diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h')
-rw-r--r-- | contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h | 512 |
1 files changed, 512 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h new file mode 100644 index 0000000..1f8f9da --- /dev/null +++ b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoderCommon.h @@ -0,0 +1,512 @@ +//===-- X86DisassemblerDecoderCommon.h - Disassembler decoder ---*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file is part of the X86 Disassembler. +// It contains common definitions used by both the disassembler and the table +// generator. +// Documentation for the disassembler can be found in X86Disassembler.h. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODERCOMMON_H +#define LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODERCOMMON_H + +#include "llvm/Support/DataTypes.h" + +namespace llvm { +namespace X86Disassembler { + +#define INSTRUCTIONS_SYM x86DisassemblerInstrSpecifiers +#define CONTEXTS_SYM x86DisassemblerContexts +#define ONEBYTE_SYM x86DisassemblerOneByteOpcodes +#define TWOBYTE_SYM x86DisassemblerTwoByteOpcodes +#define THREEBYTE38_SYM x86DisassemblerThreeByte38Opcodes +#define THREEBYTE3A_SYM x86DisassemblerThreeByte3AOpcodes +#define XOP8_MAP_SYM x86DisassemblerXOP8Opcodes +#define XOP9_MAP_SYM x86DisassemblerXOP9Opcodes +#define XOPA_MAP_SYM x86DisassemblerXOPAOpcodes + +#define INSTRUCTIONS_STR "x86DisassemblerInstrSpecifiers" +#define CONTEXTS_STR "x86DisassemblerContexts" +#define ONEBYTE_STR "x86DisassemblerOneByteOpcodes" +#define TWOBYTE_STR "x86DisassemblerTwoByteOpcodes" +#define THREEBYTE38_STR "x86DisassemblerThreeByte38Opcodes" +#define THREEBYTE3A_STR "x86DisassemblerThreeByte3AOpcodes" +#define XOP8_MAP_STR "x86DisassemblerXOP8Opcodes" +#define XOP9_MAP_STR "x86DisassemblerXOP9Opcodes" +#define XOPA_MAP_STR "x86DisassemblerXOPAOpcodes" + +// Attributes of an instruction that must be known before the opcode can be +// processed correctly. Most of these indicate the presence of particular +// prefixes, but ATTR_64BIT is simply an attribute of the decoding context. +#define ATTRIBUTE_BITS \ + ENUM_ENTRY(ATTR_NONE, 0x00) \ + ENUM_ENTRY(ATTR_64BIT, (0x1 << 0)) \ + ENUM_ENTRY(ATTR_XS, (0x1 << 1)) \ + ENUM_ENTRY(ATTR_XD, (0x1 << 2)) \ + ENUM_ENTRY(ATTR_REXW, (0x1 << 3)) \ + ENUM_ENTRY(ATTR_OPSIZE, (0x1 << 4)) \ + ENUM_ENTRY(ATTR_ADSIZE, (0x1 << 5)) \ + ENUM_ENTRY(ATTR_VEX, (0x1 << 6)) \ + ENUM_ENTRY(ATTR_VEXL, (0x1 << 7)) \ + ENUM_ENTRY(ATTR_EVEX, (0x1 << 8)) \ + ENUM_ENTRY(ATTR_EVEXL, (0x1 << 9)) \ + ENUM_ENTRY(ATTR_EVEXL2, (0x1 << 10)) \ + ENUM_ENTRY(ATTR_EVEXK, (0x1 << 11)) \ + ENUM_ENTRY(ATTR_EVEXKZ, (0x1 << 12)) \ + ENUM_ENTRY(ATTR_EVEXB, (0x1 << 13)) + +#define ENUM_ENTRY(n, v) n = v, +enum attributeBits { + ATTRIBUTE_BITS + ATTR_max +}; +#undef ENUM_ENTRY + +// Combinations of the above attributes that are relevant to instruction +// decode. Although other combinations are possible, they can be reduced to +// these without affecting the ultimately decoded instruction. + +// Class name Rank Rationale for rank assignment +#define INSTRUCTION_CONTEXTS \ + ENUM_ENTRY(IC, 0, "says nothing about the instruction") \ + ENUM_ENTRY(IC_64BIT, 1, "says the instruction applies in " \ + "64-bit mode but no more") \ + ENUM_ENTRY(IC_OPSIZE, 3, "requires an OPSIZE prefix, so " \ + "operands change width") \ + ENUM_ENTRY(IC_ADSIZE, 3, "requires an ADSIZE prefix, so " \ + "operands change width") \ + ENUM_ENTRY(IC_OPSIZE_ADSIZE, 4, "requires ADSIZE and OPSIZE prefixes") \ + ENUM_ENTRY(IC_XD, 2, "may say something about the opcode " \ + "but not the operands") \ + ENUM_ENTRY(IC_XS, 2, "may say something about the opcode " \ + "but not the operands") \ + ENUM_ENTRY(IC_XD_OPSIZE, 3, "requires an OPSIZE prefix, so " \ + "operands change width") \ + ENUM_ENTRY(IC_XS_OPSIZE, 3, "requires an OPSIZE prefix, so " \ + "operands change width") \ + ENUM_ENTRY(IC_64BIT_REXW, 5, "requires a REX.W prefix, so operands "\ + "change width; overrides IC_OPSIZE") \ + ENUM_ENTRY(IC_64BIT_REXW_ADSIZE, 6, "requires a REX.W prefix and 0x67 " \ + "prefix") \ + ENUM_ENTRY(IC_64BIT_OPSIZE, 3, "Just as meaningful as IC_OPSIZE") \ + ENUM_ENTRY(IC_64BIT_ADSIZE, 3, "Just as meaningful as IC_ADSIZE") \ + ENUM_ENTRY(IC_64BIT_OPSIZE_ADSIZE, 4, "Just as meaningful as IC_OPSIZE/" \ + "IC_ADSIZE") \ + ENUM_ENTRY(IC_64BIT_XD, 6, "XD instructions are SSE; REX.W is " \ + "secondary") \ + ENUM_ENTRY(IC_64BIT_XS, 6, "Just as meaningful as IC_64BIT_XD") \ + ENUM_ENTRY(IC_64BIT_XD_OPSIZE, 3, "Just as meaningful as IC_XD_OPSIZE") \ + ENUM_ENTRY(IC_64BIT_XS_OPSIZE, 3, "Just as meaningful as IC_XS_OPSIZE") \ + ENUM_ENTRY(IC_64BIT_REXW_XS, 7, "OPSIZE could mean a different " \ + "opcode") \ + ENUM_ENTRY(IC_64BIT_REXW_XD, 7, "Just as meaningful as " \ + "IC_64BIT_REXW_XS") \ + ENUM_ENTRY(IC_64BIT_REXW_OPSIZE, 8, "The Dynamic Duo! Prefer over all " \ + "else because this changes most " \ + "operands' meaning") \ + ENUM_ENTRY(IC_VEX, 1, "requires a VEX prefix") \ + ENUM_ENTRY(IC_VEX_XS, 2, "requires VEX and the XS prefix") \ + ENUM_ENTRY(IC_VEX_XD, 2, "requires VEX and the XD prefix") \ + ENUM_ENTRY(IC_VEX_OPSIZE, 2, "requires VEX and the OpSize prefix") \ + ENUM_ENTRY(IC_VEX_W, 3, "requires VEX and the W prefix") \ + ENUM_ENTRY(IC_VEX_W_XS, 4, "requires VEX, W, and XS prefix") \ + ENUM_ENTRY(IC_VEX_W_XD, 4, "requires VEX, W, and XD prefix") \ + ENUM_ENTRY(IC_VEX_W_OPSIZE, 4, "requires VEX, W, and OpSize") \ + ENUM_ENTRY(IC_VEX_L, 3, "requires VEX and the L prefix") \ + ENUM_ENTRY(IC_VEX_L_XS, 4, "requires VEX and the L and XS prefix")\ + ENUM_ENTRY(IC_VEX_L_XD, 4, "requires VEX and the L and XD prefix")\ + ENUM_ENTRY(IC_VEX_L_OPSIZE, 4, "requires VEX, L, and OpSize") \ + ENUM_ENTRY(IC_VEX_L_W, 4, "requires VEX, L and W") \ + ENUM_ENTRY(IC_VEX_L_W_XS, 5, "requires VEX, L, W and XS prefix") \ + ENUM_ENTRY(IC_VEX_L_W_XD, 5, "requires VEX, L, W and XD prefix") \ + ENUM_ENTRY(IC_VEX_L_W_OPSIZE, 5, "requires VEX, L, W and OpSize") \ + ENUM_ENTRY(IC_EVEX, 1, "requires an EVEX prefix") \ + ENUM_ENTRY(IC_EVEX_XS, 2, "requires EVEX and the XS prefix") \ + ENUM_ENTRY(IC_EVEX_XD, 2, "requires EVEX and the XD prefix") \ + ENUM_ENTRY(IC_EVEX_OPSIZE, 2, "requires EVEX and the OpSize prefix") \ + ENUM_ENTRY(IC_EVEX_W, 3, "requires EVEX and the W prefix") \ + ENUM_ENTRY(IC_EVEX_W_XS, 4, "requires EVEX, W, and XS prefix") \ + ENUM_ENTRY(IC_EVEX_W_XD, 4, "requires EVEX, W, and XD prefix") \ + ENUM_ENTRY(IC_EVEX_W_OPSIZE, 4, "requires EVEX, W, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L, 3, "requires EVEX and the L prefix") \ + ENUM_ENTRY(IC_EVEX_L_XS, 4, "requires EVEX and the L and XS prefix")\ + ENUM_ENTRY(IC_EVEX_L_XD, 4, "requires EVEX and the L and XD prefix")\ + ENUM_ENTRY(IC_EVEX_L_OPSIZE, 4, "requires EVEX, L, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L_W, 3, "requires EVEX, L and W") \ + ENUM_ENTRY(IC_EVEX_L_W_XS, 4, "requires EVEX, L, W and XS prefix") \ + ENUM_ENTRY(IC_EVEX_L_W_XD, 4, "requires EVEX, L, W and XD prefix") \ + ENUM_ENTRY(IC_EVEX_L_W_OPSIZE, 4, "requires EVEX, L, W and OpSize") \ + ENUM_ENTRY(IC_EVEX_L2, 3, "requires EVEX and the L2 prefix") \ + ENUM_ENTRY(IC_EVEX_L2_XS, 4, "requires EVEX and the L2 and XS prefix")\ + ENUM_ENTRY(IC_EVEX_L2_XD, 4, "requires EVEX and the L2 and XD prefix")\ + ENUM_ENTRY(IC_EVEX_L2_OPSIZE, 4, "requires EVEX, L2, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L2_W, 3, "requires EVEX, L2 and W") \ + ENUM_ENTRY(IC_EVEX_L2_W_XS, 4, "requires EVEX, L2, W and XS prefix") \ + ENUM_ENTRY(IC_EVEX_L2_W_XD, 4, "requires EVEX, L2, W and XD prefix") \ + ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE, 4, "requires EVEX, L2, W and OpSize") \ + ENUM_ENTRY(IC_EVEX_K, 1, "requires an EVEX_K prefix") \ + ENUM_ENTRY(IC_EVEX_XS_K, 2, "requires EVEX_K and the XS prefix") \ + ENUM_ENTRY(IC_EVEX_XD_K, 2, "requires EVEX_K and the XD prefix") \ + ENUM_ENTRY(IC_EVEX_OPSIZE_K, 2, "requires EVEX_K and the OpSize prefix") \ + ENUM_ENTRY(IC_EVEX_W_K, 3, "requires EVEX_K and the W prefix") \ + ENUM_ENTRY(IC_EVEX_W_XS_K, 4, "requires EVEX_K, W, and XS prefix") \ + ENUM_ENTRY(IC_EVEX_W_XD_K, 4, "requires EVEX_K, W, and XD prefix") \ + ENUM_ENTRY(IC_EVEX_W_OPSIZE_K, 4, "requires EVEX_K, W, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L_K, 3, "requires EVEX_K and the L prefix") \ + ENUM_ENTRY(IC_EVEX_L_XS_K, 4, "requires EVEX_K and the L and XS prefix")\ + ENUM_ENTRY(IC_EVEX_L_XD_K, 4, "requires EVEX_K and the L and XD prefix")\ + ENUM_ENTRY(IC_EVEX_L_OPSIZE_K, 4, "requires EVEX_K, L, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L_W_K, 3, "requires EVEX_K, L and W") \ + ENUM_ENTRY(IC_EVEX_L_W_XS_K, 4, "requires EVEX_K, L, W and XS prefix") \ + ENUM_ENTRY(IC_EVEX_L_W_XD_K, 4, "requires EVEX_K, L, W and XD prefix") \ + ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K, 4, "requires EVEX_K, L, W and OpSize") \ + ENUM_ENTRY(IC_EVEX_L2_K, 3, "requires EVEX_K and the L2 prefix") \ + ENUM_ENTRY(IC_EVEX_L2_XS_K, 4, "requires EVEX_K and the L2 and XS prefix")\ + ENUM_ENTRY(IC_EVEX_L2_XD_K, 4, "requires EVEX_K and the L2 and XD prefix")\ + ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K, 4, "requires EVEX_K, L2, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L2_W_K, 3, "requires EVEX_K, L2 and W") \ + ENUM_ENTRY(IC_EVEX_L2_W_XS_K, 4, "requires EVEX_K, L2, W and XS prefix") \ + ENUM_ENTRY(IC_EVEX_L2_W_XD_K, 4, "requires EVEX_K, L2, W and XD prefix") \ + ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K, 4, "requires EVEX_K, L2, W and OpSize") \ + ENUM_ENTRY(IC_EVEX_B, 1, "requires an EVEX_B prefix") \ + ENUM_ENTRY(IC_EVEX_XS_B, 2, "requires EVEX_B and the XS prefix") \ + ENUM_ENTRY(IC_EVEX_XD_B, 2, "requires EVEX_B and the XD prefix") \ + ENUM_ENTRY(IC_EVEX_OPSIZE_B, 2, "requires EVEX_B and the OpSize prefix") \ + ENUM_ENTRY(IC_EVEX_W_B, 3, "requires EVEX_B and the W prefix") \ + ENUM_ENTRY(IC_EVEX_W_XS_B, 4, "requires EVEX_B, W, and XS prefix") \ + ENUM_ENTRY(IC_EVEX_W_XD_B, 4, "requires EVEX_B, W, and XD prefix") \ + ENUM_ENTRY(IC_EVEX_W_OPSIZE_B, 4, "requires EVEX_B, W, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L_B, 3, "requires EVEX_B and the L prefix") \ + ENUM_ENTRY(IC_EVEX_L_XS_B, 4, "requires EVEX_B and the L and XS prefix")\ + ENUM_ENTRY(IC_EVEX_L_XD_B, 4, "requires EVEX_B and the L and XD prefix")\ + ENUM_ENTRY(IC_EVEX_L_OPSIZE_B, 4, "requires EVEX_B, L, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L_W_B, 3, "requires EVEX_B, L and W") \ + ENUM_ENTRY(IC_EVEX_L_W_XS_B, 4, "requires EVEX_B, L, W and XS prefix") \ + ENUM_ENTRY(IC_EVEX_L_W_XD_B, 4, "requires EVEX_B, L, W and XD prefix") \ + ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_B, 4, "requires EVEX_B, L, W and OpSize") \ + ENUM_ENTRY(IC_EVEX_L2_B, 3, "requires EVEX_B and the L2 prefix") \ + ENUM_ENTRY(IC_EVEX_L2_XS_B, 4, "requires EVEX_B and the L2 and XS prefix")\ + ENUM_ENTRY(IC_EVEX_L2_XD_B, 4, "requires EVEX_B and the L2 and XD prefix")\ + ENUM_ENTRY(IC_EVEX_L2_OPSIZE_B, 4, "requires EVEX_B, L2, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L2_W_B, 3, "requires EVEX_B, L2 and W") \ + ENUM_ENTRY(IC_EVEX_L2_W_XS_B, 4, "requires EVEX_B, L2, W and XS prefix") \ + ENUM_ENTRY(IC_EVEX_L2_W_XD_B, 4, "requires EVEX_B, L2, W and XD prefix") \ + ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_B, 4, "requires EVEX_B, L2, W and OpSize") \ + ENUM_ENTRY(IC_EVEX_K_B, 1, "requires EVEX_B and EVEX_K prefix") \ + ENUM_ENTRY(IC_EVEX_XS_K_B, 2, "requires EVEX_B, EVEX_K and the XS prefix") \ + ENUM_ENTRY(IC_EVEX_XD_K_B, 2, "requires EVEX_B, EVEX_K and the XD prefix") \ + ENUM_ENTRY(IC_EVEX_OPSIZE_K_B, 2, "requires EVEX_B, EVEX_K and the OpSize prefix") \ + ENUM_ENTRY(IC_EVEX_W_K_B, 3, "requires EVEX_B, EVEX_K and the W prefix") \ + ENUM_ENTRY(IC_EVEX_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, W, and XS prefix") \ + ENUM_ENTRY(IC_EVEX_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, W, and XD prefix") \ + ENUM_ENTRY(IC_EVEX_W_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, W, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L_K_B, 3, "requires EVEX_B, EVEX_K and the L prefix") \ + ENUM_ENTRY(IC_EVEX_L_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L and XS prefix")\ + ENUM_ENTRY(IC_EVEX_L_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L and XD prefix")\ + ENUM_ENTRY(IC_EVEX_L_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L_W_K_B, 3, "requires EVEX_B, EVEX_K, L and W") \ + ENUM_ENTRY(IC_EVEX_L_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XS prefix") \ + ENUM_ENTRY(IC_EVEX_L_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L, W and XD prefix") \ + ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_K_B,4, "requires EVEX_B, EVEX_K, L, W and OpSize") \ + ENUM_ENTRY(IC_EVEX_L2_K_B, 3, "requires EVEX_B, EVEX_K and the L2 prefix") \ + ENUM_ENTRY(IC_EVEX_L2_XS_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XS prefix")\ + ENUM_ENTRY(IC_EVEX_L2_XD_K_B, 4, "requires EVEX_B, EVEX_K and the L2 and XD prefix")\ + ENUM_ENTRY(IC_EVEX_L2_OPSIZE_K_B, 4, "requires EVEX_B, EVEX_K, L2, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L2_W_K_B, 3, "requires EVEX_B, EVEX_K, L2 and W") \ + ENUM_ENTRY(IC_EVEX_L2_W_XS_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XS prefix") \ + ENUM_ENTRY(IC_EVEX_L2_W_XD_K_B, 4, "requires EVEX_B, EVEX_K, L2, W and XD prefix") \ + ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_K_B,4, "requires EVEX_B, EVEX_K, L2, W and OpSize") \ + ENUM_ENTRY(IC_EVEX_KZ_B, 1, "requires EVEX_B and EVEX_KZ prefix") \ + ENUM_ENTRY(IC_EVEX_XS_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the XS prefix") \ + ENUM_ENTRY(IC_EVEX_XD_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the XD prefix") \ + ENUM_ENTRY(IC_EVEX_OPSIZE_KZ_B, 2, "requires EVEX_B, EVEX_KZ and the OpSize prefix") \ + ENUM_ENTRY(IC_EVEX_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the W prefix") \ + ENUM_ENTRY(IC_EVEX_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and XS prefix") \ + ENUM_ENTRY(IC_EVEX_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and XD prefix") \ + ENUM_ENTRY(IC_EVEX_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, W, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the L prefix") \ + ENUM_ENTRY(IC_EVEX_L_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L and XS prefix")\ + ENUM_ENTRY(IC_EVEX_L_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L and XD prefix")\ + ENUM_ENTRY(IC_EVEX_L_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ, L and W") \ + ENUM_ENTRY(IC_EVEX_L_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and XS prefix") \ + ENUM_ENTRY(IC_EVEX_L_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and XD prefix") \ + ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L, W and OpSize") \ + ENUM_ENTRY(IC_EVEX_L2_KZ_B, 3, "requires EVEX_B, EVEX_KZ and the L2 prefix") \ + ENUM_ENTRY(IC_EVEX_L2_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L2 and XS prefix")\ + ENUM_ENTRY(IC_EVEX_L2_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ and the L2 and XD prefix")\ + ENUM_ENTRY(IC_EVEX_L2_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L2_W_KZ_B, 3, "requires EVEX_B, EVEX_KZ, L2 and W") \ + ENUM_ENTRY(IC_EVEX_L2_W_XS_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and XS prefix") \ + ENUM_ENTRY(IC_EVEX_L2_W_XD_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and XD prefix") \ + ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_KZ_B, 4, "requires EVEX_B, EVEX_KZ, L2, W and OpSize") \ + ENUM_ENTRY(IC_EVEX_KZ, 1, "requires an EVEX_KZ prefix") \ + ENUM_ENTRY(IC_EVEX_XS_KZ, 2, "requires EVEX_KZ and the XS prefix") \ + ENUM_ENTRY(IC_EVEX_XD_KZ, 2, "requires EVEX_KZ and the XD prefix") \ + ENUM_ENTRY(IC_EVEX_OPSIZE_KZ, 2, "requires EVEX_KZ and the OpSize prefix") \ + ENUM_ENTRY(IC_EVEX_W_KZ, 3, "requires EVEX_KZ and the W prefix") \ + ENUM_ENTRY(IC_EVEX_W_XS_KZ, 4, "requires EVEX_KZ, W, and XS prefix") \ + ENUM_ENTRY(IC_EVEX_W_XD_KZ, 4, "requires EVEX_KZ, W, and XD prefix") \ + ENUM_ENTRY(IC_EVEX_W_OPSIZE_KZ, 4, "requires EVEX_KZ, W, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L_KZ, 3, "requires EVEX_KZ and the L prefix") \ + ENUM_ENTRY(IC_EVEX_L_XS_KZ, 4, "requires EVEX_KZ and the L and XS prefix")\ + ENUM_ENTRY(IC_EVEX_L_XD_KZ, 4, "requires EVEX_KZ and the L and XD prefix")\ + ENUM_ENTRY(IC_EVEX_L_OPSIZE_KZ, 4, "requires EVEX_KZ, L, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L_W_KZ, 3, "requires EVEX_KZ, L and W") \ + ENUM_ENTRY(IC_EVEX_L_W_XS_KZ, 4, "requires EVEX_KZ, L, W and XS prefix") \ + ENUM_ENTRY(IC_EVEX_L_W_XD_KZ, 4, "requires EVEX_KZ, L, W and XD prefix") \ + ENUM_ENTRY(IC_EVEX_L_W_OPSIZE_KZ, 4, "requires EVEX_KZ, L, W and OpSize") \ + ENUM_ENTRY(IC_EVEX_L2_KZ, 3, "requires EVEX_KZ and the L2 prefix") \ + ENUM_ENTRY(IC_EVEX_L2_XS_KZ, 4, "requires EVEX_KZ and the L2 and XS prefix")\ + ENUM_ENTRY(IC_EVEX_L2_XD_KZ, 4, "requires EVEX_KZ and the L2 and XD prefix")\ + ENUM_ENTRY(IC_EVEX_L2_OPSIZE_KZ, 4, "requires EVEX_KZ, L2, and OpSize") \ + ENUM_ENTRY(IC_EVEX_L2_W_KZ, 3, "requires EVEX_KZ, L2 and W") \ + ENUM_ENTRY(IC_EVEX_L2_W_XS_KZ, 4, "requires EVEX_KZ, L2, W and XS prefix") \ + ENUM_ENTRY(IC_EVEX_L2_W_XD_KZ, 4, "requires EVEX_KZ, L2, W and XD prefix") \ + ENUM_ENTRY(IC_EVEX_L2_W_OPSIZE_KZ, 4, "requires EVEX_KZ, L2, W and OpSize") + +#define ENUM_ENTRY(n, r, d) n, +enum InstructionContext { + INSTRUCTION_CONTEXTS + IC_max +}; +#undef ENUM_ENTRY + +// Opcode types, which determine which decode table to use, both in the Intel +// manual and also for the decoder. +enum OpcodeType { + ONEBYTE = 0, + TWOBYTE = 1, + THREEBYTE_38 = 2, + THREEBYTE_3A = 3, + XOP8_MAP = 4, + XOP9_MAP = 5, + XOPA_MAP = 6 +}; + +// The following structs are used for the hierarchical decode table. After +// determining the instruction's class (i.e., which IC_* constant applies to +// it), the decoder reads the opcode. Some instructions require specific +// values of the ModR/M byte, so the ModR/M byte indexes into the final table. +// +// If a ModR/M byte is not required, "required" is left unset, and the values +// for each instructionID are identical. +typedef uint16_t InstrUID; + +// ModRMDecisionType - describes the type of ModR/M decision, allowing the +// consumer to determine the number of entries in it. +// +// MODRM_ONEENTRY - No matter what the value of the ModR/M byte is, the decoded +// instruction is the same. +// MODRM_SPLITRM - If the ModR/M byte is between 0x00 and 0xbf, the opcode +// corresponds to one instruction; otherwise, it corresponds to +// a different instruction. +// MODRM_SPLITMISC- If the ModR/M byte is between 0x00 and 0xbf, ModR/M byte +// divided by 8 is used to select instruction; otherwise, each +// value of the ModR/M byte could correspond to a different +// instruction. +// MODRM_SPLITREG - ModR/M byte divided by 8 is used to select instruction. This +// corresponds to instructions that use reg field as opcode +// MODRM_FULL - Potentially, each value of the ModR/M byte could correspond +// to a different instruction. +#define MODRMTYPES \ + ENUM_ENTRY(MODRM_ONEENTRY) \ + ENUM_ENTRY(MODRM_SPLITRM) \ + ENUM_ENTRY(MODRM_SPLITMISC) \ + ENUM_ENTRY(MODRM_SPLITREG) \ + ENUM_ENTRY(MODRM_FULL) + +#define ENUM_ENTRY(n) n, +enum ModRMDecisionType { + MODRMTYPES + MODRM_max +}; +#undef ENUM_ENTRY + +#define CASE_ENCODING_RM \ + case ENCODING_RM: \ + case ENCODING_RM_CD2: \ + case ENCODING_RM_CD4: \ + case ENCODING_RM_CD8: \ + case ENCODING_RM_CD16: \ + case ENCODING_RM_CD32: \ + case ENCODING_RM_CD64 + +// Physical encodings of instruction operands. +#define ENCODINGS \ + ENUM_ENTRY(ENCODING_NONE, "") \ + ENUM_ENTRY(ENCODING_REG, "Register operand in ModR/M byte.") \ + ENUM_ENTRY(ENCODING_RM, "R/M operand in ModR/M byte.") \ + ENUM_ENTRY(ENCODING_RM_CD2, "R/M operand with CDisp scaling of 2") \ + ENUM_ENTRY(ENCODING_RM_CD4, "R/M operand with CDisp scaling of 4") \ + ENUM_ENTRY(ENCODING_RM_CD8, "R/M operand with CDisp scaling of 8") \ + ENUM_ENTRY(ENCODING_RM_CD16,"R/M operand with CDisp scaling of 16") \ + ENUM_ENTRY(ENCODING_RM_CD32,"R/M operand with CDisp scaling of 32") \ + ENUM_ENTRY(ENCODING_RM_CD64,"R/M operand with CDisp scaling of 64") \ + ENUM_ENTRY(ENCODING_VVVV, "Register operand in VEX.vvvv byte.") \ + ENUM_ENTRY(ENCODING_WRITEMASK, "Register operand in EVEX.aaa byte.") \ + ENUM_ENTRY(ENCODING_CB, "1-byte code offset (possible new CS value)") \ + ENUM_ENTRY(ENCODING_CW, "2-byte") \ + ENUM_ENTRY(ENCODING_CD, "4-byte") \ + ENUM_ENTRY(ENCODING_CP, "6-byte") \ + ENUM_ENTRY(ENCODING_CO, "8-byte") \ + ENUM_ENTRY(ENCODING_CT, "10-byte") \ + ENUM_ENTRY(ENCODING_IB, "1-byte immediate") \ + ENUM_ENTRY(ENCODING_IW, "2-byte") \ + ENUM_ENTRY(ENCODING_ID, "4-byte") \ + ENUM_ENTRY(ENCODING_IO, "8-byte") \ + ENUM_ENTRY(ENCODING_RB, "(AL..DIL, R8L..R15L) Register code added to " \ + "the opcode byte") \ + ENUM_ENTRY(ENCODING_RW, "(AX..DI, R8W..R15W)") \ + ENUM_ENTRY(ENCODING_RD, "(EAX..EDI, R8D..R15D)") \ + ENUM_ENTRY(ENCODING_RO, "(RAX..RDI, R8..R15)") \ + ENUM_ENTRY(ENCODING_FP, "Position on floating-point stack in ModR/M " \ + "byte.") \ + \ + ENUM_ENTRY(ENCODING_Iv, "Immediate of operand size") \ + ENUM_ENTRY(ENCODING_Ia, "Immediate of address size") \ + ENUM_ENTRY(ENCODING_Rv, "Register code of operand size added to the " \ + "opcode byte") \ + ENUM_ENTRY(ENCODING_DUP, "Duplicate of another operand; ID is encoded " \ + "in type") \ + ENUM_ENTRY(ENCODING_SI, "Source index; encoded in OpSize/Adsize prefix") \ + ENUM_ENTRY(ENCODING_DI, "Destination index; encoded in prefixes") + +#define ENUM_ENTRY(n, d) n, +enum OperandEncoding { + ENCODINGS + ENCODING_max +}; +#undef ENUM_ENTRY + +// Semantic interpretations of instruction operands. +#define TYPES \ + ENUM_ENTRY(TYPE_NONE, "") \ + ENUM_ENTRY(TYPE_REL8, "1-byte immediate address") \ + ENUM_ENTRY(TYPE_REL16, "2-byte") \ + ENUM_ENTRY(TYPE_REL32, "4-byte") \ + ENUM_ENTRY(TYPE_REL64, "8-byte") \ + ENUM_ENTRY(TYPE_PTR1616, "2+2-byte segment+offset address") \ + ENUM_ENTRY(TYPE_PTR1632, "2+4-byte") \ + ENUM_ENTRY(TYPE_PTR1664, "2+8-byte") \ + ENUM_ENTRY(TYPE_R8, "1-byte register operand") \ + ENUM_ENTRY(TYPE_R16, "2-byte") \ + ENUM_ENTRY(TYPE_R32, "4-byte") \ + ENUM_ENTRY(TYPE_R64, "8-byte") \ + ENUM_ENTRY(TYPE_IMM8, "1-byte immediate operand") \ + ENUM_ENTRY(TYPE_IMM16, "2-byte") \ + ENUM_ENTRY(TYPE_IMM32, "4-byte") \ + ENUM_ENTRY(TYPE_IMM64, "8-byte") \ + ENUM_ENTRY(TYPE_IMM3, "1-byte immediate operand between 0 and 7") \ + ENUM_ENTRY(TYPE_IMM5, "1-byte immediate operand between 0 and 31") \ + ENUM_ENTRY(TYPE_RM8, "1-byte register or memory operand") \ + ENUM_ENTRY(TYPE_RM16, "2-byte") \ + ENUM_ENTRY(TYPE_RM32, "4-byte") \ + ENUM_ENTRY(TYPE_RM64, "8-byte") \ + ENUM_ENTRY(TYPE_M, "Memory operand") \ + ENUM_ENTRY(TYPE_M8, "1-byte") \ + ENUM_ENTRY(TYPE_M16, "2-byte") \ + ENUM_ENTRY(TYPE_M32, "4-byte") \ + ENUM_ENTRY(TYPE_M64, "8-byte") \ + ENUM_ENTRY(TYPE_LEA, "Effective address") \ + ENUM_ENTRY(TYPE_M128, "16-byte (SSE/SSE2)") \ + ENUM_ENTRY(TYPE_M256, "256-byte (AVX)") \ + ENUM_ENTRY(TYPE_M1616, "2+2-byte segment+offset address") \ + ENUM_ENTRY(TYPE_M1632, "2+4-byte") \ + ENUM_ENTRY(TYPE_M1664, "2+8-byte") \ + ENUM_ENTRY(TYPE_SRCIDX8, "1-byte memory at source index") \ + ENUM_ENTRY(TYPE_SRCIDX16, "2-byte memory at source index") \ + ENUM_ENTRY(TYPE_SRCIDX32, "4-byte memory at source index") \ + ENUM_ENTRY(TYPE_SRCIDX64, "8-byte memory at source index") \ + ENUM_ENTRY(TYPE_DSTIDX8, "1-byte memory at destination index") \ + ENUM_ENTRY(TYPE_DSTIDX16, "2-byte memory at destination index") \ + ENUM_ENTRY(TYPE_DSTIDX32, "4-byte memory at destination index") \ + ENUM_ENTRY(TYPE_DSTIDX64, "8-byte memory at destination index") \ + ENUM_ENTRY(TYPE_MOFFS8, "1-byte memory offset (relative to segment " \ + "base)") \ + ENUM_ENTRY(TYPE_MOFFS16, "2-byte") \ + ENUM_ENTRY(TYPE_MOFFS32, "4-byte") \ + ENUM_ENTRY(TYPE_MOFFS64, "8-byte") \ + ENUM_ENTRY(TYPE_SREG, "Byte with single bit set: 0 = ES, 1 = CS, " \ + "2 = SS, 3 = DS, 4 = FS, 5 = GS") \ + ENUM_ENTRY(TYPE_M32FP, "32-bit IEE754 memory floating-point operand") \ + ENUM_ENTRY(TYPE_M64FP, "64-bit") \ + ENUM_ENTRY(TYPE_M80FP, "80-bit extended") \ + ENUM_ENTRY(TYPE_ST, "Position on the floating-point stack") \ + ENUM_ENTRY(TYPE_MM64, "8-byte MMX register") \ + ENUM_ENTRY(TYPE_XMM, "XMM register operand") \ + ENUM_ENTRY(TYPE_XMM32, "4-byte XMM register or memory operand") \ + ENUM_ENTRY(TYPE_XMM64, "8-byte") \ + ENUM_ENTRY(TYPE_XMM128, "16-byte") \ + ENUM_ENTRY(TYPE_XMM256, "32-byte") \ + ENUM_ENTRY(TYPE_XMM512, "64-byte") \ + ENUM_ENTRY(TYPE_VK1, "1-bit") \ + ENUM_ENTRY(TYPE_VK2, "2-bit") \ + ENUM_ENTRY(TYPE_VK4, "4-bit") \ + ENUM_ENTRY(TYPE_VK8, "8-bit") \ + ENUM_ENTRY(TYPE_VK16, "16-bit") \ + ENUM_ENTRY(TYPE_VK32, "32-bit") \ + ENUM_ENTRY(TYPE_VK64, "64-bit") \ + ENUM_ENTRY(TYPE_XMM0, "Implicit use of XMM0") \ + ENUM_ENTRY(TYPE_SEGMENTREG, "Segment register operand") \ + ENUM_ENTRY(TYPE_DEBUGREG, "Debug register operand") \ + ENUM_ENTRY(TYPE_CONTROLREG, "Control register operand") \ + \ + ENUM_ENTRY(TYPE_Mv, "Memory operand of operand size") \ + ENUM_ENTRY(TYPE_Rv, "Register operand of operand size") \ + ENUM_ENTRY(TYPE_IMMv, "Immediate operand of operand size") \ + ENUM_ENTRY(TYPE_RELv, "Immediate address of operand size") \ + ENUM_ENTRY(TYPE_DUP0, "Duplicate of operand 0") \ + ENUM_ENTRY(TYPE_DUP1, "operand 1") \ + ENUM_ENTRY(TYPE_DUP2, "operand 2") \ + ENUM_ENTRY(TYPE_DUP3, "operand 3") \ + ENUM_ENTRY(TYPE_DUP4, "operand 4") \ + ENUM_ENTRY(TYPE_M512, "512-bit FPU/MMX/XMM/MXCSR state") + +#define ENUM_ENTRY(n, d) n, +enum OperandType { + TYPES + TYPE_max +}; +#undef ENUM_ENTRY + +/// \brief The specification for how to extract and interpret one operand. +struct OperandSpecifier { + uint8_t encoding; + uint8_t type; +}; + +// Indicates where the opcode modifier (if any) is to be found. Extended +// opcodes with AddRegFrm have the opcode modifier in the ModR/M byte. +#define MODIFIER_TYPES \ + ENUM_ENTRY(MODIFIER_NONE) + +#define ENUM_ENTRY(n) n, +enum ModifierType { + MODIFIER_TYPES + MODIFIER_max +}; +#undef ENUM_ENTRY + +static const unsigned X86_MAX_OPERANDS = 6; + +/// Decoding mode for the Intel disassembler. 16-bit, 32-bit, and 64-bit mode +/// are supported, and represent real mode, IA-32e, and IA-32e in 64-bit mode, +/// respectively. +enum DisassemblerMode { + MODE_16BIT, + MODE_32BIT, + MODE_64BIT +}; + +} // namespace X86Disassembler +} // namespace llvm + +#endif |