summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp266
1 files changed, 173 insertions, 93 deletions
diff --git a/contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp b/contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp
index fae489e..4412125 100644
--- a/contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp
+++ b/contrib/llvm/lib/Target/X86/X86CallFrameOptimization.cpp
@@ -8,7 +8,7 @@
//===----------------------------------------------------------------------===//
//
// This file defines a pass that optimizes call sequences on x86.
-// Currently, it converts movs of function parameters onto the stack into
+// Currently, it converts movs of function parameters onto the stack into
// pushes. This is beneficial for two main reasons:
// 1) The push instruction encoding is much smaller than an esp-relative mov
// 2) It is possible to push memory arguments directly. So, if the
@@ -37,9 +37,10 @@ using namespace llvm;
#define DEBUG_TYPE "x86-cf-opt"
-cl::opt<bool> NoX86CFOpt("no-x86-call-frame-opt",
- cl::desc("Avoid optimizing x86 call frames for size"),
- cl::init(false), cl::Hidden);
+static cl::opt<bool>
+ NoX86CFOpt("no-x86-call-frame-opt",
+ cl::desc("Avoid optimizing x86 call frames for size"),
+ cl::init(false), cl::Hidden);
namespace {
class X86CallFrameOptimization : public MachineFunctionPass {
@@ -49,17 +50,47 @@ public:
bool runOnMachineFunction(MachineFunction &MF) override;
private:
- bool shouldPerformTransformation(MachineFunction &MF);
+ // Information we know about a particular call site
+ struct CallContext {
+ CallContext()
+ : Call(nullptr), SPCopy(nullptr), ExpectedDist(0),
+ MovVector(4, nullptr), NoStackParams(false), UsePush(false){};
- bool adjustCallSequence(MachineFunction &MF, MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I);
+ // Actuall call instruction
+ MachineInstr *Call;
+
+ // A copy of the stack pointer
+ MachineInstr *SPCopy;
+
+ // The total displacement of all passed parameters
+ int64_t ExpectedDist;
+
+ // The sequence of movs used to pass the parameters
+ SmallVector<MachineInstr *, 4> MovVector;
+
+ // True if this call site has no stack parameters
+ bool NoStackParams;
+
+ // True of this callsite can use push instructions
+ bool UsePush;
+ };
+
+ typedef DenseMap<MachineInstr *, CallContext> ContextMap;
+
+ bool isLegal(MachineFunction &MF);
+
+ bool isProfitable(MachineFunction &MF, ContextMap &CallSeqMap);
+
+ void collectCallInfo(MachineFunction &MF, MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, CallContext &Context);
+
+ bool adjustCallSequence(MachineFunction &MF, MachineBasicBlock::iterator I,
+ const CallContext &Context);
MachineInstr *canFoldIntoRegPush(MachineBasicBlock::iterator FrameSetup,
unsigned Reg);
- const char *getPassName() const override {
- return "X86 Optimize Call Frame";
- }
+ const char *getPassName() const override { return "X86 Optimize Call Frame"; }
const TargetInstrInfo *TII;
const TargetFrameLowering *TFL;
@@ -74,8 +105,10 @@ FunctionPass *llvm::createX86CallFrameOptimization() {
return new X86CallFrameOptimization();
}
-// This checks whether the transformation is legal and profitable
-bool X86CallFrameOptimization::shouldPerformTransformation(MachineFunction &MF) {
+// This checks whether the transformation is legal.
+// Also returns false in cases where it's potentially legal, but
+// we don't even want to try.
+bool X86CallFrameOptimization::isLegal(MachineFunction &MF) {
if (NoX86CFOpt.getValue())
return false;
@@ -84,7 +117,7 @@ bool X86CallFrameOptimization::shouldPerformTransformation(MachineFunction &MF)
// No point in running this in 64-bit mode, since some arguments are
// passed in-register in all common calling conventions, so the pattern
// we're looking for will never match.
- const X86Subtarget &STI = MF.getTarget().getSubtarget<X86Subtarget>();
+ const X86Subtarget &STI = MF.getSubtarget<X86Subtarget>();
if (STI.is64Bit())
return false;
@@ -95,8 +128,8 @@ bool X86CallFrameOptimization::shouldPerformTransformation(MachineFunction &MF)
// This is bad, and breaks SP adjustment.
// So, check that all of the frames in the function are closed inside
// the same block, and, for good measure, that there are no nested frames.
- int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
- int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
+ unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
+ unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
for (MachineBasicBlock &BB : MF) {
bool InsideFrameSequence = false;
for (MachineInstr &MI : BB) {
@@ -104,8 +137,7 @@ bool X86CallFrameOptimization::shouldPerformTransformation(MachineFunction &MF)
if (InsideFrameSequence)
return false;
InsideFrameSequence = true;
- }
- else if (MI.getOpcode() == FrameDestroyOpcode) {
+ } else if (MI.getOpcode() == FrameDestroyOpcode) {
if (!InsideFrameSequence)
return false;
InsideFrameSequence = false;
@@ -116,99 +148,141 @@ bool X86CallFrameOptimization::shouldPerformTransformation(MachineFunction &MF)
return false;
}
- // Now that we know the transformation is legal, check if it is
- // profitable.
- // TODO: Add a heuristic that actually looks at the function,
- // and enable this for more cases.
+ return true;
+}
- // This transformation is always a win when we expected to have
- // a reserved call frame. Under other circumstances, it may be either
+// Check whether this trasnformation is profitable for a particular
+// function - in terms of code size.
+bool X86CallFrameOptimization::isProfitable(MachineFunction &MF,
+ ContextMap &CallSeqMap) {
+ // This transformation is always a win when we do not expect to have
+ // a reserved call frame. Under other circumstances, it may be either
// a win or a loss, and requires a heuristic.
- // For now, enable it only for the relatively clear win cases.
bool CannotReserveFrame = MF.getFrameInfo()->hasVarSizedObjects();
if (CannotReserveFrame)
return true;
- // For now, don't even try to evaluate the profitability when
- // not optimizing for size.
- AttributeSet FnAttrs = MF.getFunction()->getAttributes();
+ // Don't do this when not optimizing for size.
bool OptForSize =
- FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
- Attribute::OptimizeForSize) ||
- FnAttrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
+ MF.getFunction()->hasFnAttribute(Attribute::OptimizeForSize) ||
+ MF.getFunction()->hasFnAttribute(Attribute::MinSize);
if (!OptForSize)
return false;
- // Stack re-alignment can make this unprofitable even in terms of size.
- // As mentioned above, a better heuristic is needed. For now, don't do this
- // when the required alignment is above 8. (4 would be the safe choice, but
- // some experimentation showed 8 is generally good).
- if (TFL->getStackAlignment() > 8)
- return false;
- return true;
+ unsigned StackAlign = TFL->getStackAlignment();
+
+ int64_t Advantage = 0;
+ for (auto CC : CallSeqMap) {
+ // Call sites where no parameters are passed on the stack
+ // do not affect the cost, since there needs to be no
+ // stack adjustment.
+ if (CC.second.NoStackParams)
+ continue;
+
+ if (!CC.second.UsePush) {
+ // If we don't use pushes for a particular call site,
+ // we pay for not having a reserved call frame with an
+ // additional sub/add esp pair. The cost is ~3 bytes per instruction,
+ // depending on the size of the constant.
+ // TODO: Callee-pop functions should have a smaller penalty, because
+ // an add is needed even with a reserved call frame.
+ Advantage -= 6;
+ } else {
+ // We can use pushes. First, account for the fixed costs.
+ // We'll need a add after the call.
+ Advantage -= 3;
+ // If we have to realign the stack, we'll also need and sub before
+ if (CC.second.ExpectedDist % StackAlign)
+ Advantage -= 3;
+ // Now, for each push, we save ~3 bytes. For small constants, we actually,
+ // save more (up to 5 bytes), but 3 should be a good approximation.
+ Advantage += (CC.second.ExpectedDist / 4) * 3;
+ }
+ }
+
+ return (Advantage >= 0);
}
+
bool X86CallFrameOptimization::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getSubtarget().getInstrInfo();
TFL = MF.getSubtarget().getFrameLowering();
MRI = &MF.getRegInfo();
- if (!shouldPerformTransformation(MF))
+ if (!isLegal(MF))
return false;
- int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
+ unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
bool Changed = false;
+ ContextMap CallSeqMap;
+
for (MachineFunction::iterator BB = MF.begin(), E = MF.end(); BB != E; ++BB)
for (MachineBasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
- if (I->getOpcode() == FrameSetupOpcode)
- Changed |= adjustCallSequence(MF, *BB, I);
+ if (I->getOpcode() == FrameSetupOpcode) {
+ CallContext &Context = CallSeqMap[I];
+ collectCallInfo(MF, *BB, I, Context);
+ }
+
+ if (!isProfitable(MF, CallSeqMap))
+ return false;
+
+ for (auto CC : CallSeqMap)
+ if (CC.second.UsePush)
+ Changed |= adjustCallSequence(MF, CC.first, CC.second);
return Changed;
}
-bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
- MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I) {
-
+void X86CallFrameOptimization::collectCallInfo(MachineFunction &MF,
+ MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I,
+ CallContext &Context) {
// Check that this particular call sequence is amenable to the
// transformation.
const X86RegisterInfo &RegInfo = *static_cast<const X86RegisterInfo *>(
MF.getSubtarget().getRegisterInfo());
unsigned StackPtr = RegInfo.getStackRegister();
- int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
+ unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
// We expect to enter this at the beginning of a call sequence
assert(I->getOpcode() == TII->getCallFrameSetupOpcode());
MachineBasicBlock::iterator FrameSetup = I++;
+ // How much do we adjust the stack? This puts an upper bound on
+ // the number of parameters actually passed on it.
+ unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;
+ // A zero adjustment means no stack parameters
+ if (!MaxAdjust) {
+ Context.NoStackParams = true;
+ return;
+ }
+
// For globals in PIC mode, we can have some LEAs here.
// Ignore them, they don't bother us.
// TODO: Extend this to something that covers more cases.
while (I->getOpcode() == X86::LEA32r)
++I;
-
+
// We expect a copy instruction here.
// TODO: The copy instruction is a lowering artifact.
// We should also support a copy-less version, where the stack
// pointer is used directly.
if (!I->isCopy() || !I->getOperand(0).isReg())
- return false;
- MachineBasicBlock::iterator SPCopy = I++;
- StackPtr = SPCopy->getOperand(0).getReg();
+ return;
+ Context.SPCopy = I++;
+ StackPtr = Context.SPCopy->getOperand(0).getReg();
// Scan the call setup sequence for the pattern we're looking for.
// We only handle a simple case - a sequence of MOV32mi or MOV32mr
// instructions, that push a sequence of 32-bit values onto the stack, with
// no gaps between them.
- SmallVector<MachineInstr*, 4> MovVector(4, nullptr);
- unsigned int MaxAdjust = FrameSetup->getOperand(0).getImm() / 4;
if (MaxAdjust > 4)
- MovVector.resize(MaxAdjust, nullptr);
+ Context.MovVector.resize(MaxAdjust, nullptr);
do {
int Opcode = I->getOpcode();
@@ -230,77 +304,86 @@ bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
(I->getOperand(X86::AddrIndexReg).getReg() != X86::NoRegister) ||
(I->getOperand(X86::AddrSegmentReg).getReg() != X86::NoRegister) ||
!I->getOperand(X86::AddrDisp).isImm())
- return false;
+ return;
int64_t StackDisp = I->getOperand(X86::AddrDisp).getImm();
- assert(StackDisp >= 0 && "Negative stack displacement when passing parameters");
+ assert(StackDisp >= 0 &&
+ "Negative stack displacement when passing parameters");
// We really don't want to consider the unaligned case.
if (StackDisp % 4)
- return false;
+ return;
StackDisp /= 4;
- assert((size_t)StackDisp < MovVector.size() &&
- "Function call has more parameters than the stack is adjusted for.");
+ assert((size_t)StackDisp < Context.MovVector.size() &&
+ "Function call has more parameters than the stack is adjusted for.");
// If the same stack slot is being filled twice, something's fishy.
- if (MovVector[StackDisp] != nullptr)
- return false;
- MovVector[StackDisp] = I;
+ if (Context.MovVector[StackDisp] != nullptr)
+ return;
+ Context.MovVector[StackDisp] = I;
++I;
} while (I != MBB.end());
// We now expect the end of the sequence - a call and a stack adjust.
if (I == MBB.end())
- return false;
+ return;
// For PCrel calls, we expect an additional COPY of the basereg.
// If we find one, skip it.
if (I->isCopy()) {
if (I->getOperand(1).getReg() ==
- MF.getInfo<X86MachineFunctionInfo>()->getGlobalBaseReg())
+ MF.getInfo<X86MachineFunctionInfo>()->getGlobalBaseReg())
++I;
else
- return false;
+ return;
}
if (!I->isCall())
- return false;
- MachineBasicBlock::iterator Call = I;
+ return;
+
+ Context.Call = I;
if ((++I)->getOpcode() != FrameDestroyOpcode)
- return false;
+ return;
// Now, go through the vector, and see that we don't have any gaps,
// but only a series of 32-bit MOVs.
-
- int64_t ExpectedDist = 0;
- auto MMI = MovVector.begin(), MME = MovVector.end();
- for (; MMI != MME; ++MMI, ExpectedDist += 4)
+ auto MMI = Context.MovVector.begin(), MME = Context.MovVector.end();
+ for (; MMI != MME; ++MMI, Context.ExpectedDist += 4)
if (*MMI == nullptr)
break;
-
+
// If the call had no parameters, do nothing
- if (!ExpectedDist)
- return false;
+ if (MMI == Context.MovVector.begin())
+ return;
- // We are either at the last parameter, or a gap.
+ // We are either at the last parameter, or a gap.
// Make sure it's not a gap
for (; MMI != MME; ++MMI)
if (*MMI != nullptr)
- return false;
+ return;
+
+ Context.UsePush = true;
+ return;
+}
+bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
+ MachineBasicBlock::iterator I,
+ const CallContext &Context) {
// Ok, we can in fact do the transformation for this call.
// Do not remove the FrameSetup instruction, but adjust the parameters.
// PEI will end up finalizing the handling of this.
- FrameSetup->getOperand(1).setImm(ExpectedDist);
+ MachineBasicBlock::iterator FrameSetup = I;
+ MachineBasicBlock &MBB = *(I->getParent());
+ FrameSetup->getOperand(1).setImm(Context.ExpectedDist);
DebugLoc DL = I->getDebugLoc();
// Now, iterate through the vector in reverse order, and replace the movs
- // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
+ // with pushes. MOVmi/MOVmr doesn't have any defs, so no need to
// replace uses.
- for (int Idx = (ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
- MachineBasicBlock::iterator MOV = *MovVector[Idx];
+ for (int Idx = (Context.ExpectedDist / 4) - 1; Idx >= 0; --Idx) {
+ MachineBasicBlock::iterator MOV = *Context.MovVector[Idx];
MachineOperand PushOp = MOV->getOperand(X86::AddrNumOperands);
if (MOV->getOpcode() == X86::MOV32mi) {
unsigned PushOpcode = X86::PUSHi32;
@@ -313,20 +396,21 @@ bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
if (isInt<8>(Val))
PushOpcode = X86::PUSH32i8;
}
- BuildMI(MBB, Call, DL, TII->get(PushOpcode)).addOperand(PushOp);
+ BuildMI(MBB, Context.Call, DL, TII->get(PushOpcode)).addOperand(PushOp);
} else {
unsigned int Reg = PushOp.getReg();
// If PUSHrmm is not slow on this target, try to fold the source of the
// push into the instruction.
- const X86Subtarget &ST = MF.getTarget().getSubtarget<X86Subtarget>();
+ const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>();
bool SlowPUSHrmm = ST.isAtom() || ST.isSLM();
// Check that this is legal to fold. Right now, we're extremely
// conservative about that.
MachineInstr *DefMov = nullptr;
if (!SlowPUSHrmm && (DefMov = canFoldIntoRegPush(FrameSetup, Reg))) {
- MachineInstr *Push = BuildMI(MBB, Call, DL, TII->get(X86::PUSH32rmm));
+ MachineInstr *Push =
+ BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32rmm));
unsigned NumOps = DefMov->getDesc().getNumOperands();
for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
@@ -334,7 +418,9 @@ bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
DefMov->eraseFromParent();
} else {
- BuildMI(MBB, Call, DL, TII->get(X86::PUSH32r)).addReg(Reg).getInstr();
+ BuildMI(MBB, Context.Call, DL, TII->get(X86::PUSH32r))
+ .addReg(Reg)
+ .getInstr();
}
}
@@ -343,8 +429,8 @@ bool X86CallFrameOptimization::adjustCallSequence(MachineFunction &MF,
// The stack-pointer copy is no longer used in the call sequences.
// There should not be any other users, but we can't commit to that, so:
- if (MRI->use_empty(SPCopy->getOperand(0).getReg()))
- SPCopy->eraseFromParent();
+ if (MRI->use_empty(Context.SPCopy->getOperand(0).getReg()))
+ Context.SPCopy->eraseFromParent();
// Once we've done this, we need to make sure PEI doesn't assume a reserved
// frame.
@@ -381,17 +467,11 @@ MachineInstr *X86CallFrameOptimization::canFoldIntoRegPush(
DefMI->getParent() != FrameSetup->getParent())
return nullptr;
- // Be careful with movs that load from a stack slot, since it may get
- // resolved incorrectly.
- // TODO: Again, we already have the infrastructure, so this should work.
- if (!DefMI->getOperand(1).isReg())
- return nullptr;
-
// Now, make sure everything else up until the ADJCALLSTACK is a sequence
// of MOVs. To be less conservative would require duplicating a lot of the
// logic from PeepholeOptimizer.
// FIXME: A possibly better approach would be to teach the PeepholeOptimizer
- // to be smarter about folding into pushes.
+ // to be smarter about folding into pushes.
for (auto I = DefMI; I != FrameSetup; ++I)
if (I->getOpcode() != X86::MOV32rm)
return nullptr;
OpenPOWER on IntegriCloud