() && + (Op.isKill() || // Marked kill. + getFPReg(Op) == FirstFPRegOp || // Second instance. + MI->killsRegister(Op.getReg())) && // Later use is marked kill. + "Ret only defs operands, and values aren't live beyond it"); + + if (FirstFPRegOp == ~0U) + FirstFPRegOp = getFPReg(Op); + else { + assert(SecondFPRegOp == ~0U && "More than two fp operands!"); + SecondFPRegOp = getFPReg(Op); + } + + // Remove the operand so that later passes don't see it. + MI->RemoveOperand(i); + --i, --e; + } + + // There are only four possibilities here: + // 1) we are returning a single FP value. In this case, it has to be in + // ST(0) already, so just declare success by removing the value from the + // FP Stack. + if (SecondFPRegOp == ~0U) { + // Assert that the top of stack contains the right FP register. + assert(StackTop == 1 && FirstFPRegOp == getStackEntry(0) && + "Top of stack not the right register for RET!"); + + // Ok, everything is good, mark the value as not being on the stack + // anymore so that our assertion about the stack being empty at end of + // block doesn't fire. + StackTop = 0; + return; + } + + // Otherwise, we are returning two values: + // 2) If returning the same value for both, we only have one thing in the FP + // stack. Consider: RET FP1, FP1 + if (StackTop == 1) { + assert(FirstFPRegOp == SecondFPRegOp && FirstFPRegOp == getStackEntry(0)&& + "Stack misconfiguration for RET!"); + + // Duplicate the TOS so that we return it twice. Just pick some other FPx + // register to hold it. + unsigned NewReg = (FirstFPRegOp+1)%7; + duplicateToTop(FirstFPRegOp, NewReg, MI); + FirstFPRegOp = NewReg; + } + + /// Okay we know we have two different FPx operands now: + assert(StackTop == 2 && "Must have two values live!"); + + /// 3) If SecondFPRegOp is currently in ST(0) and FirstFPRegOp is currently + /// in ST(1). In this case, emit an fxch. + if (getStackEntry(0) == SecondFPRegOp) { + assert(getStackEntry(1) == FirstFPRegOp && "Unknown regs live"); + moveToTop(FirstFPRegOp, MI); + } + + /// 4) Finally, FirstFPRegOp must be in ST(0) and SecondFPRegOp must be in + /// ST(1). Just remove both from our understanding of the stack and return. + assert(getStackEntry(0) == FirstFPRegOp && "Unknown regs live"); + assert(getStackEntry(1) == SecondFPRegOp && "Unknown regs live"); + StackTop = 0; + return; + } + + I = MBB->erase(I); // Remove the pseudo instruction + --I; +} |