summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp')
-rw-r--r--contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp2951
1 files changed, 2951 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp
new file mode 100644
index 0000000..4d8ffac
--- /dev/null
+++ b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp
@@ -0,0 +1,2951 @@
+//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "X86AsmInstrumentation.h"
+#include "X86AsmParserCommon.h"
+#include "X86Operand.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCParser/MCAsmLexer.h"
+#include "llvm/MC/MCParser/MCAsmParser.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSection.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <memory>
+
+using namespace llvm;
+
+namespace {
+
+static const char OpPrecedence[] = {
+ 0, // IC_OR
+ 1, // IC_XOR
+ 2, // IC_AND
+ 3, // IC_LSHIFT
+ 3, // IC_RSHIFT
+ 4, // IC_PLUS
+ 4, // IC_MINUS
+ 5, // IC_MULTIPLY
+ 5, // IC_DIVIDE
+ 6, // IC_RPAREN
+ 7, // IC_LPAREN
+ 0, // IC_IMM
+ 0 // IC_REGISTER
+};
+
+class X86AsmParser : public MCTargetAsmParser {
+ const MCInstrInfo &MII;
+ ParseInstructionInfo *InstInfo;
+ std::unique_ptr<X86AsmInstrumentation> Instrumentation;
+
+private:
+ SMLoc consumeToken() {
+ MCAsmParser &Parser = getParser();
+ SMLoc Result = Parser.getTok().getLoc();
+ Parser.Lex();
+ return Result;
+ }
+
+ enum InfixCalculatorTok {
+ IC_OR = 0,
+ IC_XOR,
+ IC_AND,
+ IC_LSHIFT,
+ IC_RSHIFT,
+ IC_PLUS,
+ IC_MINUS,
+ IC_MULTIPLY,
+ IC_DIVIDE,
+ IC_RPAREN,
+ IC_LPAREN,
+ IC_IMM,
+ IC_REGISTER
+ };
+
+ class InfixCalculator {
+ typedef std::pair< InfixCalculatorTok, int64_t > ICToken;
+ SmallVector<InfixCalculatorTok, 4> InfixOperatorStack;
+ SmallVector<ICToken, 4> PostfixStack;
+
+ public:
+ int64_t popOperand() {
+ assert (!PostfixStack.empty() && "Poped an empty stack!");
+ ICToken Op = PostfixStack.pop_back_val();
+ assert ((Op.first == IC_IMM || Op.first == IC_REGISTER)
+ && "Expected and immediate or register!");
+ return Op.second;
+ }
+ void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) {
+ assert ((Op == IC_IMM || Op == IC_REGISTER) &&
+ "Unexpected operand!");
+ PostfixStack.push_back(std::make_pair(Op, Val));
+ }
+
+ void popOperator() { InfixOperatorStack.pop_back(); }
+ void pushOperator(InfixCalculatorTok Op) {
+ // Push the new operator if the stack is empty.
+ if (InfixOperatorStack.empty()) {
+ InfixOperatorStack.push_back(Op);
+ return;
+ }
+
+ // Push the new operator if it has a higher precedence than the operator
+ // on the top of the stack or the operator on the top of the stack is a
+ // left parentheses.
+ unsigned Idx = InfixOperatorStack.size() - 1;
+ InfixCalculatorTok StackOp = InfixOperatorStack[Idx];
+ if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) {
+ InfixOperatorStack.push_back(Op);
+ return;
+ }
+
+ // The operator on the top of the stack has higher precedence than the
+ // new operator.
+ unsigned ParenCount = 0;
+ while (1) {
+ // Nothing to process.
+ if (InfixOperatorStack.empty())
+ break;
+
+ Idx = InfixOperatorStack.size() - 1;
+ StackOp = InfixOperatorStack[Idx];
+ if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount))
+ break;
+
+ // If we have an even parentheses count and we see a left parentheses,
+ // then stop processing.
+ if (!ParenCount && StackOp == IC_LPAREN)
+ break;
+
+ if (StackOp == IC_RPAREN) {
+ ++ParenCount;
+ InfixOperatorStack.pop_back();
+ } else if (StackOp == IC_LPAREN) {
+ --ParenCount;
+ InfixOperatorStack.pop_back();
+ } else {
+ InfixOperatorStack.pop_back();
+ PostfixStack.push_back(std::make_pair(StackOp, 0));
+ }
+ }
+ // Push the new operator.
+ InfixOperatorStack.push_back(Op);
+ }
+
+ int64_t execute() {
+ // Push any remaining operators onto the postfix stack.
+ while (!InfixOperatorStack.empty()) {
+ InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val();
+ if (StackOp != IC_LPAREN && StackOp != IC_RPAREN)
+ PostfixStack.push_back(std::make_pair(StackOp, 0));
+ }
+
+ if (PostfixStack.empty())
+ return 0;
+
+ SmallVector<ICToken, 16> OperandStack;
+ for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) {
+ ICToken Op = PostfixStack[i];
+ if (Op.first == IC_IMM || Op.first == IC_REGISTER) {
+ OperandStack.push_back(Op);
+ } else {
+ assert (OperandStack.size() > 1 && "Too few operands.");
+ int64_t Val;
+ ICToken Op2 = OperandStack.pop_back_val();
+ ICToken Op1 = OperandStack.pop_back_val();
+ switch (Op.first) {
+ default:
+ report_fatal_error("Unexpected operator!");
+ break;
+ case IC_PLUS:
+ Val = Op1.second + Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_MINUS:
+ Val = Op1.second - Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_MULTIPLY:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Multiply operation with an immediate and a register!");
+ Val = Op1.second * Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_DIVIDE:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Divide operation with an immediate and a register!");
+ assert (Op2.second != 0 && "Division by zero!");
+ Val = Op1.second / Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_OR:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Or operation with an immediate and a register!");
+ Val = Op1.second | Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_XOR:
+ assert(Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Xor operation with an immediate and a register!");
+ Val = Op1.second ^ Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_AND:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "And operation with an immediate and a register!");
+ Val = Op1.second & Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_LSHIFT:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Left shift operation with an immediate and a register!");
+ Val = Op1.second << Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ case IC_RSHIFT:
+ assert (Op1.first == IC_IMM && Op2.first == IC_IMM &&
+ "Right shift operation with an immediate and a register!");
+ Val = Op1.second >> Op2.second;
+ OperandStack.push_back(std::make_pair(IC_IMM, Val));
+ break;
+ }
+ }
+ }
+ assert (OperandStack.size() == 1 && "Expected a single result.");
+ return OperandStack.pop_back_val().second;
+ }
+ };
+
+ enum IntelExprState {
+ IES_OR,
+ IES_XOR,
+ IES_AND,
+ IES_LSHIFT,
+ IES_RSHIFT,
+ IES_PLUS,
+ IES_MINUS,
+ IES_NOT,
+ IES_MULTIPLY,
+ IES_DIVIDE,
+ IES_LBRAC,
+ IES_RBRAC,
+ IES_LPAREN,
+ IES_RPAREN,
+ IES_REGISTER,
+ IES_INTEGER,
+ IES_IDENTIFIER,
+ IES_ERROR
+ };
+
+ class IntelExprStateMachine {
+ IntelExprState State, PrevState;
+ unsigned BaseReg, IndexReg, TmpReg, Scale;
+ int64_t Imm;
+ const MCExpr *Sym;
+ StringRef SymName;
+ bool StopOnLBrac, AddImmPrefix;
+ InfixCalculator IC;
+ InlineAsmIdentifierInfo Info;
+
+ public:
+ IntelExprStateMachine(int64_t imm, bool stoponlbrac, bool addimmprefix) :
+ State(IES_PLUS), PrevState(IES_ERROR), BaseReg(0), IndexReg(0), TmpReg(0),
+ Scale(1), Imm(imm), Sym(nullptr), StopOnLBrac(stoponlbrac),
+ AddImmPrefix(addimmprefix) { Info.clear(); }
+
+ unsigned getBaseReg() { return BaseReg; }
+ unsigned getIndexReg() { return IndexReg; }
+ unsigned getScale() { return Scale; }
+ const MCExpr *getSym() { return Sym; }
+ StringRef getSymName() { return SymName; }
+ int64_t getImm() { return Imm + IC.execute(); }
+ bool isValidEndState() {
+ return State == IES_RBRAC || State == IES_INTEGER;
+ }
+ bool getStopOnLBrac() { return StopOnLBrac; }
+ bool getAddImmPrefix() { return AddImmPrefix; }
+ bool hadError() { return State == IES_ERROR; }
+
+ InlineAsmIdentifierInfo &getIdentifierInfo() {
+ return Info;
+ }
+
+ void onOr() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_OR;
+ IC.pushOperator(IC_OR);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onXor() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_XOR;
+ IC.pushOperator(IC_XOR);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onAnd() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_AND;
+ IC.pushOperator(IC_AND);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onLShift() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_LSHIFT;
+ IC.pushOperator(IC_LSHIFT);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onRShift() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_RSHIFT;
+ IC.pushOperator(IC_RSHIFT);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onPlus() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ case IES_REGISTER:
+ State = IES_PLUS;
+ IC.pushOperator(IC_PLUS);
+ if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
+ // If we already have a BaseReg, then assume this is the IndexReg with
+ // a scale of 1.
+ if (!BaseReg) {
+ BaseReg = TmpReg;
+ } else {
+ assert (!IndexReg && "BaseReg/IndexReg already set!");
+ IndexReg = TmpReg;
+ Scale = 1;
+ }
+ }
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onMinus() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_NOT:
+ case IES_MULTIPLY:
+ case IES_DIVIDE:
+ case IES_LPAREN:
+ case IES_RPAREN:
+ case IES_LBRAC:
+ case IES_RBRAC:
+ case IES_INTEGER:
+ case IES_REGISTER:
+ State = IES_MINUS;
+ // Only push the minus operator if it is not a unary operator.
+ if (!(CurrState == IES_PLUS || CurrState == IES_MINUS ||
+ CurrState == IES_MULTIPLY || CurrState == IES_DIVIDE ||
+ CurrState == IES_LPAREN || CurrState == IES_LBRAC))
+ IC.pushOperator(IC_MINUS);
+ if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
+ // If we already have a BaseReg, then assume this is the IndexReg with
+ // a scale of 1.
+ if (!BaseReg) {
+ BaseReg = TmpReg;
+ } else {
+ assert (!IndexReg && "BaseReg/IndexReg already set!");
+ IndexReg = TmpReg;
+ Scale = 1;
+ }
+ }
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onNot() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_NOT:
+ State = IES_NOT;
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onRegister(unsigned Reg) {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_LPAREN:
+ State = IES_REGISTER;
+ TmpReg = Reg;
+ IC.pushOperand(IC_REGISTER);
+ break;
+ case IES_MULTIPLY:
+ // Index Register - Scale * Register
+ if (PrevState == IES_INTEGER) {
+ assert (!IndexReg && "IndexReg already set!");
+ State = IES_REGISTER;
+ IndexReg = Reg;
+ // Get the scale and replace the 'Scale * Register' with '0'.
+ Scale = IC.popOperand();
+ IC.pushOperand(IC_IMM);
+ IC.popOperator();
+ } else {
+ State = IES_ERROR;
+ }
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName) {
+ PrevState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_MINUS:
+ case IES_NOT:
+ State = IES_INTEGER;
+ Sym = SymRef;
+ SymName = SymRefName;
+ IC.pushOperand(IC_IMM);
+ break;
+ }
+ }
+ bool onInteger(int64_t TmpInt, StringRef &ErrMsg) {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_MINUS:
+ case IES_NOT:
+ case IES_OR:
+ case IES_XOR:
+ case IES_AND:
+ case IES_LSHIFT:
+ case IES_RSHIFT:
+ case IES_DIVIDE:
+ case IES_MULTIPLY:
+ case IES_LPAREN:
+ State = IES_INTEGER;
+ if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) {
+ // Index Register - Register * Scale
+ assert (!IndexReg && "IndexReg already set!");
+ IndexReg = TmpReg;
+ Scale = TmpInt;
+ if(Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) {
+ ErrMsg = "scale factor in address must be 1, 2, 4 or 8";
+ return true;
+ }
+ // Get the scale and replace the 'Register * Scale' with '0'.
+ IC.popOperator();
+ } else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
+ PrevState == IES_OR || PrevState == IES_AND ||
+ PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
+ PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
+ PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
+ PrevState == IES_NOT || PrevState == IES_XOR) &&
+ CurrState == IES_MINUS) {
+ // Unary minus. No need to pop the minus operand because it was never
+ // pushed.
+ IC.pushOperand(IC_IMM, -TmpInt); // Push -Imm.
+ } else if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
+ PrevState == IES_OR || PrevState == IES_AND ||
+ PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
+ PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
+ PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
+ PrevState == IES_NOT || PrevState == IES_XOR) &&
+ CurrState == IES_NOT) {
+ // Unary not. No need to pop the not operand because it was never
+ // pushed.
+ IC.pushOperand(IC_IMM, ~TmpInt); // Push ~Imm.
+ } else {
+ IC.pushOperand(IC_IMM, TmpInt);
+ }
+ break;
+ }
+ PrevState = CurrState;
+ return false;
+ }
+ void onStar() {
+ PrevState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_REGISTER:
+ case IES_RPAREN:
+ State = IES_MULTIPLY;
+ IC.pushOperator(IC_MULTIPLY);
+ break;
+ }
+ }
+ void onDivide() {
+ PrevState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_RPAREN:
+ State = IES_DIVIDE;
+ IC.pushOperator(IC_DIVIDE);
+ break;
+ }
+ }
+ void onLBrac() {
+ PrevState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_RBRAC:
+ State = IES_PLUS;
+ IC.pushOperator(IC_PLUS);
+ break;
+ }
+ }
+ void onRBrac() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_REGISTER:
+ case IES_RPAREN:
+ State = IES_RBRAC;
+ if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) {
+ // If we already have a BaseReg, then assume this is the IndexReg with
+ // a scale of 1.
+ if (!BaseReg) {
+ BaseReg = TmpReg;
+ } else {
+ assert (!IndexReg && "BaseReg/IndexReg already set!");
+ IndexReg = TmpReg;
+ Scale = 1;
+ }
+ }
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onLParen() {
+ IntelExprState CurrState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_PLUS:
+ case IES_MINUS:
+ case IES_NOT:
+ case IES_OR:
+ case IES_XOR:
+ case IES_AND:
+ case IES_LSHIFT:
+ case IES_RSHIFT:
+ case IES_MULTIPLY:
+ case IES_DIVIDE:
+ case IES_LPAREN:
+ // FIXME: We don't handle this type of unary minus or not, yet.
+ if ((PrevState == IES_PLUS || PrevState == IES_MINUS ||
+ PrevState == IES_OR || PrevState == IES_AND ||
+ PrevState == IES_LSHIFT || PrevState == IES_RSHIFT ||
+ PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE ||
+ PrevState == IES_LPAREN || PrevState == IES_LBRAC ||
+ PrevState == IES_NOT || PrevState == IES_XOR) &&
+ (CurrState == IES_MINUS || CurrState == IES_NOT)) {
+ State = IES_ERROR;
+ break;
+ }
+ State = IES_LPAREN;
+ IC.pushOperator(IC_LPAREN);
+ break;
+ }
+ PrevState = CurrState;
+ }
+ void onRParen() {
+ PrevState = State;
+ switch (State) {
+ default:
+ State = IES_ERROR;
+ break;
+ case IES_INTEGER:
+ case IES_REGISTER:
+ case IES_RPAREN:
+ State = IES_RPAREN;
+ IC.pushOperator(IC_RPAREN);
+ break;
+ }
+ }
+ };
+
+ bool Error(SMLoc L, const Twine &Msg,
+ ArrayRef<SMRange> Ranges = None,
+ bool MatchingInlineAsm = false) {
+ MCAsmParser &Parser = getParser();
+ if (MatchingInlineAsm) return true;
+ return Parser.Error(L, Msg, Ranges);
+ }
+
+ bool ErrorAndEatStatement(SMLoc L, const Twine &Msg,
+ ArrayRef<SMRange> Ranges = None,
+ bool MatchingInlineAsm = false) {
+ MCAsmParser &Parser = getParser();
+ Parser.eatToEndOfStatement();
+ return Error(L, Msg, Ranges, MatchingInlineAsm);
+ }
+
+ std::nullptr_t ErrorOperand(SMLoc Loc, StringRef Msg) {
+ Error(Loc, Msg);
+ return nullptr;
+ }
+
+ std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc);
+ std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc);
+ void AddDefaultSrcDestOperands(
+ OperandVector& Operands, std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
+ std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst);
+ std::unique_ptr<X86Operand> ParseOperand();
+ std::unique_ptr<X86Operand> ParseATTOperand();
+ std::unique_ptr<X86Operand> ParseIntelOperand();
+ std::unique_ptr<X86Operand> ParseIntelOffsetOfOperator();
+ bool ParseIntelDotOperator(const MCExpr *Disp, const MCExpr *&NewDisp);
+ std::unique_ptr<X86Operand> ParseIntelOperator(unsigned OpKind);
+ std::unique_ptr<X86Operand>
+ ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start, unsigned Size);
+ std::unique_ptr<X86Operand>
+ ParseIntelMemOperand(int64_t ImmDisp, SMLoc StartLoc, unsigned Size);
+ std::unique_ptr<X86Operand> ParseRoundingModeOp(SMLoc Start, SMLoc End);
+ bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End);
+ std::unique_ptr<X86Operand> ParseIntelBracExpression(unsigned SegReg,
+ SMLoc Start,
+ int64_t ImmDisp,
+ unsigned Size);
+ bool ParseIntelIdentifier(const MCExpr *&Val, StringRef &Identifier,
+ InlineAsmIdentifierInfo &Info,
+ bool IsUnevaluatedOperand, SMLoc &End);
+
+ std::unique_ptr<X86Operand> ParseMemOperand(unsigned SegReg, SMLoc StartLoc);
+
+ std::unique_ptr<X86Operand>
+ CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg,
+ unsigned IndexReg, unsigned Scale, SMLoc Start,
+ SMLoc End, unsigned Size, StringRef Identifier,
+ InlineAsmIdentifierInfo &Info);
+
+ bool parseDirectiveEven(SMLoc L);
+ bool ParseDirectiveWord(unsigned Size, SMLoc L);
+ bool ParseDirectiveCode(StringRef IDVal, SMLoc L);
+
+ bool processInstruction(MCInst &Inst, const OperandVector &Ops);
+
+ /// Wrapper around MCStreamer::EmitInstruction(). Possibly adds
+ /// instrumentation around Inst.
+ void EmitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out);
+
+ bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) override;
+
+ void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands,
+ MCStreamer &Out, bool MatchingInlineAsm);
+
+ bool ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo,
+ bool MatchingInlineAsm);
+
+ bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm);
+
+ bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm);
+
+ bool OmitRegisterFromClobberLists(unsigned RegNo) override;
+
+ /// doSrcDstMatch - Returns true if operands are matching in their
+ /// word size (%si and %di, %esi and %edi, etc.). Order depends on
+ /// the parsing mode (Intel vs. AT&T).
+ bool doSrcDstMatch(X86Operand &Op1, X86Operand &Op2);
+
+ /// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z})
+ /// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required.
+ /// \return \c true if no parsing errors occurred, \c false otherwise.
+ bool HandleAVX512Operand(OperandVector &Operands,
+ const MCParsedAsmOperand &Op);
+
+ bool is64BitMode() const {
+ // FIXME: Can tablegen auto-generate this?
+ return getSTI().getFeatureBits()[X86::Mode64Bit];
+ }
+ bool is32BitMode() const {
+ // FIXME: Can tablegen auto-generate this?
+ return getSTI().getFeatureBits()[X86::Mode32Bit];
+ }
+ bool is16BitMode() const {
+ // FIXME: Can tablegen auto-generate this?
+ return getSTI().getFeatureBits()[X86::Mode16Bit];
+ }
+ void SwitchMode(unsigned mode) {
+ MCSubtargetInfo &STI = copySTI();
+ FeatureBitset AllModes({X86::Mode64Bit, X86::Mode32Bit, X86::Mode16Bit});
+ FeatureBitset OldMode = STI.getFeatureBits() & AllModes;
+ unsigned FB = ComputeAvailableFeatures(
+ STI.ToggleFeature(OldMode.flip(mode)));
+ setAvailableFeatures(FB);
+
+ assert(FeatureBitset({mode}) == (STI.getFeatureBits() & AllModes));
+ }
+
+ unsigned getPointerWidth() {
+ if (is16BitMode()) return 16;
+ if (is32BitMode()) return 32;
+ if (is64BitMode()) return 64;
+ llvm_unreachable("invalid mode");
+ }
+
+ bool isParsingIntelSyntax() {
+ return getParser().getAssemblerDialect();
+ }
+
+ /// @name Auto-generated Matcher Functions
+ /// {
+
+#define GET_ASSEMBLER_HEADER
+#include "X86GenAsmMatcher.inc"
+
+ /// }
+
+public:
+ X86AsmParser(const MCSubtargetInfo &sti, MCAsmParser &Parser,
+ const MCInstrInfo &mii, const MCTargetOptions &Options)
+ : MCTargetAsmParser(Options, sti), MII(mii), InstInfo(nullptr) {
+
+ // Initialize the set of available features.
+ setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
+ Instrumentation.reset(
+ CreateX86AsmInstrumentation(Options, Parser.getContext(), STI));
+ }
+
+ bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
+
+ void SetFrameRegister(unsigned RegNo) override;
+
+ bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) override;
+
+ bool ParseDirective(AsmToken DirectiveID) override;
+};
+} // end anonymous namespace
+
+/// @name Auto-generated Match Functions
+/// {
+
+static unsigned MatchRegisterName(StringRef Name);
+
+/// }
+
+static bool CheckBaseRegAndIndexReg(unsigned BaseReg, unsigned IndexReg,
+ StringRef &ErrMsg) {
+ // If we have both a base register and an index register make sure they are
+ // both 64-bit or 32-bit registers.
+ // To support VSIB, IndexReg can be 128-bit or 256-bit registers.
+ if (BaseReg != 0 && IndexReg != 0) {
+ if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) &&
+ (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) &&
+ IndexReg != X86::RIZ) {
+ ErrMsg = "base register is 64-bit, but index register is not";
+ return true;
+ }
+ if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) &&
+ (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) &&
+ IndexReg != X86::EIZ){
+ ErrMsg = "base register is 32-bit, but index register is not";
+ return true;
+ }
+ if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) {
+ if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) ||
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) {
+ ErrMsg = "base register is 16-bit, but index register is not";
+ return true;
+ }
+ if (((BaseReg == X86::BX || BaseReg == X86::BP) &&
+ IndexReg != X86::SI && IndexReg != X86::DI) ||
+ ((BaseReg == X86::SI || BaseReg == X86::DI) &&
+ IndexReg != X86::BX && IndexReg != X86::BP)) {
+ ErrMsg = "invalid 16-bit base/index register combination";
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+bool X86AsmParser::doSrcDstMatch(X86Operand &Op1, X86Operand &Op2)
+{
+ // Return true and let a normal complaint about bogus operands happen.
+ if (!Op1.isMem() || !Op2.isMem())
+ return true;
+
+ // Actually these might be the other way round if Intel syntax is
+ // being used. It doesn't matter.
+ unsigned diReg = Op1.Mem.BaseReg;
+ unsigned siReg = Op2.Mem.BaseReg;
+
+ if (X86MCRegisterClasses[X86::GR16RegClassID].contains(siReg))
+ return X86MCRegisterClasses[X86::GR16RegClassID].contains(diReg);
+ if (X86MCRegisterClasses[X86::GR32RegClassID].contains(siReg))
+ return X86MCRegisterClasses[X86::GR32RegClassID].contains(diReg);
+ if (X86MCRegisterClasses[X86::GR64RegClassID].contains(siReg))
+ return X86MCRegisterClasses[X86::GR64RegClassID].contains(diReg);
+ // Again, return true and let another error happen.
+ return true;
+}
+
+bool X86AsmParser::ParseRegister(unsigned &RegNo,
+ SMLoc &StartLoc, SMLoc &EndLoc) {
+ MCAsmParser &Parser = getParser();
+ RegNo = 0;
+ const AsmToken &PercentTok = Parser.getTok();
+ StartLoc = PercentTok.getLoc();
+
+ // If we encounter a %, ignore it. This code handles registers with and
+ // without the prefix, unprefixed registers can occur in cfi directives.
+ if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent))
+ Parser.Lex(); // Eat percent token.
+
+ const AsmToken &Tok = Parser.getTok();
+ EndLoc = Tok.getEndLoc();
+
+ if (Tok.isNot(AsmToken::Identifier)) {
+ if (isParsingIntelSyntax()) return true;
+ return Error(StartLoc, "invalid register name",
+ SMRange(StartLoc, EndLoc));
+ }
+
+ RegNo = MatchRegisterName(Tok.getString());
+
+ // If the match failed, try the register name as lowercase.
+ if (RegNo == 0)
+ RegNo = MatchRegisterName(Tok.getString().lower());
+
+ // The "flags" register cannot be referenced directly.
+ // Treat it as an identifier instead.
+ if (isParsingInlineAsm() && isParsingIntelSyntax() && RegNo == X86::EFLAGS)
+ RegNo = 0;
+
+ if (!is64BitMode()) {
+ // FIXME: This should be done using Requires<Not64BitMode> and
+ // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also
+ // checked.
+ // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a
+ // REX prefix.
+ if (RegNo == X86::RIZ ||
+ X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) ||
+ X86II::isX86_64NonExtLowByteReg(RegNo) ||
+ X86II::isX86_64ExtendedReg(RegNo))
+ return Error(StartLoc, "register %"
+ + Tok.getString() + " is only available in 64-bit mode",
+ SMRange(StartLoc, EndLoc));
+ }
+
+ // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens.
+ if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) {
+ RegNo = X86::ST0;
+ Parser.Lex(); // Eat 'st'
+
+ // Check to see if we have '(4)' after %st.
+ if (getLexer().isNot(AsmToken::LParen))
+ return false;
+ // Lex the paren.
+ getParser().Lex();
+
+ const AsmToken &IntTok = Parser.getTok();
+ if (IntTok.isNot(AsmToken::Integer))
+ return Error(IntTok.getLoc(), "expected stack index");
+ switch (IntTok.getIntVal()) {
+ case 0: RegNo = X86::ST0; break;
+ case 1: RegNo = X86::ST1; break;
+ case 2: RegNo = X86::ST2; break;
+ case 3: RegNo = X86::ST3; break;
+ case 4: RegNo = X86::ST4; break;
+ case 5: RegNo = X86::ST5; break;
+ case 6: RegNo = X86::ST6; break;
+ case 7: RegNo = X86::ST7; break;
+ default: return Error(IntTok.getLoc(), "invalid stack index");
+ }
+
+ if (getParser().Lex().isNot(AsmToken::RParen))
+ return Error(Parser.getTok().getLoc(), "expected ')'");
+
+ EndLoc = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat ')'
+ return false;
+ }
+
+ EndLoc = Parser.getTok().getEndLoc();
+
+ // If this is "db[0-7]", match it as an alias
+ // for dr[0-7].
+ if (RegNo == 0 && Tok.getString().size() == 3 &&
+ Tok.getString().startswith("db")) {
+ switch (Tok.getString()[2]) {
+ case '0': RegNo = X86::DR0; break;
+ case '1': RegNo = X86::DR1; break;
+ case '2': RegNo = X86::DR2; break;
+ case '3': RegNo = X86::DR3; break;
+ case '4': RegNo = X86::DR4; break;
+ case '5': RegNo = X86::DR5; break;
+ case '6': RegNo = X86::DR6; break;
+ case '7': RegNo = X86::DR7; break;
+ }
+
+ if (RegNo != 0) {
+ EndLoc = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat it.
+ return false;
+ }
+ }
+
+ if (RegNo == 0) {
+ if (isParsingIntelSyntax()) return true;
+ return Error(StartLoc, "invalid register name",
+ SMRange(StartLoc, EndLoc));
+ }
+
+ Parser.Lex(); // Eat identifier token.
+ return false;
+}
+
+void X86AsmParser::SetFrameRegister(unsigned RegNo) {
+ Instrumentation->SetInitialFrameRegister(RegNo);
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) {
+ unsigned basereg =
+ is64BitMode() ? X86::RSI : (is32BitMode() ? X86::ESI : X86::SI);
+ const MCExpr *Disp = MCConstantExpr::create(0, getContext());
+ return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
+ /*BaseReg=*/basereg, /*IndexReg=*/0, /*Scale=*/1,
+ Loc, Loc, 0);
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) {
+ unsigned basereg =
+ is64BitMode() ? X86::RDI : (is32BitMode() ? X86::EDI : X86::DI);
+ const MCExpr *Disp = MCConstantExpr::create(0, getContext());
+ return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
+ /*BaseReg=*/basereg, /*IndexReg=*/0, /*Scale=*/1,
+ Loc, Loc, 0);
+}
+
+void X86AsmParser::AddDefaultSrcDestOperands(
+ OperandVector& Operands, std::unique_ptr<llvm::MCParsedAsmOperand> &&Src,
+ std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst) {
+ if (isParsingIntelSyntax()) {
+ Operands.push_back(std::move(Dst));
+ Operands.push_back(std::move(Src));
+ }
+ else {
+ Operands.push_back(std::move(Src));
+ Operands.push_back(std::move(Dst));
+ }
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::ParseOperand() {
+ if (isParsingIntelSyntax())
+ return ParseIntelOperand();
+ return ParseATTOperand();
+}
+
+/// getIntelMemOperandSize - Return intel memory operand size.
+static unsigned getIntelMemOperandSize(StringRef OpStr) {
+ unsigned Size = StringSwitch<unsigned>(OpStr)
+ .Cases("BYTE", "byte", 8)
+ .Cases("WORD", "word", 16)
+ .Cases("DWORD", "dword", 32)
+ .Cases("FWORD", "fword", 48)
+ .Cases("QWORD", "qword", 64)
+ .Cases("MMWORD","mmword", 64)
+ .Cases("XWORD", "xword", 80)
+ .Cases("TBYTE", "tbyte", 80)
+ .Cases("XMMWORD", "xmmword", 128)
+ .Cases("YMMWORD", "ymmword", 256)
+ .Cases("ZMMWORD", "zmmword", 512)
+ .Cases("OPAQUE", "opaque", -1U) // needs to be non-zero, but doesn't matter
+ .Default(0);
+ return Size;
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::CreateMemForInlineAsm(
+ unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg,
+ unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier,
+ InlineAsmIdentifierInfo &Info) {
+ // If we found a decl other than a VarDecl, then assume it is a FuncDecl or
+ // some other label reference.
+ if (isa<MCSymbolRefExpr>(Disp) && Info.OpDecl && !Info.IsVarDecl) {
+ // Insert an explicit size if the user didn't have one.
+ if (!Size) {
+ Size = getPointerWidth();
+ InstInfo->AsmRewrites->emplace_back(AOK_SizeDirective, Start,
+ /*Len=*/0, Size);
+ }
+
+ // Create an absolute memory reference in order to match against
+ // instructions taking a PC relative operand.
+ return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size,
+ Identifier, Info.OpDecl);
+ }
+
+ // We either have a direct symbol reference, or an offset from a symbol. The
+ // parser always puts the symbol on the LHS, so look there for size
+ // calculation purposes.
+ const MCBinaryExpr *BinOp = dyn_cast<MCBinaryExpr>(Disp);
+ bool IsSymRef =
+ isa<MCSymbolRefExpr>(BinOp ? BinOp->getLHS() : Disp);
+ if (IsSymRef) {
+ if (!Size) {
+ Size = Info.Type * 8; // Size is in terms of bits in this context.
+ if (Size)
+ InstInfo->AsmRewrites->emplace_back(AOK_SizeDirective, Start,
+ /*Len=*/0, Size);
+ }
+ }
+
+ // When parsing inline assembly we set the base register to a non-zero value
+ // if we don't know the actual value at this time. This is necessary to
+ // get the matching correct in some cases.
+ BaseReg = BaseReg ? BaseReg : 1;
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
+ IndexReg, Scale, Start, End, Size, Identifier,
+ Info.OpDecl);
+}
+
+static void
+RewriteIntelBracExpression(SmallVectorImpl<AsmRewrite> &AsmRewrites,
+ StringRef SymName, int64_t ImmDisp,
+ int64_t FinalImmDisp, SMLoc &BracLoc,
+ SMLoc &StartInBrac, SMLoc &End) {
+ // Remove the '[' and ']' from the IR string.
+ AsmRewrites.emplace_back(AOK_Skip, BracLoc, 1);
+ AsmRewrites.emplace_back(AOK_Skip, End, 1);
+
+ // If ImmDisp is non-zero, then we parsed a displacement before the
+ // bracketed expression (i.e., ImmDisp [ BaseReg + Scale*IndexReg + Disp])
+ // If ImmDisp doesn't match the displacement computed by the state machine
+ // then we have an additional displacement in the bracketed expression.
+ if (ImmDisp != FinalImmDisp) {
+ if (ImmDisp) {
+ // We have an immediate displacement before the bracketed expression.
+ // Adjust this to match the final immediate displacement.
+ bool Found = false;
+ for (AsmRewrite &AR : AsmRewrites) {
+ if (AR.Loc.getPointer() > BracLoc.getPointer())
+ continue;
+ if (AR.Kind == AOK_ImmPrefix || AR.Kind == AOK_Imm) {
+ assert (!Found && "ImmDisp already rewritten.");
+ AR.Kind = AOK_Imm;
+ AR.Len = BracLoc.getPointer() - AR.Loc.getPointer();
+ AR.Val = FinalImmDisp;
+ Found = true;
+ break;
+ }
+ }
+ assert (Found && "Unable to rewrite ImmDisp.");
+ (void)Found;
+ } else {
+ // We have a symbolic and an immediate displacement, but no displacement
+ // before the bracketed expression. Put the immediate displacement
+ // before the bracketed expression.
+ AsmRewrites.emplace_back(AOK_Imm, BracLoc, 0, FinalImmDisp);
+ }
+ }
+ // Remove all the ImmPrefix rewrites within the brackets.
+ for (AsmRewrite &AR : AsmRewrites) {
+ if (AR.Loc.getPointer() < StartInBrac.getPointer())
+ continue;
+ if (AR.Kind == AOK_ImmPrefix)
+ AR.Kind = AOK_Delete;
+ }
+ const char *SymLocPtr = SymName.data();
+ // Skip everything before the symbol.
+ if (unsigned Len = SymLocPtr - StartInBrac.getPointer()) {
+ assert(Len > 0 && "Expected a non-negative length.");
+ AsmRewrites.emplace_back(AOK_Skip, StartInBrac, Len);
+ }
+ // Skip everything after the symbol.
+ if (unsigned Len = End.getPointer() - (SymLocPtr + SymName.size())) {
+ SMLoc Loc = SMLoc::getFromPointer(SymLocPtr + SymName.size());
+ assert(Len > 0 && "Expected a non-negative length.");
+ AsmRewrites.emplace_back(AOK_Skip, Loc, Len);
+ }
+}
+
+bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+
+ AsmToken::TokenKind PrevTK = AsmToken::Error;
+ bool Done = false;
+ while (!Done) {
+ bool UpdateLocLex = true;
+
+ // The period in the dot operator (e.g., [ebx].foo.bar) is parsed as an
+ // identifier. Don't try an parse it as a register.
+ if (Tok.getString().startswith("."))
+ break;
+
+ // If we're parsing an immediate expression, we don't expect a '['.
+ if (SM.getStopOnLBrac() && getLexer().getKind() == AsmToken::LBrac)
+ break;
+
+ AsmToken::TokenKind TK = getLexer().getKind();
+ switch (TK) {
+ default: {
+ if (SM.isValidEndState()) {
+ Done = true;
+ break;
+ }
+ return Error(Tok.getLoc(), "unknown token in expression");
+ }
+ case AsmToken::EndOfStatement: {
+ Done = true;
+ break;
+ }
+ case AsmToken::String:
+ case AsmToken::Identifier: {
+ // This could be a register or a symbolic displacement.
+ unsigned TmpReg;
+ const MCExpr *Val;
+ SMLoc IdentLoc = Tok.getLoc();
+ StringRef Identifier = Tok.getString();
+ if (TK != AsmToken::String && !ParseRegister(TmpReg, IdentLoc, End)) {
+ SM.onRegister(TmpReg);
+ UpdateLocLex = false;
+ break;
+ } else {
+ if (!isParsingInlineAsm()) {
+ if (getParser().parsePrimaryExpr(Val, End))
+ return Error(Tok.getLoc(), "Unexpected identifier!");
+ } else {
+ // This is a dot operator, not an adjacent identifier.
+ if (Identifier.find('.') != StringRef::npos &&
+ PrevTK == AsmToken::RBrac) {
+ return false;
+ } else {
+ InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
+ if (ParseIntelIdentifier(Val, Identifier, Info,
+ /*Unevaluated=*/false, End))
+ return true;
+ }
+ }
+ SM.onIdentifierExpr(Val, Identifier);
+ UpdateLocLex = false;
+ break;
+ }
+ return Error(Tok.getLoc(), "Unexpected identifier!");
+ }
+ case AsmToken::Integer: {
+ StringRef ErrMsg;
+ if (isParsingInlineAsm() && SM.getAddImmPrefix())
+ InstInfo->AsmRewrites->emplace_back(AOK_ImmPrefix, Tok.getLoc());
+ // Look for 'b' or 'f' following an Integer as a directional label
+ SMLoc Loc = getTok().getLoc();
+ int64_t IntVal = getTok().getIntVal();
+ End = consumeToken();
+ UpdateLocLex = false;
+ if (getLexer().getKind() == AsmToken::Identifier) {
+ StringRef IDVal = getTok().getString();
+ if (IDVal == "f" || IDVal == "b") {
+ MCSymbol *Sym =
+ getContext().getDirectionalLocalSymbol(IntVal, IDVal == "b");
+ MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
+ const MCExpr *Val =
+ MCSymbolRefExpr::create(Sym, Variant, getContext());
+ if (IDVal == "b" && Sym->isUndefined())
+ return Error(Loc, "invalid reference to undefined symbol");
+ StringRef Identifier = Sym->getName();
+ SM.onIdentifierExpr(Val, Identifier);
+ End = consumeToken();
+ } else {
+ if (SM.onInteger(IntVal, ErrMsg))
+ return Error(Loc, ErrMsg);
+ }
+ } else {
+ if (SM.onInteger(IntVal, ErrMsg))
+ return Error(Loc, ErrMsg);
+ }
+ break;
+ }
+ case AsmToken::Plus: SM.onPlus(); break;
+ case AsmToken::Minus: SM.onMinus(); break;
+ case AsmToken::Tilde: SM.onNot(); break;
+ case AsmToken::Star: SM.onStar(); break;
+ case AsmToken::Slash: SM.onDivide(); break;
+ case AsmToken::Pipe: SM.onOr(); break;
+ case AsmToken::Caret: SM.onXor(); break;
+ case AsmToken::Amp: SM.onAnd(); break;
+ case AsmToken::LessLess:
+ SM.onLShift(); break;
+ case AsmToken::GreaterGreater:
+ SM.onRShift(); break;
+ case AsmToken::LBrac: SM.onLBrac(); break;
+ case AsmToken::RBrac: SM.onRBrac(); break;
+ case AsmToken::LParen: SM.onLParen(); break;
+ case AsmToken::RParen: SM.onRParen(); break;
+ }
+ if (SM.hadError())
+ return Error(Tok.getLoc(), "unknown token in expression");
+
+ if (!Done && UpdateLocLex)
+ End = consumeToken();
+
+ PrevTK = TK;
+ }
+ return false;
+}
+
+std::unique_ptr<X86Operand>
+X86AsmParser::ParseIntelBracExpression(unsigned SegReg, SMLoc Start,
+ int64_t ImmDisp, unsigned Size) {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc BracLoc = Tok.getLoc(), End = Tok.getEndLoc();
+ if (getLexer().isNot(AsmToken::LBrac))
+ return ErrorOperand(BracLoc, "Expected '[' token!");
+ Parser.Lex(); // Eat '['
+
+ SMLoc StartInBrac = Tok.getLoc();
+ // Parse [ Symbol + ImmDisp ] and [ BaseReg + Scale*IndexReg + ImmDisp ]. We
+ // may have already parsed an immediate displacement before the bracketed
+ // expression.
+ IntelExprStateMachine SM(ImmDisp, /*StopOnLBrac=*/false, /*AddImmPrefix=*/true);
+ if (ParseIntelExpression(SM, End))
+ return nullptr;
+
+ const MCExpr *Disp = nullptr;
+ if (const MCExpr *Sym = SM.getSym()) {
+ // A symbolic displacement.
+ Disp = Sym;
+ if (isParsingInlineAsm())
+ RewriteIntelBracExpression(*InstInfo->AsmRewrites, SM.getSymName(),
+ ImmDisp, SM.getImm(), BracLoc, StartInBrac,
+ End);
+ }
+
+ if (SM.getImm() || !Disp) {
+ const MCExpr *Imm = MCConstantExpr::create(SM.getImm(), getContext());
+ if (Disp)
+ Disp = MCBinaryExpr::createAdd(Disp, Imm, getContext());
+ else
+ Disp = Imm; // An immediate displacement only.
+ }
+
+ // Parse struct field access. Intel requires a dot, but MSVC doesn't. MSVC
+ // will in fact do global lookup the field name inside all global typedefs,
+ // but we don't emulate that.
+ if (Tok.getString().find('.') != StringRef::npos) {
+ const MCExpr *NewDisp;
+ if (ParseIntelDotOperator(Disp, NewDisp))
+ return nullptr;
+
+ End = Tok.getEndLoc();
+ Parser.Lex(); // Eat the field.
+ Disp = NewDisp;
+ }
+
+ int BaseReg = SM.getBaseReg();
+ int IndexReg = SM.getIndexReg();
+ int Scale = SM.getScale();
+ if (!isParsingInlineAsm()) {
+ // handle [-42]
+ if (!BaseReg && !IndexReg) {
+ if (!SegReg)
+ return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size);
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
+ Start, End, Size);
+ }
+ StringRef ErrMsg;
+ if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
+ Error(StartInBrac, ErrMsg);
+ return nullptr;
+ }
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
+ IndexReg, Scale, Start, End, Size);
+ }
+
+ InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo();
+ return CreateMemForInlineAsm(SegReg, Disp, BaseReg, IndexReg, Scale, Start,
+ End, Size, SM.getSymName(), Info);
+}
+
+// Inline assembly may use variable names with namespace alias qualifiers.
+bool X86AsmParser::ParseIntelIdentifier(const MCExpr *&Val,
+ StringRef &Identifier,
+ InlineAsmIdentifierInfo &Info,
+ bool IsUnevaluatedOperand, SMLoc &End) {
+ MCAsmParser &Parser = getParser();
+ assert(isParsingInlineAsm() && "Expected to be parsing inline assembly.");
+ Val = nullptr;
+
+ StringRef LineBuf(Identifier.data());
+ void *Result =
+ SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand);
+
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc Loc = Tok.getLoc();
+
+ // Advance the token stream until the end of the current token is
+ // after the end of what the frontend claimed.
+ const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size();
+ do {
+ End = Tok.getEndLoc();
+ getLexer().Lex();
+ } while (End.getPointer() < EndPtr);
+ Identifier = LineBuf;
+
+ // The frontend should end parsing on an assembler token boundary, unless it
+ // failed parsing.
+ assert((End.getPointer() == EndPtr || !Result) &&
+ "frontend claimed part of a token?");
+
+ // If the identifier lookup was unsuccessful, assume that we are dealing with
+ // a label.
+ if (!Result) {
+ StringRef InternalName =
+ SemaCallback->LookupInlineAsmLabel(Identifier, getSourceManager(),
+ Loc, false);
+ assert(InternalName.size() && "We should have an internal name here.");
+ // Push a rewrite for replacing the identifier name with the internal name.
+ InstInfo->AsmRewrites->emplace_back(AOK_Label, Loc, Identifier.size(),
+ InternalName);
+ }
+
+ // Create the symbol reference.
+ MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
+ MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
+ Val = MCSymbolRefExpr::create(Sym, Variant, getParser().getContext());
+ return false;
+}
+
+/// \brief Parse intel style segment override.
+std::unique_ptr<X86Operand>
+X86AsmParser::ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start,
+ unsigned Size) {
+ MCAsmParser &Parser = getParser();
+ assert(SegReg != 0 && "Tried to parse a segment override without a segment!");
+ const AsmToken &Tok = Parser.getTok(); // Eat colon.
+ if (Tok.isNot(AsmToken::Colon))
+ return ErrorOperand(Tok.getLoc(), "Expected ':' token!");
+ Parser.Lex(); // Eat ':'
+
+ int64_t ImmDisp = 0;
+ if (getLexer().is(AsmToken::Integer)) {
+ ImmDisp = Tok.getIntVal();
+ AsmToken ImmDispToken = Parser.Lex(); // Eat the integer.
+
+ if (isParsingInlineAsm())
+ InstInfo->AsmRewrites->emplace_back(AOK_ImmPrefix, ImmDispToken.getLoc());
+
+ if (getLexer().isNot(AsmToken::LBrac)) {
+ // An immediate following a 'segment register', 'colon' token sequence can
+ // be followed by a bracketed expression. If it isn't we know we have our
+ // final segment override.
+ const MCExpr *Disp = MCConstantExpr::create(ImmDisp, getContext());
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp,
+ /*BaseReg=*/0, /*IndexReg=*/0, /*Scale=*/1,
+ Start, ImmDispToken.getEndLoc(), Size);
+ }
+ }
+
+ if (getLexer().is(AsmToken::LBrac))
+ return ParseIntelBracExpression(SegReg, Start, ImmDisp, Size);
+
+ const MCExpr *Val;
+ SMLoc End;
+ if (!isParsingInlineAsm()) {
+ if (getParser().parsePrimaryExpr(Val, End))
+ return ErrorOperand(Tok.getLoc(), "unknown token in expression");
+
+ return X86Operand::CreateMem(getPointerWidth(), Val, Start, End, Size);
+ }
+
+ InlineAsmIdentifierInfo Info;
+ StringRef Identifier = Tok.getString();
+ if (ParseIntelIdentifier(Val, Identifier, Info,
+ /*Unevaluated=*/false, End))
+ return nullptr;
+ return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0,/*IndexReg=*/0,
+ /*Scale=*/1, Start, End, Size, Identifier, Info);
+}
+
+//ParseRoundingModeOp - Parse AVX-512 rounding mode operand
+std::unique_ptr<X86Operand>
+X86AsmParser::ParseRoundingModeOp(SMLoc Start, SMLoc End) {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+ // Eat "{" and mark the current place.
+ const SMLoc consumedToken = consumeToken();
+ if (Tok.getIdentifier().startswith("r")){
+ int rndMode = StringSwitch<int>(Tok.getIdentifier())
+ .Case("rn", X86::STATIC_ROUNDING::TO_NEAREST_INT)
+ .Case("rd", X86::STATIC_ROUNDING::TO_NEG_INF)
+ .Case("ru", X86::STATIC_ROUNDING::TO_POS_INF)
+ .Case("rz", X86::STATIC_ROUNDING::TO_ZERO)
+ .Default(-1);
+ if (-1 == rndMode)
+ return ErrorOperand(Tok.getLoc(), "Invalid rounding mode.");
+ Parser.Lex(); // Eat "r*" of r*-sae
+ if (!getLexer().is(AsmToken::Minus))
+ return ErrorOperand(Tok.getLoc(), "Expected - at this point");
+ Parser.Lex(); // Eat "-"
+ Parser.Lex(); // Eat the sae
+ if (!getLexer().is(AsmToken::RCurly))
+ return ErrorOperand(Tok.getLoc(), "Expected } at this point");
+ Parser.Lex(); // Eat "}"
+ const MCExpr *RndModeOp =
+ MCConstantExpr::create(rndMode, Parser.getContext());
+ return X86Operand::CreateImm(RndModeOp, Start, End);
+ }
+ if(Tok.getIdentifier().equals("sae")){
+ Parser.Lex(); // Eat the sae
+ if (!getLexer().is(AsmToken::RCurly))
+ return ErrorOperand(Tok.getLoc(), "Expected } at this point");
+ Parser.Lex(); // Eat "}"
+ return X86Operand::CreateToken("{sae}", consumedToken);
+ }
+ return ErrorOperand(Tok.getLoc(), "unknown token in expression");
+}
+/// ParseIntelMemOperand - Parse intel style memory operand.
+std::unique_ptr<X86Operand> X86AsmParser::ParseIntelMemOperand(int64_t ImmDisp,
+ SMLoc Start,
+ unsigned Size) {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc End;
+
+ // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
+ if (getLexer().is(AsmToken::LBrac))
+ return ParseIntelBracExpression(/*SegReg=*/0, Start, ImmDisp, Size);
+ assert(ImmDisp == 0);
+
+ const MCExpr *Val;
+ if (!isParsingInlineAsm()) {
+ if (getParser().parsePrimaryExpr(Val, End))
+ return ErrorOperand(Tok.getLoc(), "unknown token in expression");
+
+ return X86Operand::CreateMem(getPointerWidth(), Val, Start, End, Size);
+ }
+
+ InlineAsmIdentifierInfo Info;
+ StringRef Identifier = Tok.getString();
+ if (ParseIntelIdentifier(Val, Identifier, Info,
+ /*Unevaluated=*/false, End))
+ return nullptr;
+
+ if (!getLexer().is(AsmToken::LBrac))
+ return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0, /*IndexReg=*/0,
+ /*Scale=*/1, Start, End, Size, Identifier, Info);
+
+ Parser.Lex(); // Eat '['
+
+ // Parse Identifier [ ImmDisp ]
+ IntelExprStateMachine SM(/*ImmDisp=*/0, /*StopOnLBrac=*/true,
+ /*AddImmPrefix=*/false);
+ if (ParseIntelExpression(SM, End))
+ return nullptr;
+
+ if (SM.getSym()) {
+ Error(Start, "cannot use more than one symbol in memory operand");
+ return nullptr;
+ }
+ if (SM.getBaseReg()) {
+ Error(Start, "cannot use base register with variable reference");
+ return nullptr;
+ }
+ if (SM.getIndexReg()) {
+ Error(Start, "cannot use index register with variable reference");
+ return nullptr;
+ }
+
+ const MCExpr *Disp = MCConstantExpr::create(SM.getImm(), getContext());
+ // BaseReg is non-zero to avoid assertions. In the context of inline asm,
+ // we're pointing to a local variable in memory, so the base register is
+ // really the frame or stack pointer.
+ return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp,
+ /*BaseReg=*/1, /*IndexReg=*/0, /*Scale=*/1,
+ Start, End, Size, Identifier, Info.OpDecl);
+}
+
+/// Parse the '.' operator.
+bool X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp,
+ const MCExpr *&NewDisp) {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+ int64_t OrigDispVal, DotDispVal;
+
+ // FIXME: Handle non-constant expressions.
+ if (const MCConstantExpr *OrigDisp = dyn_cast<MCConstantExpr>(Disp))
+ OrigDispVal = OrigDisp->getValue();
+ else
+ return Error(Tok.getLoc(), "Non-constant offsets are not supported!");
+
+ // Drop the optional '.'.
+ StringRef DotDispStr = Tok.getString();
+ if (DotDispStr.startswith("."))
+ DotDispStr = DotDispStr.drop_front(1);
+
+ // .Imm gets lexed as a real.
+ if (Tok.is(AsmToken::Real)) {
+ APInt DotDisp;
+ DotDispStr.getAsInteger(10, DotDisp);
+ DotDispVal = DotDisp.getZExtValue();
+ } else if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
+ unsigned DotDisp;
+ std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.');
+ if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second,
+ DotDisp))
+ return Error(Tok.getLoc(), "Unable to lookup field reference!");
+ DotDispVal = DotDisp;
+ } else
+ return Error(Tok.getLoc(), "Unexpected token type!");
+
+ if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) {
+ SMLoc Loc = SMLoc::getFromPointer(DotDispStr.data());
+ unsigned Len = DotDispStr.size();
+ unsigned Val = OrigDispVal + DotDispVal;
+ InstInfo->AsmRewrites->emplace_back(AOK_DotOperator, Loc, Len, Val);
+ }
+
+ NewDisp = MCConstantExpr::create(OrigDispVal + DotDispVal, getContext());
+ return false;
+}
+
+/// Parse the 'offset' operator. This operator is used to specify the
+/// location rather then the content of a variable.
+std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOffsetOfOperator() {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc OffsetOfLoc = Tok.getLoc();
+ Parser.Lex(); // Eat offset.
+
+ const MCExpr *Val;
+ InlineAsmIdentifierInfo Info;
+ SMLoc Start = Tok.getLoc(), End;
+ StringRef Identifier = Tok.getString();
+ if (ParseIntelIdentifier(Val, Identifier, Info,
+ /*Unevaluated=*/false, End))
+ return nullptr;
+
+ // Don't emit the offset operator.
+ InstInfo->AsmRewrites->emplace_back(AOK_Skip, OffsetOfLoc, 7);
+
+ // The offset operator will have an 'r' constraint, thus we need to create
+ // register operand to ensure proper matching. Just pick a GPR based on
+ // the size of a pointer.
+ unsigned RegNo =
+ is64BitMode() ? X86::RBX : (is32BitMode() ? X86::EBX : X86::BX);
+ return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true,
+ OffsetOfLoc, Identifier, Info.OpDecl);
+}
+
+enum IntelOperatorKind {
+ IOK_LENGTH,
+ IOK_SIZE,
+ IOK_TYPE
+};
+
+/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators. The LENGTH operator
+/// returns the number of elements in an array. It returns the value 1 for
+/// non-array variables. The SIZE operator returns the size of a C or C++
+/// variable. A variable's size is the product of its LENGTH and TYPE. The
+/// TYPE operator returns the size of a C or C++ type or variable. If the
+/// variable is an array, TYPE returns the size of a single element.
+std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperator(unsigned OpKind) {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc TypeLoc = Tok.getLoc();
+ Parser.Lex(); // Eat operator.
+
+ const MCExpr *Val = nullptr;
+ InlineAsmIdentifierInfo Info;
+ SMLoc Start = Tok.getLoc(), End;
+ StringRef Identifier = Tok.getString();
+ if (ParseIntelIdentifier(Val, Identifier, Info,
+ /*Unevaluated=*/true, End))
+ return nullptr;
+
+ if (!Info.OpDecl)
+ return ErrorOperand(Start, "unable to lookup expression");
+
+ unsigned CVal = 0;
+ switch(OpKind) {
+ default: llvm_unreachable("Unexpected operand kind!");
+ case IOK_LENGTH: CVal = Info.Length; break;
+ case IOK_SIZE: CVal = Info.Size; break;
+ case IOK_TYPE: CVal = Info.Type; break;
+ }
+
+ // Rewrite the type operator and the C or C++ type or variable in terms of an
+ // immediate. E.g. TYPE foo -> $$4
+ unsigned Len = End.getPointer() - TypeLoc.getPointer();
+ InstInfo->AsmRewrites->emplace_back(AOK_Imm, TypeLoc, Len, CVal);
+
+ const MCExpr *Imm = MCConstantExpr::create(CVal, getContext());
+ return X86Operand::CreateImm(Imm, Start, End);
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() {
+ MCAsmParser &Parser = getParser();
+ const AsmToken &Tok = Parser.getTok();
+ SMLoc Start, End;
+
+ // Offset, length, type and size operators.
+ if (isParsingInlineAsm()) {
+ StringRef AsmTokStr = Tok.getString();
+ if (AsmTokStr == "offset" || AsmTokStr == "OFFSET")
+ return ParseIntelOffsetOfOperator();
+ if (AsmTokStr == "length" || AsmTokStr == "LENGTH")
+ return ParseIntelOperator(IOK_LENGTH);
+ if (AsmTokStr == "size" || AsmTokStr == "SIZE")
+ return ParseIntelOperator(IOK_SIZE);
+ if (AsmTokStr == "type" || AsmTokStr == "TYPE")
+ return ParseIntelOperator(IOK_TYPE);
+ }
+
+ bool PtrInOperand = false;
+ unsigned Size = getIntelMemOperandSize(Tok.getString());
+ if (Size) {
+ Parser.Lex(); // Eat operand size (e.g., byte, word).
+ if (Tok.getString() != "PTR" && Tok.getString() != "ptr")
+ return ErrorOperand(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!");
+ Parser.Lex(); // Eat ptr.
+ PtrInOperand = true;
+ }
+ Start = Tok.getLoc();
+
+ // Immediate.
+ if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Minus) ||
+ getLexer().is(AsmToken::Tilde) || getLexer().is(AsmToken::LParen)) {
+ AsmToken StartTok = Tok;
+ IntelExprStateMachine SM(/*Imm=*/0, /*StopOnLBrac=*/true,
+ /*AddImmPrefix=*/false);
+ if (ParseIntelExpression(SM, End))
+ return nullptr;
+
+ int64_t Imm = SM.getImm();
+ if (isParsingInlineAsm()) {
+ unsigned Len = Tok.getLoc().getPointer() - Start.getPointer();
+ if (StartTok.getString().size() == Len)
+ // Just add a prefix if this wasn't a complex immediate expression.
+ InstInfo->AsmRewrites->emplace_back(AOK_ImmPrefix, Start);
+ else
+ // Otherwise, rewrite the complex expression as a single immediate.
+ InstInfo->AsmRewrites->emplace_back(AOK_Imm, Start, Len, Imm);
+ }
+
+ if (getLexer().isNot(AsmToken::LBrac)) {
+ // If a directional label (ie. 1f or 2b) was parsed above from
+ // ParseIntelExpression() then SM.getSym() was set to a pointer to
+ // to the MCExpr with the directional local symbol and this is a
+ // memory operand not an immediate operand.
+ if (SM.getSym())
+ return X86Operand::CreateMem(getPointerWidth(), SM.getSym(), Start, End,
+ Size);
+
+ const MCExpr *ImmExpr = MCConstantExpr::create(Imm, getContext());
+ return X86Operand::CreateImm(ImmExpr, Start, End);
+ }
+
+ // Only positive immediates are valid.
+ if (Imm < 0)
+ return ErrorOperand(Start, "expected a positive immediate displacement "
+ "before bracketed expr.");
+
+ // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ].
+ return ParseIntelMemOperand(Imm, Start, Size);
+ }
+
+ // rounding mode token
+ if (getSTI().getFeatureBits()[X86::FeatureAVX512] &&
+ getLexer().is(AsmToken::LCurly))
+ return ParseRoundingModeOp(Start, End);
+
+ // Register.
+ unsigned RegNo = 0;
+ if (!ParseRegister(RegNo, Start, End)) {
+ // If this is a segment register followed by a ':', then this is the start
+ // of a segment override, otherwise this is a normal register reference.
+ // In case it is a normal register and there is ptr in the operand this
+ // is an error
+ if (getLexer().isNot(AsmToken::Colon)){
+ if (PtrInOperand){
+ return ErrorOperand(Start, "expected memory operand after "
+ "'ptr', found register operand instead");
+ }
+ return X86Operand::CreateReg(RegNo, Start, End);
+ }
+
+ return ParseIntelSegmentOverride(/*SegReg=*/RegNo, Start, Size);
+ }
+
+ // Memory operand.
+ return ParseIntelMemOperand(/*Disp=*/0, Start, Size);
+}
+
+std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() {
+ MCAsmParser &Parser = getParser();
+ switch (getLexer().getKind()) {
+ default:
+ // Parse a memory operand with no segment register.
+ return ParseMemOperand(0, Parser.getTok().getLoc());
+ case AsmToken::Percent: {
+ // Read the register.
+ unsigned RegNo;
+ SMLoc Start, End;
+ if (ParseRegister(RegNo, Start, End)) return nullptr;
+ if (RegNo == X86::EIZ || RegNo == X86::RIZ) {
+ Error(Start, "%eiz and %riz can only be used as index registers",
+ SMRange(Start, End));
+ return nullptr;
+ }
+
+ // If this is a segment register followed by a ':', then this is the start
+ // of a memory reference, otherwise this is a normal register reference.
+ if (getLexer().isNot(AsmToken::Colon))
+ return X86Operand::CreateReg(RegNo, Start, End);
+
+ if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo))
+ return ErrorOperand(Start, "invalid segment register");
+
+ getParser().Lex(); // Eat the colon.
+ return ParseMemOperand(RegNo, Start);
+ }
+ case AsmToken::Dollar: {
+ // $42 -> immediate.
+ SMLoc Start = Parser.getTok().getLoc(), End;
+ Parser.Lex();
+ const MCExpr *Val;
+ if (getParser().parseExpression(Val, End))
+ return nullptr;
+ return X86Operand::CreateImm(Val, Start, End);
+ }
+ case AsmToken::LCurly:{
+ SMLoc Start = Parser.getTok().getLoc(), End;
+ if (getSTI().getFeatureBits()[X86::FeatureAVX512])
+ return ParseRoundingModeOp(Start, End);
+ return ErrorOperand(Start, "unknown token in expression");
+ }
+ }
+}
+
+bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands,
+ const MCParsedAsmOperand &Op) {
+ MCAsmParser &Parser = getParser();
+ if(getSTI().getFeatureBits()[X86::FeatureAVX512]) {
+ if (getLexer().is(AsmToken::LCurly)) {
+ // Eat "{" and mark the current place.
+ const SMLoc consumedToken = consumeToken();
+ // Distinguish {1to<NUM>} from {%k<NUM>}.
+ if(getLexer().is(AsmToken::Integer)) {
+ // Parse memory broadcasting ({1to<NUM>}).
+ if (getLexer().getTok().getIntVal() != 1)
+ return !ErrorAndEatStatement(getLexer().getLoc(),
+ "Expected 1to<NUM> at this point");
+ Parser.Lex(); // Eat "1" of 1to8
+ if (!getLexer().is(AsmToken::Identifier) ||
+ !getLexer().getTok().getIdentifier().startswith("to"))
+ return !ErrorAndEatStatement(getLexer().getLoc(),
+ "Expected 1to<NUM> at this point");
+ // Recognize only reasonable suffixes.
+ const char *BroadcastPrimitive =
+ StringSwitch<const char*>(getLexer().getTok().getIdentifier())
+ .Case("to2", "{1to2}")
+ .Case("to4", "{1to4}")
+ .Case("to8", "{1to8}")
+ .Case("to16", "{1to16}")
+ .Default(nullptr);
+ if (!BroadcastPrimitive)
+ return !ErrorAndEatStatement(getLexer().getLoc(),
+ "Invalid memory broadcast primitive.");
+ Parser.Lex(); // Eat "toN" of 1toN
+ if (!getLexer().is(AsmToken::RCurly))
+ return !ErrorAndEatStatement(getLexer().getLoc(),
+ "Expected } at this point");
+ Parser.Lex(); // Eat "}"
+ Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive,
+ consumedToken));
+ // No AVX512 specific primitives can pass
+ // after memory broadcasting, so return.
+ return true;
+ } else {
+ // Parse mask register {%k1}
+ Operands.push_back(X86Operand::CreateToken("{", consumedToken));
+ if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
+ Operands.push_back(std::move(Op));
+ if (!getLexer().is(AsmToken::RCurly))
+ return !ErrorAndEatStatement(getLexer().getLoc(),
+ "Expected } at this point");
+ Operands.push_back(X86Operand::CreateToken("}", consumeToken()));
+
+ // Parse "zeroing non-masked" semantic {z}
+ if (getLexer().is(AsmToken::LCurly)) {
+ Operands.push_back(X86Operand::CreateToken("{z}", consumeToken()));
+ if (!getLexer().is(AsmToken::Identifier) ||
+ getLexer().getTok().getIdentifier() != "z")
+ return !ErrorAndEatStatement(getLexer().getLoc(),
+ "Expected z at this point");
+ Parser.Lex(); // Eat the z
+ if (!getLexer().is(AsmToken::RCurly))
+ return !ErrorAndEatStatement(getLexer().getLoc(),
+ "Expected } at this point");
+ Parser.Lex(); // Eat the }
+ }
+ }
+ }
+ }
+ }
+ return true;
+}
+
+/// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix
+/// has already been parsed if present.
+std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg,
+ SMLoc MemStart) {
+
+ MCAsmParser &Parser = getParser();
+ // We have to disambiguate a parenthesized expression "(4+5)" from the start
+ // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The
+ // only way to do this without lookahead is to eat the '(' and see what is
+ // after it.
+ const MCExpr *Disp = MCConstantExpr::create(0, getParser().getContext());
+ if (getLexer().isNot(AsmToken::LParen)) {
+ SMLoc ExprEnd;
+ if (getParser().parseExpression(Disp, ExprEnd)) return nullptr;
+
+ // After parsing the base expression we could either have a parenthesized
+ // memory address or not. If not, return now. If so, eat the (.
+ if (getLexer().isNot(AsmToken::LParen)) {
+ // Unless we have a segment register, treat this as an immediate.
+ if (SegReg == 0)
+ return X86Operand::CreateMem(getPointerWidth(), Disp, MemStart, ExprEnd);
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
+ MemStart, ExprEnd);
+ }
+
+ // Eat the '('.
+ Parser.Lex();
+ } else {
+ // Okay, we have a '('. We don't know if this is an expression or not, but
+ // so we have to eat the ( to see beyond it.
+ SMLoc LParenLoc = Parser.getTok().getLoc();
+ Parser.Lex(); // Eat the '('.
+
+ if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) {
+ // Nothing to do here, fall into the code below with the '(' part of the
+ // memory operand consumed.
+ } else {
+ SMLoc ExprEnd;
+
+ // It must be an parenthesized expression, parse it now.
+ if (getParser().parseParenExpression(Disp, ExprEnd))
+ return nullptr;
+
+ // After parsing the base expression we could either have a parenthesized
+ // memory address or not. If not, return now. If so, eat the (.
+ if (getLexer().isNot(AsmToken::LParen)) {
+ // Unless we have a segment register, treat this as an immediate.
+ if (SegReg == 0)
+ return X86Operand::CreateMem(getPointerWidth(), Disp, LParenLoc,
+ ExprEnd);
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1,
+ MemStart, ExprEnd);
+ }
+
+ // Eat the '('.
+ Parser.Lex();
+ }
+ }
+
+ // If we reached here, then we just ate the ( of the memory operand. Process
+ // the rest of the memory operand.
+ unsigned BaseReg = 0, IndexReg = 0, Scale = 1;
+ SMLoc IndexLoc, BaseLoc;
+
+ if (getLexer().is(AsmToken::Percent)) {
+ SMLoc StartLoc, EndLoc;
+ BaseLoc = Parser.getTok().getLoc();
+ if (ParseRegister(BaseReg, StartLoc, EndLoc)) return nullptr;
+ if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) {
+ Error(StartLoc, "eiz and riz can only be used as index registers",
+ SMRange(StartLoc, EndLoc));
+ return nullptr;
+ }
+ }
+
+ if (getLexer().is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the comma.
+ IndexLoc = Parser.getTok().getLoc();
+
+ // Following the comma we should have either an index register, or a scale
+ // value. We don't support the later form, but we want to parse it
+ // correctly.
+ //
+ // Not that even though it would be completely consistent to support syntax
+ // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this.
+ if (getLexer().is(AsmToken::Percent)) {
+ SMLoc L;
+ if (ParseRegister(IndexReg, L, L)) return nullptr;
+
+ if (getLexer().isNot(AsmToken::RParen)) {
+ // Parse the scale amount:
+ // ::= ',' [scale-expression]
+ if (getLexer().isNot(AsmToken::Comma)) {
+ Error(Parser.getTok().getLoc(),
+ "expected comma in scale expression");
+ return nullptr;
+ }
+ Parser.Lex(); // Eat the comma.
+
+ if (getLexer().isNot(AsmToken::RParen)) {
+ SMLoc Loc = Parser.getTok().getLoc();
+
+ int64_t ScaleVal;
+ if (getParser().parseAbsoluteExpression(ScaleVal)){
+ Error(Loc, "expected scale expression");
+ return nullptr;
+ }
+
+ // Validate the scale amount.
+ if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
+ ScaleVal != 1) {
+ Error(Loc, "scale factor in 16-bit address must be 1");
+ return nullptr;
+ }
+ if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 &&
+ ScaleVal != 8) {
+ Error(Loc, "scale factor in address must be 1, 2, 4 or 8");
+ return nullptr;
+ }
+ Scale = (unsigned)ScaleVal;
+ }
+ }
+ } else if (getLexer().isNot(AsmToken::RParen)) {
+ // A scale amount without an index is ignored.
+ // index.
+ SMLoc Loc = Parser.getTok().getLoc();
+
+ int64_t Value;
+ if (getParser().parseAbsoluteExpression(Value))
+ return nullptr;
+
+ if (Value != 1)
+ Warning(Loc, "scale factor without index register is ignored");
+ Scale = 1;
+ }
+ }
+
+ // Ok, we've eaten the memory operand, verify we have a ')' and eat it too.
+ if (getLexer().isNot(AsmToken::RParen)) {
+ Error(Parser.getTok().getLoc(), "unexpected token in memory operand");
+ return nullptr;
+ }
+ SMLoc MemEnd = Parser.getTok().getEndLoc();
+ Parser.Lex(); // Eat the ')'.
+
+ // Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed,
+ // and then only in non-64-bit modes. Except for DX, which is a special case
+ // because an unofficial form of in/out instructions uses it.
+ if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) &&
+ (is64BitMode() || (BaseReg != X86::BX && BaseReg != X86::BP &&
+ BaseReg != X86::SI && BaseReg != X86::DI)) &&
+ BaseReg != X86::DX) {
+ Error(BaseLoc, "invalid 16-bit base register");
+ return nullptr;
+ }
+ if (BaseReg == 0 &&
+ X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) {
+ Error(IndexLoc, "16-bit memory operand may not include only index register");
+ return nullptr;
+ }
+
+ StringRef ErrMsg;
+ if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) {
+ Error(BaseLoc, ErrMsg);
+ return nullptr;
+ }
+
+ if (SegReg || BaseReg || IndexReg)
+ return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg,
+ IndexReg, Scale, MemStart, MemEnd);
+ return X86Operand::CreateMem(getPointerWidth(), Disp, MemStart, MemEnd);
+}
+
+bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ InstInfo = &Info;
+ StringRef PatchedName = Name;
+
+ // FIXME: Hack to recognize setneb as setne.
+ if (PatchedName.startswith("set") && PatchedName.endswith("b") &&
+ PatchedName != "setb" && PatchedName != "setnb")
+ PatchedName = PatchedName.substr(0, Name.size()-1);
+
+ // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}.
+ if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) &&
+ (PatchedName.endswith("ss") || PatchedName.endswith("sd") ||
+ PatchedName.endswith("ps") || PatchedName.endswith("pd"))) {
+ bool IsVCMP = PatchedName[0] == 'v';
+ unsigned CCIdx = IsVCMP ? 4 : 3;
+ unsigned ComparisonCode = StringSwitch<unsigned>(
+ PatchedName.slice(CCIdx, PatchedName.size() - 2))
+ .Case("eq", 0x00)
+ .Case("lt", 0x01)
+ .Case("le", 0x02)
+ .Case("unord", 0x03)
+ .Case("neq", 0x04)
+ .Case("nlt", 0x05)
+ .Case("nle", 0x06)
+ .Case("ord", 0x07)
+ /* AVX only from here */
+ .Case("eq_uq", 0x08)
+ .Case("nge", 0x09)
+ .Case("ngt", 0x0A)
+ .Case("false", 0x0B)
+ .Case("neq_oq", 0x0C)
+ .Case("ge", 0x0D)
+ .Case("gt", 0x0E)
+ .Case("true", 0x0F)
+ .Case("eq_os", 0x10)
+ .Case("lt_oq", 0x11)
+ .Case("le_oq", 0x12)
+ .Case("unord_s", 0x13)
+ .Case("neq_us", 0x14)
+ .Case("nlt_uq", 0x15)
+ .Case("nle_uq", 0x16)
+ .Case("ord_s", 0x17)
+ .Case("eq_us", 0x18)
+ .Case("nge_uq", 0x19)
+ .Case("ngt_uq", 0x1A)
+ .Case("false_os", 0x1B)
+ .Case("neq_os", 0x1C)
+ .Case("ge_oq", 0x1D)
+ .Case("gt_oq", 0x1E)
+ .Case("true_us", 0x1F)
+ .Default(~0U);
+ if (ComparisonCode != ~0U && (IsVCMP || ComparisonCode < 8)) {
+
+ Operands.push_back(X86Operand::CreateToken(PatchedName.slice(0, CCIdx),
+ NameLoc));
+
+ const MCExpr *ImmOp = MCConstantExpr::create(ComparisonCode,
+ getParser().getContext());
+ Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
+
+ PatchedName = PatchedName.substr(PatchedName.size() - 2);
+ }
+ }
+
+ // FIXME: Hack to recognize vpcmp<comparison code>{ub,uw,ud,uq,b,w,d,q}.
+ if (PatchedName.startswith("vpcmp") &&
+ (PatchedName.endswith("b") || PatchedName.endswith("w") ||
+ PatchedName.endswith("d") || PatchedName.endswith("q"))) {
+ unsigned CCIdx = PatchedName.drop_back().back() == 'u' ? 2 : 1;
+ unsigned ComparisonCode = StringSwitch<unsigned>(
+ PatchedName.slice(5, PatchedName.size() - CCIdx))
+ .Case("eq", 0x0) // Only allowed on unsigned. Checked below.
+ .Case("lt", 0x1)
+ .Case("le", 0x2)
+ //.Case("false", 0x3) // Not a documented alias.
+ .Case("neq", 0x4)
+ .Case("nlt", 0x5)
+ .Case("nle", 0x6)
+ //.Case("true", 0x7) // Not a documented alias.
+ .Default(~0U);
+ if (ComparisonCode != ~0U && (ComparisonCode != 0 || CCIdx == 2)) {
+ Operands.push_back(X86Operand::CreateToken("vpcmp", NameLoc));
+
+ const MCExpr *ImmOp = MCConstantExpr::create(ComparisonCode,
+ getParser().getContext());
+ Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
+
+ PatchedName = PatchedName.substr(PatchedName.size() - CCIdx);
+ }
+ }
+
+ // FIXME: Hack to recognize vpcom<comparison code>{ub,uw,ud,uq,b,w,d,q}.
+ if (PatchedName.startswith("vpcom") &&
+ (PatchedName.endswith("b") || PatchedName.endswith("w") ||
+ PatchedName.endswith("d") || PatchedName.endswith("q"))) {
+ unsigned CCIdx = PatchedName.drop_back().back() == 'u' ? 2 : 1;
+ unsigned ComparisonCode = StringSwitch<unsigned>(
+ PatchedName.slice(5, PatchedName.size() - CCIdx))
+ .Case("lt", 0x0)
+ .Case("le", 0x1)
+ .Case("gt", 0x2)
+ .Case("ge", 0x3)
+ .Case("eq", 0x4)
+ .Case("neq", 0x5)
+ .Case("false", 0x6)
+ .Case("true", 0x7)
+ .Default(~0U);
+ if (ComparisonCode != ~0U) {
+ Operands.push_back(X86Operand::CreateToken("vpcom", NameLoc));
+
+ const MCExpr *ImmOp = MCConstantExpr::create(ComparisonCode,
+ getParser().getContext());
+ Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc));
+
+ PatchedName = PatchedName.substr(PatchedName.size() - CCIdx);
+ }
+ }
+
+ Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc));
+
+ // Determine whether this is an instruction prefix.
+ bool isPrefix =
+ Name == "lock" || Name == "rep" ||
+ Name == "repe" || Name == "repz" ||
+ Name == "repne" || Name == "repnz" ||
+ Name == "rex64" || Name == "data16";
+
+ // This does the actual operand parsing. Don't parse any more if we have a
+ // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we
+ // just want to parse the "lock" as the first instruction and the "incl" as
+ // the next one.
+ if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) {
+
+ // Parse '*' modifier.
+ if (getLexer().is(AsmToken::Star))
+ Operands.push_back(X86Operand::CreateToken("*", consumeToken()));
+
+ // Read the operands.
+ while(1) {
+ if (std::unique_ptr<X86Operand> Op = ParseOperand()) {
+ Operands.push_back(std::move(Op));
+ if (!HandleAVX512Operand(Operands, *Operands.back()))
+ return true;
+ } else {
+ Parser.eatToEndOfStatement();
+ return true;
+ }
+ // check for comma and eat it
+ if (getLexer().is(AsmToken::Comma))
+ Parser.Lex();
+ else
+ break;
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return ErrorAndEatStatement(getLexer().getLoc(),
+ "unexpected token in argument list");
+ }
+
+ // Consume the EndOfStatement or the prefix separator Slash
+ if (getLexer().is(AsmToken::EndOfStatement) ||
+ (isPrefix && getLexer().is(AsmToken::Slash)))
+ Parser.Lex();
+
+ // This is for gas compatibility and cannot be done in td.
+ // Adding "p" for some floating point with no argument.
+ // For example: fsub --> fsubp
+ bool IsFp =
+ Name == "fsub" || Name == "fdiv" || Name == "fsubr" || Name == "fdivr";
+ if (IsFp && Operands.size() == 1) {
+ const char *Repl = StringSwitch<const char *>(Name)
+ .Case("fsub", "fsubp")
+ .Case("fdiv", "fdivp")
+ .Case("fsubr", "fsubrp")
+ .Case("fdivr", "fdivrp");
+ static_cast<X86Operand &>(*Operands[0]).setTokenValue(Repl);
+ }
+
+ // This is a terrible hack to handle "out[bwl]? %al, (%dx)" ->
+ // "outb %al, %dx". Out doesn't take a memory form, but this is a widely
+ // documented form in various unofficial manuals, so a lot of code uses it.
+ if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") &&
+ Operands.size() == 3) {
+ X86Operand &Op = (X86Operand &)*Operands.back();
+ if (Op.isMem() && Op.Mem.SegReg == 0 &&
+ isa<MCConstantExpr>(Op.Mem.Disp) &&
+ cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
+ Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
+ SMLoc Loc = Op.getEndLoc();
+ Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
+ }
+ }
+ // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al".
+ if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") &&
+ Operands.size() == 3) {
+ X86Operand &Op = (X86Operand &)*Operands[1];
+ if (Op.isMem() && Op.Mem.SegReg == 0 &&
+ isa<MCConstantExpr>(Op.Mem.Disp) &&
+ cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 &&
+ Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) {
+ SMLoc Loc = Op.getEndLoc();
+ Operands[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc);
+ }
+ }
+
+ // Append default arguments to "ins[bwld]"
+ if (Name.startswith("ins") && Operands.size() == 1 &&
+ (Name == "insb" || Name == "insw" || Name == "insl" || Name == "insd")) {
+ AddDefaultSrcDestOperands(Operands,
+ X86Operand::CreateReg(X86::DX, NameLoc, NameLoc),
+ DefaultMemDIOperand(NameLoc));
+ }
+
+ // Append default arguments to "outs[bwld]"
+ if (Name.startswith("outs") && Operands.size() == 1 &&
+ (Name == "outsb" || Name == "outsw" || Name == "outsl" ||
+ Name == "outsd" )) {
+ AddDefaultSrcDestOperands(Operands,
+ DefaultMemSIOperand(NameLoc),
+ X86Operand::CreateReg(X86::DX, NameLoc, NameLoc));
+ }
+
+ // Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate
+ // values of $SIREG according to the mode. It would be nice if this
+ // could be achieved with InstAlias in the tables.
+ if (Name.startswith("lods") && Operands.size() == 1 &&
+ (Name == "lods" || Name == "lodsb" || Name == "lodsw" ||
+ Name == "lodsl" || Name == "lodsd" || Name == "lodsq"))
+ Operands.push_back(DefaultMemSIOperand(NameLoc));
+
+ // Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate
+ // values of $DIREG according to the mode. It would be nice if this
+ // could be achieved with InstAlias in the tables.
+ if (Name.startswith("stos") && Operands.size() == 1 &&
+ (Name == "stos" || Name == "stosb" || Name == "stosw" ||
+ Name == "stosl" || Name == "stosd" || Name == "stosq"))
+ Operands.push_back(DefaultMemDIOperand(NameLoc));
+
+ // Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate
+ // values of $DIREG according to the mode. It would be nice if this
+ // could be achieved with InstAlias in the tables.
+ if (Name.startswith("scas") && Operands.size() == 1 &&
+ (Name == "scas" || Name == "scasb" || Name == "scasw" ||
+ Name == "scasl" || Name == "scasd" || Name == "scasq"))
+ Operands.push_back(DefaultMemDIOperand(NameLoc));
+
+ // Add default SI and DI operands to "cmps[bwlq]".
+ if (Name.startswith("cmps") &&
+ (Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" ||
+ Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) {
+ if (Operands.size() == 1) {
+ AddDefaultSrcDestOperands(Operands,
+ DefaultMemDIOperand(NameLoc),
+ DefaultMemSIOperand(NameLoc));
+ } else if (Operands.size() == 3) {
+ X86Operand &Op = (X86Operand &)*Operands[1];
+ X86Operand &Op2 = (X86Operand &)*Operands[2];
+ if (!doSrcDstMatch(Op, Op2))
+ return Error(Op.getStartLoc(),
+ "mismatching source and destination index registers");
+ }
+ }
+
+ // Add default SI and DI operands to "movs[bwlq]".
+ if ((Name.startswith("movs") &&
+ (Name == "movs" || Name == "movsb" || Name == "movsw" ||
+ Name == "movsl" || Name == "movsd" || Name == "movsq")) ||
+ (Name.startswith("smov") &&
+ (Name == "smov" || Name == "smovb" || Name == "smovw" ||
+ Name == "smovl" || Name == "smovd" || Name == "smovq"))) {
+ if (Operands.size() == 1) {
+ if (Name == "movsd")
+ Operands.back() = X86Operand::CreateToken("movsl", NameLoc);
+ AddDefaultSrcDestOperands(Operands,
+ DefaultMemSIOperand(NameLoc),
+ DefaultMemDIOperand(NameLoc));
+ } else if (Operands.size() == 3) {
+ X86Operand &Op = (X86Operand &)*Operands[1];
+ X86Operand &Op2 = (X86Operand &)*Operands[2];
+ if (!doSrcDstMatch(Op, Op2))
+ return Error(Op.getStartLoc(),
+ "mismatching source and destination index registers");
+ }
+ }
+
+ // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to
+ // "shift <op>".
+ if ((Name.startswith("shr") || Name.startswith("sar") ||
+ Name.startswith("shl") || Name.startswith("sal") ||
+ Name.startswith("rcl") || Name.startswith("rcr") ||
+ Name.startswith("rol") || Name.startswith("ror")) &&
+ Operands.size() == 3) {
+ if (isParsingIntelSyntax()) {
+ // Intel syntax
+ X86Operand &Op1 = static_cast<X86Operand &>(*Operands[2]);
+ if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
+ cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
+ Operands.pop_back();
+ } else {
+ X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
+ if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) &&
+ cast<MCConstantExpr>(Op1.getImm())->getValue() == 1)
+ Operands.erase(Operands.begin() + 1);
+ }
+ }
+
+ // Transforms "int $3" into "int3" as a size optimization. We can't write an
+ // instalias with an immediate operand yet.
+ if (Name == "int" && Operands.size() == 2) {
+ X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]);
+ if (Op1.isImm())
+ if (auto *CE = dyn_cast<MCConstantExpr>(Op1.getImm()))
+ if (CE->getValue() == 3) {
+ Operands.erase(Operands.begin() + 1);
+ static_cast<X86Operand &>(*Operands[0]).setTokenValue("int3");
+ }
+ }
+
+ return false;
+}
+
+bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) {
+ switch (Inst.getOpcode()) {
+ default: return false;
+ case X86::VMOVZPQILo2PQIrr:
+ case X86::VMOVAPDrr:
+ case X86::VMOVAPDYrr:
+ case X86::VMOVAPSrr:
+ case X86::VMOVAPSYrr:
+ case X86::VMOVDQArr:
+ case X86::VMOVDQAYrr:
+ case X86::VMOVDQUrr:
+ case X86::VMOVDQUYrr:
+ case X86::VMOVUPDrr:
+ case X86::VMOVUPDYrr:
+ case X86::VMOVUPSrr:
+ case X86::VMOVUPSYrr: {
+ if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
+ !X86II::isX86_64ExtendedReg(Inst.getOperand(1).getReg()))
+ return false;
+
+ unsigned NewOpc;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break;
+ case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break;
+ case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
+ case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break;
+ case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
+ case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break;
+ case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
+ case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break;
+ case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
+ case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break;
+ case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
+ case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break;
+ case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
+ }
+ Inst.setOpcode(NewOpc);
+ return true;
+ }
+ case X86::VMOVSDrr:
+ case X86::VMOVSSrr: {
+ if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) ||
+ !X86II::isX86_64ExtendedReg(Inst.getOperand(2).getReg()))
+ return false;
+ unsigned NewOpc;
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode");
+ case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break;
+ case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break;
+ }
+ Inst.setOpcode(NewOpc);
+ return true;
+ }
+ }
+}
+
+static const char *getSubtargetFeatureName(uint64_t Val);
+
+void X86AsmParser::EmitInstruction(MCInst &Inst, OperandVector &Operands,
+ MCStreamer &Out) {
+ Instrumentation->InstrumentAndEmitInstruction(Inst, Operands, getContext(),
+ MII, Out);
+}
+
+bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out, uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) {
+ if (isParsingIntelSyntax())
+ return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
+ MatchingInlineAsm);
+ return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo,
+ MatchingInlineAsm);
+}
+
+void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op,
+ OperandVector &Operands, MCStreamer &Out,
+ bool MatchingInlineAsm) {
+ // FIXME: This should be replaced with a real .td file alias mechanism.
+ // Also, MatchInstructionImpl should actually *do* the EmitInstruction
+ // call.
+ const char *Repl = StringSwitch<const char *>(Op.getToken())
+ .Case("finit", "fninit")
+ .Case("fsave", "fnsave")
+ .Case("fstcw", "fnstcw")
+ .Case("fstcww", "fnstcw")
+ .Case("fstenv", "fnstenv")
+ .Case("fstsw", "fnstsw")
+ .Case("fstsww", "fnstsw")
+ .Case("fclex", "fnclex")
+ .Default(nullptr);
+ if (Repl) {
+ MCInst Inst;
+ Inst.setOpcode(X86::WAIT);
+ Inst.setLoc(IDLoc);
+ if (!MatchingInlineAsm)
+ EmitInstruction(Inst, Operands, Out);
+ Operands[0] = X86Operand::CreateToken(Repl, IDLoc);
+ }
+}
+
+bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo,
+ bool MatchingInlineAsm) {
+ assert(ErrorInfo && "Unknown missing feature!");
+ ArrayRef<SMRange> EmptyRanges = None;
+ SmallString<126> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "instruction requires:";
+ uint64_t Mask = 1;
+ for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
+ if (ErrorInfo & Mask)
+ OS << ' ' << getSubtargetFeatureName(ErrorInfo & Mask);
+ Mask <<= 1;
+ }
+ return Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
+}
+
+bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) {
+ assert(!Operands.empty() && "Unexpect empty operand list!");
+ X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
+ assert(Op.isToken() && "Leading operand should always be a mnemonic!");
+ ArrayRef<SMRange> EmptyRanges = None;
+
+ // First, handle aliases that expand to multiple instructions.
+ MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm);
+
+ bool WasOriginallyInvalidOperand = false;
+ MCInst Inst;
+
+ // First, try a direct match.
+ switch (MatchInstructionImpl(Operands, Inst,
+ ErrorInfo, MatchingInlineAsm,
+ isParsingIntelSyntax())) {
+ default: llvm_unreachable("Unexpected match result!");
+ case Match_Success:
+ // Some instructions need post-processing to, for example, tweak which
+ // encoding is selected. Loop on it while changes happen so the
+ // individual transformations can chain off each other.
+ if (!MatchingInlineAsm)
+ while (processInstruction(Inst, Operands))
+ ;
+
+ Inst.setLoc(IDLoc);
+ if (!MatchingInlineAsm)
+ EmitInstruction(Inst, Operands, Out);
+ Opcode = Inst.getOpcode();
+ return false;
+ case Match_MissingFeature:
+ return ErrorMissingFeature(IDLoc, ErrorInfo, MatchingInlineAsm);
+ case Match_InvalidOperand:
+ WasOriginallyInvalidOperand = true;
+ break;
+ case Match_MnemonicFail:
+ break;
+ }
+
+ // FIXME: Ideally, we would only attempt suffix matches for things which are
+ // valid prefixes, and we could just infer the right unambiguous
+ // type. However, that requires substantially more matcher support than the
+ // following hack.
+
+ // Change the operand to point to a temporary token.
+ StringRef Base = Op.getToken();
+ SmallString<16> Tmp;
+ Tmp += Base;
+ Tmp += ' ';
+ Op.setTokenValue(Tmp);
+
+ // If this instruction starts with an 'f', then it is a floating point stack
+ // instruction. These come in up to three forms for 32-bit, 64-bit, and
+ // 80-bit floating point, which use the suffixes s,l,t respectively.
+ //
+ // Otherwise, we assume that this may be an integer instruction, which comes
+ // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively.
+ const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0";
+
+ // Check for the various suffix matches.
+ uint64_t ErrorInfoIgnore;
+ uint64_t ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings.
+ unsigned Match[4];
+
+ for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) {
+ Tmp.back() = Suffixes[I];
+ Match[I] = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
+ MatchingInlineAsm, isParsingIntelSyntax());
+ // If this returned as a missing feature failure, remember that.
+ if (Match[I] == Match_MissingFeature)
+ ErrorInfoMissingFeature = ErrorInfoIgnore;
+ }
+
+ // Restore the old token.
+ Op.setTokenValue(Base);
+
+ // If exactly one matched, then we treat that as a successful match (and the
+ // instruction will already have been filled in correctly, since the failing
+ // matches won't have modified it).
+ unsigned NumSuccessfulMatches =
+ std::count(std::begin(Match), std::end(Match), Match_Success);
+ if (NumSuccessfulMatches == 1) {
+ Inst.setLoc(IDLoc);
+ if (!MatchingInlineAsm)
+ EmitInstruction(Inst, Operands, Out);
+ Opcode = Inst.getOpcode();
+ return false;
+ }
+
+ // Otherwise, the match failed, try to produce a decent error message.
+
+ // If we had multiple suffix matches, then identify this as an ambiguous
+ // match.
+ if (NumSuccessfulMatches > 1) {
+ char MatchChars[4];
+ unsigned NumMatches = 0;
+ for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I)
+ if (Match[I] == Match_Success)
+ MatchChars[NumMatches++] = Suffixes[I];
+
+ SmallString<126> Msg;
+ raw_svector_ostream OS(Msg);
+ OS << "ambiguous instructions require an explicit suffix (could be ";
+ for (unsigned i = 0; i != NumMatches; ++i) {
+ if (i != 0)
+ OS << ", ";
+ if (i + 1 == NumMatches)
+ OS << "or ";
+ OS << "'" << Base << MatchChars[i] << "'";
+ }
+ OS << ")";
+ Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm);
+ return true;
+ }
+
+ // Okay, we know that none of the variants matched successfully.
+
+ // If all of the instructions reported an invalid mnemonic, then the original
+ // mnemonic was invalid.
+ if (std::count(std::begin(Match), std::end(Match), Match_MnemonicFail) == 4) {
+ if (!WasOriginallyInvalidOperand) {
+ ArrayRef<SMRange> Ranges =
+ MatchingInlineAsm ? EmptyRanges : Op.getLocRange();
+ return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'",
+ Ranges, MatchingInlineAsm);
+ }
+
+ // Recover location info for the operand if we know which was the problem.
+ if (ErrorInfo != ~0ULL) {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction",
+ EmptyRanges, MatchingInlineAsm);
+
+ X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo];
+ if (Operand.getStartLoc().isValid()) {
+ SMRange OperandRange = Operand.getLocRange();
+ return Error(Operand.getStartLoc(), "invalid operand for instruction",
+ OperandRange, MatchingInlineAsm);
+ }
+ }
+
+ return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
+ MatchingInlineAsm);
+ }
+
+ // If one instruction matched with a missing feature, report this as a
+ // missing feature.
+ if (std::count(std::begin(Match), std::end(Match),
+ Match_MissingFeature) == 1) {
+ ErrorInfo = ErrorInfoMissingFeature;
+ return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature,
+ MatchingInlineAsm);
+ }
+
+ // If one instruction matched with an invalid operand, report this as an
+ // operand failure.
+ if (std::count(std::begin(Match), std::end(Match),
+ Match_InvalidOperand) == 1) {
+ return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
+ MatchingInlineAsm);
+ }
+
+ // If all of these were an outright failure, report it in a useless way.
+ Error(IDLoc, "unknown use of instruction mnemonic without a size suffix",
+ EmptyRanges, MatchingInlineAsm);
+ return true;
+}
+
+bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) {
+ assert(!Operands.empty() && "Unexpect empty operand list!");
+ X86Operand &Op = static_cast<X86Operand &>(*Operands[0]);
+ assert(Op.isToken() && "Leading operand should always be a mnemonic!");
+ StringRef Mnemonic = Op.getToken();
+ ArrayRef<SMRange> EmptyRanges = None;
+
+ // First, handle aliases that expand to multiple instructions.
+ MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm);
+
+ MCInst Inst;
+
+ // Find one unsized memory operand, if present.
+ X86Operand *UnsizedMemOp = nullptr;
+ for (const auto &Op : Operands) {
+ X86Operand *X86Op = static_cast<X86Operand *>(Op.get());
+ if (X86Op->isMemUnsized())
+ UnsizedMemOp = X86Op;
+ }
+
+ // Allow some instructions to have implicitly pointer-sized operands. This is
+ // compatible with gas.
+ if (UnsizedMemOp) {
+ static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"};
+ for (const char *Instr : PtrSizedInstrs) {
+ if (Mnemonic == Instr) {
+ UnsizedMemOp->Mem.Size = getPointerWidth();
+ break;
+ }
+ }
+ }
+
+ // If an unsized memory operand is present, try to match with each memory
+ // operand size. In Intel assembly, the size is not part of the instruction
+ // mnemonic.
+ SmallVector<unsigned, 8> Match;
+ uint64_t ErrorInfoMissingFeature = 0;
+ if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) {
+ static const unsigned MopSizes[] = {8, 16, 32, 64, 80, 128, 256, 512};
+ for (unsigned Size : MopSizes) {
+ UnsizedMemOp->Mem.Size = Size;
+ uint64_t ErrorInfoIgnore;
+ unsigned LastOpcode = Inst.getOpcode();
+ unsigned M =
+ MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore,
+ MatchingInlineAsm, isParsingIntelSyntax());
+ if (Match.empty() || LastOpcode != Inst.getOpcode())
+ Match.push_back(M);
+
+ // If this returned as a missing feature failure, remember that.
+ if (Match.back() == Match_MissingFeature)
+ ErrorInfoMissingFeature = ErrorInfoIgnore;
+ }
+
+ // Restore the size of the unsized memory operand if we modified it.
+ if (UnsizedMemOp)
+ UnsizedMemOp->Mem.Size = 0;
+ }
+
+ // If we haven't matched anything yet, this is not a basic integer or FPU
+ // operation. There shouldn't be any ambiguity in our mnemonic table, so try
+ // matching with the unsized operand.
+ if (Match.empty()) {
+ Match.push_back(MatchInstructionImpl(Operands, Inst, ErrorInfo,
+ MatchingInlineAsm,
+ isParsingIntelSyntax()));
+ // If this returned as a missing feature failure, remember that.
+ if (Match.back() == Match_MissingFeature)
+ ErrorInfoMissingFeature = ErrorInfo;
+ }
+
+ // Restore the size of the unsized memory operand if we modified it.
+ if (UnsizedMemOp)
+ UnsizedMemOp->Mem.Size = 0;
+
+ // If it's a bad mnemonic, all results will be the same.
+ if (Match.back() == Match_MnemonicFail) {
+ ArrayRef<SMRange> Ranges =
+ MatchingInlineAsm ? EmptyRanges : Op.getLocRange();
+ return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'",
+ Ranges, MatchingInlineAsm);
+ }
+
+ // If exactly one matched, then we treat that as a successful match (and the
+ // instruction will already have been filled in correctly, since the failing
+ // matches won't have modified it).
+ unsigned NumSuccessfulMatches =
+ std::count(std::begin(Match), std::end(Match), Match_Success);
+ if (NumSuccessfulMatches == 1) {
+ // Some instructions need post-processing to, for example, tweak which
+ // encoding is selected. Loop on it while changes happen so the individual
+ // transformations can chain off each other.
+ if (!MatchingInlineAsm)
+ while (processInstruction(Inst, Operands))
+ ;
+ Inst.setLoc(IDLoc);
+ if (!MatchingInlineAsm)
+ EmitInstruction(Inst, Operands, Out);
+ Opcode = Inst.getOpcode();
+ return false;
+ } else if (NumSuccessfulMatches > 1) {
+ assert(UnsizedMemOp &&
+ "multiple matches only possible with unsized memory operands");
+ ArrayRef<SMRange> Ranges =
+ MatchingInlineAsm ? EmptyRanges : UnsizedMemOp->getLocRange();
+ return Error(UnsizedMemOp->getStartLoc(),
+ "ambiguous operand size for instruction '" + Mnemonic + "\'",
+ Ranges, MatchingInlineAsm);
+ }
+
+ // If one instruction matched with a missing feature, report this as a
+ // missing feature.
+ if (std::count(std::begin(Match), std::end(Match),
+ Match_MissingFeature) == 1) {
+ ErrorInfo = ErrorInfoMissingFeature;
+ return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature,
+ MatchingInlineAsm);
+ }
+
+ // If one instruction matched with an invalid operand, report this as an
+ // operand failure.
+ if (std::count(std::begin(Match), std::end(Match),
+ Match_InvalidOperand) == 1) {
+ return Error(IDLoc, "invalid operand for instruction", EmptyRanges,
+ MatchingInlineAsm);
+ }
+
+ // If all of these were an outright failure, report it in a useless way.
+ return Error(IDLoc, "unknown instruction mnemonic", EmptyRanges,
+ MatchingInlineAsm);
+}
+
+bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) {
+ return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo);
+}
+
+bool X86AsmParser::ParseDirective(AsmToken DirectiveID) {
+ MCAsmParser &Parser = getParser();
+ StringRef IDVal = DirectiveID.getIdentifier();
+ if (IDVal == ".word")
+ return ParseDirectiveWord(2, DirectiveID.getLoc());
+ else if (IDVal.startswith(".code"))
+ return ParseDirectiveCode(IDVal, DirectiveID.getLoc());
+ else if (IDVal.startswith(".att_syntax")) {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ if (Parser.getTok().getString() == "prefix")
+ Parser.Lex();
+ else if (Parser.getTok().getString() == "noprefix")
+ return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not "
+ "supported: registers must have a "
+ "'%' prefix in .att_syntax");
+ }
+ getParser().setAssemblerDialect(0);
+ return false;
+ } else if (IDVal.startswith(".intel_syntax")) {
+ getParser().setAssemblerDialect(1);
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ if (Parser.getTok().getString() == "noprefix")
+ Parser.Lex();
+ else if (Parser.getTok().getString() == "prefix")
+ return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not "
+ "supported: registers must not have "
+ "a '%' prefix in .intel_syntax");
+ }
+ return false;
+ } else if (IDVal == ".even")
+ return parseDirectiveEven(DirectiveID.getLoc());
+ return true;
+}
+
+/// parseDirectiveEven
+/// ::= .even
+bool X86AsmParser::parseDirectiveEven(SMLoc L) {
+ const MCSection *Section = getStreamer().getCurrentSection().first;
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ TokError("unexpected token in directive");
+ return false;
+ }
+ if (!Section) {
+ getStreamer().InitSections(false);
+ Section = getStreamer().getCurrentSection().first;
+ }
+ if (Section->UseCodeAlign())
+ getStreamer().EmitCodeAlignment(2, 0);
+ else
+ getStreamer().EmitValueToAlignment(2, 0, 1, 0);
+ return false;
+}
+/// ParseDirectiveWord
+/// ::= .word [ expression (, expression)* ]
+bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) {
+ MCAsmParser &Parser = getParser();
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ for (;;) {
+ const MCExpr *Value;
+ SMLoc ExprLoc = getLexer().getLoc();
+ if (getParser().parseExpression(Value))
+ return false;
+
+ if (const auto *MCE = dyn_cast<MCConstantExpr>(Value)) {
+ assert(Size <= 8 && "Invalid size");
+ uint64_t IntValue = MCE->getValue();
+ if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
+ return Error(ExprLoc, "literal value out of range for directive");
+ getStreamer().EmitIntValue(IntValue, Size);
+ } else {
+ getStreamer().EmitValue(Value, Size, ExprLoc);
+ }
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ break;
+
+ // FIXME: Improve diagnostic.
+ if (getLexer().isNot(AsmToken::Comma)) {
+ Error(L, "unexpected token in directive");
+ return false;
+ }
+ Parser.Lex();
+ }
+ }
+
+ Parser.Lex();
+ return false;
+}
+
+/// ParseDirectiveCode
+/// ::= .code16 | .code32 | .code64
+bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) {
+ MCAsmParser &Parser = getParser();
+ if (IDVal == ".code16") {
+ Parser.Lex();
+ if (!is16BitMode()) {
+ SwitchMode(X86::Mode16Bit);
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
+ }
+ } else if (IDVal == ".code32") {
+ Parser.Lex();
+ if (!is32BitMode()) {
+ SwitchMode(X86::Mode32Bit);
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
+ }
+ } else if (IDVal == ".code64") {
+ Parser.Lex();
+ if (!is64BitMode()) {
+ SwitchMode(X86::Mode64Bit);
+ getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64);
+ }
+ } else {
+ Error(L, "unknown directive " + IDVal);
+ return false;
+ }
+
+ return false;
+}
+
+// Force static initialization.
+extern "C" void LLVMInitializeX86AsmParser() {
+ RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target);
+ RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target);
+}
+
+#define GET_REGISTER_MATCHER
+#define GET_MATCHER_IMPLEMENTATION
+#define GET_SUBTARGET_FEATURE_NAME
+#include "X86GenAsmMatcher.inc"
OpenPOWER on IntegriCloud