diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86FixupLEAs.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86FixupLEAs.cpp | 410 |
1 files changed, 410 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86FixupLEAs.cpp b/contrib/llvm/lib/Target/X86/X86FixupLEAs.cpp new file mode 100644 index 0000000..1dd69e8 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86FixupLEAs.cpp @@ -0,0 +1,410 @@ +//===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the pass that finds instructions that can be +// re-written as LEA instructions in order to reduce pipeline delays. +// When optimizing for size it replaces suitable LEAs with INC or DEC. +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86InstrInfo.h" +#include "X86Subtarget.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +using namespace llvm; + +#define DEBUG_TYPE "x86-fixup-LEAs" + +STATISTIC(NumLEAs, "Number of LEA instructions created"); + +namespace { +class FixupLEAPass : public MachineFunctionPass { + enum RegUsageState { RU_NotUsed, RU_Write, RU_Read }; + static char ID; + /// \brief Loop over all of the instructions in the basic block + /// replacing applicable instructions with LEA instructions, + /// where appropriate. + bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI); + + const char *getPassName() const override { return "X86 LEA Fixup"; } + + /// \brief Given a machine register, look for the instruction + /// which writes it in the current basic block. If found, + /// try to replace it with an equivalent LEA instruction. + /// If replacement succeeds, then also process the newly created + /// instruction. + void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I, + MachineFunction::iterator MFI); + + /// \brief Given a memory access or LEA instruction + /// whose address mode uses a base and/or index register, look for + /// an opportunity to replace the instruction which sets the base or index + /// register with an equivalent LEA instruction. + void processInstruction(MachineBasicBlock::iterator &I, + MachineFunction::iterator MFI); + + /// \brief Given a LEA instruction which is unprofitable + /// on Silvermont try to replace it with an equivalent ADD instruction + void processInstructionForSLM(MachineBasicBlock::iterator &I, + MachineFunction::iterator MFI); + + /// \brief Look for LEAs that add 1 to reg or subtract 1 from reg + /// and convert them to INC or DEC respectively. + bool fixupIncDec(MachineBasicBlock::iterator &I, + MachineFunction::iterator MFI) const; + + /// \brief Determine if an instruction references a machine register + /// and, if so, whether it reads or writes the register. + RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I); + + /// \brief Step backwards through a basic block, looking + /// for an instruction which writes a register within + /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles. + MachineBasicBlock::iterator searchBackwards(MachineOperand &p, + MachineBasicBlock::iterator &I, + MachineFunction::iterator MFI); + + /// \brief if an instruction can be converted to an + /// equivalent LEA, insert the new instruction into the basic block + /// and return a pointer to it. Otherwise, return zero. + MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI, + MachineBasicBlock::iterator &MBBI) const; + +public: + FixupLEAPass() : MachineFunctionPass(ID) {} + + /// \brief Loop over all of the basic blocks, + /// replacing instructions by equivalent LEA instructions + /// if needed and when possible. + bool runOnMachineFunction(MachineFunction &MF) override; + +private: + MachineFunction *MF; + const X86InstrInfo *TII; // Machine instruction info. + bool OptIncDec; + bool OptLEA; +}; +char FixupLEAPass::ID = 0; +} + +MachineInstr * +FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI, + MachineBasicBlock::iterator &MBBI) const { + MachineInstr *MI = MBBI; + MachineInstr *NewMI; + switch (MI->getOpcode()) { + case X86::MOV32rr: + case X86::MOV64rr: { + const MachineOperand &Src = MI->getOperand(1); + const MachineOperand &Dest = MI->getOperand(0); + NewMI = BuildMI(*MF, MI->getDebugLoc(), + TII->get(MI->getOpcode() == X86::MOV32rr ? X86::LEA32r + : X86::LEA64r)) + .addOperand(Dest) + .addOperand(Src) + .addImm(1) + .addReg(0) + .addImm(0) + .addReg(0); + MFI->insert(MBBI, NewMI); // Insert the new inst + return NewMI; + } + case X86::ADD64ri32: + case X86::ADD64ri8: + case X86::ADD64ri32_DB: + case X86::ADD64ri8_DB: + case X86::ADD32ri: + case X86::ADD32ri8: + case X86::ADD32ri_DB: + case X86::ADD32ri8_DB: + case X86::ADD16ri: + case X86::ADD16ri8: + case X86::ADD16ri_DB: + case X86::ADD16ri8_DB: + if (!MI->getOperand(2).isImm()) { + // convertToThreeAddress will call getImm() + // which requires isImm() to be true + return nullptr; + } + break; + case X86::ADD16rr: + case X86::ADD16rr_DB: + if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) { + // if src1 != src2, then convertToThreeAddress will + // need to create a Virtual register, which we cannot do + // after register allocation. + return nullptr; + } + } + return TII->convertToThreeAddress(MFI, MBBI, nullptr); +} + +FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); } + +bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) { + MF = &Func; + const X86Subtarget &ST = Func.getSubtarget<X86Subtarget>(); + OptIncDec = !ST.slowIncDec() || Func.getFunction()->optForMinSize(); + OptLEA = ST.LEAusesAG() || ST.slowLEA(); + + if (!OptLEA && !OptIncDec) + return false; + + TII = ST.getInstrInfo(); + + DEBUG(dbgs() << "Start X86FixupLEAs\n";); + // Process all basic blocks. + for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I) + processBasicBlock(Func, I); + DEBUG(dbgs() << "End X86FixupLEAs\n";); + + return true; +} + +FixupLEAPass::RegUsageState +FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) { + RegUsageState RegUsage = RU_NotUsed; + MachineInstr *MI = I; + + for (unsigned int i = 0; i < MI->getNumOperands(); ++i) { + MachineOperand &opnd = MI->getOperand(i); + if (opnd.isReg() && opnd.getReg() == p.getReg()) { + if (opnd.isDef()) + return RU_Write; + RegUsage = RU_Read; + } + } + return RegUsage; +} + +/// getPreviousInstr - Given a reference to an instruction in a basic +/// block, return a reference to the previous instruction in the block, +/// wrapping around to the last instruction of the block if the block +/// branches to itself. +static inline bool getPreviousInstr(MachineBasicBlock::iterator &I, + MachineFunction::iterator MFI) { + if (I == MFI->begin()) { + if (MFI->isPredecessor(&*MFI)) { + I = --MFI->end(); + return true; + } else + return false; + } + --I; + return true; +} + +MachineBasicBlock::iterator +FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I, + MachineFunction::iterator MFI) { + int InstrDistance = 1; + MachineBasicBlock::iterator CurInst; + static const int INSTR_DISTANCE_THRESHOLD = 5; + + CurInst = I; + bool Found; + Found = getPreviousInstr(CurInst, MFI); + while (Found && I != CurInst) { + if (CurInst->isCall() || CurInst->isInlineAsm()) + break; + if (InstrDistance > INSTR_DISTANCE_THRESHOLD) + break; // too far back to make a difference + if (usesRegister(p, CurInst) == RU_Write) { + return CurInst; + } + InstrDistance += TII->getInstrLatency( + MF->getSubtarget().getInstrItineraryData(), CurInst); + Found = getPreviousInstr(CurInst, MFI); + } + return nullptr; +} + +static inline bool isLEA(const int opcode) { + return opcode == X86::LEA16r || opcode == X86::LEA32r || + opcode == X86::LEA64r || opcode == X86::LEA64_32r; +} + +/// isLEASimpleIncOrDec - Does this LEA have one these forms: +/// lea %reg, 1(%reg) +/// lea %reg, -1(%reg) +static inline bool isLEASimpleIncOrDec(MachineInstr *LEA) { + unsigned SrcReg = LEA->getOperand(1 + X86::AddrBaseReg).getReg(); + unsigned DstReg = LEA->getOperand(0).getReg(); + unsigned AddrDispOp = 1 + X86::AddrDisp; + return SrcReg == DstReg && + LEA->getOperand(1 + X86::AddrIndexReg).getReg() == 0 && + LEA->getOperand(1 + X86::AddrSegmentReg).getReg() == 0 && + LEA->getOperand(AddrDispOp).isImm() && + (LEA->getOperand(AddrDispOp).getImm() == 1 || + LEA->getOperand(AddrDispOp).getImm() == -1); +} + +bool FixupLEAPass::fixupIncDec(MachineBasicBlock::iterator &I, + MachineFunction::iterator MFI) const { + MachineInstr *MI = I; + int Opcode = MI->getOpcode(); + if (!isLEA(Opcode)) + return false; + + if (isLEASimpleIncOrDec(MI) && TII->isSafeToClobberEFLAGS(*MFI, I)) { + int NewOpcode; + bool isINC = MI->getOperand(4).getImm() == 1; + switch (Opcode) { + case X86::LEA16r: + NewOpcode = isINC ? X86::INC16r : X86::DEC16r; + break; + case X86::LEA32r: + case X86::LEA64_32r: + NewOpcode = isINC ? X86::INC32r : X86::DEC32r; + break; + case X86::LEA64r: + NewOpcode = isINC ? X86::INC64r : X86::DEC64r; + break; + } + + MachineInstr *NewMI = + BuildMI(*MFI, I, MI->getDebugLoc(), TII->get(NewOpcode)) + .addOperand(MI->getOperand(0)) + .addOperand(MI->getOperand(1)); + MFI->erase(I); + I = static_cast<MachineBasicBlock::iterator>(NewMI); + return true; + } + return false; +} + +void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I, + MachineFunction::iterator MFI) { + // Process a load, store, or LEA instruction. + MachineInstr *MI = I; + int opcode = MI->getOpcode(); + const MCInstrDesc &Desc = MI->getDesc(); + int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode); + if (AddrOffset >= 0) { + AddrOffset += X86II::getOperandBias(Desc); + MachineOperand &p = MI->getOperand(AddrOffset + X86::AddrBaseReg); + if (p.isReg() && p.getReg() != X86::ESP) { + seekLEAFixup(p, I, MFI); + } + MachineOperand &q = MI->getOperand(AddrOffset + X86::AddrIndexReg); + if (q.isReg() && q.getReg() != X86::ESP) { + seekLEAFixup(q, I, MFI); + } + } +} + +void FixupLEAPass::seekLEAFixup(MachineOperand &p, + MachineBasicBlock::iterator &I, + MachineFunction::iterator MFI) { + MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI); + if (MBI) { + MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI); + if (NewMI) { + ++NumLEAs; + DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump();); + // now to replace with an equivalent LEA... + DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump();); + MFI->erase(MBI); + MachineBasicBlock::iterator J = + static_cast<MachineBasicBlock::iterator>(NewMI); + processInstruction(J, MFI); + } + } +} + +void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I, + MachineFunction::iterator MFI) { + MachineInstr *MI = I; + const int opcode = MI->getOpcode(); + if (!isLEA(opcode)) + return; + if (MI->getOperand(5).getReg() != 0 || !MI->getOperand(4).isImm() || + !TII->isSafeToClobberEFLAGS(*MFI, I)) + return; + const unsigned DstR = MI->getOperand(0).getReg(); + const unsigned SrcR1 = MI->getOperand(1).getReg(); + const unsigned SrcR2 = MI->getOperand(3).getReg(); + if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR)) + return; + if (MI->getOperand(2).getImm() > 1) + return; + int addrr_opcode, addri_opcode; + switch (opcode) { + default: + llvm_unreachable("Unexpected LEA instruction"); + case X86::LEA16r: + addrr_opcode = X86::ADD16rr; + addri_opcode = X86::ADD16ri; + break; + case X86::LEA32r: + addrr_opcode = X86::ADD32rr; + addri_opcode = X86::ADD32ri; + break; + case X86::LEA64_32r: + case X86::LEA64r: + addrr_opcode = X86::ADD64rr; + addri_opcode = X86::ADD64ri32; + break; + } + DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump();); + DEBUG(dbgs() << "FixLEA: Replaced by: ";); + MachineInstr *NewMI = nullptr; + const MachineOperand &Dst = MI->getOperand(0); + // Make ADD instruction for two registers writing to LEA's destination + if (SrcR1 != 0 && SrcR2 != 0) { + const MachineOperand &Src1 = MI->getOperand(SrcR1 == DstR ? 1 : 3); + const MachineOperand &Src2 = MI->getOperand(SrcR1 == DstR ? 3 : 1); + NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addrr_opcode)) + .addOperand(Dst) + .addOperand(Src1) + .addOperand(Src2); + MFI->insert(I, NewMI); + DEBUG(NewMI->dump();); + } + // Make ADD instruction for immediate + if (MI->getOperand(4).getImm() != 0) { + const MachineOperand &SrcR = MI->getOperand(SrcR1 == DstR ? 1 : 3); + NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addri_opcode)) + .addOperand(Dst) + .addOperand(SrcR) + .addImm(MI->getOperand(4).getImm()); + MFI->insert(I, NewMI); + DEBUG(NewMI->dump();); + } + if (NewMI) { + MFI->erase(I); + I = static_cast<MachineBasicBlock::iterator>(NewMI); + } +} + +bool FixupLEAPass::processBasicBlock(MachineFunction &MF, + MachineFunction::iterator MFI) { + + for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) { + if (OptIncDec) + if (fixupIncDec(I, MFI)) + continue; + + if (OptLEA) { + if (MF.getSubtarget<X86Subtarget>().isSLM()) + processInstructionForSLM(I, MFI); + else + processInstruction(I, MFI); + } + } + return false; +} |