diff options
Diffstat (limited to 'contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td')
-rw-r--r-- | contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td | 318 |
1 files changed, 318 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td b/contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td new file mode 100644 index 0000000..7c9f0e6 --- /dev/null +++ b/contrib/llvm/lib/Target/SystemZ/SystemZInstrFP.td @@ -0,0 +1,318 @@ +//==- SystemZInstrFP.td - Floating-point SystemZ instructions --*- tblgen-*-==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Control-flow instructions +//===----------------------------------------------------------------------===// + +// C's ?: operator for floating-point operands. +def SelectF32 : SelectWrapper<FP32>; +def SelectF64 : SelectWrapper<FP64>; +def SelectF128 : SelectWrapper<FP128>; + +//===----------------------------------------------------------------------===// +// Move instructions +//===----------------------------------------------------------------------===// + +// Load zero. +let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1 in { + def LZER : InherentRRE<"lzer", 0xB374, FP32, (fpimm0)>; + def LZDR : InherentRRE<"lzdr", 0xB375, FP64, (fpimm0)>; + def LZXR : InherentRRE<"lzxr", 0xB376, FP128, (fpimm0)>; +} + +// Moves between two floating-point registers. +let neverHasSideEffects = 1 in { + def LER : UnaryRR <"ler", 0x38, null_frag, FP32, FP32>; + def LDR : UnaryRR <"ldr", 0x28, null_frag, FP64, FP64>; + def LXR : UnaryRRE<"lxr", 0xB365, null_frag, FP128, FP128>; +} + +// Moves between 64-bit integer and floating-point registers. +def LGDR : UnaryRRE<"lgdr", 0xB3CD, bitconvert, GR64, FP64>; +def LDGR : UnaryRRE<"ldgr", 0xB3C1, bitconvert, FP64, GR64>; + +// fcopysign with an FP32 result. +let isCodeGenOnly = 1 in { + def CPSDRss : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP32, FP32>; + def CPSDRsd : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP32, FP64>; +} + +// The sign of an FP128 is in the high register. Give the CPSDRsd +// operands in R1, R2, R3 order. +def : Pat<(fcopysign FP32:$src1, FP128:$src2), + (CPSDRsd (EXTRACT_SUBREG FP128:$src2, subreg_high), FP32:$src1)>; + +// fcopysign with an FP64 result. +let isCodeGenOnly = 1 in + def CPSDRds : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP64, FP32>; +def CPSDRdd : BinaryRevRRF<"cpsdr", 0xB372, fcopysign, FP64, FP64>; + +// The sign of an FP128 is in the high register. Give the CPSDRdd +// operands in R1, R2, R3 order. +def : Pat<(fcopysign FP64:$src1, FP128:$src2), + (CPSDRdd (EXTRACT_SUBREG FP128:$src2, subreg_high), FP64:$src1)>; + +// fcopysign with an FP128 result. Use "upper" as the high half and leave +// the low half as-is. +class CopySign128<RegisterOperand cls, dag upper> + : Pat<(fcopysign FP128:$src1, cls:$src2), + (INSERT_SUBREG FP128:$src1, upper, subreg_high)>; + +// Give the CPSDR* operands in R1, R2, R3 order. +def : CopySign128<FP32, (CPSDRds FP32:$src2, + (EXTRACT_SUBREG FP128:$src1, subreg_high))>; +def : CopySign128<FP64, (CPSDRdd FP64:$src2, + (EXTRACT_SUBREG FP128:$src1, subreg_high))>; +def : CopySign128<FP128, (CPSDRdd (EXTRACT_SUBREG FP128:$src2, subreg_high), + (EXTRACT_SUBREG FP128:$src1, subreg_high))>; + +//===----------------------------------------------------------------------===// +// Load instructions +//===----------------------------------------------------------------------===// + +let canFoldAsLoad = 1, SimpleBDXLoad = 1 in { + defm LE : UnaryRXPair<"le", 0x78, 0xED64, load, FP32>; + defm LD : UnaryRXPair<"ld", 0x68, 0xED65, load, FP64>; + + // These instructions are split after register allocation, so we don't + // want a custom inserter. + let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { + def LX : Pseudo<(outs FP128:$dst), (ins bdxaddr20only128:$src), + [(set FP128:$dst, (load bdxaddr20only128:$src))]>; + } +} + +//===----------------------------------------------------------------------===// +// Store instructions +//===----------------------------------------------------------------------===// + +let SimpleBDXStore = 1 in { + defm STE : StoreRXPair<"ste", 0x70, 0xED66, store, FP32>; + defm STD : StoreRXPair<"std", 0x60, 0xED67, store, FP64>; + + // These instructions are split after register allocation, so we don't + // want a custom inserter. + let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { + def STX : Pseudo<(outs), (ins FP128:$src, bdxaddr20only128:$dst), + [(store FP128:$src, bdxaddr20only128:$dst)]>; + } +} + +//===----------------------------------------------------------------------===// +// Conversion instructions +//===----------------------------------------------------------------------===// + +// Convert floating-point values to narrower representations, rounding +// according to the current mode. The destination of LEXBR and LDXBR +// is a 128-bit value, but only the first register of the pair is used. +def LEDBR : UnaryRRE<"ledbr", 0xB344, fround, FP32, FP64>; +def LEXBR : UnaryRRE<"lexbr", 0xB346, null_frag, FP128, FP128>; +def LDXBR : UnaryRRE<"ldxbr", 0xB345, null_frag, FP128, FP128>; + +def : Pat<(f32 (fround FP128:$src)), + (EXTRACT_SUBREG (LEXBR FP128:$src), subreg_32bit)>; +def : Pat<(f64 (fround FP128:$src)), + (EXTRACT_SUBREG (LDXBR FP128:$src), subreg_high)>; + +// Extend register floating-point values to wider representations. +def LDEBR : UnaryRRE<"ldebr", 0xB304, fextend, FP64, FP32>; +def LXEBR : UnaryRRE<"lxebr", 0xB306, fextend, FP128, FP32>; +def LXDBR : UnaryRRE<"lxdbr", 0xB305, fextend, FP128, FP64>; + +// Extend memory floating-point values to wider representations. +def LDEB : UnaryRXE<"ldeb", 0xED04, extloadf32, FP64>; +def LXEB : UnaryRXE<"lxeb", 0xED06, extloadf32, FP128>; +def LXDB : UnaryRXE<"lxdb", 0xED05, extloadf64, FP128>; + +// Convert a signed integer register value to a floating-point one. +let Defs = [PSW] in { + def CEFBR : UnaryRRE<"cefbr", 0xB394, sint_to_fp, FP32, GR32>; + def CDFBR : UnaryRRE<"cdfbr", 0xB395, sint_to_fp, FP64, GR32>; + def CXFBR : UnaryRRE<"cxfbr", 0xB396, sint_to_fp, FP128, GR32>; + + def CEGBR : UnaryRRE<"cegbr", 0xB3A4, sint_to_fp, FP32, GR64>; + def CDGBR : UnaryRRE<"cdgbr", 0xB3A5, sint_to_fp, FP64, GR64>; + def CXGBR : UnaryRRE<"cxgbr", 0xB3A6, sint_to_fp, FP128, GR64>; +} + +// Convert a floating-point register value to a signed integer value, +// with the second operand (modifier M3) specifying the rounding mode. +let Defs = [PSW] in { + def CFEBR : UnaryRRF<"cfebr", 0xB398, GR32, FP32>; + def CFDBR : UnaryRRF<"cfdbr", 0xB399, GR32, FP64>; + def CFXBR : UnaryRRF<"cfxbr", 0xB39A, GR32, FP128>; + + def CGEBR : UnaryRRF<"cgebr", 0xB3A8, GR64, FP32>; + def CGDBR : UnaryRRF<"cgdbr", 0xB3A9, GR64, FP64>; + def CGXBR : UnaryRRF<"cgxbr", 0xB3AA, GR64, FP128>; +} + +// fp_to_sint always rounds towards zero, which is modifier value 5. +def : Pat<(i32 (fp_to_sint FP32:$src)), (CFEBR FP32:$src, 5)>; +def : Pat<(i32 (fp_to_sint FP64:$src)), (CFDBR FP64:$src, 5)>; +def : Pat<(i32 (fp_to_sint FP128:$src)), (CFXBR FP128:$src, 5)>; + +def : Pat<(i64 (fp_to_sint FP32:$src)), (CGEBR FP32:$src, 5)>; +def : Pat<(i64 (fp_to_sint FP64:$src)), (CGDBR FP64:$src, 5)>; +def : Pat<(i64 (fp_to_sint FP128:$src)), (CGXBR FP128:$src, 5)>; + +//===----------------------------------------------------------------------===// +// Unary arithmetic +//===----------------------------------------------------------------------===// + +// Negation (Load Complement). +let Defs = [PSW] in { + def LCEBR : UnaryRRE<"lcebr", 0xB303, fneg, FP32, FP32>; + def LCDBR : UnaryRRE<"lcdbr", 0xB313, fneg, FP64, FP64>; + def LCXBR : UnaryRRE<"lcxbr", 0xB343, fneg, FP128, FP128>; +} + +// Absolute value (Load Positive). +let Defs = [PSW] in { + def LPEBR : UnaryRRE<"lpebr", 0xB300, fabs, FP32, FP32>; + def LPDBR : UnaryRRE<"lpdbr", 0xB310, fabs, FP64, FP64>; + def LPXBR : UnaryRRE<"lpxbr", 0xB340, fabs, FP128, FP128>; +} + +// Negative absolute value (Load Negative). +let Defs = [PSW] in { + def LNEBR : UnaryRRE<"lnebr", 0xB301, fnabs, FP32, FP32>; + def LNDBR : UnaryRRE<"lndbr", 0xB311, fnabs, FP64, FP64>; + def LNXBR : UnaryRRE<"lnxbr", 0xB341, fnabs, FP128, FP128>; +} + +// Square root. +def SQEBR : UnaryRRE<"sqebr", 0xB314, fsqrt, FP32, FP32>; +def SQDBR : UnaryRRE<"sqdbr", 0xB315, fsqrt, FP64, FP64>; +def SQXBR : UnaryRRE<"sqxbr", 0xB316, fsqrt, FP128, FP128>; + +def SQEB : UnaryRXE<"sqeb", 0xED14, loadu<fsqrt>, FP32>; +def SQDB : UnaryRXE<"sqdb", 0xED15, loadu<fsqrt>, FP64>; + +// Round to an integer, with the second operand (modifier M3) specifying +// the rounding mode. +// +// These forms always check for inexact conditions. z196 added versions +// that allow this to suppressed (as for fnearbyint), but we don't yet +// support -march=z196. +let Defs = [PSW] in { + def FIEBR : UnaryRRF<"fiebr", 0xB357, FP32, FP32>; + def FIDBR : UnaryRRF<"fidbr", 0xB35F, FP64, FP64>; + def FIXBR : UnaryRRF<"fixbr", 0xB347, FP128, FP128>; +} + +// frint rounds according to the current mode (modifier 0) and detects +// inexact conditions. +def : Pat<(frint FP32:$src), (FIEBR FP32:$src, 0)>; +def : Pat<(frint FP64:$src), (FIDBR FP64:$src, 0)>; +def : Pat<(frint FP128:$src), (FIXBR FP128:$src, 0)>; + +//===----------------------------------------------------------------------===// +// Binary arithmetic +//===----------------------------------------------------------------------===// + +// Addition. +let Defs = [PSW] in { + let isCommutable = 1 in { + def AEBR : BinaryRRE<"aebr", 0xB30A, fadd, FP32, FP32>; + def ADBR : BinaryRRE<"adbr", 0xB31A, fadd, FP64, FP64>; + def AXBR : BinaryRRE<"axbr", 0xB34A, fadd, FP128, FP128>; + } + def AEB : BinaryRXE<"aeb", 0xED0A, fadd, FP32, load>; + def ADB : BinaryRXE<"adb", 0xED1A, fadd, FP64, load>; +} + +// Subtraction. +let Defs = [PSW] in { + def SEBR : BinaryRRE<"sebr", 0xB30B, fsub, FP32, FP32>; + def SDBR : BinaryRRE<"sdbr", 0xB31B, fsub, FP64, FP64>; + def SXBR : BinaryRRE<"sxbr", 0xB34B, fsub, FP128, FP128>; + + def SEB : BinaryRXE<"seb", 0xED0B, fsub, FP32, load>; + def SDB : BinaryRXE<"sdb", 0xED1B, fsub, FP64, load>; +} + +// Multiplication. +let isCommutable = 1 in { + def MEEBR : BinaryRRE<"meebr", 0xB317, fmul, FP32, FP32>; + def MDBR : BinaryRRE<"mdbr", 0xB31C, fmul, FP64, FP64>; + def MXBR : BinaryRRE<"mxbr", 0xB34C, fmul, FP128, FP128>; +} +def MEEB : BinaryRXE<"meeb", 0xED17, fmul, FP32, load>; +def MDB : BinaryRXE<"mdb", 0xED1C, fmul, FP64, load>; + +// f64 multiplication of two FP32 registers. +def MDEBR : BinaryRRE<"mdebr", 0xB30C, null_frag, FP64, FP32>; +def : Pat<(fmul (f64 (fextend FP32:$src1)), (f64 (fextend FP32:$src2))), + (MDEBR (INSERT_SUBREG (f64 (IMPLICIT_DEF)), + FP32:$src1, subreg_32bit), FP32:$src2)>; + +// f64 multiplication of an FP32 register and an f32 memory. +def MDEB : BinaryRXE<"mdeb", 0xED0C, null_frag, FP64, load>; +def : Pat<(fmul (f64 (fextend FP32:$src1)), + (f64 (extloadf32 bdxaddr12only:$addr))), + (MDEB (INSERT_SUBREG (f64 (IMPLICIT_DEF)), FP32:$src1, subreg_32bit), + bdxaddr12only:$addr)>; + +// f128 multiplication of two FP64 registers. +def MXDBR : BinaryRRE<"mxdbr", 0xB307, null_frag, FP128, FP64>; +def : Pat<(fmul (f128 (fextend FP64:$src1)), (f128 (fextend FP64:$src2))), + (MXDBR (INSERT_SUBREG (f128 (IMPLICIT_DEF)), + FP64:$src1, subreg_high), FP64:$src2)>; + +// f128 multiplication of an FP64 register and an f64 memory. +def MXDB : BinaryRXE<"mxdb", 0xED07, null_frag, FP128, load>; +def : Pat<(fmul (f128 (fextend FP64:$src1)), + (f128 (extloadf64 bdxaddr12only:$addr))), + (MXDB (INSERT_SUBREG (f128 (IMPLICIT_DEF)), FP64:$src1, subreg_high), + bdxaddr12only:$addr)>; + +// Fused multiply-add. +def MAEBR : TernaryRRD<"maebr", 0xB30E, z_fma, FP32>; +def MADBR : TernaryRRD<"madbr", 0xB31E, z_fma, FP64>; + +def MAEB : TernaryRXF<"maeb", 0xED0E, z_fma, FP32, load>; +def MADB : TernaryRXF<"madb", 0xED1E, z_fma, FP64, load>; + +// Fused multiply-subtract. +def MSEBR : TernaryRRD<"msebr", 0xB30F, z_fms, FP32>; +def MSDBR : TernaryRRD<"msdbr", 0xB31F, z_fms, FP64>; + +def MSEB : TernaryRXF<"mseb", 0xED0F, z_fms, FP32, load>; +def MSDB : TernaryRXF<"msdb", 0xED1F, z_fms, FP64, load>; + +// Division. +def DEBR : BinaryRRE<"debr", 0xB30D, fdiv, FP32, FP32>; +def DDBR : BinaryRRE<"ddbr", 0xB31D, fdiv, FP64, FP64>; +def DXBR : BinaryRRE<"dxbr", 0xB34D, fdiv, FP128, FP128>; + +def DEB : BinaryRXE<"deb", 0xED0D, fdiv, FP32, load>; +def DDB : BinaryRXE<"ddb", 0xED1D, fdiv, FP64, load>; + +//===----------------------------------------------------------------------===// +// Comparisons +//===----------------------------------------------------------------------===// + +let Defs = [PSW] in { + def CEBR : CompareRRE<"cebr", 0xB309, z_cmp, FP32, FP32>; + def CDBR : CompareRRE<"cdbr", 0xB319, z_cmp, FP64, FP64>; + def CXBR : CompareRRE<"cxbr", 0xB349, z_cmp, FP128, FP128>; + + def CEB : CompareRXE<"ceb", 0xED09, z_cmp, FP32, load>; + def CDB : CompareRXE<"cdb", 0xED19, z_cmp, FP64, load>; +} + +//===----------------------------------------------------------------------===// +// Peepholes +//===----------------------------------------------------------------------===// + +def : Pat<(f32 fpimmneg0), (LCEBR (LZER))>; +def : Pat<(f64 fpimmneg0), (LCDBR (LZDR))>; +def : Pat<(f128 fpimmneg0), (LCXBR (LZXR))>; |