diff options
Diffstat (limited to 'contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp | 2951 |
1 files changed, 2951 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp new file mode 100644 index 0000000..4d8ffac --- /dev/null +++ b/contrib/llvm/lib/Target/X86/AsmParser/X86AsmParser.cpp @@ -0,0 +1,2951 @@ +//===-- X86AsmParser.cpp - Parse X86 assembly to MCInst instructions ------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "MCTargetDesc/X86BaseInfo.h" +#include "X86AsmInstrumentation.h" +#include "X86AsmParserCommon.h" +#include "X86Operand.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/ADT/Twine.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCInst.h" +#include "llvm/MC/MCInstrInfo.h" +#include "llvm/MC/MCParser/MCAsmLexer.h" +#include "llvm/MC/MCParser/MCAsmParser.h" +#include "llvm/MC/MCParser/MCParsedAsmOperand.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/MC/MCSection.h" +#include "llvm/MC/MCStreamer.h" +#include "llvm/MC/MCSubtargetInfo.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/MC/MCTargetAsmParser.h" +#include "llvm/Support/SourceMgr.h" +#include "llvm/Support/TargetRegistry.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <memory> + +using namespace llvm; + +namespace { + +static const char OpPrecedence[] = { + 0, // IC_OR + 1, // IC_XOR + 2, // IC_AND + 3, // IC_LSHIFT + 3, // IC_RSHIFT + 4, // IC_PLUS + 4, // IC_MINUS + 5, // IC_MULTIPLY + 5, // IC_DIVIDE + 6, // IC_RPAREN + 7, // IC_LPAREN + 0, // IC_IMM + 0 // IC_REGISTER +}; + +class X86AsmParser : public MCTargetAsmParser { + const MCInstrInfo &MII; + ParseInstructionInfo *InstInfo; + std::unique_ptr<X86AsmInstrumentation> Instrumentation; + +private: + SMLoc consumeToken() { + MCAsmParser &Parser = getParser(); + SMLoc Result = Parser.getTok().getLoc(); + Parser.Lex(); + return Result; + } + + enum InfixCalculatorTok { + IC_OR = 0, + IC_XOR, + IC_AND, + IC_LSHIFT, + IC_RSHIFT, + IC_PLUS, + IC_MINUS, + IC_MULTIPLY, + IC_DIVIDE, + IC_RPAREN, + IC_LPAREN, + IC_IMM, + IC_REGISTER + }; + + class InfixCalculator { + typedef std::pair< InfixCalculatorTok, int64_t > ICToken; + SmallVector<InfixCalculatorTok, 4> InfixOperatorStack; + SmallVector<ICToken, 4> PostfixStack; + + public: + int64_t popOperand() { + assert (!PostfixStack.empty() && "Poped an empty stack!"); + ICToken Op = PostfixStack.pop_back_val(); + assert ((Op.first == IC_IMM || Op.first == IC_REGISTER) + && "Expected and immediate or register!"); + return Op.second; + } + void pushOperand(InfixCalculatorTok Op, int64_t Val = 0) { + assert ((Op == IC_IMM || Op == IC_REGISTER) && + "Unexpected operand!"); + PostfixStack.push_back(std::make_pair(Op, Val)); + } + + void popOperator() { InfixOperatorStack.pop_back(); } + void pushOperator(InfixCalculatorTok Op) { + // Push the new operator if the stack is empty. + if (InfixOperatorStack.empty()) { + InfixOperatorStack.push_back(Op); + return; + } + + // Push the new operator if it has a higher precedence than the operator + // on the top of the stack or the operator on the top of the stack is a + // left parentheses. + unsigned Idx = InfixOperatorStack.size() - 1; + InfixCalculatorTok StackOp = InfixOperatorStack[Idx]; + if (OpPrecedence[Op] > OpPrecedence[StackOp] || StackOp == IC_LPAREN) { + InfixOperatorStack.push_back(Op); + return; + } + + // The operator on the top of the stack has higher precedence than the + // new operator. + unsigned ParenCount = 0; + while (1) { + // Nothing to process. + if (InfixOperatorStack.empty()) + break; + + Idx = InfixOperatorStack.size() - 1; + StackOp = InfixOperatorStack[Idx]; + if (!(OpPrecedence[StackOp] >= OpPrecedence[Op] || ParenCount)) + break; + + // If we have an even parentheses count and we see a left parentheses, + // then stop processing. + if (!ParenCount && StackOp == IC_LPAREN) + break; + + if (StackOp == IC_RPAREN) { + ++ParenCount; + InfixOperatorStack.pop_back(); + } else if (StackOp == IC_LPAREN) { + --ParenCount; + InfixOperatorStack.pop_back(); + } else { + InfixOperatorStack.pop_back(); + PostfixStack.push_back(std::make_pair(StackOp, 0)); + } + } + // Push the new operator. + InfixOperatorStack.push_back(Op); + } + + int64_t execute() { + // Push any remaining operators onto the postfix stack. + while (!InfixOperatorStack.empty()) { + InfixCalculatorTok StackOp = InfixOperatorStack.pop_back_val(); + if (StackOp != IC_LPAREN && StackOp != IC_RPAREN) + PostfixStack.push_back(std::make_pair(StackOp, 0)); + } + + if (PostfixStack.empty()) + return 0; + + SmallVector<ICToken, 16> OperandStack; + for (unsigned i = 0, e = PostfixStack.size(); i != e; ++i) { + ICToken Op = PostfixStack[i]; + if (Op.first == IC_IMM || Op.first == IC_REGISTER) { + OperandStack.push_back(Op); + } else { + assert (OperandStack.size() > 1 && "Too few operands."); + int64_t Val; + ICToken Op2 = OperandStack.pop_back_val(); + ICToken Op1 = OperandStack.pop_back_val(); + switch (Op.first) { + default: + report_fatal_error("Unexpected operator!"); + break; + case IC_PLUS: + Val = Op1.second + Op2.second; + OperandStack.push_back(std::make_pair(IC_IMM, Val)); + break; + case IC_MINUS: + Val = Op1.second - Op2.second; + OperandStack.push_back(std::make_pair(IC_IMM, Val)); + break; + case IC_MULTIPLY: + assert (Op1.first == IC_IMM && Op2.first == IC_IMM && + "Multiply operation with an immediate and a register!"); + Val = Op1.second * Op2.second; + OperandStack.push_back(std::make_pair(IC_IMM, Val)); + break; + case IC_DIVIDE: + assert (Op1.first == IC_IMM && Op2.first == IC_IMM && + "Divide operation with an immediate and a register!"); + assert (Op2.second != 0 && "Division by zero!"); + Val = Op1.second / Op2.second; + OperandStack.push_back(std::make_pair(IC_IMM, Val)); + break; + case IC_OR: + assert (Op1.first == IC_IMM && Op2.first == IC_IMM && + "Or operation with an immediate and a register!"); + Val = Op1.second | Op2.second; + OperandStack.push_back(std::make_pair(IC_IMM, Val)); + break; + case IC_XOR: + assert(Op1.first == IC_IMM && Op2.first == IC_IMM && + "Xor operation with an immediate and a register!"); + Val = Op1.second ^ Op2.second; + OperandStack.push_back(std::make_pair(IC_IMM, Val)); + break; + case IC_AND: + assert (Op1.first == IC_IMM && Op2.first == IC_IMM && + "And operation with an immediate and a register!"); + Val = Op1.second & Op2.second; + OperandStack.push_back(std::make_pair(IC_IMM, Val)); + break; + case IC_LSHIFT: + assert (Op1.first == IC_IMM && Op2.first == IC_IMM && + "Left shift operation with an immediate and a register!"); + Val = Op1.second << Op2.second; + OperandStack.push_back(std::make_pair(IC_IMM, Val)); + break; + case IC_RSHIFT: + assert (Op1.first == IC_IMM && Op2.first == IC_IMM && + "Right shift operation with an immediate and a register!"); + Val = Op1.second >> Op2.second; + OperandStack.push_back(std::make_pair(IC_IMM, Val)); + break; + } + } + } + assert (OperandStack.size() == 1 && "Expected a single result."); + return OperandStack.pop_back_val().second; + } + }; + + enum IntelExprState { + IES_OR, + IES_XOR, + IES_AND, + IES_LSHIFT, + IES_RSHIFT, + IES_PLUS, + IES_MINUS, + IES_NOT, + IES_MULTIPLY, + IES_DIVIDE, + IES_LBRAC, + IES_RBRAC, + IES_LPAREN, + IES_RPAREN, + IES_REGISTER, + IES_INTEGER, + IES_IDENTIFIER, + IES_ERROR + }; + + class IntelExprStateMachine { + IntelExprState State, PrevState; + unsigned BaseReg, IndexReg, TmpReg, Scale; + int64_t Imm; + const MCExpr *Sym; + StringRef SymName; + bool StopOnLBrac, AddImmPrefix; + InfixCalculator IC; + InlineAsmIdentifierInfo Info; + + public: + IntelExprStateMachine(int64_t imm, bool stoponlbrac, bool addimmprefix) : + State(IES_PLUS), PrevState(IES_ERROR), BaseReg(0), IndexReg(0), TmpReg(0), + Scale(1), Imm(imm), Sym(nullptr), StopOnLBrac(stoponlbrac), + AddImmPrefix(addimmprefix) { Info.clear(); } + + unsigned getBaseReg() { return BaseReg; } + unsigned getIndexReg() { return IndexReg; } + unsigned getScale() { return Scale; } + const MCExpr *getSym() { return Sym; } + StringRef getSymName() { return SymName; } + int64_t getImm() { return Imm + IC.execute(); } + bool isValidEndState() { + return State == IES_RBRAC || State == IES_INTEGER; + } + bool getStopOnLBrac() { return StopOnLBrac; } + bool getAddImmPrefix() { return AddImmPrefix; } + bool hadError() { return State == IES_ERROR; } + + InlineAsmIdentifierInfo &getIdentifierInfo() { + return Info; + } + + void onOr() { + IntelExprState CurrState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_INTEGER: + case IES_RPAREN: + case IES_REGISTER: + State = IES_OR; + IC.pushOperator(IC_OR); + break; + } + PrevState = CurrState; + } + void onXor() { + IntelExprState CurrState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_INTEGER: + case IES_RPAREN: + case IES_REGISTER: + State = IES_XOR; + IC.pushOperator(IC_XOR); + break; + } + PrevState = CurrState; + } + void onAnd() { + IntelExprState CurrState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_INTEGER: + case IES_RPAREN: + case IES_REGISTER: + State = IES_AND; + IC.pushOperator(IC_AND); + break; + } + PrevState = CurrState; + } + void onLShift() { + IntelExprState CurrState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_INTEGER: + case IES_RPAREN: + case IES_REGISTER: + State = IES_LSHIFT; + IC.pushOperator(IC_LSHIFT); + break; + } + PrevState = CurrState; + } + void onRShift() { + IntelExprState CurrState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_INTEGER: + case IES_RPAREN: + case IES_REGISTER: + State = IES_RSHIFT; + IC.pushOperator(IC_RSHIFT); + break; + } + PrevState = CurrState; + } + void onPlus() { + IntelExprState CurrState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_INTEGER: + case IES_RPAREN: + case IES_REGISTER: + State = IES_PLUS; + IC.pushOperator(IC_PLUS); + if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) { + // If we already have a BaseReg, then assume this is the IndexReg with + // a scale of 1. + if (!BaseReg) { + BaseReg = TmpReg; + } else { + assert (!IndexReg && "BaseReg/IndexReg already set!"); + IndexReg = TmpReg; + Scale = 1; + } + } + break; + } + PrevState = CurrState; + } + void onMinus() { + IntelExprState CurrState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_PLUS: + case IES_NOT: + case IES_MULTIPLY: + case IES_DIVIDE: + case IES_LPAREN: + case IES_RPAREN: + case IES_LBRAC: + case IES_RBRAC: + case IES_INTEGER: + case IES_REGISTER: + State = IES_MINUS; + // Only push the minus operator if it is not a unary operator. + if (!(CurrState == IES_PLUS || CurrState == IES_MINUS || + CurrState == IES_MULTIPLY || CurrState == IES_DIVIDE || + CurrState == IES_LPAREN || CurrState == IES_LBRAC)) + IC.pushOperator(IC_MINUS); + if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) { + // If we already have a BaseReg, then assume this is the IndexReg with + // a scale of 1. + if (!BaseReg) { + BaseReg = TmpReg; + } else { + assert (!IndexReg && "BaseReg/IndexReg already set!"); + IndexReg = TmpReg; + Scale = 1; + } + } + break; + } + PrevState = CurrState; + } + void onNot() { + IntelExprState CurrState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_PLUS: + case IES_NOT: + State = IES_NOT; + break; + } + PrevState = CurrState; + } + void onRegister(unsigned Reg) { + IntelExprState CurrState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_PLUS: + case IES_LPAREN: + State = IES_REGISTER; + TmpReg = Reg; + IC.pushOperand(IC_REGISTER); + break; + case IES_MULTIPLY: + // Index Register - Scale * Register + if (PrevState == IES_INTEGER) { + assert (!IndexReg && "IndexReg already set!"); + State = IES_REGISTER; + IndexReg = Reg; + // Get the scale and replace the 'Scale * Register' with '0'. + Scale = IC.popOperand(); + IC.pushOperand(IC_IMM); + IC.popOperator(); + } else { + State = IES_ERROR; + } + break; + } + PrevState = CurrState; + } + void onIdentifierExpr(const MCExpr *SymRef, StringRef SymRefName) { + PrevState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_PLUS: + case IES_MINUS: + case IES_NOT: + State = IES_INTEGER; + Sym = SymRef; + SymName = SymRefName; + IC.pushOperand(IC_IMM); + break; + } + } + bool onInteger(int64_t TmpInt, StringRef &ErrMsg) { + IntelExprState CurrState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_PLUS: + case IES_MINUS: + case IES_NOT: + case IES_OR: + case IES_XOR: + case IES_AND: + case IES_LSHIFT: + case IES_RSHIFT: + case IES_DIVIDE: + case IES_MULTIPLY: + case IES_LPAREN: + State = IES_INTEGER; + if (PrevState == IES_REGISTER && CurrState == IES_MULTIPLY) { + // Index Register - Register * Scale + assert (!IndexReg && "IndexReg already set!"); + IndexReg = TmpReg; + Scale = TmpInt; + if(Scale != 1 && Scale != 2 && Scale != 4 && Scale != 8) { + ErrMsg = "scale factor in address must be 1, 2, 4 or 8"; + return true; + } + // Get the scale and replace the 'Register * Scale' with '0'. + IC.popOperator(); + } else if ((PrevState == IES_PLUS || PrevState == IES_MINUS || + PrevState == IES_OR || PrevState == IES_AND || + PrevState == IES_LSHIFT || PrevState == IES_RSHIFT || + PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE || + PrevState == IES_LPAREN || PrevState == IES_LBRAC || + PrevState == IES_NOT || PrevState == IES_XOR) && + CurrState == IES_MINUS) { + // Unary minus. No need to pop the minus operand because it was never + // pushed. + IC.pushOperand(IC_IMM, -TmpInt); // Push -Imm. + } else if ((PrevState == IES_PLUS || PrevState == IES_MINUS || + PrevState == IES_OR || PrevState == IES_AND || + PrevState == IES_LSHIFT || PrevState == IES_RSHIFT || + PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE || + PrevState == IES_LPAREN || PrevState == IES_LBRAC || + PrevState == IES_NOT || PrevState == IES_XOR) && + CurrState == IES_NOT) { + // Unary not. No need to pop the not operand because it was never + // pushed. + IC.pushOperand(IC_IMM, ~TmpInt); // Push ~Imm. + } else { + IC.pushOperand(IC_IMM, TmpInt); + } + break; + } + PrevState = CurrState; + return false; + } + void onStar() { + PrevState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_INTEGER: + case IES_REGISTER: + case IES_RPAREN: + State = IES_MULTIPLY; + IC.pushOperator(IC_MULTIPLY); + break; + } + } + void onDivide() { + PrevState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_INTEGER: + case IES_RPAREN: + State = IES_DIVIDE; + IC.pushOperator(IC_DIVIDE); + break; + } + } + void onLBrac() { + PrevState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_RBRAC: + State = IES_PLUS; + IC.pushOperator(IC_PLUS); + break; + } + } + void onRBrac() { + IntelExprState CurrState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_INTEGER: + case IES_REGISTER: + case IES_RPAREN: + State = IES_RBRAC; + if (CurrState == IES_REGISTER && PrevState != IES_MULTIPLY) { + // If we already have a BaseReg, then assume this is the IndexReg with + // a scale of 1. + if (!BaseReg) { + BaseReg = TmpReg; + } else { + assert (!IndexReg && "BaseReg/IndexReg already set!"); + IndexReg = TmpReg; + Scale = 1; + } + } + break; + } + PrevState = CurrState; + } + void onLParen() { + IntelExprState CurrState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_PLUS: + case IES_MINUS: + case IES_NOT: + case IES_OR: + case IES_XOR: + case IES_AND: + case IES_LSHIFT: + case IES_RSHIFT: + case IES_MULTIPLY: + case IES_DIVIDE: + case IES_LPAREN: + // FIXME: We don't handle this type of unary minus or not, yet. + if ((PrevState == IES_PLUS || PrevState == IES_MINUS || + PrevState == IES_OR || PrevState == IES_AND || + PrevState == IES_LSHIFT || PrevState == IES_RSHIFT || + PrevState == IES_MULTIPLY || PrevState == IES_DIVIDE || + PrevState == IES_LPAREN || PrevState == IES_LBRAC || + PrevState == IES_NOT || PrevState == IES_XOR) && + (CurrState == IES_MINUS || CurrState == IES_NOT)) { + State = IES_ERROR; + break; + } + State = IES_LPAREN; + IC.pushOperator(IC_LPAREN); + break; + } + PrevState = CurrState; + } + void onRParen() { + PrevState = State; + switch (State) { + default: + State = IES_ERROR; + break; + case IES_INTEGER: + case IES_REGISTER: + case IES_RPAREN: + State = IES_RPAREN; + IC.pushOperator(IC_RPAREN); + break; + } + } + }; + + bool Error(SMLoc L, const Twine &Msg, + ArrayRef<SMRange> Ranges = None, + bool MatchingInlineAsm = false) { + MCAsmParser &Parser = getParser(); + if (MatchingInlineAsm) return true; + return Parser.Error(L, Msg, Ranges); + } + + bool ErrorAndEatStatement(SMLoc L, const Twine &Msg, + ArrayRef<SMRange> Ranges = None, + bool MatchingInlineAsm = false) { + MCAsmParser &Parser = getParser(); + Parser.eatToEndOfStatement(); + return Error(L, Msg, Ranges, MatchingInlineAsm); + } + + std::nullptr_t ErrorOperand(SMLoc Loc, StringRef Msg) { + Error(Loc, Msg); + return nullptr; + } + + std::unique_ptr<X86Operand> DefaultMemSIOperand(SMLoc Loc); + std::unique_ptr<X86Operand> DefaultMemDIOperand(SMLoc Loc); + void AddDefaultSrcDestOperands( + OperandVector& Operands, std::unique_ptr<llvm::MCParsedAsmOperand> &&Src, + std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst); + std::unique_ptr<X86Operand> ParseOperand(); + std::unique_ptr<X86Operand> ParseATTOperand(); + std::unique_ptr<X86Operand> ParseIntelOperand(); + std::unique_ptr<X86Operand> ParseIntelOffsetOfOperator(); + bool ParseIntelDotOperator(const MCExpr *Disp, const MCExpr *&NewDisp); + std::unique_ptr<X86Operand> ParseIntelOperator(unsigned OpKind); + std::unique_ptr<X86Operand> + ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start, unsigned Size); + std::unique_ptr<X86Operand> + ParseIntelMemOperand(int64_t ImmDisp, SMLoc StartLoc, unsigned Size); + std::unique_ptr<X86Operand> ParseRoundingModeOp(SMLoc Start, SMLoc End); + bool ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End); + std::unique_ptr<X86Operand> ParseIntelBracExpression(unsigned SegReg, + SMLoc Start, + int64_t ImmDisp, + unsigned Size); + bool ParseIntelIdentifier(const MCExpr *&Val, StringRef &Identifier, + InlineAsmIdentifierInfo &Info, + bool IsUnevaluatedOperand, SMLoc &End); + + std::unique_ptr<X86Operand> ParseMemOperand(unsigned SegReg, SMLoc StartLoc); + + std::unique_ptr<X86Operand> + CreateMemForInlineAsm(unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, + unsigned IndexReg, unsigned Scale, SMLoc Start, + SMLoc End, unsigned Size, StringRef Identifier, + InlineAsmIdentifierInfo &Info); + + bool parseDirectiveEven(SMLoc L); + bool ParseDirectiveWord(unsigned Size, SMLoc L); + bool ParseDirectiveCode(StringRef IDVal, SMLoc L); + + bool processInstruction(MCInst &Inst, const OperandVector &Ops); + + /// Wrapper around MCStreamer::EmitInstruction(). Possibly adds + /// instrumentation around Inst. + void EmitInstruction(MCInst &Inst, OperandVector &Operands, MCStreamer &Out); + + bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, + OperandVector &Operands, MCStreamer &Out, + uint64_t &ErrorInfo, + bool MatchingInlineAsm) override; + + void MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, OperandVector &Operands, + MCStreamer &Out, bool MatchingInlineAsm); + + bool ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo, + bool MatchingInlineAsm); + + bool MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode, + OperandVector &Operands, MCStreamer &Out, + uint64_t &ErrorInfo, + bool MatchingInlineAsm); + + bool MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode, + OperandVector &Operands, MCStreamer &Out, + uint64_t &ErrorInfo, + bool MatchingInlineAsm); + + bool OmitRegisterFromClobberLists(unsigned RegNo) override; + + /// doSrcDstMatch - Returns true if operands are matching in their + /// word size (%si and %di, %esi and %edi, etc.). Order depends on + /// the parsing mode (Intel vs. AT&T). + bool doSrcDstMatch(X86Operand &Op1, X86Operand &Op2); + + /// Parses AVX512 specific operand primitives: masked registers ({%k<NUM>}, {z}) + /// and memory broadcasting ({1to<NUM>}) primitives, updating Operands vector if required. + /// \return \c true if no parsing errors occurred, \c false otherwise. + bool HandleAVX512Operand(OperandVector &Operands, + const MCParsedAsmOperand &Op); + + bool is64BitMode() const { + // FIXME: Can tablegen auto-generate this? + return getSTI().getFeatureBits()[X86::Mode64Bit]; + } + bool is32BitMode() const { + // FIXME: Can tablegen auto-generate this? + return getSTI().getFeatureBits()[X86::Mode32Bit]; + } + bool is16BitMode() const { + // FIXME: Can tablegen auto-generate this? + return getSTI().getFeatureBits()[X86::Mode16Bit]; + } + void SwitchMode(unsigned mode) { + MCSubtargetInfo &STI = copySTI(); + FeatureBitset AllModes({X86::Mode64Bit, X86::Mode32Bit, X86::Mode16Bit}); + FeatureBitset OldMode = STI.getFeatureBits() & AllModes; + unsigned FB = ComputeAvailableFeatures( + STI.ToggleFeature(OldMode.flip(mode))); + setAvailableFeatures(FB); + + assert(FeatureBitset({mode}) == (STI.getFeatureBits() & AllModes)); + } + + unsigned getPointerWidth() { + if (is16BitMode()) return 16; + if (is32BitMode()) return 32; + if (is64BitMode()) return 64; + llvm_unreachable("invalid mode"); + } + + bool isParsingIntelSyntax() { + return getParser().getAssemblerDialect(); + } + + /// @name Auto-generated Matcher Functions + /// { + +#define GET_ASSEMBLER_HEADER +#include "X86GenAsmMatcher.inc" + + /// } + +public: + X86AsmParser(const MCSubtargetInfo &sti, MCAsmParser &Parser, + const MCInstrInfo &mii, const MCTargetOptions &Options) + : MCTargetAsmParser(Options, sti), MII(mii), InstInfo(nullptr) { + + // Initialize the set of available features. + setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); + Instrumentation.reset( + CreateX86AsmInstrumentation(Options, Parser.getContext(), STI)); + } + + bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; + + void SetFrameRegister(unsigned RegNo) override; + + bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, + SMLoc NameLoc, OperandVector &Operands) override; + + bool ParseDirective(AsmToken DirectiveID) override; +}; +} // end anonymous namespace + +/// @name Auto-generated Match Functions +/// { + +static unsigned MatchRegisterName(StringRef Name); + +/// } + +static bool CheckBaseRegAndIndexReg(unsigned BaseReg, unsigned IndexReg, + StringRef &ErrMsg) { + // If we have both a base register and an index register make sure they are + // both 64-bit or 32-bit registers. + // To support VSIB, IndexReg can be 128-bit or 256-bit registers. + if (BaseReg != 0 && IndexReg != 0) { + if (X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg) && + (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) || + X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg)) && + IndexReg != X86::RIZ) { + ErrMsg = "base register is 64-bit, but index register is not"; + return true; + } + if (X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg) && + (X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg) || + X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) && + IndexReg != X86::EIZ){ + ErrMsg = "base register is 32-bit, but index register is not"; + return true; + } + if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg)) { + if (X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg) || + X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg)) { + ErrMsg = "base register is 16-bit, but index register is not"; + return true; + } + if (((BaseReg == X86::BX || BaseReg == X86::BP) && + IndexReg != X86::SI && IndexReg != X86::DI) || + ((BaseReg == X86::SI || BaseReg == X86::DI) && + IndexReg != X86::BX && IndexReg != X86::BP)) { + ErrMsg = "invalid 16-bit base/index register combination"; + return true; + } + } + } + return false; +} + +bool X86AsmParser::doSrcDstMatch(X86Operand &Op1, X86Operand &Op2) +{ + // Return true and let a normal complaint about bogus operands happen. + if (!Op1.isMem() || !Op2.isMem()) + return true; + + // Actually these might be the other way round if Intel syntax is + // being used. It doesn't matter. + unsigned diReg = Op1.Mem.BaseReg; + unsigned siReg = Op2.Mem.BaseReg; + + if (X86MCRegisterClasses[X86::GR16RegClassID].contains(siReg)) + return X86MCRegisterClasses[X86::GR16RegClassID].contains(diReg); + if (X86MCRegisterClasses[X86::GR32RegClassID].contains(siReg)) + return X86MCRegisterClasses[X86::GR32RegClassID].contains(diReg); + if (X86MCRegisterClasses[X86::GR64RegClassID].contains(siReg)) + return X86MCRegisterClasses[X86::GR64RegClassID].contains(diReg); + // Again, return true and let another error happen. + return true; +} + +bool X86AsmParser::ParseRegister(unsigned &RegNo, + SMLoc &StartLoc, SMLoc &EndLoc) { + MCAsmParser &Parser = getParser(); + RegNo = 0; + const AsmToken &PercentTok = Parser.getTok(); + StartLoc = PercentTok.getLoc(); + + // If we encounter a %, ignore it. This code handles registers with and + // without the prefix, unprefixed registers can occur in cfi directives. + if (!isParsingIntelSyntax() && PercentTok.is(AsmToken::Percent)) + Parser.Lex(); // Eat percent token. + + const AsmToken &Tok = Parser.getTok(); + EndLoc = Tok.getEndLoc(); + + if (Tok.isNot(AsmToken::Identifier)) { + if (isParsingIntelSyntax()) return true; + return Error(StartLoc, "invalid register name", + SMRange(StartLoc, EndLoc)); + } + + RegNo = MatchRegisterName(Tok.getString()); + + // If the match failed, try the register name as lowercase. + if (RegNo == 0) + RegNo = MatchRegisterName(Tok.getString().lower()); + + // The "flags" register cannot be referenced directly. + // Treat it as an identifier instead. + if (isParsingInlineAsm() && isParsingIntelSyntax() && RegNo == X86::EFLAGS) + RegNo = 0; + + if (!is64BitMode()) { + // FIXME: This should be done using Requires<Not64BitMode> and + // Requires<In64BitMode> so "eiz" usage in 64-bit instructions can be also + // checked. + // FIXME: Check AH, CH, DH, BH cannot be used in an instruction requiring a + // REX prefix. + if (RegNo == X86::RIZ || + X86MCRegisterClasses[X86::GR64RegClassID].contains(RegNo) || + X86II::isX86_64NonExtLowByteReg(RegNo) || + X86II::isX86_64ExtendedReg(RegNo)) + return Error(StartLoc, "register %" + + Tok.getString() + " is only available in 64-bit mode", + SMRange(StartLoc, EndLoc)); + } + + // Parse "%st" as "%st(0)" and "%st(1)", which is multiple tokens. + if (RegNo == 0 && (Tok.getString() == "st" || Tok.getString() == "ST")) { + RegNo = X86::ST0; + Parser.Lex(); // Eat 'st' + + // Check to see if we have '(4)' after %st. + if (getLexer().isNot(AsmToken::LParen)) + return false; + // Lex the paren. + getParser().Lex(); + + const AsmToken &IntTok = Parser.getTok(); + if (IntTok.isNot(AsmToken::Integer)) + return Error(IntTok.getLoc(), "expected stack index"); + switch (IntTok.getIntVal()) { + case 0: RegNo = X86::ST0; break; + case 1: RegNo = X86::ST1; break; + case 2: RegNo = X86::ST2; break; + case 3: RegNo = X86::ST3; break; + case 4: RegNo = X86::ST4; break; + case 5: RegNo = X86::ST5; break; + case 6: RegNo = X86::ST6; break; + case 7: RegNo = X86::ST7; break; + default: return Error(IntTok.getLoc(), "invalid stack index"); + } + + if (getParser().Lex().isNot(AsmToken::RParen)) + return Error(Parser.getTok().getLoc(), "expected ')'"); + + EndLoc = Parser.getTok().getEndLoc(); + Parser.Lex(); // Eat ')' + return false; + } + + EndLoc = Parser.getTok().getEndLoc(); + + // If this is "db[0-7]", match it as an alias + // for dr[0-7]. + if (RegNo == 0 && Tok.getString().size() == 3 && + Tok.getString().startswith("db")) { + switch (Tok.getString()[2]) { + case '0': RegNo = X86::DR0; break; + case '1': RegNo = X86::DR1; break; + case '2': RegNo = X86::DR2; break; + case '3': RegNo = X86::DR3; break; + case '4': RegNo = X86::DR4; break; + case '5': RegNo = X86::DR5; break; + case '6': RegNo = X86::DR6; break; + case '7': RegNo = X86::DR7; break; + } + + if (RegNo != 0) { + EndLoc = Parser.getTok().getEndLoc(); + Parser.Lex(); // Eat it. + return false; + } + } + + if (RegNo == 0) { + if (isParsingIntelSyntax()) return true; + return Error(StartLoc, "invalid register name", + SMRange(StartLoc, EndLoc)); + } + + Parser.Lex(); // Eat identifier token. + return false; +} + +void X86AsmParser::SetFrameRegister(unsigned RegNo) { + Instrumentation->SetInitialFrameRegister(RegNo); +} + +std::unique_ptr<X86Operand> X86AsmParser::DefaultMemSIOperand(SMLoc Loc) { + unsigned basereg = + is64BitMode() ? X86::RSI : (is32BitMode() ? X86::ESI : X86::SI); + const MCExpr *Disp = MCConstantExpr::create(0, getContext()); + return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp, + /*BaseReg=*/basereg, /*IndexReg=*/0, /*Scale=*/1, + Loc, Loc, 0); +} + +std::unique_ptr<X86Operand> X86AsmParser::DefaultMemDIOperand(SMLoc Loc) { + unsigned basereg = + is64BitMode() ? X86::RDI : (is32BitMode() ? X86::EDI : X86::DI); + const MCExpr *Disp = MCConstantExpr::create(0, getContext()); + return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp, + /*BaseReg=*/basereg, /*IndexReg=*/0, /*Scale=*/1, + Loc, Loc, 0); +} + +void X86AsmParser::AddDefaultSrcDestOperands( + OperandVector& Operands, std::unique_ptr<llvm::MCParsedAsmOperand> &&Src, + std::unique_ptr<llvm::MCParsedAsmOperand> &&Dst) { + if (isParsingIntelSyntax()) { + Operands.push_back(std::move(Dst)); + Operands.push_back(std::move(Src)); + } + else { + Operands.push_back(std::move(Src)); + Operands.push_back(std::move(Dst)); + } +} + +std::unique_ptr<X86Operand> X86AsmParser::ParseOperand() { + if (isParsingIntelSyntax()) + return ParseIntelOperand(); + return ParseATTOperand(); +} + +/// getIntelMemOperandSize - Return intel memory operand size. +static unsigned getIntelMemOperandSize(StringRef OpStr) { + unsigned Size = StringSwitch<unsigned>(OpStr) + .Cases("BYTE", "byte", 8) + .Cases("WORD", "word", 16) + .Cases("DWORD", "dword", 32) + .Cases("FWORD", "fword", 48) + .Cases("QWORD", "qword", 64) + .Cases("MMWORD","mmword", 64) + .Cases("XWORD", "xword", 80) + .Cases("TBYTE", "tbyte", 80) + .Cases("XMMWORD", "xmmword", 128) + .Cases("YMMWORD", "ymmword", 256) + .Cases("ZMMWORD", "zmmword", 512) + .Cases("OPAQUE", "opaque", -1U) // needs to be non-zero, but doesn't matter + .Default(0); + return Size; +} + +std::unique_ptr<X86Operand> X86AsmParser::CreateMemForInlineAsm( + unsigned SegReg, const MCExpr *Disp, unsigned BaseReg, unsigned IndexReg, + unsigned Scale, SMLoc Start, SMLoc End, unsigned Size, StringRef Identifier, + InlineAsmIdentifierInfo &Info) { + // If we found a decl other than a VarDecl, then assume it is a FuncDecl or + // some other label reference. + if (isa<MCSymbolRefExpr>(Disp) && Info.OpDecl && !Info.IsVarDecl) { + // Insert an explicit size if the user didn't have one. + if (!Size) { + Size = getPointerWidth(); + InstInfo->AsmRewrites->emplace_back(AOK_SizeDirective, Start, + /*Len=*/0, Size); + } + + // Create an absolute memory reference in order to match against + // instructions taking a PC relative operand. + return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size, + Identifier, Info.OpDecl); + } + + // We either have a direct symbol reference, or an offset from a symbol. The + // parser always puts the symbol on the LHS, so look there for size + // calculation purposes. + const MCBinaryExpr *BinOp = dyn_cast<MCBinaryExpr>(Disp); + bool IsSymRef = + isa<MCSymbolRefExpr>(BinOp ? BinOp->getLHS() : Disp); + if (IsSymRef) { + if (!Size) { + Size = Info.Type * 8; // Size is in terms of bits in this context. + if (Size) + InstInfo->AsmRewrites->emplace_back(AOK_SizeDirective, Start, + /*Len=*/0, Size); + } + } + + // When parsing inline assembly we set the base register to a non-zero value + // if we don't know the actual value at this time. This is necessary to + // get the matching correct in some cases. + BaseReg = BaseReg ? BaseReg : 1; + return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg, + IndexReg, Scale, Start, End, Size, Identifier, + Info.OpDecl); +} + +static void +RewriteIntelBracExpression(SmallVectorImpl<AsmRewrite> &AsmRewrites, + StringRef SymName, int64_t ImmDisp, + int64_t FinalImmDisp, SMLoc &BracLoc, + SMLoc &StartInBrac, SMLoc &End) { + // Remove the '[' and ']' from the IR string. + AsmRewrites.emplace_back(AOK_Skip, BracLoc, 1); + AsmRewrites.emplace_back(AOK_Skip, End, 1); + + // If ImmDisp is non-zero, then we parsed a displacement before the + // bracketed expression (i.e., ImmDisp [ BaseReg + Scale*IndexReg + Disp]) + // If ImmDisp doesn't match the displacement computed by the state machine + // then we have an additional displacement in the bracketed expression. + if (ImmDisp != FinalImmDisp) { + if (ImmDisp) { + // We have an immediate displacement before the bracketed expression. + // Adjust this to match the final immediate displacement. + bool Found = false; + for (AsmRewrite &AR : AsmRewrites) { + if (AR.Loc.getPointer() > BracLoc.getPointer()) + continue; + if (AR.Kind == AOK_ImmPrefix || AR.Kind == AOK_Imm) { + assert (!Found && "ImmDisp already rewritten."); + AR.Kind = AOK_Imm; + AR.Len = BracLoc.getPointer() - AR.Loc.getPointer(); + AR.Val = FinalImmDisp; + Found = true; + break; + } + } + assert (Found && "Unable to rewrite ImmDisp."); + (void)Found; + } else { + // We have a symbolic and an immediate displacement, but no displacement + // before the bracketed expression. Put the immediate displacement + // before the bracketed expression. + AsmRewrites.emplace_back(AOK_Imm, BracLoc, 0, FinalImmDisp); + } + } + // Remove all the ImmPrefix rewrites within the brackets. + for (AsmRewrite &AR : AsmRewrites) { + if (AR.Loc.getPointer() < StartInBrac.getPointer()) + continue; + if (AR.Kind == AOK_ImmPrefix) + AR.Kind = AOK_Delete; + } + const char *SymLocPtr = SymName.data(); + // Skip everything before the symbol. + if (unsigned Len = SymLocPtr - StartInBrac.getPointer()) { + assert(Len > 0 && "Expected a non-negative length."); + AsmRewrites.emplace_back(AOK_Skip, StartInBrac, Len); + } + // Skip everything after the symbol. + if (unsigned Len = End.getPointer() - (SymLocPtr + SymName.size())) { + SMLoc Loc = SMLoc::getFromPointer(SymLocPtr + SymName.size()); + assert(Len > 0 && "Expected a non-negative length."); + AsmRewrites.emplace_back(AOK_Skip, Loc, Len); + } +} + +bool X86AsmParser::ParseIntelExpression(IntelExprStateMachine &SM, SMLoc &End) { + MCAsmParser &Parser = getParser(); + const AsmToken &Tok = Parser.getTok(); + + AsmToken::TokenKind PrevTK = AsmToken::Error; + bool Done = false; + while (!Done) { + bool UpdateLocLex = true; + + // The period in the dot operator (e.g., [ebx].foo.bar) is parsed as an + // identifier. Don't try an parse it as a register. + if (Tok.getString().startswith(".")) + break; + + // If we're parsing an immediate expression, we don't expect a '['. + if (SM.getStopOnLBrac() && getLexer().getKind() == AsmToken::LBrac) + break; + + AsmToken::TokenKind TK = getLexer().getKind(); + switch (TK) { + default: { + if (SM.isValidEndState()) { + Done = true; + break; + } + return Error(Tok.getLoc(), "unknown token in expression"); + } + case AsmToken::EndOfStatement: { + Done = true; + break; + } + case AsmToken::String: + case AsmToken::Identifier: { + // This could be a register or a symbolic displacement. + unsigned TmpReg; + const MCExpr *Val; + SMLoc IdentLoc = Tok.getLoc(); + StringRef Identifier = Tok.getString(); + if (TK != AsmToken::String && !ParseRegister(TmpReg, IdentLoc, End)) { + SM.onRegister(TmpReg); + UpdateLocLex = false; + break; + } else { + if (!isParsingInlineAsm()) { + if (getParser().parsePrimaryExpr(Val, End)) + return Error(Tok.getLoc(), "Unexpected identifier!"); + } else { + // This is a dot operator, not an adjacent identifier. + if (Identifier.find('.') != StringRef::npos && + PrevTK == AsmToken::RBrac) { + return false; + } else { + InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo(); + if (ParseIntelIdentifier(Val, Identifier, Info, + /*Unevaluated=*/false, End)) + return true; + } + } + SM.onIdentifierExpr(Val, Identifier); + UpdateLocLex = false; + break; + } + return Error(Tok.getLoc(), "Unexpected identifier!"); + } + case AsmToken::Integer: { + StringRef ErrMsg; + if (isParsingInlineAsm() && SM.getAddImmPrefix()) + InstInfo->AsmRewrites->emplace_back(AOK_ImmPrefix, Tok.getLoc()); + // Look for 'b' or 'f' following an Integer as a directional label + SMLoc Loc = getTok().getLoc(); + int64_t IntVal = getTok().getIntVal(); + End = consumeToken(); + UpdateLocLex = false; + if (getLexer().getKind() == AsmToken::Identifier) { + StringRef IDVal = getTok().getString(); + if (IDVal == "f" || IDVal == "b") { + MCSymbol *Sym = + getContext().getDirectionalLocalSymbol(IntVal, IDVal == "b"); + MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; + const MCExpr *Val = + MCSymbolRefExpr::create(Sym, Variant, getContext()); + if (IDVal == "b" && Sym->isUndefined()) + return Error(Loc, "invalid reference to undefined symbol"); + StringRef Identifier = Sym->getName(); + SM.onIdentifierExpr(Val, Identifier); + End = consumeToken(); + } else { + if (SM.onInteger(IntVal, ErrMsg)) + return Error(Loc, ErrMsg); + } + } else { + if (SM.onInteger(IntVal, ErrMsg)) + return Error(Loc, ErrMsg); + } + break; + } + case AsmToken::Plus: SM.onPlus(); break; + case AsmToken::Minus: SM.onMinus(); break; + case AsmToken::Tilde: SM.onNot(); break; + case AsmToken::Star: SM.onStar(); break; + case AsmToken::Slash: SM.onDivide(); break; + case AsmToken::Pipe: SM.onOr(); break; + case AsmToken::Caret: SM.onXor(); break; + case AsmToken::Amp: SM.onAnd(); break; + case AsmToken::LessLess: + SM.onLShift(); break; + case AsmToken::GreaterGreater: + SM.onRShift(); break; + case AsmToken::LBrac: SM.onLBrac(); break; + case AsmToken::RBrac: SM.onRBrac(); break; + case AsmToken::LParen: SM.onLParen(); break; + case AsmToken::RParen: SM.onRParen(); break; + } + if (SM.hadError()) + return Error(Tok.getLoc(), "unknown token in expression"); + + if (!Done && UpdateLocLex) + End = consumeToken(); + + PrevTK = TK; + } + return false; +} + +std::unique_ptr<X86Operand> +X86AsmParser::ParseIntelBracExpression(unsigned SegReg, SMLoc Start, + int64_t ImmDisp, unsigned Size) { + MCAsmParser &Parser = getParser(); + const AsmToken &Tok = Parser.getTok(); + SMLoc BracLoc = Tok.getLoc(), End = Tok.getEndLoc(); + if (getLexer().isNot(AsmToken::LBrac)) + return ErrorOperand(BracLoc, "Expected '[' token!"); + Parser.Lex(); // Eat '[' + + SMLoc StartInBrac = Tok.getLoc(); + // Parse [ Symbol + ImmDisp ] and [ BaseReg + Scale*IndexReg + ImmDisp ]. We + // may have already parsed an immediate displacement before the bracketed + // expression. + IntelExprStateMachine SM(ImmDisp, /*StopOnLBrac=*/false, /*AddImmPrefix=*/true); + if (ParseIntelExpression(SM, End)) + return nullptr; + + const MCExpr *Disp = nullptr; + if (const MCExpr *Sym = SM.getSym()) { + // A symbolic displacement. + Disp = Sym; + if (isParsingInlineAsm()) + RewriteIntelBracExpression(*InstInfo->AsmRewrites, SM.getSymName(), + ImmDisp, SM.getImm(), BracLoc, StartInBrac, + End); + } + + if (SM.getImm() || !Disp) { + const MCExpr *Imm = MCConstantExpr::create(SM.getImm(), getContext()); + if (Disp) + Disp = MCBinaryExpr::createAdd(Disp, Imm, getContext()); + else + Disp = Imm; // An immediate displacement only. + } + + // Parse struct field access. Intel requires a dot, but MSVC doesn't. MSVC + // will in fact do global lookup the field name inside all global typedefs, + // but we don't emulate that. + if (Tok.getString().find('.') != StringRef::npos) { + const MCExpr *NewDisp; + if (ParseIntelDotOperator(Disp, NewDisp)) + return nullptr; + + End = Tok.getEndLoc(); + Parser.Lex(); // Eat the field. + Disp = NewDisp; + } + + int BaseReg = SM.getBaseReg(); + int IndexReg = SM.getIndexReg(); + int Scale = SM.getScale(); + if (!isParsingInlineAsm()) { + // handle [-42] + if (!BaseReg && !IndexReg) { + if (!SegReg) + return X86Operand::CreateMem(getPointerWidth(), Disp, Start, End, Size); + return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1, + Start, End, Size); + } + StringRef ErrMsg; + if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) { + Error(StartInBrac, ErrMsg); + return nullptr; + } + return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg, + IndexReg, Scale, Start, End, Size); + } + + InlineAsmIdentifierInfo &Info = SM.getIdentifierInfo(); + return CreateMemForInlineAsm(SegReg, Disp, BaseReg, IndexReg, Scale, Start, + End, Size, SM.getSymName(), Info); +} + +// Inline assembly may use variable names with namespace alias qualifiers. +bool X86AsmParser::ParseIntelIdentifier(const MCExpr *&Val, + StringRef &Identifier, + InlineAsmIdentifierInfo &Info, + bool IsUnevaluatedOperand, SMLoc &End) { + MCAsmParser &Parser = getParser(); + assert(isParsingInlineAsm() && "Expected to be parsing inline assembly."); + Val = nullptr; + + StringRef LineBuf(Identifier.data()); + void *Result = + SemaCallback->LookupInlineAsmIdentifier(LineBuf, Info, IsUnevaluatedOperand); + + const AsmToken &Tok = Parser.getTok(); + SMLoc Loc = Tok.getLoc(); + + // Advance the token stream until the end of the current token is + // after the end of what the frontend claimed. + const char *EndPtr = Tok.getLoc().getPointer() + LineBuf.size(); + do { + End = Tok.getEndLoc(); + getLexer().Lex(); + } while (End.getPointer() < EndPtr); + Identifier = LineBuf; + + // The frontend should end parsing on an assembler token boundary, unless it + // failed parsing. + assert((End.getPointer() == EndPtr || !Result) && + "frontend claimed part of a token?"); + + // If the identifier lookup was unsuccessful, assume that we are dealing with + // a label. + if (!Result) { + StringRef InternalName = + SemaCallback->LookupInlineAsmLabel(Identifier, getSourceManager(), + Loc, false); + assert(InternalName.size() && "We should have an internal name here."); + // Push a rewrite for replacing the identifier name with the internal name. + InstInfo->AsmRewrites->emplace_back(AOK_Label, Loc, Identifier.size(), + InternalName); + } + + // Create the symbol reference. + MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier); + MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; + Val = MCSymbolRefExpr::create(Sym, Variant, getParser().getContext()); + return false; +} + +/// \brief Parse intel style segment override. +std::unique_ptr<X86Operand> +X86AsmParser::ParseIntelSegmentOverride(unsigned SegReg, SMLoc Start, + unsigned Size) { + MCAsmParser &Parser = getParser(); + assert(SegReg != 0 && "Tried to parse a segment override without a segment!"); + const AsmToken &Tok = Parser.getTok(); // Eat colon. + if (Tok.isNot(AsmToken::Colon)) + return ErrorOperand(Tok.getLoc(), "Expected ':' token!"); + Parser.Lex(); // Eat ':' + + int64_t ImmDisp = 0; + if (getLexer().is(AsmToken::Integer)) { + ImmDisp = Tok.getIntVal(); + AsmToken ImmDispToken = Parser.Lex(); // Eat the integer. + + if (isParsingInlineAsm()) + InstInfo->AsmRewrites->emplace_back(AOK_ImmPrefix, ImmDispToken.getLoc()); + + if (getLexer().isNot(AsmToken::LBrac)) { + // An immediate following a 'segment register', 'colon' token sequence can + // be followed by a bracketed expression. If it isn't we know we have our + // final segment override. + const MCExpr *Disp = MCConstantExpr::create(ImmDisp, getContext()); + return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, + /*BaseReg=*/0, /*IndexReg=*/0, /*Scale=*/1, + Start, ImmDispToken.getEndLoc(), Size); + } + } + + if (getLexer().is(AsmToken::LBrac)) + return ParseIntelBracExpression(SegReg, Start, ImmDisp, Size); + + const MCExpr *Val; + SMLoc End; + if (!isParsingInlineAsm()) { + if (getParser().parsePrimaryExpr(Val, End)) + return ErrorOperand(Tok.getLoc(), "unknown token in expression"); + + return X86Operand::CreateMem(getPointerWidth(), Val, Start, End, Size); + } + + InlineAsmIdentifierInfo Info; + StringRef Identifier = Tok.getString(); + if (ParseIntelIdentifier(Val, Identifier, Info, + /*Unevaluated=*/false, End)) + return nullptr; + return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0,/*IndexReg=*/0, + /*Scale=*/1, Start, End, Size, Identifier, Info); +} + +//ParseRoundingModeOp - Parse AVX-512 rounding mode operand +std::unique_ptr<X86Operand> +X86AsmParser::ParseRoundingModeOp(SMLoc Start, SMLoc End) { + MCAsmParser &Parser = getParser(); + const AsmToken &Tok = Parser.getTok(); + // Eat "{" and mark the current place. + const SMLoc consumedToken = consumeToken(); + if (Tok.getIdentifier().startswith("r")){ + int rndMode = StringSwitch<int>(Tok.getIdentifier()) + .Case("rn", X86::STATIC_ROUNDING::TO_NEAREST_INT) + .Case("rd", X86::STATIC_ROUNDING::TO_NEG_INF) + .Case("ru", X86::STATIC_ROUNDING::TO_POS_INF) + .Case("rz", X86::STATIC_ROUNDING::TO_ZERO) + .Default(-1); + if (-1 == rndMode) + return ErrorOperand(Tok.getLoc(), "Invalid rounding mode."); + Parser.Lex(); // Eat "r*" of r*-sae + if (!getLexer().is(AsmToken::Minus)) + return ErrorOperand(Tok.getLoc(), "Expected - at this point"); + Parser.Lex(); // Eat "-" + Parser.Lex(); // Eat the sae + if (!getLexer().is(AsmToken::RCurly)) + return ErrorOperand(Tok.getLoc(), "Expected } at this point"); + Parser.Lex(); // Eat "}" + const MCExpr *RndModeOp = + MCConstantExpr::create(rndMode, Parser.getContext()); + return X86Operand::CreateImm(RndModeOp, Start, End); + } + if(Tok.getIdentifier().equals("sae")){ + Parser.Lex(); // Eat the sae + if (!getLexer().is(AsmToken::RCurly)) + return ErrorOperand(Tok.getLoc(), "Expected } at this point"); + Parser.Lex(); // Eat "}" + return X86Operand::CreateToken("{sae}", consumedToken); + } + return ErrorOperand(Tok.getLoc(), "unknown token in expression"); +} +/// ParseIntelMemOperand - Parse intel style memory operand. +std::unique_ptr<X86Operand> X86AsmParser::ParseIntelMemOperand(int64_t ImmDisp, + SMLoc Start, + unsigned Size) { + MCAsmParser &Parser = getParser(); + const AsmToken &Tok = Parser.getTok(); + SMLoc End; + + // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ]. + if (getLexer().is(AsmToken::LBrac)) + return ParseIntelBracExpression(/*SegReg=*/0, Start, ImmDisp, Size); + assert(ImmDisp == 0); + + const MCExpr *Val; + if (!isParsingInlineAsm()) { + if (getParser().parsePrimaryExpr(Val, End)) + return ErrorOperand(Tok.getLoc(), "unknown token in expression"); + + return X86Operand::CreateMem(getPointerWidth(), Val, Start, End, Size); + } + + InlineAsmIdentifierInfo Info; + StringRef Identifier = Tok.getString(); + if (ParseIntelIdentifier(Val, Identifier, Info, + /*Unevaluated=*/false, End)) + return nullptr; + + if (!getLexer().is(AsmToken::LBrac)) + return CreateMemForInlineAsm(/*SegReg=*/0, Val, /*BaseReg=*/0, /*IndexReg=*/0, + /*Scale=*/1, Start, End, Size, Identifier, Info); + + Parser.Lex(); // Eat '[' + + // Parse Identifier [ ImmDisp ] + IntelExprStateMachine SM(/*ImmDisp=*/0, /*StopOnLBrac=*/true, + /*AddImmPrefix=*/false); + if (ParseIntelExpression(SM, End)) + return nullptr; + + if (SM.getSym()) { + Error(Start, "cannot use more than one symbol in memory operand"); + return nullptr; + } + if (SM.getBaseReg()) { + Error(Start, "cannot use base register with variable reference"); + return nullptr; + } + if (SM.getIndexReg()) { + Error(Start, "cannot use index register with variable reference"); + return nullptr; + } + + const MCExpr *Disp = MCConstantExpr::create(SM.getImm(), getContext()); + // BaseReg is non-zero to avoid assertions. In the context of inline asm, + // we're pointing to a local variable in memory, so the base register is + // really the frame or stack pointer. + return X86Operand::CreateMem(getPointerWidth(), /*SegReg=*/0, Disp, + /*BaseReg=*/1, /*IndexReg=*/0, /*Scale=*/1, + Start, End, Size, Identifier, Info.OpDecl); +} + +/// Parse the '.' operator. +bool X86AsmParser::ParseIntelDotOperator(const MCExpr *Disp, + const MCExpr *&NewDisp) { + MCAsmParser &Parser = getParser(); + const AsmToken &Tok = Parser.getTok(); + int64_t OrigDispVal, DotDispVal; + + // FIXME: Handle non-constant expressions. + if (const MCConstantExpr *OrigDisp = dyn_cast<MCConstantExpr>(Disp)) + OrigDispVal = OrigDisp->getValue(); + else + return Error(Tok.getLoc(), "Non-constant offsets are not supported!"); + + // Drop the optional '.'. + StringRef DotDispStr = Tok.getString(); + if (DotDispStr.startswith(".")) + DotDispStr = DotDispStr.drop_front(1); + + // .Imm gets lexed as a real. + if (Tok.is(AsmToken::Real)) { + APInt DotDisp; + DotDispStr.getAsInteger(10, DotDisp); + DotDispVal = DotDisp.getZExtValue(); + } else if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) { + unsigned DotDisp; + std::pair<StringRef, StringRef> BaseMember = DotDispStr.split('.'); + if (SemaCallback->LookupInlineAsmField(BaseMember.first, BaseMember.second, + DotDisp)) + return Error(Tok.getLoc(), "Unable to lookup field reference!"); + DotDispVal = DotDisp; + } else + return Error(Tok.getLoc(), "Unexpected token type!"); + + if (isParsingInlineAsm() && Tok.is(AsmToken::Identifier)) { + SMLoc Loc = SMLoc::getFromPointer(DotDispStr.data()); + unsigned Len = DotDispStr.size(); + unsigned Val = OrigDispVal + DotDispVal; + InstInfo->AsmRewrites->emplace_back(AOK_DotOperator, Loc, Len, Val); + } + + NewDisp = MCConstantExpr::create(OrigDispVal + DotDispVal, getContext()); + return false; +} + +/// Parse the 'offset' operator. This operator is used to specify the +/// location rather then the content of a variable. +std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOffsetOfOperator() { + MCAsmParser &Parser = getParser(); + const AsmToken &Tok = Parser.getTok(); + SMLoc OffsetOfLoc = Tok.getLoc(); + Parser.Lex(); // Eat offset. + + const MCExpr *Val; + InlineAsmIdentifierInfo Info; + SMLoc Start = Tok.getLoc(), End; + StringRef Identifier = Tok.getString(); + if (ParseIntelIdentifier(Val, Identifier, Info, + /*Unevaluated=*/false, End)) + return nullptr; + + // Don't emit the offset operator. + InstInfo->AsmRewrites->emplace_back(AOK_Skip, OffsetOfLoc, 7); + + // The offset operator will have an 'r' constraint, thus we need to create + // register operand to ensure proper matching. Just pick a GPR based on + // the size of a pointer. + unsigned RegNo = + is64BitMode() ? X86::RBX : (is32BitMode() ? X86::EBX : X86::BX); + return X86Operand::CreateReg(RegNo, Start, End, /*GetAddress=*/true, + OffsetOfLoc, Identifier, Info.OpDecl); +} + +enum IntelOperatorKind { + IOK_LENGTH, + IOK_SIZE, + IOK_TYPE +}; + +/// Parse the 'LENGTH', 'TYPE' and 'SIZE' operators. The LENGTH operator +/// returns the number of elements in an array. It returns the value 1 for +/// non-array variables. The SIZE operator returns the size of a C or C++ +/// variable. A variable's size is the product of its LENGTH and TYPE. The +/// TYPE operator returns the size of a C or C++ type or variable. If the +/// variable is an array, TYPE returns the size of a single element. +std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperator(unsigned OpKind) { + MCAsmParser &Parser = getParser(); + const AsmToken &Tok = Parser.getTok(); + SMLoc TypeLoc = Tok.getLoc(); + Parser.Lex(); // Eat operator. + + const MCExpr *Val = nullptr; + InlineAsmIdentifierInfo Info; + SMLoc Start = Tok.getLoc(), End; + StringRef Identifier = Tok.getString(); + if (ParseIntelIdentifier(Val, Identifier, Info, + /*Unevaluated=*/true, End)) + return nullptr; + + if (!Info.OpDecl) + return ErrorOperand(Start, "unable to lookup expression"); + + unsigned CVal = 0; + switch(OpKind) { + default: llvm_unreachable("Unexpected operand kind!"); + case IOK_LENGTH: CVal = Info.Length; break; + case IOK_SIZE: CVal = Info.Size; break; + case IOK_TYPE: CVal = Info.Type; break; + } + + // Rewrite the type operator and the C or C++ type or variable in terms of an + // immediate. E.g. TYPE foo -> $$4 + unsigned Len = End.getPointer() - TypeLoc.getPointer(); + InstInfo->AsmRewrites->emplace_back(AOK_Imm, TypeLoc, Len, CVal); + + const MCExpr *Imm = MCConstantExpr::create(CVal, getContext()); + return X86Operand::CreateImm(Imm, Start, End); +} + +std::unique_ptr<X86Operand> X86AsmParser::ParseIntelOperand() { + MCAsmParser &Parser = getParser(); + const AsmToken &Tok = Parser.getTok(); + SMLoc Start, End; + + // Offset, length, type and size operators. + if (isParsingInlineAsm()) { + StringRef AsmTokStr = Tok.getString(); + if (AsmTokStr == "offset" || AsmTokStr == "OFFSET") + return ParseIntelOffsetOfOperator(); + if (AsmTokStr == "length" || AsmTokStr == "LENGTH") + return ParseIntelOperator(IOK_LENGTH); + if (AsmTokStr == "size" || AsmTokStr == "SIZE") + return ParseIntelOperator(IOK_SIZE); + if (AsmTokStr == "type" || AsmTokStr == "TYPE") + return ParseIntelOperator(IOK_TYPE); + } + + bool PtrInOperand = false; + unsigned Size = getIntelMemOperandSize(Tok.getString()); + if (Size) { + Parser.Lex(); // Eat operand size (e.g., byte, word). + if (Tok.getString() != "PTR" && Tok.getString() != "ptr") + return ErrorOperand(Tok.getLoc(), "Expected 'PTR' or 'ptr' token!"); + Parser.Lex(); // Eat ptr. + PtrInOperand = true; + } + Start = Tok.getLoc(); + + // Immediate. + if (getLexer().is(AsmToken::Integer) || getLexer().is(AsmToken::Minus) || + getLexer().is(AsmToken::Tilde) || getLexer().is(AsmToken::LParen)) { + AsmToken StartTok = Tok; + IntelExprStateMachine SM(/*Imm=*/0, /*StopOnLBrac=*/true, + /*AddImmPrefix=*/false); + if (ParseIntelExpression(SM, End)) + return nullptr; + + int64_t Imm = SM.getImm(); + if (isParsingInlineAsm()) { + unsigned Len = Tok.getLoc().getPointer() - Start.getPointer(); + if (StartTok.getString().size() == Len) + // Just add a prefix if this wasn't a complex immediate expression. + InstInfo->AsmRewrites->emplace_back(AOK_ImmPrefix, Start); + else + // Otherwise, rewrite the complex expression as a single immediate. + InstInfo->AsmRewrites->emplace_back(AOK_Imm, Start, Len, Imm); + } + + if (getLexer().isNot(AsmToken::LBrac)) { + // If a directional label (ie. 1f or 2b) was parsed above from + // ParseIntelExpression() then SM.getSym() was set to a pointer to + // to the MCExpr with the directional local symbol and this is a + // memory operand not an immediate operand. + if (SM.getSym()) + return X86Operand::CreateMem(getPointerWidth(), SM.getSym(), Start, End, + Size); + + const MCExpr *ImmExpr = MCConstantExpr::create(Imm, getContext()); + return X86Operand::CreateImm(ImmExpr, Start, End); + } + + // Only positive immediates are valid. + if (Imm < 0) + return ErrorOperand(Start, "expected a positive immediate displacement " + "before bracketed expr."); + + // Parse ImmDisp [ BaseReg + Scale*IndexReg + Disp ]. + return ParseIntelMemOperand(Imm, Start, Size); + } + + // rounding mode token + if (getSTI().getFeatureBits()[X86::FeatureAVX512] && + getLexer().is(AsmToken::LCurly)) + return ParseRoundingModeOp(Start, End); + + // Register. + unsigned RegNo = 0; + if (!ParseRegister(RegNo, Start, End)) { + // If this is a segment register followed by a ':', then this is the start + // of a segment override, otherwise this is a normal register reference. + // In case it is a normal register and there is ptr in the operand this + // is an error + if (getLexer().isNot(AsmToken::Colon)){ + if (PtrInOperand){ + return ErrorOperand(Start, "expected memory operand after " + "'ptr', found register operand instead"); + } + return X86Operand::CreateReg(RegNo, Start, End); + } + + return ParseIntelSegmentOverride(/*SegReg=*/RegNo, Start, Size); + } + + // Memory operand. + return ParseIntelMemOperand(/*Disp=*/0, Start, Size); +} + +std::unique_ptr<X86Operand> X86AsmParser::ParseATTOperand() { + MCAsmParser &Parser = getParser(); + switch (getLexer().getKind()) { + default: + // Parse a memory operand with no segment register. + return ParseMemOperand(0, Parser.getTok().getLoc()); + case AsmToken::Percent: { + // Read the register. + unsigned RegNo; + SMLoc Start, End; + if (ParseRegister(RegNo, Start, End)) return nullptr; + if (RegNo == X86::EIZ || RegNo == X86::RIZ) { + Error(Start, "%eiz and %riz can only be used as index registers", + SMRange(Start, End)); + return nullptr; + } + + // If this is a segment register followed by a ':', then this is the start + // of a memory reference, otherwise this is a normal register reference. + if (getLexer().isNot(AsmToken::Colon)) + return X86Operand::CreateReg(RegNo, Start, End); + + if (!X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo)) + return ErrorOperand(Start, "invalid segment register"); + + getParser().Lex(); // Eat the colon. + return ParseMemOperand(RegNo, Start); + } + case AsmToken::Dollar: { + // $42 -> immediate. + SMLoc Start = Parser.getTok().getLoc(), End; + Parser.Lex(); + const MCExpr *Val; + if (getParser().parseExpression(Val, End)) + return nullptr; + return X86Operand::CreateImm(Val, Start, End); + } + case AsmToken::LCurly:{ + SMLoc Start = Parser.getTok().getLoc(), End; + if (getSTI().getFeatureBits()[X86::FeatureAVX512]) + return ParseRoundingModeOp(Start, End); + return ErrorOperand(Start, "unknown token in expression"); + } + } +} + +bool X86AsmParser::HandleAVX512Operand(OperandVector &Operands, + const MCParsedAsmOperand &Op) { + MCAsmParser &Parser = getParser(); + if(getSTI().getFeatureBits()[X86::FeatureAVX512]) { + if (getLexer().is(AsmToken::LCurly)) { + // Eat "{" and mark the current place. + const SMLoc consumedToken = consumeToken(); + // Distinguish {1to<NUM>} from {%k<NUM>}. + if(getLexer().is(AsmToken::Integer)) { + // Parse memory broadcasting ({1to<NUM>}). + if (getLexer().getTok().getIntVal() != 1) + return !ErrorAndEatStatement(getLexer().getLoc(), + "Expected 1to<NUM> at this point"); + Parser.Lex(); // Eat "1" of 1to8 + if (!getLexer().is(AsmToken::Identifier) || + !getLexer().getTok().getIdentifier().startswith("to")) + return !ErrorAndEatStatement(getLexer().getLoc(), + "Expected 1to<NUM> at this point"); + // Recognize only reasonable suffixes. + const char *BroadcastPrimitive = + StringSwitch<const char*>(getLexer().getTok().getIdentifier()) + .Case("to2", "{1to2}") + .Case("to4", "{1to4}") + .Case("to8", "{1to8}") + .Case("to16", "{1to16}") + .Default(nullptr); + if (!BroadcastPrimitive) + return !ErrorAndEatStatement(getLexer().getLoc(), + "Invalid memory broadcast primitive."); + Parser.Lex(); // Eat "toN" of 1toN + if (!getLexer().is(AsmToken::RCurly)) + return !ErrorAndEatStatement(getLexer().getLoc(), + "Expected } at this point"); + Parser.Lex(); // Eat "}" + Operands.push_back(X86Operand::CreateToken(BroadcastPrimitive, + consumedToken)); + // No AVX512 specific primitives can pass + // after memory broadcasting, so return. + return true; + } else { + // Parse mask register {%k1} + Operands.push_back(X86Operand::CreateToken("{", consumedToken)); + if (std::unique_ptr<X86Operand> Op = ParseOperand()) { + Operands.push_back(std::move(Op)); + if (!getLexer().is(AsmToken::RCurly)) + return !ErrorAndEatStatement(getLexer().getLoc(), + "Expected } at this point"); + Operands.push_back(X86Operand::CreateToken("}", consumeToken())); + + // Parse "zeroing non-masked" semantic {z} + if (getLexer().is(AsmToken::LCurly)) { + Operands.push_back(X86Operand::CreateToken("{z}", consumeToken())); + if (!getLexer().is(AsmToken::Identifier) || + getLexer().getTok().getIdentifier() != "z") + return !ErrorAndEatStatement(getLexer().getLoc(), + "Expected z at this point"); + Parser.Lex(); // Eat the z + if (!getLexer().is(AsmToken::RCurly)) + return !ErrorAndEatStatement(getLexer().getLoc(), + "Expected } at this point"); + Parser.Lex(); // Eat the } + } + } + } + } + } + return true; +} + +/// ParseMemOperand: segment: disp(basereg, indexreg, scale). The '%ds:' prefix +/// has already been parsed if present. +std::unique_ptr<X86Operand> X86AsmParser::ParseMemOperand(unsigned SegReg, + SMLoc MemStart) { + + MCAsmParser &Parser = getParser(); + // We have to disambiguate a parenthesized expression "(4+5)" from the start + // of a memory operand with a missing displacement "(%ebx)" or "(,%eax)". The + // only way to do this without lookahead is to eat the '(' and see what is + // after it. + const MCExpr *Disp = MCConstantExpr::create(0, getParser().getContext()); + if (getLexer().isNot(AsmToken::LParen)) { + SMLoc ExprEnd; + if (getParser().parseExpression(Disp, ExprEnd)) return nullptr; + + // After parsing the base expression we could either have a parenthesized + // memory address or not. If not, return now. If so, eat the (. + if (getLexer().isNot(AsmToken::LParen)) { + // Unless we have a segment register, treat this as an immediate. + if (SegReg == 0) + return X86Operand::CreateMem(getPointerWidth(), Disp, MemStart, ExprEnd); + return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1, + MemStart, ExprEnd); + } + + // Eat the '('. + Parser.Lex(); + } else { + // Okay, we have a '('. We don't know if this is an expression or not, but + // so we have to eat the ( to see beyond it. + SMLoc LParenLoc = Parser.getTok().getLoc(); + Parser.Lex(); // Eat the '('. + + if (getLexer().is(AsmToken::Percent) || getLexer().is(AsmToken::Comma)) { + // Nothing to do here, fall into the code below with the '(' part of the + // memory operand consumed. + } else { + SMLoc ExprEnd; + + // It must be an parenthesized expression, parse it now. + if (getParser().parseParenExpression(Disp, ExprEnd)) + return nullptr; + + // After parsing the base expression we could either have a parenthesized + // memory address or not. If not, return now. If so, eat the (. + if (getLexer().isNot(AsmToken::LParen)) { + // Unless we have a segment register, treat this as an immediate. + if (SegReg == 0) + return X86Operand::CreateMem(getPointerWidth(), Disp, LParenLoc, + ExprEnd); + return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, 0, 0, 1, + MemStart, ExprEnd); + } + + // Eat the '('. + Parser.Lex(); + } + } + + // If we reached here, then we just ate the ( of the memory operand. Process + // the rest of the memory operand. + unsigned BaseReg = 0, IndexReg = 0, Scale = 1; + SMLoc IndexLoc, BaseLoc; + + if (getLexer().is(AsmToken::Percent)) { + SMLoc StartLoc, EndLoc; + BaseLoc = Parser.getTok().getLoc(); + if (ParseRegister(BaseReg, StartLoc, EndLoc)) return nullptr; + if (BaseReg == X86::EIZ || BaseReg == X86::RIZ) { + Error(StartLoc, "eiz and riz can only be used as index registers", + SMRange(StartLoc, EndLoc)); + return nullptr; + } + } + + if (getLexer().is(AsmToken::Comma)) { + Parser.Lex(); // Eat the comma. + IndexLoc = Parser.getTok().getLoc(); + + // Following the comma we should have either an index register, or a scale + // value. We don't support the later form, but we want to parse it + // correctly. + // + // Not that even though it would be completely consistent to support syntax + // like "1(%eax,,1)", the assembler doesn't. Use "eiz" or "riz" for this. + if (getLexer().is(AsmToken::Percent)) { + SMLoc L; + if (ParseRegister(IndexReg, L, L)) return nullptr; + + if (getLexer().isNot(AsmToken::RParen)) { + // Parse the scale amount: + // ::= ',' [scale-expression] + if (getLexer().isNot(AsmToken::Comma)) { + Error(Parser.getTok().getLoc(), + "expected comma in scale expression"); + return nullptr; + } + Parser.Lex(); // Eat the comma. + + if (getLexer().isNot(AsmToken::RParen)) { + SMLoc Loc = Parser.getTok().getLoc(); + + int64_t ScaleVal; + if (getParser().parseAbsoluteExpression(ScaleVal)){ + Error(Loc, "expected scale expression"); + return nullptr; + } + + // Validate the scale amount. + if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) && + ScaleVal != 1) { + Error(Loc, "scale factor in 16-bit address must be 1"); + return nullptr; + } + if (ScaleVal != 1 && ScaleVal != 2 && ScaleVal != 4 && + ScaleVal != 8) { + Error(Loc, "scale factor in address must be 1, 2, 4 or 8"); + return nullptr; + } + Scale = (unsigned)ScaleVal; + } + } + } else if (getLexer().isNot(AsmToken::RParen)) { + // A scale amount without an index is ignored. + // index. + SMLoc Loc = Parser.getTok().getLoc(); + + int64_t Value; + if (getParser().parseAbsoluteExpression(Value)) + return nullptr; + + if (Value != 1) + Warning(Loc, "scale factor without index register is ignored"); + Scale = 1; + } + } + + // Ok, we've eaten the memory operand, verify we have a ')' and eat it too. + if (getLexer().isNot(AsmToken::RParen)) { + Error(Parser.getTok().getLoc(), "unexpected token in memory operand"); + return nullptr; + } + SMLoc MemEnd = Parser.getTok().getEndLoc(); + Parser.Lex(); // Eat the ')'. + + // Check for use of invalid 16-bit registers. Only BX/BP/SI/DI are allowed, + // and then only in non-64-bit modes. Except for DX, which is a special case + // because an unofficial form of in/out instructions uses it. + if (X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg) && + (is64BitMode() || (BaseReg != X86::BX && BaseReg != X86::BP && + BaseReg != X86::SI && BaseReg != X86::DI)) && + BaseReg != X86::DX) { + Error(BaseLoc, "invalid 16-bit base register"); + return nullptr; + } + if (BaseReg == 0 && + X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg)) { + Error(IndexLoc, "16-bit memory operand may not include only index register"); + return nullptr; + } + + StringRef ErrMsg; + if (CheckBaseRegAndIndexReg(BaseReg, IndexReg, ErrMsg)) { + Error(BaseLoc, ErrMsg); + return nullptr; + } + + if (SegReg || BaseReg || IndexReg) + return X86Operand::CreateMem(getPointerWidth(), SegReg, Disp, BaseReg, + IndexReg, Scale, MemStart, MemEnd); + return X86Operand::CreateMem(getPointerWidth(), Disp, MemStart, MemEnd); +} + +bool X86AsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, + SMLoc NameLoc, OperandVector &Operands) { + MCAsmParser &Parser = getParser(); + InstInfo = &Info; + StringRef PatchedName = Name; + + // FIXME: Hack to recognize setneb as setne. + if (PatchedName.startswith("set") && PatchedName.endswith("b") && + PatchedName != "setb" && PatchedName != "setnb") + PatchedName = PatchedName.substr(0, Name.size()-1); + + // FIXME: Hack to recognize cmp<comparison code>{ss,sd,ps,pd}. + if ((PatchedName.startswith("cmp") || PatchedName.startswith("vcmp")) && + (PatchedName.endswith("ss") || PatchedName.endswith("sd") || + PatchedName.endswith("ps") || PatchedName.endswith("pd"))) { + bool IsVCMP = PatchedName[0] == 'v'; + unsigned CCIdx = IsVCMP ? 4 : 3; + unsigned ComparisonCode = StringSwitch<unsigned>( + PatchedName.slice(CCIdx, PatchedName.size() - 2)) + .Case("eq", 0x00) + .Case("lt", 0x01) + .Case("le", 0x02) + .Case("unord", 0x03) + .Case("neq", 0x04) + .Case("nlt", 0x05) + .Case("nle", 0x06) + .Case("ord", 0x07) + /* AVX only from here */ + .Case("eq_uq", 0x08) + .Case("nge", 0x09) + .Case("ngt", 0x0A) + .Case("false", 0x0B) + .Case("neq_oq", 0x0C) + .Case("ge", 0x0D) + .Case("gt", 0x0E) + .Case("true", 0x0F) + .Case("eq_os", 0x10) + .Case("lt_oq", 0x11) + .Case("le_oq", 0x12) + .Case("unord_s", 0x13) + .Case("neq_us", 0x14) + .Case("nlt_uq", 0x15) + .Case("nle_uq", 0x16) + .Case("ord_s", 0x17) + .Case("eq_us", 0x18) + .Case("nge_uq", 0x19) + .Case("ngt_uq", 0x1A) + .Case("false_os", 0x1B) + .Case("neq_os", 0x1C) + .Case("ge_oq", 0x1D) + .Case("gt_oq", 0x1E) + .Case("true_us", 0x1F) + .Default(~0U); + if (ComparisonCode != ~0U && (IsVCMP || ComparisonCode < 8)) { + + Operands.push_back(X86Operand::CreateToken(PatchedName.slice(0, CCIdx), + NameLoc)); + + const MCExpr *ImmOp = MCConstantExpr::create(ComparisonCode, + getParser().getContext()); + Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc)); + + PatchedName = PatchedName.substr(PatchedName.size() - 2); + } + } + + // FIXME: Hack to recognize vpcmp<comparison code>{ub,uw,ud,uq,b,w,d,q}. + if (PatchedName.startswith("vpcmp") && + (PatchedName.endswith("b") || PatchedName.endswith("w") || + PatchedName.endswith("d") || PatchedName.endswith("q"))) { + unsigned CCIdx = PatchedName.drop_back().back() == 'u' ? 2 : 1; + unsigned ComparisonCode = StringSwitch<unsigned>( + PatchedName.slice(5, PatchedName.size() - CCIdx)) + .Case("eq", 0x0) // Only allowed on unsigned. Checked below. + .Case("lt", 0x1) + .Case("le", 0x2) + //.Case("false", 0x3) // Not a documented alias. + .Case("neq", 0x4) + .Case("nlt", 0x5) + .Case("nle", 0x6) + //.Case("true", 0x7) // Not a documented alias. + .Default(~0U); + if (ComparisonCode != ~0U && (ComparisonCode != 0 || CCIdx == 2)) { + Operands.push_back(X86Operand::CreateToken("vpcmp", NameLoc)); + + const MCExpr *ImmOp = MCConstantExpr::create(ComparisonCode, + getParser().getContext()); + Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc)); + + PatchedName = PatchedName.substr(PatchedName.size() - CCIdx); + } + } + + // FIXME: Hack to recognize vpcom<comparison code>{ub,uw,ud,uq,b,w,d,q}. + if (PatchedName.startswith("vpcom") && + (PatchedName.endswith("b") || PatchedName.endswith("w") || + PatchedName.endswith("d") || PatchedName.endswith("q"))) { + unsigned CCIdx = PatchedName.drop_back().back() == 'u' ? 2 : 1; + unsigned ComparisonCode = StringSwitch<unsigned>( + PatchedName.slice(5, PatchedName.size() - CCIdx)) + .Case("lt", 0x0) + .Case("le", 0x1) + .Case("gt", 0x2) + .Case("ge", 0x3) + .Case("eq", 0x4) + .Case("neq", 0x5) + .Case("false", 0x6) + .Case("true", 0x7) + .Default(~0U); + if (ComparisonCode != ~0U) { + Operands.push_back(X86Operand::CreateToken("vpcom", NameLoc)); + + const MCExpr *ImmOp = MCConstantExpr::create(ComparisonCode, + getParser().getContext()); + Operands.push_back(X86Operand::CreateImm(ImmOp, NameLoc, NameLoc)); + + PatchedName = PatchedName.substr(PatchedName.size() - CCIdx); + } + } + + Operands.push_back(X86Operand::CreateToken(PatchedName, NameLoc)); + + // Determine whether this is an instruction prefix. + bool isPrefix = + Name == "lock" || Name == "rep" || + Name == "repe" || Name == "repz" || + Name == "repne" || Name == "repnz" || + Name == "rex64" || Name == "data16"; + + // This does the actual operand parsing. Don't parse any more if we have a + // prefix juxtaposed with an operation like "lock incl 4(%rax)", because we + // just want to parse the "lock" as the first instruction and the "incl" as + // the next one. + if (getLexer().isNot(AsmToken::EndOfStatement) && !isPrefix) { + + // Parse '*' modifier. + if (getLexer().is(AsmToken::Star)) + Operands.push_back(X86Operand::CreateToken("*", consumeToken())); + + // Read the operands. + while(1) { + if (std::unique_ptr<X86Operand> Op = ParseOperand()) { + Operands.push_back(std::move(Op)); + if (!HandleAVX512Operand(Operands, *Operands.back())) + return true; + } else { + Parser.eatToEndOfStatement(); + return true; + } + // check for comma and eat it + if (getLexer().is(AsmToken::Comma)) + Parser.Lex(); + else + break; + } + + if (getLexer().isNot(AsmToken::EndOfStatement)) + return ErrorAndEatStatement(getLexer().getLoc(), + "unexpected token in argument list"); + } + + // Consume the EndOfStatement or the prefix separator Slash + if (getLexer().is(AsmToken::EndOfStatement) || + (isPrefix && getLexer().is(AsmToken::Slash))) + Parser.Lex(); + + // This is for gas compatibility and cannot be done in td. + // Adding "p" for some floating point with no argument. + // For example: fsub --> fsubp + bool IsFp = + Name == "fsub" || Name == "fdiv" || Name == "fsubr" || Name == "fdivr"; + if (IsFp && Operands.size() == 1) { + const char *Repl = StringSwitch<const char *>(Name) + .Case("fsub", "fsubp") + .Case("fdiv", "fdivp") + .Case("fsubr", "fsubrp") + .Case("fdivr", "fdivrp"); + static_cast<X86Operand &>(*Operands[0]).setTokenValue(Repl); + } + + // This is a terrible hack to handle "out[bwl]? %al, (%dx)" -> + // "outb %al, %dx". Out doesn't take a memory form, but this is a widely + // documented form in various unofficial manuals, so a lot of code uses it. + if ((Name == "outb" || Name == "outw" || Name == "outl" || Name == "out") && + Operands.size() == 3) { + X86Operand &Op = (X86Operand &)*Operands.back(); + if (Op.isMem() && Op.Mem.SegReg == 0 && + isa<MCConstantExpr>(Op.Mem.Disp) && + cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && + Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) { + SMLoc Loc = Op.getEndLoc(); + Operands.back() = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc); + } + } + // Same hack for "in[bwl]? (%dx), %al" -> "inb %dx, %al". + if ((Name == "inb" || Name == "inw" || Name == "inl" || Name == "in") && + Operands.size() == 3) { + X86Operand &Op = (X86Operand &)*Operands[1]; + if (Op.isMem() && Op.Mem.SegReg == 0 && + isa<MCConstantExpr>(Op.Mem.Disp) && + cast<MCConstantExpr>(Op.Mem.Disp)->getValue() == 0 && + Op.Mem.BaseReg == MatchRegisterName("dx") && Op.Mem.IndexReg == 0) { + SMLoc Loc = Op.getEndLoc(); + Operands[1] = X86Operand::CreateReg(Op.Mem.BaseReg, Loc, Loc); + } + } + + // Append default arguments to "ins[bwld]" + if (Name.startswith("ins") && Operands.size() == 1 && + (Name == "insb" || Name == "insw" || Name == "insl" || Name == "insd")) { + AddDefaultSrcDestOperands(Operands, + X86Operand::CreateReg(X86::DX, NameLoc, NameLoc), + DefaultMemDIOperand(NameLoc)); + } + + // Append default arguments to "outs[bwld]" + if (Name.startswith("outs") && Operands.size() == 1 && + (Name == "outsb" || Name == "outsw" || Name == "outsl" || + Name == "outsd" )) { + AddDefaultSrcDestOperands(Operands, + DefaultMemSIOperand(NameLoc), + X86Operand::CreateReg(X86::DX, NameLoc, NameLoc)); + } + + // Transform "lods[bwlq]" into "lods[bwlq] ($SIREG)" for appropriate + // values of $SIREG according to the mode. It would be nice if this + // could be achieved with InstAlias in the tables. + if (Name.startswith("lods") && Operands.size() == 1 && + (Name == "lods" || Name == "lodsb" || Name == "lodsw" || + Name == "lodsl" || Name == "lodsd" || Name == "lodsq")) + Operands.push_back(DefaultMemSIOperand(NameLoc)); + + // Transform "stos[bwlq]" into "stos[bwlq] ($DIREG)" for appropriate + // values of $DIREG according to the mode. It would be nice if this + // could be achieved with InstAlias in the tables. + if (Name.startswith("stos") && Operands.size() == 1 && + (Name == "stos" || Name == "stosb" || Name == "stosw" || + Name == "stosl" || Name == "stosd" || Name == "stosq")) + Operands.push_back(DefaultMemDIOperand(NameLoc)); + + // Transform "scas[bwlq]" into "scas[bwlq] ($DIREG)" for appropriate + // values of $DIREG according to the mode. It would be nice if this + // could be achieved with InstAlias in the tables. + if (Name.startswith("scas") && Operands.size() == 1 && + (Name == "scas" || Name == "scasb" || Name == "scasw" || + Name == "scasl" || Name == "scasd" || Name == "scasq")) + Operands.push_back(DefaultMemDIOperand(NameLoc)); + + // Add default SI and DI operands to "cmps[bwlq]". + if (Name.startswith("cmps") && + (Name == "cmps" || Name == "cmpsb" || Name == "cmpsw" || + Name == "cmpsl" || Name == "cmpsd" || Name == "cmpsq")) { + if (Operands.size() == 1) { + AddDefaultSrcDestOperands(Operands, + DefaultMemDIOperand(NameLoc), + DefaultMemSIOperand(NameLoc)); + } else if (Operands.size() == 3) { + X86Operand &Op = (X86Operand &)*Operands[1]; + X86Operand &Op2 = (X86Operand &)*Operands[2]; + if (!doSrcDstMatch(Op, Op2)) + return Error(Op.getStartLoc(), + "mismatching source and destination index registers"); + } + } + + // Add default SI and DI operands to "movs[bwlq]". + if ((Name.startswith("movs") && + (Name == "movs" || Name == "movsb" || Name == "movsw" || + Name == "movsl" || Name == "movsd" || Name == "movsq")) || + (Name.startswith("smov") && + (Name == "smov" || Name == "smovb" || Name == "smovw" || + Name == "smovl" || Name == "smovd" || Name == "smovq"))) { + if (Operands.size() == 1) { + if (Name == "movsd") + Operands.back() = X86Operand::CreateToken("movsl", NameLoc); + AddDefaultSrcDestOperands(Operands, + DefaultMemSIOperand(NameLoc), + DefaultMemDIOperand(NameLoc)); + } else if (Operands.size() == 3) { + X86Operand &Op = (X86Operand &)*Operands[1]; + X86Operand &Op2 = (X86Operand &)*Operands[2]; + if (!doSrcDstMatch(Op, Op2)) + return Error(Op.getStartLoc(), + "mismatching source and destination index registers"); + } + } + + // FIXME: Hack to handle recognize s{hr,ar,hl} $1, <op>. Canonicalize to + // "shift <op>". + if ((Name.startswith("shr") || Name.startswith("sar") || + Name.startswith("shl") || Name.startswith("sal") || + Name.startswith("rcl") || Name.startswith("rcr") || + Name.startswith("rol") || Name.startswith("ror")) && + Operands.size() == 3) { + if (isParsingIntelSyntax()) { + // Intel syntax + X86Operand &Op1 = static_cast<X86Operand &>(*Operands[2]); + if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) && + cast<MCConstantExpr>(Op1.getImm())->getValue() == 1) + Operands.pop_back(); + } else { + X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]); + if (Op1.isImm() && isa<MCConstantExpr>(Op1.getImm()) && + cast<MCConstantExpr>(Op1.getImm())->getValue() == 1) + Operands.erase(Operands.begin() + 1); + } + } + + // Transforms "int $3" into "int3" as a size optimization. We can't write an + // instalias with an immediate operand yet. + if (Name == "int" && Operands.size() == 2) { + X86Operand &Op1 = static_cast<X86Operand &>(*Operands[1]); + if (Op1.isImm()) + if (auto *CE = dyn_cast<MCConstantExpr>(Op1.getImm())) + if (CE->getValue() == 3) { + Operands.erase(Operands.begin() + 1); + static_cast<X86Operand &>(*Operands[0]).setTokenValue("int3"); + } + } + + return false; +} + +bool X86AsmParser::processInstruction(MCInst &Inst, const OperandVector &Ops) { + switch (Inst.getOpcode()) { + default: return false; + case X86::VMOVZPQILo2PQIrr: + case X86::VMOVAPDrr: + case X86::VMOVAPDYrr: + case X86::VMOVAPSrr: + case X86::VMOVAPSYrr: + case X86::VMOVDQArr: + case X86::VMOVDQAYrr: + case X86::VMOVDQUrr: + case X86::VMOVDQUYrr: + case X86::VMOVUPDrr: + case X86::VMOVUPDYrr: + case X86::VMOVUPSrr: + case X86::VMOVUPSYrr: { + if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) || + !X86II::isX86_64ExtendedReg(Inst.getOperand(1).getReg())) + return false; + + unsigned NewOpc; + switch (Inst.getOpcode()) { + default: llvm_unreachable("Invalid opcode"); + case X86::VMOVZPQILo2PQIrr: NewOpc = X86::VMOVPQI2QIrr; break; + case X86::VMOVAPDrr: NewOpc = X86::VMOVAPDrr_REV; break; + case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break; + case X86::VMOVAPSrr: NewOpc = X86::VMOVAPSrr_REV; break; + case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break; + case X86::VMOVDQArr: NewOpc = X86::VMOVDQArr_REV; break; + case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break; + case X86::VMOVDQUrr: NewOpc = X86::VMOVDQUrr_REV; break; + case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break; + case X86::VMOVUPDrr: NewOpc = X86::VMOVUPDrr_REV; break; + case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break; + case X86::VMOVUPSrr: NewOpc = X86::VMOVUPSrr_REV; break; + case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break; + } + Inst.setOpcode(NewOpc); + return true; + } + case X86::VMOVSDrr: + case X86::VMOVSSrr: { + if (X86II::isX86_64ExtendedReg(Inst.getOperand(0).getReg()) || + !X86II::isX86_64ExtendedReg(Inst.getOperand(2).getReg())) + return false; + unsigned NewOpc; + switch (Inst.getOpcode()) { + default: llvm_unreachable("Invalid opcode"); + case X86::VMOVSDrr: NewOpc = X86::VMOVSDrr_REV; break; + case X86::VMOVSSrr: NewOpc = X86::VMOVSSrr_REV; break; + } + Inst.setOpcode(NewOpc); + return true; + } + } +} + +static const char *getSubtargetFeatureName(uint64_t Val); + +void X86AsmParser::EmitInstruction(MCInst &Inst, OperandVector &Operands, + MCStreamer &Out) { + Instrumentation->InstrumentAndEmitInstruction(Inst, Operands, getContext(), + MII, Out); +} + +bool X86AsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, + OperandVector &Operands, + MCStreamer &Out, uint64_t &ErrorInfo, + bool MatchingInlineAsm) { + if (isParsingIntelSyntax()) + return MatchAndEmitIntelInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo, + MatchingInlineAsm); + return MatchAndEmitATTInstruction(IDLoc, Opcode, Operands, Out, ErrorInfo, + MatchingInlineAsm); +} + +void X86AsmParser::MatchFPUWaitAlias(SMLoc IDLoc, X86Operand &Op, + OperandVector &Operands, MCStreamer &Out, + bool MatchingInlineAsm) { + // FIXME: This should be replaced with a real .td file alias mechanism. + // Also, MatchInstructionImpl should actually *do* the EmitInstruction + // call. + const char *Repl = StringSwitch<const char *>(Op.getToken()) + .Case("finit", "fninit") + .Case("fsave", "fnsave") + .Case("fstcw", "fnstcw") + .Case("fstcww", "fnstcw") + .Case("fstenv", "fnstenv") + .Case("fstsw", "fnstsw") + .Case("fstsww", "fnstsw") + .Case("fclex", "fnclex") + .Default(nullptr); + if (Repl) { + MCInst Inst; + Inst.setOpcode(X86::WAIT); + Inst.setLoc(IDLoc); + if (!MatchingInlineAsm) + EmitInstruction(Inst, Operands, Out); + Operands[0] = X86Operand::CreateToken(Repl, IDLoc); + } +} + +bool X86AsmParser::ErrorMissingFeature(SMLoc IDLoc, uint64_t ErrorInfo, + bool MatchingInlineAsm) { + assert(ErrorInfo && "Unknown missing feature!"); + ArrayRef<SMRange> EmptyRanges = None; + SmallString<126> Msg; + raw_svector_ostream OS(Msg); + OS << "instruction requires:"; + uint64_t Mask = 1; + for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) { + if (ErrorInfo & Mask) + OS << ' ' << getSubtargetFeatureName(ErrorInfo & Mask); + Mask <<= 1; + } + return Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm); +} + +bool X86AsmParser::MatchAndEmitATTInstruction(SMLoc IDLoc, unsigned &Opcode, + OperandVector &Operands, + MCStreamer &Out, + uint64_t &ErrorInfo, + bool MatchingInlineAsm) { + assert(!Operands.empty() && "Unexpect empty operand list!"); + X86Operand &Op = static_cast<X86Operand &>(*Operands[0]); + assert(Op.isToken() && "Leading operand should always be a mnemonic!"); + ArrayRef<SMRange> EmptyRanges = None; + + // First, handle aliases that expand to multiple instructions. + MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm); + + bool WasOriginallyInvalidOperand = false; + MCInst Inst; + + // First, try a direct match. + switch (MatchInstructionImpl(Operands, Inst, + ErrorInfo, MatchingInlineAsm, + isParsingIntelSyntax())) { + default: llvm_unreachable("Unexpected match result!"); + case Match_Success: + // Some instructions need post-processing to, for example, tweak which + // encoding is selected. Loop on it while changes happen so the + // individual transformations can chain off each other. + if (!MatchingInlineAsm) + while (processInstruction(Inst, Operands)) + ; + + Inst.setLoc(IDLoc); + if (!MatchingInlineAsm) + EmitInstruction(Inst, Operands, Out); + Opcode = Inst.getOpcode(); + return false; + case Match_MissingFeature: + return ErrorMissingFeature(IDLoc, ErrorInfo, MatchingInlineAsm); + case Match_InvalidOperand: + WasOriginallyInvalidOperand = true; + break; + case Match_MnemonicFail: + break; + } + + // FIXME: Ideally, we would only attempt suffix matches for things which are + // valid prefixes, and we could just infer the right unambiguous + // type. However, that requires substantially more matcher support than the + // following hack. + + // Change the operand to point to a temporary token. + StringRef Base = Op.getToken(); + SmallString<16> Tmp; + Tmp += Base; + Tmp += ' '; + Op.setTokenValue(Tmp); + + // If this instruction starts with an 'f', then it is a floating point stack + // instruction. These come in up to three forms for 32-bit, 64-bit, and + // 80-bit floating point, which use the suffixes s,l,t respectively. + // + // Otherwise, we assume that this may be an integer instruction, which comes + // in 8/16/32/64-bit forms using the b,w,l,q suffixes respectively. + const char *Suffixes = Base[0] != 'f' ? "bwlq" : "slt\0"; + + // Check for the various suffix matches. + uint64_t ErrorInfoIgnore; + uint64_t ErrorInfoMissingFeature = 0; // Init suppresses compiler warnings. + unsigned Match[4]; + + for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) { + Tmp.back() = Suffixes[I]; + Match[I] = MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore, + MatchingInlineAsm, isParsingIntelSyntax()); + // If this returned as a missing feature failure, remember that. + if (Match[I] == Match_MissingFeature) + ErrorInfoMissingFeature = ErrorInfoIgnore; + } + + // Restore the old token. + Op.setTokenValue(Base); + + // If exactly one matched, then we treat that as a successful match (and the + // instruction will already have been filled in correctly, since the failing + // matches won't have modified it). + unsigned NumSuccessfulMatches = + std::count(std::begin(Match), std::end(Match), Match_Success); + if (NumSuccessfulMatches == 1) { + Inst.setLoc(IDLoc); + if (!MatchingInlineAsm) + EmitInstruction(Inst, Operands, Out); + Opcode = Inst.getOpcode(); + return false; + } + + // Otherwise, the match failed, try to produce a decent error message. + + // If we had multiple suffix matches, then identify this as an ambiguous + // match. + if (NumSuccessfulMatches > 1) { + char MatchChars[4]; + unsigned NumMatches = 0; + for (unsigned I = 0, E = array_lengthof(Match); I != E; ++I) + if (Match[I] == Match_Success) + MatchChars[NumMatches++] = Suffixes[I]; + + SmallString<126> Msg; + raw_svector_ostream OS(Msg); + OS << "ambiguous instructions require an explicit suffix (could be "; + for (unsigned i = 0; i != NumMatches; ++i) { + if (i != 0) + OS << ", "; + if (i + 1 == NumMatches) + OS << "or "; + OS << "'" << Base << MatchChars[i] << "'"; + } + OS << ")"; + Error(IDLoc, OS.str(), EmptyRanges, MatchingInlineAsm); + return true; + } + + // Okay, we know that none of the variants matched successfully. + + // If all of the instructions reported an invalid mnemonic, then the original + // mnemonic was invalid. + if (std::count(std::begin(Match), std::end(Match), Match_MnemonicFail) == 4) { + if (!WasOriginallyInvalidOperand) { + ArrayRef<SMRange> Ranges = + MatchingInlineAsm ? EmptyRanges : Op.getLocRange(); + return Error(IDLoc, "invalid instruction mnemonic '" + Base + "'", + Ranges, MatchingInlineAsm); + } + + // Recover location info for the operand if we know which was the problem. + if (ErrorInfo != ~0ULL) { + if (ErrorInfo >= Operands.size()) + return Error(IDLoc, "too few operands for instruction", + EmptyRanges, MatchingInlineAsm); + + X86Operand &Operand = (X86Operand &)*Operands[ErrorInfo]; + if (Operand.getStartLoc().isValid()) { + SMRange OperandRange = Operand.getLocRange(); + return Error(Operand.getStartLoc(), "invalid operand for instruction", + OperandRange, MatchingInlineAsm); + } + } + + return Error(IDLoc, "invalid operand for instruction", EmptyRanges, + MatchingInlineAsm); + } + + // If one instruction matched with a missing feature, report this as a + // missing feature. + if (std::count(std::begin(Match), std::end(Match), + Match_MissingFeature) == 1) { + ErrorInfo = ErrorInfoMissingFeature; + return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature, + MatchingInlineAsm); + } + + // If one instruction matched with an invalid operand, report this as an + // operand failure. + if (std::count(std::begin(Match), std::end(Match), + Match_InvalidOperand) == 1) { + return Error(IDLoc, "invalid operand for instruction", EmptyRanges, + MatchingInlineAsm); + } + + // If all of these were an outright failure, report it in a useless way. + Error(IDLoc, "unknown use of instruction mnemonic without a size suffix", + EmptyRanges, MatchingInlineAsm); + return true; +} + +bool X86AsmParser::MatchAndEmitIntelInstruction(SMLoc IDLoc, unsigned &Opcode, + OperandVector &Operands, + MCStreamer &Out, + uint64_t &ErrorInfo, + bool MatchingInlineAsm) { + assert(!Operands.empty() && "Unexpect empty operand list!"); + X86Operand &Op = static_cast<X86Operand &>(*Operands[0]); + assert(Op.isToken() && "Leading operand should always be a mnemonic!"); + StringRef Mnemonic = Op.getToken(); + ArrayRef<SMRange> EmptyRanges = None; + + // First, handle aliases that expand to multiple instructions. + MatchFPUWaitAlias(IDLoc, Op, Operands, Out, MatchingInlineAsm); + + MCInst Inst; + + // Find one unsized memory operand, if present. + X86Operand *UnsizedMemOp = nullptr; + for (const auto &Op : Operands) { + X86Operand *X86Op = static_cast<X86Operand *>(Op.get()); + if (X86Op->isMemUnsized()) + UnsizedMemOp = X86Op; + } + + // Allow some instructions to have implicitly pointer-sized operands. This is + // compatible with gas. + if (UnsizedMemOp) { + static const char *const PtrSizedInstrs[] = {"call", "jmp", "push"}; + for (const char *Instr : PtrSizedInstrs) { + if (Mnemonic == Instr) { + UnsizedMemOp->Mem.Size = getPointerWidth(); + break; + } + } + } + + // If an unsized memory operand is present, try to match with each memory + // operand size. In Intel assembly, the size is not part of the instruction + // mnemonic. + SmallVector<unsigned, 8> Match; + uint64_t ErrorInfoMissingFeature = 0; + if (UnsizedMemOp && UnsizedMemOp->isMemUnsized()) { + static const unsigned MopSizes[] = {8, 16, 32, 64, 80, 128, 256, 512}; + for (unsigned Size : MopSizes) { + UnsizedMemOp->Mem.Size = Size; + uint64_t ErrorInfoIgnore; + unsigned LastOpcode = Inst.getOpcode(); + unsigned M = + MatchInstructionImpl(Operands, Inst, ErrorInfoIgnore, + MatchingInlineAsm, isParsingIntelSyntax()); + if (Match.empty() || LastOpcode != Inst.getOpcode()) + Match.push_back(M); + + // If this returned as a missing feature failure, remember that. + if (Match.back() == Match_MissingFeature) + ErrorInfoMissingFeature = ErrorInfoIgnore; + } + + // Restore the size of the unsized memory operand if we modified it. + if (UnsizedMemOp) + UnsizedMemOp->Mem.Size = 0; + } + + // If we haven't matched anything yet, this is not a basic integer or FPU + // operation. There shouldn't be any ambiguity in our mnemonic table, so try + // matching with the unsized operand. + if (Match.empty()) { + Match.push_back(MatchInstructionImpl(Operands, Inst, ErrorInfo, + MatchingInlineAsm, + isParsingIntelSyntax())); + // If this returned as a missing feature failure, remember that. + if (Match.back() == Match_MissingFeature) + ErrorInfoMissingFeature = ErrorInfo; + } + + // Restore the size of the unsized memory operand if we modified it. + if (UnsizedMemOp) + UnsizedMemOp->Mem.Size = 0; + + // If it's a bad mnemonic, all results will be the same. + if (Match.back() == Match_MnemonicFail) { + ArrayRef<SMRange> Ranges = + MatchingInlineAsm ? EmptyRanges : Op.getLocRange(); + return Error(IDLoc, "invalid instruction mnemonic '" + Mnemonic + "'", + Ranges, MatchingInlineAsm); + } + + // If exactly one matched, then we treat that as a successful match (and the + // instruction will already have been filled in correctly, since the failing + // matches won't have modified it). + unsigned NumSuccessfulMatches = + std::count(std::begin(Match), std::end(Match), Match_Success); + if (NumSuccessfulMatches == 1) { + // Some instructions need post-processing to, for example, tweak which + // encoding is selected. Loop on it while changes happen so the individual + // transformations can chain off each other. + if (!MatchingInlineAsm) + while (processInstruction(Inst, Operands)) + ; + Inst.setLoc(IDLoc); + if (!MatchingInlineAsm) + EmitInstruction(Inst, Operands, Out); + Opcode = Inst.getOpcode(); + return false; + } else if (NumSuccessfulMatches > 1) { + assert(UnsizedMemOp && + "multiple matches only possible with unsized memory operands"); + ArrayRef<SMRange> Ranges = + MatchingInlineAsm ? EmptyRanges : UnsizedMemOp->getLocRange(); + return Error(UnsizedMemOp->getStartLoc(), + "ambiguous operand size for instruction '" + Mnemonic + "\'", + Ranges, MatchingInlineAsm); + } + + // If one instruction matched with a missing feature, report this as a + // missing feature. + if (std::count(std::begin(Match), std::end(Match), + Match_MissingFeature) == 1) { + ErrorInfo = ErrorInfoMissingFeature; + return ErrorMissingFeature(IDLoc, ErrorInfoMissingFeature, + MatchingInlineAsm); + } + + // If one instruction matched with an invalid operand, report this as an + // operand failure. + if (std::count(std::begin(Match), std::end(Match), + Match_InvalidOperand) == 1) { + return Error(IDLoc, "invalid operand for instruction", EmptyRanges, + MatchingInlineAsm); + } + + // If all of these were an outright failure, report it in a useless way. + return Error(IDLoc, "unknown instruction mnemonic", EmptyRanges, + MatchingInlineAsm); +} + +bool X86AsmParser::OmitRegisterFromClobberLists(unsigned RegNo) { + return X86MCRegisterClasses[X86::SEGMENT_REGRegClassID].contains(RegNo); +} + +bool X86AsmParser::ParseDirective(AsmToken DirectiveID) { + MCAsmParser &Parser = getParser(); + StringRef IDVal = DirectiveID.getIdentifier(); + if (IDVal == ".word") + return ParseDirectiveWord(2, DirectiveID.getLoc()); + else if (IDVal.startswith(".code")) + return ParseDirectiveCode(IDVal, DirectiveID.getLoc()); + else if (IDVal.startswith(".att_syntax")) { + if (getLexer().isNot(AsmToken::EndOfStatement)) { + if (Parser.getTok().getString() == "prefix") + Parser.Lex(); + else if (Parser.getTok().getString() == "noprefix") + return Error(DirectiveID.getLoc(), "'.att_syntax noprefix' is not " + "supported: registers must have a " + "'%' prefix in .att_syntax"); + } + getParser().setAssemblerDialect(0); + return false; + } else if (IDVal.startswith(".intel_syntax")) { + getParser().setAssemblerDialect(1); + if (getLexer().isNot(AsmToken::EndOfStatement)) { + if (Parser.getTok().getString() == "noprefix") + Parser.Lex(); + else if (Parser.getTok().getString() == "prefix") + return Error(DirectiveID.getLoc(), "'.intel_syntax prefix' is not " + "supported: registers must not have " + "a '%' prefix in .intel_syntax"); + } + return false; + } else if (IDVal == ".even") + return parseDirectiveEven(DirectiveID.getLoc()); + return true; +} + +/// parseDirectiveEven +/// ::= .even +bool X86AsmParser::parseDirectiveEven(SMLoc L) { + const MCSection *Section = getStreamer().getCurrentSection().first; + if (getLexer().isNot(AsmToken::EndOfStatement)) { + TokError("unexpected token in directive"); + return false; + } + if (!Section) { + getStreamer().InitSections(false); + Section = getStreamer().getCurrentSection().first; + } + if (Section->UseCodeAlign()) + getStreamer().EmitCodeAlignment(2, 0); + else + getStreamer().EmitValueToAlignment(2, 0, 1, 0); + return false; +} +/// ParseDirectiveWord +/// ::= .word [ expression (, expression)* ] +bool X86AsmParser::ParseDirectiveWord(unsigned Size, SMLoc L) { + MCAsmParser &Parser = getParser(); + if (getLexer().isNot(AsmToken::EndOfStatement)) { + for (;;) { + const MCExpr *Value; + SMLoc ExprLoc = getLexer().getLoc(); + if (getParser().parseExpression(Value)) + return false; + + if (const auto *MCE = dyn_cast<MCConstantExpr>(Value)) { + assert(Size <= 8 && "Invalid size"); + uint64_t IntValue = MCE->getValue(); + if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) + return Error(ExprLoc, "literal value out of range for directive"); + getStreamer().EmitIntValue(IntValue, Size); + } else { + getStreamer().EmitValue(Value, Size, ExprLoc); + } + + if (getLexer().is(AsmToken::EndOfStatement)) + break; + + // FIXME: Improve diagnostic. + if (getLexer().isNot(AsmToken::Comma)) { + Error(L, "unexpected token in directive"); + return false; + } + Parser.Lex(); + } + } + + Parser.Lex(); + return false; +} + +/// ParseDirectiveCode +/// ::= .code16 | .code32 | .code64 +bool X86AsmParser::ParseDirectiveCode(StringRef IDVal, SMLoc L) { + MCAsmParser &Parser = getParser(); + if (IDVal == ".code16") { + Parser.Lex(); + if (!is16BitMode()) { + SwitchMode(X86::Mode16Bit); + getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16); + } + } else if (IDVal == ".code32") { + Parser.Lex(); + if (!is32BitMode()) { + SwitchMode(X86::Mode32Bit); + getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32); + } + } else if (IDVal == ".code64") { + Parser.Lex(); + if (!is64BitMode()) { + SwitchMode(X86::Mode64Bit); + getParser().getStreamer().EmitAssemblerFlag(MCAF_Code64); + } + } else { + Error(L, "unknown directive " + IDVal); + return false; + } + + return false; +} + +// Force static initialization. +extern "C" void LLVMInitializeX86AsmParser() { + RegisterMCAsmParser<X86AsmParser> X(TheX86_32Target); + RegisterMCAsmParser<X86AsmParser> Y(TheX86_64Target); +} + +#define GET_REGISTER_MATCHER +#define GET_MATCHER_IMPLEMENTATION +#define GET_SUBTARGET_FEATURE_NAME +#include "X86GenAsmMatcher.inc" |