summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp1294
1 files changed, 1294 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp
new file mode 100644
index 0000000..e6b5fc8
--- /dev/null
+++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrInfo.cpp
@@ -0,0 +1,1294 @@
+//===-- SystemZInstrInfo.cpp - SystemZ instruction information ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the SystemZ implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "SystemZInstrInfo.h"
+#include "SystemZInstrBuilder.h"
+#include "SystemZTargetMachine.h"
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+
+using namespace llvm;
+
+#define GET_INSTRINFO_CTOR_DTOR
+#define GET_INSTRMAP_INFO
+#include "SystemZGenInstrInfo.inc"
+
+// Return a mask with Count low bits set.
+static uint64_t allOnes(unsigned int Count) {
+ return Count == 0 ? 0 : (uint64_t(1) << (Count - 1) << 1) - 1;
+}
+
+// Reg should be a 32-bit GPR. Return true if it is a high register rather
+// than a low register.
+static bool isHighReg(unsigned int Reg) {
+ if (SystemZ::GRH32BitRegClass.contains(Reg))
+ return true;
+ assert(SystemZ::GR32BitRegClass.contains(Reg) && "Invalid GRX32");
+ return false;
+}
+
+// Pin the vtable to this file.
+void SystemZInstrInfo::anchor() {}
+
+SystemZInstrInfo::SystemZInstrInfo(SystemZSubtarget &sti)
+ : SystemZGenInstrInfo(SystemZ::ADJCALLSTACKDOWN, SystemZ::ADJCALLSTACKUP),
+ RI(), STI(sti) {
+}
+
+// MI is a 128-bit load or store. Split it into two 64-bit loads or stores,
+// each having the opcode given by NewOpcode.
+void SystemZInstrInfo::splitMove(MachineBasicBlock::iterator MI,
+ unsigned NewOpcode) const {
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineFunction &MF = *MBB->getParent();
+
+ // Get two load or store instructions. Use the original instruction for one
+ // of them (arbitrarily the second here) and create a clone for the other.
+ MachineInstr *EarlierMI = MF.CloneMachineInstr(MI);
+ MBB->insert(MI, EarlierMI);
+
+ // Set up the two 64-bit registers.
+ MachineOperand &HighRegOp = EarlierMI->getOperand(0);
+ MachineOperand &LowRegOp = MI->getOperand(0);
+ HighRegOp.setReg(RI.getSubReg(HighRegOp.getReg(), SystemZ::subreg_h64));
+ LowRegOp.setReg(RI.getSubReg(LowRegOp.getReg(), SystemZ::subreg_l64));
+
+ // The address in the first (high) instruction is already correct.
+ // Adjust the offset in the second (low) instruction.
+ MachineOperand &HighOffsetOp = EarlierMI->getOperand(2);
+ MachineOperand &LowOffsetOp = MI->getOperand(2);
+ LowOffsetOp.setImm(LowOffsetOp.getImm() + 8);
+
+ // Clear the kill flags for the base and index registers in the first
+ // instruction.
+ EarlierMI->getOperand(1).setIsKill(false);
+ EarlierMI->getOperand(3).setIsKill(false);
+
+ // Set the opcodes.
+ unsigned HighOpcode = getOpcodeForOffset(NewOpcode, HighOffsetOp.getImm());
+ unsigned LowOpcode = getOpcodeForOffset(NewOpcode, LowOffsetOp.getImm());
+ assert(HighOpcode && LowOpcode && "Both offsets should be in range");
+
+ EarlierMI->setDesc(get(HighOpcode));
+ MI->setDesc(get(LowOpcode));
+}
+
+// Split ADJDYNALLOC instruction MI.
+void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineFunction &MF = *MBB->getParent();
+ MachineFrameInfo *MFFrame = MF.getFrameInfo();
+ MachineOperand &OffsetMO = MI->getOperand(2);
+
+ uint64_t Offset = (MFFrame->getMaxCallFrameSize() +
+ SystemZMC::CallFrameSize +
+ OffsetMO.getImm());
+ unsigned NewOpcode = getOpcodeForOffset(SystemZ::LA, Offset);
+ assert(NewOpcode && "No support for huge argument lists yet");
+ MI->setDesc(get(NewOpcode));
+ OffsetMO.setImm(Offset);
+}
+
+// MI is an RI-style pseudo instruction. Replace it with LowOpcode
+// if the first operand is a low GR32 and HighOpcode if the first operand
+// is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand
+// and HighOpcode takes an unsigned 32-bit operand. In those cases,
+// MI has the same kind of operand as LowOpcode, so needs to be converted
+// if HighOpcode is used.
+void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode,
+ unsigned HighOpcode,
+ bool ConvertHigh) const {
+ unsigned Reg = MI->getOperand(0).getReg();
+ bool IsHigh = isHighReg(Reg);
+ MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode));
+ if (IsHigh && ConvertHigh)
+ MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm()));
+}
+
+// MI is a three-operand RIE-style pseudo instruction. Replace it with
+// LowOpcodeK if the registers are both low GR32s, otherwise use a move
+// followed by HighOpcode or LowOpcode, depending on whether the target
+// is a high or low GR32.
+void SystemZInstrInfo::expandRIEPseudo(MachineInstr *MI, unsigned LowOpcode,
+ unsigned LowOpcodeK,
+ unsigned HighOpcode) const {
+ unsigned DestReg = MI->getOperand(0).getReg();
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ bool DestIsHigh = isHighReg(DestReg);
+ bool SrcIsHigh = isHighReg(SrcReg);
+ if (!DestIsHigh && !SrcIsHigh)
+ MI->setDesc(get(LowOpcodeK));
+ else {
+ emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
+ DestReg, SrcReg, SystemZ::LR, 32,
+ MI->getOperand(1).isKill());
+ MI->setDesc(get(DestIsHigh ? HighOpcode : LowOpcode));
+ MI->getOperand(1).setReg(DestReg);
+ MI->tieOperands(0, 1);
+ }
+}
+
+// MI is an RXY-style pseudo instruction. Replace it with LowOpcode
+// if the first operand is a low GR32 and HighOpcode if the first operand
+// is a high GR32.
+void SystemZInstrInfo::expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode,
+ unsigned HighOpcode) const {
+ unsigned Reg = MI->getOperand(0).getReg();
+ unsigned Opcode = getOpcodeForOffset(isHighReg(Reg) ? HighOpcode : LowOpcode,
+ MI->getOperand(2).getImm());
+ MI->setDesc(get(Opcode));
+}
+
+// MI is an RR-style pseudo instruction that zero-extends the low Size bits
+// of one GRX32 into another. Replace it with LowOpcode if both operands
+// are low registers, otherwise use RISB[LH]G.
+void SystemZInstrInfo::expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode,
+ unsigned Size) const {
+ emitGRX32Move(*MI->getParent(), MI, MI->getDebugLoc(),
+ MI->getOperand(0).getReg(), MI->getOperand(1).getReg(),
+ LowOpcode, Size, MI->getOperand(1).isKill());
+ MI->eraseFromParent();
+}
+
+// Emit a zero-extending move from 32-bit GPR SrcReg to 32-bit GPR
+// DestReg before MBBI in MBB. Use LowLowOpcode when both DestReg and SrcReg
+// are low registers, otherwise use RISB[LH]G. Size is the number of bits
+// taken from the low end of SrcReg (8 for LLCR, 16 for LLHR and 32 for LR).
+// KillSrc is true if this move is the last use of SrcReg.
+void SystemZInstrInfo::emitGRX32Move(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ DebugLoc DL, unsigned DestReg,
+ unsigned SrcReg, unsigned LowLowOpcode,
+ unsigned Size, bool KillSrc) const {
+ unsigned Opcode;
+ bool DestIsHigh = isHighReg(DestReg);
+ bool SrcIsHigh = isHighReg(SrcReg);
+ if (DestIsHigh && SrcIsHigh)
+ Opcode = SystemZ::RISBHH;
+ else if (DestIsHigh && !SrcIsHigh)
+ Opcode = SystemZ::RISBHL;
+ else if (!DestIsHigh && SrcIsHigh)
+ Opcode = SystemZ::RISBLH;
+ else {
+ BuildMI(MBB, MBBI, DL, get(LowLowOpcode), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+ unsigned Rotate = (DestIsHigh != SrcIsHigh ? 32 : 0);
+ BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
+ .addReg(DestReg, RegState::Undef)
+ .addReg(SrcReg, getKillRegState(KillSrc))
+ .addImm(32 - Size).addImm(128 + 31).addImm(Rotate);
+}
+
+// If MI is a simple load or store for a frame object, return the register
+// it loads or stores and set FrameIndex to the index of the frame object.
+// Return 0 otherwise.
+//
+// Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
+static int isSimpleMove(const MachineInstr *MI, int &FrameIndex,
+ unsigned Flag) {
+ const MCInstrDesc &MCID = MI->getDesc();
+ if ((MCID.TSFlags & Flag) &&
+ MI->getOperand(1).isFI() &&
+ MI->getOperand(2).getImm() == 0 &&
+ MI->getOperand(3).getReg() == 0) {
+ FrameIndex = MI->getOperand(1).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ return 0;
+}
+
+unsigned SystemZInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXLoad);
+}
+
+unsigned SystemZInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ return isSimpleMove(MI, FrameIndex, SystemZII::SimpleBDXStore);
+}
+
+bool SystemZInstrInfo::isStackSlotCopy(const MachineInstr *MI,
+ int &DestFrameIndex,
+ int &SrcFrameIndex) const {
+ // Check for MVC 0(Length,FI1),0(FI2)
+ const MachineFrameInfo *MFI = MI->getParent()->getParent()->getFrameInfo();
+ if (MI->getOpcode() != SystemZ::MVC ||
+ !MI->getOperand(0).isFI() ||
+ MI->getOperand(1).getImm() != 0 ||
+ !MI->getOperand(3).isFI() ||
+ MI->getOperand(4).getImm() != 0)
+ return false;
+
+ // Check that Length covers the full slots.
+ int64_t Length = MI->getOperand(2).getImm();
+ unsigned FI1 = MI->getOperand(0).getIndex();
+ unsigned FI2 = MI->getOperand(3).getIndex();
+ if (MFI->getObjectSize(FI1) != Length ||
+ MFI->getObjectSize(FI2) != Length)
+ return false;
+
+ DestFrameIndex = FI1;
+ SrcFrameIndex = FI2;
+ return true;
+}
+
+bool SystemZInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // Most of the code and comments here are boilerplate.
+
+ // Start from the bottom of the block and work up, examining the
+ // terminator instructions.
+ MachineBasicBlock::iterator I = MBB.end();
+ while (I != MBB.begin()) {
+ --I;
+ if (I->isDebugValue())
+ continue;
+
+ // Working from the bottom, when we see a non-terminator instruction, we're
+ // done.
+ if (!isUnpredicatedTerminator(I))
+ break;
+
+ // A terminator that isn't a branch can't easily be handled by this
+ // analysis.
+ if (!I->isBranch())
+ return true;
+
+ // Can't handle indirect branches.
+ SystemZII::Branch Branch(getBranchInfo(I));
+ if (!Branch.Target->isMBB())
+ return true;
+
+ // Punt on compound branches.
+ if (Branch.Type != SystemZII::BranchNormal)
+ return true;
+
+ if (Branch.CCMask == SystemZ::CCMASK_ANY) {
+ // Handle unconditional branches.
+ if (!AllowModify) {
+ TBB = Branch.Target->getMBB();
+ continue;
+ }
+
+ // If the block has any instructions after a JMP, delete them.
+ while (std::next(I) != MBB.end())
+ std::next(I)->eraseFromParent();
+
+ Cond.clear();
+ FBB = nullptr;
+
+ // Delete the JMP if it's equivalent to a fall-through.
+ if (MBB.isLayoutSuccessor(Branch.Target->getMBB())) {
+ TBB = nullptr;
+ I->eraseFromParent();
+ I = MBB.end();
+ continue;
+ }
+
+ // TBB is used to indicate the unconditinal destination.
+ TBB = Branch.Target->getMBB();
+ continue;
+ }
+
+ // Working from the bottom, handle the first conditional branch.
+ if (Cond.empty()) {
+ // FIXME: add X86-style branch swap
+ FBB = TBB;
+ TBB = Branch.Target->getMBB();
+ Cond.push_back(MachineOperand::CreateImm(Branch.CCValid));
+ Cond.push_back(MachineOperand::CreateImm(Branch.CCMask));
+ continue;
+ }
+
+ // Handle subsequent conditional branches.
+ assert(Cond.size() == 2 && TBB && "Should have seen a conditional branch");
+
+ // Only handle the case where all conditional branches branch to the same
+ // destination.
+ if (TBB != Branch.Target->getMBB())
+ return true;
+
+ // If the conditions are the same, we can leave them alone.
+ unsigned OldCCValid = Cond[0].getImm();
+ unsigned OldCCMask = Cond[1].getImm();
+ if (OldCCValid == Branch.CCValid && OldCCMask == Branch.CCMask)
+ continue;
+
+ // FIXME: Try combining conditions like X86 does. Should be easy on Z!
+ return false;
+ }
+
+ return false;
+}
+
+unsigned SystemZInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ // Most of the code and comments here are boilerplate.
+ MachineBasicBlock::iterator I = MBB.end();
+ unsigned Count = 0;
+
+ while (I != MBB.begin()) {
+ --I;
+ if (I->isDebugValue())
+ continue;
+ if (!I->isBranch())
+ break;
+ if (!getBranchInfo(I).Target->isMBB())
+ break;
+ // Remove the branch.
+ I->eraseFromParent();
+ I = MBB.end();
+ ++Count;
+ }
+
+ return Count;
+}
+
+bool SystemZInstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ assert(Cond.size() == 2 && "Invalid condition");
+ Cond[1].setImm(Cond[1].getImm() ^ Cond[0].getImm());
+ return false;
+}
+
+unsigned
+SystemZInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ ArrayRef<MachineOperand> Cond,
+ DebugLoc DL) const {
+ // In this function we output 32-bit branches, which should always
+ // have enough range. They can be shortened and relaxed by later code
+ // in the pipeline, if desired.
+
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 2 || Cond.size() == 0) &&
+ "SystemZ branch conditions have one component!");
+
+ if (Cond.empty()) {
+ // Unconditional branch?
+ assert(!FBB && "Unconditional branch with multiple successors!");
+ BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(TBB);
+ return 1;
+ }
+
+ // Conditional branch.
+ unsigned Count = 0;
+ unsigned CCValid = Cond[0].getImm();
+ unsigned CCMask = Cond[1].getImm();
+ BuildMI(&MBB, DL, get(SystemZ::BRC))
+ .addImm(CCValid).addImm(CCMask).addMBB(TBB);
+ ++Count;
+
+ if (FBB) {
+ // Two-way Conditional branch. Insert the second branch.
+ BuildMI(&MBB, DL, get(SystemZ::J)).addMBB(FBB);
+ ++Count;
+ }
+ return Count;
+}
+
+bool SystemZInstrInfo::analyzeCompare(const MachineInstr *MI,
+ unsigned &SrcReg, unsigned &SrcReg2,
+ int &Mask, int &Value) const {
+ assert(MI->isCompare() && "Caller should have checked for a comparison");
+
+ if (MI->getNumExplicitOperands() == 2 &&
+ MI->getOperand(0).isReg() &&
+ MI->getOperand(1).isImm()) {
+ SrcReg = MI->getOperand(0).getReg();
+ SrcReg2 = 0;
+ Value = MI->getOperand(1).getImm();
+ Mask = ~0;
+ return true;
+ }
+
+ return false;
+}
+
+// If Reg is a virtual register, return its definition, otherwise return null.
+static MachineInstr *getDef(unsigned Reg,
+ const MachineRegisterInfo *MRI) {
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ return nullptr;
+ return MRI->getUniqueVRegDef(Reg);
+}
+
+// Return true if MI is a shift of type Opcode by Imm bits.
+static bool isShift(MachineInstr *MI, unsigned Opcode, int64_t Imm) {
+ return (MI->getOpcode() == Opcode &&
+ !MI->getOperand(2).getReg() &&
+ MI->getOperand(3).getImm() == Imm);
+}
+
+// If the destination of MI has no uses, delete it as dead.
+static void eraseIfDead(MachineInstr *MI, const MachineRegisterInfo *MRI) {
+ if (MRI->use_nodbg_empty(MI->getOperand(0).getReg()))
+ MI->eraseFromParent();
+}
+
+// Compare compares SrcReg against zero. Check whether SrcReg contains
+// the result of an IPM sequence whose input CC survives until Compare,
+// and whether Compare is therefore redundant. Delete it and return
+// true if so.
+static bool removeIPMBasedCompare(MachineInstr *Compare, unsigned SrcReg,
+ const MachineRegisterInfo *MRI,
+ const TargetRegisterInfo *TRI) {
+ MachineInstr *LGFR = nullptr;
+ MachineInstr *RLL = getDef(SrcReg, MRI);
+ if (RLL && RLL->getOpcode() == SystemZ::LGFR) {
+ LGFR = RLL;
+ RLL = getDef(LGFR->getOperand(1).getReg(), MRI);
+ }
+ if (!RLL || !isShift(RLL, SystemZ::RLL, 31))
+ return false;
+
+ MachineInstr *SRL = getDef(RLL->getOperand(1).getReg(), MRI);
+ if (!SRL || !isShift(SRL, SystemZ::SRL, SystemZ::IPM_CC))
+ return false;
+
+ MachineInstr *IPM = getDef(SRL->getOperand(1).getReg(), MRI);
+ if (!IPM || IPM->getOpcode() != SystemZ::IPM)
+ return false;
+
+ // Check that there are no assignments to CC between the IPM and Compare,
+ if (IPM->getParent() != Compare->getParent())
+ return false;
+ MachineBasicBlock::iterator MBBI = IPM, MBBE = Compare;
+ for (++MBBI; MBBI != MBBE; ++MBBI) {
+ MachineInstr *MI = MBBI;
+ if (MI->modifiesRegister(SystemZ::CC, TRI))
+ return false;
+ }
+
+ Compare->eraseFromParent();
+ if (LGFR)
+ eraseIfDead(LGFR, MRI);
+ eraseIfDead(RLL, MRI);
+ eraseIfDead(SRL, MRI);
+ eraseIfDead(IPM, MRI);
+
+ return true;
+}
+
+bool
+SystemZInstrInfo::optimizeCompareInstr(MachineInstr *Compare,
+ unsigned SrcReg, unsigned SrcReg2,
+ int Mask, int Value,
+ const MachineRegisterInfo *MRI) const {
+ assert(!SrcReg2 && "Only optimizing constant comparisons so far");
+ bool IsLogical = (Compare->getDesc().TSFlags & SystemZII::IsLogical) != 0;
+ return Value == 0 && !IsLogical &&
+ removeIPMBasedCompare(Compare, SrcReg, MRI, &RI);
+}
+
+// If Opcode is a move that has a conditional variant, return that variant,
+// otherwise return 0.
+static unsigned getConditionalMove(unsigned Opcode) {
+ switch (Opcode) {
+ case SystemZ::LR: return SystemZ::LOCR;
+ case SystemZ::LGR: return SystemZ::LOCGR;
+ default: return 0;
+ }
+}
+
+bool SystemZInstrInfo::isPredicable(MachineInstr *MI) const {
+ unsigned Opcode = MI->getOpcode();
+ return STI.hasLoadStoreOnCond() && getConditionalMove(Opcode);
+}
+
+bool SystemZInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCycles, unsigned ExtraPredCycles,
+ BranchProbability Probability) const {
+ // For now only convert single instructions.
+ return NumCycles == 1;
+}
+
+bool SystemZInstrInfo::
+isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned NumCyclesT, unsigned ExtraPredCyclesT,
+ MachineBasicBlock &FMBB,
+ unsigned NumCyclesF, unsigned ExtraPredCyclesF,
+ BranchProbability Probability) const {
+ // For now avoid converting mutually-exclusive cases.
+ return false;
+}
+
+bool SystemZInstrInfo::
+PredicateInstruction(MachineInstr *MI, ArrayRef<MachineOperand> Pred) const {
+ assert(Pred.size() == 2 && "Invalid condition");
+ unsigned CCValid = Pred[0].getImm();
+ unsigned CCMask = Pred[1].getImm();
+ assert(CCMask > 0 && CCMask < 15 && "Invalid predicate");
+ unsigned Opcode = MI->getOpcode();
+ if (STI.hasLoadStoreOnCond()) {
+ if (unsigned CondOpcode = getConditionalMove(Opcode)) {
+ MI->setDesc(get(CondOpcode));
+ MachineInstrBuilder(*MI->getParent()->getParent(), MI)
+ .addImm(CCValid).addImm(CCMask)
+ .addReg(SystemZ::CC, RegState::Implicit);
+ return true;
+ }
+ }
+ return false;
+}
+
+void SystemZInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ DebugLoc DL, unsigned DestReg,
+ unsigned SrcReg, bool KillSrc) const {
+ // Split 128-bit GPR moves into two 64-bit moves. This handles ADDR128 too.
+ if (SystemZ::GR128BitRegClass.contains(DestReg, SrcReg)) {
+ copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_h64),
+ RI.getSubReg(SrcReg, SystemZ::subreg_h64), KillSrc);
+ copyPhysReg(MBB, MBBI, DL, RI.getSubReg(DestReg, SystemZ::subreg_l64),
+ RI.getSubReg(SrcReg, SystemZ::subreg_l64), KillSrc);
+ return;
+ }
+
+ if (SystemZ::GRX32BitRegClass.contains(DestReg, SrcReg)) {
+ emitGRX32Move(MBB, MBBI, DL, DestReg, SrcReg, SystemZ::LR, 32, KillSrc);
+ return;
+ }
+
+ // Everything else needs only one instruction.
+ unsigned Opcode;
+ if (SystemZ::GR64BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::LGR;
+ else if (SystemZ::FP32BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::LER;
+ else if (SystemZ::FP64BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::LDR;
+ else if (SystemZ::FP128BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::LXR;
+ else if (SystemZ::VR32BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::VLR32;
+ else if (SystemZ::VR64BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::VLR64;
+ else if (SystemZ::VR128BitRegClass.contains(DestReg, SrcReg))
+ Opcode = SystemZ::VLR;
+ else
+ llvm_unreachable("Impossible reg-to-reg copy");
+
+ BuildMI(MBB, MBBI, DL, get(Opcode), DestReg)
+ .addReg(SrcReg, getKillRegState(KillSrc));
+}
+
+void SystemZInstrInfo::storeRegToStackSlot(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned SrcReg,
+ bool isKill, int FrameIdx, const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+
+ // Callers may expect a single instruction, so keep 128-bit moves
+ // together for now and lower them after register allocation.
+ unsigned LoadOpcode, StoreOpcode;
+ getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
+ addFrameReference(BuildMI(MBB, MBBI, DL, get(StoreOpcode))
+ .addReg(SrcReg, getKillRegState(isKill)),
+ FrameIdx);
+}
+
+void SystemZInstrInfo::loadRegFromStackSlot(
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, unsigned DestReg,
+ int FrameIdx, const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+
+ // Callers may expect a single instruction, so keep 128-bit moves
+ // together for now and lower them after register allocation.
+ unsigned LoadOpcode, StoreOpcode;
+ getLoadStoreOpcodes(RC, LoadOpcode, StoreOpcode);
+ addFrameReference(BuildMI(MBB, MBBI, DL, get(LoadOpcode), DestReg),
+ FrameIdx);
+}
+
+// Return true if MI is a simple load or store with a 12-bit displacement
+// and no index. Flag is SimpleBDXLoad for loads and SimpleBDXStore for stores.
+static bool isSimpleBD12Move(const MachineInstr *MI, unsigned Flag) {
+ const MCInstrDesc &MCID = MI->getDesc();
+ return ((MCID.TSFlags & Flag) &&
+ isUInt<12>(MI->getOperand(2).getImm()) &&
+ MI->getOperand(3).getReg() == 0);
+}
+
+namespace {
+struct LogicOp {
+ LogicOp() : RegSize(0), ImmLSB(0), ImmSize(0) {}
+ LogicOp(unsigned regSize, unsigned immLSB, unsigned immSize)
+ : RegSize(regSize), ImmLSB(immLSB), ImmSize(immSize) {}
+
+ explicit operator bool() const { return RegSize; }
+
+ unsigned RegSize, ImmLSB, ImmSize;
+};
+} // end anonymous namespace
+
+static LogicOp interpretAndImmediate(unsigned Opcode) {
+ switch (Opcode) {
+ case SystemZ::NILMux: return LogicOp(32, 0, 16);
+ case SystemZ::NIHMux: return LogicOp(32, 16, 16);
+ case SystemZ::NILL64: return LogicOp(64, 0, 16);
+ case SystemZ::NILH64: return LogicOp(64, 16, 16);
+ case SystemZ::NIHL64: return LogicOp(64, 32, 16);
+ case SystemZ::NIHH64: return LogicOp(64, 48, 16);
+ case SystemZ::NIFMux: return LogicOp(32, 0, 32);
+ case SystemZ::NILF64: return LogicOp(64, 0, 32);
+ case SystemZ::NIHF64: return LogicOp(64, 32, 32);
+ default: return LogicOp();
+ }
+}
+
+// Used to return from convertToThreeAddress after replacing two-address
+// instruction OldMI with three-address instruction NewMI.
+static MachineInstr *finishConvertToThreeAddress(MachineInstr *OldMI,
+ MachineInstr *NewMI,
+ LiveVariables *LV) {
+ if (LV) {
+ unsigned NumOps = OldMI->getNumOperands();
+ for (unsigned I = 1; I < NumOps; ++I) {
+ MachineOperand &Op = OldMI->getOperand(I);
+ if (Op.isReg() && Op.isKill())
+ LV->replaceKillInstruction(Op.getReg(), OldMI, NewMI);
+ }
+ }
+ return NewMI;
+}
+
+MachineInstr *
+SystemZInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables *LV) const {
+ MachineInstr *MI = MBBI;
+ MachineBasicBlock *MBB = MI->getParent();
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+
+ unsigned Opcode = MI->getOpcode();
+ unsigned NumOps = MI->getNumOperands();
+
+ // Try to convert something like SLL into SLLK, if supported.
+ // We prefer to keep the two-operand form where possible both
+ // because it tends to be shorter and because some instructions
+ // have memory forms that can be used during spilling.
+ if (STI.hasDistinctOps()) {
+ MachineOperand &Dest = MI->getOperand(0);
+ MachineOperand &Src = MI->getOperand(1);
+ unsigned DestReg = Dest.getReg();
+ unsigned SrcReg = Src.getReg();
+ // AHIMux is only really a three-operand instruction when both operands
+ // are low registers. Try to constrain both operands to be low if
+ // possible.
+ if (Opcode == SystemZ::AHIMux &&
+ TargetRegisterInfo::isVirtualRegister(DestReg) &&
+ TargetRegisterInfo::isVirtualRegister(SrcReg) &&
+ MRI.getRegClass(DestReg)->contains(SystemZ::R1L) &&
+ MRI.getRegClass(SrcReg)->contains(SystemZ::R1L)) {
+ MRI.constrainRegClass(DestReg, &SystemZ::GR32BitRegClass);
+ MRI.constrainRegClass(SrcReg, &SystemZ::GR32BitRegClass);
+ }
+ int ThreeOperandOpcode = SystemZ::getThreeOperandOpcode(Opcode);
+ if (ThreeOperandOpcode >= 0) {
+ // Create three address instruction without adding the implicit
+ // operands. Those will instead be copied over from the original
+ // instruction by the loop below.
+ MachineInstrBuilder MIB(*MF,
+ MF->CreateMachineInstr(get(ThreeOperandOpcode),
+ MI->getDebugLoc(), /*NoImplicit=*/true));
+ MIB.addOperand(Dest);
+ // Keep the kill state, but drop the tied flag.
+ MIB.addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg());
+ // Keep the remaining operands as-is.
+ for (unsigned I = 2; I < NumOps; ++I)
+ MIB.addOperand(MI->getOperand(I));
+ MBB->insert(MI, MIB);
+ return finishConvertToThreeAddress(MI, MIB, LV);
+ }
+ }
+
+ // Try to convert an AND into an RISBG-type instruction.
+ if (LogicOp And = interpretAndImmediate(Opcode)) {
+ uint64_t Imm = MI->getOperand(2).getImm() << And.ImmLSB;
+ // AND IMMEDIATE leaves the other bits of the register unchanged.
+ Imm |= allOnes(And.RegSize) & ~(allOnes(And.ImmSize) << And.ImmLSB);
+ unsigned Start, End;
+ if (isRxSBGMask(Imm, And.RegSize, Start, End)) {
+ unsigned NewOpcode;
+ if (And.RegSize == 64) {
+ NewOpcode = SystemZ::RISBG;
+ // Prefer RISBGN if available, since it does not clobber CC.
+ if (STI.hasMiscellaneousExtensions())
+ NewOpcode = SystemZ::RISBGN;
+ } else {
+ NewOpcode = SystemZ::RISBMux;
+ Start &= 31;
+ End &= 31;
+ }
+ MachineOperand &Dest = MI->getOperand(0);
+ MachineOperand &Src = MI->getOperand(1);
+ MachineInstrBuilder MIB =
+ BuildMI(*MBB, MI, MI->getDebugLoc(), get(NewOpcode))
+ .addOperand(Dest).addReg(0)
+ .addReg(Src.getReg(), getKillRegState(Src.isKill()), Src.getSubReg())
+ .addImm(Start).addImm(End + 128).addImm(0);
+ return finishConvertToThreeAddress(MI, MIB, LV);
+ }
+ }
+ return nullptr;
+}
+
+MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
+ MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
+ MachineBasicBlock::iterator InsertPt, int FrameIndex) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ unsigned Size = MFI->getObjectSize(FrameIndex);
+ unsigned Opcode = MI->getOpcode();
+
+ if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
+ if ((Opcode == SystemZ::LA || Opcode == SystemZ::LAY) &&
+ isInt<8>(MI->getOperand(2).getImm()) &&
+ !MI->getOperand(3).getReg()) {
+ // LA(Y) %reg, CONST(%reg) -> AGSI %mem, CONST
+ return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
+ get(SystemZ::AGSI))
+ .addFrameIndex(FrameIndex)
+ .addImm(0)
+ .addImm(MI->getOperand(2).getImm());
+ }
+ return nullptr;
+ }
+
+ // All other cases require a single operand.
+ if (Ops.size() != 1)
+ return nullptr;
+
+ unsigned OpNum = Ops[0];
+ assert(Size == MF.getRegInfo()
+ .getRegClass(MI->getOperand(OpNum).getReg())->getSize() &&
+ "Invalid size combination");
+
+ if ((Opcode == SystemZ::AHI || Opcode == SystemZ::AGHI) &&
+ OpNum == 0 &&
+ isInt<8>(MI->getOperand(2).getImm())) {
+ // A(G)HI %reg, CONST -> A(G)SI %mem, CONST
+ Opcode = (Opcode == SystemZ::AHI ? SystemZ::ASI : SystemZ::AGSI);
+ return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
+ get(Opcode))
+ .addFrameIndex(FrameIndex)
+ .addImm(0)
+ .addImm(MI->getOperand(2).getImm());
+ }
+
+ if (Opcode == SystemZ::LGDR || Opcode == SystemZ::LDGR) {
+ bool Op0IsGPR = (Opcode == SystemZ::LGDR);
+ bool Op1IsGPR = (Opcode == SystemZ::LDGR);
+ // If we're spilling the destination of an LDGR or LGDR, store the
+ // source register instead.
+ if (OpNum == 0) {
+ unsigned StoreOpcode = Op1IsGPR ? SystemZ::STG : SystemZ::STD;
+ return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
+ get(StoreOpcode))
+ .addOperand(MI->getOperand(1))
+ .addFrameIndex(FrameIndex)
+ .addImm(0)
+ .addReg(0);
+ }
+ // If we're spilling the source of an LDGR or LGDR, load the
+ // destination register instead.
+ if (OpNum == 1) {
+ unsigned LoadOpcode = Op0IsGPR ? SystemZ::LG : SystemZ::LD;
+ unsigned Dest = MI->getOperand(0).getReg();
+ return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
+ get(LoadOpcode), Dest)
+ .addFrameIndex(FrameIndex)
+ .addImm(0)
+ .addReg(0);
+ }
+ }
+
+ // Look for cases where the source of a simple store or the destination
+ // of a simple load is being spilled. Try to use MVC instead.
+ //
+ // Although MVC is in practice a fast choice in these cases, it is still
+ // logically a bytewise copy. This means that we cannot use it if the
+ // load or store is volatile. We also wouldn't be able to use MVC if
+ // the two memories partially overlap, but that case cannot occur here,
+ // because we know that one of the memories is a full frame index.
+ //
+ // For performance reasons, we also want to avoid using MVC if the addresses
+ // might be equal. We don't worry about that case here, because spill slot
+ // coloring happens later, and because we have special code to remove
+ // MVCs that turn out to be redundant.
+ if (OpNum == 0 && MI->hasOneMemOperand()) {
+ MachineMemOperand *MMO = *MI->memoperands_begin();
+ if (MMO->getSize() == Size && !MMO->isVolatile()) {
+ // Handle conversion of loads.
+ if (isSimpleBD12Move(MI, SystemZII::SimpleBDXLoad)) {
+ return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
+ get(SystemZ::MVC))
+ .addFrameIndex(FrameIndex)
+ .addImm(0)
+ .addImm(Size)
+ .addOperand(MI->getOperand(1))
+ .addImm(MI->getOperand(2).getImm())
+ .addMemOperand(MMO);
+ }
+ // Handle conversion of stores.
+ if (isSimpleBD12Move(MI, SystemZII::SimpleBDXStore)) {
+ return BuildMI(*InsertPt->getParent(), InsertPt, MI->getDebugLoc(),
+ get(SystemZ::MVC))
+ .addOperand(MI->getOperand(1))
+ .addImm(MI->getOperand(2).getImm())
+ .addImm(Size)
+ .addFrameIndex(FrameIndex)
+ .addImm(0)
+ .addMemOperand(MMO);
+ }
+ }
+ }
+
+ // If the spilled operand is the final one, try to change <INSN>R
+ // into <INSN>.
+ int MemOpcode = SystemZ::getMemOpcode(Opcode);
+ if (MemOpcode >= 0) {
+ unsigned NumOps = MI->getNumExplicitOperands();
+ if (OpNum == NumOps - 1) {
+ const MCInstrDesc &MemDesc = get(MemOpcode);
+ uint64_t AccessBytes = SystemZII::getAccessSize(MemDesc.TSFlags);
+ assert(AccessBytes != 0 && "Size of access should be known");
+ assert(AccessBytes <= Size && "Access outside the frame index");
+ uint64_t Offset = Size - AccessBytes;
+ MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt,
+ MI->getDebugLoc(), get(MemOpcode));
+ for (unsigned I = 0; I < OpNum; ++I)
+ MIB.addOperand(MI->getOperand(I));
+ MIB.addFrameIndex(FrameIndex).addImm(Offset);
+ if (MemDesc.TSFlags & SystemZII::HasIndex)
+ MIB.addReg(0);
+ return MIB;
+ }
+ }
+
+ return nullptr;
+}
+
+MachineInstr *SystemZInstrInfo::foldMemoryOperandImpl(
+ MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
+ MachineBasicBlock::iterator InsertPt, MachineInstr *LoadMI) const {
+ return nullptr;
+}
+
+bool
+SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
+ switch (MI->getOpcode()) {
+ case SystemZ::L128:
+ splitMove(MI, SystemZ::LG);
+ return true;
+
+ case SystemZ::ST128:
+ splitMove(MI, SystemZ::STG);
+ return true;
+
+ case SystemZ::LX:
+ splitMove(MI, SystemZ::LD);
+ return true;
+
+ case SystemZ::STX:
+ splitMove(MI, SystemZ::STD);
+ return true;
+
+ case SystemZ::LBMux:
+ expandRXYPseudo(MI, SystemZ::LB, SystemZ::LBH);
+ return true;
+
+ case SystemZ::LHMux:
+ expandRXYPseudo(MI, SystemZ::LH, SystemZ::LHH);
+ return true;
+
+ case SystemZ::LLCRMux:
+ expandZExtPseudo(MI, SystemZ::LLCR, 8);
+ return true;
+
+ case SystemZ::LLHRMux:
+ expandZExtPseudo(MI, SystemZ::LLHR, 16);
+ return true;
+
+ case SystemZ::LLCMux:
+ expandRXYPseudo(MI, SystemZ::LLC, SystemZ::LLCH);
+ return true;
+
+ case SystemZ::LLHMux:
+ expandRXYPseudo(MI, SystemZ::LLH, SystemZ::LLHH);
+ return true;
+
+ case SystemZ::LMux:
+ expandRXYPseudo(MI, SystemZ::L, SystemZ::LFH);
+ return true;
+
+ case SystemZ::STCMux:
+ expandRXYPseudo(MI, SystemZ::STC, SystemZ::STCH);
+ return true;
+
+ case SystemZ::STHMux:
+ expandRXYPseudo(MI, SystemZ::STH, SystemZ::STHH);
+ return true;
+
+ case SystemZ::STMux:
+ expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
+ return true;
+
+ case SystemZ::LHIMux:
+ expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
+ return true;
+
+ case SystemZ::IIFMux:
+ expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
+ return true;
+
+ case SystemZ::IILMux:
+ expandRIPseudo(MI, SystemZ::IILL, SystemZ::IIHL, false);
+ return true;
+
+ case SystemZ::IIHMux:
+ expandRIPseudo(MI, SystemZ::IILH, SystemZ::IIHH, false);
+ return true;
+
+ case SystemZ::NIFMux:
+ expandRIPseudo(MI, SystemZ::NILF, SystemZ::NIHF, false);
+ return true;
+
+ case SystemZ::NILMux:
+ expandRIPseudo(MI, SystemZ::NILL, SystemZ::NIHL, false);
+ return true;
+
+ case SystemZ::NIHMux:
+ expandRIPseudo(MI, SystemZ::NILH, SystemZ::NIHH, false);
+ return true;
+
+ case SystemZ::OIFMux:
+ expandRIPseudo(MI, SystemZ::OILF, SystemZ::OIHF, false);
+ return true;
+
+ case SystemZ::OILMux:
+ expandRIPseudo(MI, SystemZ::OILL, SystemZ::OIHL, false);
+ return true;
+
+ case SystemZ::OIHMux:
+ expandRIPseudo(MI, SystemZ::OILH, SystemZ::OIHH, false);
+ return true;
+
+ case SystemZ::XIFMux:
+ expandRIPseudo(MI, SystemZ::XILF, SystemZ::XIHF, false);
+ return true;
+
+ case SystemZ::TMLMux:
+ expandRIPseudo(MI, SystemZ::TMLL, SystemZ::TMHL, false);
+ return true;
+
+ case SystemZ::TMHMux:
+ expandRIPseudo(MI, SystemZ::TMLH, SystemZ::TMHH, false);
+ return true;
+
+ case SystemZ::AHIMux:
+ expandRIPseudo(MI, SystemZ::AHI, SystemZ::AIH, false);
+ return true;
+
+ case SystemZ::AHIMuxK:
+ expandRIEPseudo(MI, SystemZ::AHI, SystemZ::AHIK, SystemZ::AIH);
+ return true;
+
+ case SystemZ::AFIMux:
+ expandRIPseudo(MI, SystemZ::AFI, SystemZ::AIH, false);
+ return true;
+
+ case SystemZ::CFIMux:
+ expandRIPseudo(MI, SystemZ::CFI, SystemZ::CIH, false);
+ return true;
+
+ case SystemZ::CLFIMux:
+ expandRIPseudo(MI, SystemZ::CLFI, SystemZ::CLIH, false);
+ return true;
+
+ case SystemZ::CMux:
+ expandRXYPseudo(MI, SystemZ::C, SystemZ::CHF);
+ return true;
+
+ case SystemZ::CLMux:
+ expandRXYPseudo(MI, SystemZ::CL, SystemZ::CLHF);
+ return true;
+
+ case SystemZ::RISBMux: {
+ bool DestIsHigh = isHighReg(MI->getOperand(0).getReg());
+ bool SrcIsHigh = isHighReg(MI->getOperand(2).getReg());
+ if (SrcIsHigh == DestIsHigh)
+ MI->setDesc(get(DestIsHigh ? SystemZ::RISBHH : SystemZ::RISBLL));
+ else {
+ MI->setDesc(get(DestIsHigh ? SystemZ::RISBHL : SystemZ::RISBLH));
+ MI->getOperand(5).setImm(MI->getOperand(5).getImm() ^ 32);
+ }
+ return true;
+ }
+
+ case SystemZ::ADJDYNALLOC:
+ splitAdjDynAlloc(MI);
+ return true;
+
+ default:
+ return false;
+ }
+}
+
+uint64_t SystemZInstrInfo::getInstSizeInBytes(const MachineInstr *MI) const {
+ if (MI->getOpcode() == TargetOpcode::INLINEASM) {
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const char *AsmStr = MI->getOperand(0).getSymbolName();
+ return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
+ }
+ return MI->getDesc().getSize();
+}
+
+SystemZII::Branch
+SystemZInstrInfo::getBranchInfo(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ case SystemZ::BR:
+ case SystemZ::J:
+ case SystemZ::JG:
+ return SystemZII::Branch(SystemZII::BranchNormal, SystemZ::CCMASK_ANY,
+ SystemZ::CCMASK_ANY, &MI->getOperand(0));
+
+ case SystemZ::BRC:
+ case SystemZ::BRCL:
+ return SystemZII::Branch(SystemZII::BranchNormal,
+ MI->getOperand(0).getImm(),
+ MI->getOperand(1).getImm(), &MI->getOperand(2));
+
+ case SystemZ::BRCT:
+ return SystemZII::Branch(SystemZII::BranchCT, SystemZ::CCMASK_ICMP,
+ SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
+
+ case SystemZ::BRCTG:
+ return SystemZII::Branch(SystemZII::BranchCTG, SystemZ::CCMASK_ICMP,
+ SystemZ::CCMASK_CMP_NE, &MI->getOperand(2));
+
+ case SystemZ::CIJ:
+ case SystemZ::CRJ:
+ return SystemZII::Branch(SystemZII::BranchC, SystemZ::CCMASK_ICMP,
+ MI->getOperand(2).getImm(), &MI->getOperand(3));
+
+ case SystemZ::CLIJ:
+ case SystemZ::CLRJ:
+ return SystemZII::Branch(SystemZII::BranchCL, SystemZ::CCMASK_ICMP,
+ MI->getOperand(2).getImm(), &MI->getOperand(3));
+
+ case SystemZ::CGIJ:
+ case SystemZ::CGRJ:
+ return SystemZII::Branch(SystemZII::BranchCG, SystemZ::CCMASK_ICMP,
+ MI->getOperand(2).getImm(), &MI->getOperand(3));
+
+ case SystemZ::CLGIJ:
+ case SystemZ::CLGRJ:
+ return SystemZII::Branch(SystemZII::BranchCLG, SystemZ::CCMASK_ICMP,
+ MI->getOperand(2).getImm(), &MI->getOperand(3));
+
+ default:
+ llvm_unreachable("Unrecognized branch opcode");
+ }
+}
+
+void SystemZInstrInfo::getLoadStoreOpcodes(const TargetRegisterClass *RC,
+ unsigned &LoadOpcode,
+ unsigned &StoreOpcode) const {
+ if (RC == &SystemZ::GR32BitRegClass || RC == &SystemZ::ADDR32BitRegClass) {
+ LoadOpcode = SystemZ::L;
+ StoreOpcode = SystemZ::ST;
+ } else if (RC == &SystemZ::GRH32BitRegClass) {
+ LoadOpcode = SystemZ::LFH;
+ StoreOpcode = SystemZ::STFH;
+ } else if (RC == &SystemZ::GRX32BitRegClass) {
+ LoadOpcode = SystemZ::LMux;
+ StoreOpcode = SystemZ::STMux;
+ } else if (RC == &SystemZ::GR64BitRegClass ||
+ RC == &SystemZ::ADDR64BitRegClass) {
+ LoadOpcode = SystemZ::LG;
+ StoreOpcode = SystemZ::STG;
+ } else if (RC == &SystemZ::GR128BitRegClass ||
+ RC == &SystemZ::ADDR128BitRegClass) {
+ LoadOpcode = SystemZ::L128;
+ StoreOpcode = SystemZ::ST128;
+ } else if (RC == &SystemZ::FP32BitRegClass) {
+ LoadOpcode = SystemZ::LE;
+ StoreOpcode = SystemZ::STE;
+ } else if (RC == &SystemZ::FP64BitRegClass) {
+ LoadOpcode = SystemZ::LD;
+ StoreOpcode = SystemZ::STD;
+ } else if (RC == &SystemZ::FP128BitRegClass) {
+ LoadOpcode = SystemZ::LX;
+ StoreOpcode = SystemZ::STX;
+ } else if (RC == &SystemZ::VR32BitRegClass) {
+ LoadOpcode = SystemZ::VL32;
+ StoreOpcode = SystemZ::VST32;
+ } else if (RC == &SystemZ::VR64BitRegClass) {
+ LoadOpcode = SystemZ::VL64;
+ StoreOpcode = SystemZ::VST64;
+ } else if (RC == &SystemZ::VF128BitRegClass ||
+ RC == &SystemZ::VR128BitRegClass) {
+ LoadOpcode = SystemZ::VL;
+ StoreOpcode = SystemZ::VST;
+ } else
+ llvm_unreachable("Unsupported regclass to load or store");
+}
+
+unsigned SystemZInstrInfo::getOpcodeForOffset(unsigned Opcode,
+ int64_t Offset) const {
+ const MCInstrDesc &MCID = get(Opcode);
+ int64_t Offset2 = (MCID.TSFlags & SystemZII::Is128Bit ? Offset + 8 : Offset);
+ if (isUInt<12>(Offset) && isUInt<12>(Offset2)) {
+ // Get the instruction to use for unsigned 12-bit displacements.
+ int Disp12Opcode = SystemZ::getDisp12Opcode(Opcode);
+ if (Disp12Opcode >= 0)
+ return Disp12Opcode;
+
+ // All address-related instructions can use unsigned 12-bit
+ // displacements.
+ return Opcode;
+ }
+ if (isInt<20>(Offset) && isInt<20>(Offset2)) {
+ // Get the instruction to use for signed 20-bit displacements.
+ int Disp20Opcode = SystemZ::getDisp20Opcode(Opcode);
+ if (Disp20Opcode >= 0)
+ return Disp20Opcode;
+
+ // Check whether Opcode allows signed 20-bit displacements.
+ if (MCID.TSFlags & SystemZII::Has20BitOffset)
+ return Opcode;
+ }
+ return 0;
+}
+
+unsigned SystemZInstrInfo::getLoadAndTest(unsigned Opcode) const {
+ switch (Opcode) {
+ case SystemZ::L: return SystemZ::LT;
+ case SystemZ::LY: return SystemZ::LT;
+ case SystemZ::LG: return SystemZ::LTG;
+ case SystemZ::LGF: return SystemZ::LTGF;
+ case SystemZ::LR: return SystemZ::LTR;
+ case SystemZ::LGFR: return SystemZ::LTGFR;
+ case SystemZ::LGR: return SystemZ::LTGR;
+ case SystemZ::LER: return SystemZ::LTEBR;
+ case SystemZ::LDR: return SystemZ::LTDBR;
+ case SystemZ::LXR: return SystemZ::LTXBR;
+ case SystemZ::LCDFR: return SystemZ::LCDBR;
+ case SystemZ::LPDFR: return SystemZ::LPDBR;
+ case SystemZ::LNDFR: return SystemZ::LNDBR;
+ case SystemZ::LCDFR_32: return SystemZ::LCEBR;
+ case SystemZ::LPDFR_32: return SystemZ::LPEBR;
+ case SystemZ::LNDFR_32: return SystemZ::LNEBR;
+ // On zEC12 we prefer to use RISBGN. But if there is a chance to
+ // actually use the condition code, we may turn it back into RISGB.
+ // Note that RISBG is not really a "load-and-test" instruction,
+ // but sets the same condition code values, so is OK to use here.
+ case SystemZ::RISBGN: return SystemZ::RISBG;
+ default: return 0;
+ }
+}
+
+// Return true if Mask matches the regexp 0*1+0*, given that zero masks
+// have already been filtered out. Store the first set bit in LSB and
+// the number of set bits in Length if so.
+static bool isStringOfOnes(uint64_t Mask, unsigned &LSB, unsigned &Length) {
+ unsigned First = findFirstSet(Mask);
+ uint64_t Top = (Mask >> First) + 1;
+ if ((Top & -Top) == Top) {
+ LSB = First;
+ Length = findFirstSet(Top);
+ return true;
+ }
+ return false;
+}
+
+bool SystemZInstrInfo::isRxSBGMask(uint64_t Mask, unsigned BitSize,
+ unsigned &Start, unsigned &End) const {
+ // Reject trivial all-zero masks.
+ Mask &= allOnes(BitSize);
+ if (Mask == 0)
+ return false;
+
+ // Handle the 1+0+ or 0+1+0* cases. Start then specifies the index of
+ // the msb and End specifies the index of the lsb.
+ unsigned LSB, Length;
+ if (isStringOfOnes(Mask, LSB, Length)) {
+ Start = 63 - (LSB + Length - 1);
+ End = 63 - LSB;
+ return true;
+ }
+
+ // Handle the wrap-around 1+0+1+ cases. Start then specifies the msb
+ // of the low 1s and End specifies the lsb of the high 1s.
+ if (isStringOfOnes(Mask ^ allOnes(BitSize), LSB, Length)) {
+ assert(LSB > 0 && "Bottom bit must be set");
+ assert(LSB + Length < BitSize && "Top bit must be set");
+ Start = 63 - (LSB - 1);
+ End = 63 - (LSB + Length);
+ return true;
+ }
+
+ return false;
+}
+
+unsigned SystemZInstrInfo::getCompareAndBranch(unsigned Opcode,
+ const MachineInstr *MI) const {
+ switch (Opcode) {
+ case SystemZ::CR:
+ return SystemZ::CRJ;
+ case SystemZ::CGR:
+ return SystemZ::CGRJ;
+ case SystemZ::CHI:
+ return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CIJ : 0;
+ case SystemZ::CGHI:
+ return MI && isInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CGIJ : 0;
+ case SystemZ::CLR:
+ return SystemZ::CLRJ;
+ case SystemZ::CLGR:
+ return SystemZ::CLGRJ;
+ case SystemZ::CLFI:
+ return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLIJ : 0;
+ case SystemZ::CLGFI:
+ return MI && isUInt<8>(MI->getOperand(1).getImm()) ? SystemZ::CLGIJ : 0;
+ default:
+ return 0;
+ }
+}
+
+void SystemZInstrInfo::loadImmediate(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MBBI,
+ unsigned Reg, uint64_t Value) const {
+ DebugLoc DL = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
+ unsigned Opcode;
+ if (isInt<16>(Value))
+ Opcode = SystemZ::LGHI;
+ else if (SystemZ::isImmLL(Value))
+ Opcode = SystemZ::LLILL;
+ else if (SystemZ::isImmLH(Value)) {
+ Opcode = SystemZ::LLILH;
+ Value >>= 16;
+ } else {
+ assert(isInt<32>(Value) && "Huge values not handled yet");
+ Opcode = SystemZ::LGFI;
+ }
+ BuildMI(MBB, MBBI, DL, get(Opcode), Reg).addImm(Value);
+}
OpenPOWER on IntegriCloud