summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/X86FastISel.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86FastISel.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86FastISel.cpp2185
1 files changed, 2185 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86FastISel.cpp b/contrib/llvm/lib/Target/X86/X86FastISel.cpp
new file mode 100644
index 0000000..69752c5
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86FastISel.cpp
@@ -0,0 +1,2185 @@
+//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the X86-specific support for the FastISel class. Much
+// of the target-specific code is generated by tablegen in the file
+// X86GenFastISel.inc, which is #included here.
+//
+//===----------------------------------------------------------------------===//
+
+#include "X86.h"
+#include "X86InstrBuilder.h"
+#include "X86ISelLowering.h"
+#include "X86RegisterInfo.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/CallingConv.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/GlobalAlias.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Operator.h"
+#include "llvm/CodeGen/Analysis.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Target/TargetOptions.h"
+using namespace llvm;
+
+namespace {
+
+class X86FastISel : public FastISel {
+ /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
+ /// make the right decision when generating code for different targets.
+ const X86Subtarget *Subtarget;
+
+ /// StackPtr - Register used as the stack pointer.
+ ///
+ unsigned StackPtr;
+
+ /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
+ /// floating point ops.
+ /// When SSE is available, use it for f32 operations.
+ /// When SSE2 is available, use it for f64 operations.
+ bool X86ScalarSSEf64;
+ bool X86ScalarSSEf32;
+
+public:
+ explicit X86FastISel(FunctionLoweringInfo &funcInfo) : FastISel(funcInfo) {
+ Subtarget = &TM.getSubtarget<X86Subtarget>();
+ StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
+ X86ScalarSSEf64 = Subtarget->hasSSE2();
+ X86ScalarSSEf32 = Subtarget->hasSSE1();
+ }
+
+ virtual bool TargetSelectInstruction(const Instruction *I);
+
+ /// TryToFoldLoad - The specified machine instr operand is a vreg, and that
+ /// vreg is being provided by the specified load instruction. If possible,
+ /// try to fold the load as an operand to the instruction, returning true if
+ /// possible.
+ virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
+ const LoadInst *LI);
+
+#include "X86GenFastISel.inc"
+
+private:
+ bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT);
+
+ bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR);
+
+ bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM);
+ bool X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM);
+
+ bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT,
+ unsigned &ResultReg);
+
+ bool X86SelectAddress(const Value *V, X86AddressMode &AM);
+ bool X86SelectCallAddress(const Value *V, X86AddressMode &AM);
+
+ bool X86SelectLoad(const Instruction *I);
+
+ bool X86SelectStore(const Instruction *I);
+
+ bool X86SelectRet(const Instruction *I);
+
+ bool X86SelectCmp(const Instruction *I);
+
+ bool X86SelectZExt(const Instruction *I);
+
+ bool X86SelectBranch(const Instruction *I);
+
+ bool X86SelectShift(const Instruction *I);
+
+ bool X86SelectSelect(const Instruction *I);
+
+ bool X86SelectTrunc(const Instruction *I);
+
+ bool X86SelectFPExt(const Instruction *I);
+ bool X86SelectFPTrunc(const Instruction *I);
+
+ bool X86VisitIntrinsicCall(const IntrinsicInst &I);
+ bool X86SelectCall(const Instruction *I);
+
+ bool DoSelectCall(const Instruction *I, const char *MemIntName);
+
+ const X86InstrInfo *getInstrInfo() const {
+ return getTargetMachine()->getInstrInfo();
+ }
+ const X86TargetMachine *getTargetMachine() const {
+ return static_cast<const X86TargetMachine *>(&TM);
+ }
+
+ unsigned TargetMaterializeConstant(const Constant *C);
+
+ unsigned TargetMaterializeAlloca(const AllocaInst *C);
+
+ unsigned TargetMaterializeFloatZero(const ConstantFP *CF);
+
+ /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
+ /// computed in an SSE register, not on the X87 floating point stack.
+ bool isScalarFPTypeInSSEReg(EVT VT) const {
+ return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
+ (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1
+ }
+
+ bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false);
+
+ bool IsMemcpySmall(uint64_t Len);
+
+ bool TryEmitSmallMemcpy(X86AddressMode DestAM,
+ X86AddressMode SrcAM, uint64_t Len);
+};
+
+} // end anonymous namespace.
+
+bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) {
+ EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true);
+ if (evt == MVT::Other || !evt.isSimple())
+ // Unhandled type. Halt "fast" selection and bail.
+ return false;
+
+ VT = evt.getSimpleVT();
+ // For now, require SSE/SSE2 for performing floating-point operations,
+ // since x87 requires additional work.
+ if (VT == MVT::f64 && !X86ScalarSSEf64)
+ return false;
+ if (VT == MVT::f32 && !X86ScalarSSEf32)
+ return false;
+ // Similarly, no f80 support yet.
+ if (VT == MVT::f80)
+ return false;
+ // We only handle legal types. For example, on x86-32 the instruction
+ // selector contains all of the 64-bit instructions from x86-64,
+ // under the assumption that i64 won't be used if the target doesn't
+ // support it.
+ return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT);
+}
+
+#include "X86GenCallingConv.inc"
+
+/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT.
+/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV.
+/// Return true and the result register by reference if it is possible.
+bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM,
+ unsigned &ResultReg) {
+ // Get opcode and regclass of the output for the given load instruction.
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = NULL;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ Opc = X86::MOV8rm;
+ RC = X86::GR8RegisterClass;
+ break;
+ case MVT::i16:
+ Opc = X86::MOV16rm;
+ RC = X86::GR16RegisterClass;
+ break;
+ case MVT::i32:
+ Opc = X86::MOV32rm;
+ RC = X86::GR32RegisterClass;
+ break;
+ case MVT::i64:
+ // Must be in x86-64 mode.
+ Opc = X86::MOV64rm;
+ RC = X86::GR64RegisterClass;
+ break;
+ case MVT::f32:
+ if (X86ScalarSSEf32) {
+ Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
+ RC = X86::FR32RegisterClass;
+ } else {
+ Opc = X86::LD_Fp32m;
+ RC = X86::RFP32RegisterClass;
+ }
+ break;
+ case MVT::f64:
+ if (X86ScalarSSEf64) {
+ Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
+ RC = X86::FR64RegisterClass;
+ } else {
+ Opc = X86::LD_Fp64m;
+ RC = X86::RFP64RegisterClass;
+ }
+ break;
+ case MVT::f80:
+ // No f80 support yet.
+ return false;
+ }
+
+ ResultReg = createResultReg(RC);
+ addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
+ DL, TII.get(Opc), ResultReg), AM);
+ return true;
+}
+
+/// X86FastEmitStore - Emit a machine instruction to store a value Val of
+/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr
+/// and a displacement offset, or a GlobalAddress,
+/// i.e. V. Return true if it is possible.
+bool
+X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM) {
+ // Get opcode and regclass of the output for the given store instruction.
+ unsigned Opc = 0;
+ switch (VT.getSimpleVT().SimpleTy) {
+ case MVT::f80: // No f80 support yet.
+ default: return false;
+ case MVT::i1: {
+ // Mask out all but lowest bit.
+ unsigned AndResult = createResultReg(X86::GR8RegisterClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
+ TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1);
+ Val = AndResult;
+ }
+ // FALLTHROUGH, handling i1 as i8.
+ case MVT::i8: Opc = X86::MOV8mr; break;
+ case MVT::i16: Opc = X86::MOV16mr; break;
+ case MVT::i32: Opc = X86::MOV32mr; break;
+ case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode.
+ case MVT::f32:
+ Opc = X86ScalarSSEf32 ?
+ (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m;
+ break;
+ case MVT::f64:
+ Opc = X86ScalarSSEf64 ?
+ (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m;
+ break;
+ case MVT::v4f32:
+ Opc = X86::MOVAPSmr;
+ break;
+ case MVT::v2f64:
+ Opc = X86::MOVAPDmr;
+ break;
+ case MVT::v4i32:
+ case MVT::v2i64:
+ case MVT::v8i16:
+ case MVT::v16i8:
+ Opc = X86::MOVDQAmr;
+ break;
+ }
+
+ addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
+ DL, TII.get(Opc)), AM).addReg(Val);
+ return true;
+}
+
+bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val,
+ const X86AddressMode &AM) {
+ // Handle 'null' like i32/i64 0.
+ if (isa<ConstantPointerNull>(Val))
+ Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext()));
+
+ // If this is a store of a simple constant, fold the constant into the store.
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
+ unsigned Opc = 0;
+ bool Signed = true;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: break;
+ case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8.
+ case MVT::i8: Opc = X86::MOV8mi; break;
+ case MVT::i16: Opc = X86::MOV16mi; break;
+ case MVT::i32: Opc = X86::MOV32mi; break;
+ case MVT::i64:
+ // Must be a 32-bit sign extended value.
+ if ((int)CI->getSExtValue() == CI->getSExtValue())
+ Opc = X86::MOV64mi32;
+ break;
+ }
+
+ if (Opc) {
+ addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt,
+ DL, TII.get(Opc)), AM)
+ .addImm(Signed ? (uint64_t) CI->getSExtValue() :
+ CI->getZExtValue());
+ return true;
+ }
+ }
+
+ unsigned ValReg = getRegForValue(Val);
+ if (ValReg == 0)
+ return false;
+
+ return X86FastEmitStore(VT, ValReg, AM);
+}
+
+/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of
+/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g.
+/// ISD::SIGN_EXTEND).
+bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT,
+ unsigned Src, EVT SrcVT,
+ unsigned &ResultReg) {
+ unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc,
+ Src, /*TODO: Kill=*/false);
+
+ if (RR != 0) {
+ ResultReg = RR;
+ return true;
+ } else
+ return false;
+}
+
+/// X86SelectAddress - Attempt to fill in an address from the given value.
+///
+bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) {
+ const User *U = NULL;
+ unsigned Opcode = Instruction::UserOp1;
+ if (const Instruction *I = dyn_cast<Instruction>(V)) {
+ // Don't walk into other basic blocks; it's possible we haven't
+ // visited them yet, so the instructions may not yet be assigned
+ // virtual registers.
+ if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) ||
+ FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) {
+ Opcode = I->getOpcode();
+ U = I;
+ }
+ } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
+ Opcode = C->getOpcode();
+ U = C;
+ }
+
+ if (PointerType *Ty = dyn_cast<PointerType>(V->getType()))
+ if (Ty->getAddressSpace() > 255)
+ // Fast instruction selection doesn't support the special
+ // address spaces.
+ return false;
+
+ switch (Opcode) {
+ default: break;
+ case Instruction::BitCast:
+ // Look past bitcasts.
+ return X86SelectAddress(U->getOperand(0), AM);
+
+ case Instruction::IntToPtr:
+ // Look past no-op inttoptrs.
+ if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
+ return X86SelectAddress(U->getOperand(0), AM);
+ break;
+
+ case Instruction::PtrToInt:
+ // Look past no-op ptrtoints.
+ if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
+ return X86SelectAddress(U->getOperand(0), AM);
+ break;
+
+ case Instruction::Alloca: {
+ // Do static allocas.
+ const AllocaInst *A = cast<AllocaInst>(V);
+ DenseMap<const AllocaInst*, int>::iterator SI =
+ FuncInfo.StaticAllocaMap.find(A);
+ if (SI != FuncInfo.StaticAllocaMap.end()) {
+ AM.BaseType = X86AddressMode::FrameIndexBase;
+ AM.Base.FrameIndex = SI->second;
+ return true;
+ }
+ break;
+ }
+
+ case Instruction::Add: {
+ // Adds of constants are common and easy enough.
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) {
+ uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue();
+ // They have to fit in the 32-bit signed displacement field though.
+ if (isInt<32>(Disp)) {
+ AM.Disp = (uint32_t)Disp;
+ return X86SelectAddress(U->getOperand(0), AM);
+ }
+ }
+ break;
+ }
+
+ case Instruction::GetElementPtr: {
+ X86AddressMode SavedAM = AM;
+
+ // Pattern-match simple GEPs.
+ uint64_t Disp = (int32_t)AM.Disp;
+ unsigned IndexReg = AM.IndexReg;
+ unsigned Scale = AM.Scale;
+ gep_type_iterator GTI = gep_type_begin(U);
+ // Iterate through the indices, folding what we can. Constants can be
+ // folded, and one dynamic index can be handled, if the scale is supported.
+ for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end();
+ i != e; ++i, ++GTI) {
+ const Value *Op = *i;
+ if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+ const StructLayout *SL = TD.getStructLayout(STy);
+ Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue());
+ continue;
+ }
+
+ // A array/variable index is always of the form i*S where S is the
+ // constant scale size. See if we can push the scale into immediates.
+ uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
+ for (;;) {
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
+ // Constant-offset addressing.
+ Disp += CI->getSExtValue() * S;
+ break;
+ }
+ if (isa<AddOperator>(Op) &&
+ (!isa<Instruction>(Op) ||
+ FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()]
+ == FuncInfo.MBB) &&
+ isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) {
+ // An add (in the same block) with a constant operand. Fold the
+ // constant.
+ ConstantInt *CI =
+ cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1));
+ Disp += CI->getSExtValue() * S;
+ // Iterate on the other operand.
+ Op = cast<AddOperator>(Op)->getOperand(0);
+ continue;
+ }
+ if (IndexReg == 0 &&
+ (!AM.GV || !Subtarget->isPICStyleRIPRel()) &&
+ (S == 1 || S == 2 || S == 4 || S == 8)) {
+ // Scaled-index addressing.
+ Scale = S;
+ IndexReg = getRegForGEPIndex(Op).first;
+ if (IndexReg == 0)
+ return false;
+ break;
+ }
+ // Unsupported.
+ goto unsupported_gep;
+ }
+ }
+ // Check for displacement overflow.
+ if (!isInt<32>(Disp))
+ break;
+ // Ok, the GEP indices were covered by constant-offset and scaled-index
+ // addressing. Update the address state and move on to examining the base.
+ AM.IndexReg = IndexReg;
+ AM.Scale = Scale;
+ AM.Disp = (uint32_t)Disp;
+ if (X86SelectAddress(U->getOperand(0), AM))
+ return true;
+
+ // If we couldn't merge the gep value into this addr mode, revert back to
+ // our address and just match the value instead of completely failing.
+ AM = SavedAM;
+ break;
+ unsupported_gep:
+ // Ok, the GEP indices weren't all covered.
+ break;
+ }
+ }
+
+ // Handle constant address.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ // Can't handle alternate code models yet.
+ if (TM.getCodeModel() != CodeModel::Small)
+ return false;
+
+ // Can't handle TLS yet.
+ if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
+ if (GVar->isThreadLocal())
+ return false;
+
+ // Can't handle TLS yet, part 2 (this is slightly crazy, but this is how
+ // it works...).
+ if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
+ if (const GlobalVariable *GVar =
+ dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false)))
+ if (GVar->isThreadLocal())
+ return false;
+
+ // RIP-relative addresses can't have additional register operands, so if
+ // we've already folded stuff into the addressing mode, just force the
+ // global value into its own register, which we can use as the basereg.
+ if (!Subtarget->isPICStyleRIPRel() ||
+ (AM.Base.Reg == 0 && AM.IndexReg == 0)) {
+ // Okay, we've committed to selecting this global. Set up the address.
+ AM.GV = GV;
+
+ // Allow the subtarget to classify the global.
+ unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM);
+
+ // If this reference is relative to the pic base, set it now.
+ if (isGlobalRelativeToPICBase(GVFlags)) {
+ // FIXME: How do we know Base.Reg is free??
+ AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+ }
+
+ // Unless the ABI requires an extra load, return a direct reference to
+ // the global.
+ if (!isGlobalStubReference(GVFlags)) {
+ if (Subtarget->isPICStyleRIPRel()) {
+ // Use rip-relative addressing if we can. Above we verified that the
+ // base and index registers are unused.
+ assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
+ AM.Base.Reg = X86::RIP;
+ }
+ AM.GVOpFlags = GVFlags;
+ return true;
+ }
+
+ // Ok, we need to do a load from a stub. If we've already loaded from
+ // this stub, reuse the loaded pointer, otherwise emit the load now.
+ DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V);
+ unsigned LoadReg;
+ if (I != LocalValueMap.end() && I->second != 0) {
+ LoadReg = I->second;
+ } else {
+ // Issue load from stub.
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = NULL;
+ X86AddressMode StubAM;
+ StubAM.Base.Reg = AM.Base.Reg;
+ StubAM.GV = GV;
+ StubAM.GVOpFlags = GVFlags;
+
+ // Prepare for inserting code in the local-value area.
+ SavePoint SaveInsertPt = enterLocalValueArea();
+
+ if (TLI.getPointerTy() == MVT::i64) {
+ Opc = X86::MOV64rm;
+ RC = X86::GR64RegisterClass;
+
+ if (Subtarget->isPICStyleRIPRel())
+ StubAM.Base.Reg = X86::RIP;
+ } else {
+ Opc = X86::MOV32rm;
+ RC = X86::GR32RegisterClass;
+ }
+
+ LoadReg = createResultReg(RC);
+ MachineInstrBuilder LoadMI =
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg);
+ addFullAddress(LoadMI, StubAM);
+
+ // Ok, back to normal mode.
+ leaveLocalValueArea(SaveInsertPt);
+
+ // Prevent loading GV stub multiple times in same MBB.
+ LocalValueMap[V] = LoadReg;
+ }
+
+ // Now construct the final address. Note that the Disp, Scale,
+ // and Index values may already be set here.
+ AM.Base.Reg = LoadReg;
+ AM.GV = 0;
+ return true;
+ }
+ }
+
+ // If all else fails, try to materialize the value in a register.
+ if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
+ if (AM.Base.Reg == 0) {
+ AM.Base.Reg = getRegForValue(V);
+ return AM.Base.Reg != 0;
+ }
+ if (AM.IndexReg == 0) {
+ assert(AM.Scale == 1 && "Scale with no index!");
+ AM.IndexReg = getRegForValue(V);
+ return AM.IndexReg != 0;
+ }
+ }
+
+ return false;
+}
+
+/// X86SelectCallAddress - Attempt to fill in an address from the given value.
+///
+bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) {
+ const User *U = NULL;
+ unsigned Opcode = Instruction::UserOp1;
+ if (const Instruction *I = dyn_cast<Instruction>(V)) {
+ Opcode = I->getOpcode();
+ U = I;
+ } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) {
+ Opcode = C->getOpcode();
+ U = C;
+ }
+
+ switch (Opcode) {
+ default: break;
+ case Instruction::BitCast:
+ // Look past bitcasts.
+ return X86SelectCallAddress(U->getOperand(0), AM);
+
+ case Instruction::IntToPtr:
+ // Look past no-op inttoptrs.
+ if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy())
+ return X86SelectCallAddress(U->getOperand(0), AM);
+ break;
+
+ case Instruction::PtrToInt:
+ // Look past no-op ptrtoints.
+ if (TLI.getValueType(U->getType()) == TLI.getPointerTy())
+ return X86SelectCallAddress(U->getOperand(0), AM);
+ break;
+ }
+
+ // Handle constant address.
+ if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ // Can't handle alternate code models yet.
+ if (TM.getCodeModel() != CodeModel::Small)
+ return false;
+
+ // RIP-relative addresses can't have additional register operands.
+ if (Subtarget->isPICStyleRIPRel() &&
+ (AM.Base.Reg != 0 || AM.IndexReg != 0))
+ return false;
+
+ // Can't handle DLLImport.
+ if (GV->hasDLLImportLinkage())
+ return false;
+
+ // Can't handle TLS.
+ if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
+ if (GVar->isThreadLocal())
+ return false;
+
+ // Okay, we've committed to selecting this global. Set up the basic address.
+ AM.GV = GV;
+
+ // No ABI requires an extra load for anything other than DLLImport, which
+ // we rejected above. Return a direct reference to the global.
+ if (Subtarget->isPICStyleRIPRel()) {
+ // Use rip-relative addressing if we can. Above we verified that the
+ // base and index registers are unused.
+ assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
+ AM.Base.Reg = X86::RIP;
+ } else if (Subtarget->isPICStyleStubPIC()) {
+ AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET;
+ } else if (Subtarget->isPICStyleGOT()) {
+ AM.GVOpFlags = X86II::MO_GOTOFF;
+ }
+
+ return true;
+ }
+
+ // If all else fails, try to materialize the value in a register.
+ if (!AM.GV || !Subtarget->isPICStyleRIPRel()) {
+ if (AM.Base.Reg == 0) {
+ AM.Base.Reg = getRegForValue(V);
+ return AM.Base.Reg != 0;
+ }
+ if (AM.IndexReg == 0) {
+ assert(AM.Scale == 1 && "Scale with no index!");
+ AM.IndexReg = getRegForValue(V);
+ return AM.IndexReg != 0;
+ }
+ }
+
+ return false;
+}
+
+
+/// X86SelectStore - Select and emit code to implement store instructions.
+bool X86FastISel::X86SelectStore(const Instruction *I) {
+ // Atomic stores need special handling.
+ const StoreInst *S = cast<StoreInst>(I);
+
+ if (S->isAtomic())
+ return false;
+
+ unsigned SABIAlignment =
+ TD.getABITypeAlignment(S->getValueOperand()->getType());
+ if (S->getAlignment() != 0 && S->getAlignment() < SABIAlignment)
+ return false;
+
+ MVT VT;
+ if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true))
+ return false;
+
+ X86AddressMode AM;
+ if (!X86SelectAddress(I->getOperand(1), AM))
+ return false;
+
+ return X86FastEmitStore(VT, I->getOperand(0), AM);
+}
+
+/// X86SelectRet - Select and emit code to implement ret instructions.
+bool X86FastISel::X86SelectRet(const Instruction *I) {
+ const ReturnInst *Ret = cast<ReturnInst>(I);
+ const Function &F = *I->getParent()->getParent();
+
+ if (!FuncInfo.CanLowerReturn)
+ return false;
+
+ CallingConv::ID CC = F.getCallingConv();
+ if (CC != CallingConv::C &&
+ CC != CallingConv::Fast &&
+ CC != CallingConv::X86_FastCall)
+ return false;
+
+ if (Subtarget->isTargetWin64())
+ return false;
+
+ // Don't handle popping bytes on return for now.
+ if (FuncInfo.MF->getInfo<X86MachineFunctionInfo>()
+ ->getBytesToPopOnReturn() != 0)
+ return 0;
+
+ // fastcc with -tailcallopt is intended to provide a guaranteed
+ // tail call optimization. Fastisel doesn't know how to do that.
+ if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
+ return false;
+
+ // Let SDISel handle vararg functions.
+ if (F.isVarArg())
+ return false;
+
+ if (Ret->getNumOperands() > 0) {
+ SmallVector<ISD::OutputArg, 4> Outs;
+ GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(),
+ Outs, TLI);
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ValLocs;
+ CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs,
+ I->getContext());
+ CCInfo.AnalyzeReturn(Outs, RetCC_X86);
+
+ const Value *RV = Ret->getOperand(0);
+ unsigned Reg = getRegForValue(RV);
+ if (Reg == 0)
+ return false;
+
+ // Only handle a single return value for now.
+ if (ValLocs.size() != 1)
+ return false;
+
+ CCValAssign &VA = ValLocs[0];
+
+ // Don't bother handling odd stuff for now.
+ if (VA.getLocInfo() != CCValAssign::Full)
+ return false;
+ // Only handle register returns for now.
+ if (!VA.isRegLoc())
+ return false;
+
+ // The calling-convention tables for x87 returns don't tell
+ // the whole story.
+ if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
+ return false;
+
+ unsigned SrcReg = Reg + VA.getValNo();
+ EVT SrcVT = TLI.getValueType(RV->getType());
+ EVT DstVT = VA.getValVT();
+ // Special handling for extended integers.
+ if (SrcVT != DstVT) {
+ if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16)
+ return false;
+
+ if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt())
+ return false;
+
+ assert(DstVT == MVT::i32 && "X86 should always ext to i32");
+
+ if (SrcVT == MVT::i1) {
+ if (Outs[0].Flags.isSExt())
+ return false;
+ SrcReg = FastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false);
+ SrcVT = MVT::i8;
+ }
+ unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND :
+ ISD::SIGN_EXTEND;
+ SrcReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op,
+ SrcReg, /*TODO: Kill=*/false);
+ }
+
+ // Make the copy.
+ unsigned DstReg = VA.getLocReg();
+ const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg);
+ // Avoid a cross-class copy. This is very unlikely.
+ if (!SrcRC->contains(DstReg))
+ return false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
+ DstReg).addReg(SrcReg);
+
+ // Mark the register as live out of the function.
+ MRI.addLiveOut(VA.getLocReg());
+ }
+
+ // Now emit the RET.
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET));
+ return true;
+}
+
+/// X86SelectLoad - Select and emit code to implement load instructions.
+///
+bool X86FastISel::X86SelectLoad(const Instruction *I) {
+ // Atomic loads need special handling.
+ if (cast<LoadInst>(I)->isAtomic())
+ return false;
+
+ MVT VT;
+ if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true))
+ return false;
+
+ X86AddressMode AM;
+ if (!X86SelectAddress(I->getOperand(0), AM))
+ return false;
+
+ unsigned ResultReg = 0;
+ if (X86FastEmitLoad(VT, AM, ResultReg)) {
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+ return false;
+}
+
+static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) {
+ bool HasAVX = Subtarget->hasAVX();
+ bool X86ScalarSSEf32 = Subtarget->hasSSE1();
+ bool X86ScalarSSEf64 = Subtarget->hasSSE2();
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return 0;
+ case MVT::i8: return X86::CMP8rr;
+ case MVT::i16: return X86::CMP16rr;
+ case MVT::i32: return X86::CMP32rr;
+ case MVT::i64: return X86::CMP64rr;
+ case MVT::f32:
+ return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0;
+ case MVT::f64:
+ return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0;
+ }
+}
+
+/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS
+/// of the comparison, return an opcode that works for the compare (e.g.
+/// CMP32ri) otherwise return 0.
+static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) {
+ switch (VT.getSimpleVT().SimpleTy) {
+ // Otherwise, we can't fold the immediate into this comparison.
+ default: return 0;
+ case MVT::i8: return X86::CMP8ri;
+ case MVT::i16: return X86::CMP16ri;
+ case MVT::i32: return X86::CMP32ri;
+ case MVT::i64:
+ // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext
+ // field.
+ if ((int)RHSC->getSExtValue() == RHSC->getSExtValue())
+ return X86::CMP64ri32;
+ return 0;
+ }
+}
+
+bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1,
+ EVT VT) {
+ unsigned Op0Reg = getRegForValue(Op0);
+ if (Op0Reg == 0) return false;
+
+ // Handle 'null' like i32/i64 0.
+ if (isa<ConstantPointerNull>(Op1))
+ Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext()));
+
+ // We have two options: compare with register or immediate. If the RHS of
+ // the compare is an immediate that we can fold into this compare, use
+ // CMPri, otherwise use CMPrr.
+ if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+ if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc))
+ .addReg(Op0Reg)
+ .addImm(Op1C->getSExtValue());
+ return true;
+ }
+ }
+
+ unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget);
+ if (CompareOpc == 0) return false;
+
+ unsigned Op1Reg = getRegForValue(Op1);
+ if (Op1Reg == 0) return false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc))
+ .addReg(Op0Reg)
+ .addReg(Op1Reg);
+
+ return true;
+}
+
+bool X86FastISel::X86SelectCmp(const Instruction *I) {
+ const CmpInst *CI = cast<CmpInst>(I);
+
+ MVT VT;
+ if (!isTypeLegal(I->getOperand(0)->getType(), VT))
+ return false;
+
+ unsigned ResultReg = createResultReg(&X86::GR8RegClass);
+ unsigned SetCCOpc;
+ bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0.
+ switch (CI->getPredicate()) {
+ case CmpInst::FCMP_OEQ: {
+ if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
+ return false;
+
+ unsigned EReg = createResultReg(&X86::GR8RegClass);
+ unsigned NPReg = createResultReg(&X86::GR8RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
+ TII.get(X86::SETNPr), NPReg);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
+ TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+ case CmpInst::FCMP_UNE: {
+ if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT))
+ return false;
+
+ unsigned NEReg = createResultReg(&X86::GR8RegClass);
+ unsigned PReg = createResultReg(&X86::GR8RegClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETNEr), NEReg);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETPr), PReg);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::OR8rr),ResultReg)
+ .addReg(PReg).addReg(NEReg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+ case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr; break;
+ case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
+ case CmpInst::FCMP_OLT: SwapArgs = true; SetCCOpc = X86::SETAr; break;
+ case CmpInst::FCMP_OLE: SwapArgs = true; SetCCOpc = X86::SETAEr; break;
+ case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
+ case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break;
+ case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr; break;
+ case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr; break;
+ case CmpInst::FCMP_UGT: SwapArgs = true; SetCCOpc = X86::SETBr; break;
+ case CmpInst::FCMP_UGE: SwapArgs = true; SetCCOpc = X86::SETBEr; break;
+ case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break;
+ case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
+
+ case CmpInst::ICMP_EQ: SwapArgs = false; SetCCOpc = X86::SETEr; break;
+ case CmpInst::ICMP_NE: SwapArgs = false; SetCCOpc = X86::SETNEr; break;
+ case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr; break;
+ case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break;
+ case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break;
+ case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break;
+ case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr; break;
+ case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break;
+ case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr; break;
+ case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break;
+ default:
+ return false;
+ }
+
+ const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
+ if (SwapArgs)
+ std::swap(Op0, Op1);
+
+ // Emit a compare of Op0/Op1.
+ if (!X86FastEmitCompare(Op0, Op1, VT))
+ return false;
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool X86FastISel::X86SelectZExt(const Instruction *I) {
+ // Handle zero-extension from i1 to i8, which is common.
+ if (!I->getOperand(0)->getType()->isIntegerTy(1))
+ return false;
+
+ EVT DstVT = TLI.getValueType(I->getType());
+ if (!TLI.isTypeLegal(DstVT))
+ return false;
+
+ unsigned ResultReg = getRegForValue(I->getOperand(0));
+ if (ResultReg == 0)
+ return false;
+
+ // Set the high bits to zero.
+ ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false);
+ if (ResultReg == 0)
+ return false;
+
+ if (DstVT != MVT::i8) {
+ ResultReg = FastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND,
+ ResultReg, /*Kill=*/true);
+ if (ResultReg == 0)
+ return false;
+ }
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+
+bool X86FastISel::X86SelectBranch(const Instruction *I) {
+ // Unconditional branches are selected by tablegen-generated code.
+ // Handle a conditional branch.
+ const BranchInst *BI = cast<BranchInst>(I);
+ MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)];
+ MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)];
+
+ // Fold the common case of a conditional branch with a comparison
+ // in the same block (values defined on other blocks may not have
+ // initialized registers).
+ if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) {
+ if (CI->hasOneUse() && CI->getParent() == I->getParent()) {
+ EVT VT = TLI.getValueType(CI->getOperand(0)->getType());
+
+ // Try to take advantage of fallthrough opportunities.
+ CmpInst::Predicate Predicate = CI->getPredicate();
+ if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
+ std::swap(TrueMBB, FalseMBB);
+ Predicate = CmpInst::getInversePredicate(Predicate);
+ }
+
+ bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0.
+ unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA"
+
+ switch (Predicate) {
+ case CmpInst::FCMP_OEQ:
+ std::swap(TrueMBB, FalseMBB);
+ Predicate = CmpInst::FCMP_UNE;
+ // FALL THROUGH
+ case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
+ case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4; break;
+ case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
+ case CmpInst::FCMP_OLT: SwapArgs = true; BranchOpc = X86::JA_4; break;
+ case CmpInst::FCMP_OLE: SwapArgs = true; BranchOpc = X86::JAE_4; break;
+ case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
+ case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break;
+ case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4; break;
+ case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4; break;
+ case CmpInst::FCMP_UGT: SwapArgs = true; BranchOpc = X86::JB_4; break;
+ case CmpInst::FCMP_UGE: SwapArgs = true; BranchOpc = X86::JBE_4; break;
+ case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break;
+ case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
+
+ case CmpInst::ICMP_EQ: SwapArgs = false; BranchOpc = X86::JE_4; break;
+ case CmpInst::ICMP_NE: SwapArgs = false; BranchOpc = X86::JNE_4; break;
+ case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4; break;
+ case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break;
+ case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break;
+ case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break;
+ case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4; break;
+ case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break;
+ case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4; break;
+ case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break;
+ default:
+ return false;
+ }
+
+ const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
+ if (SwapArgs)
+ std::swap(Op0, Op1);
+
+ // Emit a compare of the LHS and RHS, setting the flags.
+ if (!X86FastEmitCompare(Op0, Op1, VT))
+ return false;
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc))
+ .addMBB(TrueMBB);
+
+ if (Predicate == CmpInst::FCMP_UNE) {
+ // X86 requires a second branch to handle UNE (and OEQ,
+ // which is mapped to UNE above).
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4))
+ .addMBB(TrueMBB);
+ }
+
+ FastEmitBranch(FalseMBB, DL);
+ FuncInfo.MBB->addSuccessor(TrueMBB);
+ return true;
+ }
+ } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) {
+ // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which
+ // typically happen for _Bool and C++ bools.
+ MVT SourceVT;
+ if (TI->hasOneUse() && TI->getParent() == I->getParent() &&
+ isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) {
+ unsigned TestOpc = 0;
+ switch (SourceVT.SimpleTy) {
+ default: break;
+ case MVT::i8: TestOpc = X86::TEST8ri; break;
+ case MVT::i16: TestOpc = X86::TEST16ri; break;
+ case MVT::i32: TestOpc = X86::TEST32ri; break;
+ case MVT::i64: TestOpc = X86::TEST64ri32; break;
+ }
+ if (TestOpc) {
+ unsigned OpReg = getRegForValue(TI->getOperand(0));
+ if (OpReg == 0) return false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TestOpc))
+ .addReg(OpReg).addImm(1);
+
+ unsigned JmpOpc = X86::JNE_4;
+ if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) {
+ std::swap(TrueMBB, FalseMBB);
+ JmpOpc = X86::JE_4;
+ }
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(JmpOpc))
+ .addMBB(TrueMBB);
+ FastEmitBranch(FalseMBB, DL);
+ FuncInfo.MBB->addSuccessor(TrueMBB);
+ return true;
+ }
+ }
+ }
+
+ // Otherwise do a clumsy setcc and re-test it.
+ // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used
+ // in an explicit cast, so make sure to handle that correctly.
+ unsigned OpReg = getRegForValue(BI->getCondition());
+ if (OpReg == 0) return false;
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8ri))
+ .addReg(OpReg).addImm(1);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4))
+ .addMBB(TrueMBB);
+ FastEmitBranch(FalseMBB, DL);
+ FuncInfo.MBB->addSuccessor(TrueMBB);
+ return true;
+}
+
+bool X86FastISel::X86SelectShift(const Instruction *I) {
+ unsigned CReg = 0, OpReg = 0;
+ const TargetRegisterClass *RC = NULL;
+ if (I->getType()->isIntegerTy(8)) {
+ CReg = X86::CL;
+ RC = &X86::GR8RegClass;
+ switch (I->getOpcode()) {
+ case Instruction::LShr: OpReg = X86::SHR8rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR8rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL8rCL; break;
+ default: return false;
+ }
+ } else if (I->getType()->isIntegerTy(16)) {
+ CReg = X86::CX;
+ RC = &X86::GR16RegClass;
+ switch (I->getOpcode()) {
+ case Instruction::LShr: OpReg = X86::SHR16rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR16rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL16rCL; break;
+ default: return false;
+ }
+ } else if (I->getType()->isIntegerTy(32)) {
+ CReg = X86::ECX;
+ RC = &X86::GR32RegClass;
+ switch (I->getOpcode()) {
+ case Instruction::LShr: OpReg = X86::SHR32rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR32rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL32rCL; break;
+ default: return false;
+ }
+ } else if (I->getType()->isIntegerTy(64)) {
+ CReg = X86::RCX;
+ RC = &X86::GR64RegClass;
+ switch (I->getOpcode()) {
+ case Instruction::LShr: OpReg = X86::SHR64rCL; break;
+ case Instruction::AShr: OpReg = X86::SAR64rCL; break;
+ case Instruction::Shl: OpReg = X86::SHL64rCL; break;
+ default: return false;
+ }
+ } else {
+ return false;
+ }
+
+ MVT VT;
+ if (!isTypeLegal(I->getType(), VT))
+ return false;
+
+ unsigned Op0Reg = getRegForValue(I->getOperand(0));
+ if (Op0Reg == 0) return false;
+
+ unsigned Op1Reg = getRegForValue(I->getOperand(1));
+ if (Op1Reg == 0) return false;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
+ CReg).addReg(Op1Reg);
+
+ // The shift instruction uses X86::CL. If we defined a super-register
+ // of X86::CL, emit a subreg KILL to precisely describe what we're doing here.
+ if (CReg != X86::CL)
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
+ TII.get(TargetOpcode::KILL), X86::CL)
+ .addReg(CReg, RegState::Kill);
+
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg)
+ .addReg(Op0Reg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool X86FastISel::X86SelectSelect(const Instruction *I) {
+ MVT VT;
+ if (!isTypeLegal(I->getType(), VT))
+ return false;
+
+ // We only use cmov here, if we don't have a cmov instruction bail.
+ if (!Subtarget->hasCMov()) return false;
+
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = NULL;
+ if (VT == MVT::i16) {
+ Opc = X86::CMOVE16rr;
+ RC = &X86::GR16RegClass;
+ } else if (VT == MVT::i32) {
+ Opc = X86::CMOVE32rr;
+ RC = &X86::GR32RegClass;
+ } else if (VT == MVT::i64) {
+ Opc = X86::CMOVE64rr;
+ RC = &X86::GR64RegClass;
+ } else {
+ return false;
+ }
+
+ unsigned Op0Reg = getRegForValue(I->getOperand(0));
+ if (Op0Reg == 0) return false;
+ unsigned Op1Reg = getRegForValue(I->getOperand(1));
+ if (Op1Reg == 0) return false;
+ unsigned Op2Reg = getRegForValue(I->getOperand(2));
+ if (Op2Reg == 0) return false;
+
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr))
+ .addReg(Op0Reg).addReg(Op0Reg);
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg)
+ .addReg(Op1Reg).addReg(Op2Reg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool X86FastISel::X86SelectFPExt(const Instruction *I) {
+ // fpext from float to double.
+ if (X86ScalarSSEf64 &&
+ I->getType()->isDoubleTy()) {
+ const Value *V = I->getOperand(0);
+ if (V->getType()->isFloatTy()) {
+ unsigned OpReg = getRegForValue(V);
+ if (OpReg == 0) return false;
+ unsigned ResultReg = createResultReg(X86::FR64RegisterClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
+ TII.get(X86::CVTSS2SDrr), ResultReg)
+ .addReg(OpReg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+bool X86FastISel::X86SelectFPTrunc(const Instruction *I) {
+ if (X86ScalarSSEf64) {
+ if (I->getType()->isFloatTy()) {
+ const Value *V = I->getOperand(0);
+ if (V->getType()->isDoubleTy()) {
+ unsigned OpReg = getRegForValue(V);
+ if (OpReg == 0) return false;
+ unsigned ResultReg = createResultReg(X86::FR32RegisterClass);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
+ TII.get(X86::CVTSD2SSrr), ResultReg)
+ .addReg(OpReg);
+ UpdateValueMap(I, ResultReg);
+ return true;
+ }
+ }
+ }
+
+ return false;
+}
+
+bool X86FastISel::X86SelectTrunc(const Instruction *I) {
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
+
+ // This code only handles truncation to byte.
+ if (DstVT != MVT::i8 && DstVT != MVT::i1)
+ return false;
+ if (!TLI.isTypeLegal(SrcVT))
+ return false;
+
+ unsigned InputReg = getRegForValue(I->getOperand(0));
+ if (!InputReg)
+ // Unhandled operand. Halt "fast" selection and bail.
+ return false;
+
+ if (SrcVT == MVT::i8) {
+ // Truncate from i8 to i1; no code needed.
+ UpdateValueMap(I, InputReg);
+ return true;
+ }
+
+ if (!Subtarget->is64Bit()) {
+ // If we're on x86-32; we can't extract an i8 from a general register.
+ // First issue a copy to GR16_ABCD or GR32_ABCD.
+ const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16)
+ ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass;
+ unsigned CopyReg = createResultReg(CopyRC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
+ CopyReg).addReg(InputReg);
+ InputReg = CopyReg;
+ }
+
+ // Issue an extract_subreg.
+ unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8,
+ InputReg, /*Kill=*/true,
+ X86::sub_8bit);
+ if (!ResultReg)
+ return false;
+
+ UpdateValueMap(I, ResultReg);
+ return true;
+}
+
+bool X86FastISel::IsMemcpySmall(uint64_t Len) {
+ return Len <= (Subtarget->is64Bit() ? 32 : 16);
+}
+
+bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM,
+ X86AddressMode SrcAM, uint64_t Len) {
+
+ // Make sure we don't bloat code by inlining very large memcpy's.
+ if (!IsMemcpySmall(Len))
+ return false;
+
+ bool i64Legal = Subtarget->is64Bit();
+
+ // We don't care about alignment here since we just emit integer accesses.
+ while (Len) {
+ MVT VT;
+ if (Len >= 8 && i64Legal)
+ VT = MVT::i64;
+ else if (Len >= 4)
+ VT = MVT::i32;
+ else if (Len >= 2)
+ VT = MVT::i16;
+ else {
+ assert(Len == 1);
+ VT = MVT::i8;
+ }
+
+ unsigned Reg;
+ bool RV = X86FastEmitLoad(VT, SrcAM, Reg);
+ RV &= X86FastEmitStore(VT, Reg, DestAM);
+ assert(RV && "Failed to emit load or store??");
+
+ unsigned Size = VT.getSizeInBits()/8;
+ Len -= Size;
+ DestAM.Disp += Size;
+ SrcAM.Disp += Size;
+ }
+
+ return true;
+}
+
+bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) {
+ // FIXME: Handle more intrinsics.
+ switch (I.getIntrinsicID()) {
+ default: return false;
+ case Intrinsic::memcpy: {
+ const MemCpyInst &MCI = cast<MemCpyInst>(I);
+ // Don't handle volatile or variable length memcpys.
+ if (MCI.isVolatile())
+ return false;
+
+ if (isa<ConstantInt>(MCI.getLength())) {
+ // Small memcpy's are common enough that we want to do them
+ // without a call if possible.
+ uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue();
+ if (IsMemcpySmall(Len)) {
+ X86AddressMode DestAM, SrcAM;
+ if (!X86SelectAddress(MCI.getRawDest(), DestAM) ||
+ !X86SelectAddress(MCI.getRawSource(), SrcAM))
+ return false;
+ TryEmitSmallMemcpy(DestAM, SrcAM, Len);
+ return true;
+ }
+ }
+
+ unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
+ if (!MCI.getLength()->getType()->isIntegerTy(SizeWidth))
+ return false;
+
+ if (MCI.getSourceAddressSpace() > 255 || MCI.getDestAddressSpace() > 255)
+ return false;
+
+ return DoSelectCall(&I, "memcpy");
+ }
+ case Intrinsic::memset: {
+ const MemSetInst &MSI = cast<MemSetInst>(I);
+
+ if (MSI.isVolatile())
+ return false;
+
+ unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32;
+ if (!MSI.getLength()->getType()->isIntegerTy(SizeWidth))
+ return false;
+
+ if (MSI.getDestAddressSpace() > 255)
+ return false;
+
+ return DoSelectCall(&I, "memset");
+ }
+ case Intrinsic::stackprotector: {
+ // Emit code inline code to store the stack guard onto the stack.
+ EVT PtrTy = TLI.getPointerTy();
+
+ const Value *Op1 = I.getArgOperand(0); // The guard's value.
+ const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
+
+ // Grab the frame index.
+ X86AddressMode AM;
+ if (!X86SelectAddress(Slot, AM)) return false;
+ if (!X86FastEmitStore(PtrTy, Op1, AM)) return false;
+ return true;
+ }
+ case Intrinsic::dbg_declare: {
+ const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I);
+ X86AddressMode AM;
+ assert(DI->getAddress() && "Null address should be checked earlier!");
+ if (!X86SelectAddress(DI->getAddress(), AM))
+ return false;
+ const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE);
+ // FIXME may need to add RegState::Debug to any registers produced,
+ // although ESP/EBP should be the only ones at the moment.
+ addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM).
+ addImm(0).addMetadata(DI->getVariable());
+ return true;
+ }
+ case Intrinsic::trap: {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP));
+ return true;
+ }
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::uadd_with_overflow: {
+ // FIXME: Should fold immediates.
+
+ // Replace "add with overflow" intrinsics with an "add" instruction followed
+ // by a seto/setc instruction.
+ const Function *Callee = I.getCalledFunction();
+ Type *RetTy =
+ cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0));
+
+ MVT VT;
+ if (!isTypeLegal(RetTy, VT))
+ return false;
+
+ const Value *Op1 = I.getArgOperand(0);
+ const Value *Op2 = I.getArgOperand(1);
+ unsigned Reg1 = getRegForValue(Op1);
+ unsigned Reg2 = getRegForValue(Op2);
+
+ if (Reg1 == 0 || Reg2 == 0)
+ // FIXME: Handle values *not* in registers.
+ return false;
+
+ unsigned OpC = 0;
+ if (VT == MVT::i32)
+ OpC = X86::ADD32rr;
+ else if (VT == MVT::i64)
+ OpC = X86::ADD64rr;
+ else
+ return false;
+
+ // The call to CreateRegs builds two sequential registers, to store the
+ // both the the returned values.
+ unsigned ResultReg = FuncInfo.CreateRegs(I.getType());
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg)
+ .addReg(Reg1).addReg(Reg2);
+
+ unsigned Opc = X86::SETBr;
+ if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow)
+ Opc = X86::SETOr;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg+1);
+
+ UpdateValueMap(&I, ResultReg, 2);
+ return true;
+ }
+ }
+}
+
+bool X86FastISel::X86SelectCall(const Instruction *I) {
+ const CallInst *CI = cast<CallInst>(I);
+ const Value *Callee = CI->getCalledValue();
+
+ // Can't handle inline asm yet.
+ if (isa<InlineAsm>(Callee))
+ return false;
+
+ // Handle intrinsic calls.
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI))
+ return X86VisitIntrinsicCall(*II);
+
+ return DoSelectCall(I, 0);
+}
+
+// Select either a call, or an llvm.memcpy/memmove/memset intrinsic
+bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) {
+ const CallInst *CI = cast<CallInst>(I);
+ const Value *Callee = CI->getCalledValue();
+
+ // Handle only C and fastcc calling conventions for now.
+ ImmutableCallSite CS(CI);
+ CallingConv::ID CC = CS.getCallingConv();
+ if (CC != CallingConv::C && CC != CallingConv::Fast &&
+ CC != CallingConv::X86_FastCall)
+ return false;
+
+ // fastcc with -tailcallopt is intended to provide a guaranteed
+ // tail call optimization. Fastisel doesn't know how to do that.
+ if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt)
+ return false;
+
+ PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
+ FunctionType *FTy = cast<FunctionType>(PT->getElementType());
+ bool isVarArg = FTy->isVarArg();
+
+ // Don't know how to handle Win64 varargs yet. Nothing special needed for
+ // x86-32. Special handling for x86-64 is implemented.
+ if (isVarArg && Subtarget->isTargetWin64())
+ return false;
+
+ // Fast-isel doesn't know about callee-pop yet.
+ if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg,
+ TM.Options.GuaranteedTailCallOpt))
+ return false;
+
+ // Check whether the function can return without sret-demotion.
+ SmallVector<ISD::OutputArg, 4> Outs;
+ SmallVector<uint64_t, 4> Offsets;
+ GetReturnInfo(I->getType(), CS.getAttributes().getRetAttributes(),
+ Outs, TLI, &Offsets);
+ bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(),
+ *FuncInfo.MF, FTy->isVarArg(),
+ Outs, FTy->getContext());
+ if (!CanLowerReturn)
+ return false;
+
+ // Materialize callee address in a register. FIXME: GV address can be
+ // handled with a CALLpcrel32 instead.
+ X86AddressMode CalleeAM;
+ if (!X86SelectCallAddress(Callee, CalleeAM))
+ return false;
+ unsigned CalleeOp = 0;
+ const GlobalValue *GV = 0;
+ if (CalleeAM.GV != 0) {
+ GV = CalleeAM.GV;
+ } else if (CalleeAM.Base.Reg != 0) {
+ CalleeOp = CalleeAM.Base.Reg;
+ } else
+ return false;
+
+ // Deal with call operands first.
+ SmallVector<const Value *, 8> ArgVals;
+ SmallVector<unsigned, 8> Args;
+ SmallVector<MVT, 8> ArgVTs;
+ SmallVector<ISD::ArgFlagsTy, 8> ArgFlags;
+ unsigned arg_size = CS.arg_size();
+ Args.reserve(arg_size);
+ ArgVals.reserve(arg_size);
+ ArgVTs.reserve(arg_size);
+ ArgFlags.reserve(arg_size);
+ for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
+ i != e; ++i) {
+ // If we're lowering a mem intrinsic instead of a regular call, skip the
+ // last two arguments, which should not passed to the underlying functions.
+ if (MemIntName && e-i <= 2)
+ break;
+ Value *ArgVal = *i;
+ ISD::ArgFlagsTy Flags;
+ unsigned AttrInd = i - CS.arg_begin() + 1;
+ if (CS.paramHasAttr(AttrInd, Attribute::SExt))
+ Flags.setSExt();
+ if (CS.paramHasAttr(AttrInd, Attribute::ZExt))
+ Flags.setZExt();
+
+ if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) {
+ PointerType *Ty = cast<PointerType>(ArgVal->getType());
+ Type *ElementTy = Ty->getElementType();
+ unsigned FrameSize = TD.getTypeAllocSize(ElementTy);
+ unsigned FrameAlign = CS.getParamAlignment(AttrInd);
+ if (!FrameAlign)
+ FrameAlign = TLI.getByValTypeAlignment(ElementTy);
+ Flags.setByVal();
+ Flags.setByValSize(FrameSize);
+ Flags.setByValAlign(FrameAlign);
+ if (!IsMemcpySmall(FrameSize))
+ return false;
+ }
+
+ if (CS.paramHasAttr(AttrInd, Attribute::InReg))
+ Flags.setInReg();
+ if (CS.paramHasAttr(AttrInd, Attribute::Nest))
+ Flags.setNest();
+
+ // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra
+ // instruction. This is safe because it is common to all fastisel supported
+ // calling conventions on x86.
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) {
+ if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 ||
+ CI->getBitWidth() == 16) {
+ if (Flags.isSExt())
+ ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext()));
+ else
+ ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext()));
+ }
+ }
+
+ unsigned ArgReg;
+
+ // Passing bools around ends up doing a trunc to i1 and passing it.
+ // Codegen this as an argument + "and 1".
+ if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) &&
+ cast<TruncInst>(ArgVal)->getParent() == I->getParent() &&
+ ArgVal->hasOneUse()) {
+ ArgVal = cast<TruncInst>(ArgVal)->getOperand(0);
+ ArgReg = getRegForValue(ArgVal);
+ if (ArgReg == 0) return false;
+
+ MVT ArgVT;
+ if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false;
+
+ ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg,
+ ArgVal->hasOneUse(), 1);
+ } else {
+ ArgReg = getRegForValue(ArgVal);
+ }
+
+ if (ArgReg == 0) return false;
+
+ Type *ArgTy = ArgVal->getType();
+ MVT ArgVT;
+ if (!isTypeLegal(ArgTy, ArgVT))
+ return false;
+ if (ArgVT == MVT::x86mmx)
+ return false;
+ unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy);
+ Flags.setOrigAlign(OriginalAlignment);
+
+ Args.push_back(ArgReg);
+ ArgVals.push_back(ArgVal);
+ ArgVTs.push_back(ArgVT);
+ ArgFlags.push_back(Flags);
+ }
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs,
+ I->getParent()->getContext());
+
+ // Allocate shadow area for Win64
+ if (Subtarget->isTargetWin64())
+ CCInfo.AllocateStack(32, 8);
+
+ CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+
+ // Issue CALLSEQ_START
+ unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown))
+ .addImm(NumBytes);
+
+ // Process argument: walk the register/memloc assignments, inserting
+ // copies / loads.
+ SmallVector<unsigned, 4> RegArgs;
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ unsigned Arg = Args[VA.getValNo()];
+ EVT ArgVT = ArgVTs[VA.getValNo()];
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt: {
+ assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
+ "Unexpected extend");
+ bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
+ Arg, ArgVT, Arg);
+ assert(Emitted && "Failed to emit a sext!"); (void)Emitted;
+ ArgVT = VA.getLocVT();
+ break;
+ }
+ case CCValAssign::ZExt: {
+ assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
+ "Unexpected extend");
+ bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
+ Arg, ArgVT, Arg);
+ assert(Emitted && "Failed to emit a zext!"); (void)Emitted;
+ ArgVT = VA.getLocVT();
+ break;
+ }
+ case CCValAssign::AExt: {
+ assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() &&
+ "Unexpected extend");
+ bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(),
+ Arg, ArgVT, Arg);
+ if (!Emitted)
+ Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(),
+ Arg, ArgVT, Arg);
+ if (!Emitted)
+ Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(),
+ Arg, ArgVT, Arg);
+
+ assert(Emitted && "Failed to emit a aext!"); (void)Emitted;
+ ArgVT = VA.getLocVT();
+ break;
+ }
+ case CCValAssign::BCvt: {
+ unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(),
+ ISD::BITCAST, Arg, /*TODO: Kill=*/false);
+ assert(BC != 0 && "Failed to emit a bitcast!");
+ Arg = BC;
+ ArgVT = VA.getLocVT();
+ break;
+ }
+ }
+
+ if (VA.isRegLoc()) {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
+ VA.getLocReg()).addReg(Arg);
+ RegArgs.push_back(VA.getLocReg());
+ } else {
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ X86AddressMode AM;
+ AM.Base.Reg = StackPtr;
+ AM.Disp = LocMemOffset;
+ const Value *ArgVal = ArgVals[VA.getValNo()];
+ ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()];
+
+ if (Flags.isByVal()) {
+ X86AddressMode SrcAM;
+ SrcAM.Base.Reg = Arg;
+ bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize());
+ assert(Res && "memcpy length already checked!"); (void)Res;
+ } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) {
+ // If this is a really simple value, emit this with the Value* version
+ // of X86FastEmitStore. If it isn't simple, we don't want to do this,
+ // as it can cause us to reevaluate the argument.
+ if (!X86FastEmitStore(ArgVT, ArgVal, AM))
+ return false;
+ } else {
+ if (!X86FastEmitStore(ArgVT, Arg, AM))
+ return false;
+ }
+ }
+ }
+
+ // ELF / PIC requires GOT in the EBX register before function calls via PLT
+ // GOT pointer.
+ if (Subtarget->isPICStyleGOT()) {
+ unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
+ X86::EBX).addReg(Base);
+ }
+
+ if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64()) {
+ // Count the number of XMM registers allocated.
+ static const uint16_t XMMArgRegs[] = {
+ X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
+ X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
+ };
+ unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::MOV8ri),
+ X86::AL).addImm(NumXMMRegs);
+ }
+
+ // Issue the call.
+ MachineInstrBuilder MIB;
+ if (CalleeOp) {
+ // Register-indirect call.
+ unsigned CallOpc;
+ if (Subtarget->is64Bit())
+ CallOpc = X86::CALL64r;
+ else
+ CallOpc = X86::CALL32r;
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc))
+ .addReg(CalleeOp);
+
+ } else {
+ // Direct call.
+ assert(GV && "Not a direct call");
+ unsigned CallOpc;
+ if (Subtarget->is64Bit())
+ CallOpc = X86::CALL64pcrel32;
+ else
+ CallOpc = X86::CALLpcrel32;
+
+ // See if we need any target-specific flags on the GV operand.
+ unsigned char OpFlags = 0;
+
+ // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
+ // external symbols most go through the PLT in PIC mode. If the symbol
+ // has hidden or protected visibility, or if it is static or local, then
+ // we don't need to use the PLT - we can directly call it.
+ if (Subtarget->isTargetELF() &&
+ TM.getRelocationModel() == Reloc::PIC_ &&
+ GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
+ OpFlags = X86II::MO_PLT;
+ } else if (Subtarget->isPICStyleStubAny() &&
+ (GV->isDeclaration() || GV->isWeakForLinker()) &&
+ (!Subtarget->getTargetTriple().isMacOSX() ||
+ Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
+ // PC-relative references to external symbols should go through $stub,
+ // unless we're building with the leopard linker or later, which
+ // automatically synthesizes these stubs.
+ OpFlags = X86II::MO_DARWIN_STUB;
+ }
+
+
+ MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc));
+ if (MemIntName)
+ MIB.addExternalSymbol(MemIntName, OpFlags);
+ else
+ MIB.addGlobalAddress(GV, 0, OpFlags);
+ }
+
+ // Add an implicit use GOT pointer in EBX.
+ if (Subtarget->isPICStyleGOT())
+ MIB.addReg(X86::EBX);
+
+ if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64())
+ MIB.addReg(X86::AL);
+
+ // Add implicit physical register uses to the call.
+ for (unsigned i = 0, e = RegArgs.size(); i != e; ++i)
+ MIB.addReg(RegArgs[i]);
+
+ // Add a register mask with the call-preserved registers.
+ // Proper defs for return values will be added by setPhysRegsDeadExcept().
+ MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv()));
+
+ // Issue CALLSEQ_END
+ unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
+ unsigned NumBytesCallee = 0;
+ if (!Subtarget->is64Bit() && !Subtarget->isTargetWindows() &&
+ CS.paramHasAttr(1, Attribute::StructRet))
+ NumBytesCallee = 4;
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp))
+ .addImm(NumBytes).addImm(NumBytesCallee);
+
+ // Build info for return calling conv lowering code.
+ // FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo.
+ SmallVector<ISD::InputArg, 32> Ins;
+ SmallVector<EVT, 4> RetTys;
+ ComputeValueVTs(TLI, I->getType(), RetTys);
+ for (unsigned i = 0, e = RetTys.size(); i != e; ++i) {
+ EVT VT = RetTys[i];
+ EVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT);
+ unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT);
+ for (unsigned j = 0; j != NumRegs; ++j) {
+ ISD::InputArg MyFlags;
+ MyFlags.VT = RegisterVT.getSimpleVT();
+ MyFlags.Used = !CS.getInstruction()->use_empty();
+ if (CS.paramHasAttr(0, Attribute::SExt))
+ MyFlags.Flags.setSExt();
+ if (CS.paramHasAttr(0, Attribute::ZExt))
+ MyFlags.Flags.setZExt();
+ if (CS.paramHasAttr(0, Attribute::InReg))
+ MyFlags.Flags.setInReg();
+ Ins.push_back(MyFlags);
+ }
+ }
+
+ // Now handle call return values.
+ SmallVector<unsigned, 4> UsedRegs;
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs,
+ I->getParent()->getContext());
+ unsigned ResultReg = FuncInfo.CreateRegs(I->getType());
+ CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86);
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ EVT CopyVT = RVLocs[i].getValVT();
+ unsigned CopyReg = ResultReg + i;
+
+ // If this is a call to a function that returns an fp value on the x87 fp
+ // stack, but where we prefer to use the value in xmm registers, copy it
+ // out as F80 and use a truncate to move it from fp stack reg to xmm reg.
+ if ((RVLocs[i].getLocReg() == X86::ST0 ||
+ RVLocs[i].getLocReg() == X86::ST1)) {
+ if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) {
+ CopyVT = MVT::f80;
+ CopyReg = createResultReg(X86::RFP80RegisterClass);
+ }
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::FpPOP_RETVAL),
+ CopyReg);
+ } else {
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY),
+ CopyReg).addReg(RVLocs[i].getLocReg());
+ UsedRegs.push_back(RVLocs[i].getLocReg());
+ }
+
+ if (CopyVT != RVLocs[i].getValVT()) {
+ // Round the F80 the right size, which also moves to the appropriate xmm
+ // register. This is accomplished by storing the F80 value in memory and
+ // then loading it back. Ewww...
+ EVT ResVT = RVLocs[i].getValVT();
+ unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64;
+ unsigned MemSize = ResVT.getSizeInBits()/8;
+ int FI = MFI.CreateStackObject(MemSize, MemSize, false);
+ addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
+ TII.get(Opc)), FI)
+ .addReg(CopyReg);
+ Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm;
+ addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
+ TII.get(Opc), ResultReg + i), FI);
+ }
+ }
+
+ if (RVLocs.size())
+ UpdateValueMap(I, ResultReg, RVLocs.size());
+
+ // Set all unused physreg defs as dead.
+ static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI);
+
+ return true;
+}
+
+
+bool
+X86FastISel::TargetSelectInstruction(const Instruction *I) {
+ switch (I->getOpcode()) {
+ default: break;
+ case Instruction::Load:
+ return X86SelectLoad(I);
+ case Instruction::Store:
+ return X86SelectStore(I);
+ case Instruction::Ret:
+ return X86SelectRet(I);
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ return X86SelectCmp(I);
+ case Instruction::ZExt:
+ return X86SelectZExt(I);
+ case Instruction::Br:
+ return X86SelectBranch(I);
+ case Instruction::Call:
+ return X86SelectCall(I);
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::Shl:
+ return X86SelectShift(I);
+ case Instruction::Select:
+ return X86SelectSelect(I);
+ case Instruction::Trunc:
+ return X86SelectTrunc(I);
+ case Instruction::FPExt:
+ return X86SelectFPExt(I);
+ case Instruction::FPTrunc:
+ return X86SelectFPTrunc(I);
+ case Instruction::IntToPtr: // Deliberate fall-through.
+ case Instruction::PtrToInt: {
+ EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType());
+ EVT DstVT = TLI.getValueType(I->getType());
+ if (DstVT.bitsGT(SrcVT))
+ return X86SelectZExt(I);
+ if (DstVT.bitsLT(SrcVT))
+ return X86SelectTrunc(I);
+ unsigned Reg = getRegForValue(I->getOperand(0));
+ if (Reg == 0) return false;
+ UpdateValueMap(I, Reg);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) {
+ MVT VT;
+ if (!isTypeLegal(C->getType(), VT))
+ return false;
+
+ // Get opcode and regclass of the output for the given load instruction.
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = NULL;
+ switch (VT.SimpleTy) {
+ default: return false;
+ case MVT::i8:
+ Opc = X86::MOV8rm;
+ RC = X86::GR8RegisterClass;
+ break;
+ case MVT::i16:
+ Opc = X86::MOV16rm;
+ RC = X86::GR16RegisterClass;
+ break;
+ case MVT::i32:
+ Opc = X86::MOV32rm;
+ RC = X86::GR32RegisterClass;
+ break;
+ case MVT::i64:
+ // Must be in x86-64 mode.
+ Opc = X86::MOV64rm;
+ RC = X86::GR64RegisterClass;
+ break;
+ case MVT::f32:
+ if (X86ScalarSSEf32) {
+ Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm;
+ RC = X86::FR32RegisterClass;
+ } else {
+ Opc = X86::LD_Fp32m;
+ RC = X86::RFP32RegisterClass;
+ }
+ break;
+ case MVT::f64:
+ if (X86ScalarSSEf64) {
+ Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm;
+ RC = X86::FR64RegisterClass;
+ } else {
+ Opc = X86::LD_Fp64m;
+ RC = X86::RFP64RegisterClass;
+ }
+ break;
+ case MVT::f80:
+ // No f80 support yet.
+ return false;
+ }
+
+ // Materialize addresses with LEA instructions.
+ if (isa<GlobalValue>(C)) {
+ X86AddressMode AM;
+ if (X86SelectAddress(C, AM)) {
+ // If the expression is just a basereg, then we're done, otherwise we need
+ // to emit an LEA.
+ if (AM.BaseType == X86AddressMode::RegBase &&
+ AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == 0)
+ return AM.Base.Reg;
+
+ Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r;
+ unsigned ResultReg = createResultReg(RC);
+ addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
+ TII.get(Opc), ResultReg), AM);
+ return ResultReg;
+ }
+ return 0;
+ }
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = TD.getPrefTypeAlignment(C->getType());
+ if (Align == 0) {
+ // Alignment of vector types. FIXME!
+ Align = TD.getTypeAllocSize(C->getType());
+ }
+
+ // x86-32 PIC requires a PIC base register for constant pools.
+ unsigned PICBase = 0;
+ unsigned char OpFlag = 0;
+ if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic
+ OpFlag = X86II::MO_PIC_BASE_OFFSET;
+ PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+ } else if (Subtarget->isPICStyleGOT()) {
+ OpFlag = X86II::MO_GOTOFF;
+ PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF);
+ } else if (Subtarget->isPICStyleRIPRel() &&
+ TM.getCodeModel() == CodeModel::Small) {
+ PICBase = X86::RIP;
+ }
+
+ // Create the load from the constant pool.
+ unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align);
+ unsigned ResultReg = createResultReg(RC);
+ addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
+ TII.get(Opc), ResultReg),
+ MCPOffset, PICBase, OpFlag);
+
+ return ResultReg;
+}
+
+unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) {
+ // Fail on dynamic allocas. At this point, getRegForValue has already
+ // checked its CSE maps, so if we're here trying to handle a dynamic
+ // alloca, we're not going to succeed. X86SelectAddress has a
+ // check for dynamic allocas, because it's called directly from
+ // various places, but TargetMaterializeAlloca also needs a check
+ // in order to avoid recursion between getRegForValue,
+ // X86SelectAddrss, and TargetMaterializeAlloca.
+ if (!FuncInfo.StaticAllocaMap.count(C))
+ return 0;
+
+ X86AddressMode AM;
+ if (!X86SelectAddress(C, AM))
+ return 0;
+ unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
+ const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy());
+ unsigned ResultReg = createResultReg(RC);
+ addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL,
+ TII.get(Opc), ResultReg), AM);
+ return ResultReg;
+}
+
+unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) {
+ MVT VT;
+ if (!isTypeLegal(CF->getType(), VT))
+ return false;
+
+ // Get opcode and regclass for the given zero.
+ unsigned Opc = 0;
+ const TargetRegisterClass *RC = NULL;
+ switch (VT.SimpleTy) {
+ default: return false;
+ case MVT::f32:
+ if (X86ScalarSSEf32) {
+ Opc = X86::FsFLD0SS;
+ RC = X86::FR32RegisterClass;
+ } else {
+ Opc = X86::LD_Fp032;
+ RC = X86::RFP32RegisterClass;
+ }
+ break;
+ case MVT::f64:
+ if (X86ScalarSSEf64) {
+ Opc = X86::FsFLD0SD;
+ RC = X86::FR64RegisterClass;
+ } else {
+ Opc = X86::LD_Fp064;
+ RC = X86::RFP64RegisterClass;
+ }
+ break;
+ case MVT::f80:
+ // No f80 support yet.
+ return false;
+ }
+
+ unsigned ResultReg = createResultReg(RC);
+ BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg);
+ return ResultReg;
+}
+
+
+/// TryToFoldLoad - The specified machine instr operand is a vreg, and that
+/// vreg is being provided by the specified load instruction. If possible,
+/// try to fold the load as an operand to the instruction, returning true if
+/// possible.
+bool X86FastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo,
+ const LoadInst *LI) {
+ X86AddressMode AM;
+ if (!X86SelectAddress(LI->getOperand(0), AM))
+ return false;
+
+ X86InstrInfo &XII = (X86InstrInfo&)TII;
+
+ unsigned Size = TD.getTypeAllocSize(LI->getType());
+ unsigned Alignment = LI->getAlignment();
+
+ SmallVector<MachineOperand, 8> AddrOps;
+ AM.getFullAddress(AddrOps);
+
+ MachineInstr *Result =
+ XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment);
+ if (Result == 0) return false;
+
+ FuncInfo.MBB->insert(FuncInfo.InsertPt, Result);
+ MI->eraseFromParent();
+ return true;
+}
+
+
+namespace llvm {
+ FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo) {
+ return new X86FastISel(funcInfo);
+ }
+}
OpenPOWER on IntegriCloud