summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp1506
1 files changed, 1506 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
new file mode 100644
index 0000000..dfab6ec
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/MCTargetDesc/X86MCCodeEmitter.cpp
@@ -0,0 +1,1506 @@
+//===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the X86MCCodeEmitter class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86MCTargetDesc.h"
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "MCTargetDesc/X86FixupKinds.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mccodeemitter"
+
+namespace {
+class X86MCCodeEmitter : public MCCodeEmitter {
+ X86MCCodeEmitter(const X86MCCodeEmitter &) = delete;
+ void operator=(const X86MCCodeEmitter &) = delete;
+ const MCInstrInfo &MCII;
+ MCContext &Ctx;
+public:
+ X86MCCodeEmitter(const MCInstrInfo &mcii, MCContext &ctx)
+ : MCII(mcii), Ctx(ctx) {
+ }
+
+ ~X86MCCodeEmitter() override {}
+
+ bool is64BitMode(const MCSubtargetInfo &STI) const {
+ return STI.getFeatureBits()[X86::Mode64Bit];
+ }
+
+ bool is32BitMode(const MCSubtargetInfo &STI) const {
+ return STI.getFeatureBits()[X86::Mode32Bit];
+ }
+
+ bool is16BitMode(const MCSubtargetInfo &STI) const {
+ return STI.getFeatureBits()[X86::Mode16Bit];
+ }
+
+ /// Is16BitMemOperand - Return true if the specified instruction has
+ /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
+ bool Is16BitMemOperand(const MCInst &MI, unsigned Op,
+ const MCSubtargetInfo &STI) const {
+ const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
+ const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+ const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
+
+ if (is16BitMode(STI) && BaseReg.getReg() == 0 &&
+ Disp.isImm() && Disp.getImm() < 0x10000)
+ return true;
+ if ((BaseReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
+ (IndexReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
+ return true;
+ return false;
+ }
+
+ unsigned GetX86RegNum(const MCOperand &MO) const {
+ return Ctx.getRegisterInfo()->getEncodingValue(MO.getReg()) & 0x7;
+ }
+
+ // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
+ // 0-7 and the difference between the 2 groups is given by the REX prefix.
+ // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
+ // in 1's complement form, example:
+ //
+ // ModRM field => XMM9 => 1
+ // VEX.VVVV => XMM9 => ~9
+ //
+ // See table 4-35 of Intel AVX Programming Reference for details.
+ unsigned char getVEXRegisterEncoding(const MCInst &MI,
+ unsigned OpNum) const {
+ unsigned SrcReg = MI.getOperand(OpNum).getReg();
+ unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
+ if (X86II::isX86_64ExtendedReg(SrcReg))
+ SrcRegNum |= 8;
+
+ // The registers represented through VEX_VVVV should
+ // be encoded in 1's complement form.
+ return (~SrcRegNum) & 0xf;
+ }
+
+ unsigned char getWriteMaskRegisterEncoding(const MCInst &MI,
+ unsigned OpNum) const {
+ assert(X86::K0 != MI.getOperand(OpNum).getReg() &&
+ "Invalid mask register as write-mask!");
+ unsigned MaskRegNum = GetX86RegNum(MI.getOperand(OpNum));
+ return MaskRegNum;
+ }
+
+ void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
+ OS << (char)C;
+ ++CurByte;
+ }
+
+ void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
+ raw_ostream &OS) const {
+ // Output the constant in little endian byte order.
+ for (unsigned i = 0; i != Size; ++i) {
+ EmitByte(Val & 255, CurByte, OS);
+ Val >>= 8;
+ }
+ }
+
+ void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
+ unsigned ImmSize, MCFixupKind FixupKind,
+ unsigned &CurByte, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ int ImmOffset = 0) const;
+
+ inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
+ unsigned RM) {
+ assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
+ return RM | (RegOpcode << 3) | (Mod << 6);
+ }
+
+ void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
+ unsigned &CurByte, raw_ostream &OS) const {
+ EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
+ }
+
+ void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
+ unsigned &CurByte, raw_ostream &OS) const {
+ // SIB byte is in the same format as the ModRMByte.
+ EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
+ }
+
+
+ void EmitMemModRMByte(const MCInst &MI, unsigned Op,
+ unsigned RegOpcodeField,
+ uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const;
+
+ void encodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const override;
+
+ void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
+ const MCInst &MI, const MCInstrDesc &Desc,
+ raw_ostream &OS) const;
+
+ void EmitSegmentOverridePrefix(unsigned &CurByte, unsigned SegOperand,
+ const MCInst &MI, raw_ostream &OS) const;
+
+ void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
+ const MCInst &MI, const MCInstrDesc &Desc,
+ const MCSubtargetInfo &STI,
+ raw_ostream &OS) const;
+};
+
+} // end anonymous namespace
+
+MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
+ const MCRegisterInfo &MRI,
+ MCContext &Ctx) {
+ return new X86MCCodeEmitter(MCII, Ctx);
+}
+
+/// isDisp8 - Return true if this signed displacement fits in a 8-bit
+/// sign-extended field.
+static bool isDisp8(int Value) {
+ return Value == (signed char)Value;
+}
+
+/// isCDisp8 - Return true if this signed displacement fits in a 8-bit
+/// compressed dispacement field.
+static bool isCDisp8(uint64_t TSFlags, int Value, int& CValue) {
+ assert(((TSFlags & X86II::EncodingMask) == X86II::EVEX) &&
+ "Compressed 8-bit displacement is only valid for EVEX inst.");
+
+ unsigned CD8_Scale =
+ (TSFlags & X86II::CD8_Scale_Mask) >> X86II::CD8_Scale_Shift;
+ if (CD8_Scale == 0) {
+ CValue = Value;
+ return isDisp8(Value);
+ }
+
+ unsigned Mask = CD8_Scale - 1;
+ assert((CD8_Scale & Mask) == 0 && "Invalid memory object size.");
+ if (Value & Mask) // Unaligned offset
+ return false;
+ Value /= (int)CD8_Scale;
+ bool Ret = (Value == (signed char)Value);
+
+ if (Ret)
+ CValue = Value;
+ return Ret;
+}
+
+/// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
+/// in an instruction with the specified TSFlags.
+static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
+ unsigned Size = X86II::getSizeOfImm(TSFlags);
+ bool isPCRel = X86II::isImmPCRel(TSFlags);
+
+ if (X86II::isImmSigned(TSFlags)) {
+ switch (Size) {
+ default: llvm_unreachable("Unsupported signed fixup size!");
+ case 4: return MCFixupKind(X86::reloc_signed_4byte);
+ }
+ }
+ return MCFixup::getKindForSize(Size, isPCRel);
+}
+
+/// Is32BitMemOperand - Return true if the specified instruction has
+/// a 32-bit memory operand. Op specifies the operand # of the memoperand.
+static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
+ const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
+ const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+
+ if ((BaseReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
+ (IndexReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
+ return true;
+ return false;
+}
+
+/// Is64BitMemOperand - Return true if the specified instruction has
+/// a 64-bit memory operand. Op specifies the operand # of the memoperand.
+#ifndef NDEBUG
+static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
+ const MCOperand &BaseReg = MI.getOperand(Op+X86::AddrBaseReg);
+ const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+
+ if ((BaseReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
+ (IndexReg.getReg() != 0 &&
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
+ return true;
+ return false;
+}
+#endif
+
+/// StartsWithGlobalOffsetTable - Check if this expression starts with
+/// _GLOBAL_OFFSET_TABLE_ and if it is of the form
+/// _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
+/// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
+/// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
+/// of a binary expression.
+enum GlobalOffsetTableExprKind {
+ GOT_None,
+ GOT_Normal,
+ GOT_SymDiff
+};
+static GlobalOffsetTableExprKind
+StartsWithGlobalOffsetTable(const MCExpr *Expr) {
+ const MCExpr *RHS = nullptr;
+ if (Expr->getKind() == MCExpr::Binary) {
+ const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
+ Expr = BE->getLHS();
+ RHS = BE->getRHS();
+ }
+
+ if (Expr->getKind() != MCExpr::SymbolRef)
+ return GOT_None;
+
+ const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
+ const MCSymbol &S = Ref->getSymbol();
+ if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
+ return GOT_None;
+ if (RHS && RHS->getKind() == MCExpr::SymbolRef)
+ return GOT_SymDiff;
+ return GOT_Normal;
+}
+
+static bool HasSecRelSymbolRef(const MCExpr *Expr) {
+ if (Expr->getKind() == MCExpr::SymbolRef) {
+ const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
+ return Ref->getKind() == MCSymbolRefExpr::VK_SECREL;
+ }
+ return false;
+}
+
+void X86MCCodeEmitter::
+EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
+ MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
+ const MCExpr *Expr = nullptr;
+ if (DispOp.isImm()) {
+ // If this is a simple integer displacement that doesn't require a
+ // relocation, emit it now.
+ if (FixupKind != FK_PCRel_1 &&
+ FixupKind != FK_PCRel_2 &&
+ FixupKind != FK_PCRel_4) {
+ EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
+ return;
+ }
+ Expr = MCConstantExpr::create(DispOp.getImm(), Ctx);
+ } else {
+ Expr = DispOp.getExpr();
+ }
+
+ // If we have an immoffset, add it to the expression.
+ if ((FixupKind == FK_Data_4 ||
+ FixupKind == FK_Data_8 ||
+ FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
+ GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
+ if (Kind != GOT_None) {
+ assert(ImmOffset == 0);
+
+ if (Size == 8) {
+ FixupKind = MCFixupKind(X86::reloc_global_offset_table8);
+ } else {
+ assert(Size == 4);
+ FixupKind = MCFixupKind(X86::reloc_global_offset_table);
+ }
+
+ if (Kind == GOT_Normal)
+ ImmOffset = CurByte;
+ } else if (Expr->getKind() == MCExpr::SymbolRef) {
+ if (HasSecRelSymbolRef(Expr)) {
+ FixupKind = MCFixupKind(FK_SecRel_4);
+ }
+ } else if (Expr->getKind() == MCExpr::Binary) {
+ const MCBinaryExpr *Bin = static_cast<const MCBinaryExpr*>(Expr);
+ if (HasSecRelSymbolRef(Bin->getLHS())
+ || HasSecRelSymbolRef(Bin->getRHS())) {
+ FixupKind = MCFixupKind(FK_SecRel_4);
+ }
+ }
+ }
+
+ // If the fixup is pc-relative, we need to bias the value to be relative to
+ // the start of the field, not the end of the field.
+ if (FixupKind == FK_PCRel_4 ||
+ FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
+ FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
+ ImmOffset -= 4;
+ if (FixupKind == FK_PCRel_2)
+ ImmOffset -= 2;
+ if (FixupKind == FK_PCRel_1)
+ ImmOffset -= 1;
+
+ if (ImmOffset)
+ Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(ImmOffset, Ctx),
+ Ctx);
+
+ // Emit a symbolic constant as a fixup and 4 zeros.
+ Fixups.push_back(MCFixup::create(CurByte, Expr, FixupKind, Loc));
+ EmitConstant(0, Size, CurByte, OS);
+}
+
+void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
+ unsigned RegOpcodeField,
+ uint64_t TSFlags, unsigned &CurByte,
+ raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const{
+ const MCOperand &Disp = MI.getOperand(Op+X86::AddrDisp);
+ const MCOperand &Base = MI.getOperand(Op+X86::AddrBaseReg);
+ const MCOperand &Scale = MI.getOperand(Op+X86::AddrScaleAmt);
+ const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
+ unsigned BaseReg = Base.getReg();
+ bool HasEVEX = (TSFlags & X86II::EncodingMask) == X86II::EVEX;
+
+ // Handle %rip relative addressing.
+ if (BaseReg == X86::RIP) { // [disp32+RIP] in X86-64 mode
+ assert(is64BitMode(STI) && "Rip-relative addressing requires 64-bit mode");
+ assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
+ EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
+
+ unsigned FixupKind = X86::reloc_riprel_4byte;
+
+ // movq loads are handled with a special relocation form which allows the
+ // linker to eliminate some loads for GOT references which end up in the
+ // same linkage unit.
+ if (MI.getOpcode() == X86::MOV64rm)
+ FixupKind = X86::reloc_riprel_4byte_movq_load;
+
+ // rip-relative addressing is actually relative to the *next* instruction.
+ // Since an immediate can follow the mod/rm byte for an instruction, this
+ // means that we need to bias the immediate field of the instruction with
+ // the size of the immediate field. If we have this case, add it into the
+ // expression to emit.
+ int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
+
+ EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
+ CurByte, OS, Fixups, -ImmSize);
+ return;
+ }
+
+ unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
+
+ // 16-bit addressing forms of the ModR/M byte have a different encoding for
+ // the R/M field and are far more limited in which registers can be used.
+ if (Is16BitMemOperand(MI, Op, STI)) {
+ if (BaseReg) {
+ // For 32-bit addressing, the row and column values in Table 2-2 are
+ // basically the same. It's AX/CX/DX/BX/SP/BP/SI/DI in that order, with
+ // some special cases. And GetX86RegNum reflects that numbering.
+ // For 16-bit addressing it's more fun, as shown in the SDM Vol 2A,
+ // Table 2-1 "16-Bit Addressing Forms with the ModR/M byte". We can only
+ // use SI/DI/BP/BX, which have "row" values 4-7 in no particular order,
+ // while values 0-3 indicate the allowed combinations (base+index) of
+ // those: 0 for BX+SI, 1 for BX+DI, 2 for BP+SI, 3 for BP+DI.
+ //
+ // R16Table[] is a lookup from the normal RegNo, to the row values from
+ // Table 2-1 for 16-bit addressing modes. Where zero means disallowed.
+ static const unsigned R16Table[] = { 0, 0, 0, 7, 0, 6, 4, 5 };
+ unsigned RMfield = R16Table[BaseRegNo];
+
+ assert(RMfield && "invalid 16-bit base register");
+
+ if (IndexReg.getReg()) {
+ unsigned IndexReg16 = R16Table[GetX86RegNum(IndexReg)];
+
+ assert(IndexReg16 && "invalid 16-bit index register");
+ // We must have one of SI/DI (4,5), and one of BP/BX (6,7).
+ assert(((IndexReg16 ^ RMfield) & 2) &&
+ "invalid 16-bit base/index register combination");
+ assert(Scale.getImm() == 1 &&
+ "invalid scale for 16-bit memory reference");
+
+ // Allow base/index to appear in either order (although GAS doesn't).
+ if (IndexReg16 & 2)
+ RMfield = (RMfield & 1) | ((7 - IndexReg16) << 1);
+ else
+ RMfield = (IndexReg16 & 1) | ((7 - RMfield) << 1);
+ }
+
+ if (Disp.isImm() && isDisp8(Disp.getImm())) {
+ if (Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
+ // There is no displacement; just the register.
+ EmitByte(ModRMByte(0, RegOpcodeField, RMfield), CurByte, OS);
+ return;
+ }
+ // Use the [REG]+disp8 form, including for [BP] which cannot be encoded.
+ EmitByte(ModRMByte(1, RegOpcodeField, RMfield), CurByte, OS);
+ EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
+ return;
+ }
+ // This is the [REG]+disp16 case.
+ EmitByte(ModRMByte(2, RegOpcodeField, RMfield), CurByte, OS);
+ } else {
+ // There is no BaseReg; this is the plain [disp16] case.
+ EmitByte(ModRMByte(0, RegOpcodeField, 6), CurByte, OS);
+ }
+
+ // Emit 16-bit displacement for plain disp16 or [REG]+disp16 cases.
+ EmitImmediate(Disp, MI.getLoc(), 2, FK_Data_2, CurByte, OS, Fixups);
+ return;
+ }
+
+ // Determine whether a SIB byte is needed.
+ // If no BaseReg, issue a RIP relative instruction only if the MCE can
+ // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
+ // 2-7) and absolute references.
+
+ if (// The SIB byte must be used if there is an index register.
+ IndexReg.getReg() == 0 &&
+ // The SIB byte must be used if the base is ESP/RSP/R12, all of which
+ // encode to an R/M value of 4, which indicates that a SIB byte is
+ // present.
+ BaseRegNo != N86::ESP &&
+ // If there is no base register and we're in 64-bit mode, we need a SIB
+ // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
+ (!is64BitMode(STI) || BaseReg != 0)) {
+
+ if (BaseReg == 0) { // [disp32] in X86-32 mode
+ EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
+ EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
+ return;
+ }
+
+ // If the base is not EBP/ESP and there is no displacement, use simple
+ // indirect register encoding, this handles addresses like [EAX]. The
+ // encoding for [EBP] with no displacement means [disp32] so we handle it
+ // by emitting a displacement of 0 below.
+ if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
+ EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
+ return;
+ }
+
+ // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
+ if (Disp.isImm()) {
+ if (!HasEVEX && isDisp8(Disp.getImm())) {
+ EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
+ EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
+ return;
+ }
+ // Try EVEX compressed 8-bit displacement first; if failed, fall back to
+ // 32-bit displacement.
+ int CDisp8 = 0;
+ if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
+ EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
+ EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups,
+ CDisp8 - Disp.getImm());
+ return;
+ }
+ }
+
+ // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
+ EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
+ EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
+ CurByte, OS, Fixups);
+ return;
+ }
+
+ // We need a SIB byte, so start by outputting the ModR/M byte first
+ assert(IndexReg.getReg() != X86::ESP &&
+ IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
+
+ bool ForceDisp32 = false;
+ bool ForceDisp8 = false;
+ int CDisp8 = 0;
+ int ImmOffset = 0;
+ if (BaseReg == 0) {
+ // If there is no base register, we emit the special case SIB byte with
+ // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
+ EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
+ ForceDisp32 = true;
+ } else if (!Disp.isImm()) {
+ // Emit the normal disp32 encoding.
+ EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
+ ForceDisp32 = true;
+ } else if (Disp.getImm() == 0 &&
+ // Base reg can't be anything that ends up with '5' as the base
+ // reg, it is the magic [*] nomenclature that indicates no base.
+ BaseRegNo != N86::EBP) {
+ // Emit no displacement ModR/M byte
+ EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
+ } else if (!HasEVEX && isDisp8(Disp.getImm())) {
+ // Emit the disp8 encoding.
+ EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
+ ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
+ } else if (HasEVEX && isCDisp8(TSFlags, Disp.getImm(), CDisp8)) {
+ // Emit the disp8 encoding.
+ EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
+ ForceDisp8 = true; // Make sure to force 8 bit disp if Base=EBP
+ ImmOffset = CDisp8 - Disp.getImm();
+ } else {
+ // Emit the normal disp32 encoding.
+ EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
+ }
+
+ // Calculate what the SS field value should be...
+ static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
+ unsigned SS = SSTable[Scale.getImm()];
+
+ if (BaseReg == 0) {
+ // Handle the SIB byte for the case where there is no base, see Intel
+ // Manual 2A, table 2-7. The displacement has already been output.
+ unsigned IndexRegNo;
+ if (IndexReg.getReg())
+ IndexRegNo = GetX86RegNum(IndexReg);
+ else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
+ IndexRegNo = 4;
+ EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
+ } else {
+ unsigned IndexRegNo;
+ if (IndexReg.getReg())
+ IndexRegNo = GetX86RegNum(IndexReg);
+ else
+ IndexRegNo = 4; // For example [ESP+1*<noreg>+4]
+ EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
+ }
+
+ // Do we need to output a displacement?
+ if (ForceDisp8)
+ EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups, ImmOffset);
+ else if (ForceDisp32 || Disp.getImm() != 0)
+ EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
+ CurByte, OS, Fixups);
+}
+
+/// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
+/// called VEX.
+void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
+ int MemOperand, const MCInst &MI,
+ const MCInstrDesc &Desc,
+ raw_ostream &OS) const {
+ assert(!(TSFlags & X86II::LOCK) && "Can't have LOCK VEX.");
+
+ uint64_t Encoding = TSFlags & X86II::EncodingMask;
+ bool HasEVEX_K = TSFlags & X86II::EVEX_K;
+ bool HasVEX_4V = TSFlags & X86II::VEX_4V;
+ bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
+ bool HasMemOp4 = TSFlags & X86II::MemOp4;
+ bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
+
+ // VEX_R: opcode externsion equivalent to REX.R in
+ // 1's complement (inverted) form
+ //
+ // 1: Same as REX_R=0 (must be 1 in 32-bit mode)
+ // 0: Same as REX_R=1 (64 bit mode only)
+ //
+ unsigned char VEX_R = 0x1;
+ unsigned char EVEX_R2 = 0x1;
+
+ // VEX_X: equivalent to REX.X, only used when a
+ // register is used for index in SIB Byte.
+ //
+ // 1: Same as REX.X=0 (must be 1 in 32-bit mode)
+ // 0: Same as REX.X=1 (64-bit mode only)
+ unsigned char VEX_X = 0x1;
+
+ // VEX_B:
+ //
+ // 1: Same as REX_B=0 (ignored in 32-bit mode)
+ // 0: Same as REX_B=1 (64 bit mode only)
+ //
+ unsigned char VEX_B = 0x1;
+
+ // VEX_W: opcode specific (use like REX.W, or used for
+ // opcode extension, or ignored, depending on the opcode byte)
+ unsigned char VEX_W = 0;
+
+ // VEX_5M (VEX m-mmmmm field):
+ //
+ // 0b00000: Reserved for future use
+ // 0b00001: implied 0F leading opcode
+ // 0b00010: implied 0F 38 leading opcode bytes
+ // 0b00011: implied 0F 3A leading opcode bytes
+ // 0b00100-0b11111: Reserved for future use
+ // 0b01000: XOP map select - 08h instructions with imm byte
+ // 0b01001: XOP map select - 09h instructions with no imm byte
+ // 0b01010: XOP map select - 0Ah instructions with imm dword
+ unsigned char VEX_5M = 0;
+
+ // VEX_4V (VEX vvvv field): a register specifier
+ // (in 1's complement form) or 1111 if unused.
+ unsigned char VEX_4V = 0xf;
+ unsigned char EVEX_V2 = 0x1;
+
+ // VEX_L (Vector Length):
+ //
+ // 0: scalar or 128-bit vector
+ // 1: 256-bit vector
+ //
+ unsigned char VEX_L = 0;
+ unsigned char EVEX_L2 = 0;
+
+ // VEX_PP: opcode extension providing equivalent
+ // functionality of a SIMD prefix
+ //
+ // 0b00: None
+ // 0b01: 66
+ // 0b10: F3
+ // 0b11: F2
+ //
+ unsigned char VEX_PP = 0;
+
+ // EVEX_U
+ unsigned char EVEX_U = 1; // Always '1' so far
+
+ // EVEX_z
+ unsigned char EVEX_z = 0;
+
+ // EVEX_b
+ unsigned char EVEX_b = 0;
+
+ // EVEX_rc
+ unsigned char EVEX_rc = 0;
+
+ // EVEX_aaa
+ unsigned char EVEX_aaa = 0;
+
+ bool EncodeRC = false;
+
+ if (TSFlags & X86II::VEX_W)
+ VEX_W = 1;
+
+ if (TSFlags & X86II::VEX_L)
+ VEX_L = 1;
+ if (TSFlags & X86II::EVEX_L2)
+ EVEX_L2 = 1;
+
+ if (HasEVEX_K && (TSFlags & X86II::EVEX_Z))
+ EVEX_z = 1;
+
+ if ((TSFlags & X86II::EVEX_B))
+ EVEX_b = 1;
+
+ switch (TSFlags & X86II::OpPrefixMask) {
+ default: break; // VEX_PP already correct
+ case X86II::PD: VEX_PP = 0x1; break; // 66
+ case X86II::XS: VEX_PP = 0x2; break; // F3
+ case X86II::XD: VEX_PP = 0x3; break; // F2
+ }
+
+ switch (TSFlags & X86II::OpMapMask) {
+ default: llvm_unreachable("Invalid prefix!");
+ case X86II::TB: VEX_5M = 0x1; break; // 0F
+ case X86II::T8: VEX_5M = 0x2; break; // 0F 38
+ case X86II::TA: VEX_5M = 0x3; break; // 0F 3A
+ case X86II::XOP8: VEX_5M = 0x8; break;
+ case X86II::XOP9: VEX_5M = 0x9; break;
+ case X86II::XOPA: VEX_5M = 0xA; break;
+ }
+
+ // Classify VEX_B, VEX_4V, VEX_R, VEX_X
+ unsigned NumOps = Desc.getNumOperands();
+ unsigned CurOp = X86II::getOperandBias(Desc);
+
+ switch (TSFlags & X86II::FormMask) {
+ default: llvm_unreachable("Unexpected form in EmitVEXOpcodePrefix!");
+ case X86II::RawFrm:
+ break;
+ case X86II::MRMDestMem: {
+ // MRMDestMem instructions forms:
+ // MemAddr, src1(ModR/M)
+ // MemAddr, src1(VEX_4V), src2(ModR/M)
+ // MemAddr, src1(ModR/M), imm8
+ //
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
+ X86::AddrBaseReg).getReg()))
+ VEX_B = 0x0;
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(MemOperand +
+ X86::AddrIndexReg).getReg()))
+ VEX_X = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
+ X86::AddrIndexReg).getReg()))
+ EVEX_V2 = 0x0;
+
+ CurOp += X86::AddrNumOperands;
+
+ if (HasEVEX_K)
+ EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+ if (HasVEX_4V) {
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_V2 = 0x0;
+ CurOp++;
+ }
+
+ const MCOperand &MO = MI.getOperand(CurOp);
+ if (MO.isReg()) {
+ if (X86II::isX86_64ExtendedReg(MO.getReg()))
+ VEX_R = 0x0;
+ if (X86II::is32ExtendedReg(MO.getReg()))
+ EVEX_R2 = 0x0;
+ }
+ break;
+ }
+ case X86II::MRMSrcMem:
+ // MRMSrcMem instructions forms:
+ // src1(ModR/M), MemAddr
+ // src1(ModR/M), src2(VEX_4V), MemAddr
+ // src1(ModR/M), MemAddr, imm8
+ // src1(ModR/M), MemAddr, src2(VEX_I8IMM)
+ //
+ // FMA4:
+ // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
+ // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_R = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_R2 = 0x0;
+ CurOp++;
+
+ if (HasEVEX_K)
+ EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+ if (HasVEX_4V) {
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_V2 = 0x0;
+ CurOp++;
+ }
+
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
+ VEX_B = 0x0;
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
+ VEX_X = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(MemOperand +
+ X86::AddrIndexReg).getReg()))
+ EVEX_V2 = 0x0;
+
+ if (HasVEX_4VOp3)
+ // Instruction format for 4VOp3:
+ // src1(ModR/M), MemAddr, src3(VEX_4V)
+ // CurOp points to start of the MemoryOperand,
+ // it skips TIED_TO operands if exist, then increments past src1.
+ // CurOp + X86::AddrNumOperands will point to src3.
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
+ break;
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m: {
+ // MRM[0-9]m instructions forms:
+ // MemAddr
+ // src1(VEX_4V), MemAddr
+ if (HasVEX_4V) {
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_V2 = 0x0;
+ CurOp++;
+ }
+
+ if (HasEVEX_K)
+ EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
+ VEX_B = 0x0;
+ if (X86II::isX86_64ExtendedReg(
+ MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
+ VEX_X = 0x0;
+ break;
+ }
+ case X86II::MRMSrcReg:
+ // MRMSrcReg instructions forms:
+ // dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
+ // dst(ModR/M), src1(ModR/M)
+ // dst(ModR/M), src1(ModR/M), imm8
+ //
+ // FMA4:
+ // dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
+ // dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_R = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_R2 = 0x0;
+ CurOp++;
+
+ if (HasEVEX_K)
+ EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+ if (HasVEX_4V) {
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_V2 = 0x0;
+ CurOp++;
+ }
+
+ if (HasMemOp4) // Skip second register source (encoded in I8IMM)
+ CurOp++;
+
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_B = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_X = 0x0;
+ CurOp++;
+ if (HasVEX_4VOp3)
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
+ if (EVEX_b) {
+ if (HasEVEX_RC) {
+ unsigned RcOperand = NumOps-1;
+ assert(RcOperand >= CurOp);
+ EVEX_rc = MI.getOperand(RcOperand).getImm() & 0x3;
+ }
+ EncodeRC = true;
+ }
+ break;
+ case X86II::MRMDestReg:
+ // MRMDestReg instructions forms:
+ // dst(ModR/M), src(ModR/M)
+ // dst(ModR/M), src(ModR/M), imm8
+ // dst(ModR/M), src1(VEX_4V), src2(ModR/M)
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_B = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_X = 0x0;
+ CurOp++;
+
+ if (HasEVEX_K)
+ EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+ if (HasVEX_4V) {
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_V2 = 0x0;
+ CurOp++;
+ }
+
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_R = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_R2 = 0x0;
+ if (EVEX_b)
+ EncodeRC = true;
+ break;
+ case X86II::MRM0r: case X86II::MRM1r:
+ case X86II::MRM2r: case X86II::MRM3r:
+ case X86II::MRM4r: case X86II::MRM5r:
+ case X86II::MRM6r: case X86II::MRM7r:
+ // MRM0r-MRM7r instructions forms:
+ // dst(VEX_4V), src(ModR/M), imm8
+ if (HasVEX_4V) {
+ VEX_4V = getVEXRegisterEncoding(MI, CurOp);
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ EVEX_V2 = 0x0;
+ CurOp++;
+ }
+ if (HasEVEX_K)
+ EVEX_aaa = getWriteMaskRegisterEncoding(MI, CurOp++);
+
+ if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_B = 0x0;
+ if (X86II::is32ExtendedReg(MI.getOperand(CurOp).getReg()))
+ VEX_X = 0x0;
+ break;
+ }
+
+ if (Encoding == X86II::VEX || Encoding == X86II::XOP) {
+ // VEX opcode prefix can have 2 or 3 bytes
+ //
+ // 3 bytes:
+ // +-----+ +--------------+ +-------------------+
+ // | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
+ // +-----+ +--------------+ +-------------------+
+ // 2 bytes:
+ // +-----+ +-------------------+
+ // | C5h | | R | vvvv | L | pp |
+ // +-----+ +-------------------+
+ //
+ // XOP uses a similar prefix:
+ // +-----+ +--------------+ +-------------------+
+ // | 8Fh | | RXB | m-mmmm | | W | vvvv | L | pp |
+ // +-----+ +--------------+ +-------------------+
+ unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
+
+ // Can we use the 2 byte VEX prefix?
+ if (Encoding == X86II::VEX && VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) {
+ EmitByte(0xC5, CurByte, OS);
+ EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
+ return;
+ }
+
+ // 3 byte VEX prefix
+ EmitByte(Encoding == X86II::XOP ? 0x8F : 0xC4, CurByte, OS);
+ EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
+ EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
+ } else {
+ assert(Encoding == X86II::EVEX && "unknown encoding!");
+ // EVEX opcode prefix can have 4 bytes
+ //
+ // +-----+ +--------------+ +-------------------+ +------------------------+
+ // | 62h | | RXBR' | 00mm | | W | vvvv | U | pp | | z | L'L | b | v' | aaa |
+ // +-----+ +--------------+ +-------------------+ +------------------------+
+ assert((VEX_5M & 0x3) == VEX_5M
+ && "More than 2 significant bits in VEX.m-mmmm fields for EVEX!");
+
+ VEX_5M &= 0x3;
+
+ EmitByte(0x62, CurByte, OS);
+ EmitByte((VEX_R << 7) |
+ (VEX_X << 6) |
+ (VEX_B << 5) |
+ (EVEX_R2 << 4) |
+ VEX_5M, CurByte, OS);
+ EmitByte((VEX_W << 7) |
+ (VEX_4V << 3) |
+ (EVEX_U << 2) |
+ VEX_PP, CurByte, OS);
+ if (EncodeRC)
+ EmitByte((EVEX_z << 7) |
+ (EVEX_rc << 5) |
+ (EVEX_b << 4) |
+ (EVEX_V2 << 3) |
+ EVEX_aaa, CurByte, OS);
+ else
+ EmitByte((EVEX_z << 7) |
+ (EVEX_L2 << 6) |
+ (VEX_L << 5) |
+ (EVEX_b << 4) |
+ (EVEX_V2 << 3) |
+ EVEX_aaa, CurByte, OS);
+ }
+}
+
+/// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
+/// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
+/// size, and 3) use of X86-64 extended registers.
+static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
+ const MCInstrDesc &Desc) {
+ unsigned REX = 0;
+ bool UsesHighByteReg = false;
+
+ if (TSFlags & X86II::REX_W)
+ REX |= 1 << 3; // set REX.W
+
+ if (MI.getNumOperands() == 0) return REX;
+
+ unsigned NumOps = MI.getNumOperands();
+ // FIXME: MCInst should explicitize the two-addrness.
+ bool isTwoAddr = NumOps > 1 &&
+ Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
+
+ // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
+ unsigned i = isTwoAddr ? 1 : 0;
+ for (; i != NumOps; ++i) {
+ const MCOperand &MO = MI.getOperand(i);
+ if (!MO.isReg()) continue;
+ unsigned Reg = MO.getReg();
+ if (Reg == X86::AH || Reg == X86::BH || Reg == X86::CH || Reg == X86::DH)
+ UsesHighByteReg = true;
+ if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
+ // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
+ // that returns non-zero.
+ REX |= 0x40; // REX fixed encoding prefix
+ break;
+ }
+
+ switch (TSFlags & X86II::FormMask) {
+ case X86II::MRMSrcReg:
+ if (MI.getOperand(0).isReg() &&
+ X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
+ REX |= 1 << 2; // set REX.R
+ i = isTwoAddr ? 2 : 1;
+ for (; i != NumOps; ++i) {
+ const MCOperand &MO = MI.getOperand(i);
+ if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
+ REX |= 1 << 0; // set REX.B
+ }
+ break;
+ case X86II::MRMSrcMem: {
+ if (MI.getOperand(0).isReg() &&
+ X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
+ REX |= 1 << 2; // set REX.R
+ unsigned Bit = 0;
+ i = isTwoAddr ? 2 : 1;
+ for (; i != NumOps; ++i) {
+ const MCOperand &MO = MI.getOperand(i);
+ if (MO.isReg()) {
+ if (X86II::isX86_64ExtendedReg(MO.getReg()))
+ REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
+ Bit++;
+ }
+ }
+ break;
+ }
+ case X86II::MRMXm:
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m:
+ case X86II::MRMDestMem: {
+ unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
+ i = isTwoAddr ? 1 : 0;
+ if (NumOps > e && MI.getOperand(e).isReg() &&
+ X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
+ REX |= 1 << 2; // set REX.R
+ unsigned Bit = 0;
+ for (; i != e; ++i) {
+ const MCOperand &MO = MI.getOperand(i);
+ if (MO.isReg()) {
+ if (X86II::isX86_64ExtendedReg(MO.getReg()))
+ REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
+ Bit++;
+ }
+ }
+ break;
+ }
+ default:
+ if (MI.getOperand(0).isReg() &&
+ X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
+ REX |= 1 << 0; // set REX.B
+ i = isTwoAddr ? 2 : 1;
+ for (unsigned e = NumOps; i != e; ++i) {
+ const MCOperand &MO = MI.getOperand(i);
+ if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
+ REX |= 1 << 2; // set REX.R
+ }
+ break;
+ }
+ if (REX && UsesHighByteReg)
+ report_fatal_error("Cannot encode high byte register in REX-prefixed instruction");
+
+ return REX;
+}
+
+/// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
+void X86MCCodeEmitter::EmitSegmentOverridePrefix(unsigned &CurByte,
+ unsigned SegOperand,
+ const MCInst &MI,
+ raw_ostream &OS) const {
+ // Check for explicit segment override on memory operand.
+ switch (MI.getOperand(SegOperand).getReg()) {
+ default: llvm_unreachable("Unknown segment register!");
+ case 0: break;
+ case X86::CS: EmitByte(0x2E, CurByte, OS); break;
+ case X86::SS: EmitByte(0x36, CurByte, OS); break;
+ case X86::DS: EmitByte(0x3E, CurByte, OS); break;
+ case X86::ES: EmitByte(0x26, CurByte, OS); break;
+ case X86::FS: EmitByte(0x64, CurByte, OS); break;
+ case X86::GS: EmitByte(0x65, CurByte, OS); break;
+ }
+}
+
+/// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
+///
+/// MemOperand is the operand # of the start of a memory operand if present. If
+/// Not present, it is -1.
+void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
+ int MemOperand, const MCInst &MI,
+ const MCInstrDesc &Desc,
+ const MCSubtargetInfo &STI,
+ raw_ostream &OS) const {
+
+ // Emit the operand size opcode prefix as needed.
+ if ((TSFlags & X86II::OpSizeMask) == (is16BitMode(STI) ? X86II::OpSize32
+ : X86II::OpSize16))
+ EmitByte(0x66, CurByte, OS);
+
+ // Emit the LOCK opcode prefix.
+ if (TSFlags & X86II::LOCK)
+ EmitByte(0xF0, CurByte, OS);
+
+ switch (TSFlags & X86II::OpPrefixMask) {
+ case X86II::PD: // 66
+ EmitByte(0x66, CurByte, OS);
+ break;
+ case X86II::XS: // F3
+ EmitByte(0xF3, CurByte, OS);
+ break;
+ case X86II::XD: // F2
+ EmitByte(0xF2, CurByte, OS);
+ break;
+ }
+
+ // Handle REX prefix.
+ // FIXME: Can this come before F2 etc to simplify emission?
+ if (is64BitMode(STI)) {
+ if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
+ EmitByte(0x40 | REX, CurByte, OS);
+ }
+
+ // 0x0F escape code must be emitted just before the opcode.
+ switch (TSFlags & X86II::OpMapMask) {
+ case X86II::TB: // Two-byte opcode map
+ case X86II::T8: // 0F 38
+ case X86II::TA: // 0F 3A
+ EmitByte(0x0F, CurByte, OS);
+ break;
+ }
+
+ switch (TSFlags & X86II::OpMapMask) {
+ case X86II::T8: // 0F 38
+ EmitByte(0x38, CurByte, OS);
+ break;
+ case X86II::TA: // 0F 3A
+ EmitByte(0x3A, CurByte, OS);
+ break;
+ }
+}
+
+void X86MCCodeEmitter::
+encodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const {
+ unsigned Opcode = MI.getOpcode();
+ const MCInstrDesc &Desc = MCII.get(Opcode);
+ uint64_t TSFlags = Desc.TSFlags;
+
+ // Pseudo instructions don't get encoded.
+ if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
+ return;
+
+ unsigned NumOps = Desc.getNumOperands();
+ unsigned CurOp = X86II::getOperandBias(Desc);
+
+ // Keep track of the current byte being emitted.
+ unsigned CurByte = 0;
+
+ // Encoding type for this instruction.
+ uint64_t Encoding = TSFlags & X86II::EncodingMask;
+
+ // It uses the VEX.VVVV field?
+ bool HasVEX_4V = TSFlags & X86II::VEX_4V;
+ bool HasVEX_4VOp3 = TSFlags & X86II::VEX_4VOp3;
+ bool HasMemOp4 = TSFlags & X86II::MemOp4;
+ const unsigned MemOp4_I8IMMOperand = 2;
+
+ // It uses the EVEX.aaa field?
+ bool HasEVEX_K = TSFlags & X86II::EVEX_K;
+ bool HasEVEX_RC = TSFlags & X86II::EVEX_RC;
+
+ // Determine where the memory operand starts, if present.
+ int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
+ if (MemoryOperand != -1) MemoryOperand += CurOp;
+
+ // Emit segment override opcode prefix as needed.
+ if (MemoryOperand >= 0)
+ EmitSegmentOverridePrefix(CurByte, MemoryOperand+X86::AddrSegmentReg,
+ MI, OS);
+
+ // Emit the repeat opcode prefix as needed.
+ if (TSFlags & X86II::REP)
+ EmitByte(0xF3, CurByte, OS);
+
+ // Emit the address size opcode prefix as needed.
+ bool need_address_override;
+ uint64_t AdSize = TSFlags & X86II::AdSizeMask;
+ if ((is16BitMode(STI) && AdSize == X86II::AdSize32) ||
+ (is32BitMode(STI) && AdSize == X86II::AdSize16) ||
+ (is64BitMode(STI) && AdSize == X86II::AdSize32)) {
+ need_address_override = true;
+ } else if (MemoryOperand < 0) {
+ need_address_override = false;
+ } else if (is64BitMode(STI)) {
+ assert(!Is16BitMemOperand(MI, MemoryOperand, STI));
+ need_address_override = Is32BitMemOperand(MI, MemoryOperand);
+ } else if (is32BitMode(STI)) {
+ assert(!Is64BitMemOperand(MI, MemoryOperand));
+ need_address_override = Is16BitMemOperand(MI, MemoryOperand, STI);
+ } else {
+ assert(is16BitMode(STI));
+ assert(!Is64BitMemOperand(MI, MemoryOperand));
+ need_address_override = !Is16BitMemOperand(MI, MemoryOperand, STI);
+ }
+
+ if (need_address_override)
+ EmitByte(0x67, CurByte, OS);
+
+ if (Encoding == 0)
+ EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, STI, OS);
+ else
+ EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
+
+ unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
+
+ if (TSFlags & X86II::Has3DNow0F0FOpcode)
+ BaseOpcode = 0x0F; // Weird 3DNow! encoding.
+
+ unsigned SrcRegNum = 0;
+ switch (TSFlags & X86II::FormMask) {
+ default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
+ llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
+ case X86II::Pseudo:
+ llvm_unreachable("Pseudo instruction shouldn't be emitted");
+ case X86II::RawFrmDstSrc: {
+ unsigned siReg = MI.getOperand(1).getReg();
+ assert(((siReg == X86::SI && MI.getOperand(0).getReg() == X86::DI) ||
+ (siReg == X86::ESI && MI.getOperand(0).getReg() == X86::EDI) ||
+ (siReg == X86::RSI && MI.getOperand(0).getReg() == X86::RDI)) &&
+ "SI and DI register sizes do not match");
+ // Emit segment override opcode prefix as needed (not for %ds).
+ if (MI.getOperand(2).getReg() != X86::DS)
+ EmitSegmentOverridePrefix(CurByte, 2, MI, OS);
+ // Emit AdSize prefix as needed.
+ if ((!is32BitMode(STI) && siReg == X86::ESI) ||
+ (is32BitMode(STI) && siReg == X86::SI))
+ EmitByte(0x67, CurByte, OS);
+ CurOp += 3; // Consume operands.
+ EmitByte(BaseOpcode, CurByte, OS);
+ break;
+ }
+ case X86II::RawFrmSrc: {
+ unsigned siReg = MI.getOperand(0).getReg();
+ // Emit segment override opcode prefix as needed (not for %ds).
+ if (MI.getOperand(1).getReg() != X86::DS)
+ EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
+ // Emit AdSize prefix as needed.
+ if ((!is32BitMode(STI) && siReg == X86::ESI) ||
+ (is32BitMode(STI) && siReg == X86::SI))
+ EmitByte(0x67, CurByte, OS);
+ CurOp += 2; // Consume operands.
+ EmitByte(BaseOpcode, CurByte, OS);
+ break;
+ }
+ case X86II::RawFrmDst: {
+ unsigned siReg = MI.getOperand(0).getReg();
+ // Emit AdSize prefix as needed.
+ if ((!is32BitMode(STI) && siReg == X86::EDI) ||
+ (is32BitMode(STI) && siReg == X86::DI))
+ EmitByte(0x67, CurByte, OS);
+ ++CurOp; // Consume operand.
+ EmitByte(BaseOpcode, CurByte, OS);
+ break;
+ }
+ case X86II::RawFrm:
+ EmitByte(BaseOpcode, CurByte, OS);
+ break;
+ case X86II::RawFrmMemOffs:
+ // Emit segment override opcode prefix as needed.
+ EmitSegmentOverridePrefix(CurByte, 1, MI, OS);
+ EmitByte(BaseOpcode, CurByte, OS);
+ EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
+ X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
+ CurByte, OS, Fixups);
+ ++CurOp; // skip segment operand
+ break;
+ case X86II::RawFrmImm8:
+ EmitByte(BaseOpcode, CurByte, OS);
+ EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
+ X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
+ CurByte, OS, Fixups);
+ EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
+ OS, Fixups);
+ break;
+ case X86II::RawFrmImm16:
+ EmitByte(BaseOpcode, CurByte, OS);
+ EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
+ X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
+ CurByte, OS, Fixups);
+ EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
+ OS, Fixups);
+ break;
+
+ case X86II::AddRegFrm:
+ EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
+ break;
+
+ case X86II::MRMDestReg:
+ EmitByte(BaseOpcode, CurByte, OS);
+ SrcRegNum = CurOp + 1;
+
+ if (HasEVEX_K) // Skip writemask
+ SrcRegNum++;
+
+ if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
+ ++SrcRegNum;
+
+ EmitRegModRMByte(MI.getOperand(CurOp),
+ GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
+ CurOp = SrcRegNum + 1;
+ break;
+
+ case X86II::MRMDestMem:
+ EmitByte(BaseOpcode, CurByte, OS);
+ SrcRegNum = CurOp + X86::AddrNumOperands;
+
+ if (HasEVEX_K) // Skip writemask
+ SrcRegNum++;
+
+ if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
+ ++SrcRegNum;
+
+ EmitMemModRMByte(MI, CurOp,
+ GetX86RegNum(MI.getOperand(SrcRegNum)),
+ TSFlags, CurByte, OS, Fixups, STI);
+ CurOp = SrcRegNum + 1;
+ break;
+
+ case X86II::MRMSrcReg:
+ EmitByte(BaseOpcode, CurByte, OS);
+ SrcRegNum = CurOp + 1;
+
+ if (HasEVEX_K) // Skip writemask
+ SrcRegNum++;
+
+ if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
+ ++SrcRegNum;
+
+ if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
+ ++SrcRegNum;
+
+ EmitRegModRMByte(MI.getOperand(SrcRegNum),
+ GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
+
+ // 2 operands skipped with HasMemOp4, compensate accordingly
+ CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
+ if (HasVEX_4VOp3)
+ ++CurOp;
+ // do not count the rounding control operand
+ if (HasEVEX_RC)
+ NumOps--;
+ break;
+
+ case X86II::MRMSrcMem: {
+ int AddrOperands = X86::AddrNumOperands;
+ unsigned FirstMemOp = CurOp+1;
+
+ if (HasEVEX_K) { // Skip writemask
+ ++AddrOperands;
+ ++FirstMemOp;
+ }
+
+ if (HasVEX_4V) {
+ ++AddrOperands;
+ ++FirstMemOp; // Skip the register source (which is encoded in VEX_VVVV).
+ }
+ if (HasMemOp4) // Skip second register source (encoded in I8IMM)
+ ++FirstMemOp;
+
+ EmitByte(BaseOpcode, CurByte, OS);
+
+ EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
+ TSFlags, CurByte, OS, Fixups, STI);
+ CurOp += AddrOperands + 1;
+ if (HasVEX_4VOp3)
+ ++CurOp;
+ break;
+ }
+
+ case X86II::MRMXr:
+ case X86II::MRM0r: case X86II::MRM1r:
+ case X86II::MRM2r: case X86II::MRM3r:
+ case X86II::MRM4r: case X86II::MRM5r:
+ case X86II::MRM6r: case X86II::MRM7r: {
+ if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
+ ++CurOp;
+ if (HasEVEX_K) // Skip writemask
+ ++CurOp;
+ EmitByte(BaseOpcode, CurByte, OS);
+ uint64_t Form = TSFlags & X86II::FormMask;
+ EmitRegModRMByte(MI.getOperand(CurOp++),
+ (Form == X86II::MRMXr) ? 0 : Form-X86II::MRM0r,
+ CurByte, OS);
+ break;
+ }
+
+ case X86II::MRMXm:
+ case X86II::MRM0m: case X86II::MRM1m:
+ case X86II::MRM2m: case X86II::MRM3m:
+ case X86II::MRM4m: case X86II::MRM5m:
+ case X86II::MRM6m: case X86II::MRM7m: {
+ if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
+ ++CurOp;
+ if (HasEVEX_K) // Skip writemask
+ ++CurOp;
+ EmitByte(BaseOpcode, CurByte, OS);
+ uint64_t Form = TSFlags & X86II::FormMask;
+ EmitMemModRMByte(MI, CurOp, (Form == X86II::MRMXm) ? 0 : Form-X86II::MRM0m,
+ TSFlags, CurByte, OS, Fixups, STI);
+ CurOp += X86::AddrNumOperands;
+ break;
+ }
+ case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
+ case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
+ case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
+ case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
+ case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
+ case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
+ case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
+ case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
+ case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
+ case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
+ case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
+ case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
+ case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
+ case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
+ case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
+ case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
+ case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
+ case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
+ case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
+ case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
+ case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
+ case X86II::MRM_FF:
+ EmitByte(BaseOpcode, CurByte, OS);
+
+ uint64_t Form = TSFlags & X86II::FormMask;
+ EmitByte(0xC0 + Form - X86II::MRM_C0, CurByte, OS);
+ break;
+ }
+
+ // If there is a remaining operand, it must be a trailing immediate. Emit it
+ // according to the right size for the instruction. Some instructions
+ // (SSE4a extrq and insertq) have two trailing immediates.
+ while (CurOp != NumOps && NumOps - CurOp <= 2) {
+ // The last source register of a 4 operand instruction in AVX is encoded
+ // in bits[7:4] of a immediate byte.
+ if (TSFlags & X86II::VEX_I8IMM) {
+ const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
+ : CurOp);
+ ++CurOp;
+ unsigned RegNum = GetX86RegNum(MO) << 4;
+ if (X86II::isX86_64ExtendedReg(MO.getReg()))
+ RegNum |= 1 << 7;
+ // If there is an additional 5th operand it must be an immediate, which
+ // is encoded in bits[3:0]
+ if (CurOp != NumOps) {
+ const MCOperand &MIMM = MI.getOperand(CurOp++);
+ if (MIMM.isImm()) {
+ unsigned Val = MIMM.getImm();
+ assert(Val < 16 && "Immediate operand value out of range");
+ RegNum |= Val;
+ }
+ }
+ EmitImmediate(MCOperand::createImm(RegNum), MI.getLoc(), 1, FK_Data_1,
+ CurByte, OS, Fixups);
+ } else {
+ EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
+ X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
+ CurByte, OS, Fixups);
+ }
+ }
+
+ if (TSFlags & X86II::Has3DNow0F0FOpcode)
+ EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
+
+#ifndef NDEBUG
+ // FIXME: Verify.
+ if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
+ errs() << "Cannot encode all operands of: ";
+ MI.dump();
+ errs() << '\n';
+ abort();
+ }
+#endif
+}
OpenPOWER on IntegriCloud