summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/X86CallingConv.td
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86CallingConv.td')
-rw-r--r--contrib/llvm/lib/Target/X86/X86CallingConv.td428
1 files changed, 428 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86CallingConv.td b/contrib/llvm/lib/Target/X86/X86CallingConv.td
new file mode 100644
index 0000000..a6d2709
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/X86CallingConv.td
@@ -0,0 +1,428 @@
+//===-- X86CallingConv.td - Calling Conventions X86 32/64 --*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This describes the calling conventions for the X86-32 and X86-64
+// architectures.
+//
+//===----------------------------------------------------------------------===//
+
+/// CCIfSubtarget - Match if the current subtarget has a feature F.
+class CCIfSubtarget<string F, CCAction A>
+ : CCIf<!strconcat("State.getTarget().getSubtarget<X86Subtarget>().", F), A>;
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Conventions
+//===----------------------------------------------------------------------===//
+
+// Return-value conventions common to all X86 CC's.
+def RetCC_X86Common : CallingConv<[
+ // Scalar values are returned in AX first, then DX. For i8, the ABI
+ // requires the values to be in AL and AH, however this code uses AL and DL
+ // instead. This is because using AH for the second register conflicts with
+ // the way LLVM does multiple return values -- a return of {i16,i8} would end
+ // up in AX and AH, which overlap. Front-ends wishing to conform to the ABI
+ // for functions that return two i8 values are currently expected to pack the
+ // values into an i16 (which uses AX, and thus AL:AH).
+ //
+ // For code that doesn't care about the ABI, we allow returning more than two
+ // integer values in registers.
+ CCIfType<[i8] , CCAssignToReg<[AL, DL, CL]>>,
+ CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
+ CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
+ CCIfType<[i64], CCAssignToReg<[RAX, RDX, RCX]>>,
+
+ // Vector types are returned in XMM0 and XMM1, when they fit. XMM2 and XMM3
+ // can only be used by ABI non-compliant code. If the target doesn't have XMM
+ // registers, it won't have vector types.
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToReg<[XMM0,XMM1,XMM2,XMM3]>>,
+
+ // 256-bit vectors are returned in YMM0 and XMM1, when they fit. YMM2 and YMM3
+ // can only be used by ABI non-compliant code. This vector type is only
+ // supported while using the AVX target feature.
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCAssignToReg<[YMM0,YMM1,YMM2,YMM3]>>,
+
+ // MMX vector types are always returned in MM0. If the target doesn't have
+ // MM0, it doesn't support these vector types.
+ CCIfType<[x86mmx], CCAssignToReg<[MM0]>>,
+
+ // Long double types are always returned in ST0 (even with SSE).
+ CCIfType<[f80], CCAssignToReg<[ST0, ST1]>>
+]>;
+
+// X86-32 C return-value convention.
+def RetCC_X86_32_C : CallingConv<[
+ // The X86-32 calling convention returns FP values in ST0, unless marked
+ // with "inreg" (used here to distinguish one kind of reg from another,
+ // weirdly; this is really the sse-regparm calling convention) in which
+ // case they use XMM0, otherwise it is the same as the common X86 calling
+ // conv.
+ CCIfInReg<CCIfSubtarget<"hasSSE2()",
+ CCIfType<[f32, f64], CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
+ CCIfType<[f32,f64], CCAssignToReg<[ST0, ST1]>>,
+ CCDelegateTo<RetCC_X86Common>
+]>;
+
+// X86-32 FastCC return-value convention.
+def RetCC_X86_32_Fast : CallingConv<[
+ // The X86-32 fastcc returns 1, 2, or 3 FP values in XMM0-2 if the target has
+ // SSE2.
+ // This can happen when a float, 2 x float, or 3 x float vector is split by
+ // target lowering, and is returned in 1-3 sse regs.
+ CCIfType<[f32], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
+ CCIfType<[f64], CCIfSubtarget<"hasSSE2()", CCAssignToReg<[XMM0,XMM1,XMM2]>>>,
+
+ // For integers, ECX can be used as an extra return register
+ CCIfType<[i8], CCAssignToReg<[AL, DL, CL]>>,
+ CCIfType<[i16], CCAssignToReg<[AX, DX, CX]>>,
+ CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>,
+
+ // Otherwise, it is the same as the common X86 calling convention.
+ CCDelegateTo<RetCC_X86Common>
+]>;
+
+// X86-64 C return-value convention.
+def RetCC_X86_64_C : CallingConv<[
+ // The X86-64 calling convention always returns FP values in XMM0.
+ CCIfType<[f32], CCAssignToReg<[XMM0, XMM1]>>,
+ CCIfType<[f64], CCAssignToReg<[XMM0, XMM1]>>,
+
+ // MMX vector types are always returned in XMM0.
+ CCIfType<[x86mmx], CCAssignToReg<[XMM0, XMM1]>>,
+ CCDelegateTo<RetCC_X86Common>
+]>;
+
+// X86-Win64 C return-value convention.
+def RetCC_X86_Win64_C : CallingConv<[
+ // The X86-Win64 calling convention always returns __m64 values in RAX.
+ CCIfType<[x86mmx], CCBitConvertToType<i64>>,
+
+ // Otherwise, everything is the same as 'normal' X86-64 C CC.
+ CCDelegateTo<RetCC_X86_64_C>
+]>;
+
+
+// This is the root return-value convention for the X86-32 backend.
+def RetCC_X86_32 : CallingConv<[
+ // If FastCC, use RetCC_X86_32_Fast.
+ CCIfCC<"CallingConv::Fast", CCDelegateTo<RetCC_X86_32_Fast>>,
+ // Otherwise, use RetCC_X86_32_C.
+ CCDelegateTo<RetCC_X86_32_C>
+]>;
+
+// This is the root return-value convention for the X86-64 backend.
+def RetCC_X86_64 : CallingConv<[
+ // Mingw64 and native Win64 use Win64 CC
+ CCIfSubtarget<"isTargetWin64()", CCDelegateTo<RetCC_X86_Win64_C>>,
+
+ // Otherwise, drop to normal X86-64 CC
+ CCDelegateTo<RetCC_X86_64_C>
+]>;
+
+// This is the return-value convention used for the entire X86 backend.
+def RetCC_X86 : CallingConv<[
+ CCIfSubtarget<"is64Bit()", CCDelegateTo<RetCC_X86_64>>,
+ CCDelegateTo<RetCC_X86_32>
+]>;
+
+//===----------------------------------------------------------------------===//
+// X86-64 Argument Calling Conventions
+//===----------------------------------------------------------------------===//
+
+def CC_X86_64_C : CallingConv<[
+ // Handles byval parameters.
+ CCIfByVal<CCPassByVal<8, 8>>,
+
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // The 'nest' parameter, if any, is passed in R10.
+ CCIfNest<CCAssignToReg<[R10]>>,
+
+ // The first 6 integer arguments are passed in integer registers.
+ CCIfType<[i32], CCAssignToReg<[EDI, ESI, EDX, ECX, R8D, R9D]>>,
+ CCIfType<[i64], CCAssignToReg<[RDI, RSI, RDX, RCX, R8 , R9 ]>>,
+
+ // The first 8 MMX vector arguments are passed in XMM registers on Darwin.
+ CCIfType<[x86mmx],
+ CCIfSubtarget<"isTargetDarwin()",
+ CCIfSubtarget<"hasSSE2()",
+ CCPromoteToType<v2i64>>>>,
+
+ // The first 8 FP/Vector arguments are passed in XMM registers.
+ CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCIfSubtarget<"hasSSE1()",
+ CCAssignToReg<[XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7]>>>,
+
+ // The first 8 256-bit vector arguments are passed in YMM registers, unless
+ // this is a vararg function.
+ // FIXME: This isn't precisely correct; the x86-64 ABI document says that
+ // fixed arguments to vararg functions are supposed to be passed in
+ // registers. Actually modeling that would be a lot of work, though.
+ CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCIfSubtarget<"hasAVX()",
+ CCAssignToReg<[YMM0, YMM1, YMM2, YMM3,
+ YMM4, YMM5, YMM6, YMM7]>>>>,
+
+ // Integer/FP values get stored in stack slots that are 8 bytes in size and
+ // 8-byte aligned if there are no more registers to hold them.
+ CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
+
+ // Long doubles get stack slots whose size and alignment depends on the
+ // subtarget.
+ CCIfType<[f80], CCAssignToStack<0, 0>>,
+
+ // Vectors get 16-byte stack slots that are 16-byte aligned.
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
+
+ // 256-bit vectors get 32-byte stack slots that are 32-byte aligned.
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCAssignToStack<32, 32>>
+]>;
+
+// Calling convention used on Win64
+def CC_X86_Win64_C : CallingConv<[
+ // FIXME: Handle byval stuff.
+ // FIXME: Handle varargs.
+
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // The 'nest' parameter, if any, is passed in R10.
+ CCIfNest<CCAssignToReg<[R10]>>,
+
+ // 128 bit vectors are passed by pointer
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCPassIndirect<i64>>,
+
+
+ // 256 bit vectors are passed by pointer
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64], CCPassIndirect<i64>>,
+
+ // The first 4 MMX vector arguments are passed in GPRs.
+ CCIfType<[x86mmx], CCBitConvertToType<i64>>,
+
+ // The first 4 integer arguments are passed in integer registers.
+ CCIfType<[i32], CCAssignToRegWithShadow<[ECX , EDX , R8D , R9D ],
+ [XMM0, XMM1, XMM2, XMM3]>>,
+
+ // Do not pass the sret argument in RCX, the Win64 thiscall calling
+ // convention requires "this" to be passed in RCX.
+ CCIfCC<"CallingConv::X86_ThisCall",
+ CCIfSRet<CCIfType<[i64], CCAssignToRegWithShadow<[RDX , R8 , R9 ],
+ [XMM1, XMM2, XMM3]>>>>,
+
+ CCIfType<[i64], CCAssignToRegWithShadow<[RCX , RDX , R8 , R9 ],
+ [XMM0, XMM1, XMM2, XMM3]>>,
+
+ // The first 4 FP/Vector arguments are passed in XMM registers.
+ CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToRegWithShadow<[XMM0, XMM1, XMM2, XMM3],
+ [RCX , RDX , R8 , R9 ]>>,
+
+ // Integer/FP values get stored in stack slots that are 8 bytes in size and
+ // 8-byte aligned if there are no more registers to hold them.
+ CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
+
+ // Long doubles get stack slots whose size and alignment depends on the
+ // subtarget.
+ CCIfType<[f80], CCAssignToStack<0, 0>>
+]>;
+
+def CC_X86_64_GHC : CallingConv<[
+ // Promote i8/i16/i32 arguments to i64.
+ CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
+
+ // Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, SpLim
+ CCIfType<[i64],
+ CCAssignToReg<[R13, RBP, R12, RBX, R14, RSI, RDI, R8, R9, R15]>>,
+
+ // Pass in STG registers: F1, F2, F3, F4, D1, D2
+ CCIfType<[f32, f64, v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCIfSubtarget<"hasSSE1()",
+ CCAssignToReg<[XMM1, XMM2, XMM3, XMM4, XMM5, XMM6]>>>
+]>;
+
+//===----------------------------------------------------------------------===//
+// X86 C Calling Convention
+//===----------------------------------------------------------------------===//
+
+/// CC_X86_32_Common - In all X86-32 calling conventions, extra integers and FP
+/// values are spilled on the stack, and the first 4 vector values go in XMM
+/// regs.
+def CC_X86_32_Common : CallingConv<[
+ // Handles byval parameters.
+ CCIfByVal<CCPassByVal<4, 4>>,
+
+ // The first 3 float or double arguments, if marked 'inreg' and if the call
+ // is not a vararg call and if SSE2 is available, are passed in SSE registers.
+ CCIfNotVarArg<CCIfInReg<CCIfType<[f32,f64],
+ CCIfSubtarget<"hasSSE2()",
+ CCAssignToReg<[XMM0,XMM1,XMM2]>>>>>,
+
+ // The first 3 __m64 vector arguments are passed in mmx registers if the
+ // call is not a vararg call.
+ CCIfNotVarArg<CCIfType<[x86mmx],
+ CCAssignToReg<[MM0, MM1, MM2]>>>,
+
+ // Integer/Float values get stored in stack slots that are 4 bytes in
+ // size and 4-byte aligned.
+ CCIfType<[i32, f32], CCAssignToStack<4, 4>>,
+
+ // Doubles get 8-byte slots that are 4-byte aligned.
+ CCIfType<[f64], CCAssignToStack<8, 4>>,
+
+ // Long doubles get slots whose size depends on the subtarget.
+ CCIfType<[f80], CCAssignToStack<0, 4>>,
+
+ // The first 4 SSE vector arguments are passed in XMM registers.
+ CCIfNotVarArg<CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
+ CCAssignToReg<[XMM0, XMM1, XMM2, XMM3]>>>,
+
+ // The first 4 AVX 256-bit vector arguments are passed in YMM registers.
+ CCIfNotVarArg<CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCIfSubtarget<"hasAVX()",
+ CCAssignToReg<[YMM0, YMM1, YMM2, YMM3]>>>>,
+
+ // Other SSE vectors get 16-byte stack slots that are 16-byte aligned.
+ CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64], CCAssignToStack<16, 16>>,
+
+ // 256-bit AVX vectors get 32-byte stack slots that are 32-byte aligned.
+ CCIfType<[v32i8, v16i16, v8i32, v4i64, v8f32, v4f64],
+ CCAssignToStack<32, 32>>,
+
+ // __m64 vectors get 8-byte stack slots that are 4-byte aligned. They are
+ // passed in the parameter area.
+ CCIfType<[x86mmx], CCAssignToStack<8, 4>>]>;
+
+def CC_X86_32_C : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // The 'nest' parameter, if any, is passed in ECX.
+ CCIfNest<CCAssignToReg<[ECX]>>,
+
+ // The first 3 integer arguments, if marked 'inreg' and if the call is not
+ // a vararg call, are passed in integer registers.
+ CCIfNotVarArg<CCIfInReg<CCIfType<[i32], CCAssignToReg<[EAX, EDX, ECX]>>>>,
+
+ // Otherwise, same as everything else.
+ CCDelegateTo<CC_X86_32_Common>
+]>;
+
+def CC_X86_32_FastCall : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // The 'nest' parameter, if any, is passed in EAX.
+ CCIfNest<CCAssignToReg<[EAX]>>,
+
+ // The first 2 integer arguments are passed in ECX/EDX
+ CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
+
+ // Otherwise, same as everything else.
+ CCDelegateTo<CC_X86_32_Common>
+]>;
+
+def CC_X86_32_ThisCall : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // Pass sret arguments indirectly through EAX
+ CCIfSRet<CCAssignToReg<[EAX]>>,
+
+ // The first integer argument is passed in ECX
+ CCIfType<[i32], CCAssignToReg<[ECX]>>,
+
+ // Otherwise, same as everything else.
+ CCDelegateTo<CC_X86_32_Common>
+]>;
+
+def CC_X86_32_FastCC : CallingConv<[
+ // Handles byval parameters. Note that we can't rely on the delegation
+ // to CC_X86_32_Common for this because that happens after code that
+ // puts arguments in registers.
+ CCIfByVal<CCPassByVal<4, 4>>,
+
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // The 'nest' parameter, if any, is passed in EAX.
+ CCIfNest<CCAssignToReg<[EAX]>>,
+
+ // The first 2 integer arguments are passed in ECX/EDX
+ CCIfType<[i32], CCAssignToReg<[ECX, EDX]>>,
+
+ // The first 3 float or double arguments, if the call is not a vararg
+ // call and if SSE2 is available, are passed in SSE registers.
+ CCIfNotVarArg<CCIfType<[f32,f64],
+ CCIfSubtarget<"hasSSE2()",
+ CCAssignToReg<[XMM0,XMM1,XMM2]>>>>,
+
+ // Doubles get 8-byte slots that are 8-byte aligned.
+ CCIfType<[f64], CCAssignToStack<8, 8>>,
+
+ // Otherwise, same as everything else.
+ CCDelegateTo<CC_X86_32_Common>
+]>;
+
+def CC_X86_32_GHC : CallingConv<[
+ // Promote i8/i16 arguments to i32.
+ CCIfType<[i8, i16], CCPromoteToType<i32>>,
+
+ // Pass in STG registers: Base, Sp, Hp, R1
+ CCIfType<[i32], CCAssignToReg<[EBX, EBP, EDI, ESI]>>
+]>;
+
+//===----------------------------------------------------------------------===//
+// X86 Root Argument Calling Conventions
+//===----------------------------------------------------------------------===//
+
+// This is the root argument convention for the X86-32 backend.
+def CC_X86_32 : CallingConv<[
+ CCIfCC<"CallingConv::X86_FastCall", CCDelegateTo<CC_X86_32_FastCall>>,
+ CCIfCC<"CallingConv::X86_ThisCall", CCDelegateTo<CC_X86_32_ThisCall>>,
+ CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_X86_32_FastCC>>,
+ CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_32_GHC>>,
+
+ // Otherwise, drop to normal X86-32 CC
+ CCDelegateTo<CC_X86_32_C>
+]>;
+
+// This is the root argument convention for the X86-64 backend.
+def CC_X86_64 : CallingConv<[
+ CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_X86_64_GHC>>,
+
+ // Mingw64 and native Win64 use Win64 CC
+ CCIfSubtarget<"isTargetWin64()", CCDelegateTo<CC_X86_Win64_C>>,
+
+ // Otherwise, drop to normal X86-64 CC
+ CCDelegateTo<CC_X86_64_C>
+]>;
+
+// This is the argument convention used for the entire X86 backend.
+def CC_X86 : CallingConv<[
+ CCIfSubtarget<"is64Bit()", CCDelegateTo<CC_X86_64>>,
+ CCDelegateTo<CC_X86_32>
+]>;
+
+//===----------------------------------------------------------------------===//
+// Callee-saved Registers.
+//===----------------------------------------------------------------------===//
+
+def CSR_NoRegs : CalleeSavedRegs<(add)>;
+
+def CSR_32 : CalleeSavedRegs<(add ESI, EDI, EBX, EBP)>;
+def CSR_64 : CalleeSavedRegs<(add RBX, R12, R13, R14, R15, RBP)>;
+
+def CSR_32EHRet : CalleeSavedRegs<(add EAX, EDX, CSR_32)>;
+def CSR_64EHRet : CalleeSavedRegs<(add RAX, RDX, CSR_64)>;
+
+def CSR_Win64 : CalleeSavedRegs<(add RBX, RBP, RDI, RSI, R12, R13, R14, R15,
+ (sequence "XMM%u", 6, 15))>;
OpenPOWER on IntegriCloud