diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86FastISel.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86FastISel.cpp | 1775 |
1 files changed, 1775 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86FastISel.cpp b/contrib/llvm/lib/Target/X86/X86FastISel.cpp new file mode 100644 index 0000000..1bc5eb7 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86FastISel.cpp @@ -0,0 +1,1775 @@ +//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the X86-specific support for the FastISel class. Much +// of the target-specific code is generated by tablegen in the file +// X86GenFastISel.inc, which is #included here. +// +//===----------------------------------------------------------------------===// + +#include "X86.h" +#include "X86InstrBuilder.h" +#include "X86RegisterInfo.h" +#include "X86Subtarget.h" +#include "X86TargetMachine.h" +#include "llvm/CallingConv.h" +#include "llvm/DerivedTypes.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Instructions.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/CodeGen/FastISel.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/GetElementPtrTypeIterator.h" +#include "llvm/Target/TargetOptions.h" +using namespace llvm; + +namespace { + +class X86FastISel : public FastISel { + /// Subtarget - Keep a pointer to the X86Subtarget around so that we can + /// make the right decision when generating code for different targets. + const X86Subtarget *Subtarget; + + /// StackPtr - Register used as the stack pointer. + /// + unsigned StackPtr; + + /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 + /// floating point ops. + /// When SSE is available, use it for f32 operations. + /// When SSE2 is available, use it for f64 operations. + bool X86ScalarSSEf64; + bool X86ScalarSSEf32; + +public: + explicit X86FastISel(MachineFunction &mf, + DenseMap<const Value *, unsigned> &vm, + DenseMap<const BasicBlock *, MachineBasicBlock *> &bm, + DenseMap<const AllocaInst *, int> &am, + std::vector<std::pair<MachineInstr*, unsigned> > &pn +#ifndef NDEBUG + , SmallSet<const Instruction *, 8> &cil +#endif + ) + : FastISel(mf, vm, bm, am, pn +#ifndef NDEBUG + , cil +#endif + ) { + Subtarget = &TM.getSubtarget<X86Subtarget>(); + StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP; + X86ScalarSSEf64 = Subtarget->hasSSE2(); + X86ScalarSSEf32 = Subtarget->hasSSE1(); + } + + virtual bool TargetSelectInstruction(const Instruction *I); + +#include "X86GenFastISel.inc" + +private: + bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT); + + bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR); + + bool X86FastEmitStore(EVT VT, const Value *Val, + const X86AddressMode &AM); + bool X86FastEmitStore(EVT VT, unsigned Val, + const X86AddressMode &AM); + + bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, + unsigned &ResultReg); + + bool X86SelectAddress(const Value *V, X86AddressMode &AM); + bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); + + bool X86SelectLoad(const Instruction *I); + + bool X86SelectStore(const Instruction *I); + + bool X86SelectCmp(const Instruction *I); + + bool X86SelectZExt(const Instruction *I); + + bool X86SelectBranch(const Instruction *I); + + bool X86SelectShift(const Instruction *I); + + bool X86SelectSelect(const Instruction *I); + + bool X86SelectTrunc(const Instruction *I); + + bool X86SelectFPExt(const Instruction *I); + bool X86SelectFPTrunc(const Instruction *I); + + bool X86SelectExtractValue(const Instruction *I); + + bool X86VisitIntrinsicCall(const IntrinsicInst &I); + bool X86SelectCall(const Instruction *I); + + CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool isTailCall = false); + + const X86InstrInfo *getInstrInfo() const { + return getTargetMachine()->getInstrInfo(); + } + const X86TargetMachine *getTargetMachine() const { + return static_cast<const X86TargetMachine *>(&TM); + } + + unsigned TargetMaterializeConstant(const Constant *C); + + unsigned TargetMaterializeAlloca(const AllocaInst *C); + + /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is + /// computed in an SSE register, not on the X87 floating point stack. + bool isScalarFPTypeInSSEReg(EVT VT) const { + return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 + (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 + } + + bool isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1 = false); +}; + +} // end anonymous namespace. + +bool X86FastISel::isTypeLegal(const Type *Ty, EVT &VT, bool AllowI1) { + VT = TLI.getValueType(Ty, /*HandleUnknown=*/true); + if (VT == MVT::Other || !VT.isSimple()) + // Unhandled type. Halt "fast" selection and bail. + return false; + + // For now, require SSE/SSE2 for performing floating-point operations, + // since x87 requires additional work. + if (VT == MVT::f64 && !X86ScalarSSEf64) + return false; + if (VT == MVT::f32 && !X86ScalarSSEf32) + return false; + // Similarly, no f80 support yet. + if (VT == MVT::f80) + return false; + // We only handle legal types. For example, on x86-32 the instruction + // selector contains all of the 64-bit instructions from x86-64, + // under the assumption that i64 won't be used if the target doesn't + // support it. + return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); +} + +#include "X86GenCallingConv.inc" + +/// CCAssignFnForCall - Selects the correct CCAssignFn for a given calling +/// convention. +CCAssignFn *X86FastISel::CCAssignFnForCall(CallingConv::ID CC, + bool isTaillCall) { + if (Subtarget->is64Bit()) { + if (CC == CallingConv::GHC) + return CC_X86_64_GHC; + else if (Subtarget->isTargetWin64()) + return CC_X86_Win64_C; + else + return CC_X86_64_C; + } + + if (CC == CallingConv::X86_FastCall) + return CC_X86_32_FastCall; + else if (CC == CallingConv::X86_ThisCall) + return CC_X86_32_ThisCall; + else if (CC == CallingConv::Fast) + return CC_X86_32_FastCC; + else if (CC == CallingConv::GHC) + return CC_X86_32_GHC; + else + return CC_X86_32_C; +} + +/// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. +/// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. +/// Return true and the result register by reference if it is possible. +bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM, + unsigned &ResultReg) { + // Get opcode and regclass of the output for the given load instruction. + unsigned Opc = 0; + const TargetRegisterClass *RC = NULL; + switch (VT.getSimpleVT().SimpleTy) { + default: return false; + case MVT::i1: + case MVT::i8: + Opc = X86::MOV8rm; + RC = X86::GR8RegisterClass; + break; + case MVT::i16: + Opc = X86::MOV16rm; + RC = X86::GR16RegisterClass; + break; + case MVT::i32: + Opc = X86::MOV32rm; + RC = X86::GR32RegisterClass; + break; + case MVT::i64: + // Must be in x86-64 mode. + Opc = X86::MOV64rm; + RC = X86::GR64RegisterClass; + break; + case MVT::f32: + if (Subtarget->hasSSE1()) { + Opc = X86::MOVSSrm; + RC = X86::FR32RegisterClass; + } else { + Opc = X86::LD_Fp32m; + RC = X86::RFP32RegisterClass; + } + break; + case MVT::f64: + if (Subtarget->hasSSE2()) { + Opc = X86::MOVSDrm; + RC = X86::FR64RegisterClass; + } else { + Opc = X86::LD_Fp64m; + RC = X86::RFP64RegisterClass; + } + break; + case MVT::f80: + // No f80 support yet. + return false; + } + + ResultReg = createResultReg(RC); + addFullAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM); + return true; +} + +/// X86FastEmitStore - Emit a machine instruction to store a value Val of +/// type VT. The address is either pre-computed, consisted of a base ptr, Ptr +/// and a displacement offset, or a GlobalAddress, +/// i.e. V. Return true if it is possible. +bool +X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, + const X86AddressMode &AM) { + // Get opcode and regclass of the output for the given store instruction. + unsigned Opc = 0; + switch (VT.getSimpleVT().SimpleTy) { + case MVT::f80: // No f80 support yet. + default: return false; + case MVT::i1: { + // Mask out all but lowest bit. + unsigned AndResult = createResultReg(X86::GR8RegisterClass); + BuildMI(MBB, DL, + TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1); + Val = AndResult; + } + // FALLTHROUGH, handling i1 as i8. + case MVT::i8: Opc = X86::MOV8mr; break; + case MVT::i16: Opc = X86::MOV16mr; break; + case MVT::i32: Opc = X86::MOV32mr; break; + case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode. + case MVT::f32: + Opc = Subtarget->hasSSE1() ? X86::MOVSSmr : X86::ST_Fp32m; + break; + case MVT::f64: + Opc = Subtarget->hasSSE2() ? X86::MOVSDmr : X86::ST_Fp64m; + break; + } + + addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM).addReg(Val); + return true; +} + +bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, + const X86AddressMode &AM) { + // Handle 'null' like i32/i64 0. + if (isa<ConstantPointerNull>(Val)) + Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext())); + + // If this is a store of a simple constant, fold the constant into the store. + if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { + unsigned Opc = 0; + bool Signed = true; + switch (VT.getSimpleVT().SimpleTy) { + default: break; + case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8. + case MVT::i8: Opc = X86::MOV8mi; break; + case MVT::i16: Opc = X86::MOV16mi; break; + case MVT::i32: Opc = X86::MOV32mi; break; + case MVT::i64: + // Must be a 32-bit sign extended value. + if ((int)CI->getSExtValue() == CI->getSExtValue()) + Opc = X86::MOV64mi32; + break; + } + + if (Opc) { + addFullAddress(BuildMI(MBB, DL, TII.get(Opc)), AM) + .addImm(Signed ? (uint64_t) CI->getSExtValue() : + CI->getZExtValue()); + return true; + } + } + + unsigned ValReg = getRegForValue(Val); + if (ValReg == 0) + return false; + + return X86FastEmitStore(VT, ValReg, AM); +} + +/// X86FastEmitExtend - Emit a machine instruction to extend a value Src of +/// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. +/// ISD::SIGN_EXTEND). +bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, + unsigned Src, EVT SrcVT, + unsigned &ResultReg) { + unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, + Src, /*TODO: Kill=*/false); + + if (RR != 0) { + ResultReg = RR; + return true; + } else + return false; +} + +/// X86SelectAddress - Attempt to fill in an address from the given value. +/// +bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { + const User *U = NULL; + unsigned Opcode = Instruction::UserOp1; + if (const Instruction *I = dyn_cast<Instruction>(V)) { + Opcode = I->getOpcode(); + U = I; + } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { + Opcode = C->getOpcode(); + U = C; + } + + switch (Opcode) { + default: break; + case Instruction::BitCast: + // Look past bitcasts. + return X86SelectAddress(U->getOperand(0), AM); + + case Instruction::IntToPtr: + // Look past no-op inttoptrs. + if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) + return X86SelectAddress(U->getOperand(0), AM); + break; + + case Instruction::PtrToInt: + // Look past no-op ptrtoints. + if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) + return X86SelectAddress(U->getOperand(0), AM); + break; + + case Instruction::Alloca: { + // Do static allocas. + const AllocaInst *A = cast<AllocaInst>(V); + DenseMap<const AllocaInst*, int>::iterator SI = StaticAllocaMap.find(A); + if (SI != StaticAllocaMap.end()) { + AM.BaseType = X86AddressMode::FrameIndexBase; + AM.Base.FrameIndex = SI->second; + return true; + } + break; + } + + case Instruction::Add: { + // Adds of constants are common and easy enough. + if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { + uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); + // They have to fit in the 32-bit signed displacement field though. + if (isInt<32>(Disp)) { + AM.Disp = (uint32_t)Disp; + return X86SelectAddress(U->getOperand(0), AM); + } + } + break; + } + + case Instruction::GetElementPtr: { + X86AddressMode SavedAM = AM; + + // Pattern-match simple GEPs. + uint64_t Disp = (int32_t)AM.Disp; + unsigned IndexReg = AM.IndexReg; + unsigned Scale = AM.Scale; + gep_type_iterator GTI = gep_type_begin(U); + // Iterate through the indices, folding what we can. Constants can be + // folded, and one dynamic index can be handled, if the scale is supported. + for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); + i != e; ++i, ++GTI) { + const Value *Op = *i; + if (const StructType *STy = dyn_cast<StructType>(*GTI)) { + const StructLayout *SL = TD.getStructLayout(STy); + unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); + Disp += SL->getElementOffset(Idx); + } else { + uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); + if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { + // Constant-offset addressing. + Disp += CI->getSExtValue() * S; + } else if (IndexReg == 0 && + (!AM.GV || !Subtarget->isPICStyleRIPRel()) && + (S == 1 || S == 2 || S == 4 || S == 8)) { + // Scaled-index addressing. + Scale = S; + IndexReg = getRegForGEPIndex(Op).first; + if (IndexReg == 0) + return false; + } else + // Unsupported. + goto unsupported_gep; + } + } + // Check for displacement overflow. + if (!isInt<32>(Disp)) + break; + // Ok, the GEP indices were covered by constant-offset and scaled-index + // addressing. Update the address state and move on to examining the base. + AM.IndexReg = IndexReg; + AM.Scale = Scale; + AM.Disp = (uint32_t)Disp; + if (X86SelectAddress(U->getOperand(0), AM)) + return true; + + // If we couldn't merge the sub value into this addr mode, revert back to + // our address and just match the value instead of completely failing. + AM = SavedAM; + break; + unsupported_gep: + // Ok, the GEP indices weren't all covered. + break; + } + } + + // Handle constant address. + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + // Can't handle alternate code models yet. + if (TM.getCodeModel() != CodeModel::Small) + return false; + + // RIP-relative addresses can't have additional register operands. + if (Subtarget->isPICStyleRIPRel() && + (AM.Base.Reg != 0 || AM.IndexReg != 0)) + return false; + + // Can't handle TLS yet. + if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) + if (GVar->isThreadLocal()) + return false; + + // Okay, we've committed to selecting this global. Set up the basic address. + AM.GV = GV; + + // Allow the subtarget to classify the global. + unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM); + + // If this reference is relative to the pic base, set it now. + if (isGlobalRelativeToPICBase(GVFlags)) { + // FIXME: How do we know Base.Reg is free?? + AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(&MF); + } + + // Unless the ABI requires an extra load, return a direct reference to + // the global. + if (!isGlobalStubReference(GVFlags)) { + if (Subtarget->isPICStyleRIPRel()) { + // Use rip-relative addressing if we can. Above we verified that the + // base and index registers are unused. + assert(AM.Base.Reg == 0 && AM.IndexReg == 0); + AM.Base.Reg = X86::RIP; + } + AM.GVOpFlags = GVFlags; + return true; + } + + // Ok, we need to do a load from a stub. If we've already loaded from this + // stub, reuse the loaded pointer, otherwise emit the load now. + DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V); + unsigned LoadReg; + if (I != LocalValueMap.end() && I->second != 0) { + LoadReg = I->second; + } else { + // Issue load from stub. + unsigned Opc = 0; + const TargetRegisterClass *RC = NULL; + X86AddressMode StubAM; + StubAM.Base.Reg = AM.Base.Reg; + StubAM.GV = GV; + StubAM.GVOpFlags = GVFlags; + + if (TLI.getPointerTy() == MVT::i64) { + Opc = X86::MOV64rm; + RC = X86::GR64RegisterClass; + + if (Subtarget->isPICStyleRIPRel()) + StubAM.Base.Reg = X86::RIP; + } else { + Opc = X86::MOV32rm; + RC = X86::GR32RegisterClass; + } + + LoadReg = createResultReg(RC); + addFullAddress(BuildMI(MBB, DL, TII.get(Opc), LoadReg), StubAM); + + // Prevent loading GV stub multiple times in same MBB. + LocalValueMap[V] = LoadReg; + } + + // Now construct the final address. Note that the Disp, Scale, + // and Index values may already be set here. + AM.Base.Reg = LoadReg; + AM.GV = 0; + return true; + } + + // If all else fails, try to materialize the value in a register. + if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { + if (AM.Base.Reg == 0) { + AM.Base.Reg = getRegForValue(V); + return AM.Base.Reg != 0; + } + if (AM.IndexReg == 0) { + assert(AM.Scale == 1 && "Scale with no index!"); + AM.IndexReg = getRegForValue(V); + return AM.IndexReg != 0; + } + } + + return false; +} + +/// X86SelectCallAddress - Attempt to fill in an address from the given value. +/// +bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { + const User *U = NULL; + unsigned Opcode = Instruction::UserOp1; + if (const Instruction *I = dyn_cast<Instruction>(V)) { + Opcode = I->getOpcode(); + U = I; + } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { + Opcode = C->getOpcode(); + U = C; + } + + switch (Opcode) { + default: break; + case Instruction::BitCast: + // Look past bitcasts. + return X86SelectCallAddress(U->getOperand(0), AM); + + case Instruction::IntToPtr: + // Look past no-op inttoptrs. + if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) + return X86SelectCallAddress(U->getOperand(0), AM); + break; + + case Instruction::PtrToInt: + // Look past no-op ptrtoints. + if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) + return X86SelectCallAddress(U->getOperand(0), AM); + break; + } + + // Handle constant address. + if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { + // Can't handle alternate code models yet. + if (TM.getCodeModel() != CodeModel::Small) + return false; + + // RIP-relative addresses can't have additional register operands. + if (Subtarget->isPICStyleRIPRel() && + (AM.Base.Reg != 0 || AM.IndexReg != 0)) + return false; + + // Can't handle TLS or DLLImport. + if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) + if (GVar->isThreadLocal() || GVar->hasDLLImportLinkage()) + return false; + + // Okay, we've committed to selecting this global. Set up the basic address. + AM.GV = GV; + + // No ABI requires an extra load for anything other than DLLImport, which + // we rejected above. Return a direct reference to the global. + if (Subtarget->isPICStyleRIPRel()) { + // Use rip-relative addressing if we can. Above we verified that the + // base and index registers are unused. + assert(AM.Base.Reg == 0 && AM.IndexReg == 0); + AM.Base.Reg = X86::RIP; + } else if (Subtarget->isPICStyleStubPIC()) { + AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET; + } else if (Subtarget->isPICStyleGOT()) { + AM.GVOpFlags = X86II::MO_GOTOFF; + } + + return true; + } + + // If all else fails, try to materialize the value in a register. + if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { + if (AM.Base.Reg == 0) { + AM.Base.Reg = getRegForValue(V); + return AM.Base.Reg != 0; + } + if (AM.IndexReg == 0) { + assert(AM.Scale == 1 && "Scale with no index!"); + AM.IndexReg = getRegForValue(V); + return AM.IndexReg != 0; + } + } + + return false; +} + + +/// X86SelectStore - Select and emit code to implement store instructions. +bool X86FastISel::X86SelectStore(const Instruction *I) { + EVT VT; + if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true)) + return false; + + X86AddressMode AM; + if (!X86SelectAddress(I->getOperand(1), AM)) + return false; + + return X86FastEmitStore(VT, I->getOperand(0), AM); +} + +/// X86SelectLoad - Select and emit code to implement load instructions. +/// +bool X86FastISel::X86SelectLoad(const Instruction *I) { + EVT VT; + if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true)) + return false; + + X86AddressMode AM; + if (!X86SelectAddress(I->getOperand(0), AM)) + return false; + + unsigned ResultReg = 0; + if (X86FastEmitLoad(VT, AM, ResultReg)) { + UpdateValueMap(I, ResultReg); + return true; + } + return false; +} + +static unsigned X86ChooseCmpOpcode(EVT VT) { + switch (VT.getSimpleVT().SimpleTy) { + default: return 0; + case MVT::i8: return X86::CMP8rr; + case MVT::i16: return X86::CMP16rr; + case MVT::i32: return X86::CMP32rr; + case MVT::i64: return X86::CMP64rr; + case MVT::f32: return X86::UCOMISSrr; + case MVT::f64: return X86::UCOMISDrr; + } +} + +/// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS +/// of the comparison, return an opcode that works for the compare (e.g. +/// CMP32ri) otherwise return 0. +static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { + switch (VT.getSimpleVT().SimpleTy) { + // Otherwise, we can't fold the immediate into this comparison. + default: return 0; + case MVT::i8: return X86::CMP8ri; + case MVT::i16: return X86::CMP16ri; + case MVT::i32: return X86::CMP32ri; + case MVT::i64: + // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext + // field. + if ((int)RHSC->getSExtValue() == RHSC->getSExtValue()) + return X86::CMP64ri32; + return 0; + } +} + +bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, + EVT VT) { + unsigned Op0Reg = getRegForValue(Op0); + if (Op0Reg == 0) return false; + + // Handle 'null' like i32/i64 0. + if (isa<ConstantPointerNull>(Op1)) + Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext())); + + // We have two options: compare with register or immediate. If the RHS of + // the compare is an immediate that we can fold into this compare, use + // CMPri, otherwise use CMPrr. + if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { + if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { + BuildMI(MBB, DL, TII.get(CompareImmOpc)).addReg(Op0Reg) + .addImm(Op1C->getSExtValue()); + return true; + } + } + + unsigned CompareOpc = X86ChooseCmpOpcode(VT); + if (CompareOpc == 0) return false; + + unsigned Op1Reg = getRegForValue(Op1); + if (Op1Reg == 0) return false; + BuildMI(MBB, DL, TII.get(CompareOpc)).addReg(Op0Reg).addReg(Op1Reg); + + return true; +} + +bool X86FastISel::X86SelectCmp(const Instruction *I) { + const CmpInst *CI = cast<CmpInst>(I); + + EVT VT; + if (!isTypeLegal(I->getOperand(0)->getType(), VT)) + return false; + + unsigned ResultReg = createResultReg(&X86::GR8RegClass); + unsigned SetCCOpc; + bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0. + switch (CI->getPredicate()) { + case CmpInst::FCMP_OEQ: { + if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT)) + return false; + + unsigned EReg = createResultReg(&X86::GR8RegClass); + unsigned NPReg = createResultReg(&X86::GR8RegClass); + BuildMI(MBB, DL, TII.get(X86::SETEr), EReg); + BuildMI(MBB, DL, TII.get(X86::SETNPr), NPReg); + BuildMI(MBB, DL, + TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg); + UpdateValueMap(I, ResultReg); + return true; + } + case CmpInst::FCMP_UNE: { + if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT)) + return false; + + unsigned NEReg = createResultReg(&X86::GR8RegClass); + unsigned PReg = createResultReg(&X86::GR8RegClass); + BuildMI(MBB, DL, TII.get(X86::SETNEr), NEReg); + BuildMI(MBB, DL, TII.get(X86::SETPr), PReg); + BuildMI(MBB, DL, TII.get(X86::OR8rr), ResultReg).addReg(PReg).addReg(NEReg); + UpdateValueMap(I, ResultReg); + return true; + } + case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr; break; + case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break; + case CmpInst::FCMP_OLT: SwapArgs = true; SetCCOpc = X86::SETAr; break; + case CmpInst::FCMP_OLE: SwapArgs = true; SetCCOpc = X86::SETAEr; break; + case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break; + case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break; + case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr; break; + case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr; break; + case CmpInst::FCMP_UGT: SwapArgs = true; SetCCOpc = X86::SETBr; break; + case CmpInst::FCMP_UGE: SwapArgs = true; SetCCOpc = X86::SETBEr; break; + case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break; + case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break; + + case CmpInst::ICMP_EQ: SwapArgs = false; SetCCOpc = X86::SETEr; break; + case CmpInst::ICMP_NE: SwapArgs = false; SetCCOpc = X86::SETNEr; break; + case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr; break; + case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break; + case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break; + case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break; + case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr; break; + case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break; + case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr; break; + case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break; + default: + return false; + } + + const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); + if (SwapArgs) + std::swap(Op0, Op1); + + // Emit a compare of Op0/Op1. + if (!X86FastEmitCompare(Op0, Op1, VT)) + return false; + + BuildMI(MBB, DL, TII.get(SetCCOpc), ResultReg); + UpdateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86SelectZExt(const Instruction *I) { + // Handle zero-extension from i1 to i8, which is common. + if (I->getType()->isIntegerTy(8) && + I->getOperand(0)->getType()->isIntegerTy(1)) { + unsigned ResultReg = getRegForValue(I->getOperand(0)); + if (ResultReg == 0) return false; + // Set the high bits to zero. + ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); + if (ResultReg == 0) return false; + UpdateValueMap(I, ResultReg); + return true; + } + + return false; +} + + +bool X86FastISel::X86SelectBranch(const Instruction *I) { + // Unconditional branches are selected by tablegen-generated code. + // Handle a conditional branch. + const BranchInst *BI = cast<BranchInst>(I); + MachineBasicBlock *TrueMBB = MBBMap[BI->getSuccessor(0)]; + MachineBasicBlock *FalseMBB = MBBMap[BI->getSuccessor(1)]; + + // Fold the common case of a conditional branch with a comparison. + if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { + if (CI->hasOneUse()) { + EVT VT = TLI.getValueType(CI->getOperand(0)->getType()); + + // Try to take advantage of fallthrough opportunities. + CmpInst::Predicate Predicate = CI->getPredicate(); + if (MBB->isLayoutSuccessor(TrueMBB)) { + std::swap(TrueMBB, FalseMBB); + Predicate = CmpInst::getInversePredicate(Predicate); + } + + bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0. + unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA" + + switch (Predicate) { + case CmpInst::FCMP_OEQ: + std::swap(TrueMBB, FalseMBB); + Predicate = CmpInst::FCMP_UNE; + // FALL THROUGH + case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break; + case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4; break; + case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break; + case CmpInst::FCMP_OLT: SwapArgs = true; BranchOpc = X86::JA_4; break; + case CmpInst::FCMP_OLE: SwapArgs = true; BranchOpc = X86::JAE_4; break; + case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break; + case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break; + case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4; break; + case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4; break; + case CmpInst::FCMP_UGT: SwapArgs = true; BranchOpc = X86::JB_4; break; + case CmpInst::FCMP_UGE: SwapArgs = true; BranchOpc = X86::JBE_4; break; + case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break; + case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break; + + case CmpInst::ICMP_EQ: SwapArgs = false; BranchOpc = X86::JE_4; break; + case CmpInst::ICMP_NE: SwapArgs = false; BranchOpc = X86::JNE_4; break; + case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4; break; + case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break; + case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break; + case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break; + case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4; break; + case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break; + case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4; break; + case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break; + default: + return false; + } + + const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); + if (SwapArgs) + std::swap(Op0, Op1); + + // Emit a compare of the LHS and RHS, setting the flags. + if (!X86FastEmitCompare(Op0, Op1, VT)) + return false; + + BuildMI(MBB, DL, TII.get(BranchOpc)).addMBB(TrueMBB); + + if (Predicate == CmpInst::FCMP_UNE) { + // X86 requires a second branch to handle UNE (and OEQ, + // which is mapped to UNE above). + BuildMI(MBB, DL, TII.get(X86::JP_4)).addMBB(TrueMBB); + } + + FastEmitBranch(FalseMBB); + MBB->addSuccessor(TrueMBB); + return true; + } + } else if (ExtractValueInst *EI = + dyn_cast<ExtractValueInst>(BI->getCondition())) { + // Check to see if the branch instruction is from an "arithmetic with + // overflow" intrinsic. The main way these intrinsics are used is: + // + // %t = call { i32, i1 } @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2) + // %sum = extractvalue { i32, i1 } %t, 0 + // %obit = extractvalue { i32, i1 } %t, 1 + // br i1 %obit, label %overflow, label %normal + // + // The %sum and %obit are converted in an ADD and a SETO/SETB before + // reaching the branch. Therefore, we search backwards through the MBB + // looking for the SETO/SETB instruction. If an instruction modifies the + // EFLAGS register before we reach the SETO/SETB instruction, then we can't + // convert the branch into a JO/JB instruction. + if (const IntrinsicInst *CI = + dyn_cast<IntrinsicInst>(EI->getAggregateOperand())){ + if (CI->getIntrinsicID() == Intrinsic::sadd_with_overflow || + CI->getIntrinsicID() == Intrinsic::uadd_with_overflow) { + const MachineInstr *SetMI = 0; + unsigned Reg = lookUpRegForValue(EI); + + for (MachineBasicBlock::const_reverse_iterator + RI = MBB->rbegin(), RE = MBB->rend(); RI != RE; ++RI) { + const MachineInstr &MI = *RI; + + if (MI.definesRegister(Reg)) { + unsigned Src, Dst, SrcSR, DstSR; + + if (getInstrInfo()->isMoveInstr(MI, Src, Dst, SrcSR, DstSR)) { + Reg = Src; + continue; + } + + SetMI = &MI; + break; + } + + const TargetInstrDesc &TID = MI.getDesc(); + if (TID.hasUnmodeledSideEffects() || + TID.hasImplicitDefOfPhysReg(X86::EFLAGS)) + break; + } + + if (SetMI) { + unsigned OpCode = SetMI->getOpcode(); + + if (OpCode == X86::SETOr || OpCode == X86::SETBr) { + BuildMI(MBB, DL, TII.get(OpCode == X86::SETOr ? + X86::JO_4 : X86::JB_4)) + .addMBB(TrueMBB); + FastEmitBranch(FalseMBB); + MBB->addSuccessor(TrueMBB); + return true; + } + } + } + } + } + + // Otherwise do a clumsy setcc and re-test it. + unsigned OpReg = getRegForValue(BI->getCondition()); + if (OpReg == 0) return false; + + BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(OpReg).addReg(OpReg); + BuildMI(MBB, DL, TII.get(X86::JNE_4)).addMBB(TrueMBB); + FastEmitBranch(FalseMBB); + MBB->addSuccessor(TrueMBB); + return true; +} + +bool X86FastISel::X86SelectShift(const Instruction *I) { + unsigned CReg = 0, OpReg = 0, OpImm = 0; + const TargetRegisterClass *RC = NULL; + if (I->getType()->isIntegerTy(8)) { + CReg = X86::CL; + RC = &X86::GR8RegClass; + switch (I->getOpcode()) { + case Instruction::LShr: OpReg = X86::SHR8rCL; OpImm = X86::SHR8ri; break; + case Instruction::AShr: OpReg = X86::SAR8rCL; OpImm = X86::SAR8ri; break; + case Instruction::Shl: OpReg = X86::SHL8rCL; OpImm = X86::SHL8ri; break; + default: return false; + } + } else if (I->getType()->isIntegerTy(16)) { + CReg = X86::CX; + RC = &X86::GR16RegClass; + switch (I->getOpcode()) { + case Instruction::LShr: OpReg = X86::SHR16rCL; OpImm = X86::SHR16ri; break; + case Instruction::AShr: OpReg = X86::SAR16rCL; OpImm = X86::SAR16ri; break; + case Instruction::Shl: OpReg = X86::SHL16rCL; OpImm = X86::SHL16ri; break; + default: return false; + } + } else if (I->getType()->isIntegerTy(32)) { + CReg = X86::ECX; + RC = &X86::GR32RegClass; + switch (I->getOpcode()) { + case Instruction::LShr: OpReg = X86::SHR32rCL; OpImm = X86::SHR32ri; break; + case Instruction::AShr: OpReg = X86::SAR32rCL; OpImm = X86::SAR32ri; break; + case Instruction::Shl: OpReg = X86::SHL32rCL; OpImm = X86::SHL32ri; break; + default: return false; + } + } else if (I->getType()->isIntegerTy(64)) { + CReg = X86::RCX; + RC = &X86::GR64RegClass; + switch (I->getOpcode()) { + case Instruction::LShr: OpReg = X86::SHR64rCL; OpImm = X86::SHR64ri; break; + case Instruction::AShr: OpReg = X86::SAR64rCL; OpImm = X86::SAR64ri; break; + case Instruction::Shl: OpReg = X86::SHL64rCL; OpImm = X86::SHL64ri; break; + default: return false; + } + } else { + return false; + } + + EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true); + if (VT == MVT::Other || !isTypeLegal(I->getType(), VT)) + return false; + + unsigned Op0Reg = getRegForValue(I->getOperand(0)); + if (Op0Reg == 0) return false; + + // Fold immediate in shl(x,3). + if (const ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { + unsigned ResultReg = createResultReg(RC); + BuildMI(MBB, DL, TII.get(OpImm), + ResultReg).addReg(Op0Reg).addImm(CI->getZExtValue() & 0xff); + UpdateValueMap(I, ResultReg); + return true; + } + + unsigned Op1Reg = getRegForValue(I->getOperand(1)); + if (Op1Reg == 0) return false; + TII.copyRegToReg(*MBB, MBB->end(), CReg, Op1Reg, RC, RC, DL); + + // The shift instruction uses X86::CL. If we defined a super-register + // of X86::CL, emit an EXTRACT_SUBREG to precisely describe what + // we're doing here. + if (CReg != X86::CL) + BuildMI(MBB, DL, TII.get(TargetOpcode::EXTRACT_SUBREG), X86::CL) + .addReg(CReg).addImm(X86::sub_8bit); + + unsigned ResultReg = createResultReg(RC); + BuildMI(MBB, DL, TII.get(OpReg), ResultReg).addReg(Op0Reg); + UpdateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86SelectSelect(const Instruction *I) { + EVT VT = TLI.getValueType(I->getType(), /*HandleUnknown=*/true); + if (VT == MVT::Other || !isTypeLegal(I->getType(), VT)) + return false; + + unsigned Opc = 0; + const TargetRegisterClass *RC = NULL; + if (VT.getSimpleVT() == MVT::i16) { + Opc = X86::CMOVE16rr; + RC = &X86::GR16RegClass; + } else if (VT.getSimpleVT() == MVT::i32) { + Opc = X86::CMOVE32rr; + RC = &X86::GR32RegClass; + } else if (VT.getSimpleVT() == MVT::i64) { + Opc = X86::CMOVE64rr; + RC = &X86::GR64RegClass; + } else { + return false; + } + + unsigned Op0Reg = getRegForValue(I->getOperand(0)); + if (Op0Reg == 0) return false; + unsigned Op1Reg = getRegForValue(I->getOperand(1)); + if (Op1Reg == 0) return false; + unsigned Op2Reg = getRegForValue(I->getOperand(2)); + if (Op2Reg == 0) return false; + + BuildMI(MBB, DL, TII.get(X86::TEST8rr)).addReg(Op0Reg).addReg(Op0Reg); + unsigned ResultReg = createResultReg(RC); + BuildMI(MBB, DL, TII.get(Opc), ResultReg).addReg(Op1Reg).addReg(Op2Reg); + UpdateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86SelectFPExt(const Instruction *I) { + // fpext from float to double. + if (Subtarget->hasSSE2() && + I->getType()->isDoubleTy()) { + const Value *V = I->getOperand(0); + if (V->getType()->isFloatTy()) { + unsigned OpReg = getRegForValue(V); + if (OpReg == 0) return false; + unsigned ResultReg = createResultReg(X86::FR64RegisterClass); + BuildMI(MBB, DL, TII.get(X86::CVTSS2SDrr), ResultReg).addReg(OpReg); + UpdateValueMap(I, ResultReg); + return true; + } + } + + return false; +} + +bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { + if (Subtarget->hasSSE2()) { + if (I->getType()->isFloatTy()) { + const Value *V = I->getOperand(0); + if (V->getType()->isDoubleTy()) { + unsigned OpReg = getRegForValue(V); + if (OpReg == 0) return false; + unsigned ResultReg = createResultReg(X86::FR32RegisterClass); + BuildMI(MBB, DL, TII.get(X86::CVTSD2SSrr), ResultReg).addReg(OpReg); + UpdateValueMap(I, ResultReg); + return true; + } + } + } + + return false; +} + +bool X86FastISel::X86SelectTrunc(const Instruction *I) { + if (Subtarget->is64Bit()) + // All other cases should be handled by the tblgen generated code. + return false; + EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(I->getType()); + + // This code only handles truncation to byte right now. + if (DstVT != MVT::i8 && DstVT != MVT::i1) + // All other cases should be handled by the tblgen generated code. + return false; + if (SrcVT != MVT::i16 && SrcVT != MVT::i32) + // All other cases should be handled by the tblgen generated code. + return false; + + unsigned InputReg = getRegForValue(I->getOperand(0)); + if (!InputReg) + // Unhandled operand. Halt "fast" selection and bail. + return false; + + // First issue a copy to GR16_ABCD or GR32_ABCD. + unsigned CopyOpc = (SrcVT == MVT::i16) ? X86::MOV16rr : X86::MOV32rr; + const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) + ? X86::GR16_ABCDRegisterClass : X86::GR32_ABCDRegisterClass; + unsigned CopyReg = createResultReg(CopyRC); + BuildMI(MBB, DL, TII.get(CopyOpc), CopyReg).addReg(InputReg); + + // Then issue an extract_subreg. + unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8, + CopyReg, /*Kill=*/true, + X86::sub_8bit); + if (!ResultReg) + return false; + + UpdateValueMap(I, ResultReg); + return true; +} + +bool X86FastISel::X86SelectExtractValue(const Instruction *I) { + const ExtractValueInst *EI = cast<ExtractValueInst>(I); + const Value *Agg = EI->getAggregateOperand(); + + if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(Agg)) { + switch (CI->getIntrinsicID()) { + default: break; + case Intrinsic::sadd_with_overflow: + case Intrinsic::uadd_with_overflow: + // Cheat a little. We know that the registers for "add" and "seto" are + // allocated sequentially. However, we only keep track of the register + // for "add" in the value map. Use extractvalue's index to get the + // correct register for "seto". + UpdateValueMap(I, lookUpRegForValue(Agg) + *EI->idx_begin()); + return true; + } + } + + return false; +} + +bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { + // FIXME: Handle more intrinsics. + switch (I.getIntrinsicID()) { + default: return false; + case Intrinsic::stackprotector: { + // Emit code inline code to store the stack guard onto the stack. + EVT PtrTy = TLI.getPointerTy(); + + const Value *Op1 = I.getOperand(1); // The guard's value. + const AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2)); + + // Grab the frame index. + X86AddressMode AM; + if (!X86SelectAddress(Slot, AM)) return false; + + if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; + + return true; + } + case Intrinsic::objectsize: { + ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(2)); + const Type *Ty = I.getCalledFunction()->getReturnType(); + + assert(CI && "Non-constant type in Intrinsic::objectsize?"); + + EVT VT; + if (!isTypeLegal(Ty, VT)) + return false; + + unsigned OpC = 0; + if (VT == MVT::i32) + OpC = X86::MOV32ri; + else if (VT == MVT::i64) + OpC = X86::MOV64ri; + else + return false; + + unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); + BuildMI(MBB, DL, TII.get(OpC), ResultReg). + addImm(CI->getZExtValue() == 0 ? -1ULL : 0); + UpdateValueMap(&I, ResultReg); + return true; + } + case Intrinsic::dbg_declare: { + const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I); + X86AddressMode AM; + assert(DI->getAddress() && "Null address should be checked earlier!"); + if (!X86SelectAddress(DI->getAddress(), AM)) + return false; + const TargetInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); + // FIXME may need to add RegState::Debug to any registers produced, + // although ESP/EBP should be the only ones at the moment. + addFullAddress(BuildMI(MBB, DL, II), AM).addImm(0). + addMetadata(DI->getVariable()); + return true; + } + case Intrinsic::trap: { + BuildMI(MBB, DL, TII.get(X86::TRAP)); + return true; + } + case Intrinsic::sadd_with_overflow: + case Intrinsic::uadd_with_overflow: { + // Replace "add with overflow" intrinsics with an "add" instruction followed + // by a seto/setc instruction. Later on, when the "extractvalue" + // instructions are encountered, we use the fact that two registers were + // created sequentially to get the correct registers for the "sum" and the + // "overflow bit". + const Function *Callee = I.getCalledFunction(); + const Type *RetTy = + cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0)); + + EVT VT; + if (!isTypeLegal(RetTy, VT)) + return false; + + const Value *Op1 = I.getOperand(1); + const Value *Op2 = I.getOperand(2); + unsigned Reg1 = getRegForValue(Op1); + unsigned Reg2 = getRegForValue(Op2); + + if (Reg1 == 0 || Reg2 == 0) + // FIXME: Handle values *not* in registers. + return false; + + unsigned OpC = 0; + if (VT == MVT::i32) + OpC = X86::ADD32rr; + else if (VT == MVT::i64) + OpC = X86::ADD64rr; + else + return false; + + unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT)); + BuildMI(MBB, DL, TII.get(OpC), ResultReg).addReg(Reg1).addReg(Reg2); + unsigned DestReg1 = UpdateValueMap(&I, ResultReg); + + // If the add with overflow is an intra-block value then we just want to + // create temporaries for it like normal. If it is a cross-block value then + // UpdateValueMap will return the cross-block register used. Since we + // *really* want the value to be live in the register pair known by + // UpdateValueMap, we have to use DestReg1+1 as the destination register in + // the cross block case. In the non-cross-block case, we should just make + // another register for the value. + if (DestReg1 != ResultReg) + ResultReg = DestReg1+1; + else + ResultReg = createResultReg(TLI.getRegClassFor(MVT::i8)); + + unsigned Opc = X86::SETBr; + if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow) + Opc = X86::SETOr; + BuildMI(MBB, DL, TII.get(Opc), ResultReg); + return true; + } + } +} + +bool X86FastISel::X86SelectCall(const Instruction *I) { + const CallInst *CI = cast<CallInst>(I); + const Value *Callee = I->getOperand(0); + + // Can't handle inline asm yet. + if (isa<InlineAsm>(Callee)) + return false; + + // Handle intrinsic calls. + if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) + return X86VisitIntrinsicCall(*II); + + // Handle only C and fastcc calling conventions for now. + ImmutableCallSite CS(CI); + CallingConv::ID CC = CS.getCallingConv(); + if (CC != CallingConv::C && + CC != CallingConv::Fast && + CC != CallingConv::X86_FastCall) + return false; + + // fastcc with -tailcallopt is intended to provide a guaranteed + // tail call optimization. Fastisel doesn't know how to do that. + if (CC == CallingConv::Fast && GuaranteedTailCallOpt) + return false; + + // Let SDISel handle vararg functions. + const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); + const FunctionType *FTy = cast<FunctionType>(PT->getElementType()); + if (FTy->isVarArg()) + return false; + + // Handle *simple* calls for now. + const Type *RetTy = CS.getType(); + EVT RetVT; + if (RetTy->isVoidTy()) + RetVT = MVT::isVoid; + else if (!isTypeLegal(RetTy, RetVT, true)) + return false; + + // Materialize callee address in a register. FIXME: GV address can be + // handled with a CALLpcrel32 instead. + X86AddressMode CalleeAM; + if (!X86SelectCallAddress(Callee, CalleeAM)) + return false; + unsigned CalleeOp = 0; + const GlobalValue *GV = 0; + if (CalleeAM.GV != 0) { + GV = CalleeAM.GV; + } else if (CalleeAM.Base.Reg != 0) { + CalleeOp = CalleeAM.Base.Reg; + } else + return false; + + // Allow calls which produce i1 results. + bool AndToI1 = false; + if (RetVT == MVT::i1) { + RetVT = MVT::i8; + AndToI1 = true; + } + + // Deal with call operands first. + SmallVector<const Value *, 8> ArgVals; + SmallVector<unsigned, 8> Args; + SmallVector<EVT, 8> ArgVTs; + SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; + Args.reserve(CS.arg_size()); + ArgVals.reserve(CS.arg_size()); + ArgVTs.reserve(CS.arg_size()); + ArgFlags.reserve(CS.arg_size()); + for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); + i != e; ++i) { + unsigned Arg = getRegForValue(*i); + if (Arg == 0) + return false; + ISD::ArgFlagsTy Flags; + unsigned AttrInd = i - CS.arg_begin() + 1; + if (CS.paramHasAttr(AttrInd, Attribute::SExt)) + Flags.setSExt(); + if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) + Flags.setZExt(); + + // FIXME: Only handle *easy* calls for now. + if (CS.paramHasAttr(AttrInd, Attribute::InReg) || + CS.paramHasAttr(AttrInd, Attribute::StructRet) || + CS.paramHasAttr(AttrInd, Attribute::Nest) || + CS.paramHasAttr(AttrInd, Attribute::ByVal)) + return false; + + const Type *ArgTy = (*i)->getType(); + EVT ArgVT; + if (!isTypeLegal(ArgTy, ArgVT)) + return false; + unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); + Flags.setOrigAlign(OriginalAlignment); + + Args.push_back(Arg); + ArgVals.push_back(*i); + ArgVTs.push_back(ArgVT); + ArgFlags.push_back(Flags); + } + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CC, false, TM, ArgLocs, I->getParent()->getContext()); + CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CCAssignFnForCall(CC)); + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = CCInfo.getNextStackOffset(); + + // Issue CALLSEQ_START + unsigned AdjStackDown = TM.getRegisterInfo()->getCallFrameSetupOpcode(); + BuildMI(MBB, DL, TII.get(AdjStackDown)).addImm(NumBytes); + + // Process argument: walk the register/memloc assignments, inserting + // copies / loads. + SmallVector<unsigned, 4> RegArgs; + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + unsigned Arg = Args[VA.getValNo()]; + EVT ArgVT = ArgVTs[VA.getValNo()]; + + // Promote the value if needed. + switch (VA.getLocInfo()) { + default: llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: break; + case CCValAssign::SExt: { + bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), + Arg, ArgVT, Arg); + assert(Emitted && "Failed to emit a sext!"); Emitted=Emitted; + Emitted = true; + ArgVT = VA.getLocVT(); + break; + } + case CCValAssign::ZExt: { + bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), + Arg, ArgVT, Arg); + assert(Emitted && "Failed to emit a zext!"); Emitted=Emitted; + Emitted = true; + ArgVT = VA.getLocVT(); + break; + } + case CCValAssign::AExt: { + bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), + Arg, ArgVT, Arg); + if (!Emitted) + Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), + Arg, ArgVT, Arg); + if (!Emitted) + Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), + Arg, ArgVT, Arg); + + assert(Emitted && "Failed to emit a aext!"); Emitted=Emitted; + ArgVT = VA.getLocVT(); + break; + } + case CCValAssign::BCvt: { + unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT().getSimpleVT(), + ISD::BIT_CONVERT, Arg, /*TODO: Kill=*/false); + assert(BC != 0 && "Failed to emit a bitcast!"); + Arg = BC; + ArgVT = VA.getLocVT(); + break; + } + } + + if (VA.isRegLoc()) { + TargetRegisterClass* RC = TLI.getRegClassFor(ArgVT); + bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), VA.getLocReg(), + Arg, RC, RC, DL); + assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted; + Emitted = true; + RegArgs.push_back(VA.getLocReg()); + } else { + unsigned LocMemOffset = VA.getLocMemOffset(); + X86AddressMode AM; + AM.Base.Reg = StackPtr; + AM.Disp = LocMemOffset; + const Value *ArgVal = ArgVals[VA.getValNo()]; + + // If this is a really simple value, emit this with the Value* version of + // X86FastEmitStore. If it isn't simple, we don't want to do this, as it + // can cause us to reevaluate the argument. + if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) + X86FastEmitStore(ArgVT, ArgVal, AM); + else + X86FastEmitStore(ArgVT, Arg, AM); + } + } + + // ELF / PIC requires GOT in the EBX register before function calls via PLT + // GOT pointer. + if (Subtarget->isPICStyleGOT()) { + TargetRegisterClass *RC = X86::GR32RegisterClass; + unsigned Base = getInstrInfo()->getGlobalBaseReg(&MF); + bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), X86::EBX, Base, RC, RC, + DL); + assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted; + Emitted = true; + } + + // Issue the call. + MachineInstrBuilder MIB; + if (CalleeOp) { + // Register-indirect call. + unsigned CallOpc = Subtarget->is64Bit() ? X86::CALL64r : X86::CALL32r; + MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addReg(CalleeOp); + + } else { + // Direct call. + assert(GV && "Not a direct call"); + unsigned CallOpc = + Subtarget->is64Bit() ? X86::CALL64pcrel32 : X86::CALLpcrel32; + + // See if we need any target-specific flags on the GV operand. + unsigned char OpFlags = 0; + + // On ELF targets, in both X86-64 and X86-32 mode, direct calls to + // external symbols most go through the PLT in PIC mode. If the symbol + // has hidden or protected visibility, or if it is static or local, then + // we don't need to use the PLT - we can directly call it. + if (Subtarget->isTargetELF() && + TM.getRelocationModel() == Reloc::PIC_ && + GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { + OpFlags = X86II::MO_PLT; + } else if (Subtarget->isPICStyleStubAny() && + (GV->isDeclaration() || GV->isWeakForLinker()) && + Subtarget->getDarwinVers() < 9) { + // PC-relative references to external symbols should go through $stub, + // unless we're building with the leopard linker or later, which + // automatically synthesizes these stubs. + OpFlags = X86II::MO_DARWIN_STUB; + } + + + MIB = BuildMI(MBB, DL, TII.get(CallOpc)).addGlobalAddress(GV, 0, OpFlags); + } + + // Add an implicit use GOT pointer in EBX. + if (Subtarget->isPICStyleGOT()) + MIB.addReg(X86::EBX); + + // Add implicit physical register uses to the call. + for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) + MIB.addReg(RegArgs[i]); + + // Issue CALLSEQ_END + unsigned AdjStackUp = TM.getRegisterInfo()->getCallFrameDestroyOpcode(); + BuildMI(MBB, DL, TII.get(AdjStackUp)).addImm(NumBytes).addImm(0); + + // Now handle call return value (if any). + if (RetVT.getSimpleVT().SimpleTy != MVT::isVoid) { + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CC, false, TM, RVLocs, I->getParent()->getContext()); + CCInfo.AnalyzeCallResult(RetVT, RetCC_X86); + + // Copy all of the result registers out of their specified physreg. + assert(RVLocs.size() == 1 && "Can't handle multi-value calls!"); + EVT CopyVT = RVLocs[0].getValVT(); + TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); + TargetRegisterClass *SrcRC = DstRC; + + // If this is a call to a function that returns an fp value on the x87 fp + // stack, but where we prefer to use the value in xmm registers, copy it + // out as F80 and use a truncate to move it from fp stack reg to xmm reg. + if ((RVLocs[0].getLocReg() == X86::ST0 || + RVLocs[0].getLocReg() == X86::ST1) && + isScalarFPTypeInSSEReg(RVLocs[0].getValVT())) { + CopyVT = MVT::f80; + SrcRC = X86::RSTRegisterClass; + DstRC = X86::RFP80RegisterClass; + } + + unsigned ResultReg = createResultReg(DstRC); + bool Emitted = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, + RVLocs[0].getLocReg(), DstRC, SrcRC, DL); + assert(Emitted && "Failed to emit a copy instruction!"); Emitted=Emitted; + Emitted = true; + if (CopyVT != RVLocs[0].getValVT()) { + // Round the F80 the right size, which also moves to the appropriate xmm + // register. This is accomplished by storing the F80 value in memory and + // then loading it back. Ewww... + EVT ResVT = RVLocs[0].getValVT(); + unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; + unsigned MemSize = ResVT.getSizeInBits()/8; + int FI = MFI.CreateStackObject(MemSize, MemSize, false); + addFrameReference(BuildMI(MBB, DL, TII.get(Opc)), FI).addReg(ResultReg); + DstRC = ResVT == MVT::f32 + ? X86::FR32RegisterClass : X86::FR64RegisterClass; + Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm; + ResultReg = createResultReg(DstRC); + addFrameReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), FI); + } + + if (AndToI1) { + // Mask out all but lowest bit for some call which produces an i1. + unsigned AndResult = createResultReg(X86::GR8RegisterClass); + BuildMI(MBB, DL, + TII.get(X86::AND8ri), AndResult).addReg(ResultReg).addImm(1); + ResultReg = AndResult; + } + + UpdateValueMap(I, ResultReg); + } + + return true; +} + + +bool +X86FastISel::TargetSelectInstruction(const Instruction *I) { + switch (I->getOpcode()) { + default: break; + case Instruction::Load: + return X86SelectLoad(I); + case Instruction::Store: + return X86SelectStore(I); + case Instruction::ICmp: + case Instruction::FCmp: + return X86SelectCmp(I); + case Instruction::ZExt: + return X86SelectZExt(I); + case Instruction::Br: + return X86SelectBranch(I); + case Instruction::Call: + return X86SelectCall(I); + case Instruction::LShr: + case Instruction::AShr: + case Instruction::Shl: + return X86SelectShift(I); + case Instruction::Select: + return X86SelectSelect(I); + case Instruction::Trunc: + return X86SelectTrunc(I); + case Instruction::FPExt: + return X86SelectFPExt(I); + case Instruction::FPTrunc: + return X86SelectFPTrunc(I); + case Instruction::ExtractValue: + return X86SelectExtractValue(I); + case Instruction::IntToPtr: // Deliberate fall-through. + case Instruction::PtrToInt: { + EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); + EVT DstVT = TLI.getValueType(I->getType()); + if (DstVT.bitsGT(SrcVT)) + return X86SelectZExt(I); + if (DstVT.bitsLT(SrcVT)) + return X86SelectTrunc(I); + unsigned Reg = getRegForValue(I->getOperand(0)); + if (Reg == 0) return false; + UpdateValueMap(I, Reg); + return true; + } + } + + return false; +} + +unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) { + EVT VT; + if (!isTypeLegal(C->getType(), VT)) + return false; + + // Get opcode and regclass of the output for the given load instruction. + unsigned Opc = 0; + const TargetRegisterClass *RC = NULL; + switch (VT.getSimpleVT().SimpleTy) { + default: return false; + case MVT::i8: + Opc = X86::MOV8rm; + RC = X86::GR8RegisterClass; + break; + case MVT::i16: + Opc = X86::MOV16rm; + RC = X86::GR16RegisterClass; + break; + case MVT::i32: + Opc = X86::MOV32rm; + RC = X86::GR32RegisterClass; + break; + case MVT::i64: + // Must be in x86-64 mode. + Opc = X86::MOV64rm; + RC = X86::GR64RegisterClass; + break; + case MVT::f32: + if (Subtarget->hasSSE1()) { + Opc = X86::MOVSSrm; + RC = X86::FR32RegisterClass; + } else { + Opc = X86::LD_Fp32m; + RC = X86::RFP32RegisterClass; + } + break; + case MVT::f64: + if (Subtarget->hasSSE2()) { + Opc = X86::MOVSDrm; + RC = X86::FR64RegisterClass; + } else { + Opc = X86::LD_Fp64m; + RC = X86::RFP64RegisterClass; + } + break; + case MVT::f80: + // No f80 support yet. + return false; + } + + // Materialize addresses with LEA instructions. + if (isa<GlobalValue>(C)) { + X86AddressMode AM; + if (X86SelectAddress(C, AM)) { + if (TLI.getPointerTy() == MVT::i32) + Opc = X86::LEA32r; + else + Opc = X86::LEA64r; + unsigned ResultReg = createResultReg(RC); + addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM); + return ResultReg; + } + return 0; + } + + // MachineConstantPool wants an explicit alignment. + unsigned Align = TD.getPrefTypeAlignment(C->getType()); + if (Align == 0) { + // Alignment of vector types. FIXME! + Align = TD.getTypeAllocSize(C->getType()); + } + + // x86-32 PIC requires a PIC base register for constant pools. + unsigned PICBase = 0; + unsigned char OpFlag = 0; + if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic + OpFlag = X86II::MO_PIC_BASE_OFFSET; + PICBase = getInstrInfo()->getGlobalBaseReg(&MF); + } else if (Subtarget->isPICStyleGOT()) { + OpFlag = X86II::MO_GOTOFF; + PICBase = getInstrInfo()->getGlobalBaseReg(&MF); + } else if (Subtarget->isPICStyleRIPRel() && + TM.getCodeModel() == CodeModel::Small) { + PICBase = X86::RIP; + } + + // Create the load from the constant pool. + unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align); + unsigned ResultReg = createResultReg(RC); + addConstantPoolReference(BuildMI(MBB, DL, TII.get(Opc), ResultReg), + MCPOffset, PICBase, OpFlag); + + return ResultReg; +} + +unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) { + // Fail on dynamic allocas. At this point, getRegForValue has already + // checked its CSE maps, so if we're here trying to handle a dynamic + // alloca, we're not going to succeed. X86SelectAddress has a + // check for dynamic allocas, because it's called directly from + // various places, but TargetMaterializeAlloca also needs a check + // in order to avoid recursion between getRegForValue, + // X86SelectAddrss, and TargetMaterializeAlloca. + if (!StaticAllocaMap.count(C)) + return 0; + + X86AddressMode AM; + if (!X86SelectAddress(C, AM)) + return 0; + unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; + TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy()); + unsigned ResultReg = createResultReg(RC); + addLeaAddress(BuildMI(MBB, DL, TII.get(Opc), ResultReg), AM); + return ResultReg; +} + +namespace llvm { + llvm::FastISel *X86::createFastISel(MachineFunction &mf, + DenseMap<const Value *, unsigned> &vm, + DenseMap<const BasicBlock *, MachineBasicBlock *> &bm, + DenseMap<const AllocaInst *, int> &am, + std::vector<std::pair<MachineInstr*, unsigned> > &pn +#ifndef NDEBUG + , SmallSet<const Instruction *, 8> &cil +#endif + ) { + return new X86FastISel(mf, vm, bm, am, pn +#ifndef NDEBUG + , cil +#endif + ); + } +} |