diff options
Diffstat (limited to 'contrib/llvm/lib/Target/SystemZ/SystemZOperands.td')
-rw-r--r-- | contrib/llvm/lib/Target/SystemZ/SystemZOperands.td | 435 |
1 files changed, 435 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZOperands.td b/contrib/llvm/lib/Target/SystemZ/SystemZOperands.td new file mode 100644 index 0000000..0abc3f7 --- /dev/null +++ b/contrib/llvm/lib/Target/SystemZ/SystemZOperands.td @@ -0,0 +1,435 @@ +//===-- SystemZOperands.td - SystemZ instruction operands ----*- tblgen-*--===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Class definitions +//===----------------------------------------------------------------------===// + +class ImmediateAsmOperand<string name> + : AsmOperandClass { + let Name = name; + let RenderMethod = "addImmOperands"; +} + +// Constructs both a DAG pattern and instruction operand for an immediate +// of type VT. PRED returns true if a node is acceptable and XFORM returns +// the operand value associated with the node. ASMOP is the name of the +// associated asm operand, and also forms the basis of the asm print method. +class Immediate<ValueType vt, code pred, SDNodeXForm xform, string asmop> + : PatLeaf<(vt imm), pred, xform>, Operand<vt> { + let PrintMethod = "print"##asmop##"Operand"; + let ParserMatchClass = !cast<AsmOperandClass>(asmop); +} + +// Constructs both a DAG pattern and instruction operand for a PC-relative +// address with address size VT. SELF is the name of the operand. +class PCRelAddress<ValueType vt, string self> + : ComplexPattern<vt, 1, "selectPCRelAddress", [z_pcrel_wrapper]>, + Operand<vt> { + let MIOperandInfo = (ops !cast<Operand>(self)); +} + +// Constructs an AsmOperandClass for addressing mode FORMAT, treating the +// registers as having BITSIZE bits and displacements as having DISPSIZE bits. +class AddressAsmOperand<string format, string bitsize, string dispsize> + : AsmOperandClass { + let Name = format##bitsize##"Disp"##dispsize; + let ParserMethod = "parse"##format##bitsize; + let RenderMethod = "add"##format##"Operands"; +} + +// Constructs both a DAG pattern and instruction operand for an addressing mode. +// The mode is selected by custom code in selectTYPE...SUFFIX(). The address +// registers have BITSIZE bits and displacements have DISPSIZE bits. NUMOPS is +// the number of operands that make up an address and OPERANDS lists the types +// of those operands using (ops ...). FORMAT is the type of addressing mode, +// which needs to match the names used in AddressAsmOperand. +class AddressingMode<string type, string bitsize, string dispsize, + string suffix, int numops, string format, dag operands> + : ComplexPattern<!cast<ValueType>("i"##bitsize), numops, + "select"##type##dispsize##suffix, + [add, sub, or, frameindex, z_adjdynalloc]>, + Operand<!cast<ValueType>("i"##bitsize)> { + let PrintMethod = "print"##format##"Operand"; + let MIOperandInfo = operands; + let ParserMatchClass = + !cast<AddressAsmOperand>(format##bitsize##"Disp"##dispsize); +} + +// An addressing mode with a base and displacement but no index. +class BDMode<string type, string bitsize, string dispsize, string suffix> + : AddressingMode<type, bitsize, dispsize, suffix, 2, "BDAddr", + (ops !cast<RegisterOperand>("ADDR"##bitsize), + !cast<Immediate>("disp"##dispsize##"imm"##bitsize))>; + +// An addressing mode with a base, displacement and index. +class BDXMode<string type, string bitsize, string dispsize, string suffix> + : AddressingMode<type, bitsize, dispsize, suffix, 3, "BDXAddr", + (ops !cast<RegisterOperand>("ADDR"##bitsize), + !cast<Immediate>("disp"##dispsize##"imm"##bitsize), + !cast<RegisterOperand>("ADDR"##bitsize))>; + +//===----------------------------------------------------------------------===// +// Extracting immediate operands from nodes +// These all create MVT::i64 nodes to ensure the value is not sign-extended +// when converted from an SDNode to a MachineOperand later on. +//===----------------------------------------------------------------------===// + +// Bits 0-15 (counting from the lsb). +def LL16 : SDNodeXForm<imm, [{ + uint64_t Value = N->getZExtValue() & 0x000000000000FFFFULL; + return CurDAG->getTargetConstant(Value, MVT::i64); +}]>; + +// Bits 16-31 (counting from the lsb). +def LH16 : SDNodeXForm<imm, [{ + uint64_t Value = (N->getZExtValue() & 0x00000000FFFF0000ULL) >> 16; + return CurDAG->getTargetConstant(Value, MVT::i64); +}]>; + +// Bits 32-47 (counting from the lsb). +def HL16 : SDNodeXForm<imm, [{ + uint64_t Value = (N->getZExtValue() & 0x0000FFFF00000000ULL) >> 32; + return CurDAG->getTargetConstant(Value, MVT::i64); +}]>; + +// Bits 48-63 (counting from the lsb). +def HH16 : SDNodeXForm<imm, [{ + uint64_t Value = (N->getZExtValue() & 0xFFFF000000000000ULL) >> 48; + return CurDAG->getTargetConstant(Value, MVT::i64); +}]>; + +// Low 32 bits. +def LF32 : SDNodeXForm<imm, [{ + uint64_t Value = N->getZExtValue() & 0x00000000FFFFFFFFULL; + return CurDAG->getTargetConstant(Value, MVT::i64); +}]>; + +// High 32 bits. +def HF32 : SDNodeXForm<imm, [{ + uint64_t Value = N->getZExtValue() >> 32; + return CurDAG->getTargetConstant(Value, MVT::i64); +}]>; + +// Truncate an immediate to a 8-bit signed quantity. +def SIMM8 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(int8_t(N->getZExtValue()), MVT::i64); +}]>; + +// Truncate an immediate to a 8-bit unsigned quantity. +def UIMM8 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(uint8_t(N->getZExtValue()), MVT::i64); +}]>; + +// Truncate an immediate to a 16-bit signed quantity. +def SIMM16 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(int16_t(N->getZExtValue()), MVT::i64); +}]>; + +// Truncate an immediate to a 16-bit unsigned quantity. +def UIMM16 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(uint16_t(N->getZExtValue()), MVT::i64); +}]>; + +// Truncate an immediate to a 32-bit signed quantity. +def SIMM32 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(int32_t(N->getZExtValue()), MVT::i64); +}]>; + +// Truncate an immediate to a 32-bit unsigned quantity. +def UIMM32 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(uint32_t(N->getZExtValue()), MVT::i64); +}]>; + +// Negate and then truncate an immediate to a 32-bit unsigned quantity. +def NEGIMM32 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(uint32_t(-N->getZExtValue()), MVT::i64); +}]>; + +//===----------------------------------------------------------------------===// +// Immediate asm operands. +//===----------------------------------------------------------------------===// + +def U4Imm : ImmediateAsmOperand<"U4Imm">; +def U6Imm : ImmediateAsmOperand<"U6Imm">; +def S8Imm : ImmediateAsmOperand<"S8Imm">; +def U8Imm : ImmediateAsmOperand<"U8Imm">; +def S16Imm : ImmediateAsmOperand<"S16Imm">; +def U16Imm : ImmediateAsmOperand<"U16Imm">; +def S32Imm : ImmediateAsmOperand<"S32Imm">; +def U32Imm : ImmediateAsmOperand<"U32Imm">; + +//===----------------------------------------------------------------------===// +// 8-bit immediates +//===----------------------------------------------------------------------===// + +def uimm8zx4 : Immediate<i8, [{ + return isUInt<4>(N->getZExtValue()); +}], NOOP_SDNodeXForm, "U4Imm">; + +def uimm8zx6 : Immediate<i8, [{ + return isUInt<6>(N->getZExtValue()); +}], NOOP_SDNodeXForm, "U6Imm">; + +def simm8 : Immediate<i8, [{}], SIMM8, "S8Imm">; +def uimm8 : Immediate<i8, [{}], UIMM8, "U8Imm">; + +//===----------------------------------------------------------------------===// +// i32 immediates +//===----------------------------------------------------------------------===// + +// Immediates for the lower and upper 16 bits of an i32, with the other +// bits of the i32 being zero. +def imm32ll16 : Immediate<i32, [{ + return SystemZ::isImmLL(N->getZExtValue()); +}], LL16, "U16Imm">; + +def imm32lh16 : Immediate<i32, [{ + return SystemZ::isImmLH(N->getZExtValue()); +}], LH16, "U16Imm">; + +// Immediates for the lower and upper 16 bits of an i32, with the other +// bits of the i32 being one. +def imm32ll16c : Immediate<i32, [{ + return SystemZ::isImmLL(uint32_t(~N->getZExtValue())); +}], LL16, "U16Imm">; + +def imm32lh16c : Immediate<i32, [{ + return SystemZ::isImmLH(uint32_t(~N->getZExtValue())); +}], LH16, "U16Imm">; + +// Short immediates +def imm32sx8 : Immediate<i32, [{ + return isInt<8>(N->getSExtValue()); +}], SIMM8, "S8Imm">; + +def imm32zx8 : Immediate<i32, [{ + return isUInt<8>(N->getZExtValue()); +}], UIMM8, "U8Imm">; + +def imm32zx8trunc : Immediate<i32, [{}], UIMM8, "U8Imm">; + +def imm32sx16 : Immediate<i32, [{ + return isInt<16>(N->getSExtValue()); +}], SIMM16, "S16Imm">; + +def imm32zx16 : Immediate<i32, [{ + return isUInt<16>(N->getZExtValue()); +}], UIMM16, "U16Imm">; + +def imm32sx16trunc : Immediate<i32, [{}], SIMM16, "S16Imm">; + +// Full 32-bit immediates. we need both signed and unsigned versions +// because the assembler is picky. E.g. AFI requires signed operands +// while NILF requires unsigned ones. +def simm32 : Immediate<i32, [{}], SIMM32, "S32Imm">; +def uimm32 : Immediate<i32, [{}], UIMM32, "U32Imm">; + +def imm32 : ImmLeaf<i32, [{}]>; + +//===----------------------------------------------------------------------===// +// 64-bit immediates +//===----------------------------------------------------------------------===// + +// Immediates for 16-bit chunks of an i64, with the other bits of the +// i32 being zero. +def imm64ll16 : Immediate<i64, [{ + return SystemZ::isImmLL(N->getZExtValue()); +}], LL16, "U16Imm">; + +def imm64lh16 : Immediate<i64, [{ + return SystemZ::isImmLH(N->getZExtValue()); +}], LH16, "U16Imm">; + +def imm64hl16 : Immediate<i64, [{ + return SystemZ::isImmHL(N->getZExtValue()); +}], HL16, "U16Imm">; + +def imm64hh16 : Immediate<i64, [{ + return SystemZ::isImmHH(N->getZExtValue()); +}], HH16, "U16Imm">; + +// Immediates for 16-bit chunks of an i64, with the other bits of the +// i32 being one. +def imm64ll16c : Immediate<i64, [{ + return SystemZ::isImmLL(uint64_t(~N->getZExtValue())); +}], LL16, "U16Imm">; + +def imm64lh16c : Immediate<i64, [{ + return SystemZ::isImmLH(uint64_t(~N->getZExtValue())); +}], LH16, "U16Imm">; + +def imm64hl16c : Immediate<i64, [{ + return SystemZ::isImmHL(uint64_t(~N->getZExtValue())); +}], HL16, "U16Imm">; + +def imm64hh16c : Immediate<i64, [{ + return SystemZ::isImmHH(uint64_t(~N->getZExtValue())); +}], HH16, "U16Imm">; + +// Immediates for the lower and upper 32 bits of an i64, with the other +// bits of the i32 being zero. +def imm64lf32 : Immediate<i64, [{ + return SystemZ::isImmLF(N->getZExtValue()); +}], LF32, "U32Imm">; + +def imm64hf32 : Immediate<i64, [{ + return SystemZ::isImmHF(N->getZExtValue()); +}], HF32, "U32Imm">; + +// Immediates for the lower and upper 32 bits of an i64, with the other +// bits of the i32 being one. +def imm64lf32c : Immediate<i64, [{ + return SystemZ::isImmLF(uint64_t(~N->getZExtValue())); +}], LF32, "U32Imm">; + +def imm64hf32c : Immediate<i64, [{ + return SystemZ::isImmHF(uint64_t(~N->getZExtValue())); +}], HF32, "U32Imm">; + +// Short immediates. +def imm64sx8 : Immediate<i64, [{ + return isInt<8>(N->getSExtValue()); +}], SIMM8, "S8Imm">; + +def imm64sx16 : Immediate<i64, [{ + return isInt<16>(N->getSExtValue()); +}], SIMM16, "S16Imm">; + +def imm64zx16 : Immediate<i64, [{ + return isUInt<16>(N->getZExtValue()); +}], UIMM16, "U16Imm">; + +def imm64sx32 : Immediate<i64, [{ + return isInt<32>(N->getSExtValue()); +}], SIMM32, "S32Imm">; + +def imm64zx32 : Immediate<i64, [{ + return isUInt<32>(N->getZExtValue()); +}], UIMM32, "U32Imm">; + +def imm64zx32n : Immediate<i64, [{ + return isUInt<32>(-N->getSExtValue()); +}], NEGIMM32, "U32Imm">; + +def imm64 : ImmLeaf<i64, [{}]>; + +//===----------------------------------------------------------------------===// +// Floating-point immediates +//===----------------------------------------------------------------------===// + +// Floating-point zero. +def fpimm0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(+0.0); }]>; + +// Floating point negative zero. +def fpimmneg0 : PatLeaf<(fpimm), [{ return N->isExactlyValue(-0.0); }]>; + +//===----------------------------------------------------------------------===// +// Symbolic address operands +//===----------------------------------------------------------------------===// + +// PC-relative offsets of a basic block. The offset is sign-extended +// and multiplied by 2. +def brtarget16 : Operand<OtherVT> { + let EncoderMethod = "getPC16DBLEncoding"; +} +def brtarget32 : Operand<OtherVT> { + let EncoderMethod = "getPC32DBLEncoding"; +} + +// A PC-relative offset of a global value. The offset is sign-extended +// and multiplied by 2. +def pcrel32 : PCRelAddress<i64, "pcrel32"> { + let EncoderMethod = "getPC32DBLEncoding"; +} + +// A PC-relative offset of a global value when the value is used as a +// call target. The offset is sign-extended and multiplied by 2. +def pcrel16call : PCRelAddress<i64, "pcrel16call"> { + let PrintMethod = "printCallOperand"; + let EncoderMethod = "getPLT16DBLEncoding"; +} +def pcrel32call : PCRelAddress<i64, "pcrel32call"> { + let PrintMethod = "printCallOperand"; + let EncoderMethod = "getPLT32DBLEncoding"; +} + +//===----------------------------------------------------------------------===// +// Addressing modes +//===----------------------------------------------------------------------===// + +// 12-bit displacement operands. +def disp12imm32 : Operand<i32>; +def disp12imm64 : Operand<i64>; + +// 20-bit displacement operands. +def disp20imm32 : Operand<i32>; +def disp20imm64 : Operand<i64>; + +def BDAddr32Disp12 : AddressAsmOperand<"BDAddr", "32", "12">; +def BDAddr32Disp20 : AddressAsmOperand<"BDAddr", "32", "20">; +def BDAddr64Disp12 : AddressAsmOperand<"BDAddr", "64", "12">; +def BDAddr64Disp20 : AddressAsmOperand<"BDAddr", "64", "20">; +def BDXAddr64Disp12 : AddressAsmOperand<"BDXAddr", "64", "12">; +def BDXAddr64Disp20 : AddressAsmOperand<"BDXAddr", "64", "20">; + +// DAG patterns and operands for addressing modes. Each mode has +// the form <type><range><group> where: +// +// <type> is one of: +// shift : base + displacement (32-bit) +// bdaddr : base + displacement +// bdxaddr : base + displacement + index +// laaddr : like bdxaddr, but used for Load Address operations +// dynalloc : base + displacement + index + ADJDYNALLOC +// +// <range> is one of: +// 12 : the displacement is an unsigned 12-bit value +// 20 : the displacement is a signed 20-bit value +// +// <group> is one of: +// pair : used when there is an equivalent instruction with the opposite +// range value (12 or 20) +// only : used when there is no equivalent instruction with the opposite +// range value +def shift12only : BDMode <"BDAddr", "32", "12", "Only">; +def shift20only : BDMode <"BDAddr", "32", "20", "Only">; +def bdaddr12only : BDMode <"BDAddr", "64", "12", "Only">; +def bdaddr12pair : BDMode <"BDAddr", "64", "12", "Pair">; +def bdaddr20only : BDMode <"BDAddr", "64", "20", "Only">; +def bdaddr20pair : BDMode <"BDAddr", "64", "20", "Pair">; +def bdxaddr12only : BDXMode<"BDXAddr", "64", "12", "Only">; +def bdxaddr12pair : BDXMode<"BDXAddr", "64", "12", "Pair">; +def bdxaddr20only : BDXMode<"BDXAddr", "64", "20", "Only">; +def bdxaddr20only128 : BDXMode<"BDXAddr", "64", "20", "Only128">; +def bdxaddr20pair : BDXMode<"BDXAddr", "64", "20", "Pair">; +def dynalloc12only : BDXMode<"DynAlloc", "64", "12", "Only">; +def laaddr12pair : BDXMode<"LAAddr", "64", "12", "Pair">; +def laaddr20pair : BDXMode<"LAAddr", "64", "20", "Pair">; + +//===----------------------------------------------------------------------===// +// Miscellaneous +//===----------------------------------------------------------------------===// + +// Access registers. At present we just use them for accessing the thread +// pointer, so we don't expose them as register to LLVM. +def AccessReg : AsmOperandClass { + let Name = "AccessReg"; + let ParserMethod = "parseAccessReg"; +} +def access_reg : Immediate<i8, [{ return N->getZExtValue() < 16; }], + NOOP_SDNodeXForm, "AccessReg"> { + let ParserMatchClass = AccessReg; +} + +// A 4-bit condition-code mask. +def cond4 : PatLeaf<(i8 imm), [{ return (N->getZExtValue() < 16); }]>, + Operand<i8> { + let PrintMethod = "printCond4Operand"; +} |