summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/README.txt
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/README.txt')
-rw-r--r--contrib/llvm/lib/Target/X86/README.txt1962
1 files changed, 1962 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/README.txt b/contrib/llvm/lib/Target/X86/README.txt
new file mode 100644
index 0000000..a305ae6
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/README.txt
@@ -0,0 +1,1962 @@
+//===---------------------------------------------------------------------===//
+// Random ideas for the X86 backend.
+//===---------------------------------------------------------------------===//
+
+We should add support for the "movbe" instruction, which does a byte-swapping
+copy (3-addr bswap + memory support?) This is available on Atom processors.
+
+//===---------------------------------------------------------------------===//
+
+CodeGen/X86/lea-3.ll:test3 should be a single LEA, not a shift/move. The X86
+backend knows how to three-addressify this shift, but it appears the register
+allocator isn't even asking it to do so in this case. We should investigate
+why this isn't happening, it could have significant impact on other important
+cases for X86 as well.
+
+//===---------------------------------------------------------------------===//
+
+This should be one DIV/IDIV instruction, not a libcall:
+
+unsigned test(unsigned long long X, unsigned Y) {
+ return X/Y;
+}
+
+This can be done trivially with a custom legalizer. What about overflow
+though? http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
+
+//===---------------------------------------------------------------------===//
+
+Improvements to the multiply -> shift/add algorithm:
+http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html
+
+//===---------------------------------------------------------------------===//
+
+Improve code like this (occurs fairly frequently, e.g. in LLVM):
+long long foo(int x) { return 1LL << x; }
+
+http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html
+http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html
+http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html
+
+Another useful one would be ~0ULL >> X and ~0ULL << X.
+
+One better solution for 1LL << x is:
+ xorl %eax, %eax
+ xorl %edx, %edx
+ testb $32, %cl
+ sete %al
+ setne %dl
+ sall %cl, %eax
+ sall %cl, %edx
+
+But that requires good 8-bit subreg support.
+
+Also, this might be better. It's an extra shift, but it's one instruction
+shorter, and doesn't stress 8-bit subreg support.
+(From http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01148.html,
+but without the unnecessary and.)
+ movl %ecx, %eax
+ shrl $5, %eax
+ movl %eax, %edx
+ xorl $1, %edx
+ sall %cl, %eax
+ sall %cl. %edx
+
+64-bit shifts (in general) expand to really bad code. Instead of using
+cmovs, we should expand to a conditional branch like GCC produces.
+
+//===---------------------------------------------------------------------===//
+
+Compile this:
+_Bool f(_Bool a) { return a!=1; }
+
+into:
+ movzbl %dil, %eax
+ xorl $1, %eax
+ ret
+
+(Although note that this isn't a legal way to express the code that llvm-gcc
+currently generates for that function.)
+
+//===---------------------------------------------------------------------===//
+
+Some isel ideas:
+
+1. Dynamic programming based approach when compile time if not an
+ issue.
+2. Code duplication (addressing mode) during isel.
+3. Other ideas from "Register-Sensitive Selection, Duplication, and
+ Sequencing of Instructions".
+4. Scheduling for reduced register pressure. E.g. "Minimum Register
+ Instruction Sequence Problem: Revisiting Optimal Code Generation for DAGs"
+ and other related papers.
+ http://citeseer.ist.psu.edu/govindarajan01minimum.html
+
+//===---------------------------------------------------------------------===//
+
+Should we promote i16 to i32 to avoid partial register update stalls?
+
+//===---------------------------------------------------------------------===//
+
+Leave any_extend as pseudo instruction and hint to register
+allocator. Delay codegen until post register allocation.
+Note. any_extend is now turned into an INSERT_SUBREG. We still need to teach
+the coalescer how to deal with it though.
+
+//===---------------------------------------------------------------------===//
+
+It appears icc use push for parameter passing. Need to investigate.
+
+//===---------------------------------------------------------------------===//
+
+Only use inc/neg/not instructions on processors where they are faster than
+add/sub/xor. They are slower on the P4 due to only updating some processor
+flags.
+
+//===---------------------------------------------------------------------===//
+
+The instruction selector sometimes misses folding a load into a compare. The
+pattern is written as (cmp reg, (load p)). Because the compare isn't
+commutative, it is not matched with the load on both sides. The dag combiner
+should be made smart enough to cannonicalize the load into the RHS of a compare
+when it can invert the result of the compare for free.
+
+//===---------------------------------------------------------------------===//
+
+In many cases, LLVM generates code like this:
+
+_test:
+ movl 8(%esp), %eax
+ cmpl %eax, 4(%esp)
+ setl %al
+ movzbl %al, %eax
+ ret
+
+on some processors (which ones?), it is more efficient to do this:
+
+_test:
+ movl 8(%esp), %ebx
+ xor %eax, %eax
+ cmpl %ebx, 4(%esp)
+ setl %al
+ ret
+
+Doing this correctly is tricky though, as the xor clobbers the flags.
+
+//===---------------------------------------------------------------------===//
+
+We should generate bts/btr/etc instructions on targets where they are cheap or
+when codesize is important. e.g., for:
+
+void setbit(int *target, int bit) {
+ *target |= (1 << bit);
+}
+void clearbit(int *target, int bit) {
+ *target &= ~(1 << bit);
+}
+
+//===---------------------------------------------------------------------===//
+
+Instead of the following for memset char*, 1, 10:
+
+ movl $16843009, 4(%edx)
+ movl $16843009, (%edx)
+ movw $257, 8(%edx)
+
+It might be better to generate
+
+ movl $16843009, %eax
+ movl %eax, 4(%edx)
+ movl %eax, (%edx)
+ movw al, 8(%edx)
+
+when we can spare a register. It reduces code size.
+
+//===---------------------------------------------------------------------===//
+
+Evaluate what the best way to codegen sdiv X, (2^C) is. For X/8, we currently
+get this:
+
+define i32 @test1(i32 %X) {
+ %Y = sdiv i32 %X, 8
+ ret i32 %Y
+}
+
+_test1:
+ movl 4(%esp), %eax
+ movl %eax, %ecx
+ sarl $31, %ecx
+ shrl $29, %ecx
+ addl %ecx, %eax
+ sarl $3, %eax
+ ret
+
+GCC knows several different ways to codegen it, one of which is this:
+
+_test1:
+ movl 4(%esp), %eax
+ cmpl $-1, %eax
+ leal 7(%eax), %ecx
+ cmovle %ecx, %eax
+ sarl $3, %eax
+ ret
+
+which is probably slower, but it's interesting at least :)
+
+//===---------------------------------------------------------------------===//
+
+We are currently lowering large (1MB+) memmove/memcpy to rep/stosl and rep/movsl
+We should leave these as libcalls for everything over a much lower threshold,
+since libc is hand tuned for medium and large mem ops (avoiding RFO for large
+stores, TLB preheating, etc)
+
+//===---------------------------------------------------------------------===//
+
+Optimize this into something reasonable:
+ x * copysign(1.0, y) * copysign(1.0, z)
+
+//===---------------------------------------------------------------------===//
+
+Optimize copysign(x, *y) to use an integer load from y.
+
+//===---------------------------------------------------------------------===//
+
+The following tests perform worse with LSR:
+
+lambda, siod, optimizer-eval, ackermann, hash2, nestedloop, strcat, and Treesor.
+
+//===---------------------------------------------------------------------===//
+
+Adding to the list of cmp / test poor codegen issues:
+
+int test(__m128 *A, __m128 *B) {
+ if (_mm_comige_ss(*A, *B))
+ return 3;
+ else
+ return 4;
+}
+
+_test:
+ movl 8(%esp), %eax
+ movaps (%eax), %xmm0
+ movl 4(%esp), %eax
+ movaps (%eax), %xmm1
+ comiss %xmm0, %xmm1
+ setae %al
+ movzbl %al, %ecx
+ movl $3, %eax
+ movl $4, %edx
+ cmpl $0, %ecx
+ cmove %edx, %eax
+ ret
+
+Note the setae, movzbl, cmpl, cmove can be replaced with a single cmovae. There
+are a number of issues. 1) We are introducing a setcc between the result of the
+intrisic call and select. 2) The intrinsic is expected to produce a i32 value
+so a any extend (which becomes a zero extend) is added.
+
+We probably need some kind of target DAG combine hook to fix this.
+
+//===---------------------------------------------------------------------===//
+
+We generate significantly worse code for this than GCC:
+http://gcc.gnu.org/bugzilla/show_bug.cgi?id=21150
+http://gcc.gnu.org/bugzilla/attachment.cgi?id=8701
+
+There is also one case we do worse on PPC.
+
+//===---------------------------------------------------------------------===//
+
+For this:
+
+int test(int a)
+{
+ return a * 3;
+}
+
+We currently emits
+ imull $3, 4(%esp), %eax
+
+Perhaps this is what we really should generate is? Is imull three or four
+cycles? Note: ICC generates this:
+ movl 4(%esp), %eax
+ leal (%eax,%eax,2), %eax
+
+The current instruction priority is based on pattern complexity. The former is
+more "complex" because it folds a load so the latter will not be emitted.
+
+Perhaps we should use AddedComplexity to give LEA32r a higher priority? We
+should always try to match LEA first since the LEA matching code does some
+estimate to determine whether the match is profitable.
+
+However, if we care more about code size, then imull is better. It's two bytes
+shorter than movl + leal.
+
+On a Pentium M, both variants have the same characteristics with regard
+to throughput; however, the multiplication has a latency of four cycles, as
+opposed to two cycles for the movl+lea variant.
+
+//===---------------------------------------------------------------------===//
+
+__builtin_ffs codegen is messy.
+
+int ffs_(unsigned X) { return __builtin_ffs(X); }
+
+llvm produces:
+ffs_:
+ movl 4(%esp), %ecx
+ bsfl %ecx, %eax
+ movl $32, %edx
+ cmove %edx, %eax
+ incl %eax
+ xorl %edx, %edx
+ testl %ecx, %ecx
+ cmove %edx, %eax
+ ret
+
+vs gcc:
+
+_ffs_:
+ movl $-1, %edx
+ bsfl 4(%esp), %eax
+ cmove %edx, %eax
+ addl $1, %eax
+ ret
+
+Another example of __builtin_ffs (use predsimplify to eliminate a select):
+
+int foo (unsigned long j) {
+ if (j)
+ return __builtin_ffs (j) - 1;
+ else
+ return 0;
+}
+
+//===---------------------------------------------------------------------===//
+
+It appears gcc place string data with linkonce linkage in
+.section __TEXT,__const_coal,coalesced instead of
+.section __DATA,__const_coal,coalesced.
+Take a look at darwin.h, there are other Darwin assembler directives that we
+do not make use of.
+
+//===---------------------------------------------------------------------===//
+
+define i32 @foo(i32* %a, i32 %t) {
+entry:
+ br label %cond_true
+
+cond_true: ; preds = %cond_true, %entry
+ %x.0.0 = phi i32 [ 0, %entry ], [ %tmp9, %cond_true ] ; <i32> [#uses=3]
+ %t_addr.0.0 = phi i32 [ %t, %entry ], [ %tmp7, %cond_true ] ; <i32> [#uses=1]
+ %tmp2 = getelementptr i32* %a, i32 %x.0.0 ; <i32*> [#uses=1]
+ %tmp3 = load i32* %tmp2 ; <i32> [#uses=1]
+ %tmp5 = add i32 %t_addr.0.0, %x.0.0 ; <i32> [#uses=1]
+ %tmp7 = add i32 %tmp5, %tmp3 ; <i32> [#uses=2]
+ %tmp9 = add i32 %x.0.0, 1 ; <i32> [#uses=2]
+ %tmp = icmp sgt i32 %tmp9, 39 ; <i1> [#uses=1]
+ br i1 %tmp, label %bb12, label %cond_true
+
+bb12: ; preds = %cond_true
+ ret i32 %tmp7
+}
+is pessimized by -loop-reduce and -indvars
+
+//===---------------------------------------------------------------------===//
+
+u32 to float conversion improvement:
+
+float uint32_2_float( unsigned u ) {
+ float fl = (int) (u & 0xffff);
+ float fh = (int) (u >> 16);
+ fh *= 0x1.0p16f;
+ return fh + fl;
+}
+
+00000000 subl $0x04,%esp
+00000003 movl 0x08(%esp,1),%eax
+00000007 movl %eax,%ecx
+00000009 shrl $0x10,%ecx
+0000000c cvtsi2ss %ecx,%xmm0
+00000010 andl $0x0000ffff,%eax
+00000015 cvtsi2ss %eax,%xmm1
+00000019 mulss 0x00000078,%xmm0
+00000021 addss %xmm1,%xmm0
+00000025 movss %xmm0,(%esp,1)
+0000002a flds (%esp,1)
+0000002d addl $0x04,%esp
+00000030 ret
+
+//===---------------------------------------------------------------------===//
+
+When using fastcc abi, align stack slot of argument of type double on 8 byte
+boundary to improve performance.
+
+//===---------------------------------------------------------------------===//
+
+Codegen:
+
+int f(int a, int b) {
+ if (a == 4 || a == 6)
+ b++;
+ return b;
+}
+
+
+as:
+
+or eax, 2
+cmp eax, 6
+jz label
+
+//===---------------------------------------------------------------------===//
+
+GCC's ix86_expand_int_movcc function (in i386.c) has a ton of interesting
+simplifications for integer "x cmp y ? a : b". For example, instead of:
+
+int G;
+void f(int X, int Y) {
+ G = X < 0 ? 14 : 13;
+}
+
+compiling to:
+
+_f:
+ movl $14, %eax
+ movl $13, %ecx
+ movl 4(%esp), %edx
+ testl %edx, %edx
+ cmovl %eax, %ecx
+ movl %ecx, _G
+ ret
+
+it could be:
+_f:
+ movl 4(%esp), %eax
+ sarl $31, %eax
+ notl %eax
+ addl $14, %eax
+ movl %eax, _G
+ ret
+
+etc.
+
+Another is:
+int usesbb(unsigned int a, unsigned int b) {
+ return (a < b ? -1 : 0);
+}
+to:
+_usesbb:
+ movl 8(%esp), %eax
+ cmpl %eax, 4(%esp)
+ sbbl %eax, %eax
+ ret
+
+instead of:
+_usesbb:
+ xorl %eax, %eax
+ movl 8(%esp), %ecx
+ cmpl %ecx, 4(%esp)
+ movl $4294967295, %ecx
+ cmovb %ecx, %eax
+ ret
+
+//===---------------------------------------------------------------------===//
+
+Consider the expansion of:
+
+define i32 @test3(i32 %X) {
+ %tmp1 = urem i32 %X, 255
+ ret i32 %tmp1
+}
+
+Currently it compiles to:
+
+...
+ movl $2155905153, %ecx
+ movl 8(%esp), %esi
+ movl %esi, %eax
+ mull %ecx
+...
+
+This could be "reassociated" into:
+
+ movl $2155905153, %eax
+ movl 8(%esp), %ecx
+ mull %ecx
+
+to avoid the copy. In fact, the existing two-address stuff would do this
+except that mul isn't a commutative 2-addr instruction. I guess this has
+to be done at isel time based on the #uses to mul?
+
+//===---------------------------------------------------------------------===//
+
+Make sure the instruction which starts a loop does not cross a cacheline
+boundary. This requires knowning the exact length of each machine instruction.
+That is somewhat complicated, but doable. Example 256.bzip2:
+
+In the new trace, the hot loop has an instruction which crosses a cacheline
+boundary. In addition to potential cache misses, this can't help decoding as I
+imagine there has to be some kind of complicated decoder reset and realignment
+to grab the bytes from the next cacheline.
+
+532 532 0x3cfc movb (1809(%esp, %esi), %bl <<<--- spans 2 64 byte lines
+942 942 0x3d03 movl %dh, (1809(%esp, %esi)
+937 937 0x3d0a incl %esi
+3 3 0x3d0b cmpb %bl, %dl
+27 27 0x3d0d jnz 0x000062db <main+11707>
+
+//===---------------------------------------------------------------------===//
+
+In c99 mode, the preprocessor doesn't like assembly comments like #TRUNCATE.
+
+//===---------------------------------------------------------------------===//
+
+This could be a single 16-bit load.
+
+int f(char *p) {
+ if ((p[0] == 1) & (p[1] == 2)) return 1;
+ return 0;
+}
+
+//===---------------------------------------------------------------------===//
+
+We should inline lrintf and probably other libc functions.
+
+//===---------------------------------------------------------------------===//
+
+Use the FLAGS values from arithmetic instructions more. For example, compile:
+
+int add_zf(int *x, int y, int a, int b) {
+ if ((*x += y) == 0)
+ return a;
+ else
+ return b;
+}
+
+to:
+ addl %esi, (%rdi)
+ movl %edx, %eax
+ cmovne %ecx, %eax
+ ret
+instead of:
+
+_add_zf:
+ addl (%rdi), %esi
+ movl %esi, (%rdi)
+ testl %esi, %esi
+ cmove %edx, %ecx
+ movl %ecx, %eax
+ ret
+
+As another example, compile function f2 in test/CodeGen/X86/cmp-test.ll
+without a test instruction.
+
+//===---------------------------------------------------------------------===//
+
+These two functions have identical effects:
+
+unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return i;}
+unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
+
+We currently compile them to:
+
+_f:
+ movl 4(%esp), %eax
+ movl %eax, %ecx
+ incl %ecx
+ movl 8(%esp), %edx
+ cmpl %edx, %ecx
+ jne LBB1_2 #UnifiedReturnBlock
+LBB1_1: #cond_true
+ addl $2, %eax
+ ret
+LBB1_2: #UnifiedReturnBlock
+ movl %ecx, %eax
+ ret
+_f2:
+ movl 4(%esp), %eax
+ movl %eax, %ecx
+ incl %ecx
+ cmpl 8(%esp), %ecx
+ sete %cl
+ movzbl %cl, %ecx
+ leal 1(%ecx,%eax), %eax
+ ret
+
+both of which are inferior to GCC's:
+
+_f:
+ movl 4(%esp), %edx
+ leal 1(%edx), %eax
+ addl $2, %edx
+ cmpl 8(%esp), %eax
+ cmove %edx, %eax
+ ret
+_f2:
+ movl 4(%esp), %eax
+ addl $1, %eax
+ xorl %edx, %edx
+ cmpl 8(%esp), %eax
+ sete %dl
+ addl %edx, %eax
+ ret
+
+//===---------------------------------------------------------------------===//
+
+This code:
+
+void test(int X) {
+ if (X) abort();
+}
+
+is currently compiled to:
+
+_test:
+ subl $12, %esp
+ cmpl $0, 16(%esp)
+ jne LBB1_1
+ addl $12, %esp
+ ret
+LBB1_1:
+ call L_abort$stub
+
+It would be better to produce:
+
+_test:
+ subl $12, %esp
+ cmpl $0, 16(%esp)
+ jne L_abort$stub
+ addl $12, %esp
+ ret
+
+This can be applied to any no-return function call that takes no arguments etc.
+Alternatively, the stack save/restore logic could be shrink-wrapped, producing
+something like this:
+
+_test:
+ cmpl $0, 4(%esp)
+ jne LBB1_1
+ ret
+LBB1_1:
+ subl $12, %esp
+ call L_abort$stub
+
+Both are useful in different situations. Finally, it could be shrink-wrapped
+and tail called, like this:
+
+_test:
+ cmpl $0, 4(%esp)
+ jne LBB1_1
+ ret
+LBB1_1:
+ pop %eax # realign stack.
+ call L_abort$stub
+
+Though this probably isn't worth it.
+
+//===---------------------------------------------------------------------===//
+
+Sometimes it is better to codegen subtractions from a constant (e.g. 7-x) with
+a neg instead of a sub instruction. Consider:
+
+int test(char X) { return 7-X; }
+
+we currently produce:
+_test:
+ movl $7, %eax
+ movsbl 4(%esp), %ecx
+ subl %ecx, %eax
+ ret
+
+We would use one fewer register if codegen'd as:
+
+ movsbl 4(%esp), %eax
+ neg %eax
+ add $7, %eax
+ ret
+
+Note that this isn't beneficial if the load can be folded into the sub. In
+this case, we want a sub:
+
+int test(int X) { return 7-X; }
+_test:
+ movl $7, %eax
+ subl 4(%esp), %eax
+ ret
+
+//===---------------------------------------------------------------------===//
+
+Leaf functions that require one 4-byte spill slot have a prolog like this:
+
+_foo:
+ pushl %esi
+ subl $4, %esp
+...
+and an epilog like this:
+ addl $4, %esp
+ popl %esi
+ ret
+
+It would be smaller, and potentially faster, to push eax on entry and to
+pop into a dummy register instead of using addl/subl of esp. Just don't pop
+into any return registers :)
+
+//===---------------------------------------------------------------------===//
+
+The X86 backend should fold (branch (or (setcc, setcc))) into multiple
+branches. We generate really poor code for:
+
+double testf(double a) {
+ return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0);
+}
+
+For example, the entry BB is:
+
+_testf:
+ subl $20, %esp
+ pxor %xmm0, %xmm0
+ movsd 24(%esp), %xmm1
+ ucomisd %xmm0, %xmm1
+ setnp %al
+ sete %cl
+ testb %cl, %al
+ jne LBB1_5 # UnifiedReturnBlock
+LBB1_1: # cond_true
+
+
+it would be better to replace the last four instructions with:
+
+ jp LBB1_1
+ je LBB1_5
+LBB1_1:
+
+We also codegen the inner ?: into a diamond:
+
+ cvtss2sd LCPI1_0(%rip), %xmm2
+ cvtss2sd LCPI1_1(%rip), %xmm3
+ ucomisd %xmm1, %xmm0
+ ja LBB1_3 # cond_true
+LBB1_2: # cond_true
+ movapd %xmm3, %xmm2
+LBB1_3: # cond_true
+ movapd %xmm2, %xmm0
+ ret
+
+We should sink the load into xmm3 into the LBB1_2 block. This should
+be pretty easy, and will nuke all the copies.
+
+//===---------------------------------------------------------------------===//
+
+This:
+ #include <algorithm>
+ inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b)
+ { return std::make_pair(a + b, a + b < a); }
+ bool no_overflow(unsigned a, unsigned b)
+ { return !full_add(a, b).second; }
+
+Should compile to:
+
+
+ _Z11no_overflowjj:
+ addl %edi, %esi
+ setae %al
+ ret
+
+FIXME: That code looks wrong; bool return is normally defined as zext.
+
+on x86-64, not:
+
+__Z11no_overflowjj:
+ addl %edi, %esi
+ cmpl %edi, %esi
+ setae %al
+ movzbl %al, %eax
+ ret
+
+
+//===---------------------------------------------------------------------===//
+
+The following code:
+
+bb114.preheader: ; preds = %cond_next94
+ %tmp231232 = sext i16 %tmp62 to i32 ; <i32> [#uses=1]
+ %tmp233 = sub i32 32, %tmp231232 ; <i32> [#uses=1]
+ %tmp245246 = sext i16 %tmp65 to i32 ; <i32> [#uses=1]
+ %tmp252253 = sext i16 %tmp68 to i32 ; <i32> [#uses=1]
+ %tmp254 = sub i32 32, %tmp252253 ; <i32> [#uses=1]
+ %tmp553554 = bitcast i16* %tmp37 to i8* ; <i8*> [#uses=2]
+ %tmp583584 = sext i16 %tmp98 to i32 ; <i32> [#uses=1]
+ %tmp585 = sub i32 32, %tmp583584 ; <i32> [#uses=1]
+ %tmp614615 = sext i16 %tmp101 to i32 ; <i32> [#uses=1]
+ %tmp621622 = sext i16 %tmp104 to i32 ; <i32> [#uses=1]
+ %tmp623 = sub i32 32, %tmp621622 ; <i32> [#uses=1]
+ br label %bb114
+
+produces:
+
+LBB3_5: # bb114.preheader
+ movswl -68(%ebp), %eax
+ movl $32, %ecx
+ movl %ecx, -80(%ebp)
+ subl %eax, -80(%ebp)
+ movswl -52(%ebp), %eax
+ movl %ecx, -84(%ebp)
+ subl %eax, -84(%ebp)
+ movswl -70(%ebp), %eax
+ movl %ecx, -88(%ebp)
+ subl %eax, -88(%ebp)
+ movswl -50(%ebp), %eax
+ subl %eax, %ecx
+ movl %ecx, -76(%ebp)
+ movswl -42(%ebp), %eax
+ movl %eax, -92(%ebp)
+ movswl -66(%ebp), %eax
+ movl %eax, -96(%ebp)
+ movw $0, -98(%ebp)
+
+This appears to be bad because the RA is not folding the store to the stack
+slot into the movl. The above instructions could be:
+ movl $32, -80(%ebp)
+...
+ movl $32, -84(%ebp)
+...
+This seems like a cross between remat and spill folding.
+
+This has redundant subtractions of %eax from a stack slot. However, %ecx doesn't
+change, so we could simply subtract %eax from %ecx first and then use %ecx (or
+vice-versa).
+
+//===---------------------------------------------------------------------===//
+
+This code:
+
+ %tmp659 = icmp slt i16 %tmp654, 0 ; <i1> [#uses=1]
+ br i1 %tmp659, label %cond_true662, label %cond_next715
+
+produces this:
+
+ testw %cx, %cx
+ movswl %cx, %esi
+ jns LBB4_109 # cond_next715
+
+Shark tells us that using %cx in the testw instruction is sub-optimal. It
+suggests using the 32-bit register (which is what ICC uses).
+
+//===---------------------------------------------------------------------===//
+
+We compile this:
+
+void compare (long long foo) {
+ if (foo < 4294967297LL)
+ abort();
+}
+
+to:
+
+compare:
+ subl $4, %esp
+ cmpl $0, 8(%esp)
+ setne %al
+ movzbw %al, %ax
+ cmpl $1, 12(%esp)
+ setg %cl
+ movzbw %cl, %cx
+ cmove %ax, %cx
+ testb $1, %cl
+ jne .LBB1_2 # UnifiedReturnBlock
+.LBB1_1: # ifthen
+ call abort
+.LBB1_2: # UnifiedReturnBlock
+ addl $4, %esp
+ ret
+
+(also really horrible code on ppc). This is due to the expand code for 64-bit
+compares. GCC produces multiple branches, which is much nicer:
+
+compare:
+ subl $12, %esp
+ movl 20(%esp), %edx
+ movl 16(%esp), %eax
+ decl %edx
+ jle .L7
+.L5:
+ addl $12, %esp
+ ret
+ .p2align 4,,7
+.L7:
+ jl .L4
+ cmpl $0, %eax
+ .p2align 4,,8
+ ja .L5
+.L4:
+ .p2align 4,,9
+ call abort
+
+//===---------------------------------------------------------------------===//
+
+Tail call optimization improvements: Tail call optimization currently
+pushes all arguments on the top of the stack (their normal place for
+non-tail call optimized calls) that source from the callers arguments
+or that source from a virtual register (also possibly sourcing from
+callers arguments).
+This is done to prevent overwriting of parameters (see example
+below) that might be used later.
+
+example:
+
+int callee(int32, int64);
+int caller(int32 arg1, int32 arg2) {
+ int64 local = arg2 * 2;
+ return callee(arg2, (int64)local);
+}
+
+[arg1] [!arg2 no longer valid since we moved local onto it]
+[arg2] -> [(int64)
+[RETADDR] local ]
+
+Moving arg1 onto the stack slot of callee function would overwrite
+arg2 of the caller.
+
+Possible optimizations:
+
+
+ - Analyse the actual parameters of the callee to see which would
+ overwrite a caller parameter which is used by the callee and only
+ push them onto the top of the stack.
+
+ int callee (int32 arg1, int32 arg2);
+ int caller (int32 arg1, int32 arg2) {
+ return callee(arg1,arg2);
+ }
+
+ Here we don't need to write any variables to the top of the stack
+ since they don't overwrite each other.
+
+ int callee (int32 arg1, int32 arg2);
+ int caller (int32 arg1, int32 arg2) {
+ return callee(arg2,arg1);
+ }
+
+ Here we need to push the arguments because they overwrite each
+ other.
+
+//===---------------------------------------------------------------------===//
+
+main ()
+{
+ int i = 0;
+ unsigned long int z = 0;
+
+ do {
+ z -= 0x00004000;
+ i++;
+ if (i > 0x00040000)
+ abort ();
+ } while (z > 0);
+ exit (0);
+}
+
+gcc compiles this to:
+
+_main:
+ subl $28, %esp
+ xorl %eax, %eax
+ jmp L2
+L3:
+ cmpl $262144, %eax
+ je L10
+L2:
+ addl $1, %eax
+ cmpl $262145, %eax
+ jne L3
+ call L_abort$stub
+L10:
+ movl $0, (%esp)
+ call L_exit$stub
+
+llvm:
+
+_main:
+ subl $12, %esp
+ movl $1, %eax
+ movl $16384, %ecx
+LBB1_1: # bb
+ cmpl $262145, %eax
+ jge LBB1_4 # cond_true
+LBB1_2: # cond_next
+ incl %eax
+ addl $4294950912, %ecx
+ cmpl $16384, %ecx
+ jne LBB1_1 # bb
+LBB1_3: # bb11
+ xorl %eax, %eax
+ addl $12, %esp
+ ret
+LBB1_4: # cond_true
+ call L_abort$stub
+
+1. LSR should rewrite the first cmp with induction variable %ecx.
+2. DAG combiner should fold
+ leal 1(%eax), %edx
+ cmpl $262145, %edx
+ =>
+ cmpl $262144, %eax
+
+//===---------------------------------------------------------------------===//
+
+define i64 @test(double %X) {
+ %Y = fptosi double %X to i64
+ ret i64 %Y
+}
+
+compiles to:
+
+_test:
+ subl $20, %esp
+ movsd 24(%esp), %xmm0
+ movsd %xmm0, 8(%esp)
+ fldl 8(%esp)
+ fisttpll (%esp)
+ movl 4(%esp), %edx
+ movl (%esp), %eax
+ addl $20, %esp
+ #FP_REG_KILL
+ ret
+
+This should just fldl directly from the input stack slot.
+
+//===---------------------------------------------------------------------===//
+
+This code:
+int foo (int x) { return (x & 65535) | 255; }
+
+Should compile into:
+
+_foo:
+ movzwl 4(%esp), %eax
+ orl $255, %eax
+ ret
+
+instead of:
+_foo:
+ movl $255, %eax
+ orl 4(%esp), %eax
+ andl $65535, %eax
+ ret
+
+//===---------------------------------------------------------------------===//
+
+We're codegen'ing multiply of long longs inefficiently:
+
+unsigned long long LLM(unsigned long long arg1, unsigned long long arg2) {
+ return arg1 * arg2;
+}
+
+We compile to (fomit-frame-pointer):
+
+_LLM:
+ pushl %esi
+ movl 8(%esp), %ecx
+ movl 16(%esp), %esi
+ movl %esi, %eax
+ mull %ecx
+ imull 12(%esp), %esi
+ addl %edx, %esi
+ imull 20(%esp), %ecx
+ movl %esi, %edx
+ addl %ecx, %edx
+ popl %esi
+ ret
+
+This looks like a scheduling deficiency and lack of remat of the load from
+the argument area. ICC apparently produces:
+
+ movl 8(%esp), %ecx
+ imull 12(%esp), %ecx
+ movl 16(%esp), %eax
+ imull 4(%esp), %eax
+ addl %eax, %ecx
+ movl 4(%esp), %eax
+ mull 12(%esp)
+ addl %ecx, %edx
+ ret
+
+Note that it remat'd loads from 4(esp) and 12(esp). See this GCC PR:
+http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17236
+
+//===---------------------------------------------------------------------===//
+
+We can fold a store into "zeroing a reg". Instead of:
+
+xorl %eax, %eax
+movl %eax, 124(%esp)
+
+we should get:
+
+movl $0, 124(%esp)
+
+if the flags of the xor are dead.
+
+Likewise, we isel "x<<1" into "add reg,reg". If reg is spilled, this should
+be folded into: shl [mem], 1
+
+//===---------------------------------------------------------------------===//
+
+In SSE mode, we turn abs and neg into a load from the constant pool plus a xor
+or and instruction, for example:
+
+ xorpd LCPI1_0, %xmm2
+
+However, if xmm2 gets spilled, we end up with really ugly code like this:
+
+ movsd (%esp), %xmm0
+ xorpd LCPI1_0, %xmm0
+ movsd %xmm0, (%esp)
+
+Since we 'know' that this is a 'neg', we can actually "fold" the spill into
+the neg/abs instruction, turning it into an *integer* operation, like this:
+
+ xorl 2147483648, [mem+4] ## 2147483648 = (1 << 31)
+
+you could also use xorb, but xorl is less likely to lead to a partial register
+stall. Here is a contrived testcase:
+
+double a, b, c;
+void test(double *P) {
+ double X = *P;
+ a = X;
+ bar();
+ X = -X;
+ b = X;
+ bar();
+ c = X;
+}
+
+//===---------------------------------------------------------------------===//
+
+The generated code on x86 for checking for signed overflow on a multiply the
+obvious way is much longer than it needs to be.
+
+int x(int a, int b) {
+ long long prod = (long long)a*b;
+ return prod > 0x7FFFFFFF || prod < (-0x7FFFFFFF-1);
+}
+
+See PR2053 for more details.
+
+//===---------------------------------------------------------------------===//
+
+We should investigate using cdq/ctld (effect: edx = sar eax, 31)
+more aggressively; it should cost the same as a move+shift on any modern
+processor, but it's a lot shorter. Downside is that it puts more
+pressure on register allocation because it has fixed operands.
+
+Example:
+int abs(int x) {return x < 0 ? -x : x;}
+
+gcc compiles this to the following when using march/mtune=pentium2/3/4/m/etc.:
+abs:
+ movl 4(%esp), %eax
+ cltd
+ xorl %edx, %eax
+ subl %edx, %eax
+ ret
+
+//===---------------------------------------------------------------------===//
+
+Consider:
+int test(unsigned long a, unsigned long b) { return -(a < b); }
+
+We currently compile this to:
+
+define i32 @test(i32 %a, i32 %b) nounwind {
+ %tmp3 = icmp ult i32 %a, %b ; <i1> [#uses=1]
+ %tmp34 = zext i1 %tmp3 to i32 ; <i32> [#uses=1]
+ %tmp5 = sub i32 0, %tmp34 ; <i32> [#uses=1]
+ ret i32 %tmp5
+}
+
+and
+
+_test:
+ movl 8(%esp), %eax
+ cmpl %eax, 4(%esp)
+ setb %al
+ movzbl %al, %eax
+ negl %eax
+ ret
+
+Several deficiencies here. First, we should instcombine zext+neg into sext:
+
+define i32 @test2(i32 %a, i32 %b) nounwind {
+ %tmp3 = icmp ult i32 %a, %b ; <i1> [#uses=1]
+ %tmp34 = sext i1 %tmp3 to i32 ; <i32> [#uses=1]
+ ret i32 %tmp34
+}
+
+However, before we can do that, we have to fix the bad codegen that we get for
+sext from bool:
+
+_test2:
+ movl 8(%esp), %eax
+ cmpl %eax, 4(%esp)
+ setb %al
+ movzbl %al, %eax
+ shll $31, %eax
+ sarl $31, %eax
+ ret
+
+This code should be at least as good as the code above. Once this is fixed, we
+can optimize this specific case even more to:
+
+ movl 8(%esp), %eax
+ xorl %ecx, %ecx
+ cmpl %eax, 4(%esp)
+ sbbl %ecx, %ecx
+
+//===---------------------------------------------------------------------===//
+
+Take the following code (from
+http://gcc.gnu.org/bugzilla/show_bug.cgi?id=16541):
+
+extern unsigned char first_one[65536];
+int FirstOnet(unsigned long long arg1)
+{
+ if (arg1 >> 48)
+ return (first_one[arg1 >> 48]);
+ return 0;
+}
+
+
+The following code is currently generated:
+FirstOnet:
+ movl 8(%esp), %eax
+ cmpl $65536, %eax
+ movl 4(%esp), %ecx
+ jb .LBB1_2 # UnifiedReturnBlock
+.LBB1_1: # ifthen
+ shrl $16, %eax
+ movzbl first_one(%eax), %eax
+ ret
+.LBB1_2: # UnifiedReturnBlock
+ xorl %eax, %eax
+ ret
+
+We could change the "movl 8(%esp), %eax" into "movzwl 10(%esp), %eax"; this
+lets us change the cmpl into a testl, which is shorter, and eliminate the shift.
+
+//===---------------------------------------------------------------------===//
+
+We compile this function:
+
+define i32 @foo(i32 %a, i32 %b, i32 %c, i8 zeroext %d) nounwind {
+entry:
+ %tmp2 = icmp eq i8 %d, 0 ; <i1> [#uses=1]
+ br i1 %tmp2, label %bb7, label %bb
+
+bb: ; preds = %entry
+ %tmp6 = add i32 %b, %a ; <i32> [#uses=1]
+ ret i32 %tmp6
+
+bb7: ; preds = %entry
+ %tmp10 = sub i32 %a, %c ; <i32> [#uses=1]
+ ret i32 %tmp10
+}
+
+to:
+
+foo: # @foo
+# BB#0: # %entry
+ movl 4(%esp), %ecx
+ cmpb $0, 16(%esp)
+ je .LBB0_2
+# BB#1: # %bb
+ movl 8(%esp), %eax
+ addl %ecx, %eax
+ ret
+.LBB0_2: # %bb7
+ movl 12(%esp), %edx
+ movl %ecx, %eax
+ subl %edx, %eax
+ ret
+
+There's an obviously unnecessary movl in .LBB0_2, and we could eliminate a
+couple more movls by putting 4(%esp) into %eax instead of %ecx.
+
+//===---------------------------------------------------------------------===//
+
+See rdar://4653682.
+
+From flops:
+
+LBB1_15: # bb310
+ cvtss2sd LCPI1_0, %xmm1
+ addsd %xmm1, %xmm0
+ movsd 176(%esp), %xmm2
+ mulsd %xmm0, %xmm2
+ movapd %xmm2, %xmm3
+ mulsd %xmm3, %xmm3
+ movapd %xmm3, %xmm4
+ mulsd LCPI1_23, %xmm4
+ addsd LCPI1_24, %xmm4
+ mulsd %xmm3, %xmm4
+ addsd LCPI1_25, %xmm4
+ mulsd %xmm3, %xmm4
+ addsd LCPI1_26, %xmm4
+ mulsd %xmm3, %xmm4
+ addsd LCPI1_27, %xmm4
+ mulsd %xmm3, %xmm4
+ addsd LCPI1_28, %xmm4
+ mulsd %xmm3, %xmm4
+ addsd %xmm1, %xmm4
+ mulsd %xmm2, %xmm4
+ movsd 152(%esp), %xmm1
+ addsd %xmm4, %xmm1
+ movsd %xmm1, 152(%esp)
+ incl %eax
+ cmpl %eax, %esi
+ jge LBB1_15 # bb310
+LBB1_16: # bb358.loopexit
+ movsd 152(%esp), %xmm0
+ addsd %xmm0, %xmm0
+ addsd LCPI1_22, %xmm0
+ movsd %xmm0, 152(%esp)
+
+Rather than spilling the result of the last addsd in the loop, we should have
+insert a copy to split the interval (one for the duration of the loop, one
+extending to the fall through). The register pressure in the loop isn't high
+enough to warrant the spill.
+
+Also check why xmm7 is not used at all in the function.
+
+//===---------------------------------------------------------------------===//
+
+Take the following:
+
+target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128"
+target triple = "i386-apple-darwin8"
+@in_exit.4870.b = internal global i1 false ; <i1*> [#uses=2]
+define fastcc void @abort_gzip() noreturn nounwind {
+entry:
+ %tmp.b.i = load i1* @in_exit.4870.b ; <i1> [#uses=1]
+ br i1 %tmp.b.i, label %bb.i, label %bb4.i
+bb.i: ; preds = %entry
+ tail call void @exit( i32 1 ) noreturn nounwind
+ unreachable
+bb4.i: ; preds = %entry
+ store i1 true, i1* @in_exit.4870.b
+ tail call void @exit( i32 1 ) noreturn nounwind
+ unreachable
+}
+declare void @exit(i32) noreturn nounwind
+
+This compiles into:
+_abort_gzip: ## @abort_gzip
+## BB#0: ## %entry
+ subl $12, %esp
+ movb _in_exit.4870.b, %al
+ cmpb $1, %al
+ jne LBB0_2
+
+We somehow miss folding the movb into the cmpb.
+
+//===---------------------------------------------------------------------===//
+
+We compile:
+
+int test(int x, int y) {
+ return x-y-1;
+}
+
+into (-m64):
+
+_test:
+ decl %edi
+ movl %edi, %eax
+ subl %esi, %eax
+ ret
+
+it would be better to codegen as: x+~y (notl+addl)
+
+//===---------------------------------------------------------------------===//
+
+This code:
+
+int foo(const char *str,...)
+{
+ __builtin_va_list a; int x;
+ __builtin_va_start(a,str); x = __builtin_va_arg(a,int); __builtin_va_end(a);
+ return x;
+}
+
+gets compiled into this on x86-64:
+ subq $200, %rsp
+ movaps %xmm7, 160(%rsp)
+ movaps %xmm6, 144(%rsp)
+ movaps %xmm5, 128(%rsp)
+ movaps %xmm4, 112(%rsp)
+ movaps %xmm3, 96(%rsp)
+ movaps %xmm2, 80(%rsp)
+ movaps %xmm1, 64(%rsp)
+ movaps %xmm0, 48(%rsp)
+ movq %r9, 40(%rsp)
+ movq %r8, 32(%rsp)
+ movq %rcx, 24(%rsp)
+ movq %rdx, 16(%rsp)
+ movq %rsi, 8(%rsp)
+ leaq (%rsp), %rax
+ movq %rax, 192(%rsp)
+ leaq 208(%rsp), %rax
+ movq %rax, 184(%rsp)
+ movl $48, 180(%rsp)
+ movl $8, 176(%rsp)
+ movl 176(%rsp), %eax
+ cmpl $47, %eax
+ jbe .LBB1_3 # bb
+.LBB1_1: # bb3
+ movq 184(%rsp), %rcx
+ leaq 8(%rcx), %rax
+ movq %rax, 184(%rsp)
+.LBB1_2: # bb4
+ movl (%rcx), %eax
+ addq $200, %rsp
+ ret
+.LBB1_3: # bb
+ movl %eax, %ecx
+ addl $8, %eax
+ addq 192(%rsp), %rcx
+ movl %eax, 176(%rsp)
+ jmp .LBB1_2 # bb4
+
+gcc 4.3 generates:
+ subq $96, %rsp
+.LCFI0:
+ leaq 104(%rsp), %rax
+ movq %rsi, -80(%rsp)
+ movl $8, -120(%rsp)
+ movq %rax, -112(%rsp)
+ leaq -88(%rsp), %rax
+ movq %rax, -104(%rsp)
+ movl $8, %eax
+ cmpl $48, %eax
+ jb .L6
+ movq -112(%rsp), %rdx
+ movl (%rdx), %eax
+ addq $96, %rsp
+ ret
+ .p2align 4,,10
+ .p2align 3
+.L6:
+ mov %eax, %edx
+ addq -104(%rsp), %rdx
+ addl $8, %eax
+ movl %eax, -120(%rsp)
+ movl (%rdx), %eax
+ addq $96, %rsp
+ ret
+
+and it gets compiled into this on x86:
+ pushl %ebp
+ movl %esp, %ebp
+ subl $4, %esp
+ leal 12(%ebp), %eax
+ movl %eax, -4(%ebp)
+ leal 16(%ebp), %eax
+ movl %eax, -4(%ebp)
+ movl 12(%ebp), %eax
+ addl $4, %esp
+ popl %ebp
+ ret
+
+gcc 4.3 generates:
+ pushl %ebp
+ movl %esp, %ebp
+ movl 12(%ebp), %eax
+ popl %ebp
+ ret
+
+//===---------------------------------------------------------------------===//
+
+Teach tblgen not to check bitconvert source type in some cases. This allows us
+to consolidate the following patterns in X86InstrMMX.td:
+
+def : Pat<(v2i32 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
+ (iPTR 0))))),
+ (v2i32 (MMX_MOVDQ2Qrr VR128:$src))>;
+def : Pat<(v4i16 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
+ (iPTR 0))))),
+ (v4i16 (MMX_MOVDQ2Qrr VR128:$src))>;
+def : Pat<(v8i8 (bitconvert (i64 (vector_extract (v2i64 VR128:$src),
+ (iPTR 0))))),
+ (v8i8 (MMX_MOVDQ2Qrr VR128:$src))>;
+
+There are other cases in various td files.
+
+//===---------------------------------------------------------------------===//
+
+Take something like the following on x86-32:
+unsigned a(unsigned long long x, unsigned y) {return x % y;}
+
+We currently generate a libcall, but we really shouldn't: the expansion is
+shorter and likely faster than the libcall. The expected code is something
+like the following:
+
+ movl 12(%ebp), %eax
+ movl 16(%ebp), %ecx
+ xorl %edx, %edx
+ divl %ecx
+ movl 8(%ebp), %eax
+ divl %ecx
+ movl %edx, %eax
+ ret
+
+A similar code sequence works for division.
+
+//===---------------------------------------------------------------------===//
+
+These should compile to the same code, but the later codegen's to useless
+instructions on X86. This may be a trivial dag combine (GCC PR7061):
+
+struct s1 { unsigned char a, b; };
+unsigned long f1(struct s1 x) {
+ return x.a + x.b;
+}
+struct s2 { unsigned a: 8, b: 8; };
+unsigned long f2(struct s2 x) {
+ return x.a + x.b;
+}
+
+//===---------------------------------------------------------------------===//
+
+We currently compile this:
+
+define i32 @func1(i32 %v1, i32 %v2) nounwind {
+entry:
+ %t = call {i32, i1} @llvm.sadd.with.overflow.i32(i32 %v1, i32 %v2)
+ %sum = extractvalue {i32, i1} %t, 0
+ %obit = extractvalue {i32, i1} %t, 1
+ br i1 %obit, label %overflow, label %normal
+normal:
+ ret i32 %sum
+overflow:
+ call void @llvm.trap()
+ unreachable
+}
+declare {i32, i1} @llvm.sadd.with.overflow.i32(i32, i32)
+declare void @llvm.trap()
+
+to:
+
+_func1:
+ movl 4(%esp), %eax
+ addl 8(%esp), %eax
+ jo LBB1_2 ## overflow
+LBB1_1: ## normal
+ ret
+LBB1_2: ## overflow
+ ud2
+
+it would be nice to produce "into" someday.
+
+//===---------------------------------------------------------------------===//
+
+This code:
+
+void vec_mpys1(int y[], const int x[], int scaler) {
+int i;
+for (i = 0; i < 150; i++)
+ y[i] += (((long long)scaler * (long long)x[i]) >> 31);
+}
+
+Compiles to this loop with GCC 3.x:
+
+.L5:
+ movl %ebx, %eax
+ imull (%edi,%ecx,4)
+ shrdl $31, %edx, %eax
+ addl %eax, (%esi,%ecx,4)
+ incl %ecx
+ cmpl $149, %ecx
+ jle .L5
+
+llvm-gcc compiles it to the much uglier:
+
+LBB1_1: ## bb1
+ movl 24(%esp), %eax
+ movl (%eax,%edi,4), %ebx
+ movl %ebx, %ebp
+ imull %esi, %ebp
+ movl %ebx, %eax
+ mull %ecx
+ addl %ebp, %edx
+ sarl $31, %ebx
+ imull %ecx, %ebx
+ addl %edx, %ebx
+ shldl $1, %eax, %ebx
+ movl 20(%esp), %eax
+ addl %ebx, (%eax,%edi,4)
+ incl %edi
+ cmpl $150, %edi
+ jne LBB1_1 ## bb1
+
+The issue is that we hoist the cast of "scaler" to long long outside of the
+loop, the value comes into the loop as two values, and
+RegsForValue::getCopyFromRegs doesn't know how to put an AssertSext on the
+constructed BUILD_PAIR which represents the cast value.
+
+//===---------------------------------------------------------------------===//
+
+Test instructions can be eliminated by using EFLAGS values from arithmetic
+instructions. This is currently not done for mul, and, or, xor, neg, shl,
+sra, srl, shld, shrd, atomic ops, and others. It is also currently not done
+for read-modify-write instructions. It is also current not done if the
+OF or CF flags are needed.
+
+The shift operators have the complication that when the shift count is
+zero, EFLAGS is not set, so they can only subsume a test instruction if
+the shift count is known to be non-zero. Also, using the EFLAGS value
+from a shift is apparently very slow on some x86 implementations.
+
+In read-modify-write instructions, the root node in the isel match is
+the store, and isel has no way for the use of the EFLAGS result of the
+arithmetic to be remapped to the new node.
+
+Add and subtract instructions set OF on signed overflow and CF on unsiged
+overflow, while test instructions always clear OF and CF. In order to
+replace a test with an add or subtract in a situation where OF or CF is
+needed, codegen must be able to prove that the operation cannot see
+signed or unsigned overflow, respectively.
+
+//===---------------------------------------------------------------------===//
+
+memcpy/memmove do not lower to SSE copies when possible. A silly example is:
+define <16 x float> @foo(<16 x float> %A) nounwind {
+ %tmp = alloca <16 x float>, align 16
+ %tmp2 = alloca <16 x float>, align 16
+ store <16 x float> %A, <16 x float>* %tmp
+ %s = bitcast <16 x float>* %tmp to i8*
+ %s2 = bitcast <16 x float>* %tmp2 to i8*
+ call void @llvm.memcpy.i64(i8* %s, i8* %s2, i64 64, i32 16)
+ %R = load <16 x float>* %tmp2
+ ret <16 x float> %R
+}
+
+declare void @llvm.memcpy.i64(i8* nocapture, i8* nocapture, i64, i32) nounwind
+
+which compiles to:
+
+_foo:
+ subl $140, %esp
+ movaps %xmm3, 112(%esp)
+ movaps %xmm2, 96(%esp)
+ movaps %xmm1, 80(%esp)
+ movaps %xmm0, 64(%esp)
+ movl 60(%esp), %eax
+ movl %eax, 124(%esp)
+ movl 56(%esp), %eax
+ movl %eax, 120(%esp)
+ movl 52(%esp), %eax
+ <many many more 32-bit copies>
+ movaps (%esp), %xmm0
+ movaps 16(%esp), %xmm1
+ movaps 32(%esp), %xmm2
+ movaps 48(%esp), %xmm3
+ addl $140, %esp
+ ret
+
+On Nehalem, it may even be cheaper to just use movups when unaligned than to
+fall back to lower-granularity chunks.
+
+//===---------------------------------------------------------------------===//
+
+Implement processor-specific optimizations for parity with GCC on these
+processors. GCC does two optimizations:
+
+1. ix86_pad_returns inserts a noop before ret instructions if immediately
+ preceeded by a conditional branch or is the target of a jump.
+2. ix86_avoid_jump_misspredicts inserts noops in cases where a 16-byte block of
+ code contains more than 3 branches.
+
+The first one is done for all AMDs, Core2, and "Generic"
+The second one is done for: Atom, Pentium Pro, all AMDs, Pentium 4, Nocona,
+ Core 2, and "Generic"
+
+//===---------------------------------------------------------------------===//
+
+Testcase:
+int a(int x) { return (x & 127) > 31; }
+
+Current output:
+ movl 4(%esp), %eax
+ andl $127, %eax
+ cmpl $31, %eax
+ seta %al
+ movzbl %al, %eax
+ ret
+
+Ideal output:
+ xorl %eax, %eax
+ testl $96, 4(%esp)
+ setne %al
+ ret
+
+This should definitely be done in instcombine, canonicalizing the range
+condition into a != condition. We get this IR:
+
+define i32 @a(i32 %x) nounwind readnone {
+entry:
+ %0 = and i32 %x, 127 ; <i32> [#uses=1]
+ %1 = icmp ugt i32 %0, 31 ; <i1> [#uses=1]
+ %2 = zext i1 %1 to i32 ; <i32> [#uses=1]
+ ret i32 %2
+}
+
+Instcombine prefers to strength reduce relational comparisons to equality
+comparisons when possible, this should be another case of that. This could
+be handled pretty easily in InstCombiner::visitICmpInstWithInstAndIntCst, but it
+looks like InstCombiner::visitICmpInstWithInstAndIntCst should really already
+be redesigned to use ComputeMaskedBits and friends.
+
+
+//===---------------------------------------------------------------------===//
+Testcase:
+int x(int a) { return (a&0xf0)>>4; }
+
+Current output:
+ movl 4(%esp), %eax
+ shrl $4, %eax
+ andl $15, %eax
+ ret
+
+Ideal output:
+ movzbl 4(%esp), %eax
+ shrl $4, %eax
+ ret
+
+//===---------------------------------------------------------------------===//
+
+Testcase:
+int x(int a) { return (a & 0x80) ? 0x100 : 0; }
+int y(int a) { return (a & 0x80) *2; }
+
+Current:
+ testl $128, 4(%esp)
+ setne %al
+ movzbl %al, %eax
+ shll $8, %eax
+ ret
+
+Better:
+ movl 4(%esp), %eax
+ addl %eax, %eax
+ andl $256, %eax
+ ret
+
+This is another general instcombine transformation that is profitable on all
+targets. In LLVM IR, these functions look like this:
+
+define i32 @x(i32 %a) nounwind readnone {
+entry:
+ %0 = and i32 %a, 128
+ %1 = icmp eq i32 %0, 0
+ %iftmp.0.0 = select i1 %1, i32 0, i32 256
+ ret i32 %iftmp.0.0
+}
+
+define i32 @y(i32 %a) nounwind readnone {
+entry:
+ %0 = shl i32 %a, 1
+ %1 = and i32 %0, 256
+ ret i32 %1
+}
+
+Replacing an icmp+select with a shift should always be considered profitable in
+instcombine.
+
+//===---------------------------------------------------------------------===//
+
+Re-implement atomic builtins __sync_add_and_fetch() and __sync_sub_and_fetch
+properly.
+
+When the return value is not used (i.e. only care about the value in the
+memory), x86 does not have to use add to implement these. Instead, it can use
+add, sub, inc, dec instructions with the "lock" prefix.
+
+This is currently implemented using a bit of instruction selection trick. The
+issue is the target independent pattern produces one output and a chain and we
+want to map it into one that just output a chain. The current trick is to select
+it into a MERGE_VALUES with the first definition being an implicit_def. The
+proper solution is to add new ISD opcodes for the no-output variant. DAG
+combiner can then transform the node before it gets to target node selection.
+
+Problem #2 is we are adding a whole bunch of x86 atomic instructions when in
+fact these instructions are identical to the non-lock versions. We need a way to
+add target specific information to target nodes and have this information
+carried over to machine instructions. Asm printer (or JIT) can use this
+information to add the "lock" prefix.
+
+//===---------------------------------------------------------------------===//
+
+_Bool bar(int *x) { return *x & 1; }
+
+define zeroext i1 @bar(i32* nocapture %x) nounwind readonly {
+entry:
+ %tmp1 = load i32* %x ; <i32> [#uses=1]
+ %and = and i32 %tmp1, 1 ; <i32> [#uses=1]
+ %tobool = icmp ne i32 %and, 0 ; <i1> [#uses=1]
+ ret i1 %tobool
+}
+
+bar: # @bar
+# BB#0: # %entry
+ movl 4(%esp), %eax
+ movb (%eax), %al
+ andb $1, %al
+ movzbl %al, %eax
+ ret
+
+Missed optimization: should be movl+andl.
+
+//===---------------------------------------------------------------------===//
+
+Consider the following two functions compiled with clang:
+_Bool foo(int *x) { return !(*x & 4); }
+unsigned bar(int *x) { return !(*x & 4); }
+
+foo:
+ movl 4(%esp), %eax
+ testb $4, (%eax)
+ sete %al
+ movzbl %al, %eax
+ ret
+
+bar:
+ movl 4(%esp), %eax
+ movl (%eax), %eax
+ shrl $2, %eax
+ andl $1, %eax
+ xorl $1, %eax
+ ret
+
+The second function generates more code even though the two functions are
+are functionally identical.
+
+//===---------------------------------------------------------------------===//
+
+Take the following C code:
+int x(int y) { return (y & 63) << 14; }
+
+Code produced by gcc:
+ andl $63, %edi
+ sall $14, %edi
+ movl %edi, %eax
+ ret
+
+Code produced by clang:
+ shll $14, %edi
+ movl %edi, %eax
+ andl $1032192, %eax
+ ret
+
+The code produced by gcc is 3 bytes shorter. This sort of construct often
+shows up with bitfields.
+
+//===---------------------------------------------------------------------===//
+
+Take the following C code:
+int f(int a, int b) { return (unsigned char)a == (unsigned char)b; }
+
+We generate the following IR with clang:
+define i32 @f(i32 %a, i32 %b) nounwind readnone {
+entry:
+ %tmp = xor i32 %b, %a ; <i32> [#uses=1]
+ %tmp6 = and i32 %tmp, 255 ; <i32> [#uses=1]
+ %cmp = icmp eq i32 %tmp6, 0 ; <i1> [#uses=1]
+ %conv5 = zext i1 %cmp to i32 ; <i32> [#uses=1]
+ ret i32 %conv5
+}
+
+And the following x86 code:
+ xorl %esi, %edi
+ testb $-1, %dil
+ sete %al
+ movzbl %al, %eax
+ ret
+
+A cmpb instead of the xorl+testb would be one instruction shorter.
+
+//===---------------------------------------------------------------------===//
+
+Given the following C code:
+int f(int a, int b) { return (signed char)a == (signed char)b; }
+
+We generate the following IR with clang:
+define i32 @f(i32 %a, i32 %b) nounwind readnone {
+entry:
+ %sext = shl i32 %a, 24 ; <i32> [#uses=1]
+ %conv1 = ashr i32 %sext, 24 ; <i32> [#uses=1]
+ %sext6 = shl i32 %b, 24 ; <i32> [#uses=1]
+ %conv4 = ashr i32 %sext6, 24 ; <i32> [#uses=1]
+ %cmp = icmp eq i32 %conv1, %conv4 ; <i1> [#uses=1]
+ %conv5 = zext i1 %cmp to i32 ; <i32> [#uses=1]
+ ret i32 %conv5
+}
+
+And the following x86 code:
+ movsbl %sil, %eax
+ movsbl %dil, %ecx
+ cmpl %eax, %ecx
+ sete %al
+ movzbl %al, %eax
+ ret
+
+
+It should be possible to eliminate the sign extensions.
+
+//===---------------------------------------------------------------------===//
+
+LLVM misses a load+store narrowing opportunity in this code:
+
+%struct.bf = type { i64, i16, i16, i32 }
+
+@bfi = external global %struct.bf* ; <%struct.bf**> [#uses=2]
+
+define void @t1() nounwind ssp {
+entry:
+ %0 = load %struct.bf** @bfi, align 8 ; <%struct.bf*> [#uses=1]
+ %1 = getelementptr %struct.bf* %0, i64 0, i32 1 ; <i16*> [#uses=1]
+ %2 = bitcast i16* %1 to i32* ; <i32*> [#uses=2]
+ %3 = load i32* %2, align 1 ; <i32> [#uses=1]
+ %4 = and i32 %3, -65537 ; <i32> [#uses=1]
+ store i32 %4, i32* %2, align 1
+ %5 = load %struct.bf** @bfi, align 8 ; <%struct.bf*> [#uses=1]
+ %6 = getelementptr %struct.bf* %5, i64 0, i32 1 ; <i16*> [#uses=1]
+ %7 = bitcast i16* %6 to i32* ; <i32*> [#uses=2]
+ %8 = load i32* %7, align 1 ; <i32> [#uses=1]
+ %9 = and i32 %8, -131073 ; <i32> [#uses=1]
+ store i32 %9, i32* %7, align 1
+ ret void
+}
+
+LLVM currently emits this:
+
+ movq bfi(%rip), %rax
+ andl $-65537, 8(%rax)
+ movq bfi(%rip), %rax
+ andl $-131073, 8(%rax)
+ ret
+
+It could narrow the loads and stores to emit this:
+
+ movq bfi(%rip), %rax
+ andb $-2, 10(%rax)
+ movq bfi(%rip), %rax
+ andb $-3, 10(%rax)
+ ret
+
+The trouble is that there is a TokenFactor between the store and the
+load, making it non-trivial to determine if there's anything between
+the load and the store which would prohibit narrowing.
+
+//===---------------------------------------------------------------------===//
OpenPOWER on IntegriCloud