diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp | 887 |
1 files changed, 887 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp b/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp new file mode 100644 index 0000000..8f02604 --- /dev/null +++ b/contrib/llvm/lib/Target/X86/X86CodeEmitter.cpp @@ -0,0 +1,887 @@ +//===-- X86/X86CodeEmitter.cpp - Convert X86 code to machine code ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the pass that transforms the X86 machine instructions into +// relocatable machine code. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "x86-emitter" +#include "X86InstrInfo.h" +#include "X86JITInfo.h" +#include "X86Subtarget.h" +#include "X86TargetMachine.h" +#include "X86Relocations.h" +#include "X86.h" +#include "llvm/LLVMContext.h" +#include "llvm/PassManager.h" +#include "llvm/CodeGen/JITCodeEmitter.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Function.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/MC/MCCodeEmitter.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCInst.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetOptions.h" +using namespace llvm; + +STATISTIC(NumEmitted, "Number of machine instructions emitted"); + +namespace { + template<class CodeEmitter> + class Emitter : public MachineFunctionPass { + const X86InstrInfo *II; + const TargetData *TD; + X86TargetMachine &TM; + CodeEmitter &MCE; + MachineModuleInfo *MMI; + intptr_t PICBaseOffset; + bool Is64BitMode; + bool IsPIC; + public: + static char ID; + explicit Emitter(X86TargetMachine &tm, CodeEmitter &mce) + : MachineFunctionPass(&ID), II(0), TD(0), TM(tm), + MCE(mce), PICBaseOffset(0), Is64BitMode(false), + IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} + Emitter(X86TargetMachine &tm, CodeEmitter &mce, + const X86InstrInfo &ii, const TargetData &td, bool is64) + : MachineFunctionPass(&ID), II(&ii), TD(&td), TM(tm), + MCE(mce), PICBaseOffset(0), Is64BitMode(is64), + IsPIC(TM.getRelocationModel() == Reloc::PIC_) {} + + bool runOnMachineFunction(MachineFunction &MF); + + virtual const char *getPassName() const { + return "X86 Machine Code Emitter"; + } + + void emitInstruction(const MachineInstr &MI, + const TargetInstrDesc *Desc); + + void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<MachineModuleInfo>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + private: + void emitPCRelativeBlockAddress(MachineBasicBlock *MBB); + void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc, + intptr_t Disp = 0, intptr_t PCAdj = 0, + bool Indirect = false); + void emitExternalSymbolAddress(const char *ES, unsigned Reloc); + void emitConstPoolAddress(unsigned CPI, unsigned Reloc, intptr_t Disp = 0, + intptr_t PCAdj = 0); + void emitJumpTableAddress(unsigned JTI, unsigned Reloc, + intptr_t PCAdj = 0); + + void emitDisplacementField(const MachineOperand *RelocOp, int DispVal, + intptr_t Adj = 0, bool IsPCRel = true); + + void emitRegModRMByte(unsigned ModRMReg, unsigned RegOpcodeField); + void emitRegModRMByte(unsigned RegOpcodeField); + void emitSIBByte(unsigned SS, unsigned Index, unsigned Base); + void emitConstant(uint64_t Val, unsigned Size); + + void emitMemModRMByte(const MachineInstr &MI, + unsigned Op, unsigned RegOpcodeField, + intptr_t PCAdj = 0); + + unsigned getX86RegNum(unsigned RegNo) const; + }; + +template<class CodeEmitter> + char Emitter<CodeEmitter>::ID = 0; +} // end anonymous namespace. + +/// createX86CodeEmitterPass - Return a pass that emits the collected X86 code +/// to the specified templated MachineCodeEmitter object. +FunctionPass *llvm::createX86JITCodeEmitterPass(X86TargetMachine &TM, + JITCodeEmitter &JCE) { + return new Emitter<JITCodeEmitter>(TM, JCE); +} + +template<class CodeEmitter> +bool Emitter<CodeEmitter>::runOnMachineFunction(MachineFunction &MF) { + MMI = &getAnalysis<MachineModuleInfo>(); + MCE.setModuleInfo(MMI); + + II = TM.getInstrInfo(); + TD = TM.getTargetData(); + Is64BitMode = TM.getSubtarget<X86Subtarget>().is64Bit(); + IsPIC = TM.getRelocationModel() == Reloc::PIC_; + + do { + DEBUG(dbgs() << "JITTing function '" + << MF.getFunction()->getName() << "'\n"); + MCE.startFunction(MF); + for (MachineFunction::iterator MBB = MF.begin(), E = MF.end(); + MBB != E; ++MBB) { + MCE.StartMachineBasicBlock(MBB); + for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end(); + I != E; ++I) { + const TargetInstrDesc &Desc = I->getDesc(); + emitInstruction(*I, &Desc); + // MOVPC32r is basically a call plus a pop instruction. + if (Desc.getOpcode() == X86::MOVPC32r) + emitInstruction(*I, &II->get(X86::POP32r)); + NumEmitted++; // Keep track of the # of mi's emitted + } + } + } while (MCE.finishFunction(MF)); + + return false; +} + +/// emitPCRelativeBlockAddress - This method keeps track of the information +/// necessary to resolve the address of this block later and emits a dummy +/// value. +/// +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitPCRelativeBlockAddress(MachineBasicBlock *MBB) { + // Remember where this reference was and where it is to so we can + // deal with it later. + MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(), + X86::reloc_pcrel_word, MBB)); + MCE.emitWordLE(0); +} + +/// emitGlobalAddress - Emit the specified address to the code stream assuming +/// this is part of a "take the address of a global" instruction. +/// +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitGlobalAddress(const GlobalValue *GV, + unsigned Reloc, + intptr_t Disp /* = 0 */, + intptr_t PCAdj /* = 0 */, + bool Indirect /* = false */) { + intptr_t RelocCST = Disp; + if (Reloc == X86::reloc_picrel_word) + RelocCST = PICBaseOffset; + else if (Reloc == X86::reloc_pcrel_word) + RelocCST = PCAdj; + MachineRelocation MR = Indirect + ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc, + const_cast<GlobalValue *>(GV), + RelocCST, false) + : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc, + const_cast<GlobalValue *>(GV), RelocCST, false); + MCE.addRelocation(MR); + // The relocated value will be added to the displacement + if (Reloc == X86::reloc_absolute_dword) + MCE.emitDWordLE(Disp); + else + MCE.emitWordLE((int32_t)Disp); +} + +/// emitExternalSymbolAddress - Arrange for the address of an external symbol to +/// be emitted to the current location in the function, and allow it to be PC +/// relative. +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitExternalSymbolAddress(const char *ES, + unsigned Reloc) { + intptr_t RelocCST = (Reloc == X86::reloc_picrel_word) ? PICBaseOffset : 0; + + // X86 never needs stubs because instruction selection will always pick + // an instruction sequence that is large enough to hold any address + // to a symbol. + // (see X86ISelLowering.cpp, near 2039: X86TargetLowering::LowerCall) + bool NeedStub = false; + MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(), + Reloc, ES, RelocCST, + 0, NeedStub)); + if (Reloc == X86::reloc_absolute_dword) + MCE.emitDWordLE(0); + else + MCE.emitWordLE(0); +} + +/// emitConstPoolAddress - Arrange for the address of an constant pool +/// to be emitted to the current location in the function, and allow it to be PC +/// relative. +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitConstPoolAddress(unsigned CPI, unsigned Reloc, + intptr_t Disp /* = 0 */, + intptr_t PCAdj /* = 0 */) { + intptr_t RelocCST = 0; + if (Reloc == X86::reloc_picrel_word) + RelocCST = PICBaseOffset; + else if (Reloc == X86::reloc_pcrel_word) + RelocCST = PCAdj; + MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(), + Reloc, CPI, RelocCST)); + // The relocated value will be added to the displacement + if (Reloc == X86::reloc_absolute_dword) + MCE.emitDWordLE(Disp); + else + MCE.emitWordLE((int32_t)Disp); +} + +/// emitJumpTableAddress - Arrange for the address of a jump table to +/// be emitted to the current location in the function, and allow it to be PC +/// relative. +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitJumpTableAddress(unsigned JTI, unsigned Reloc, + intptr_t PCAdj /* = 0 */) { + intptr_t RelocCST = 0; + if (Reloc == X86::reloc_picrel_word) + RelocCST = PICBaseOffset; + else if (Reloc == X86::reloc_pcrel_word) + RelocCST = PCAdj; + MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(), + Reloc, JTI, RelocCST)); + // The relocated value will be added to the displacement + if (Reloc == X86::reloc_absolute_dword) + MCE.emitDWordLE(0); + else + MCE.emitWordLE(0); +} + +template<class CodeEmitter> +unsigned Emitter<CodeEmitter>::getX86RegNum(unsigned RegNo) const { + return X86RegisterInfo::getX86RegNum(RegNo); +} + +inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, + unsigned RM) { + assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); + return RM | (RegOpcode << 3) | (Mod << 6); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitRegModRMByte(unsigned ModRMReg, + unsigned RegOpcodeFld){ + MCE.emitByte(ModRMByte(3, RegOpcodeFld, getX86RegNum(ModRMReg))); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitRegModRMByte(unsigned RegOpcodeFld) { + MCE.emitByte(ModRMByte(3, RegOpcodeFld, 0)); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitSIBByte(unsigned SS, + unsigned Index, + unsigned Base) { + // SIB byte is in the same format as the ModRMByte... + MCE.emitByte(ModRMByte(SS, Index, Base)); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitConstant(uint64_t Val, unsigned Size) { + // Output the constant in little endian byte order... + for (unsigned i = 0; i != Size; ++i) { + MCE.emitByte(Val & 255); + Val >>= 8; + } +} + +/// isDisp8 - Return true if this signed displacement fits in a 8-bit +/// sign-extended field. +static bool isDisp8(int Value) { + return Value == (signed char)Value; +} + +static bool gvNeedsNonLazyPtr(const MachineOperand &GVOp, + const TargetMachine &TM) { + // For Darwin-64, simulate the linktime GOT by using the same non-lazy-pointer + // mechanism as 32-bit mode. + if (TM.getSubtarget<X86Subtarget>().is64Bit() && + !TM.getSubtarget<X86Subtarget>().isTargetDarwin()) + return false; + + // Return true if this is a reference to a stub containing the address of the + // global, not the global itself. + return isGlobalStubReference(GVOp.getTargetFlags()); +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitDisplacementField(const MachineOperand *RelocOp, + int DispVal, + intptr_t Adj /* = 0 */, + bool IsPCRel /* = true */) { + // If this is a simple integer displacement that doesn't require a relocation, + // emit it now. + if (!RelocOp) { + emitConstant(DispVal, 4); + return; + } + + // Otherwise, this is something that requires a relocation. Emit it as such + // now. + unsigned RelocType = Is64BitMode ? + (IsPCRel ? X86::reloc_pcrel_word : X86::reloc_absolute_word_sext) + : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); + if (RelocOp->isGlobal()) { + // In 64-bit static small code model, we could potentially emit absolute. + // But it's probably not beneficial. If the MCE supports using RIP directly + // do it, otherwise fallback to absolute (this is determined by IsPCRel). + // 89 05 00 00 00 00 mov %eax,0(%rip) # PC-relative + // 89 04 25 00 00 00 00 mov %eax,0x0 # Absolute + bool Indirect = gvNeedsNonLazyPtr(*RelocOp, TM); + emitGlobalAddress(RelocOp->getGlobal(), RelocType, RelocOp->getOffset(), + Adj, Indirect); + } else if (RelocOp->isSymbol()) { + emitExternalSymbolAddress(RelocOp->getSymbolName(), RelocType); + } else if (RelocOp->isCPI()) { + emitConstPoolAddress(RelocOp->getIndex(), RelocType, + RelocOp->getOffset(), Adj); + } else { + assert(RelocOp->isJTI() && "Unexpected machine operand!"); + emitJumpTableAddress(RelocOp->getIndex(), RelocType, Adj); + } +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitMemModRMByte(const MachineInstr &MI, + unsigned Op,unsigned RegOpcodeField, + intptr_t PCAdj) { + const MachineOperand &Op3 = MI.getOperand(Op+3); + int DispVal = 0; + const MachineOperand *DispForReloc = 0; + + // Figure out what sort of displacement we have to handle here. + if (Op3.isGlobal()) { + DispForReloc = &Op3; + } else if (Op3.isSymbol()) { + DispForReloc = &Op3; + } else if (Op3.isCPI()) { + if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { + DispForReloc = &Op3; + } else { + DispVal += MCE.getConstantPoolEntryAddress(Op3.getIndex()); + DispVal += Op3.getOffset(); + } + } else if (Op3.isJTI()) { + if (!MCE.earlyResolveAddresses() || Is64BitMode || IsPIC) { + DispForReloc = &Op3; + } else { + DispVal += MCE.getJumpTableEntryAddress(Op3.getIndex()); + } + } else { + DispVal = Op3.getImm(); + } + + const MachineOperand &Base = MI.getOperand(Op); + const MachineOperand &Scale = MI.getOperand(Op+1); + const MachineOperand &IndexReg = MI.getOperand(Op+2); + + unsigned BaseReg = Base.getReg(); + + // Handle %rip relative addressing. + if (BaseReg == X86::RIP || + (Is64BitMode && DispForReloc)) { // [disp32+RIP] in X86-64 mode + assert(IndexReg.getReg() == 0 && Is64BitMode && + "Invalid rip-relative address"); + MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); + emitDisplacementField(DispForReloc, DispVal, PCAdj, true); + return; + } + + // Indicate that the displacement will use an pcrel or absolute reference + // by default. MCEs able to resolve addresses on-the-fly use pcrel by default + // while others, unless explicit asked to use RIP, use absolute references. + bool IsPCRel = MCE.earlyResolveAddresses() ? true : false; + + // Is a SIB byte needed? + // If no BaseReg, issue a RIP relative instruction only if the MCE can + // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table + // 2-7) and absolute references. + unsigned BaseRegNo = -1U; + if (BaseReg != 0 && BaseReg != X86::RIP) + BaseRegNo = getX86RegNum(BaseReg); + + if (// The SIB byte must be used if there is an index register. + IndexReg.getReg() == 0 && + // The SIB byte must be used if the base is ESP/RSP/R12, all of which + // encode to an R/M value of 4, which indicates that a SIB byte is + // present. + BaseRegNo != N86::ESP && + // If there is no base register and we're in 64-bit mode, we need a SIB + // byte to emit an addr that is just 'disp32' (the non-RIP relative form). + (!Is64BitMode || BaseReg != 0)) { + if (BaseReg == 0 || // [disp32] in X86-32 mode + BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode + MCE.emitByte(ModRMByte(0, RegOpcodeField, 5)); + emitDisplacementField(DispForReloc, DispVal, PCAdj, true); + return; + } + + // If the base is not EBP/ESP and there is no displacement, use simple + // indirect register encoding, this handles addresses like [EAX]. The + // encoding for [EBP] with no displacement means [disp32] so we handle it + // by emitting a displacement of 0 below. + if (!DispForReloc && DispVal == 0 && BaseRegNo != N86::EBP) { + MCE.emitByte(ModRMByte(0, RegOpcodeField, BaseRegNo)); + return; + } + + // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. + if (!DispForReloc && isDisp8(DispVal)) { + MCE.emitByte(ModRMByte(1, RegOpcodeField, BaseRegNo)); + emitConstant(DispVal, 1); + return; + } + + // Otherwise, emit the most general non-SIB encoding: [REG+disp32] + MCE.emitByte(ModRMByte(2, RegOpcodeField, BaseRegNo)); + emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel); + return; + } + + // Otherwise we need a SIB byte, so start by outputting the ModR/M byte first. + assert(IndexReg.getReg() != X86::ESP && + IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); + + bool ForceDisp32 = false; + bool ForceDisp8 = false; + if (BaseReg == 0) { + // If there is no base register, we emit the special case SIB byte with + // MOD=0, BASE=4, to JUST get the index, scale, and displacement. + MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); + ForceDisp32 = true; + } else if (DispForReloc) { + // Emit the normal disp32 encoding. + MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); + ForceDisp32 = true; + } else if (DispVal == 0 && BaseRegNo != N86::EBP) { + // Emit no displacement ModR/M byte + MCE.emitByte(ModRMByte(0, RegOpcodeField, 4)); + } else if (isDisp8(DispVal)) { + // Emit the disp8 encoding... + MCE.emitByte(ModRMByte(1, RegOpcodeField, 4)); + ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP + } else { + // Emit the normal disp32 encoding... + MCE.emitByte(ModRMByte(2, RegOpcodeField, 4)); + } + + // Calculate what the SS field value should be... + static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; + unsigned SS = SSTable[Scale.getImm()]; + + if (BaseReg == 0) { + // Handle the SIB byte for the case where there is no base, see Intel + // Manual 2A, table 2-7. The displacement has already been output. + unsigned IndexRegNo; + if (IndexReg.getReg()) + IndexRegNo = getX86RegNum(IndexReg.getReg()); + else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5) + IndexRegNo = 4; + emitSIBByte(SS, IndexRegNo, 5); + } else { + unsigned BaseRegNo = getX86RegNum(BaseReg); + unsigned IndexRegNo; + if (IndexReg.getReg()) + IndexRegNo = getX86RegNum(IndexReg.getReg()); + else + IndexRegNo = 4; // For example [ESP+1*<noreg>+4] + emitSIBByte(SS, IndexRegNo, BaseRegNo); + } + + // Do we need to output a displacement? + if (ForceDisp8) { + emitConstant(DispVal, 1); + } else if (DispVal != 0 || ForceDisp32) { + emitDisplacementField(DispForReloc, DispVal, PCAdj, IsPCRel); + } +} + +template<class CodeEmitter> +void Emitter<CodeEmitter>::emitInstruction(const MachineInstr &MI, + const TargetInstrDesc *Desc) { + DEBUG(dbgs() << MI); + + MCE.processDebugLoc(MI.getDebugLoc(), true); + + unsigned Opcode = Desc->Opcode; + + // Emit the lock opcode prefix as needed. + if (Desc->TSFlags & X86II::LOCK) + MCE.emitByte(0xF0); + + // Emit segment override opcode prefix as needed. + switch (Desc->TSFlags & X86II::SegOvrMask) { + case X86II::FS: + MCE.emitByte(0x64); + break; + case X86II::GS: + MCE.emitByte(0x65); + break; + default: llvm_unreachable("Invalid segment!"); + case 0: break; // No segment override! + } + + // Emit the repeat opcode prefix as needed. + if ((Desc->TSFlags & X86II::Op0Mask) == X86II::REP) + MCE.emitByte(0xF3); + + // Emit the operand size opcode prefix as needed. + if (Desc->TSFlags & X86II::OpSize) + MCE.emitByte(0x66); + + // Emit the address size opcode prefix as needed. + if (Desc->TSFlags & X86II::AdSize) + MCE.emitByte(0x67); + + bool Need0FPrefix = false; + switch (Desc->TSFlags & X86II::Op0Mask) { + case X86II::TB: // Two-byte opcode prefix + case X86II::T8: // 0F 38 + case X86II::TA: // 0F 3A + Need0FPrefix = true; + break; + case X86II::TF: // F2 0F 38 + MCE.emitByte(0xF2); + Need0FPrefix = true; + break; + case X86II::REP: break; // already handled. + case X86II::XS: // F3 0F + MCE.emitByte(0xF3); + Need0FPrefix = true; + break; + case X86II::XD: // F2 0F + MCE.emitByte(0xF2); + Need0FPrefix = true; + break; + case X86II::D8: case X86II::D9: case X86II::DA: case X86II::DB: + case X86II::DC: case X86II::DD: case X86II::DE: case X86II::DF: + MCE.emitByte(0xD8+ + (((Desc->TSFlags & X86II::Op0Mask)-X86II::D8) + >> X86II::Op0Shift)); + break; // Two-byte opcode prefix + default: llvm_unreachable("Invalid prefix!"); + case 0: break; // No prefix! + } + + // Handle REX prefix. + if (Is64BitMode) { + if (unsigned REX = X86InstrInfo::determineREX(MI)) + MCE.emitByte(0x40 | REX); + } + + // 0x0F escape code must be emitted just before the opcode. + if (Need0FPrefix) + MCE.emitByte(0x0F); + + switch (Desc->TSFlags & X86II::Op0Mask) { + case X86II::TF: // F2 0F 38 + case X86II::T8: // 0F 38 + MCE.emitByte(0x38); + break; + case X86II::TA: // 0F 3A + MCE.emitByte(0x3A); + break; + } + + // If this is a two-address instruction, skip one of the register operands. + unsigned NumOps = Desc->getNumOperands(); + unsigned CurOp = 0; + if (NumOps > 1 && Desc->getOperandConstraint(1, TOI::TIED_TO) != -1) + ++CurOp; + else if (NumOps > 2 && Desc->getOperandConstraint(NumOps-1, TOI::TIED_TO)== 0) + // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 + --NumOps; + + unsigned char BaseOpcode = X86II::getBaseOpcodeFor(Desc->TSFlags); + switch (Desc->TSFlags & X86II::FormMask) { + default: + llvm_unreachable("Unknown FormMask value in X86 MachineCodeEmitter!"); + case X86II::Pseudo: + // Remember the current PC offset, this is the PIC relocation + // base address. + switch (Opcode) { + default: + llvm_unreachable("psuedo instructions should be removed before code" + " emission"); + break; + case TargetOpcode::INLINEASM: + // We allow inline assembler nodes with empty bodies - they can + // implicitly define registers, which is ok for JIT. + if (MI.getOperand(0).getSymbolName()[0]) + report_fatal_error("JIT does not support inline asm!"); + break; + case TargetOpcode::DBG_LABEL: + case TargetOpcode::GC_LABEL: + case TargetOpcode::EH_LABEL: + MCE.emitLabel(MI.getOperand(0).getMCSymbol()); + break; + + case TargetOpcode::IMPLICIT_DEF: + case TargetOpcode::KILL: + case X86::FP_REG_KILL: + break; + case X86::MOVPC32r: { + // This emits the "call" portion of this pseudo instruction. + MCE.emitByte(BaseOpcode); + emitConstant(0, X86II::getSizeOfImm(Desc->TSFlags)); + // Remember PIC base. + PICBaseOffset = (intptr_t) MCE.getCurrentPCOffset(); + X86JITInfo *JTI = TM.getJITInfo(); + JTI->setPICBase(MCE.getCurrentPCValue()); + break; + } + } + CurOp = NumOps; + break; + case X86II::RawFrm: { + MCE.emitByte(BaseOpcode); + + if (CurOp == NumOps) + break; + + const MachineOperand &MO = MI.getOperand(CurOp++); + + DEBUG(dbgs() << "RawFrm CurOp " << CurOp << "\n"); + DEBUG(dbgs() << "isMBB " << MO.isMBB() << "\n"); + DEBUG(dbgs() << "isGlobal " << MO.isGlobal() << "\n"); + DEBUG(dbgs() << "isSymbol " << MO.isSymbol() << "\n"); + DEBUG(dbgs() << "isImm " << MO.isImm() << "\n"); + + if (MO.isMBB()) { + emitPCRelativeBlockAddress(MO.getMBB()); + break; + } + + if (MO.isGlobal()) { + emitGlobalAddress(MO.getGlobal(), X86::reloc_pcrel_word, + MO.getOffset(), 0); + break; + } + + if (MO.isSymbol()) { + emitExternalSymbolAddress(MO.getSymbolName(), X86::reloc_pcrel_word); + break; + } + + // FIXME: Only used by hackish MCCodeEmitter, remove when dead. + if (MO.isJTI()) { + emitJumpTableAddress(MO.getIndex(), X86::reloc_pcrel_word); + break; + } + + assert(MO.isImm() && "Unknown RawFrm operand!"); + if (Opcode == X86::CALLpcrel32 || Opcode == X86::CALL64pcrel32) { + // Fix up immediate operand for pc relative calls. + intptr_t Imm = (intptr_t)MO.getImm(); + Imm = Imm - MCE.getCurrentPCValue() - 4; + emitConstant(Imm, X86II::getSizeOfImm(Desc->TSFlags)); + } else + emitConstant(MO.getImm(), X86II::getSizeOfImm(Desc->TSFlags)); + break; + } + + case X86II::AddRegFrm: { + MCE.emitByte(BaseOpcode + getX86RegNum(MI.getOperand(CurOp++).getReg())); + + if (CurOp == NumOps) + break; + + const MachineOperand &MO1 = MI.getOperand(CurOp++); + unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); + if (MO1.isImm()) { + emitConstant(MO1.getImm(), Size); + break; + } + + unsigned rt = Is64BitMode ? X86::reloc_pcrel_word + : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); + if (Opcode == X86::MOV64ri64i32) + rt = X86::reloc_absolute_word; // FIXME: add X86II flag? + // This should not occur on Darwin for relocatable objects. + if (Opcode == X86::MOV64ri) + rt = X86::reloc_absolute_dword; // FIXME: add X86II flag? + if (MO1.isGlobal()) { + bool Indirect = gvNeedsNonLazyPtr(MO1, TM); + emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, + Indirect); + } else if (MO1.isSymbol()) + emitExternalSymbolAddress(MO1.getSymbolName(), rt); + else if (MO1.isCPI()) + emitConstPoolAddress(MO1.getIndex(), rt); + else if (MO1.isJTI()) + emitJumpTableAddress(MO1.getIndex(), rt); + break; + } + + case X86II::MRMDestReg: { + MCE.emitByte(BaseOpcode); + emitRegModRMByte(MI.getOperand(CurOp).getReg(), + getX86RegNum(MI.getOperand(CurOp+1).getReg())); + CurOp += 2; + if (CurOp != NumOps) + emitConstant(MI.getOperand(CurOp++).getImm(), + X86II::getSizeOfImm(Desc->TSFlags)); + break; + } + case X86II::MRMDestMem: { + MCE.emitByte(BaseOpcode); + emitMemModRMByte(MI, CurOp, + getX86RegNum(MI.getOperand(CurOp + X86AddrNumOperands) + .getReg())); + CurOp += X86AddrNumOperands + 1; + if (CurOp != NumOps) + emitConstant(MI.getOperand(CurOp++).getImm(), + X86II::getSizeOfImm(Desc->TSFlags)); + break; + } + + case X86II::MRMSrcReg: + MCE.emitByte(BaseOpcode); + emitRegModRMByte(MI.getOperand(CurOp+1).getReg(), + getX86RegNum(MI.getOperand(CurOp).getReg())); + CurOp += 2; + if (CurOp != NumOps) + emitConstant(MI.getOperand(CurOp++).getImm(), + X86II::getSizeOfImm(Desc->TSFlags)); + break; + + case X86II::MRMSrcMem: { + // FIXME: Maybe lea should have its own form? + int AddrOperands; + if (Opcode == X86::LEA64r || Opcode == X86::LEA64_32r || + Opcode == X86::LEA16r || Opcode == X86::LEA32r) + AddrOperands = X86AddrNumOperands - 1; // No segment register + else + AddrOperands = X86AddrNumOperands; + + intptr_t PCAdj = (CurOp + AddrOperands + 1 != NumOps) ? + X86II::getSizeOfImm(Desc->TSFlags) : 0; + + MCE.emitByte(BaseOpcode); + emitMemModRMByte(MI, CurOp+1, getX86RegNum(MI.getOperand(CurOp).getReg()), + PCAdj); + CurOp += AddrOperands + 1; + if (CurOp != NumOps) + emitConstant(MI.getOperand(CurOp++).getImm(), + X86II::getSizeOfImm(Desc->TSFlags)); + break; + } + + case X86II::MRM0r: case X86II::MRM1r: + case X86II::MRM2r: case X86II::MRM3r: + case X86II::MRM4r: case X86II::MRM5r: + case X86II::MRM6r: case X86II::MRM7r: { + MCE.emitByte(BaseOpcode); + emitRegModRMByte(MI.getOperand(CurOp++).getReg(), + (Desc->TSFlags & X86II::FormMask)-X86II::MRM0r); + + if (CurOp == NumOps) + break; + + const MachineOperand &MO1 = MI.getOperand(CurOp++); + unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); + if (MO1.isImm()) { + emitConstant(MO1.getImm(), Size); + break; + } + + unsigned rt = Is64BitMode ? X86::reloc_pcrel_word + : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); + if (Opcode == X86::MOV64ri32) + rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag? + if (MO1.isGlobal()) { + bool Indirect = gvNeedsNonLazyPtr(MO1, TM); + emitGlobalAddress(MO1.getGlobal(), rt, MO1.getOffset(), 0, + Indirect); + } else if (MO1.isSymbol()) + emitExternalSymbolAddress(MO1.getSymbolName(), rt); + else if (MO1.isCPI()) + emitConstPoolAddress(MO1.getIndex(), rt); + else if (MO1.isJTI()) + emitJumpTableAddress(MO1.getIndex(), rt); + break; + } + + case X86II::MRM0m: case X86II::MRM1m: + case X86II::MRM2m: case X86II::MRM3m: + case X86II::MRM4m: case X86II::MRM5m: + case X86II::MRM6m: case X86II::MRM7m: { + intptr_t PCAdj = (CurOp + X86AddrNumOperands != NumOps) ? + (MI.getOperand(CurOp+X86AddrNumOperands).isImm() ? + X86II::getSizeOfImm(Desc->TSFlags) : 4) : 0; + + MCE.emitByte(BaseOpcode); + emitMemModRMByte(MI, CurOp, (Desc->TSFlags & X86II::FormMask)-X86II::MRM0m, + PCAdj); + CurOp += X86AddrNumOperands; + + if (CurOp == NumOps) + break; + + const MachineOperand &MO = MI.getOperand(CurOp++); + unsigned Size = X86II::getSizeOfImm(Desc->TSFlags); + if (MO.isImm()) { + emitConstant(MO.getImm(), Size); + break; + } + + unsigned rt = Is64BitMode ? X86::reloc_pcrel_word + : (IsPIC ? X86::reloc_picrel_word : X86::reloc_absolute_word); + if (Opcode == X86::MOV64mi32) + rt = X86::reloc_absolute_word_sext; // FIXME: add X86II flag? + if (MO.isGlobal()) { + bool Indirect = gvNeedsNonLazyPtr(MO, TM); + emitGlobalAddress(MO.getGlobal(), rt, MO.getOffset(), 0, + Indirect); + } else if (MO.isSymbol()) + emitExternalSymbolAddress(MO.getSymbolName(), rt); + else if (MO.isCPI()) + emitConstPoolAddress(MO.getIndex(), rt); + else if (MO.isJTI()) + emitJumpTableAddress(MO.getIndex(), rt); + break; + } + + case X86II::MRMInitReg: + MCE.emitByte(BaseOpcode); + // Duplicate register, used by things like MOV8r0 (aka xor reg,reg). + emitRegModRMByte(MI.getOperand(CurOp).getReg(), + getX86RegNum(MI.getOperand(CurOp).getReg())); + ++CurOp; + break; + + case X86II::MRM_C1: + MCE.emitByte(BaseOpcode); + MCE.emitByte(0xC1); + break; + case X86II::MRM_C8: + MCE.emitByte(BaseOpcode); + MCE.emitByte(0xC8); + break; + case X86II::MRM_C9: + MCE.emitByte(BaseOpcode); + MCE.emitByte(0xC9); + break; + case X86II::MRM_E8: + MCE.emitByte(BaseOpcode); + MCE.emitByte(0xE8); + break; + case X86II::MRM_F0: + MCE.emitByte(BaseOpcode); + MCE.emitByte(0xF0); + break; + } + + if (!Desc->isVariadic() && CurOp != NumOps) { +#ifndef NDEBUG + dbgs() << "Cannot encode all operands of: " << MI << "\n"; +#endif + llvm_unreachable(0); + } + + MCE.processDebugLoc(MI.getDebugLoc(), false); +} |