diff options
Diffstat (limited to 'contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp | 5929 |
1 files changed, 5929 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp b/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp new file mode 100644 index 0000000..ee73267 --- /dev/null +++ b/contrib/llvm/lib/Target/SystemZ/SystemZISelLowering.cpp @@ -0,0 +1,5929 @@ +//===-- SystemZISelLowering.cpp - SystemZ DAG lowering implementation -----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the SystemZTargetLowering class. +// +//===----------------------------------------------------------------------===// + +#include "SystemZISelLowering.h" +#include "SystemZCallingConv.h" +#include "SystemZConstantPoolValue.h" +#include "SystemZMachineFunctionInfo.h" +#include "SystemZTargetMachine.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" +#include "llvm/IR/Intrinsics.h" +#include <cctype> + +using namespace llvm; + +#define DEBUG_TYPE "systemz-lower" + +namespace { +// Represents a sequence for extracting a 0/1 value from an IPM result: +// (((X ^ XORValue) + AddValue) >> Bit) +struct IPMConversion { + IPMConversion(unsigned xorValue, int64_t addValue, unsigned bit) + : XORValue(xorValue), AddValue(addValue), Bit(bit) {} + + int64_t XORValue; + int64_t AddValue; + unsigned Bit; +}; + +// Represents information about a comparison. +struct Comparison { + Comparison(SDValue Op0In, SDValue Op1In) + : Op0(Op0In), Op1(Op1In), Opcode(0), ICmpType(0), CCValid(0), CCMask(0) {} + + // The operands to the comparison. + SDValue Op0, Op1; + + // The opcode that should be used to compare Op0 and Op1. + unsigned Opcode; + + // A SystemZICMP value. Only used for integer comparisons. + unsigned ICmpType; + + // The mask of CC values that Opcode can produce. + unsigned CCValid; + + // The mask of CC values for which the original condition is true. + unsigned CCMask; +}; +} // end anonymous namespace + +// Classify VT as either 32 or 64 bit. +static bool is32Bit(EVT VT) { + switch (VT.getSimpleVT().SimpleTy) { + case MVT::i32: + return true; + case MVT::i64: + return false; + default: + llvm_unreachable("Unsupported type"); + } +} + +// Return a version of MachineOperand that can be safely used before the +// final use. +static MachineOperand earlyUseOperand(MachineOperand Op) { + if (Op.isReg()) + Op.setIsKill(false); + return Op; +} + +SystemZTargetLowering::SystemZTargetLowering(const TargetMachine &TM, + const SystemZSubtarget &STI) + : TargetLowering(TM), Subtarget(STI) { + MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize()); + + // Set up the register classes. + if (Subtarget.hasHighWord()) + addRegisterClass(MVT::i32, &SystemZ::GRX32BitRegClass); + else + addRegisterClass(MVT::i32, &SystemZ::GR32BitRegClass); + addRegisterClass(MVT::i64, &SystemZ::GR64BitRegClass); + if (Subtarget.hasVector()) { + addRegisterClass(MVT::f32, &SystemZ::VR32BitRegClass); + addRegisterClass(MVT::f64, &SystemZ::VR64BitRegClass); + } else { + addRegisterClass(MVT::f32, &SystemZ::FP32BitRegClass); + addRegisterClass(MVT::f64, &SystemZ::FP64BitRegClass); + } + addRegisterClass(MVT::f128, &SystemZ::FP128BitRegClass); + + if (Subtarget.hasVector()) { + addRegisterClass(MVT::v16i8, &SystemZ::VR128BitRegClass); + addRegisterClass(MVT::v8i16, &SystemZ::VR128BitRegClass); + addRegisterClass(MVT::v4i32, &SystemZ::VR128BitRegClass); + addRegisterClass(MVT::v2i64, &SystemZ::VR128BitRegClass); + addRegisterClass(MVT::v4f32, &SystemZ::VR128BitRegClass); + addRegisterClass(MVT::v2f64, &SystemZ::VR128BitRegClass); + } + + // Compute derived properties from the register classes + computeRegisterProperties(Subtarget.getRegisterInfo()); + + // Set up special registers. + setStackPointerRegisterToSaveRestore(SystemZ::R15D); + + // TODO: It may be better to default to latency-oriented scheduling, however + // LLVM's current latency-oriented scheduler can't handle physreg definitions + // such as SystemZ has with CC, so set this to the register-pressure + // scheduler, because it can. + setSchedulingPreference(Sched::RegPressure); + + setBooleanContents(ZeroOrOneBooleanContent); + setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); + + // Instructions are strings of 2-byte aligned 2-byte values. + setMinFunctionAlignment(2); + + // Handle operations that are handled in a similar way for all types. + for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; + I <= MVT::LAST_FP_VALUETYPE; + ++I) { + MVT VT = MVT::SimpleValueType(I); + if (isTypeLegal(VT)) { + // Lower SET_CC into an IPM-based sequence. + setOperationAction(ISD::SETCC, VT, Custom); + + // Expand SELECT(C, A, B) into SELECT_CC(X, 0, A, B, NE). + setOperationAction(ISD::SELECT, VT, Expand); + + // Lower SELECT_CC and BR_CC into separate comparisons and branches. + setOperationAction(ISD::SELECT_CC, VT, Custom); + setOperationAction(ISD::BR_CC, VT, Custom); + } + } + + // Expand jump table branches as address arithmetic followed by an + // indirect jump. + setOperationAction(ISD::BR_JT, MVT::Other, Expand); + + // Expand BRCOND into a BR_CC (see above). + setOperationAction(ISD::BRCOND, MVT::Other, Expand); + + // Handle integer types. + for (unsigned I = MVT::FIRST_INTEGER_VALUETYPE; + I <= MVT::LAST_INTEGER_VALUETYPE; + ++I) { + MVT VT = MVT::SimpleValueType(I); + if (isTypeLegal(VT)) { + // Expand individual DIV and REMs into DIVREMs. + setOperationAction(ISD::SDIV, VT, Expand); + setOperationAction(ISD::UDIV, VT, Expand); + setOperationAction(ISD::SREM, VT, Expand); + setOperationAction(ISD::UREM, VT, Expand); + setOperationAction(ISD::SDIVREM, VT, Custom); + setOperationAction(ISD::UDIVREM, VT, Custom); + + // Lower ATOMIC_LOAD and ATOMIC_STORE into normal volatile loads and + // stores, putting a serialization instruction after the stores. + setOperationAction(ISD::ATOMIC_LOAD, VT, Custom); + setOperationAction(ISD::ATOMIC_STORE, VT, Custom); + + // Lower ATOMIC_LOAD_SUB into ATOMIC_LOAD_ADD if LAA and LAAG are + // available, or if the operand is constant. + setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom); + + // Use POPCNT on z196 and above. + if (Subtarget.hasPopulationCount()) + setOperationAction(ISD::CTPOP, VT, Custom); + else + setOperationAction(ISD::CTPOP, VT, Expand); + + // No special instructions for these. + setOperationAction(ISD::CTTZ, VT, Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); + setOperationAction(ISD::ROTR, VT, Expand); + + // Use *MUL_LOHI where possible instead of MULH*. + setOperationAction(ISD::MULHS, VT, Expand); + setOperationAction(ISD::MULHU, VT, Expand); + setOperationAction(ISD::SMUL_LOHI, VT, Custom); + setOperationAction(ISD::UMUL_LOHI, VT, Custom); + + // Only z196 and above have native support for conversions to unsigned. + if (!Subtarget.hasFPExtension()) + setOperationAction(ISD::FP_TO_UINT, VT, Expand); + } + } + + // Type legalization will convert 8- and 16-bit atomic operations into + // forms that operate on i32s (but still keeping the original memory VT). + // Lower them into full i32 operations. + setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); + + // z10 has instructions for signed but not unsigned FP conversion. + // Handle unsigned 32-bit types as signed 64-bit types. + if (!Subtarget.hasFPExtension()) { + setOperationAction(ISD::UINT_TO_FP, MVT::i32, Promote); + setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); + } + + // We have native support for a 64-bit CTLZ, via FLOGR. + setOperationAction(ISD::CTLZ, MVT::i32, Promote); + setOperationAction(ISD::CTLZ, MVT::i64, Legal); + + // Give LowerOperation the chance to replace 64-bit ORs with subregs. + setOperationAction(ISD::OR, MVT::i64, Custom); + + // FIXME: Can we support these natively? + setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand); + setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand); + setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand); + + // We have native instructions for i8, i16 and i32 extensions, but not i1. + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); + for (MVT VT : MVT::integer_valuetypes()) { + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); + } + + // Handle the various types of symbolic address. + setOperationAction(ISD::ConstantPool, PtrVT, Custom); + setOperationAction(ISD::GlobalAddress, PtrVT, Custom); + setOperationAction(ISD::GlobalTLSAddress, PtrVT, Custom); + setOperationAction(ISD::BlockAddress, PtrVT, Custom); + setOperationAction(ISD::JumpTable, PtrVT, Custom); + + // We need to handle dynamic allocations specially because of the + // 160-byte area at the bottom of the stack. + setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom); + + // Use custom expanders so that we can force the function to use + // a frame pointer. + setOperationAction(ISD::STACKSAVE, MVT::Other, Custom); + setOperationAction(ISD::STACKRESTORE, MVT::Other, Custom); + + // Handle prefetches with PFD or PFDRL. + setOperationAction(ISD::PREFETCH, MVT::Other, Custom); + + for (MVT VT : MVT::vector_valuetypes()) { + // Assume by default that all vector operations need to be expanded. + for (unsigned Opcode = 0; Opcode < ISD::BUILTIN_OP_END; ++Opcode) + if (getOperationAction(Opcode, VT) == Legal) + setOperationAction(Opcode, VT, Expand); + + // Likewise all truncating stores and extending loads. + for (MVT InnerVT : MVT::vector_valuetypes()) { + setTruncStoreAction(VT, InnerVT, Expand); + setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); + setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); + } + + if (isTypeLegal(VT)) { + // These operations are legal for anything that can be stored in a + // vector register, even if there is no native support for the format + // as such. In particular, we can do these for v4f32 even though there + // are no specific instructions for that format. + setOperationAction(ISD::LOAD, VT, Legal); + setOperationAction(ISD::STORE, VT, Legal); + setOperationAction(ISD::VSELECT, VT, Legal); + setOperationAction(ISD::BITCAST, VT, Legal); + setOperationAction(ISD::UNDEF, VT, Legal); + + // Likewise, except that we need to replace the nodes with something + // more specific. + setOperationAction(ISD::BUILD_VECTOR, VT, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); + } + } + + // Handle integer vector types. + for (MVT VT : MVT::integer_vector_valuetypes()) { + if (isTypeLegal(VT)) { + // These operations have direct equivalents. + setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Legal); + setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Legal); + setOperationAction(ISD::ADD, VT, Legal); + setOperationAction(ISD::SUB, VT, Legal); + if (VT != MVT::v2i64) + setOperationAction(ISD::MUL, VT, Legal); + setOperationAction(ISD::AND, VT, Legal); + setOperationAction(ISD::OR, VT, Legal); + setOperationAction(ISD::XOR, VT, Legal); + setOperationAction(ISD::CTPOP, VT, Custom); + setOperationAction(ISD::CTTZ, VT, Legal); + setOperationAction(ISD::CTLZ, VT, Legal); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Custom); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Custom); + + // Convert a GPR scalar to a vector by inserting it into element 0. + setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom); + + // Use a series of unpacks for extensions. + setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Custom); + setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Custom); + + // Detect shifts by a scalar amount and convert them into + // V*_BY_SCALAR. + setOperationAction(ISD::SHL, VT, Custom); + setOperationAction(ISD::SRA, VT, Custom); + setOperationAction(ISD::SRL, VT, Custom); + + // At present ROTL isn't matched by DAGCombiner. ROTR should be + // converted into ROTL. + setOperationAction(ISD::ROTL, VT, Expand); + setOperationAction(ISD::ROTR, VT, Expand); + + // Map SETCCs onto one of VCE, VCH or VCHL, swapping the operands + // and inverting the result as necessary. + setOperationAction(ISD::SETCC, VT, Custom); + } + } + + if (Subtarget.hasVector()) { + // There should be no need to check for float types other than v2f64 + // since <2 x f32> isn't a legal type. + setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); + setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); + setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); + setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); + } + + // Handle floating-point types. + for (unsigned I = MVT::FIRST_FP_VALUETYPE; + I <= MVT::LAST_FP_VALUETYPE; + ++I) { + MVT VT = MVT::SimpleValueType(I); + if (isTypeLegal(VT)) { + // We can use FI for FRINT. + setOperationAction(ISD::FRINT, VT, Legal); + + // We can use the extended form of FI for other rounding operations. + if (Subtarget.hasFPExtension()) { + setOperationAction(ISD::FNEARBYINT, VT, Legal); + setOperationAction(ISD::FFLOOR, VT, Legal); + setOperationAction(ISD::FCEIL, VT, Legal); + setOperationAction(ISD::FTRUNC, VT, Legal); + setOperationAction(ISD::FROUND, VT, Legal); + } + + // No special instructions for these. + setOperationAction(ISD::FSIN, VT, Expand); + setOperationAction(ISD::FCOS, VT, Expand); + setOperationAction(ISD::FSINCOS, VT, Expand); + setOperationAction(ISD::FREM, VT, Expand); + setOperationAction(ISD::FPOW, VT, Expand); + } + } + + // Handle floating-point vector types. + if (Subtarget.hasVector()) { + // Scalar-to-vector conversion is just a subreg. + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); + setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); + + // Some insertions and extractions can be done directly but others + // need to go via integers. + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom); + + // These operations have direct equivalents. + setOperationAction(ISD::FADD, MVT::v2f64, Legal); + setOperationAction(ISD::FNEG, MVT::v2f64, Legal); + setOperationAction(ISD::FSUB, MVT::v2f64, Legal); + setOperationAction(ISD::FMUL, MVT::v2f64, Legal); + setOperationAction(ISD::FMA, MVT::v2f64, Legal); + setOperationAction(ISD::FDIV, MVT::v2f64, Legal); + setOperationAction(ISD::FABS, MVT::v2f64, Legal); + setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); + setOperationAction(ISD::FRINT, MVT::v2f64, Legal); + setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); + setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); + setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); + setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); + setOperationAction(ISD::FROUND, MVT::v2f64, Legal); + } + + // We have fused multiply-addition for f32 and f64 but not f128. + setOperationAction(ISD::FMA, MVT::f32, Legal); + setOperationAction(ISD::FMA, MVT::f64, Legal); + setOperationAction(ISD::FMA, MVT::f128, Expand); + + // Needed so that we don't try to implement f128 constant loads using + // a load-and-extend of a f80 constant (in cases where the constant + // would fit in an f80). + for (MVT VT : MVT::fp_valuetypes()) + setLoadExtAction(ISD::EXTLOAD, VT, MVT::f80, Expand); + + // Floating-point truncation and stores need to be done separately. + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + setTruncStoreAction(MVT::f128, MVT::f32, Expand); + setTruncStoreAction(MVT::f128, MVT::f64, Expand); + + // We have 64-bit FPR<->GPR moves, but need special handling for + // 32-bit forms. + if (!Subtarget.hasVector()) { + setOperationAction(ISD::BITCAST, MVT::i32, Custom); + setOperationAction(ISD::BITCAST, MVT::f32, Custom); + } + + // VASTART and VACOPY need to deal with the SystemZ-specific varargs + // structure, but VAEND is a no-op. + setOperationAction(ISD::VASTART, MVT::Other, Custom); + setOperationAction(ISD::VACOPY, MVT::Other, Custom); + setOperationAction(ISD::VAEND, MVT::Other, Expand); + + // Codes for which we want to perform some z-specific combinations. + setTargetDAGCombine(ISD::SIGN_EXTEND); + setTargetDAGCombine(ISD::STORE); + setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT); + setTargetDAGCombine(ISD::FP_ROUND); + + // Handle intrinsics. + setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom); + setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); + + // We want to use MVC in preference to even a single load/store pair. + MaxStoresPerMemcpy = 0; + MaxStoresPerMemcpyOptSize = 0; + + // The main memset sequence is a byte store followed by an MVC. + // Two STC or MV..I stores win over that, but the kind of fused stores + // generated by target-independent code don't when the byte value is + // variable. E.g. "STC <reg>;MHI <reg>,257;STH <reg>" is not better + // than "STC;MVC". Handle the choice in target-specific code instead. + MaxStoresPerMemset = 0; + MaxStoresPerMemsetOptSize = 0; +} + +EVT SystemZTargetLowering::getSetCCResultType(const DataLayout &DL, + LLVMContext &, EVT VT) const { + if (!VT.isVector()) + return MVT::i32; + return VT.changeVectorElementTypeToInteger(); +} + +bool SystemZTargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { + VT = VT.getScalarType(); + + if (!VT.isSimple()) + return false; + + switch (VT.getSimpleVT().SimpleTy) { + case MVT::f32: + case MVT::f64: + return true; + case MVT::f128: + return false; + default: + break; + } + + return false; +} + +bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { + // We can load zero using LZ?R and negative zero using LZ?R;LC?BR. + return Imm.isZero() || Imm.isNegZero(); +} + +bool SystemZTargetLowering::isLegalICmpImmediate(int64_t Imm) const { + // We can use CGFI or CLGFI. + return isInt<32>(Imm) || isUInt<32>(Imm); +} + +bool SystemZTargetLowering::isLegalAddImmediate(int64_t Imm) const { + // We can use ALGFI or SLGFI. + return isUInt<32>(Imm) || isUInt<32>(-Imm); +} + +bool SystemZTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, + unsigned, + unsigned, + bool *Fast) const { + // Unaligned accesses should never be slower than the expanded version. + // We check specifically for aligned accesses in the few cases where + // they are required. + if (Fast) + *Fast = true; + return true; +} + +bool SystemZTargetLowering::isLegalAddressingMode(const DataLayout &DL, + const AddrMode &AM, Type *Ty, + unsigned AS) const { + // Punt on globals for now, although they can be used in limited + // RELATIVE LONG cases. + if (AM.BaseGV) + return false; + + // Require a 20-bit signed offset. + if (!isInt<20>(AM.BaseOffs)) + return false; + + // Indexing is OK but no scale factor can be applied. + return AM.Scale == 0 || AM.Scale == 1; +} + +bool SystemZTargetLowering::isTruncateFree(Type *FromType, Type *ToType) const { + if (!FromType->isIntegerTy() || !ToType->isIntegerTy()) + return false; + unsigned FromBits = FromType->getPrimitiveSizeInBits(); + unsigned ToBits = ToType->getPrimitiveSizeInBits(); + return FromBits > ToBits; +} + +bool SystemZTargetLowering::isTruncateFree(EVT FromVT, EVT ToVT) const { + if (!FromVT.isInteger() || !ToVT.isInteger()) + return false; + unsigned FromBits = FromVT.getSizeInBits(); + unsigned ToBits = ToVT.getSizeInBits(); + return FromBits > ToBits; +} + +//===----------------------------------------------------------------------===// +// Inline asm support +//===----------------------------------------------------------------------===// + +TargetLowering::ConstraintType +SystemZTargetLowering::getConstraintType(StringRef Constraint) const { + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 'a': // Address register + case 'd': // Data register (equivalent to 'r') + case 'f': // Floating-point register + case 'h': // High-part register + case 'r': // General-purpose register + return C_RegisterClass; + + case 'Q': // Memory with base and unsigned 12-bit displacement + case 'R': // Likewise, plus an index + case 'S': // Memory with base and signed 20-bit displacement + case 'T': // Likewise, plus an index + case 'm': // Equivalent to 'T'. + return C_Memory; + + case 'I': // Unsigned 8-bit constant + case 'J': // Unsigned 12-bit constant + case 'K': // Signed 16-bit constant + case 'L': // Signed 20-bit displacement (on all targets we support) + case 'M': // 0x7fffffff + return C_Other; + + default: + break; + } + } + return TargetLowering::getConstraintType(Constraint); +} + +TargetLowering::ConstraintWeight SystemZTargetLowering:: +getSingleConstraintMatchWeight(AsmOperandInfo &info, + const char *constraint) const { + ConstraintWeight weight = CW_Invalid; + Value *CallOperandVal = info.CallOperandVal; + // If we don't have a value, we can't do a match, + // but allow it at the lowest weight. + if (!CallOperandVal) + return CW_Default; + Type *type = CallOperandVal->getType(); + // Look at the constraint type. + switch (*constraint) { + default: + weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); + break; + + case 'a': // Address register + case 'd': // Data register (equivalent to 'r') + case 'h': // High-part register + case 'r': // General-purpose register + if (CallOperandVal->getType()->isIntegerTy()) + weight = CW_Register; + break; + + case 'f': // Floating-point register + if (type->isFloatingPointTy()) + weight = CW_Register; + break; + + case 'I': // Unsigned 8-bit constant + if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) + if (isUInt<8>(C->getZExtValue())) + weight = CW_Constant; + break; + + case 'J': // Unsigned 12-bit constant + if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) + if (isUInt<12>(C->getZExtValue())) + weight = CW_Constant; + break; + + case 'K': // Signed 16-bit constant + if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) + if (isInt<16>(C->getSExtValue())) + weight = CW_Constant; + break; + + case 'L': // Signed 20-bit displacement (on all targets we support) + if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) + if (isInt<20>(C->getSExtValue())) + weight = CW_Constant; + break; + + case 'M': // 0x7fffffff + if (auto *C = dyn_cast<ConstantInt>(CallOperandVal)) + if (C->getZExtValue() == 0x7fffffff) + weight = CW_Constant; + break; + } + return weight; +} + +// Parse a "{tNNN}" register constraint for which the register type "t" +// has already been verified. MC is the class associated with "t" and +// Map maps 0-based register numbers to LLVM register numbers. +static std::pair<unsigned, const TargetRegisterClass *> +parseRegisterNumber(StringRef Constraint, const TargetRegisterClass *RC, + const unsigned *Map) { + assert(*(Constraint.end()-1) == '}' && "Missing '}'"); + if (isdigit(Constraint[2])) { + unsigned Index; + bool Failed = + Constraint.slice(2, Constraint.size() - 1).getAsInteger(10, Index); + if (!Failed && Index < 16 && Map[Index]) + return std::make_pair(Map[Index], RC); + } + return std::make_pair(0U, nullptr); +} + +std::pair<unsigned, const TargetRegisterClass *> +SystemZTargetLowering::getRegForInlineAsmConstraint( + const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { + if (Constraint.size() == 1) { + // GCC Constraint Letters + switch (Constraint[0]) { + default: break; + case 'd': // Data register (equivalent to 'r') + case 'r': // General-purpose register + if (VT == MVT::i64) + return std::make_pair(0U, &SystemZ::GR64BitRegClass); + else if (VT == MVT::i128) + return std::make_pair(0U, &SystemZ::GR128BitRegClass); + return std::make_pair(0U, &SystemZ::GR32BitRegClass); + + case 'a': // Address register + if (VT == MVT::i64) + return std::make_pair(0U, &SystemZ::ADDR64BitRegClass); + else if (VT == MVT::i128) + return std::make_pair(0U, &SystemZ::ADDR128BitRegClass); + return std::make_pair(0U, &SystemZ::ADDR32BitRegClass); + + case 'h': // High-part register (an LLVM extension) + return std::make_pair(0U, &SystemZ::GRH32BitRegClass); + + case 'f': // Floating-point register + if (VT == MVT::f64) + return std::make_pair(0U, &SystemZ::FP64BitRegClass); + else if (VT == MVT::f128) + return std::make_pair(0U, &SystemZ::FP128BitRegClass); + return std::make_pair(0U, &SystemZ::FP32BitRegClass); + } + } + if (Constraint.size() > 0 && Constraint[0] == '{') { + // We need to override the default register parsing for GPRs and FPRs + // because the interpretation depends on VT. The internal names of + // the registers are also different from the external names + // (F0D and F0S instead of F0, etc.). + if (Constraint[1] == 'r') { + if (VT == MVT::i32) + return parseRegisterNumber(Constraint, &SystemZ::GR32BitRegClass, + SystemZMC::GR32Regs); + if (VT == MVT::i128) + return parseRegisterNumber(Constraint, &SystemZ::GR128BitRegClass, + SystemZMC::GR128Regs); + return parseRegisterNumber(Constraint, &SystemZ::GR64BitRegClass, + SystemZMC::GR64Regs); + } + if (Constraint[1] == 'f') { + if (VT == MVT::f32) + return parseRegisterNumber(Constraint, &SystemZ::FP32BitRegClass, + SystemZMC::FP32Regs); + if (VT == MVT::f128) + return parseRegisterNumber(Constraint, &SystemZ::FP128BitRegClass, + SystemZMC::FP128Regs); + return parseRegisterNumber(Constraint, &SystemZ::FP64BitRegClass, + SystemZMC::FP64Regs); + } + } + return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); +} + +void SystemZTargetLowering:: +LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint, + std::vector<SDValue> &Ops, + SelectionDAG &DAG) const { + // Only support length 1 constraints for now. + if (Constraint.length() == 1) { + switch (Constraint[0]) { + case 'I': // Unsigned 8-bit constant + if (auto *C = dyn_cast<ConstantSDNode>(Op)) + if (isUInt<8>(C->getZExtValue())) + Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType())); + return; + + case 'J': // Unsigned 12-bit constant + if (auto *C = dyn_cast<ConstantSDNode>(Op)) + if (isUInt<12>(C->getZExtValue())) + Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType())); + return; + + case 'K': // Signed 16-bit constant + if (auto *C = dyn_cast<ConstantSDNode>(Op)) + if (isInt<16>(C->getSExtValue())) + Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), + Op.getValueType())); + return; + + case 'L': // Signed 20-bit displacement (on all targets we support) + if (auto *C = dyn_cast<ConstantSDNode>(Op)) + if (isInt<20>(C->getSExtValue())) + Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), + Op.getValueType())); + return; + + case 'M': // 0x7fffffff + if (auto *C = dyn_cast<ConstantSDNode>(Op)) + if (C->getZExtValue() == 0x7fffffff) + Ops.push_back(DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op), + Op.getValueType())); + return; + } + } + TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); +} + +//===----------------------------------------------------------------------===// +// Calling conventions +//===----------------------------------------------------------------------===// + +#include "SystemZGenCallingConv.inc" + +bool SystemZTargetLowering::allowTruncateForTailCall(Type *FromType, + Type *ToType) const { + return isTruncateFree(FromType, ToType); +} + +bool SystemZTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { + return CI->isTailCall(); +} + +// We do not yet support 128-bit single-element vector types. If the user +// attempts to use such types as function argument or return type, prefer +// to error out instead of emitting code violating the ABI. +static void VerifyVectorType(MVT VT, EVT ArgVT) { + if (ArgVT.isVector() && !VT.isVector()) + report_fatal_error("Unsupported vector argument or return type"); +} + +static void VerifyVectorTypes(const SmallVectorImpl<ISD::InputArg> &Ins) { + for (unsigned i = 0; i < Ins.size(); ++i) + VerifyVectorType(Ins[i].VT, Ins[i].ArgVT); +} + +static void VerifyVectorTypes(const SmallVectorImpl<ISD::OutputArg> &Outs) { + for (unsigned i = 0; i < Outs.size(); ++i) + VerifyVectorType(Outs[i].VT, Outs[i].ArgVT); +} + +// Value is a value that has been passed to us in the location described by VA +// (and so has type VA.getLocVT()). Convert Value to VA.getValVT(), chaining +// any loads onto Chain. +static SDValue convertLocVTToValVT(SelectionDAG &DAG, SDLoc DL, + CCValAssign &VA, SDValue Chain, + SDValue Value) { + // If the argument has been promoted from a smaller type, insert an + // assertion to capture this. + if (VA.getLocInfo() == CCValAssign::SExt) + Value = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Value, + DAG.getValueType(VA.getValVT())); + else if (VA.getLocInfo() == CCValAssign::ZExt) + Value = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Value, + DAG.getValueType(VA.getValVT())); + + if (VA.isExtInLoc()) + Value = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Value); + else if (VA.getLocInfo() == CCValAssign::Indirect) + Value = DAG.getLoad(VA.getValVT(), DL, Chain, Value, + MachinePointerInfo(), false, false, false, 0); + else if (VA.getLocInfo() == CCValAssign::BCvt) { + // If this is a short vector argument loaded from the stack, + // extend from i64 to full vector size and then bitcast. + assert(VA.getLocVT() == MVT::i64); + assert(VA.getValVT().isVector()); + Value = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i64, + Value, DAG.getUNDEF(MVT::i64)); + Value = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Value); + } else + assert(VA.getLocInfo() == CCValAssign::Full && "Unsupported getLocInfo"); + return Value; +} + +// Value is a value of type VA.getValVT() that we need to copy into +// the location described by VA. Return a copy of Value converted to +// VA.getValVT(). The caller is responsible for handling indirect values. +static SDValue convertValVTToLocVT(SelectionDAG &DAG, SDLoc DL, + CCValAssign &VA, SDValue Value) { + switch (VA.getLocInfo()) { + case CCValAssign::SExt: + return DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Value); + case CCValAssign::ZExt: + return DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Value); + case CCValAssign::AExt: + return DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Value); + case CCValAssign::BCvt: + // If this is a short vector argument to be stored to the stack, + // bitcast to v2i64 and then extract first element. + assert(VA.getLocVT() == MVT::i64); + assert(VA.getValVT().isVector()); + Value = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Value); + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VA.getLocVT(), Value, + DAG.getConstant(0, DL, MVT::i32)); + case CCValAssign::Full: + return Value; + default: + llvm_unreachable("Unhandled getLocInfo()"); + } +} + +SDValue SystemZTargetLowering:: +LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + SDLoc DL, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + SystemZMachineFunctionInfo *FuncInfo = + MF.getInfo<SystemZMachineFunctionInfo>(); + auto *TFL = + static_cast<const SystemZFrameLowering *>(Subtarget.getFrameLowering()); + + // Detect unsupported vector argument types. + if (Subtarget.hasVector()) + VerifyVectorTypes(Ins); + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + SystemZCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); + CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ); + + unsigned NumFixedGPRs = 0; + unsigned NumFixedFPRs = 0; + for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { + SDValue ArgValue; + CCValAssign &VA = ArgLocs[I]; + EVT LocVT = VA.getLocVT(); + if (VA.isRegLoc()) { + // Arguments passed in registers + const TargetRegisterClass *RC; + switch (LocVT.getSimpleVT().SimpleTy) { + default: + // Integers smaller than i64 should be promoted to i64. + llvm_unreachable("Unexpected argument type"); + case MVT::i32: + NumFixedGPRs += 1; + RC = &SystemZ::GR32BitRegClass; + break; + case MVT::i64: + NumFixedGPRs += 1; + RC = &SystemZ::GR64BitRegClass; + break; + case MVT::f32: + NumFixedFPRs += 1; + RC = &SystemZ::FP32BitRegClass; + break; + case MVT::f64: + NumFixedFPRs += 1; + RC = &SystemZ::FP64BitRegClass; + break; + case MVT::v16i8: + case MVT::v8i16: + case MVT::v4i32: + case MVT::v2i64: + case MVT::v4f32: + case MVT::v2f64: + RC = &SystemZ::VR128BitRegClass; + break; + } + + unsigned VReg = MRI.createVirtualRegister(RC); + MRI.addLiveIn(VA.getLocReg(), VReg); + ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, LocVT); + } else { + assert(VA.isMemLoc() && "Argument not register or memory"); + + // Create the frame index object for this incoming parameter. + int FI = MFI->CreateFixedObject(LocVT.getSizeInBits() / 8, + VA.getLocMemOffset(), true); + + // Create the SelectionDAG nodes corresponding to a load + // from this parameter. Unpromoted ints and floats are + // passed as right-justified 8-byte values. + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue FIN = DAG.getFrameIndex(FI, PtrVT); + if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) + FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, + DAG.getIntPtrConstant(4, DL)); + ArgValue = DAG.getLoad(LocVT, DL, Chain, FIN, + MachinePointerInfo::getFixedStack(MF, FI), false, + false, false, 0); + } + + // Convert the value of the argument register into the value that's + // being passed. + InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, ArgValue)); + } + + if (IsVarArg) { + // Save the number of non-varargs registers for later use by va_start, etc. + FuncInfo->setVarArgsFirstGPR(NumFixedGPRs); + FuncInfo->setVarArgsFirstFPR(NumFixedFPRs); + + // Likewise the address (in the form of a frame index) of where the + // first stack vararg would be. The 1-byte size here is arbitrary. + int64_t StackSize = CCInfo.getNextStackOffset(); + FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize, true)); + + // ...and a similar frame index for the caller-allocated save area + // that will be used to store the incoming registers. + int64_t RegSaveOffset = TFL->getOffsetOfLocalArea(); + unsigned RegSaveIndex = MFI->CreateFixedObject(1, RegSaveOffset, true); + FuncInfo->setRegSaveFrameIndex(RegSaveIndex); + + // Store the FPR varargs in the reserved frame slots. (We store the + // GPRs as part of the prologue.) + if (NumFixedFPRs < SystemZ::NumArgFPRs) { + SDValue MemOps[SystemZ::NumArgFPRs]; + for (unsigned I = NumFixedFPRs; I < SystemZ::NumArgFPRs; ++I) { + unsigned Offset = TFL->getRegSpillOffset(SystemZ::ArgFPRs[I]); + int FI = MFI->CreateFixedObject(8, RegSaveOffset + Offset, true); + SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); + unsigned VReg = MF.addLiveIn(SystemZ::ArgFPRs[I], + &SystemZ::FP64BitRegClass); + SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, VReg, MVT::f64); + MemOps[I] = DAG.getStore(ArgValue.getValue(1), DL, ArgValue, FIN, + MachinePointerInfo::getFixedStack(MF, FI), + false, false, 0); + } + // Join the stores, which are independent of one another. + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, + makeArrayRef(&MemOps[NumFixedFPRs], + SystemZ::NumArgFPRs-NumFixedFPRs)); + } + } + + return Chain; +} + +static bool canUseSiblingCall(const CCState &ArgCCInfo, + SmallVectorImpl<CCValAssign> &ArgLocs) { + // Punt if there are any indirect or stack arguments, or if the call + // needs the call-saved argument register R6. + for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { + CCValAssign &VA = ArgLocs[I]; + if (VA.getLocInfo() == CCValAssign::Indirect) + return false; + if (!VA.isRegLoc()) + return false; + unsigned Reg = VA.getLocReg(); + if (Reg == SystemZ::R6H || Reg == SystemZ::R6L || Reg == SystemZ::R6D) + return false; + } + return true; +} + +SDValue +SystemZTargetLowering::LowerCall(CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + SDLoc &DL = CLI.DL; + SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; + SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; + SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + bool &IsTailCall = CLI.IsTailCall; + CallingConv::ID CallConv = CLI.CallConv; + bool IsVarArg = CLI.IsVarArg; + MachineFunction &MF = DAG.getMachineFunction(); + EVT PtrVT = getPointerTy(MF.getDataLayout()); + + // Detect unsupported vector argument and return types. + if (Subtarget.hasVector()) { + VerifyVectorTypes(Outs); + VerifyVectorTypes(Ins); + } + + // Analyze the operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + SystemZCCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); + ArgCCInfo.AnalyzeCallOperands(Outs, CC_SystemZ); + + // We don't support GuaranteedTailCallOpt, only automatically-detected + // sibling calls. + if (IsTailCall && !canUseSiblingCall(ArgCCInfo, ArgLocs)) + IsTailCall = false; + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = ArgCCInfo.getNextStackOffset(); + + // Mark the start of the call. + if (!IsTailCall) + Chain = DAG.getCALLSEQ_START(Chain, + DAG.getConstant(NumBytes, DL, PtrVT, true), + DL); + + // Copy argument values to their designated locations. + SmallVector<std::pair<unsigned, SDValue>, 9> RegsToPass; + SmallVector<SDValue, 8> MemOpChains; + SDValue StackPtr; + for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { + CCValAssign &VA = ArgLocs[I]; + SDValue ArgValue = OutVals[I]; + + if (VA.getLocInfo() == CCValAssign::Indirect) { + // Store the argument in a stack slot and pass its address. + SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT()); + int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex(); + MemOpChains.push_back(DAG.getStore( + Chain, DL, ArgValue, SpillSlot, + MachinePointerInfo::getFixedStack(MF, FI), false, false, 0)); + ArgValue = SpillSlot; + } else + ArgValue = convertValVTToLocVT(DAG, DL, VA, ArgValue); + + if (VA.isRegLoc()) + // Queue up the argument copies and emit them at the end. + RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue)); + else { + assert(VA.isMemLoc() && "Argument not register or memory"); + + // Work out the address of the stack slot. Unpromoted ints and + // floats are passed as right-justified 8-byte values. + if (!StackPtr.getNode()) + StackPtr = DAG.getCopyFromReg(Chain, DL, SystemZ::R15D, PtrVT); + unsigned Offset = SystemZMC::CallFrameSize + VA.getLocMemOffset(); + if (VA.getLocVT() == MVT::i32 || VA.getLocVT() == MVT::f32) + Offset += 4; + SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, + DAG.getIntPtrConstant(Offset, DL)); + + // Emit the store. + MemOpChains.push_back(DAG.getStore(Chain, DL, ArgValue, Address, + MachinePointerInfo(), + false, false, 0)); + } + } + + // Join the stores, which are independent of one another. + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains); + + // Accept direct calls by converting symbolic call addresses to the + // associated Target* opcodes. Force %r1 to be used for indirect + // tail calls. + SDValue Glue; + if (auto *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + Callee = DAG.getTargetGlobalAddress(G->getGlobal(), DL, PtrVT); + Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); + } else if (auto *E = dyn_cast<ExternalSymbolSDNode>(Callee)) { + Callee = DAG.getTargetExternalSymbol(E->getSymbol(), PtrVT); + Callee = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Callee); + } else if (IsTailCall) { + Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R1D, Callee, Glue); + Glue = Chain.getValue(1); + Callee = DAG.getRegister(SystemZ::R1D, Callee.getValueType()); + } + + // Build a sequence of copy-to-reg nodes, chained and glued together. + for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) { + Chain = DAG.getCopyToReg(Chain, DL, RegsToPass[I].first, + RegsToPass[I].second, Glue); + Glue = Chain.getValue(1); + } + + // The first call operand is the chain and the second is the target address. + SmallVector<SDValue, 8> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + + // Add argument registers to the end of the list so that they are + // known live into the call. + for (unsigned I = 0, E = RegsToPass.size(); I != E; ++I) + Ops.push_back(DAG.getRegister(RegsToPass[I].first, + RegsToPass[I].second.getValueType())); + + // Add a register mask operand representing the call-preserved registers. + const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); + const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv); + assert(Mask && "Missing call preserved mask for calling convention"); + Ops.push_back(DAG.getRegisterMask(Mask)); + + // Glue the call to the argument copies, if any. + if (Glue.getNode()) + Ops.push_back(Glue); + + // Emit the call. + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + if (IsTailCall) + return DAG.getNode(SystemZISD::SIBCALL, DL, NodeTys, Ops); + Chain = DAG.getNode(SystemZISD::CALL, DL, NodeTys, Ops); + Glue = Chain.getValue(1); + + // Mark the end of the call, which is glued to the call itself. + Chain = DAG.getCALLSEQ_END(Chain, + DAG.getConstant(NumBytes, DL, PtrVT, true), + DAG.getConstant(0, DL, PtrVT, true), + Glue, DL); + Glue = Chain.getValue(1); + + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RetLocs; + CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); + RetCCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ); + + // Copy all of the result registers out of their specified physreg. + for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { + CCValAssign &VA = RetLocs[I]; + + // Copy the value out, gluing the copy to the end of the call sequence. + SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), + VA.getLocVT(), Glue); + Chain = RetValue.getValue(1); + Glue = RetValue.getValue(2); + + // Convert the value of the return register into the value that's + // being returned. + InVals.push_back(convertLocVTToValVT(DAG, DL, VA, Chain, RetValue)); + } + + return Chain; +} + +bool SystemZTargetLowering:: +CanLowerReturn(CallingConv::ID CallConv, + MachineFunction &MF, bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + LLVMContext &Context) const { + // Detect unsupported vector return types. + if (Subtarget.hasVector()) + VerifyVectorTypes(Outs); + + SmallVector<CCValAssign, 16> RetLocs; + CCState RetCCInfo(CallConv, isVarArg, MF, RetLocs, Context); + return RetCCInfo.CheckReturn(Outs, RetCC_SystemZ); +} + +SDValue +SystemZTargetLowering::LowerReturn(SDValue Chain, + CallingConv::ID CallConv, bool IsVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + SDLoc DL, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + + // Detect unsupported vector return types. + if (Subtarget.hasVector()) + VerifyVectorTypes(Outs); + + // Assign locations to each returned value. + SmallVector<CCValAssign, 16> RetLocs; + CCState RetCCInfo(CallConv, IsVarArg, MF, RetLocs, *DAG.getContext()); + RetCCInfo.AnalyzeReturn(Outs, RetCC_SystemZ); + + // Quick exit for void returns + if (RetLocs.empty()) + return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, Chain); + + // Copy the result values into the output registers. + SDValue Glue; + SmallVector<SDValue, 4> RetOps; + RetOps.push_back(Chain); + for (unsigned I = 0, E = RetLocs.size(); I != E; ++I) { + CCValAssign &VA = RetLocs[I]; + SDValue RetValue = OutVals[I]; + + // Make the return register live on exit. + assert(VA.isRegLoc() && "Can only return in registers!"); + + // Promote the value as required. + RetValue = convertValVTToLocVT(DAG, DL, VA, RetValue); + + // Chain and glue the copies together. + unsigned Reg = VA.getLocReg(); + Chain = DAG.getCopyToReg(Chain, DL, Reg, RetValue, Glue); + Glue = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(Reg, VA.getLocVT())); + } + + // Update chain and glue. + RetOps[0] = Chain; + if (Glue.getNode()) + RetOps.push_back(Glue); + + return DAG.getNode(SystemZISD::RET_FLAG, DL, MVT::Other, RetOps); +} + +SDValue SystemZTargetLowering:: +prepareVolatileOrAtomicLoad(SDValue Chain, SDLoc DL, SelectionDAG &DAG) const { + return DAG.getNode(SystemZISD::SERIALIZE, DL, MVT::Other, Chain); +} + +// Return true if Op is an intrinsic node with chain that returns the CC value +// as its only (other) argument. Provide the associated SystemZISD opcode and +// the mask of valid CC values if so. +static bool isIntrinsicWithCCAndChain(SDValue Op, unsigned &Opcode, + unsigned &CCValid) { + unsigned Id = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + switch (Id) { + case Intrinsic::s390_tbegin: + Opcode = SystemZISD::TBEGIN; + CCValid = SystemZ::CCMASK_TBEGIN; + return true; + + case Intrinsic::s390_tbegin_nofloat: + Opcode = SystemZISD::TBEGIN_NOFLOAT; + CCValid = SystemZ::CCMASK_TBEGIN; + return true; + + case Intrinsic::s390_tend: + Opcode = SystemZISD::TEND; + CCValid = SystemZ::CCMASK_TEND; + return true; + + default: + return false; + } +} + +// Return true if Op is an intrinsic node without chain that returns the +// CC value as its final argument. Provide the associated SystemZISD +// opcode and the mask of valid CC values if so. +static bool isIntrinsicWithCC(SDValue Op, unsigned &Opcode, unsigned &CCValid) { + unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + switch (Id) { + case Intrinsic::s390_vpkshs: + case Intrinsic::s390_vpksfs: + case Intrinsic::s390_vpksgs: + Opcode = SystemZISD::PACKS_CC; + CCValid = SystemZ::CCMASK_VCMP; + return true; + + case Intrinsic::s390_vpklshs: + case Intrinsic::s390_vpklsfs: + case Intrinsic::s390_vpklsgs: + Opcode = SystemZISD::PACKLS_CC; + CCValid = SystemZ::CCMASK_VCMP; + return true; + + case Intrinsic::s390_vceqbs: + case Intrinsic::s390_vceqhs: + case Intrinsic::s390_vceqfs: + case Intrinsic::s390_vceqgs: + Opcode = SystemZISD::VICMPES; + CCValid = SystemZ::CCMASK_VCMP; + return true; + + case Intrinsic::s390_vchbs: + case Intrinsic::s390_vchhs: + case Intrinsic::s390_vchfs: + case Intrinsic::s390_vchgs: + Opcode = SystemZISD::VICMPHS; + CCValid = SystemZ::CCMASK_VCMP; + return true; + + case Intrinsic::s390_vchlbs: + case Intrinsic::s390_vchlhs: + case Intrinsic::s390_vchlfs: + case Intrinsic::s390_vchlgs: + Opcode = SystemZISD::VICMPHLS; + CCValid = SystemZ::CCMASK_VCMP; + return true; + + case Intrinsic::s390_vtm: + Opcode = SystemZISD::VTM; + CCValid = SystemZ::CCMASK_VCMP; + return true; + + case Intrinsic::s390_vfaebs: + case Intrinsic::s390_vfaehs: + case Intrinsic::s390_vfaefs: + Opcode = SystemZISD::VFAE_CC; + CCValid = SystemZ::CCMASK_ANY; + return true; + + case Intrinsic::s390_vfaezbs: + case Intrinsic::s390_vfaezhs: + case Intrinsic::s390_vfaezfs: + Opcode = SystemZISD::VFAEZ_CC; + CCValid = SystemZ::CCMASK_ANY; + return true; + + case Intrinsic::s390_vfeebs: + case Intrinsic::s390_vfeehs: + case Intrinsic::s390_vfeefs: + Opcode = SystemZISD::VFEE_CC; + CCValid = SystemZ::CCMASK_ANY; + return true; + + case Intrinsic::s390_vfeezbs: + case Intrinsic::s390_vfeezhs: + case Intrinsic::s390_vfeezfs: + Opcode = SystemZISD::VFEEZ_CC; + CCValid = SystemZ::CCMASK_ANY; + return true; + + case Intrinsic::s390_vfenebs: + case Intrinsic::s390_vfenehs: + case Intrinsic::s390_vfenefs: + Opcode = SystemZISD::VFENE_CC; + CCValid = SystemZ::CCMASK_ANY; + return true; + + case Intrinsic::s390_vfenezbs: + case Intrinsic::s390_vfenezhs: + case Intrinsic::s390_vfenezfs: + Opcode = SystemZISD::VFENEZ_CC; + CCValid = SystemZ::CCMASK_ANY; + return true; + + case Intrinsic::s390_vistrbs: + case Intrinsic::s390_vistrhs: + case Intrinsic::s390_vistrfs: + Opcode = SystemZISD::VISTR_CC; + CCValid = SystemZ::CCMASK_0 | SystemZ::CCMASK_3; + return true; + + case Intrinsic::s390_vstrcbs: + case Intrinsic::s390_vstrchs: + case Intrinsic::s390_vstrcfs: + Opcode = SystemZISD::VSTRC_CC; + CCValid = SystemZ::CCMASK_ANY; + return true; + + case Intrinsic::s390_vstrczbs: + case Intrinsic::s390_vstrczhs: + case Intrinsic::s390_vstrczfs: + Opcode = SystemZISD::VSTRCZ_CC; + CCValid = SystemZ::CCMASK_ANY; + return true; + + case Intrinsic::s390_vfcedbs: + Opcode = SystemZISD::VFCMPES; + CCValid = SystemZ::CCMASK_VCMP; + return true; + + case Intrinsic::s390_vfchdbs: + Opcode = SystemZISD::VFCMPHS; + CCValid = SystemZ::CCMASK_VCMP; + return true; + + case Intrinsic::s390_vfchedbs: + Opcode = SystemZISD::VFCMPHES; + CCValid = SystemZ::CCMASK_VCMP; + return true; + + case Intrinsic::s390_vftcidb: + Opcode = SystemZISD::VFTCI; + CCValid = SystemZ::CCMASK_VCMP; + return true; + + default: + return false; + } +} + +// Emit an intrinsic with chain with a glued value instead of its CC result. +static SDValue emitIntrinsicWithChainAndGlue(SelectionDAG &DAG, SDValue Op, + unsigned Opcode) { + // Copy all operands except the intrinsic ID. + unsigned NumOps = Op.getNumOperands(); + SmallVector<SDValue, 6> Ops; + Ops.reserve(NumOps - 1); + Ops.push_back(Op.getOperand(0)); + for (unsigned I = 2; I < NumOps; ++I) + Ops.push_back(Op.getOperand(I)); + + assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); + SDVTList RawVTs = DAG.getVTList(MVT::Other, MVT::Glue); + SDValue Intr = DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); + SDValue OldChain = SDValue(Op.getNode(), 1); + SDValue NewChain = SDValue(Intr.getNode(), 0); + DAG.ReplaceAllUsesOfValueWith(OldChain, NewChain); + return Intr; +} + +// Emit an intrinsic with a glued value instead of its CC result. +static SDValue emitIntrinsicWithGlue(SelectionDAG &DAG, SDValue Op, + unsigned Opcode) { + // Copy all operands except the intrinsic ID. + unsigned NumOps = Op.getNumOperands(); + SmallVector<SDValue, 6> Ops; + Ops.reserve(NumOps - 1); + for (unsigned I = 1; I < NumOps; ++I) + Ops.push_back(Op.getOperand(I)); + + if (Op->getNumValues() == 1) + return DAG.getNode(Opcode, SDLoc(Op), MVT::Glue, Ops); + assert(Op->getNumValues() == 2 && "Expected exactly one non-CC result"); + SDVTList RawVTs = DAG.getVTList(Op->getValueType(0), MVT::Glue); + return DAG.getNode(Opcode, SDLoc(Op), RawVTs, Ops); +} + +// CC is a comparison that will be implemented using an integer or +// floating-point comparison. Return the condition code mask for +// a branch on true. In the integer case, CCMASK_CMP_UO is set for +// unsigned comparisons and clear for signed ones. In the floating-point +// case, CCMASK_CMP_UO has its normal mask meaning (unordered). +static unsigned CCMaskForCondCode(ISD::CondCode CC) { +#define CONV(X) \ + case ISD::SET##X: return SystemZ::CCMASK_CMP_##X; \ + case ISD::SETO##X: return SystemZ::CCMASK_CMP_##X; \ + case ISD::SETU##X: return SystemZ::CCMASK_CMP_UO | SystemZ::CCMASK_CMP_##X + + switch (CC) { + default: + llvm_unreachable("Invalid integer condition!"); + + CONV(EQ); + CONV(NE); + CONV(GT); + CONV(GE); + CONV(LT); + CONV(LE); + + case ISD::SETO: return SystemZ::CCMASK_CMP_O; + case ISD::SETUO: return SystemZ::CCMASK_CMP_UO; + } +#undef CONV +} + +// Return a sequence for getting a 1 from an IPM result when CC has a +// value in CCMask and a 0 when CC has a value in CCValid & ~CCMask. +// The handling of CC values outside CCValid doesn't matter. +static IPMConversion getIPMConversion(unsigned CCValid, unsigned CCMask) { + // Deal with cases where the result can be taken directly from a bit + // of the IPM result. + if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_3))) + return IPMConversion(0, 0, SystemZ::IPM_CC); + if (CCMask == (CCValid & (SystemZ::CCMASK_2 | SystemZ::CCMASK_3))) + return IPMConversion(0, 0, SystemZ::IPM_CC + 1); + + // Deal with cases where we can add a value to force the sign bit + // to contain the right value. Putting the bit in 31 means we can + // use SRL rather than RISBG(L), and also makes it easier to get a + // 0/-1 value, so it has priority over the other tests below. + // + // These sequences rely on the fact that the upper two bits of the + // IPM result are zero. + uint64_t TopBit = uint64_t(1) << 31; + if (CCMask == (CCValid & SystemZ::CCMASK_0)) + return IPMConversion(0, -(1 << SystemZ::IPM_CC), 31); + if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_1))) + return IPMConversion(0, -(2 << SystemZ::IPM_CC), 31); + if (CCMask == (CCValid & (SystemZ::CCMASK_0 + | SystemZ::CCMASK_1 + | SystemZ::CCMASK_2))) + return IPMConversion(0, -(3 << SystemZ::IPM_CC), 31); + if (CCMask == (CCValid & SystemZ::CCMASK_3)) + return IPMConversion(0, TopBit - (3 << SystemZ::IPM_CC), 31); + if (CCMask == (CCValid & (SystemZ::CCMASK_1 + | SystemZ::CCMASK_2 + | SystemZ::CCMASK_3))) + return IPMConversion(0, TopBit - (1 << SystemZ::IPM_CC), 31); + + // Next try inverting the value and testing a bit. 0/1 could be + // handled this way too, but we dealt with that case above. + if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_2))) + return IPMConversion(-1, 0, SystemZ::IPM_CC); + + // Handle cases where adding a value forces a non-sign bit to contain + // the right value. + if (CCMask == (CCValid & (SystemZ::CCMASK_1 | SystemZ::CCMASK_2))) + return IPMConversion(0, 1 << SystemZ::IPM_CC, SystemZ::IPM_CC + 1); + if (CCMask == (CCValid & (SystemZ::CCMASK_0 | SystemZ::CCMASK_3))) + return IPMConversion(0, -(1 << SystemZ::IPM_CC), SystemZ::IPM_CC + 1); + + // The remaining cases are 1, 2, 0/1/3 and 0/2/3. All these are + // can be done by inverting the low CC bit and applying one of the + // sign-based extractions above. + if (CCMask == (CCValid & SystemZ::CCMASK_1)) + return IPMConversion(1 << SystemZ::IPM_CC, -(1 << SystemZ::IPM_CC), 31); + if (CCMask == (CCValid & SystemZ::CCMASK_2)) + return IPMConversion(1 << SystemZ::IPM_CC, + TopBit - (3 << SystemZ::IPM_CC), 31); + if (CCMask == (CCValid & (SystemZ::CCMASK_0 + | SystemZ::CCMASK_1 + | SystemZ::CCMASK_3))) + return IPMConversion(1 << SystemZ::IPM_CC, -(3 << SystemZ::IPM_CC), 31); + if (CCMask == (CCValid & (SystemZ::CCMASK_0 + | SystemZ::CCMASK_2 + | SystemZ::CCMASK_3))) + return IPMConversion(1 << SystemZ::IPM_CC, + TopBit - (1 << SystemZ::IPM_CC), 31); + + llvm_unreachable("Unexpected CC combination"); +} + +// If C can be converted to a comparison against zero, adjust the operands +// as necessary. +static void adjustZeroCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { + if (C.ICmpType == SystemZICMP::UnsignedOnly) + return; + + auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1.getNode()); + if (!ConstOp1) + return; + + int64_t Value = ConstOp1->getSExtValue(); + if ((Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_GT) || + (Value == -1 && C.CCMask == SystemZ::CCMASK_CMP_LE) || + (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_LT) || + (Value == 1 && C.CCMask == SystemZ::CCMASK_CMP_GE)) { + C.CCMask ^= SystemZ::CCMASK_CMP_EQ; + C.Op1 = DAG.getConstant(0, DL, C.Op1.getValueType()); + } +} + +// If a comparison described by C is suitable for CLI(Y), CHHSI or CLHHSI, +// adjust the operands as necessary. +static void adjustSubwordCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { + // For us to make any changes, it must a comparison between a single-use + // load and a constant. + if (!C.Op0.hasOneUse() || + C.Op0.getOpcode() != ISD::LOAD || + C.Op1.getOpcode() != ISD::Constant) + return; + + // We must have an 8- or 16-bit load. + auto *Load = cast<LoadSDNode>(C.Op0); + unsigned NumBits = Load->getMemoryVT().getStoreSizeInBits(); + if (NumBits != 8 && NumBits != 16) + return; + + // The load must be an extending one and the constant must be within the + // range of the unextended value. + auto *ConstOp1 = cast<ConstantSDNode>(C.Op1); + uint64_t Value = ConstOp1->getZExtValue(); + uint64_t Mask = (1 << NumBits) - 1; + if (Load->getExtensionType() == ISD::SEXTLOAD) { + // Make sure that ConstOp1 is in range of C.Op0. + int64_t SignedValue = ConstOp1->getSExtValue(); + if (uint64_t(SignedValue) + (uint64_t(1) << (NumBits - 1)) > Mask) + return; + if (C.ICmpType != SystemZICMP::SignedOnly) { + // Unsigned comparison between two sign-extended values is equivalent + // to unsigned comparison between two zero-extended values. + Value &= Mask; + } else if (NumBits == 8) { + // Try to treat the comparison as unsigned, so that we can use CLI. + // Adjust CCMask and Value as necessary. + if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_LT) + // Test whether the high bit of the byte is set. + Value = 127, C.CCMask = SystemZ::CCMASK_CMP_GT; + else if (Value == 0 && C.CCMask == SystemZ::CCMASK_CMP_GE) + // Test whether the high bit of the byte is clear. + Value = 128, C.CCMask = SystemZ::CCMASK_CMP_LT; + else + // No instruction exists for this combination. + return; + C.ICmpType = SystemZICMP::UnsignedOnly; + } + } else if (Load->getExtensionType() == ISD::ZEXTLOAD) { + if (Value > Mask) + return; + // If the constant is in range, we can use any comparison. + C.ICmpType = SystemZICMP::Any; + } else + return; + + // Make sure that the first operand is an i32 of the right extension type. + ISD::LoadExtType ExtType = (C.ICmpType == SystemZICMP::SignedOnly ? + ISD::SEXTLOAD : + ISD::ZEXTLOAD); + if (C.Op0.getValueType() != MVT::i32 || + Load->getExtensionType() != ExtType) + C.Op0 = DAG.getExtLoad(ExtType, SDLoc(Load), MVT::i32, + Load->getChain(), Load->getBasePtr(), + Load->getPointerInfo(), Load->getMemoryVT(), + Load->isVolatile(), Load->isNonTemporal(), + Load->isInvariant(), Load->getAlignment()); + + // Make sure that the second operand is an i32 with the right value. + if (C.Op1.getValueType() != MVT::i32 || + Value != ConstOp1->getZExtValue()) + C.Op1 = DAG.getConstant(Value, DL, MVT::i32); +} + +// Return true if Op is either an unextended load, or a load suitable +// for integer register-memory comparisons of type ICmpType. +static bool isNaturalMemoryOperand(SDValue Op, unsigned ICmpType) { + auto *Load = dyn_cast<LoadSDNode>(Op.getNode()); + if (Load) { + // There are no instructions to compare a register with a memory byte. + if (Load->getMemoryVT() == MVT::i8) + return false; + // Otherwise decide on extension type. + switch (Load->getExtensionType()) { + case ISD::NON_EXTLOAD: + return true; + case ISD::SEXTLOAD: + return ICmpType != SystemZICMP::UnsignedOnly; + case ISD::ZEXTLOAD: + return ICmpType != SystemZICMP::SignedOnly; + default: + break; + } + } + return false; +} + +// Return true if it is better to swap the operands of C. +static bool shouldSwapCmpOperands(const Comparison &C) { + // Leave f128 comparisons alone, since they have no memory forms. + if (C.Op0.getValueType() == MVT::f128) + return false; + + // Always keep a floating-point constant second, since comparisons with + // zero can use LOAD TEST and comparisons with other constants make a + // natural memory operand. + if (isa<ConstantFPSDNode>(C.Op1)) + return false; + + // Never swap comparisons with zero since there are many ways to optimize + // those later. + auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); + if (ConstOp1 && ConstOp1->getZExtValue() == 0) + return false; + + // Also keep natural memory operands second if the loaded value is + // only used here. Several comparisons have memory forms. + if (isNaturalMemoryOperand(C.Op1, C.ICmpType) && C.Op1.hasOneUse()) + return false; + + // Look for cases where Cmp0 is a single-use load and Cmp1 isn't. + // In that case we generally prefer the memory to be second. + if (isNaturalMemoryOperand(C.Op0, C.ICmpType) && C.Op0.hasOneUse()) { + // The only exceptions are when the second operand is a constant and + // we can use things like CHHSI. + if (!ConstOp1) + return true; + // The unsigned memory-immediate instructions can handle 16-bit + // unsigned integers. + if (C.ICmpType != SystemZICMP::SignedOnly && + isUInt<16>(ConstOp1->getZExtValue())) + return false; + // The signed memory-immediate instructions can handle 16-bit + // signed integers. + if (C.ICmpType != SystemZICMP::UnsignedOnly && + isInt<16>(ConstOp1->getSExtValue())) + return false; + return true; + } + + // Try to promote the use of CGFR and CLGFR. + unsigned Opcode0 = C.Op0.getOpcode(); + if (C.ICmpType != SystemZICMP::UnsignedOnly && Opcode0 == ISD::SIGN_EXTEND) + return true; + if (C.ICmpType != SystemZICMP::SignedOnly && Opcode0 == ISD::ZERO_EXTEND) + return true; + if (C.ICmpType != SystemZICMP::SignedOnly && + Opcode0 == ISD::AND && + C.Op0.getOperand(1).getOpcode() == ISD::Constant && + cast<ConstantSDNode>(C.Op0.getOperand(1))->getZExtValue() == 0xffffffff) + return true; + + return false; +} + +// Return a version of comparison CC mask CCMask in which the LT and GT +// actions are swapped. +static unsigned reverseCCMask(unsigned CCMask) { + return ((CCMask & SystemZ::CCMASK_CMP_EQ) | + (CCMask & SystemZ::CCMASK_CMP_GT ? SystemZ::CCMASK_CMP_LT : 0) | + (CCMask & SystemZ::CCMASK_CMP_LT ? SystemZ::CCMASK_CMP_GT : 0) | + (CCMask & SystemZ::CCMASK_CMP_UO)); +} + +// Check whether C tests for equality between X and Y and whether X - Y +// or Y - X is also computed. In that case it's better to compare the +// result of the subtraction against zero. +static void adjustForSubtraction(SelectionDAG &DAG, SDLoc DL, Comparison &C) { + if (C.CCMask == SystemZ::CCMASK_CMP_EQ || + C.CCMask == SystemZ::CCMASK_CMP_NE) { + for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { + SDNode *N = *I; + if (N->getOpcode() == ISD::SUB && + ((N->getOperand(0) == C.Op0 && N->getOperand(1) == C.Op1) || + (N->getOperand(0) == C.Op1 && N->getOperand(1) == C.Op0))) { + C.Op0 = SDValue(N, 0); + C.Op1 = DAG.getConstant(0, DL, N->getValueType(0)); + return; + } + } + } +} + +// Check whether C compares a floating-point value with zero and if that +// floating-point value is also negated. In this case we can use the +// negation to set CC, so avoiding separate LOAD AND TEST and +// LOAD (NEGATIVE/COMPLEMENT) instructions. +static void adjustForFNeg(Comparison &C) { + auto *C1 = dyn_cast<ConstantFPSDNode>(C.Op1); + if (C1 && C1->isZero()) { + for (auto I = C.Op0->use_begin(), E = C.Op0->use_end(); I != E; ++I) { + SDNode *N = *I; + if (N->getOpcode() == ISD::FNEG) { + C.Op0 = SDValue(N, 0); + C.CCMask = reverseCCMask(C.CCMask); + return; + } + } + } +} + +// Check whether C compares (shl X, 32) with 0 and whether X is +// also sign-extended. In that case it is better to test the result +// of the sign extension using LTGFR. +// +// This case is important because InstCombine transforms a comparison +// with (sext (trunc X)) into a comparison with (shl X, 32). +static void adjustForLTGFR(Comparison &C) { + // Check for a comparison between (shl X, 32) and 0. + if (C.Op0.getOpcode() == ISD::SHL && + C.Op0.getValueType() == MVT::i64 && + C.Op1.getOpcode() == ISD::Constant && + cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { + auto *C1 = dyn_cast<ConstantSDNode>(C.Op0.getOperand(1)); + if (C1 && C1->getZExtValue() == 32) { + SDValue ShlOp0 = C.Op0.getOperand(0); + // See whether X has any SIGN_EXTEND_INREG uses. + for (auto I = ShlOp0->use_begin(), E = ShlOp0->use_end(); I != E; ++I) { + SDNode *N = *I; + if (N->getOpcode() == ISD::SIGN_EXTEND_INREG && + cast<VTSDNode>(N->getOperand(1))->getVT() == MVT::i32) { + C.Op0 = SDValue(N, 0); + return; + } + } + } + } +} + +// If C compares the truncation of an extending load, try to compare +// the untruncated value instead. This exposes more opportunities to +// reuse CC. +static void adjustICmpTruncate(SelectionDAG &DAG, SDLoc DL, Comparison &C) { + if (C.Op0.getOpcode() == ISD::TRUNCATE && + C.Op0.getOperand(0).getOpcode() == ISD::LOAD && + C.Op1.getOpcode() == ISD::Constant && + cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { + auto *L = cast<LoadSDNode>(C.Op0.getOperand(0)); + if (L->getMemoryVT().getStoreSizeInBits() + <= C.Op0.getValueType().getSizeInBits()) { + unsigned Type = L->getExtensionType(); + if ((Type == ISD::ZEXTLOAD && C.ICmpType != SystemZICMP::SignedOnly) || + (Type == ISD::SEXTLOAD && C.ICmpType != SystemZICMP::UnsignedOnly)) { + C.Op0 = C.Op0.getOperand(0); + C.Op1 = DAG.getConstant(0, DL, C.Op0.getValueType()); + } + } + } +} + +// Return true if shift operation N has an in-range constant shift value. +// Store it in ShiftVal if so. +static bool isSimpleShift(SDValue N, unsigned &ShiftVal) { + auto *Shift = dyn_cast<ConstantSDNode>(N.getOperand(1)); + if (!Shift) + return false; + + uint64_t Amount = Shift->getZExtValue(); + if (Amount >= N.getValueType().getSizeInBits()) + return false; + + ShiftVal = Amount; + return true; +} + +// Check whether an AND with Mask is suitable for a TEST UNDER MASK +// instruction and whether the CC value is descriptive enough to handle +// a comparison of type Opcode between the AND result and CmpVal. +// CCMask says which comparison result is being tested and BitSize is +// the number of bits in the operands. If TEST UNDER MASK can be used, +// return the corresponding CC mask, otherwise return 0. +static unsigned getTestUnderMaskCond(unsigned BitSize, unsigned CCMask, + uint64_t Mask, uint64_t CmpVal, + unsigned ICmpType) { + assert(Mask != 0 && "ANDs with zero should have been removed by now"); + + // Check whether the mask is suitable for TMHH, TMHL, TMLH or TMLL. + if (!SystemZ::isImmLL(Mask) && !SystemZ::isImmLH(Mask) && + !SystemZ::isImmHL(Mask) && !SystemZ::isImmHH(Mask)) + return 0; + + // Work out the masks for the lowest and highest bits. + unsigned HighShift = 63 - countLeadingZeros(Mask); + uint64_t High = uint64_t(1) << HighShift; + uint64_t Low = uint64_t(1) << countTrailingZeros(Mask); + + // Signed ordered comparisons are effectively unsigned if the sign + // bit is dropped. + bool EffectivelyUnsigned = (ICmpType != SystemZICMP::SignedOnly); + + // Check for equality comparisons with 0, or the equivalent. + if (CmpVal == 0) { + if (CCMask == SystemZ::CCMASK_CMP_EQ) + return SystemZ::CCMASK_TM_ALL_0; + if (CCMask == SystemZ::CCMASK_CMP_NE) + return SystemZ::CCMASK_TM_SOME_1; + } + if (EffectivelyUnsigned && CmpVal <= Low) { + if (CCMask == SystemZ::CCMASK_CMP_LT) + return SystemZ::CCMASK_TM_ALL_0; + if (CCMask == SystemZ::CCMASK_CMP_GE) + return SystemZ::CCMASK_TM_SOME_1; + } + if (EffectivelyUnsigned && CmpVal < Low) { + if (CCMask == SystemZ::CCMASK_CMP_LE) + return SystemZ::CCMASK_TM_ALL_0; + if (CCMask == SystemZ::CCMASK_CMP_GT) + return SystemZ::CCMASK_TM_SOME_1; + } + + // Check for equality comparisons with the mask, or the equivalent. + if (CmpVal == Mask) { + if (CCMask == SystemZ::CCMASK_CMP_EQ) + return SystemZ::CCMASK_TM_ALL_1; + if (CCMask == SystemZ::CCMASK_CMP_NE) + return SystemZ::CCMASK_TM_SOME_0; + } + if (EffectivelyUnsigned && CmpVal >= Mask - Low && CmpVal < Mask) { + if (CCMask == SystemZ::CCMASK_CMP_GT) + return SystemZ::CCMASK_TM_ALL_1; + if (CCMask == SystemZ::CCMASK_CMP_LE) + return SystemZ::CCMASK_TM_SOME_0; + } + if (EffectivelyUnsigned && CmpVal > Mask - Low && CmpVal <= Mask) { + if (CCMask == SystemZ::CCMASK_CMP_GE) + return SystemZ::CCMASK_TM_ALL_1; + if (CCMask == SystemZ::CCMASK_CMP_LT) + return SystemZ::CCMASK_TM_SOME_0; + } + + // Check for ordered comparisons with the top bit. + if (EffectivelyUnsigned && CmpVal >= Mask - High && CmpVal < High) { + if (CCMask == SystemZ::CCMASK_CMP_LE) + return SystemZ::CCMASK_TM_MSB_0; + if (CCMask == SystemZ::CCMASK_CMP_GT) + return SystemZ::CCMASK_TM_MSB_1; + } + if (EffectivelyUnsigned && CmpVal > Mask - High && CmpVal <= High) { + if (CCMask == SystemZ::CCMASK_CMP_LT) + return SystemZ::CCMASK_TM_MSB_0; + if (CCMask == SystemZ::CCMASK_CMP_GE) + return SystemZ::CCMASK_TM_MSB_1; + } + + // If there are just two bits, we can do equality checks for Low and High + // as well. + if (Mask == Low + High) { + if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == Low) + return SystemZ::CCMASK_TM_MIXED_MSB_0; + if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == Low) + return SystemZ::CCMASK_TM_MIXED_MSB_0 ^ SystemZ::CCMASK_ANY; + if (CCMask == SystemZ::CCMASK_CMP_EQ && CmpVal == High) + return SystemZ::CCMASK_TM_MIXED_MSB_1; + if (CCMask == SystemZ::CCMASK_CMP_NE && CmpVal == High) + return SystemZ::CCMASK_TM_MIXED_MSB_1 ^ SystemZ::CCMASK_ANY; + } + + // Looks like we've exhausted our options. + return 0; +} + +// See whether C can be implemented as a TEST UNDER MASK instruction. +// Update the arguments with the TM version if so. +static void adjustForTestUnderMask(SelectionDAG &DAG, SDLoc DL, Comparison &C) { + // Check that we have a comparison with a constant. + auto *ConstOp1 = dyn_cast<ConstantSDNode>(C.Op1); + if (!ConstOp1) + return; + uint64_t CmpVal = ConstOp1->getZExtValue(); + + // Check whether the nonconstant input is an AND with a constant mask. + Comparison NewC(C); + uint64_t MaskVal; + ConstantSDNode *Mask = nullptr; + if (C.Op0.getOpcode() == ISD::AND) { + NewC.Op0 = C.Op0.getOperand(0); + NewC.Op1 = C.Op0.getOperand(1); + Mask = dyn_cast<ConstantSDNode>(NewC.Op1); + if (!Mask) + return; + MaskVal = Mask->getZExtValue(); + } else { + // There is no instruction to compare with a 64-bit immediate + // so use TMHH instead if possible. We need an unsigned ordered + // comparison with an i64 immediate. + if (NewC.Op0.getValueType() != MVT::i64 || + NewC.CCMask == SystemZ::CCMASK_CMP_EQ || + NewC.CCMask == SystemZ::CCMASK_CMP_NE || + NewC.ICmpType == SystemZICMP::SignedOnly) + return; + // Convert LE and GT comparisons into LT and GE. + if (NewC.CCMask == SystemZ::CCMASK_CMP_LE || + NewC.CCMask == SystemZ::CCMASK_CMP_GT) { + if (CmpVal == uint64_t(-1)) + return; + CmpVal += 1; + NewC.CCMask ^= SystemZ::CCMASK_CMP_EQ; + } + // If the low N bits of Op1 are zero than the low N bits of Op0 can + // be masked off without changing the result. + MaskVal = -(CmpVal & -CmpVal); + NewC.ICmpType = SystemZICMP::UnsignedOnly; + } + if (!MaskVal) + return; + + // Check whether the combination of mask, comparison value and comparison + // type are suitable. + unsigned BitSize = NewC.Op0.getValueType().getSizeInBits(); + unsigned NewCCMask, ShiftVal; + if (NewC.ICmpType != SystemZICMP::SignedOnly && + NewC.Op0.getOpcode() == ISD::SHL && + isSimpleShift(NewC.Op0, ShiftVal) && + (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, + MaskVal >> ShiftVal, + CmpVal >> ShiftVal, + SystemZICMP::Any))) { + NewC.Op0 = NewC.Op0.getOperand(0); + MaskVal >>= ShiftVal; + } else if (NewC.ICmpType != SystemZICMP::SignedOnly && + NewC.Op0.getOpcode() == ISD::SRL && + isSimpleShift(NewC.Op0, ShiftVal) && + (NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, + MaskVal << ShiftVal, + CmpVal << ShiftVal, + SystemZICMP::UnsignedOnly))) { + NewC.Op0 = NewC.Op0.getOperand(0); + MaskVal <<= ShiftVal; + } else { + NewCCMask = getTestUnderMaskCond(BitSize, NewC.CCMask, MaskVal, CmpVal, + NewC.ICmpType); + if (!NewCCMask) + return; + } + + // Go ahead and make the change. + C.Opcode = SystemZISD::TM; + C.Op0 = NewC.Op0; + if (Mask && Mask->getZExtValue() == MaskVal) + C.Op1 = SDValue(Mask, 0); + else + C.Op1 = DAG.getConstant(MaskVal, DL, C.Op0.getValueType()); + C.CCValid = SystemZ::CCMASK_TM; + C.CCMask = NewCCMask; +} + +// Return a Comparison that tests the condition-code result of intrinsic +// node Call against constant integer CC using comparison code Cond. +// Opcode is the opcode of the SystemZISD operation for the intrinsic +// and CCValid is the set of possible condition-code results. +static Comparison getIntrinsicCmp(SelectionDAG &DAG, unsigned Opcode, + SDValue Call, unsigned CCValid, uint64_t CC, + ISD::CondCode Cond) { + Comparison C(Call, SDValue()); + C.Opcode = Opcode; + C.CCValid = CCValid; + if (Cond == ISD::SETEQ) + // bit 3 for CC==0, bit 0 for CC==3, always false for CC>3. + C.CCMask = CC < 4 ? 1 << (3 - CC) : 0; + else if (Cond == ISD::SETNE) + // ...and the inverse of that. + C.CCMask = CC < 4 ? ~(1 << (3 - CC)) : -1; + else if (Cond == ISD::SETLT || Cond == ISD::SETULT) + // bits above bit 3 for CC==0 (always false), bits above bit 0 for CC==3, + // always true for CC>3. + C.CCMask = CC < 4 ? ~0U << (4 - CC) : -1; + else if (Cond == ISD::SETGE || Cond == ISD::SETUGE) + // ...and the inverse of that. + C.CCMask = CC < 4 ? ~(~0U << (4 - CC)) : 0; + else if (Cond == ISD::SETLE || Cond == ISD::SETULE) + // bit 3 and above for CC==0, bit 0 and above for CC==3 (always true), + // always true for CC>3. + C.CCMask = CC < 4 ? ~0U << (3 - CC) : -1; + else if (Cond == ISD::SETGT || Cond == ISD::SETUGT) + // ...and the inverse of that. + C.CCMask = CC < 4 ? ~(~0U << (3 - CC)) : 0; + else + llvm_unreachable("Unexpected integer comparison type"); + C.CCMask &= CCValid; + return C; +} + +// Decide how to implement a comparison of type Cond between CmpOp0 with CmpOp1. +static Comparison getCmp(SelectionDAG &DAG, SDValue CmpOp0, SDValue CmpOp1, + ISD::CondCode Cond, SDLoc DL) { + if (CmpOp1.getOpcode() == ISD::Constant) { + uint64_t Constant = cast<ConstantSDNode>(CmpOp1)->getZExtValue(); + unsigned Opcode, CCValid; + if (CmpOp0.getOpcode() == ISD::INTRINSIC_W_CHAIN && + CmpOp0.getResNo() == 0 && CmpOp0->hasNUsesOfValue(1, 0) && + isIntrinsicWithCCAndChain(CmpOp0, Opcode, CCValid)) + return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); + if (CmpOp0.getOpcode() == ISD::INTRINSIC_WO_CHAIN && + CmpOp0.getResNo() == CmpOp0->getNumValues() - 1 && + isIntrinsicWithCC(CmpOp0, Opcode, CCValid)) + return getIntrinsicCmp(DAG, Opcode, CmpOp0, CCValid, Constant, Cond); + } + Comparison C(CmpOp0, CmpOp1); + C.CCMask = CCMaskForCondCode(Cond); + if (C.Op0.getValueType().isFloatingPoint()) { + C.CCValid = SystemZ::CCMASK_FCMP; + C.Opcode = SystemZISD::FCMP; + adjustForFNeg(C); + } else { + C.CCValid = SystemZ::CCMASK_ICMP; + C.Opcode = SystemZISD::ICMP; + // Choose the type of comparison. Equality and inequality tests can + // use either signed or unsigned comparisons. The choice also doesn't + // matter if both sign bits are known to be clear. In those cases we + // want to give the main isel code the freedom to choose whichever + // form fits best. + if (C.CCMask == SystemZ::CCMASK_CMP_EQ || + C.CCMask == SystemZ::CCMASK_CMP_NE || + (DAG.SignBitIsZero(C.Op0) && DAG.SignBitIsZero(C.Op1))) + C.ICmpType = SystemZICMP::Any; + else if (C.CCMask & SystemZ::CCMASK_CMP_UO) + C.ICmpType = SystemZICMP::UnsignedOnly; + else + C.ICmpType = SystemZICMP::SignedOnly; + C.CCMask &= ~SystemZ::CCMASK_CMP_UO; + adjustZeroCmp(DAG, DL, C); + adjustSubwordCmp(DAG, DL, C); + adjustForSubtraction(DAG, DL, C); + adjustForLTGFR(C); + adjustICmpTruncate(DAG, DL, C); + } + + if (shouldSwapCmpOperands(C)) { + std::swap(C.Op0, C.Op1); + C.CCMask = reverseCCMask(C.CCMask); + } + + adjustForTestUnderMask(DAG, DL, C); + return C; +} + +// Emit the comparison instruction described by C. +static SDValue emitCmp(SelectionDAG &DAG, SDLoc DL, Comparison &C) { + if (!C.Op1.getNode()) { + SDValue Op; + switch (C.Op0.getOpcode()) { + case ISD::INTRINSIC_W_CHAIN: + Op = emitIntrinsicWithChainAndGlue(DAG, C.Op0, C.Opcode); + break; + case ISD::INTRINSIC_WO_CHAIN: + Op = emitIntrinsicWithGlue(DAG, C.Op0, C.Opcode); + break; + default: + llvm_unreachable("Invalid comparison operands"); + } + return SDValue(Op.getNode(), Op->getNumValues() - 1); + } + if (C.Opcode == SystemZISD::ICMP) + return DAG.getNode(SystemZISD::ICMP, DL, MVT::Glue, C.Op0, C.Op1, + DAG.getConstant(C.ICmpType, DL, MVT::i32)); + if (C.Opcode == SystemZISD::TM) { + bool RegisterOnly = (bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_0) != + bool(C.CCMask & SystemZ::CCMASK_TM_MIXED_MSB_1)); + return DAG.getNode(SystemZISD::TM, DL, MVT::Glue, C.Op0, C.Op1, + DAG.getConstant(RegisterOnly, DL, MVT::i32)); + } + return DAG.getNode(C.Opcode, DL, MVT::Glue, C.Op0, C.Op1); +} + +// Implement a 32-bit *MUL_LOHI operation by extending both operands to +// 64 bits. Extend is the extension type to use. Store the high part +// in Hi and the low part in Lo. +static void lowerMUL_LOHI32(SelectionDAG &DAG, SDLoc DL, + unsigned Extend, SDValue Op0, SDValue Op1, + SDValue &Hi, SDValue &Lo) { + Op0 = DAG.getNode(Extend, DL, MVT::i64, Op0); + Op1 = DAG.getNode(Extend, DL, MVT::i64, Op1); + SDValue Mul = DAG.getNode(ISD::MUL, DL, MVT::i64, Op0, Op1); + Hi = DAG.getNode(ISD::SRL, DL, MVT::i64, Mul, + DAG.getConstant(32, DL, MVT::i64)); + Hi = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Hi); + Lo = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Mul); +} + +// Lower a binary operation that produces two VT results, one in each +// half of a GR128 pair. Op0 and Op1 are the VT operands to the operation, +// Extend extends Op0 to a GR128, and Opcode performs the GR128 operation +// on the extended Op0 and (unextended) Op1. Store the even register result +// in Even and the odd register result in Odd. +static void lowerGR128Binary(SelectionDAG &DAG, SDLoc DL, EVT VT, + unsigned Extend, unsigned Opcode, + SDValue Op0, SDValue Op1, + SDValue &Even, SDValue &Odd) { + SDNode *In128 = DAG.getMachineNode(Extend, DL, MVT::Untyped, Op0); + SDValue Result = DAG.getNode(Opcode, DL, MVT::Untyped, + SDValue(In128, 0), Op1); + bool Is32Bit = is32Bit(VT); + Even = DAG.getTargetExtractSubreg(SystemZ::even128(Is32Bit), DL, VT, Result); + Odd = DAG.getTargetExtractSubreg(SystemZ::odd128(Is32Bit), DL, VT, Result); +} + +// Return an i32 value that is 1 if the CC value produced by Glue is +// in the mask CCMask and 0 otherwise. CC is known to have a value +// in CCValid, so other values can be ignored. +static SDValue emitSETCC(SelectionDAG &DAG, SDLoc DL, SDValue Glue, + unsigned CCValid, unsigned CCMask) { + IPMConversion Conversion = getIPMConversion(CCValid, CCMask); + SDValue Result = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); + + if (Conversion.XORValue) + Result = DAG.getNode(ISD::XOR, DL, MVT::i32, Result, + DAG.getConstant(Conversion.XORValue, DL, MVT::i32)); + + if (Conversion.AddValue) + Result = DAG.getNode(ISD::ADD, DL, MVT::i32, Result, + DAG.getConstant(Conversion.AddValue, DL, MVT::i32)); + + // The SHR/AND sequence should get optimized to an RISBG. + Result = DAG.getNode(ISD::SRL, DL, MVT::i32, Result, + DAG.getConstant(Conversion.Bit, DL, MVT::i32)); + if (Conversion.Bit != 31) + Result = DAG.getNode(ISD::AND, DL, MVT::i32, Result, + DAG.getConstant(1, DL, MVT::i32)); + return Result; +} + +// Return the SystemISD vector comparison operation for CC, or 0 if it cannot +// be done directly. IsFP is true if CC is for a floating-point rather than +// integer comparison. +static unsigned getVectorComparison(ISD::CondCode CC, bool IsFP) { + switch (CC) { + case ISD::SETOEQ: + case ISD::SETEQ: + return IsFP ? SystemZISD::VFCMPE : SystemZISD::VICMPE; + + case ISD::SETOGE: + case ISD::SETGE: + return IsFP ? SystemZISD::VFCMPHE : static_cast<SystemZISD::NodeType>(0); + + case ISD::SETOGT: + case ISD::SETGT: + return IsFP ? SystemZISD::VFCMPH : SystemZISD::VICMPH; + + case ISD::SETUGT: + return IsFP ? static_cast<SystemZISD::NodeType>(0) : SystemZISD::VICMPHL; + + default: + return 0; + } +} + +// Return the SystemZISD vector comparison operation for CC or its inverse, +// or 0 if neither can be done directly. Indicate in Invert whether the +// result is for the inverse of CC. IsFP is true if CC is for a +// floating-point rather than integer comparison. +static unsigned getVectorComparisonOrInvert(ISD::CondCode CC, bool IsFP, + bool &Invert) { + if (unsigned Opcode = getVectorComparison(CC, IsFP)) { + Invert = false; + return Opcode; + } + + CC = ISD::getSetCCInverse(CC, !IsFP); + if (unsigned Opcode = getVectorComparison(CC, IsFP)) { + Invert = true; + return Opcode; + } + + return 0; +} + +// Return a v2f64 that contains the extended form of elements Start and Start+1 +// of v4f32 value Op. +static SDValue expandV4F32ToV2F64(SelectionDAG &DAG, int Start, SDLoc DL, + SDValue Op) { + int Mask[] = { Start, -1, Start + 1, -1 }; + Op = DAG.getVectorShuffle(MVT::v4f32, DL, Op, DAG.getUNDEF(MVT::v4f32), Mask); + return DAG.getNode(SystemZISD::VEXTEND, DL, MVT::v2f64, Op); +} + +// Build a comparison of vectors CmpOp0 and CmpOp1 using opcode Opcode, +// producing a result of type VT. +static SDValue getVectorCmp(SelectionDAG &DAG, unsigned Opcode, SDLoc DL, + EVT VT, SDValue CmpOp0, SDValue CmpOp1) { + // There is no hardware support for v4f32, so extend the vector into + // two v2f64s and compare those. + if (CmpOp0.getValueType() == MVT::v4f32) { + SDValue H0 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp0); + SDValue L0 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp0); + SDValue H1 = expandV4F32ToV2F64(DAG, 0, DL, CmpOp1); + SDValue L1 = expandV4F32ToV2F64(DAG, 2, DL, CmpOp1); + SDValue HRes = DAG.getNode(Opcode, DL, MVT::v2i64, H0, H1); + SDValue LRes = DAG.getNode(Opcode, DL, MVT::v2i64, L0, L1); + return DAG.getNode(SystemZISD::PACK, DL, VT, HRes, LRes); + } + return DAG.getNode(Opcode, DL, VT, CmpOp0, CmpOp1); +} + +// Lower a vector comparison of type CC between CmpOp0 and CmpOp1, producing +// an integer mask of type VT. +static SDValue lowerVectorSETCC(SelectionDAG &DAG, SDLoc DL, EVT VT, + ISD::CondCode CC, SDValue CmpOp0, + SDValue CmpOp1) { + bool IsFP = CmpOp0.getValueType().isFloatingPoint(); + bool Invert = false; + SDValue Cmp; + switch (CC) { + // Handle tests for order using (or (ogt y x) (oge x y)). + case ISD::SETUO: + Invert = true; + case ISD::SETO: { + assert(IsFP && "Unexpected integer comparison"); + SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); + SDValue GE = getVectorCmp(DAG, SystemZISD::VFCMPHE, DL, VT, CmpOp0, CmpOp1); + Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GE); + break; + } + + // Handle <> tests using (or (ogt y x) (ogt x y)). + case ISD::SETUEQ: + Invert = true; + case ISD::SETONE: { + assert(IsFP && "Unexpected integer comparison"); + SDValue LT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp1, CmpOp0); + SDValue GT = getVectorCmp(DAG, SystemZISD::VFCMPH, DL, VT, CmpOp0, CmpOp1); + Cmp = DAG.getNode(ISD::OR, DL, VT, LT, GT); + break; + } + + // Otherwise a single comparison is enough. It doesn't really + // matter whether we try the inversion or the swap first, since + // there are no cases where both work. + default: + if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) + Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp0, CmpOp1); + else { + CC = ISD::getSetCCSwappedOperands(CC); + if (unsigned Opcode = getVectorComparisonOrInvert(CC, IsFP, Invert)) + Cmp = getVectorCmp(DAG, Opcode, DL, VT, CmpOp1, CmpOp0); + else + llvm_unreachable("Unhandled comparison"); + } + break; + } + if (Invert) { + SDValue Mask = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, + DAG.getConstant(65535, DL, MVT::i32)); + Mask = DAG.getNode(ISD::BITCAST, DL, VT, Mask); + Cmp = DAG.getNode(ISD::XOR, DL, VT, Cmp, Mask); + } + return Cmp; +} + +SDValue SystemZTargetLowering::lowerSETCC(SDValue Op, + SelectionDAG &DAG) const { + SDValue CmpOp0 = Op.getOperand(0); + SDValue CmpOp1 = Op.getOperand(1); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + SDLoc DL(Op); + EVT VT = Op.getValueType(); + if (VT.isVector()) + return lowerVectorSETCC(DAG, DL, VT, CC, CmpOp0, CmpOp1); + + Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); + SDValue Glue = emitCmp(DAG, DL, C); + return emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); +} + +SDValue SystemZTargetLowering::lowerBR_CC(SDValue Op, SelectionDAG &DAG) const { + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); + SDValue CmpOp0 = Op.getOperand(2); + SDValue CmpOp1 = Op.getOperand(3); + SDValue Dest = Op.getOperand(4); + SDLoc DL(Op); + + Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); + SDValue Glue = emitCmp(DAG, DL, C); + return DAG.getNode(SystemZISD::BR_CCMASK, DL, Op.getValueType(), + Op.getOperand(0), DAG.getConstant(C.CCValid, DL, MVT::i32), + DAG.getConstant(C.CCMask, DL, MVT::i32), Dest, Glue); +} + +// Return true if Pos is CmpOp and Neg is the negative of CmpOp, +// allowing Pos and Neg to be wider than CmpOp. +static bool isAbsolute(SDValue CmpOp, SDValue Pos, SDValue Neg) { + return (Neg.getOpcode() == ISD::SUB && + Neg.getOperand(0).getOpcode() == ISD::Constant && + cast<ConstantSDNode>(Neg.getOperand(0))->getZExtValue() == 0 && + Neg.getOperand(1) == Pos && + (Pos == CmpOp || + (Pos.getOpcode() == ISD::SIGN_EXTEND && + Pos.getOperand(0) == CmpOp))); +} + +// Return the absolute or negative absolute of Op; IsNegative decides which. +static SDValue getAbsolute(SelectionDAG &DAG, SDLoc DL, SDValue Op, + bool IsNegative) { + Op = DAG.getNode(SystemZISD::IABS, DL, Op.getValueType(), Op); + if (IsNegative) + Op = DAG.getNode(ISD::SUB, DL, Op.getValueType(), + DAG.getConstant(0, DL, Op.getValueType()), Op); + return Op; +} + +SDValue SystemZTargetLowering::lowerSELECT_CC(SDValue Op, + SelectionDAG &DAG) const { + SDValue CmpOp0 = Op.getOperand(0); + SDValue CmpOp1 = Op.getOperand(1); + SDValue TrueOp = Op.getOperand(2); + SDValue FalseOp = Op.getOperand(3); + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); + SDLoc DL(Op); + + Comparison C(getCmp(DAG, CmpOp0, CmpOp1, CC, DL)); + + // Check for absolute and negative-absolute selections, including those + // where the comparison value is sign-extended (for LPGFR and LNGFR). + // This check supplements the one in DAGCombiner. + if (C.Opcode == SystemZISD::ICMP && + C.CCMask != SystemZ::CCMASK_CMP_EQ && + C.CCMask != SystemZ::CCMASK_CMP_NE && + C.Op1.getOpcode() == ISD::Constant && + cast<ConstantSDNode>(C.Op1)->getZExtValue() == 0) { + if (isAbsolute(C.Op0, TrueOp, FalseOp)) + return getAbsolute(DAG, DL, TrueOp, C.CCMask & SystemZ::CCMASK_CMP_LT); + if (isAbsolute(C.Op0, FalseOp, TrueOp)) + return getAbsolute(DAG, DL, FalseOp, C.CCMask & SystemZ::CCMASK_CMP_GT); + } + + SDValue Glue = emitCmp(DAG, DL, C); + + // Special case for handling -1/0 results. The shifts we use here + // should get optimized with the IPM conversion sequence. + auto *TrueC = dyn_cast<ConstantSDNode>(TrueOp); + auto *FalseC = dyn_cast<ConstantSDNode>(FalseOp); + if (TrueC && FalseC) { + int64_t TrueVal = TrueC->getSExtValue(); + int64_t FalseVal = FalseC->getSExtValue(); + if ((TrueVal == -1 && FalseVal == 0) || (TrueVal == 0 && FalseVal == -1)) { + // Invert the condition if we want -1 on false. + if (TrueVal == 0) + C.CCMask ^= C.CCValid; + SDValue Result = emitSETCC(DAG, DL, Glue, C.CCValid, C.CCMask); + EVT VT = Op.getValueType(); + // Extend the result to VT. Upper bits are ignored. + if (!is32Bit(VT)) + Result = DAG.getNode(ISD::ANY_EXTEND, DL, VT, Result); + // Sign-extend from the low bit. + SDValue ShAmt = DAG.getConstant(VT.getSizeInBits() - 1, DL, MVT::i32); + SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Result, ShAmt); + return DAG.getNode(ISD::SRA, DL, VT, Shl, ShAmt); + } + } + + SDValue Ops[] = {TrueOp, FalseOp, DAG.getConstant(C.CCValid, DL, MVT::i32), + DAG.getConstant(C.CCMask, DL, MVT::i32), Glue}; + + SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue); + return DAG.getNode(SystemZISD::SELECT_CCMASK, DL, VTs, Ops); +} + +SDValue SystemZTargetLowering::lowerGlobalAddress(GlobalAddressSDNode *Node, + SelectionDAG &DAG) const { + SDLoc DL(Node); + const GlobalValue *GV = Node->getGlobal(); + int64_t Offset = Node->getOffset(); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + Reloc::Model RM = DAG.getTarget().getRelocationModel(); + CodeModel::Model CM = DAG.getTarget().getCodeModel(); + + SDValue Result; + if (Subtarget.isPC32DBLSymbol(GV, RM, CM)) { + // Assign anchors at 1<<12 byte boundaries. + uint64_t Anchor = Offset & ~uint64_t(0xfff); + Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor); + Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); + + // The offset can be folded into the address if it is aligned to a halfword. + Offset -= Anchor; + if (Offset != 0 && (Offset & 1) == 0) { + SDValue Full = DAG.getTargetGlobalAddress(GV, DL, PtrVT, Anchor + Offset); + Result = DAG.getNode(SystemZISD::PCREL_OFFSET, DL, PtrVT, Full, Result); + Offset = 0; + } + } else { + Result = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, SystemZII::MO_GOT); + Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); + Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, + MachinePointerInfo::getGOT(DAG.getMachineFunction()), + false, false, false, 0); + } + + // If there was a non-zero offset that we didn't fold, create an explicit + // addition for it. + if (Offset != 0) + Result = DAG.getNode(ISD::ADD, DL, PtrVT, Result, + DAG.getConstant(Offset, DL, PtrVT)); + + return Result; +} + +SDValue SystemZTargetLowering::lowerTLSGetOffset(GlobalAddressSDNode *Node, + SelectionDAG &DAG, + unsigned Opcode, + SDValue GOTOffset) const { + SDLoc DL(Node); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue Chain = DAG.getEntryNode(); + SDValue Glue; + + // __tls_get_offset takes the GOT offset in %r2 and the GOT in %r12. + SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); + Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R12D, GOT, Glue); + Glue = Chain.getValue(1); + Chain = DAG.getCopyToReg(Chain, DL, SystemZ::R2D, GOTOffset, Glue); + Glue = Chain.getValue(1); + + // The first call operand is the chain and the second is the TLS symbol. + SmallVector<SDValue, 8> Ops; + Ops.push_back(Chain); + Ops.push_back(DAG.getTargetGlobalAddress(Node->getGlobal(), DL, + Node->getValueType(0), + 0, 0)); + + // Add argument registers to the end of the list so that they are + // known live into the call. + Ops.push_back(DAG.getRegister(SystemZ::R2D, PtrVT)); + Ops.push_back(DAG.getRegister(SystemZ::R12D, PtrVT)); + + // Add a register mask operand representing the call-preserved registers. + const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); + const uint32_t *Mask = + TRI->getCallPreservedMask(DAG.getMachineFunction(), CallingConv::C); + assert(Mask && "Missing call preserved mask for calling convention"); + Ops.push_back(DAG.getRegisterMask(Mask)); + + // Glue the call to the argument copies. + Ops.push_back(Glue); + + // Emit the call. + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + Chain = DAG.getNode(Opcode, DL, NodeTys, Ops); + Glue = Chain.getValue(1); + + // Copy the return value from %r2. + return DAG.getCopyFromReg(Chain, DL, SystemZ::R2D, PtrVT, Glue); +} + +SDValue SystemZTargetLowering::lowerGlobalTLSAddress(GlobalAddressSDNode *Node, + SelectionDAG &DAG) const { + if (DAG.getTarget().Options.EmulatedTLS) + return LowerToTLSEmulatedModel(Node, DAG); + SDLoc DL(Node); + const GlobalValue *GV = Node->getGlobal(); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + TLSModel::Model model = DAG.getTarget().getTLSModel(GV); + + // The high part of the thread pointer is in access register 0. + SDValue TPHi = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, + DAG.getConstant(0, DL, MVT::i32)); + TPHi = DAG.getNode(ISD::ANY_EXTEND, DL, PtrVT, TPHi); + + // The low part of the thread pointer is in access register 1. + SDValue TPLo = DAG.getNode(SystemZISD::EXTRACT_ACCESS, DL, MVT::i32, + DAG.getConstant(1, DL, MVT::i32)); + TPLo = DAG.getNode(ISD::ZERO_EXTEND, DL, PtrVT, TPLo); + + // Merge them into a single 64-bit address. + SDValue TPHiShifted = DAG.getNode(ISD::SHL, DL, PtrVT, TPHi, + DAG.getConstant(32, DL, PtrVT)); + SDValue TP = DAG.getNode(ISD::OR, DL, PtrVT, TPHiShifted, TPLo); + + // Get the offset of GA from the thread pointer, based on the TLS model. + SDValue Offset; + switch (model) { + case TLSModel::GeneralDynamic: { + // Load the GOT offset of the tls_index (module ID / per-symbol offset). + SystemZConstantPoolValue *CPV = + SystemZConstantPoolValue::Create(GV, SystemZCP::TLSGD); + + Offset = DAG.getConstantPool(CPV, PtrVT, 8); + Offset = DAG.getLoad( + PtrVT, DL, DAG.getEntryNode(), Offset, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, + false, false, 0); + + // Call __tls_get_offset to retrieve the offset. + Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_GDCALL, Offset); + break; + } + + case TLSModel::LocalDynamic: { + // Load the GOT offset of the module ID. + SystemZConstantPoolValue *CPV = + SystemZConstantPoolValue::Create(GV, SystemZCP::TLSLDM); + + Offset = DAG.getConstantPool(CPV, PtrVT, 8); + Offset = DAG.getLoad( + PtrVT, DL, DAG.getEntryNode(), Offset, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, + false, false, 0); + + // Call __tls_get_offset to retrieve the module base offset. + Offset = lowerTLSGetOffset(Node, DAG, SystemZISD::TLS_LDCALL, Offset); + + // Note: The SystemZLDCleanupPass will remove redundant computations + // of the module base offset. Count total number of local-dynamic + // accesses to trigger execution of that pass. + SystemZMachineFunctionInfo* MFI = + DAG.getMachineFunction().getInfo<SystemZMachineFunctionInfo>(); + MFI->incNumLocalDynamicTLSAccesses(); + + // Add the per-symbol offset. + CPV = SystemZConstantPoolValue::Create(GV, SystemZCP::DTPOFF); + + SDValue DTPOffset = DAG.getConstantPool(CPV, PtrVT, 8); + DTPOffset = DAG.getLoad( + PtrVT, DL, DAG.getEntryNode(), DTPOffset, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, + false, false, 0); + + Offset = DAG.getNode(ISD::ADD, DL, PtrVT, Offset, DTPOffset); + break; + } + + case TLSModel::InitialExec: { + // Load the offset from the GOT. + Offset = DAG.getTargetGlobalAddress(GV, DL, PtrVT, 0, + SystemZII::MO_INDNTPOFF); + Offset = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Offset); + Offset = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Offset, + MachinePointerInfo::getGOT(DAG.getMachineFunction()), + false, false, false, 0); + break; + } + + case TLSModel::LocalExec: { + // Force the offset into the constant pool and load it from there. + SystemZConstantPoolValue *CPV = + SystemZConstantPoolValue::Create(GV, SystemZCP::NTPOFF); + + Offset = DAG.getConstantPool(CPV, PtrVT, 8); + Offset = DAG.getLoad( + PtrVT, DL, DAG.getEntryNode(), Offset, + MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, + false, false, 0); + break; + } + } + + // Add the base and offset together. + return DAG.getNode(ISD::ADD, DL, PtrVT, TP, Offset); +} + +SDValue SystemZTargetLowering::lowerBlockAddress(BlockAddressSDNode *Node, + SelectionDAG &DAG) const { + SDLoc DL(Node); + const BlockAddress *BA = Node->getBlockAddress(); + int64_t Offset = Node->getOffset(); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + + SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset); + Result = DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); + return Result; +} + +SDValue SystemZTargetLowering::lowerJumpTable(JumpTableSDNode *JT, + SelectionDAG &DAG) const { + SDLoc DL(JT); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); + + // Use LARL to load the address of the table. + return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); +} + +SDValue SystemZTargetLowering::lowerConstantPool(ConstantPoolSDNode *CP, + SelectionDAG &DAG) const { + SDLoc DL(CP); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + + SDValue Result; + if (CP->isMachineConstantPoolEntry()) + Result = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, + CP->getAlignment()); + else + Result = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, + CP->getAlignment(), CP->getOffset()); + + // Use LARL to load the address of the constant pool entry. + return DAG.getNode(SystemZISD::PCREL_WRAPPER, DL, PtrVT, Result); +} + +SDValue SystemZTargetLowering::lowerBITCAST(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + SDValue In = Op.getOperand(0); + EVT InVT = In.getValueType(); + EVT ResVT = Op.getValueType(); + + // Convert loads directly. This is normally done by DAGCombiner, + // but we need this case for bitcasts that are created during lowering + // and which are then lowered themselves. + if (auto *LoadN = dyn_cast<LoadSDNode>(In)) + return DAG.getLoad(ResVT, DL, LoadN->getChain(), LoadN->getBasePtr(), + LoadN->getMemOperand()); + + if (InVT == MVT::i32 && ResVT == MVT::f32) { + SDValue In64; + if (Subtarget.hasHighWord()) { + SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, + MVT::i64); + In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_h32, DL, + MVT::i64, SDValue(U64, 0), In); + } else { + In64 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, In); + In64 = DAG.getNode(ISD::SHL, DL, MVT::i64, In64, + DAG.getConstant(32, DL, MVT::i64)); + } + SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::f64, In64); + return DAG.getTargetExtractSubreg(SystemZ::subreg_r32, + DL, MVT::f32, Out64); + } + if (InVT == MVT::f32 && ResVT == MVT::i32) { + SDNode *U64 = DAG.getMachineNode(TargetOpcode::IMPLICIT_DEF, DL, MVT::f64); + SDValue In64 = DAG.getTargetInsertSubreg(SystemZ::subreg_r32, DL, + MVT::f64, SDValue(U64, 0), In); + SDValue Out64 = DAG.getNode(ISD::BITCAST, DL, MVT::i64, In64); + if (Subtarget.hasHighWord()) + return DAG.getTargetExtractSubreg(SystemZ::subreg_h32, DL, + MVT::i32, Out64); + SDValue Shift = DAG.getNode(ISD::SRL, DL, MVT::i64, Out64, + DAG.getConstant(32, DL, MVT::i64)); + return DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Shift); + } + llvm_unreachable("Unexpected bitcast combination"); +} + +SDValue SystemZTargetLowering::lowerVASTART(SDValue Op, + SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + SystemZMachineFunctionInfo *FuncInfo = + MF.getInfo<SystemZMachineFunctionInfo>(); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + + SDValue Chain = Op.getOperand(0); + SDValue Addr = Op.getOperand(1); + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + SDLoc DL(Op); + + // The initial values of each field. + const unsigned NumFields = 4; + SDValue Fields[NumFields] = { + DAG.getConstant(FuncInfo->getVarArgsFirstGPR(), DL, PtrVT), + DAG.getConstant(FuncInfo->getVarArgsFirstFPR(), DL, PtrVT), + DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT), + DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT) + }; + + // Store each field into its respective slot. + SDValue MemOps[NumFields]; + unsigned Offset = 0; + for (unsigned I = 0; I < NumFields; ++I) { + SDValue FieldAddr = Addr; + if (Offset != 0) + FieldAddr = DAG.getNode(ISD::ADD, DL, PtrVT, FieldAddr, + DAG.getIntPtrConstant(Offset, DL)); + MemOps[I] = DAG.getStore(Chain, DL, Fields[I], FieldAddr, + MachinePointerInfo(SV, Offset), + false, false, 0); + Offset += 8; + } + return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps); +} + +SDValue SystemZTargetLowering::lowerVACOPY(SDValue Op, + SelectionDAG &DAG) const { + SDValue Chain = Op.getOperand(0); + SDValue DstPtr = Op.getOperand(1); + SDValue SrcPtr = Op.getOperand(2); + const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue(); + const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); + SDLoc DL(Op); + + return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr, DAG.getIntPtrConstant(32, DL), + /*Align*/8, /*isVolatile*/false, /*AlwaysInline*/false, + /*isTailCall*/false, + MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV)); +} + +SDValue SystemZTargetLowering:: +lowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { + const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); + bool RealignOpt = !DAG.getMachineFunction().getFunction()-> + hasFnAttribute("no-realign-stack"); + + SDValue Chain = Op.getOperand(0); + SDValue Size = Op.getOperand(1); + SDValue Align = Op.getOperand(2); + SDLoc DL(Op); + + // If user has set the no alignment function attribute, ignore + // alloca alignments. + uint64_t AlignVal = (RealignOpt ? + dyn_cast<ConstantSDNode>(Align)->getZExtValue() : 0); + + uint64_t StackAlign = TFI->getStackAlignment(); + uint64_t RequiredAlign = std::max(AlignVal, StackAlign); + uint64_t ExtraAlignSpace = RequiredAlign - StackAlign; + + unsigned SPReg = getStackPointerRegisterToSaveRestore(); + SDValue NeededSpace = Size; + + // Get a reference to the stack pointer. + SDValue OldSP = DAG.getCopyFromReg(Chain, DL, SPReg, MVT::i64); + + // Add extra space for alignment if needed. + if (ExtraAlignSpace) + NeededSpace = DAG.getNode(ISD::ADD, DL, MVT::i64, NeededSpace, + DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); + + // Get the new stack pointer value. + SDValue NewSP = DAG.getNode(ISD::SUB, DL, MVT::i64, OldSP, NeededSpace); + + // Copy the new stack pointer back. + Chain = DAG.getCopyToReg(Chain, DL, SPReg, NewSP); + + // The allocated data lives above the 160 bytes allocated for the standard + // frame, plus any outgoing stack arguments. We don't know how much that + // amounts to yet, so emit a special ADJDYNALLOC placeholder. + SDValue ArgAdjust = DAG.getNode(SystemZISD::ADJDYNALLOC, DL, MVT::i64); + SDValue Result = DAG.getNode(ISD::ADD, DL, MVT::i64, NewSP, ArgAdjust); + + // Dynamically realign if needed. + if (RequiredAlign > StackAlign) { + Result = + DAG.getNode(ISD::ADD, DL, MVT::i64, Result, + DAG.getConstant(ExtraAlignSpace, DL, MVT::i64)); + Result = + DAG.getNode(ISD::AND, DL, MVT::i64, Result, + DAG.getConstant(~(RequiredAlign - 1), DL, MVT::i64)); + } + + SDValue Ops[2] = { Result, Chain }; + return DAG.getMergeValues(Ops, DL); +} + +SDValue SystemZTargetLowering::lowerSMUL_LOHI(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + SDLoc DL(Op); + SDValue Ops[2]; + if (is32Bit(VT)) + // Just do a normal 64-bit multiplication and extract the results. + // We define this so that it can be used for constant division. + lowerMUL_LOHI32(DAG, DL, ISD::SIGN_EXTEND, Op.getOperand(0), + Op.getOperand(1), Ops[1], Ops[0]); + else { + // Do a full 128-bit multiplication based on UMUL_LOHI64: + // + // (ll * rl) + ((lh * rl) << 64) + ((ll * rh) << 64) + // + // but using the fact that the upper halves are either all zeros + // or all ones: + // + // (ll * rl) - ((lh & rl) << 64) - ((ll & rh) << 64) + // + // and grouping the right terms together since they are quicker than the + // multiplication: + // + // (ll * rl) - (((lh & rl) + (ll & rh)) << 64) + SDValue C63 = DAG.getConstant(63, DL, MVT::i64); + SDValue LL = Op.getOperand(0); + SDValue RL = Op.getOperand(1); + SDValue LH = DAG.getNode(ISD::SRA, DL, VT, LL, C63); + SDValue RH = DAG.getNode(ISD::SRA, DL, VT, RL, C63); + // UMUL_LOHI64 returns the low result in the odd register and the high + // result in the even register. SMUL_LOHI is defined to return the + // low half first, so the results are in reverse order. + lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, + LL, RL, Ops[1], Ops[0]); + SDValue NegLLTimesRH = DAG.getNode(ISD::AND, DL, VT, LL, RH); + SDValue NegLHTimesRL = DAG.getNode(ISD::AND, DL, VT, LH, RL); + SDValue NegSum = DAG.getNode(ISD::ADD, DL, VT, NegLLTimesRH, NegLHTimesRL); + Ops[1] = DAG.getNode(ISD::SUB, DL, VT, Ops[1], NegSum); + } + return DAG.getMergeValues(Ops, DL); +} + +SDValue SystemZTargetLowering::lowerUMUL_LOHI(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + SDLoc DL(Op); + SDValue Ops[2]; + if (is32Bit(VT)) + // Just do a normal 64-bit multiplication and extract the results. + // We define this so that it can be used for constant division. + lowerMUL_LOHI32(DAG, DL, ISD::ZERO_EXTEND, Op.getOperand(0), + Op.getOperand(1), Ops[1], Ops[0]); + else + // UMUL_LOHI64 returns the low result in the odd register and the high + // result in the even register. UMUL_LOHI is defined to return the + // low half first, so the results are in reverse order. + lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, SystemZISD::UMUL_LOHI64, + Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); + return DAG.getMergeValues(Ops, DL); +} + +SDValue SystemZTargetLowering::lowerSDIVREM(SDValue Op, + SelectionDAG &DAG) const { + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + EVT VT = Op.getValueType(); + SDLoc DL(Op); + unsigned Opcode; + + // We use DSGF for 32-bit division. + if (is32Bit(VT)) { + Op0 = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i64, Op0); + Opcode = SystemZISD::SDIVREM32; + } else if (DAG.ComputeNumSignBits(Op1) > 32) { + Op1 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Op1); + Opcode = SystemZISD::SDIVREM32; + } else + Opcode = SystemZISD::SDIVREM64; + + // DSG(F) takes a 64-bit dividend, so the even register in the GR128 + // input is "don't care". The instruction returns the remainder in + // the even register and the quotient in the odd register. + SDValue Ops[2]; + lowerGR128Binary(DAG, DL, VT, SystemZ::AEXT128_64, Opcode, + Op0, Op1, Ops[1], Ops[0]); + return DAG.getMergeValues(Ops, DL); +} + +SDValue SystemZTargetLowering::lowerUDIVREM(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + SDLoc DL(Op); + + // DL(G) uses a double-width dividend, so we need to clear the even + // register in the GR128 input. The instruction returns the remainder + // in the even register and the quotient in the odd register. + SDValue Ops[2]; + if (is32Bit(VT)) + lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_32, SystemZISD::UDIVREM32, + Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); + else + lowerGR128Binary(DAG, DL, VT, SystemZ::ZEXT128_64, SystemZISD::UDIVREM64, + Op.getOperand(0), Op.getOperand(1), Ops[1], Ops[0]); + return DAG.getMergeValues(Ops, DL); +} + +SDValue SystemZTargetLowering::lowerOR(SDValue Op, SelectionDAG &DAG) const { + assert(Op.getValueType() == MVT::i64 && "Should be 64-bit operation"); + + // Get the known-zero masks for each operand. + SDValue Ops[] = { Op.getOperand(0), Op.getOperand(1) }; + APInt KnownZero[2], KnownOne[2]; + DAG.computeKnownBits(Ops[0], KnownZero[0], KnownOne[0]); + DAG.computeKnownBits(Ops[1], KnownZero[1], KnownOne[1]); + + // See if the upper 32 bits of one operand and the lower 32 bits of the + // other are known zero. They are the low and high operands respectively. + uint64_t Masks[] = { KnownZero[0].getZExtValue(), + KnownZero[1].getZExtValue() }; + unsigned High, Low; + if ((Masks[0] >> 32) == 0xffffffff && uint32_t(Masks[1]) == 0xffffffff) + High = 1, Low = 0; + else if ((Masks[1] >> 32) == 0xffffffff && uint32_t(Masks[0]) == 0xffffffff) + High = 0, Low = 1; + else + return Op; + + SDValue LowOp = Ops[Low]; + SDValue HighOp = Ops[High]; + + // If the high part is a constant, we're better off using IILH. + if (HighOp.getOpcode() == ISD::Constant) + return Op; + + // If the low part is a constant that is outside the range of LHI, + // then we're better off using IILF. + if (LowOp.getOpcode() == ISD::Constant) { + int64_t Value = int32_t(cast<ConstantSDNode>(LowOp)->getZExtValue()); + if (!isInt<16>(Value)) + return Op; + } + + // Check whether the high part is an AND that doesn't change the + // high 32 bits and just masks out low bits. We can skip it if so. + if (HighOp.getOpcode() == ISD::AND && + HighOp.getOperand(1).getOpcode() == ISD::Constant) { + SDValue HighOp0 = HighOp.getOperand(0); + uint64_t Mask = cast<ConstantSDNode>(HighOp.getOperand(1))->getZExtValue(); + if (DAG.MaskedValueIsZero(HighOp0, APInt(64, ~(Mask | 0xffffffff)))) + HighOp = HighOp0; + } + + // Take advantage of the fact that all GR32 operations only change the + // low 32 bits by truncating Low to an i32 and inserting it directly + // using a subreg. The interesting cases are those where the truncation + // can be folded. + SDLoc DL(Op); + SDValue Low32 = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, LowOp); + return DAG.getTargetInsertSubreg(SystemZ::subreg_l32, DL, + MVT::i64, HighOp, Low32); +} + +SDValue SystemZTargetLowering::lowerCTPOP(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + SDLoc DL(Op); + Op = Op.getOperand(0); + + // Handle vector types via VPOPCT. + if (VT.isVector()) { + Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Op); + Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::v16i8, Op); + switch (VT.getVectorElementType().getSizeInBits()) { + case 8: + break; + case 16: { + Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); + SDValue Shift = DAG.getConstant(8, DL, MVT::i32); + SDValue Tmp = DAG.getNode(SystemZISD::VSHL_BY_SCALAR, DL, VT, Op, Shift); + Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); + Op = DAG.getNode(SystemZISD::VSRL_BY_SCALAR, DL, VT, Op, Shift); + break; + } + case 32: { + SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, + DAG.getConstant(0, DL, MVT::i32)); + Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); + break; + } + case 64: { + SDValue Tmp = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, + DAG.getConstant(0, DL, MVT::i32)); + Op = DAG.getNode(SystemZISD::VSUM, DL, MVT::v4i32, Op, Tmp); + Op = DAG.getNode(SystemZISD::VSUM, DL, VT, Op, Tmp); + break; + } + default: + llvm_unreachable("Unexpected type"); + } + return Op; + } + + // Get the known-zero mask for the operand. + APInt KnownZero, KnownOne; + DAG.computeKnownBits(Op, KnownZero, KnownOne); + unsigned NumSignificantBits = (~KnownZero).getActiveBits(); + if (NumSignificantBits == 0) + return DAG.getConstant(0, DL, VT); + + // Skip known-zero high parts of the operand. + int64_t OrigBitSize = VT.getSizeInBits(); + int64_t BitSize = (int64_t)1 << Log2_32_Ceil(NumSignificantBits); + BitSize = std::min(BitSize, OrigBitSize); + + // The POPCNT instruction counts the number of bits in each byte. + Op = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op); + Op = DAG.getNode(SystemZISD::POPCNT, DL, MVT::i64, Op); + Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); + + // Add up per-byte counts in a binary tree. All bits of Op at + // position larger than BitSize remain zero throughout. + for (int64_t I = BitSize / 2; I >= 8; I = I / 2) { + SDValue Tmp = DAG.getNode(ISD::SHL, DL, VT, Op, DAG.getConstant(I, DL, VT)); + if (BitSize != OrigBitSize) + Tmp = DAG.getNode(ISD::AND, DL, VT, Tmp, + DAG.getConstant(((uint64_t)1 << BitSize) - 1, DL, VT)); + Op = DAG.getNode(ISD::ADD, DL, VT, Op, Tmp); + } + + // Extract overall result from high byte. + if (BitSize > 8) + Op = DAG.getNode(ISD::SRL, DL, VT, Op, + DAG.getConstant(BitSize - 8, DL, VT)); + + return Op; +} + +// Op is an atomic load. Lower it into a normal volatile load. +SDValue SystemZTargetLowering::lowerATOMIC_LOAD(SDValue Op, + SelectionDAG &DAG) const { + auto *Node = cast<AtomicSDNode>(Op.getNode()); + return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), Op.getValueType(), + Node->getChain(), Node->getBasePtr(), + Node->getMemoryVT(), Node->getMemOperand()); +} + +// Op is an atomic store. Lower it into a normal volatile store followed +// by a serialization. +SDValue SystemZTargetLowering::lowerATOMIC_STORE(SDValue Op, + SelectionDAG &DAG) const { + auto *Node = cast<AtomicSDNode>(Op.getNode()); + SDValue Chain = DAG.getTruncStore(Node->getChain(), SDLoc(Op), Node->getVal(), + Node->getBasePtr(), Node->getMemoryVT(), + Node->getMemOperand()); + return SDValue(DAG.getMachineNode(SystemZ::Serialize, SDLoc(Op), MVT::Other, + Chain), 0); +} + +// Op is an 8-, 16-bit or 32-bit ATOMIC_LOAD_* operation. Lower the first +// two into the fullword ATOMIC_LOADW_* operation given by Opcode. +SDValue SystemZTargetLowering::lowerATOMIC_LOAD_OP(SDValue Op, + SelectionDAG &DAG, + unsigned Opcode) const { + auto *Node = cast<AtomicSDNode>(Op.getNode()); + + // 32-bit operations need no code outside the main loop. + EVT NarrowVT = Node->getMemoryVT(); + EVT WideVT = MVT::i32; + if (NarrowVT == WideVT) + return Op; + + int64_t BitSize = NarrowVT.getSizeInBits(); + SDValue ChainIn = Node->getChain(); + SDValue Addr = Node->getBasePtr(); + SDValue Src2 = Node->getVal(); + MachineMemOperand *MMO = Node->getMemOperand(); + SDLoc DL(Node); + EVT PtrVT = Addr.getValueType(); + + // Convert atomic subtracts of constants into additions. + if (Opcode == SystemZISD::ATOMIC_LOADW_SUB) + if (auto *Const = dyn_cast<ConstantSDNode>(Src2)) { + Opcode = SystemZISD::ATOMIC_LOADW_ADD; + Src2 = DAG.getConstant(-Const->getSExtValue(), DL, Src2.getValueType()); + } + + // Get the address of the containing word. + SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, + DAG.getConstant(-4, DL, PtrVT)); + + // Get the number of bits that the word must be rotated left in order + // to bring the field to the top bits of a GR32. + SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, + DAG.getConstant(3, DL, PtrVT)); + BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); + + // Get the complementing shift amount, for rotating a field in the top + // bits back to its proper position. + SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, + DAG.getConstant(0, DL, WideVT), BitShift); + + // Extend the source operand to 32 bits and prepare it for the inner loop. + // ATOMIC_SWAPW uses RISBG to rotate the field left, but all other + // operations require the source to be shifted in advance. (This shift + // can be folded if the source is constant.) For AND and NAND, the lower + // bits must be set, while for other opcodes they should be left clear. + if (Opcode != SystemZISD::ATOMIC_SWAPW) + Src2 = DAG.getNode(ISD::SHL, DL, WideVT, Src2, + DAG.getConstant(32 - BitSize, DL, WideVT)); + if (Opcode == SystemZISD::ATOMIC_LOADW_AND || + Opcode == SystemZISD::ATOMIC_LOADW_NAND) + Src2 = DAG.getNode(ISD::OR, DL, WideVT, Src2, + DAG.getConstant(uint32_t(-1) >> BitSize, DL, WideVT)); + + // Construct the ATOMIC_LOADW_* node. + SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); + SDValue Ops[] = { ChainIn, AlignedAddr, Src2, BitShift, NegBitShift, + DAG.getConstant(BitSize, DL, WideVT) }; + SDValue AtomicOp = DAG.getMemIntrinsicNode(Opcode, DL, VTList, Ops, + NarrowVT, MMO); + + // Rotate the result of the final CS so that the field is in the lower + // bits of a GR32, then truncate it. + SDValue ResultShift = DAG.getNode(ISD::ADD, DL, WideVT, BitShift, + DAG.getConstant(BitSize, DL, WideVT)); + SDValue Result = DAG.getNode(ISD::ROTL, DL, WideVT, AtomicOp, ResultShift); + + SDValue RetOps[2] = { Result, AtomicOp.getValue(1) }; + return DAG.getMergeValues(RetOps, DL); +} + +// Op is an ATOMIC_LOAD_SUB operation. Lower 8- and 16-bit operations +// into ATOMIC_LOADW_SUBs and decide whether to convert 32- and 64-bit +// operations into additions. +SDValue SystemZTargetLowering::lowerATOMIC_LOAD_SUB(SDValue Op, + SelectionDAG &DAG) const { + auto *Node = cast<AtomicSDNode>(Op.getNode()); + EVT MemVT = Node->getMemoryVT(); + if (MemVT == MVT::i32 || MemVT == MVT::i64) { + // A full-width operation. + assert(Op.getValueType() == MemVT && "Mismatched VTs"); + SDValue Src2 = Node->getVal(); + SDValue NegSrc2; + SDLoc DL(Src2); + + if (auto *Op2 = dyn_cast<ConstantSDNode>(Src2)) { + // Use an addition if the operand is constant and either LAA(G) is + // available or the negative value is in the range of A(G)FHI. + int64_t Value = (-Op2->getAPIntValue()).getSExtValue(); + if (isInt<32>(Value) || Subtarget.hasInterlockedAccess1()) + NegSrc2 = DAG.getConstant(Value, DL, MemVT); + } else if (Subtarget.hasInterlockedAccess1()) + // Use LAA(G) if available. + NegSrc2 = DAG.getNode(ISD::SUB, DL, MemVT, DAG.getConstant(0, DL, MemVT), + Src2); + + if (NegSrc2.getNode()) + return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, MemVT, + Node->getChain(), Node->getBasePtr(), NegSrc2, + Node->getMemOperand(), Node->getOrdering(), + Node->getSynchScope()); + + // Use the node as-is. + return Op; + } + + return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_SUB); +} + +// Node is an 8- or 16-bit ATOMIC_CMP_SWAP operation. Lower the first two +// into a fullword ATOMIC_CMP_SWAPW operation. +SDValue SystemZTargetLowering::lowerATOMIC_CMP_SWAP(SDValue Op, + SelectionDAG &DAG) const { + auto *Node = cast<AtomicSDNode>(Op.getNode()); + + // We have native support for 32-bit compare and swap. + EVT NarrowVT = Node->getMemoryVT(); + EVT WideVT = MVT::i32; + if (NarrowVT == WideVT) + return Op; + + int64_t BitSize = NarrowVT.getSizeInBits(); + SDValue ChainIn = Node->getOperand(0); + SDValue Addr = Node->getOperand(1); + SDValue CmpVal = Node->getOperand(2); + SDValue SwapVal = Node->getOperand(3); + MachineMemOperand *MMO = Node->getMemOperand(); + SDLoc DL(Node); + EVT PtrVT = Addr.getValueType(); + + // Get the address of the containing word. + SDValue AlignedAddr = DAG.getNode(ISD::AND, DL, PtrVT, Addr, + DAG.getConstant(-4, DL, PtrVT)); + + // Get the number of bits that the word must be rotated left in order + // to bring the field to the top bits of a GR32. + SDValue BitShift = DAG.getNode(ISD::SHL, DL, PtrVT, Addr, + DAG.getConstant(3, DL, PtrVT)); + BitShift = DAG.getNode(ISD::TRUNCATE, DL, WideVT, BitShift); + + // Get the complementing shift amount, for rotating a field in the top + // bits back to its proper position. + SDValue NegBitShift = DAG.getNode(ISD::SUB, DL, WideVT, + DAG.getConstant(0, DL, WideVT), BitShift); + + // Construct the ATOMIC_CMP_SWAPW node. + SDVTList VTList = DAG.getVTList(WideVT, MVT::Other); + SDValue Ops[] = { ChainIn, AlignedAddr, CmpVal, SwapVal, BitShift, + NegBitShift, DAG.getConstant(BitSize, DL, WideVT) }; + SDValue AtomicOp = DAG.getMemIntrinsicNode(SystemZISD::ATOMIC_CMP_SWAPW, DL, + VTList, Ops, NarrowVT, MMO); + return AtomicOp; +} + +SDValue SystemZTargetLowering::lowerSTACKSAVE(SDValue Op, + SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); + return DAG.getCopyFromReg(Op.getOperand(0), SDLoc(Op), + SystemZ::R15D, Op.getValueType()); +} + +SDValue SystemZTargetLowering::lowerSTACKRESTORE(SDValue Op, + SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + MF.getInfo<SystemZMachineFunctionInfo>()->setManipulatesSP(true); + return DAG.getCopyToReg(Op.getOperand(0), SDLoc(Op), + SystemZ::R15D, Op.getOperand(1)); +} + +SDValue SystemZTargetLowering::lowerPREFETCH(SDValue Op, + SelectionDAG &DAG) const { + bool IsData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); + if (!IsData) + // Just preserve the chain. + return Op.getOperand(0); + + SDLoc DL(Op); + bool IsWrite = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue(); + unsigned Code = IsWrite ? SystemZ::PFD_WRITE : SystemZ::PFD_READ; + auto *Node = cast<MemIntrinsicSDNode>(Op.getNode()); + SDValue Ops[] = { + Op.getOperand(0), + DAG.getConstant(Code, DL, MVT::i32), + Op.getOperand(1) + }; + return DAG.getMemIntrinsicNode(SystemZISD::PREFETCH, DL, + Node->getVTList(), Ops, + Node->getMemoryVT(), Node->getMemOperand()); +} + +// Return an i32 that contains the value of CC immediately after After, +// whose final operand must be MVT::Glue. +static SDValue getCCResult(SelectionDAG &DAG, SDNode *After) { + SDLoc DL(After); + SDValue Glue = SDValue(After, After->getNumValues() - 1); + SDValue IPM = DAG.getNode(SystemZISD::IPM, DL, MVT::i32, Glue); + return DAG.getNode(ISD::SRL, DL, MVT::i32, IPM, + DAG.getConstant(SystemZ::IPM_CC, DL, MVT::i32)); +} + +SDValue +SystemZTargetLowering::lowerINTRINSIC_W_CHAIN(SDValue Op, + SelectionDAG &DAG) const { + unsigned Opcode, CCValid; + if (isIntrinsicWithCCAndChain(Op, Opcode, CCValid)) { + assert(Op->getNumValues() == 2 && "Expected only CC result and chain"); + SDValue Glued = emitIntrinsicWithChainAndGlue(DAG, Op, Opcode); + SDValue CC = getCCResult(DAG, Glued.getNode()); + DAG.ReplaceAllUsesOfValueWith(SDValue(Op.getNode(), 0), CC); + return SDValue(); + } + + return SDValue(); +} + +SDValue +SystemZTargetLowering::lowerINTRINSIC_WO_CHAIN(SDValue Op, + SelectionDAG &DAG) const { + unsigned Opcode, CCValid; + if (isIntrinsicWithCC(Op, Opcode, CCValid)) { + SDValue Glued = emitIntrinsicWithGlue(DAG, Op, Opcode); + SDValue CC = getCCResult(DAG, Glued.getNode()); + if (Op->getNumValues() == 1) + return CC; + assert(Op->getNumValues() == 2 && "Expected a CC and non-CC result"); + return DAG.getNode(ISD::MERGE_VALUES, SDLoc(Op), Op->getVTList(), Glued, + CC); + } + + unsigned Id = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + switch (Id) { + case Intrinsic::s390_vpdi: + return DAG.getNode(SystemZISD::PERMUTE_DWORDS, SDLoc(Op), Op.getValueType(), + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); + + case Intrinsic::s390_vperm: + return DAG.getNode(SystemZISD::PERMUTE, SDLoc(Op), Op.getValueType(), + Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); + + case Intrinsic::s390_vuphb: + case Intrinsic::s390_vuphh: + case Intrinsic::s390_vuphf: + return DAG.getNode(SystemZISD::UNPACK_HIGH, SDLoc(Op), Op.getValueType(), + Op.getOperand(1)); + + case Intrinsic::s390_vuplhb: + case Intrinsic::s390_vuplhh: + case Intrinsic::s390_vuplhf: + return DAG.getNode(SystemZISD::UNPACKL_HIGH, SDLoc(Op), Op.getValueType(), + Op.getOperand(1)); + + case Intrinsic::s390_vuplb: + case Intrinsic::s390_vuplhw: + case Intrinsic::s390_vuplf: + return DAG.getNode(SystemZISD::UNPACK_LOW, SDLoc(Op), Op.getValueType(), + Op.getOperand(1)); + + case Intrinsic::s390_vupllb: + case Intrinsic::s390_vupllh: + case Intrinsic::s390_vupllf: + return DAG.getNode(SystemZISD::UNPACKL_LOW, SDLoc(Op), Op.getValueType(), + Op.getOperand(1)); + + case Intrinsic::s390_vsumb: + case Intrinsic::s390_vsumh: + case Intrinsic::s390_vsumgh: + case Intrinsic::s390_vsumgf: + case Intrinsic::s390_vsumqf: + case Intrinsic::s390_vsumqg: + return DAG.getNode(SystemZISD::VSUM, SDLoc(Op), Op.getValueType(), + Op.getOperand(1), Op.getOperand(2)); + } + + return SDValue(); +} + +namespace { +// Says that SystemZISD operation Opcode can be used to perform the equivalent +// of a VPERM with permute vector Bytes. If Opcode takes three operands, +// Operand is the constant third operand, otherwise it is the number of +// bytes in each element of the result. +struct Permute { + unsigned Opcode; + unsigned Operand; + unsigned char Bytes[SystemZ::VectorBytes]; +}; +} + +static const Permute PermuteForms[] = { + // VMRHG + { SystemZISD::MERGE_HIGH, 8, + { 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23 } }, + // VMRHF + { SystemZISD::MERGE_HIGH, 4, + { 0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23 } }, + // VMRHH + { SystemZISD::MERGE_HIGH, 2, + { 0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23 } }, + // VMRHB + { SystemZISD::MERGE_HIGH, 1, + { 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23 } }, + // VMRLG + { SystemZISD::MERGE_LOW, 8, + { 8, 9, 10, 11, 12, 13, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31 } }, + // VMRLF + { SystemZISD::MERGE_LOW, 4, + { 8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31 } }, + // VMRLH + { SystemZISD::MERGE_LOW, 2, + { 8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31 } }, + // VMRLB + { SystemZISD::MERGE_LOW, 1, + { 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31 } }, + // VPKG + { SystemZISD::PACK, 4, + { 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 } }, + // VPKF + { SystemZISD::PACK, 2, + { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 } }, + // VPKH + { SystemZISD::PACK, 1, + { 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31 } }, + // VPDI V1, V2, 4 (low half of V1, high half of V2) + { SystemZISD::PERMUTE_DWORDS, 4, + { 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 } }, + // VPDI V1, V2, 1 (high half of V1, low half of V2) + { SystemZISD::PERMUTE_DWORDS, 1, + { 0, 1, 2, 3, 4, 5, 6, 7, 24, 25, 26, 27, 28, 29, 30, 31 } } +}; + +// Called after matching a vector shuffle against a particular pattern. +// Both the original shuffle and the pattern have two vector operands. +// OpNos[0] is the operand of the original shuffle that should be used for +// operand 0 of the pattern, or -1 if operand 0 of the pattern can be anything. +// OpNos[1] is the same for operand 1 of the pattern. Resolve these -1s and +// set OpNo0 and OpNo1 to the shuffle operands that should actually be used +// for operands 0 and 1 of the pattern. +static bool chooseShuffleOpNos(int *OpNos, unsigned &OpNo0, unsigned &OpNo1) { + if (OpNos[0] < 0) { + if (OpNos[1] < 0) + return false; + OpNo0 = OpNo1 = OpNos[1]; + } else if (OpNos[1] < 0) { + OpNo0 = OpNo1 = OpNos[0]; + } else { + OpNo0 = OpNos[0]; + OpNo1 = OpNos[1]; + } + return true; +} + +// Bytes is a VPERM-like permute vector, except that -1 is used for +// undefined bytes. Return true if the VPERM can be implemented using P. +// When returning true set OpNo0 to the VPERM operand that should be +// used for operand 0 of P and likewise OpNo1 for operand 1 of P. +// +// For example, if swapping the VPERM operands allows P to match, OpNo0 +// will be 1 and OpNo1 will be 0. If instead Bytes only refers to one +// operand, but rewriting it to use two duplicated operands allows it to +// match P, then OpNo0 and OpNo1 will be the same. +static bool matchPermute(const SmallVectorImpl<int> &Bytes, const Permute &P, + unsigned &OpNo0, unsigned &OpNo1) { + int OpNos[] = { -1, -1 }; + for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) { + int Elt = Bytes[I]; + if (Elt >= 0) { + // Make sure that the two permute vectors use the same suboperand + // byte number. Only the operand numbers (the high bits) are + // allowed to differ. + if ((Elt ^ P.Bytes[I]) & (SystemZ::VectorBytes - 1)) + return false; + int ModelOpNo = P.Bytes[I] / SystemZ::VectorBytes; + int RealOpNo = unsigned(Elt) / SystemZ::VectorBytes; + // Make sure that the operand mappings are consistent with previous + // elements. + if (OpNos[ModelOpNo] == 1 - RealOpNo) + return false; + OpNos[ModelOpNo] = RealOpNo; + } + } + return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); +} + +// As above, but search for a matching permute. +static const Permute *matchPermute(const SmallVectorImpl<int> &Bytes, + unsigned &OpNo0, unsigned &OpNo1) { + for (auto &P : PermuteForms) + if (matchPermute(Bytes, P, OpNo0, OpNo1)) + return &P; + return nullptr; +} + +// Bytes is a VPERM-like permute vector, except that -1 is used for +// undefined bytes. This permute is an operand of an outer permute. +// See whether redistributing the -1 bytes gives a shuffle that can be +// implemented using P. If so, set Transform to a VPERM-like permute vector +// that, when applied to the result of P, gives the original permute in Bytes. +static bool matchDoublePermute(const SmallVectorImpl<int> &Bytes, + const Permute &P, + SmallVectorImpl<int> &Transform) { + unsigned To = 0; + for (unsigned From = 0; From < SystemZ::VectorBytes; ++From) { + int Elt = Bytes[From]; + if (Elt < 0) + // Byte number From of the result is undefined. + Transform[From] = -1; + else { + while (P.Bytes[To] != Elt) { + To += 1; + if (To == SystemZ::VectorBytes) + return false; + } + Transform[From] = To; + } + } + return true; +} + +// As above, but search for a matching permute. +static const Permute *matchDoublePermute(const SmallVectorImpl<int> &Bytes, + SmallVectorImpl<int> &Transform) { + for (auto &P : PermuteForms) + if (matchDoublePermute(Bytes, P, Transform)) + return &P; + return nullptr; +} + +// Convert the mask of the given VECTOR_SHUFFLE into a byte-level mask, +// as if it had type vNi8. +static void getVPermMask(ShuffleVectorSDNode *VSN, + SmallVectorImpl<int> &Bytes) { + EVT VT = VSN->getValueType(0); + unsigned NumElements = VT.getVectorNumElements(); + unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); + Bytes.resize(NumElements * BytesPerElement, -1); + for (unsigned I = 0; I < NumElements; ++I) { + int Index = VSN->getMaskElt(I); + if (Index >= 0) + for (unsigned J = 0; J < BytesPerElement; ++J) + Bytes[I * BytesPerElement + J] = Index * BytesPerElement + J; + } +} + +// Bytes is a VPERM-like permute vector, except that -1 is used for +// undefined bytes. See whether bytes [Start, Start + BytesPerElement) of +// the result come from a contiguous sequence of bytes from one input. +// Set Base to the selector for the first byte if so. +static bool getShuffleInput(const SmallVectorImpl<int> &Bytes, unsigned Start, + unsigned BytesPerElement, int &Base) { + Base = -1; + for (unsigned I = 0; I < BytesPerElement; ++I) { + if (Bytes[Start + I] >= 0) { + unsigned Elem = Bytes[Start + I]; + if (Base < 0) { + Base = Elem - I; + // Make sure the bytes would come from one input operand. + if (unsigned(Base) % Bytes.size() + BytesPerElement > Bytes.size()) + return false; + } else if (unsigned(Base) != Elem - I) + return false; + } + } + return true; +} + +// Bytes is a VPERM-like permute vector, except that -1 is used for +// undefined bytes. Return true if it can be performed using VSLDI. +// When returning true, set StartIndex to the shift amount and OpNo0 +// and OpNo1 to the VPERM operands that should be used as the first +// and second shift operand respectively. +static bool isShlDoublePermute(const SmallVectorImpl<int> &Bytes, + unsigned &StartIndex, unsigned &OpNo0, + unsigned &OpNo1) { + int OpNos[] = { -1, -1 }; + int Shift = -1; + for (unsigned I = 0; I < 16; ++I) { + int Index = Bytes[I]; + if (Index >= 0) { + int ExpectedShift = (Index - I) % SystemZ::VectorBytes; + int ModelOpNo = unsigned(ExpectedShift + I) / SystemZ::VectorBytes; + int RealOpNo = unsigned(Index) / SystemZ::VectorBytes; + if (Shift < 0) + Shift = ExpectedShift; + else if (Shift != ExpectedShift) + return false; + // Make sure that the operand mappings are consistent with previous + // elements. + if (OpNos[ModelOpNo] == 1 - RealOpNo) + return false; + OpNos[ModelOpNo] = RealOpNo; + } + } + StartIndex = Shift; + return chooseShuffleOpNos(OpNos, OpNo0, OpNo1); +} + +// Create a node that performs P on operands Op0 and Op1, casting the +// operands to the appropriate type. The type of the result is determined by P. +static SDValue getPermuteNode(SelectionDAG &DAG, SDLoc DL, + const Permute &P, SDValue Op0, SDValue Op1) { + // VPDI (PERMUTE_DWORDS) always operates on v2i64s. The input + // elements of a PACK are twice as wide as the outputs. + unsigned InBytes = (P.Opcode == SystemZISD::PERMUTE_DWORDS ? 8 : + P.Opcode == SystemZISD::PACK ? P.Operand * 2 : + P.Operand); + // Cast both operands to the appropriate type. + MVT InVT = MVT::getVectorVT(MVT::getIntegerVT(InBytes * 8), + SystemZ::VectorBytes / InBytes); + Op0 = DAG.getNode(ISD::BITCAST, DL, InVT, Op0); + Op1 = DAG.getNode(ISD::BITCAST, DL, InVT, Op1); + SDValue Op; + if (P.Opcode == SystemZISD::PERMUTE_DWORDS) { + SDValue Op2 = DAG.getConstant(P.Operand, DL, MVT::i32); + Op = DAG.getNode(SystemZISD::PERMUTE_DWORDS, DL, InVT, Op0, Op1, Op2); + } else if (P.Opcode == SystemZISD::PACK) { + MVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(P.Operand * 8), + SystemZ::VectorBytes / P.Operand); + Op = DAG.getNode(SystemZISD::PACK, DL, OutVT, Op0, Op1); + } else { + Op = DAG.getNode(P.Opcode, DL, InVT, Op0, Op1); + } + return Op; +} + +// Bytes is a VPERM-like permute vector, except that -1 is used for +// undefined bytes. Implement it on operands Ops[0] and Ops[1] using +// VSLDI or VPERM. +static SDValue getGeneralPermuteNode(SelectionDAG &DAG, SDLoc DL, SDValue *Ops, + const SmallVectorImpl<int> &Bytes) { + for (unsigned I = 0; I < 2; ++I) + Ops[I] = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Ops[I]); + + // First see whether VSLDI can be used. + unsigned StartIndex, OpNo0, OpNo1; + if (isShlDoublePermute(Bytes, StartIndex, OpNo0, OpNo1)) + return DAG.getNode(SystemZISD::SHL_DOUBLE, DL, MVT::v16i8, Ops[OpNo0], + Ops[OpNo1], DAG.getConstant(StartIndex, DL, MVT::i32)); + + // Fall back on VPERM. Construct an SDNode for the permute vector. + SDValue IndexNodes[SystemZ::VectorBytes]; + for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) + if (Bytes[I] >= 0) + IndexNodes[I] = DAG.getConstant(Bytes[I], DL, MVT::i32); + else + IndexNodes[I] = DAG.getUNDEF(MVT::i32); + SDValue Op2 = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v16i8, IndexNodes); + return DAG.getNode(SystemZISD::PERMUTE, DL, MVT::v16i8, Ops[0], Ops[1], Op2); +} + +namespace { +// Describes a general N-operand vector shuffle. +struct GeneralShuffle { + GeneralShuffle(EVT vt) : VT(vt) {} + void addUndef(); + void add(SDValue, unsigned); + SDValue getNode(SelectionDAG &, SDLoc); + + // The operands of the shuffle. + SmallVector<SDValue, SystemZ::VectorBytes> Ops; + + // Index I is -1 if byte I of the result is undefined. Otherwise the + // result comes from byte Bytes[I] % SystemZ::VectorBytes of operand + // Bytes[I] / SystemZ::VectorBytes. + SmallVector<int, SystemZ::VectorBytes> Bytes; + + // The type of the shuffle result. + EVT VT; +}; +} + +// Add an extra undefined element to the shuffle. +void GeneralShuffle::addUndef() { + unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); + for (unsigned I = 0; I < BytesPerElement; ++I) + Bytes.push_back(-1); +} + +// Add an extra element to the shuffle, taking it from element Elem of Op. +// A null Op indicates a vector input whose value will be calculated later; +// there is at most one such input per shuffle and it always has the same +// type as the result. +void GeneralShuffle::add(SDValue Op, unsigned Elem) { + unsigned BytesPerElement = VT.getVectorElementType().getStoreSize(); + + // The source vector can have wider elements than the result, + // either through an explicit TRUNCATE or because of type legalization. + // We want the least significant part. + EVT FromVT = Op.getNode() ? Op.getValueType() : VT; + unsigned FromBytesPerElement = FromVT.getVectorElementType().getStoreSize(); + assert(FromBytesPerElement >= BytesPerElement && + "Invalid EXTRACT_VECTOR_ELT"); + unsigned Byte = ((Elem * FromBytesPerElement) % SystemZ::VectorBytes + + (FromBytesPerElement - BytesPerElement)); + + // Look through things like shuffles and bitcasts. + while (Op.getNode()) { + if (Op.getOpcode() == ISD::BITCAST) + Op = Op.getOperand(0); + else if (Op.getOpcode() == ISD::VECTOR_SHUFFLE && Op.hasOneUse()) { + // See whether the bytes we need come from a contiguous part of one + // operand. + SmallVector<int, SystemZ::VectorBytes> OpBytes; + getVPermMask(cast<ShuffleVectorSDNode>(Op), OpBytes); + int NewByte; + if (!getShuffleInput(OpBytes, Byte, BytesPerElement, NewByte)) + break; + if (NewByte < 0) { + addUndef(); + return; + } + Op = Op.getOperand(unsigned(NewByte) / SystemZ::VectorBytes); + Byte = unsigned(NewByte) % SystemZ::VectorBytes; + } else if (Op.getOpcode() == ISD::UNDEF) { + addUndef(); + return; + } else + break; + } + + // Make sure that the source of the extraction is in Ops. + unsigned OpNo = 0; + for (; OpNo < Ops.size(); ++OpNo) + if (Ops[OpNo] == Op) + break; + if (OpNo == Ops.size()) + Ops.push_back(Op); + + // Add the element to Bytes. + unsigned Base = OpNo * SystemZ::VectorBytes + Byte; + for (unsigned I = 0; I < BytesPerElement; ++I) + Bytes.push_back(Base + I); +} + +// Return SDNodes for the completed shuffle. +SDValue GeneralShuffle::getNode(SelectionDAG &DAG, SDLoc DL) { + assert(Bytes.size() == SystemZ::VectorBytes && "Incomplete vector"); + + if (Ops.size() == 0) + return DAG.getUNDEF(VT); + + // Make sure that there are at least two shuffle operands. + if (Ops.size() == 1) + Ops.push_back(DAG.getUNDEF(MVT::v16i8)); + + // Create a tree of shuffles, deferring root node until after the loop. + // Try to redistribute the undefined elements of non-root nodes so that + // the non-root shuffles match something like a pack or merge, then adjust + // the parent node's permute vector to compensate for the new order. + // Among other things, this copes with vectors like <2 x i16> that were + // padded with undefined elements during type legalization. + // + // In the best case this redistribution will lead to the whole tree + // using packs and merges. It should rarely be a loss in other cases. + unsigned Stride = 1; + for (; Stride * 2 < Ops.size(); Stride *= 2) { + for (unsigned I = 0; I < Ops.size() - Stride; I += Stride * 2) { + SDValue SubOps[] = { Ops[I], Ops[I + Stride] }; + + // Create a mask for just these two operands. + SmallVector<int, SystemZ::VectorBytes> NewBytes(SystemZ::VectorBytes); + for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { + unsigned OpNo = unsigned(Bytes[J]) / SystemZ::VectorBytes; + unsigned Byte = unsigned(Bytes[J]) % SystemZ::VectorBytes; + if (OpNo == I) + NewBytes[J] = Byte; + else if (OpNo == I + Stride) + NewBytes[J] = SystemZ::VectorBytes + Byte; + else + NewBytes[J] = -1; + } + // See if it would be better to reorganize NewMask to avoid using VPERM. + SmallVector<int, SystemZ::VectorBytes> NewBytesMap(SystemZ::VectorBytes); + if (const Permute *P = matchDoublePermute(NewBytes, NewBytesMap)) { + Ops[I] = getPermuteNode(DAG, DL, *P, SubOps[0], SubOps[1]); + // Applying NewBytesMap to Ops[I] gets back to NewBytes. + for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) { + if (NewBytes[J] >= 0) { + assert(unsigned(NewBytesMap[J]) < SystemZ::VectorBytes && + "Invalid double permute"); + Bytes[J] = I * SystemZ::VectorBytes + NewBytesMap[J]; + } else + assert(NewBytesMap[J] < 0 && "Invalid double permute"); + } + } else { + // Just use NewBytes on the operands. + Ops[I] = getGeneralPermuteNode(DAG, DL, SubOps, NewBytes); + for (unsigned J = 0; J < SystemZ::VectorBytes; ++J) + if (NewBytes[J] >= 0) + Bytes[J] = I * SystemZ::VectorBytes + J; + } + } + } + + // Now we just have 2 inputs. Put the second operand in Ops[1]. + if (Stride > 1) { + Ops[1] = Ops[Stride]; + for (unsigned I = 0; I < SystemZ::VectorBytes; ++I) + if (Bytes[I] >= int(SystemZ::VectorBytes)) + Bytes[I] -= (Stride - 1) * SystemZ::VectorBytes; + } + + // Look for an instruction that can do the permute without resorting + // to VPERM. + unsigned OpNo0, OpNo1; + SDValue Op; + if (const Permute *P = matchPermute(Bytes, OpNo0, OpNo1)) + Op = getPermuteNode(DAG, DL, *P, Ops[OpNo0], Ops[OpNo1]); + else + Op = getGeneralPermuteNode(DAG, DL, &Ops[0], Bytes); + return DAG.getNode(ISD::BITCAST, DL, VT, Op); +} + +// Return true if the given BUILD_VECTOR is a scalar-to-vector conversion. +static bool isScalarToVector(SDValue Op) { + for (unsigned I = 1, E = Op.getNumOperands(); I != E; ++I) + if (Op.getOperand(I).getOpcode() != ISD::UNDEF) + return false; + return true; +} + +// Return a vector of type VT that contains Value in the first element. +// The other elements don't matter. +static SDValue buildScalarToVector(SelectionDAG &DAG, SDLoc DL, EVT VT, + SDValue Value) { + // If we have a constant, replicate it to all elements and let the + // BUILD_VECTOR lowering take care of it. + if (Value.getOpcode() == ISD::Constant || + Value.getOpcode() == ISD::ConstantFP) { + SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Value); + return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops); + } + if (Value.getOpcode() == ISD::UNDEF) + return DAG.getUNDEF(VT); + return DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, Value); +} + +// Return a vector of type VT in which Op0 is in element 0 and Op1 is in +// element 1. Used for cases in which replication is cheap. +static SDValue buildMergeScalars(SelectionDAG &DAG, SDLoc DL, EVT VT, + SDValue Op0, SDValue Op1) { + if (Op0.getOpcode() == ISD::UNDEF) { + if (Op1.getOpcode() == ISD::UNDEF) + return DAG.getUNDEF(VT); + return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op1); + } + if (Op1.getOpcode() == ISD::UNDEF) + return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0); + return DAG.getNode(SystemZISD::MERGE_HIGH, DL, VT, + buildScalarToVector(DAG, DL, VT, Op0), + buildScalarToVector(DAG, DL, VT, Op1)); +} + +// Extend GPR scalars Op0 and Op1 to doublewords and return a v2i64 +// vector for them. +static SDValue joinDwords(SelectionDAG &DAG, SDLoc DL, SDValue Op0, + SDValue Op1) { + if (Op0.getOpcode() == ISD::UNDEF && Op1.getOpcode() == ISD::UNDEF) + return DAG.getUNDEF(MVT::v2i64); + // If one of the two inputs is undefined then replicate the other one, + // in order to avoid using another register unnecessarily. + if (Op0.getOpcode() == ISD::UNDEF) + Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); + else if (Op1.getOpcode() == ISD::UNDEF) + Op0 = Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); + else { + Op0 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op0); + Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, Op1); + } + return DAG.getNode(SystemZISD::JOIN_DWORDS, DL, MVT::v2i64, Op0, Op1); +} + +// Try to represent constant BUILD_VECTOR node BVN using a +// SystemZISD::BYTE_MASK-style mask. Store the mask value in Mask +// on success. +static bool tryBuildVectorByteMask(BuildVectorSDNode *BVN, uint64_t &Mask) { + EVT ElemVT = BVN->getValueType(0).getVectorElementType(); + unsigned BytesPerElement = ElemVT.getStoreSize(); + for (unsigned I = 0, E = BVN->getNumOperands(); I != E; ++I) { + SDValue Op = BVN->getOperand(I); + if (Op.getOpcode() != ISD::UNDEF) { + uint64_t Value; + if (Op.getOpcode() == ISD::Constant) + Value = dyn_cast<ConstantSDNode>(Op)->getZExtValue(); + else if (Op.getOpcode() == ISD::ConstantFP) + Value = (dyn_cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt() + .getZExtValue()); + else + return false; + for (unsigned J = 0; J < BytesPerElement; ++J) { + uint64_t Byte = (Value >> (J * 8)) & 0xff; + if (Byte == 0xff) + Mask |= 1ULL << ((E - I - 1) * BytesPerElement + J); + else if (Byte != 0) + return false; + } + } + } + return true; +} + +// Try to load a vector constant in which BitsPerElement-bit value Value +// is replicated to fill the vector. VT is the type of the resulting +// constant, which may have elements of a different size from BitsPerElement. +// Return the SDValue of the constant on success, otherwise return +// an empty value. +static SDValue tryBuildVectorReplicate(SelectionDAG &DAG, + const SystemZInstrInfo *TII, + SDLoc DL, EVT VT, uint64_t Value, + unsigned BitsPerElement) { + // Signed 16-bit values can be replicated using VREPI. + int64_t SignedValue = SignExtend64(Value, BitsPerElement); + if (isInt<16>(SignedValue)) { + MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), + SystemZ::VectorBits / BitsPerElement); + SDValue Op = DAG.getNode(SystemZISD::REPLICATE, DL, VecVT, + DAG.getConstant(SignedValue, DL, MVT::i32)); + return DAG.getNode(ISD::BITCAST, DL, VT, Op); + } + // See whether rotating the constant left some N places gives a value that + // is one less than a power of 2 (i.e. all zeros followed by all ones). + // If so we can use VGM. + unsigned Start, End; + if (TII->isRxSBGMask(Value, BitsPerElement, Start, End)) { + // isRxSBGMask returns the bit numbers for a full 64-bit value, + // with 0 denoting 1 << 63 and 63 denoting 1. Convert them to + // bit numbers for an BitsPerElement value, so that 0 denotes + // 1 << (BitsPerElement-1). + Start -= 64 - BitsPerElement; + End -= 64 - BitsPerElement; + MVT VecVT = MVT::getVectorVT(MVT::getIntegerVT(BitsPerElement), + SystemZ::VectorBits / BitsPerElement); + SDValue Op = DAG.getNode(SystemZISD::ROTATE_MASK, DL, VecVT, + DAG.getConstant(Start, DL, MVT::i32), + DAG.getConstant(End, DL, MVT::i32)); + return DAG.getNode(ISD::BITCAST, DL, VT, Op); + } + return SDValue(); +} + +// If a BUILD_VECTOR contains some EXTRACT_VECTOR_ELTs, it's usually +// better to use VECTOR_SHUFFLEs on them, only using BUILD_VECTOR for +// the non-EXTRACT_VECTOR_ELT elements. See if the given BUILD_VECTOR +// would benefit from this representation and return it if so. +static SDValue tryBuildVectorShuffle(SelectionDAG &DAG, + BuildVectorSDNode *BVN) { + EVT VT = BVN->getValueType(0); + unsigned NumElements = VT.getVectorNumElements(); + + // Represent the BUILD_VECTOR as an N-operand VECTOR_SHUFFLE-like operation + // on byte vectors. If there are non-EXTRACT_VECTOR_ELT elements that still + // need a BUILD_VECTOR, add an additional placeholder operand for that + // BUILD_VECTOR and store its operands in ResidueOps. + GeneralShuffle GS(VT); + SmallVector<SDValue, SystemZ::VectorBytes> ResidueOps; + bool FoundOne = false; + for (unsigned I = 0; I < NumElements; ++I) { + SDValue Op = BVN->getOperand(I); + if (Op.getOpcode() == ISD::TRUNCATE) + Op = Op.getOperand(0); + if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + Op.getOperand(1).getOpcode() == ISD::Constant) { + unsigned Elem = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); + GS.add(Op.getOperand(0), Elem); + FoundOne = true; + } else if (Op.getOpcode() == ISD::UNDEF) { + GS.addUndef(); + } else { + GS.add(SDValue(), ResidueOps.size()); + ResidueOps.push_back(BVN->getOperand(I)); + } + } + + // Nothing to do if there are no EXTRACT_VECTOR_ELTs. + if (!FoundOne) + return SDValue(); + + // Create the BUILD_VECTOR for the remaining elements, if any. + if (!ResidueOps.empty()) { + while (ResidueOps.size() < NumElements) + ResidueOps.push_back(DAG.getUNDEF(ResidueOps[0].getValueType())); + for (auto &Op : GS.Ops) { + if (!Op.getNode()) { + Op = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(BVN), VT, ResidueOps); + break; + } + } + } + return GS.getNode(DAG, SDLoc(BVN)); +} + +// Combine GPR scalar values Elems into a vector of type VT. +static SDValue buildVector(SelectionDAG &DAG, SDLoc DL, EVT VT, + SmallVectorImpl<SDValue> &Elems) { + // See whether there is a single replicated value. + SDValue Single; + unsigned int NumElements = Elems.size(); + unsigned int Count = 0; + for (auto Elem : Elems) { + if (Elem.getOpcode() != ISD::UNDEF) { + if (!Single.getNode()) + Single = Elem; + else if (Elem != Single) { + Single = SDValue(); + break; + } + Count += 1; + } + } + // There are three cases here: + // + // - if the only defined element is a loaded one, the best sequence + // is a replicating load. + // + // - otherwise, if the only defined element is an i64 value, we will + // end up with the same VLVGP sequence regardless of whether we short-cut + // for replication or fall through to the later code. + // + // - otherwise, if the only defined element is an i32 or smaller value, + // we would need 2 instructions to replicate it: VLVGP followed by VREPx. + // This is only a win if the single defined element is used more than once. + // In other cases we're better off using a single VLVGx. + if (Single.getNode() && (Count > 1 || Single.getOpcode() == ISD::LOAD)) + return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Single); + + // The best way of building a v2i64 from two i64s is to use VLVGP. + if (VT == MVT::v2i64) + return joinDwords(DAG, DL, Elems[0], Elems[1]); + + // Use a 64-bit merge high to combine two doubles. + if (VT == MVT::v2f64) + return buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); + + // Build v4f32 values directly from the FPRs: + // + // <Axxx> <Bxxx> <Cxxxx> <Dxxx> + // V V VMRHF + // <ABxx> <CDxx> + // V VMRHG + // <ABCD> + if (VT == MVT::v4f32) { + SDValue Op01 = buildMergeScalars(DAG, DL, VT, Elems[0], Elems[1]); + SDValue Op23 = buildMergeScalars(DAG, DL, VT, Elems[2], Elems[3]); + // Avoid unnecessary undefs by reusing the other operand. + if (Op01.getOpcode() == ISD::UNDEF) + Op01 = Op23; + else if (Op23.getOpcode() == ISD::UNDEF) + Op23 = Op01; + // Merging identical replications is a no-op. + if (Op01.getOpcode() == SystemZISD::REPLICATE && Op01 == Op23) + return Op01; + Op01 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op01); + Op23 = DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Op23); + SDValue Op = DAG.getNode(SystemZISD::MERGE_HIGH, + DL, MVT::v2i64, Op01, Op23); + return DAG.getNode(ISD::BITCAST, DL, VT, Op); + } + + // Collect the constant terms. + SmallVector<SDValue, SystemZ::VectorBytes> Constants(NumElements, SDValue()); + SmallVector<bool, SystemZ::VectorBytes> Done(NumElements, false); + + unsigned NumConstants = 0; + for (unsigned I = 0; I < NumElements; ++I) { + SDValue Elem = Elems[I]; + if (Elem.getOpcode() == ISD::Constant || + Elem.getOpcode() == ISD::ConstantFP) { + NumConstants += 1; + Constants[I] = Elem; + Done[I] = true; + } + } + // If there was at least one constant, fill in the other elements of + // Constants with undefs to get a full vector constant and use that + // as the starting point. + SDValue Result; + if (NumConstants > 0) { + for (unsigned I = 0; I < NumElements; ++I) + if (!Constants[I].getNode()) + Constants[I] = DAG.getUNDEF(Elems[I].getValueType()); + Result = DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Constants); + } else { + // Otherwise try to use VLVGP to start the sequence in order to + // avoid a false dependency on any previous contents of the vector + // register. This only makes sense if one of the associated elements + // is defined. + unsigned I1 = NumElements / 2 - 1; + unsigned I2 = NumElements - 1; + bool Def1 = (Elems[I1].getOpcode() != ISD::UNDEF); + bool Def2 = (Elems[I2].getOpcode() != ISD::UNDEF); + if (Def1 || Def2) { + SDValue Elem1 = Elems[Def1 ? I1 : I2]; + SDValue Elem2 = Elems[Def2 ? I2 : I1]; + Result = DAG.getNode(ISD::BITCAST, DL, VT, + joinDwords(DAG, DL, Elem1, Elem2)); + Done[I1] = true; + Done[I2] = true; + } else + Result = DAG.getUNDEF(VT); + } + + // Use VLVGx to insert the other elements. + for (unsigned I = 0; I < NumElements; ++I) + if (!Done[I] && Elems[I].getOpcode() != ISD::UNDEF) + Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, Result, Elems[I], + DAG.getConstant(I, DL, MVT::i32)); + return Result; +} + +SDValue SystemZTargetLowering::lowerBUILD_VECTOR(SDValue Op, + SelectionDAG &DAG) const { + const SystemZInstrInfo *TII = + static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); + auto *BVN = cast<BuildVectorSDNode>(Op.getNode()); + SDLoc DL(Op); + EVT VT = Op.getValueType(); + + if (BVN->isConstant()) { + // Try using VECTOR GENERATE BYTE MASK. This is the architecturally- + // preferred way of creating all-zero and all-one vectors so give it + // priority over other methods below. + uint64_t Mask = 0; + if (tryBuildVectorByteMask(BVN, Mask)) { + SDValue Op = DAG.getNode(SystemZISD::BYTE_MASK, DL, MVT::v16i8, + DAG.getConstant(Mask, DL, MVT::i32)); + return DAG.getNode(ISD::BITCAST, DL, VT, Op); + } + + // Try using some form of replication. + APInt SplatBits, SplatUndef; + unsigned SplatBitSize; + bool HasAnyUndefs; + if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, + 8, true) && + SplatBitSize <= 64) { + // First try assuming that any undefined bits above the highest set bit + // and below the lowest set bit are 1s. This increases the likelihood of + // being able to use a sign-extended element value in VECTOR REPLICATE + // IMMEDIATE or a wraparound mask in VECTOR GENERATE MASK. + uint64_t SplatBitsZ = SplatBits.getZExtValue(); + uint64_t SplatUndefZ = SplatUndef.getZExtValue(); + uint64_t Lower = (SplatUndefZ + & ((uint64_t(1) << findFirstSet(SplatBitsZ)) - 1)); + uint64_t Upper = (SplatUndefZ + & ~((uint64_t(1) << findLastSet(SplatBitsZ)) - 1)); + uint64_t Value = SplatBitsZ | Upper | Lower; + SDValue Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, + SplatBitSize); + if (Op.getNode()) + return Op; + + // Now try assuming that any undefined bits between the first and + // last defined set bits are set. This increases the chances of + // using a non-wraparound mask. + uint64_t Middle = SplatUndefZ & ~Upper & ~Lower; + Value = SplatBitsZ | Middle; + Op = tryBuildVectorReplicate(DAG, TII, DL, VT, Value, SplatBitSize); + if (Op.getNode()) + return Op; + } + + // Fall back to loading it from memory. + return SDValue(); + } + + // See if we should use shuffles to construct the vector from other vectors. + SDValue Res = tryBuildVectorShuffle(DAG, BVN); + if (Res.getNode()) + return Res; + + // Detect SCALAR_TO_VECTOR conversions. + if (isOperationLegal(ISD::SCALAR_TO_VECTOR, VT) && isScalarToVector(Op)) + return buildScalarToVector(DAG, DL, VT, Op.getOperand(0)); + + // Otherwise use buildVector to build the vector up from GPRs. + unsigned NumElements = Op.getNumOperands(); + SmallVector<SDValue, SystemZ::VectorBytes> Ops(NumElements); + for (unsigned I = 0; I < NumElements; ++I) + Ops[I] = Op.getOperand(I); + return buildVector(DAG, DL, VT, Ops); +} + +SDValue SystemZTargetLowering::lowerVECTOR_SHUFFLE(SDValue Op, + SelectionDAG &DAG) const { + auto *VSN = cast<ShuffleVectorSDNode>(Op.getNode()); + SDLoc DL(Op); + EVT VT = Op.getValueType(); + unsigned NumElements = VT.getVectorNumElements(); + + if (VSN->isSplat()) { + SDValue Op0 = Op.getOperand(0); + unsigned Index = VSN->getSplatIndex(); + assert(Index < VT.getVectorNumElements() && + "Splat index should be defined and in first operand"); + // See whether the value we're splatting is directly available as a scalar. + if ((Index == 0 && Op0.getOpcode() == ISD::SCALAR_TO_VECTOR) || + Op0.getOpcode() == ISD::BUILD_VECTOR) + return DAG.getNode(SystemZISD::REPLICATE, DL, VT, Op0.getOperand(Index)); + // Otherwise keep it as a vector-to-vector operation. + return DAG.getNode(SystemZISD::SPLAT, DL, VT, Op.getOperand(0), + DAG.getConstant(Index, DL, MVT::i32)); + } + + GeneralShuffle GS(VT); + for (unsigned I = 0; I < NumElements; ++I) { + int Elt = VSN->getMaskElt(I); + if (Elt < 0) + GS.addUndef(); + else + GS.add(Op.getOperand(unsigned(Elt) / NumElements), + unsigned(Elt) % NumElements); + } + return GS.getNode(DAG, SDLoc(VSN)); +} + +SDValue SystemZTargetLowering::lowerSCALAR_TO_VECTOR(SDValue Op, + SelectionDAG &DAG) const { + SDLoc DL(Op); + // Just insert the scalar into element 0 of an undefined vector. + return DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, + Op.getValueType(), DAG.getUNDEF(Op.getValueType()), + Op.getOperand(0), DAG.getConstant(0, DL, MVT::i32)); +} + +SDValue SystemZTargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const { + // Handle insertions of floating-point values. + SDLoc DL(Op); + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDValue Op2 = Op.getOperand(2); + EVT VT = Op.getValueType(); + + // Insertions into constant indices of a v2f64 can be done using VPDI. + // However, if the inserted value is a bitcast or a constant then it's + // better to use GPRs, as below. + if (VT == MVT::v2f64 && + Op1.getOpcode() != ISD::BITCAST && + Op1.getOpcode() != ISD::ConstantFP && + Op2.getOpcode() == ISD::Constant) { + uint64_t Index = dyn_cast<ConstantSDNode>(Op2)->getZExtValue(); + unsigned Mask = VT.getVectorNumElements() - 1; + if (Index <= Mask) + return Op; + } + + // Otherwise bitcast to the equivalent integer form and insert via a GPR. + MVT IntVT = MVT::getIntegerVT(VT.getVectorElementType().getSizeInBits()); + MVT IntVecVT = MVT::getVectorVT(IntVT, VT.getVectorNumElements()); + SDValue Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, IntVecVT, + DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), + DAG.getNode(ISD::BITCAST, DL, IntVT, Op1), Op2); + return DAG.getNode(ISD::BITCAST, DL, VT, Res); +} + +SDValue +SystemZTargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op, + SelectionDAG &DAG) const { + // Handle extractions of floating-point values. + SDLoc DL(Op); + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + EVT VT = Op.getValueType(); + EVT VecVT = Op0.getValueType(); + + // Extractions of constant indices can be done directly. + if (auto *CIndexN = dyn_cast<ConstantSDNode>(Op1)) { + uint64_t Index = CIndexN->getZExtValue(); + unsigned Mask = VecVT.getVectorNumElements() - 1; + if (Index <= Mask) + return Op; + } + + // Otherwise bitcast to the equivalent integer form and extract via a GPR. + MVT IntVT = MVT::getIntegerVT(VT.getSizeInBits()); + MVT IntVecVT = MVT::getVectorVT(IntVT, VecVT.getVectorNumElements()); + SDValue Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntVT, + DAG.getNode(ISD::BITCAST, DL, IntVecVT, Op0), Op1); + return DAG.getNode(ISD::BITCAST, DL, VT, Res); +} + +SDValue +SystemZTargetLowering::lowerExtendVectorInreg(SDValue Op, SelectionDAG &DAG, + unsigned UnpackHigh) const { + SDValue PackedOp = Op.getOperand(0); + EVT OutVT = Op.getValueType(); + EVT InVT = PackedOp.getValueType(); + unsigned ToBits = OutVT.getVectorElementType().getSizeInBits(); + unsigned FromBits = InVT.getVectorElementType().getSizeInBits(); + do { + FromBits *= 2; + EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(FromBits), + SystemZ::VectorBits / FromBits); + PackedOp = DAG.getNode(UnpackHigh, SDLoc(PackedOp), OutVT, PackedOp); + } while (FromBits != ToBits); + return PackedOp; +} + +SDValue SystemZTargetLowering::lowerShift(SDValue Op, SelectionDAG &DAG, + unsigned ByScalar) const { + // Look for cases where a vector shift can use the *_BY_SCALAR form. + SDValue Op0 = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1); + SDLoc DL(Op); + EVT VT = Op.getValueType(); + unsigned ElemBitSize = VT.getVectorElementType().getSizeInBits(); + + // See whether the shift vector is a splat represented as BUILD_VECTOR. + if (auto *BVN = dyn_cast<BuildVectorSDNode>(Op1)) { + APInt SplatBits, SplatUndef; + unsigned SplatBitSize; + bool HasAnyUndefs; + // Check for constant splats. Use ElemBitSize as the minimum element + // width and reject splats that need wider elements. + if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs, + ElemBitSize, true) && + SplatBitSize == ElemBitSize) { + SDValue Shift = DAG.getConstant(SplatBits.getZExtValue() & 0xfff, + DL, MVT::i32); + return DAG.getNode(ByScalar, DL, VT, Op0, Shift); + } + // Check for variable splats. + BitVector UndefElements; + SDValue Splat = BVN->getSplatValue(&UndefElements); + if (Splat) { + // Since i32 is the smallest legal type, we either need a no-op + // or a truncation. + SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, Splat); + return DAG.getNode(ByScalar, DL, VT, Op0, Shift); + } + } + + // See whether the shift vector is a splat represented as SHUFFLE_VECTOR, + // and the shift amount is directly available in a GPR. + if (auto *VSN = dyn_cast<ShuffleVectorSDNode>(Op1)) { + if (VSN->isSplat()) { + SDValue VSNOp0 = VSN->getOperand(0); + unsigned Index = VSN->getSplatIndex(); + assert(Index < VT.getVectorNumElements() && + "Splat index should be defined and in first operand"); + if ((Index == 0 && VSNOp0.getOpcode() == ISD::SCALAR_TO_VECTOR) || + VSNOp0.getOpcode() == ISD::BUILD_VECTOR) { + // Since i32 is the smallest legal type, we either need a no-op + // or a truncation. + SDValue Shift = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, + VSNOp0.getOperand(Index)); + return DAG.getNode(ByScalar, DL, VT, Op0, Shift); + } + } + } + + // Otherwise just treat the current form as legal. + return Op; +} + +SDValue SystemZTargetLowering::LowerOperation(SDValue Op, + SelectionDAG &DAG) const { + switch (Op.getOpcode()) { + case ISD::BR_CC: + return lowerBR_CC(Op, DAG); + case ISD::SELECT_CC: + return lowerSELECT_CC(Op, DAG); + case ISD::SETCC: + return lowerSETCC(Op, DAG); + case ISD::GlobalAddress: + return lowerGlobalAddress(cast<GlobalAddressSDNode>(Op), DAG); + case ISD::GlobalTLSAddress: + return lowerGlobalTLSAddress(cast<GlobalAddressSDNode>(Op), DAG); + case ISD::BlockAddress: + return lowerBlockAddress(cast<BlockAddressSDNode>(Op), DAG); + case ISD::JumpTable: + return lowerJumpTable(cast<JumpTableSDNode>(Op), DAG); + case ISD::ConstantPool: + return lowerConstantPool(cast<ConstantPoolSDNode>(Op), DAG); + case ISD::BITCAST: + return lowerBITCAST(Op, DAG); + case ISD::VASTART: + return lowerVASTART(Op, DAG); + case ISD::VACOPY: + return lowerVACOPY(Op, DAG); + case ISD::DYNAMIC_STACKALLOC: + return lowerDYNAMIC_STACKALLOC(Op, DAG); + case ISD::SMUL_LOHI: + return lowerSMUL_LOHI(Op, DAG); + case ISD::UMUL_LOHI: + return lowerUMUL_LOHI(Op, DAG); + case ISD::SDIVREM: + return lowerSDIVREM(Op, DAG); + case ISD::UDIVREM: + return lowerUDIVREM(Op, DAG); + case ISD::OR: + return lowerOR(Op, DAG); + case ISD::CTPOP: + return lowerCTPOP(Op, DAG); + case ISD::CTLZ_ZERO_UNDEF: + return DAG.getNode(ISD::CTLZ, SDLoc(Op), + Op.getValueType(), Op.getOperand(0)); + case ISD::CTTZ_ZERO_UNDEF: + return DAG.getNode(ISD::CTTZ, SDLoc(Op), + Op.getValueType(), Op.getOperand(0)); + case ISD::ATOMIC_SWAP: + return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_SWAPW); + case ISD::ATOMIC_STORE: + return lowerATOMIC_STORE(Op, DAG); + case ISD::ATOMIC_LOAD: + return lowerATOMIC_LOAD(Op, DAG); + case ISD::ATOMIC_LOAD_ADD: + return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_ADD); + case ISD::ATOMIC_LOAD_SUB: + return lowerATOMIC_LOAD_SUB(Op, DAG); + case ISD::ATOMIC_LOAD_AND: + return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_AND); + case ISD::ATOMIC_LOAD_OR: + return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_OR); + case ISD::ATOMIC_LOAD_XOR: + return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_XOR); + case ISD::ATOMIC_LOAD_NAND: + return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_NAND); + case ISD::ATOMIC_LOAD_MIN: + return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MIN); + case ISD::ATOMIC_LOAD_MAX: + return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_MAX); + case ISD::ATOMIC_LOAD_UMIN: + return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMIN); + case ISD::ATOMIC_LOAD_UMAX: + return lowerATOMIC_LOAD_OP(Op, DAG, SystemZISD::ATOMIC_LOADW_UMAX); + case ISD::ATOMIC_CMP_SWAP: + return lowerATOMIC_CMP_SWAP(Op, DAG); + case ISD::STACKSAVE: + return lowerSTACKSAVE(Op, DAG); + case ISD::STACKRESTORE: + return lowerSTACKRESTORE(Op, DAG); + case ISD::PREFETCH: + return lowerPREFETCH(Op, DAG); + case ISD::INTRINSIC_W_CHAIN: + return lowerINTRINSIC_W_CHAIN(Op, DAG); + case ISD::INTRINSIC_WO_CHAIN: + return lowerINTRINSIC_WO_CHAIN(Op, DAG); + case ISD::BUILD_VECTOR: + return lowerBUILD_VECTOR(Op, DAG); + case ISD::VECTOR_SHUFFLE: + return lowerVECTOR_SHUFFLE(Op, DAG); + case ISD::SCALAR_TO_VECTOR: + return lowerSCALAR_TO_VECTOR(Op, DAG); + case ISD::INSERT_VECTOR_ELT: + return lowerINSERT_VECTOR_ELT(Op, DAG); + case ISD::EXTRACT_VECTOR_ELT: + return lowerEXTRACT_VECTOR_ELT(Op, DAG); + case ISD::SIGN_EXTEND_VECTOR_INREG: + return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACK_HIGH); + case ISD::ZERO_EXTEND_VECTOR_INREG: + return lowerExtendVectorInreg(Op, DAG, SystemZISD::UNPACKL_HIGH); + case ISD::SHL: + return lowerShift(Op, DAG, SystemZISD::VSHL_BY_SCALAR); + case ISD::SRL: + return lowerShift(Op, DAG, SystemZISD::VSRL_BY_SCALAR); + case ISD::SRA: + return lowerShift(Op, DAG, SystemZISD::VSRA_BY_SCALAR); + default: + llvm_unreachable("Unexpected node to lower"); + } +} + +const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const { +#define OPCODE(NAME) case SystemZISD::NAME: return "SystemZISD::" #NAME + switch ((SystemZISD::NodeType)Opcode) { + case SystemZISD::FIRST_NUMBER: break; + OPCODE(RET_FLAG); + OPCODE(CALL); + OPCODE(SIBCALL); + OPCODE(TLS_GDCALL); + OPCODE(TLS_LDCALL); + OPCODE(PCREL_WRAPPER); + OPCODE(PCREL_OFFSET); + OPCODE(IABS); + OPCODE(ICMP); + OPCODE(FCMP); + OPCODE(TM); + OPCODE(BR_CCMASK); + OPCODE(SELECT_CCMASK); + OPCODE(ADJDYNALLOC); + OPCODE(EXTRACT_ACCESS); + OPCODE(POPCNT); + OPCODE(UMUL_LOHI64); + OPCODE(SDIVREM32); + OPCODE(SDIVREM64); + OPCODE(UDIVREM32); + OPCODE(UDIVREM64); + OPCODE(MVC); + OPCODE(MVC_LOOP); + OPCODE(NC); + OPCODE(NC_LOOP); + OPCODE(OC); + OPCODE(OC_LOOP); + OPCODE(XC); + OPCODE(XC_LOOP); + OPCODE(CLC); + OPCODE(CLC_LOOP); + OPCODE(STPCPY); + OPCODE(STRCMP); + OPCODE(SEARCH_STRING); + OPCODE(IPM); + OPCODE(SERIALIZE); + OPCODE(TBEGIN); + OPCODE(TBEGIN_NOFLOAT); + OPCODE(TEND); + OPCODE(BYTE_MASK); + OPCODE(ROTATE_MASK); + OPCODE(REPLICATE); + OPCODE(JOIN_DWORDS); + OPCODE(SPLAT); + OPCODE(MERGE_HIGH); + OPCODE(MERGE_LOW); + OPCODE(SHL_DOUBLE); + OPCODE(PERMUTE_DWORDS); + OPCODE(PERMUTE); + OPCODE(PACK); + OPCODE(PACKS_CC); + OPCODE(PACKLS_CC); + OPCODE(UNPACK_HIGH); + OPCODE(UNPACKL_HIGH); + OPCODE(UNPACK_LOW); + OPCODE(UNPACKL_LOW); + OPCODE(VSHL_BY_SCALAR); + OPCODE(VSRL_BY_SCALAR); + OPCODE(VSRA_BY_SCALAR); + OPCODE(VSUM); + OPCODE(VICMPE); + OPCODE(VICMPH); + OPCODE(VICMPHL); + OPCODE(VICMPES); + OPCODE(VICMPHS); + OPCODE(VICMPHLS); + OPCODE(VFCMPE); + OPCODE(VFCMPH); + OPCODE(VFCMPHE); + OPCODE(VFCMPES); + OPCODE(VFCMPHS); + OPCODE(VFCMPHES); + OPCODE(VFTCI); + OPCODE(VEXTEND); + OPCODE(VROUND); + OPCODE(VTM); + OPCODE(VFAE_CC); + OPCODE(VFAEZ_CC); + OPCODE(VFEE_CC); + OPCODE(VFEEZ_CC); + OPCODE(VFENE_CC); + OPCODE(VFENEZ_CC); + OPCODE(VISTR_CC); + OPCODE(VSTRC_CC); + OPCODE(VSTRCZ_CC); + OPCODE(ATOMIC_SWAPW); + OPCODE(ATOMIC_LOADW_ADD); + OPCODE(ATOMIC_LOADW_SUB); + OPCODE(ATOMIC_LOADW_AND); + OPCODE(ATOMIC_LOADW_OR); + OPCODE(ATOMIC_LOADW_XOR); + OPCODE(ATOMIC_LOADW_NAND); + OPCODE(ATOMIC_LOADW_MIN); + OPCODE(ATOMIC_LOADW_MAX); + OPCODE(ATOMIC_LOADW_UMIN); + OPCODE(ATOMIC_LOADW_UMAX); + OPCODE(ATOMIC_CMP_SWAPW); + OPCODE(PREFETCH); + } + return nullptr; +#undef OPCODE +} + +// Return true if VT is a vector whose elements are a whole number of bytes +// in width. +static bool canTreatAsByteVector(EVT VT) { + return VT.isVector() && VT.getVectorElementType().getSizeInBits() % 8 == 0; +} + +// Try to simplify an EXTRACT_VECTOR_ELT from a vector of type VecVT +// producing a result of type ResVT. Op is a possibly bitcast version +// of the input vector and Index is the index (based on type VecVT) that +// should be extracted. Return the new extraction if a simplification +// was possible or if Force is true. +SDValue SystemZTargetLowering::combineExtract(SDLoc DL, EVT ResVT, EVT VecVT, + SDValue Op, unsigned Index, + DAGCombinerInfo &DCI, + bool Force) const { + SelectionDAG &DAG = DCI.DAG; + + // The number of bytes being extracted. + unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); + + for (;;) { + unsigned Opcode = Op.getOpcode(); + if (Opcode == ISD::BITCAST) + // Look through bitcasts. + Op = Op.getOperand(0); + else if (Opcode == ISD::VECTOR_SHUFFLE && + canTreatAsByteVector(Op.getValueType())) { + // Get a VPERM-like permute mask and see whether the bytes covered + // by the extracted element are a contiguous sequence from one + // source operand. + SmallVector<int, SystemZ::VectorBytes> Bytes; + getVPermMask(cast<ShuffleVectorSDNode>(Op), Bytes); + int First; + if (!getShuffleInput(Bytes, Index * BytesPerElement, + BytesPerElement, First)) + break; + if (First < 0) + return DAG.getUNDEF(ResVT); + // Make sure the contiguous sequence starts at a multiple of the + // original element size. + unsigned Byte = unsigned(First) % Bytes.size(); + if (Byte % BytesPerElement != 0) + break; + // We can get the extracted value directly from an input. + Index = Byte / BytesPerElement; + Op = Op.getOperand(unsigned(First) / Bytes.size()); + Force = true; + } else if (Opcode == ISD::BUILD_VECTOR && + canTreatAsByteVector(Op.getValueType())) { + // We can only optimize this case if the BUILD_VECTOR elements are + // at least as wide as the extracted value. + EVT OpVT = Op.getValueType(); + unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); + if (OpBytesPerElement < BytesPerElement) + break; + // Make sure that the least-significant bit of the extracted value + // is the least significant bit of an input. + unsigned End = (Index + 1) * BytesPerElement; + if (End % OpBytesPerElement != 0) + break; + // We're extracting the low part of one operand of the BUILD_VECTOR. + Op = Op.getOperand(End / OpBytesPerElement - 1); + if (!Op.getValueType().isInteger()) { + EVT VT = MVT::getIntegerVT(Op.getValueType().getSizeInBits()); + Op = DAG.getNode(ISD::BITCAST, DL, VT, Op); + DCI.AddToWorklist(Op.getNode()); + } + EVT VT = MVT::getIntegerVT(ResVT.getSizeInBits()); + Op = DAG.getNode(ISD::TRUNCATE, DL, VT, Op); + if (VT != ResVT) { + DCI.AddToWorklist(Op.getNode()); + Op = DAG.getNode(ISD::BITCAST, DL, ResVT, Op); + } + return Op; + } else if ((Opcode == ISD::SIGN_EXTEND_VECTOR_INREG || + Opcode == ISD::ZERO_EXTEND_VECTOR_INREG || + Opcode == ISD::ANY_EXTEND_VECTOR_INREG) && + canTreatAsByteVector(Op.getValueType()) && + canTreatAsByteVector(Op.getOperand(0).getValueType())) { + // Make sure that only the unextended bits are significant. + EVT ExtVT = Op.getValueType(); + EVT OpVT = Op.getOperand(0).getValueType(); + unsigned ExtBytesPerElement = ExtVT.getVectorElementType().getStoreSize(); + unsigned OpBytesPerElement = OpVT.getVectorElementType().getStoreSize(); + unsigned Byte = Index * BytesPerElement; + unsigned SubByte = Byte % ExtBytesPerElement; + unsigned MinSubByte = ExtBytesPerElement - OpBytesPerElement; + if (SubByte < MinSubByte || + SubByte + BytesPerElement > ExtBytesPerElement) + break; + // Get the byte offset of the unextended element + Byte = Byte / ExtBytesPerElement * OpBytesPerElement; + // ...then add the byte offset relative to that element. + Byte += SubByte - MinSubByte; + if (Byte % BytesPerElement != 0) + break; + Op = Op.getOperand(0); + Index = Byte / BytesPerElement; + Force = true; + } else + break; + } + if (Force) { + if (Op.getValueType() != VecVT) { + Op = DAG.getNode(ISD::BITCAST, DL, VecVT, Op); + DCI.AddToWorklist(Op.getNode()); + } + return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ResVT, Op, + DAG.getConstant(Index, DL, MVT::i32)); + } + return SDValue(); +} + +// Optimize vector operations in scalar value Op on the basis that Op +// is truncated to TruncVT. +SDValue +SystemZTargetLowering::combineTruncateExtract(SDLoc DL, EVT TruncVT, SDValue Op, + DAGCombinerInfo &DCI) const { + // If we have (trunc (extract_vector_elt X, Y)), try to turn it into + // (extract_vector_elt (bitcast X), Y'), where (bitcast X) has elements + // of type TruncVT. + if (Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + TruncVT.getSizeInBits() % 8 == 0) { + SDValue Vec = Op.getOperand(0); + EVT VecVT = Vec.getValueType(); + if (canTreatAsByteVector(VecVT)) { + if (auto *IndexN = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { + unsigned BytesPerElement = VecVT.getVectorElementType().getStoreSize(); + unsigned TruncBytes = TruncVT.getStoreSize(); + if (BytesPerElement % TruncBytes == 0) { + // Calculate the value of Y' in the above description. We are + // splitting the original elements into Scale equal-sized pieces + // and for truncation purposes want the last (least-significant) + // of these pieces for IndexN. This is easiest to do by calculating + // the start index of the following element and then subtracting 1. + unsigned Scale = BytesPerElement / TruncBytes; + unsigned NewIndex = (IndexN->getZExtValue() + 1) * Scale - 1; + + // Defer the creation of the bitcast from X to combineExtract, + // which might be able to optimize the extraction. + VecVT = MVT::getVectorVT(MVT::getIntegerVT(TruncBytes * 8), + VecVT.getStoreSize() / TruncBytes); + EVT ResVT = (TruncBytes < 4 ? MVT::i32 : TruncVT); + return combineExtract(DL, ResVT, VecVT, Vec, NewIndex, DCI, true); + } + } + } + } + return SDValue(); +} + +SDValue SystemZTargetLowering::PerformDAGCombine(SDNode *N, + DAGCombinerInfo &DCI) const { + SelectionDAG &DAG = DCI.DAG; + unsigned Opcode = N->getOpcode(); + if (Opcode == ISD::SIGN_EXTEND) { + // Convert (sext (ashr (shl X, C1), C2)) to + // (ashr (shl (anyext X), C1'), C2')), since wider shifts are as + // cheap as narrower ones. + SDValue N0 = N->getOperand(0); + EVT VT = N->getValueType(0); + if (N0.hasOneUse() && N0.getOpcode() == ISD::SRA) { + auto *SraAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)); + SDValue Inner = N0.getOperand(0); + if (SraAmt && Inner.hasOneUse() && Inner.getOpcode() == ISD::SHL) { + if (auto *ShlAmt = dyn_cast<ConstantSDNode>(Inner.getOperand(1))) { + unsigned Extra = (VT.getSizeInBits() - + N0.getValueType().getSizeInBits()); + unsigned NewShlAmt = ShlAmt->getZExtValue() + Extra; + unsigned NewSraAmt = SraAmt->getZExtValue() + Extra; + EVT ShiftVT = N0.getOperand(1).getValueType(); + SDValue Ext = DAG.getNode(ISD::ANY_EXTEND, SDLoc(Inner), VT, + Inner.getOperand(0)); + SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(Inner), VT, Ext, + DAG.getConstant(NewShlAmt, SDLoc(Inner), + ShiftVT)); + return DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, + DAG.getConstant(NewSraAmt, SDLoc(N0), ShiftVT)); + } + } + } + } + if (Opcode == SystemZISD::MERGE_HIGH || + Opcode == SystemZISD::MERGE_LOW) { + SDValue Op0 = N->getOperand(0); + SDValue Op1 = N->getOperand(1); + if (Op0.getOpcode() == ISD::BITCAST) + Op0 = Op0.getOperand(0); + if (Op0.getOpcode() == SystemZISD::BYTE_MASK && + cast<ConstantSDNode>(Op0.getOperand(0))->getZExtValue() == 0) { + // (z_merge_* 0, 0) -> 0. This is mostly useful for using VLLEZF + // for v4f32. + if (Op1 == N->getOperand(0)) + return Op1; + // (z_merge_? 0, X) -> (z_unpackl_? 0, X). + EVT VT = Op1.getValueType(); + unsigned ElemBytes = VT.getVectorElementType().getStoreSize(); + if (ElemBytes <= 4) { + Opcode = (Opcode == SystemZISD::MERGE_HIGH ? + SystemZISD::UNPACKL_HIGH : SystemZISD::UNPACKL_LOW); + EVT InVT = VT.changeVectorElementTypeToInteger(); + EVT OutVT = MVT::getVectorVT(MVT::getIntegerVT(ElemBytes * 16), + SystemZ::VectorBytes / ElemBytes / 2); + if (VT != InVT) { + Op1 = DAG.getNode(ISD::BITCAST, SDLoc(N), InVT, Op1); + DCI.AddToWorklist(Op1.getNode()); + } + SDValue Op = DAG.getNode(Opcode, SDLoc(N), OutVT, Op1); + DCI.AddToWorklist(Op.getNode()); + return DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); + } + } + } + // If we have (truncstoreiN (extract_vector_elt X, Y), Z) then it is better + // for the extraction to be done on a vMiN value, so that we can use VSTE. + // If X has wider elements then convert it to: + // (truncstoreiN (extract_vector_elt (bitcast X), Y2), Z). + if (Opcode == ISD::STORE) { + auto *SN = cast<StoreSDNode>(N); + EVT MemVT = SN->getMemoryVT(); + if (MemVT.isInteger()) { + SDValue Value = combineTruncateExtract(SDLoc(N), MemVT, + SN->getValue(), DCI); + if (Value.getNode()) { + DCI.AddToWorklist(Value.getNode()); + + // Rewrite the store with the new form of stored value. + return DAG.getTruncStore(SN->getChain(), SDLoc(SN), Value, + SN->getBasePtr(), SN->getMemoryVT(), + SN->getMemOperand()); + } + } + } + // Try to simplify a vector extraction. + if (Opcode == ISD::EXTRACT_VECTOR_ELT) { + if (auto *IndexN = dyn_cast<ConstantSDNode>(N->getOperand(1))) { + SDValue Op0 = N->getOperand(0); + EVT VecVT = Op0.getValueType(); + return combineExtract(SDLoc(N), N->getValueType(0), VecVT, Op0, + IndexN->getZExtValue(), DCI, false); + } + } + // (join_dwords X, X) == (replicate X) + if (Opcode == SystemZISD::JOIN_DWORDS && + N->getOperand(0) == N->getOperand(1)) + return DAG.getNode(SystemZISD::REPLICATE, SDLoc(N), N->getValueType(0), + N->getOperand(0)); + // (fround (extract_vector_elt X 0)) + // (fround (extract_vector_elt X 1)) -> + // (extract_vector_elt (VROUND X) 0) + // (extract_vector_elt (VROUND X) 1) + // + // This is a special case since the target doesn't really support v2f32s. + if (Opcode == ISD::FP_ROUND) { + SDValue Op0 = N->getOperand(0); + if (N->getValueType(0) == MVT::f32 && + Op0.hasOneUse() && + Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT && + Op0.getOperand(0).getValueType() == MVT::v2f64 && + Op0.getOperand(1).getOpcode() == ISD::Constant && + cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue() == 0) { + SDValue Vec = Op0.getOperand(0); + for (auto *U : Vec->uses()) { + if (U != Op0.getNode() && + U->hasOneUse() && + U->getOpcode() == ISD::EXTRACT_VECTOR_ELT && + U->getOperand(0) == Vec && + U->getOperand(1).getOpcode() == ISD::Constant && + cast<ConstantSDNode>(U->getOperand(1))->getZExtValue() == 1) { + SDValue OtherRound = SDValue(*U->use_begin(), 0); + if (OtherRound.getOpcode() == ISD::FP_ROUND && + OtherRound.getOperand(0) == SDValue(U, 0) && + OtherRound.getValueType() == MVT::f32) { + SDValue VRound = DAG.getNode(SystemZISD::VROUND, SDLoc(N), + MVT::v4f32, Vec); + DCI.AddToWorklist(VRound.getNode()); + SDValue Extract1 = + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(U), MVT::f32, + VRound, DAG.getConstant(2, SDLoc(U), MVT::i32)); + DCI.AddToWorklist(Extract1.getNode()); + DAG.ReplaceAllUsesOfValueWith(OtherRound, Extract1); + SDValue Extract0 = + DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SDLoc(Op0), MVT::f32, + VRound, DAG.getConstant(0, SDLoc(Op0), MVT::i32)); + return Extract0; + } + } + } + } + } + return SDValue(); +} + +//===----------------------------------------------------------------------===// +// Custom insertion +//===----------------------------------------------------------------------===// + +// Create a new basic block after MBB. +static MachineBasicBlock *emitBlockAfter(MachineBasicBlock *MBB) { + MachineFunction &MF = *MBB->getParent(); + MachineBasicBlock *NewMBB = MF.CreateMachineBasicBlock(MBB->getBasicBlock()); + MF.insert(std::next(MachineFunction::iterator(MBB)), NewMBB); + return NewMBB; +} + +// Split MBB after MI and return the new block (the one that contains +// instructions after MI). +static MachineBasicBlock *splitBlockAfter(MachineInstr *MI, + MachineBasicBlock *MBB) { + MachineBasicBlock *NewMBB = emitBlockAfter(MBB); + NewMBB->splice(NewMBB->begin(), MBB, + std::next(MachineBasicBlock::iterator(MI)), MBB->end()); + NewMBB->transferSuccessorsAndUpdatePHIs(MBB); + return NewMBB; +} + +// Split MBB before MI and return the new block (the one that contains MI). +static MachineBasicBlock *splitBlockBefore(MachineInstr *MI, + MachineBasicBlock *MBB) { + MachineBasicBlock *NewMBB = emitBlockAfter(MBB); + NewMBB->splice(NewMBB->begin(), MBB, MI, MBB->end()); + NewMBB->transferSuccessorsAndUpdatePHIs(MBB); + return NewMBB; +} + +// Force base value Base into a register before MI. Return the register. +static unsigned forceReg(MachineInstr *MI, MachineOperand &Base, + const SystemZInstrInfo *TII) { + if (Base.isReg()) + return Base.getReg(); + + MachineBasicBlock *MBB = MI->getParent(); + MachineFunction &MF = *MBB->getParent(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + + unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); + BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LA), Reg) + .addOperand(Base).addImm(0).addReg(0); + return Reg; +} + +// Implement EmitInstrWithCustomInserter for pseudo Select* instruction MI. +MachineBasicBlock * +SystemZTargetLowering::emitSelect(MachineInstr *MI, + MachineBasicBlock *MBB) const { + const SystemZInstrInfo *TII = + static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); + + unsigned DestReg = MI->getOperand(0).getReg(); + unsigned TrueReg = MI->getOperand(1).getReg(); + unsigned FalseReg = MI->getOperand(2).getReg(); + unsigned CCValid = MI->getOperand(3).getImm(); + unsigned CCMask = MI->getOperand(4).getImm(); + DebugLoc DL = MI->getDebugLoc(); + + MachineBasicBlock *StartMBB = MBB; + MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); + MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); + + // StartMBB: + // BRC CCMask, JoinMBB + // # fallthrough to FalseMBB + MBB = StartMBB; + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); + MBB->addSuccessor(JoinMBB); + MBB->addSuccessor(FalseMBB); + + // FalseMBB: + // # fallthrough to JoinMBB + MBB = FalseMBB; + MBB->addSuccessor(JoinMBB); + + // JoinMBB: + // %Result = phi [ %FalseReg, FalseMBB ], [ %TrueReg, StartMBB ] + // ... + MBB = JoinMBB; + BuildMI(*MBB, MI, DL, TII->get(SystemZ::PHI), DestReg) + .addReg(TrueReg).addMBB(StartMBB) + .addReg(FalseReg).addMBB(FalseMBB); + + MI->eraseFromParent(); + return JoinMBB; +} + +// Implement EmitInstrWithCustomInserter for pseudo CondStore* instruction MI. +// StoreOpcode is the store to use and Invert says whether the store should +// happen when the condition is false rather than true. If a STORE ON +// CONDITION is available, STOCOpcode is its opcode, otherwise it is 0. +MachineBasicBlock * +SystemZTargetLowering::emitCondStore(MachineInstr *MI, + MachineBasicBlock *MBB, + unsigned StoreOpcode, unsigned STOCOpcode, + bool Invert) const { + const SystemZInstrInfo *TII = + static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); + + unsigned SrcReg = MI->getOperand(0).getReg(); + MachineOperand Base = MI->getOperand(1); + int64_t Disp = MI->getOperand(2).getImm(); + unsigned IndexReg = MI->getOperand(3).getReg(); + unsigned CCValid = MI->getOperand(4).getImm(); + unsigned CCMask = MI->getOperand(5).getImm(); + DebugLoc DL = MI->getDebugLoc(); + + StoreOpcode = TII->getOpcodeForOffset(StoreOpcode, Disp); + + // Use STOCOpcode if possible. We could use different store patterns in + // order to avoid matching the index register, but the performance trade-offs + // might be more complicated in that case. + if (STOCOpcode && !IndexReg && Subtarget.hasLoadStoreOnCond()) { + if (Invert) + CCMask ^= CCValid; + BuildMI(*MBB, MI, DL, TII->get(STOCOpcode)) + .addReg(SrcReg).addOperand(Base).addImm(Disp) + .addImm(CCValid).addImm(CCMask); + MI->eraseFromParent(); + return MBB; + } + + // Get the condition needed to branch around the store. + if (!Invert) + CCMask ^= CCValid; + + MachineBasicBlock *StartMBB = MBB; + MachineBasicBlock *JoinMBB = splitBlockBefore(MI, MBB); + MachineBasicBlock *FalseMBB = emitBlockAfter(StartMBB); + + // StartMBB: + // BRC CCMask, JoinMBB + // # fallthrough to FalseMBB + MBB = StartMBB; + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(CCValid).addImm(CCMask).addMBB(JoinMBB); + MBB->addSuccessor(JoinMBB); + MBB->addSuccessor(FalseMBB); + + // FalseMBB: + // store %SrcReg, %Disp(%Index,%Base) + // # fallthrough to JoinMBB + MBB = FalseMBB; + BuildMI(MBB, DL, TII->get(StoreOpcode)) + .addReg(SrcReg).addOperand(Base).addImm(Disp).addReg(IndexReg); + MBB->addSuccessor(JoinMBB); + + MI->eraseFromParent(); + return JoinMBB; +} + +// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_LOAD{,W}_* +// or ATOMIC_SWAP{,W} instruction MI. BinOpcode is the instruction that +// performs the binary operation elided by "*", or 0 for ATOMIC_SWAP{,W}. +// BitSize is the width of the field in bits, or 0 if this is a partword +// ATOMIC_LOADW_* or ATOMIC_SWAPW instruction, in which case the bitsize +// is one of the operands. Invert says whether the field should be +// inverted after performing BinOpcode (e.g. for NAND). +MachineBasicBlock * +SystemZTargetLowering::emitAtomicLoadBinary(MachineInstr *MI, + MachineBasicBlock *MBB, + unsigned BinOpcode, + unsigned BitSize, + bool Invert) const { + MachineFunction &MF = *MBB->getParent(); + const SystemZInstrInfo *TII = + static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); + MachineRegisterInfo &MRI = MF.getRegInfo(); + bool IsSubWord = (BitSize < 32); + + // Extract the operands. Base can be a register or a frame index. + // Src2 can be a register or immediate. + unsigned Dest = MI->getOperand(0).getReg(); + MachineOperand Base = earlyUseOperand(MI->getOperand(1)); + int64_t Disp = MI->getOperand(2).getImm(); + MachineOperand Src2 = earlyUseOperand(MI->getOperand(3)); + unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); + unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); + DebugLoc DL = MI->getDebugLoc(); + if (IsSubWord) + BitSize = MI->getOperand(6).getImm(); + + // Subword operations use 32-bit registers. + const TargetRegisterClass *RC = (BitSize <= 32 ? + &SystemZ::GR32BitRegClass : + &SystemZ::GR64BitRegClass); + unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; + unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; + + // Get the right opcodes for the displacement. + LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); + CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); + assert(LOpcode && CSOpcode && "Displacement out of range"); + + // Create virtual registers for temporary results. + unsigned OrigVal = MRI.createVirtualRegister(RC); + unsigned OldVal = MRI.createVirtualRegister(RC); + unsigned NewVal = (BinOpcode || IsSubWord ? + MRI.createVirtualRegister(RC) : Src2.getReg()); + unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); + unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); + + // Insert a basic block for the main loop. + MachineBasicBlock *StartMBB = MBB; + MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); + MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); + + // StartMBB: + // ... + // %OrigVal = L Disp(%Base) + // # fall through to LoopMMB + MBB = StartMBB; + BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) + .addOperand(Base).addImm(Disp).addReg(0); + MBB->addSuccessor(LoopMBB); + + // LoopMBB: + // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, LoopMBB ] + // %RotatedOldVal = RLL %OldVal, 0(%BitShift) + // %RotatedNewVal = OP %RotatedOldVal, %Src2 + // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) + // %Dest = CS %OldVal, %NewVal, Disp(%Base) + // JNE LoopMBB + // # fall through to DoneMMB + MBB = LoopMBB; + BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) + .addReg(OrigVal).addMBB(StartMBB) + .addReg(Dest).addMBB(LoopMBB); + if (IsSubWord) + BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) + .addReg(OldVal).addReg(BitShift).addImm(0); + if (Invert) { + // Perform the operation normally and then invert every bit of the field. + unsigned Tmp = MRI.createVirtualRegister(RC); + BuildMI(MBB, DL, TII->get(BinOpcode), Tmp) + .addReg(RotatedOldVal).addOperand(Src2); + if (BitSize <= 32) + // XILF with the upper BitSize bits set. + BuildMI(MBB, DL, TII->get(SystemZ::XILF), RotatedNewVal) + .addReg(Tmp).addImm(-1U << (32 - BitSize)); + else { + // Use LCGR and add -1 to the result, which is more compact than + // an XILF, XILH pair. + unsigned Tmp2 = MRI.createVirtualRegister(RC); + BuildMI(MBB, DL, TII->get(SystemZ::LCGR), Tmp2).addReg(Tmp); + BuildMI(MBB, DL, TII->get(SystemZ::AGHI), RotatedNewVal) + .addReg(Tmp2).addImm(-1); + } + } else if (BinOpcode) + // A simply binary operation. + BuildMI(MBB, DL, TII->get(BinOpcode), RotatedNewVal) + .addReg(RotatedOldVal).addOperand(Src2); + else if (IsSubWord) + // Use RISBG to rotate Src2 into position and use it to replace the + // field in RotatedOldVal. + BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedNewVal) + .addReg(RotatedOldVal).addReg(Src2.getReg()) + .addImm(32).addImm(31 + BitSize).addImm(32 - BitSize); + if (IsSubWord) + BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) + .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); + BuildMI(MBB, DL, TII->get(CSOpcode), Dest) + .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); + MBB->addSuccessor(LoopMBB); + MBB->addSuccessor(DoneMBB); + + MI->eraseFromParent(); + return DoneMBB; +} + +// Implement EmitInstrWithCustomInserter for pseudo +// ATOMIC_LOAD{,W}_{,U}{MIN,MAX} instruction MI. CompareOpcode is the +// instruction that should be used to compare the current field with the +// minimum or maximum value. KeepOldMask is the BRC condition-code mask +// for when the current field should be kept. BitSize is the width of +// the field in bits, or 0 if this is a partword ATOMIC_LOADW_* instruction. +MachineBasicBlock * +SystemZTargetLowering::emitAtomicLoadMinMax(MachineInstr *MI, + MachineBasicBlock *MBB, + unsigned CompareOpcode, + unsigned KeepOldMask, + unsigned BitSize) const { + MachineFunction &MF = *MBB->getParent(); + const SystemZInstrInfo *TII = + static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); + MachineRegisterInfo &MRI = MF.getRegInfo(); + bool IsSubWord = (BitSize < 32); + + // Extract the operands. Base can be a register or a frame index. + unsigned Dest = MI->getOperand(0).getReg(); + MachineOperand Base = earlyUseOperand(MI->getOperand(1)); + int64_t Disp = MI->getOperand(2).getImm(); + unsigned Src2 = MI->getOperand(3).getReg(); + unsigned BitShift = (IsSubWord ? MI->getOperand(4).getReg() : 0); + unsigned NegBitShift = (IsSubWord ? MI->getOperand(5).getReg() : 0); + DebugLoc DL = MI->getDebugLoc(); + if (IsSubWord) + BitSize = MI->getOperand(6).getImm(); + + // Subword operations use 32-bit registers. + const TargetRegisterClass *RC = (BitSize <= 32 ? + &SystemZ::GR32BitRegClass : + &SystemZ::GR64BitRegClass); + unsigned LOpcode = BitSize <= 32 ? SystemZ::L : SystemZ::LG; + unsigned CSOpcode = BitSize <= 32 ? SystemZ::CS : SystemZ::CSG; + + // Get the right opcodes for the displacement. + LOpcode = TII->getOpcodeForOffset(LOpcode, Disp); + CSOpcode = TII->getOpcodeForOffset(CSOpcode, Disp); + assert(LOpcode && CSOpcode && "Displacement out of range"); + + // Create virtual registers for temporary results. + unsigned OrigVal = MRI.createVirtualRegister(RC); + unsigned OldVal = MRI.createVirtualRegister(RC); + unsigned NewVal = MRI.createVirtualRegister(RC); + unsigned RotatedOldVal = (IsSubWord ? MRI.createVirtualRegister(RC) : OldVal); + unsigned RotatedAltVal = (IsSubWord ? MRI.createVirtualRegister(RC) : Src2); + unsigned RotatedNewVal = (IsSubWord ? MRI.createVirtualRegister(RC) : NewVal); + + // Insert 3 basic blocks for the loop. + MachineBasicBlock *StartMBB = MBB; + MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); + MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); + MachineBasicBlock *UseAltMBB = emitBlockAfter(LoopMBB); + MachineBasicBlock *UpdateMBB = emitBlockAfter(UseAltMBB); + + // StartMBB: + // ... + // %OrigVal = L Disp(%Base) + // # fall through to LoopMMB + MBB = StartMBB; + BuildMI(MBB, DL, TII->get(LOpcode), OrigVal) + .addOperand(Base).addImm(Disp).addReg(0); + MBB->addSuccessor(LoopMBB); + + // LoopMBB: + // %OldVal = phi [ %OrigVal, StartMBB ], [ %Dest, UpdateMBB ] + // %RotatedOldVal = RLL %OldVal, 0(%BitShift) + // CompareOpcode %RotatedOldVal, %Src2 + // BRC KeepOldMask, UpdateMBB + MBB = LoopMBB; + BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) + .addReg(OrigVal).addMBB(StartMBB) + .addReg(Dest).addMBB(UpdateMBB); + if (IsSubWord) + BuildMI(MBB, DL, TII->get(SystemZ::RLL), RotatedOldVal) + .addReg(OldVal).addReg(BitShift).addImm(0); + BuildMI(MBB, DL, TII->get(CompareOpcode)) + .addReg(RotatedOldVal).addReg(Src2); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_ICMP).addImm(KeepOldMask).addMBB(UpdateMBB); + MBB->addSuccessor(UpdateMBB); + MBB->addSuccessor(UseAltMBB); + + // UseAltMBB: + // %RotatedAltVal = RISBG %RotatedOldVal, %Src2, 32, 31 + BitSize, 0 + // # fall through to UpdateMMB + MBB = UseAltMBB; + if (IsSubWord) + BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RotatedAltVal) + .addReg(RotatedOldVal).addReg(Src2) + .addImm(32).addImm(31 + BitSize).addImm(0); + MBB->addSuccessor(UpdateMBB); + + // UpdateMBB: + // %RotatedNewVal = PHI [ %RotatedOldVal, LoopMBB ], + // [ %RotatedAltVal, UseAltMBB ] + // %NewVal = RLL %RotatedNewVal, 0(%NegBitShift) + // %Dest = CS %OldVal, %NewVal, Disp(%Base) + // JNE LoopMBB + // # fall through to DoneMMB + MBB = UpdateMBB; + BuildMI(MBB, DL, TII->get(SystemZ::PHI), RotatedNewVal) + .addReg(RotatedOldVal).addMBB(LoopMBB) + .addReg(RotatedAltVal).addMBB(UseAltMBB); + if (IsSubWord) + BuildMI(MBB, DL, TII->get(SystemZ::RLL), NewVal) + .addReg(RotatedNewVal).addReg(NegBitShift).addImm(0); + BuildMI(MBB, DL, TII->get(CSOpcode), Dest) + .addReg(OldVal).addReg(NewVal).addOperand(Base).addImm(Disp); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); + MBB->addSuccessor(LoopMBB); + MBB->addSuccessor(DoneMBB); + + MI->eraseFromParent(); + return DoneMBB; +} + +// Implement EmitInstrWithCustomInserter for pseudo ATOMIC_CMP_SWAPW +// instruction MI. +MachineBasicBlock * +SystemZTargetLowering::emitAtomicCmpSwapW(MachineInstr *MI, + MachineBasicBlock *MBB) const { + MachineFunction &MF = *MBB->getParent(); + const SystemZInstrInfo *TII = + static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); + MachineRegisterInfo &MRI = MF.getRegInfo(); + + // Extract the operands. Base can be a register or a frame index. + unsigned Dest = MI->getOperand(0).getReg(); + MachineOperand Base = earlyUseOperand(MI->getOperand(1)); + int64_t Disp = MI->getOperand(2).getImm(); + unsigned OrigCmpVal = MI->getOperand(3).getReg(); + unsigned OrigSwapVal = MI->getOperand(4).getReg(); + unsigned BitShift = MI->getOperand(5).getReg(); + unsigned NegBitShift = MI->getOperand(6).getReg(); + int64_t BitSize = MI->getOperand(7).getImm(); + DebugLoc DL = MI->getDebugLoc(); + + const TargetRegisterClass *RC = &SystemZ::GR32BitRegClass; + + // Get the right opcodes for the displacement. + unsigned LOpcode = TII->getOpcodeForOffset(SystemZ::L, Disp); + unsigned CSOpcode = TII->getOpcodeForOffset(SystemZ::CS, Disp); + assert(LOpcode && CSOpcode && "Displacement out of range"); + + // Create virtual registers for temporary results. + unsigned OrigOldVal = MRI.createVirtualRegister(RC); + unsigned OldVal = MRI.createVirtualRegister(RC); + unsigned CmpVal = MRI.createVirtualRegister(RC); + unsigned SwapVal = MRI.createVirtualRegister(RC); + unsigned StoreVal = MRI.createVirtualRegister(RC); + unsigned RetryOldVal = MRI.createVirtualRegister(RC); + unsigned RetryCmpVal = MRI.createVirtualRegister(RC); + unsigned RetrySwapVal = MRI.createVirtualRegister(RC); + + // Insert 2 basic blocks for the loop. + MachineBasicBlock *StartMBB = MBB; + MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); + MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); + MachineBasicBlock *SetMBB = emitBlockAfter(LoopMBB); + + // StartMBB: + // ... + // %OrigOldVal = L Disp(%Base) + // # fall through to LoopMMB + MBB = StartMBB; + BuildMI(MBB, DL, TII->get(LOpcode), OrigOldVal) + .addOperand(Base).addImm(Disp).addReg(0); + MBB->addSuccessor(LoopMBB); + + // LoopMBB: + // %OldVal = phi [ %OrigOldVal, EntryBB ], [ %RetryOldVal, SetMBB ] + // %CmpVal = phi [ %OrigCmpVal, EntryBB ], [ %RetryCmpVal, SetMBB ] + // %SwapVal = phi [ %OrigSwapVal, EntryBB ], [ %RetrySwapVal, SetMBB ] + // %Dest = RLL %OldVal, BitSize(%BitShift) + // ^^ The low BitSize bits contain the field + // of interest. + // %RetryCmpVal = RISBG32 %CmpVal, %Dest, 32, 63-BitSize, 0 + // ^^ Replace the upper 32-BitSize bits of the + // comparison value with those that we loaded, + // so that we can use a full word comparison. + // CR %Dest, %RetryCmpVal + // JNE DoneMBB + // # Fall through to SetMBB + MBB = LoopMBB; + BuildMI(MBB, DL, TII->get(SystemZ::PHI), OldVal) + .addReg(OrigOldVal).addMBB(StartMBB) + .addReg(RetryOldVal).addMBB(SetMBB); + BuildMI(MBB, DL, TII->get(SystemZ::PHI), CmpVal) + .addReg(OrigCmpVal).addMBB(StartMBB) + .addReg(RetryCmpVal).addMBB(SetMBB); + BuildMI(MBB, DL, TII->get(SystemZ::PHI), SwapVal) + .addReg(OrigSwapVal).addMBB(StartMBB) + .addReg(RetrySwapVal).addMBB(SetMBB); + BuildMI(MBB, DL, TII->get(SystemZ::RLL), Dest) + .addReg(OldVal).addReg(BitShift).addImm(BitSize); + BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetryCmpVal) + .addReg(CmpVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); + BuildMI(MBB, DL, TII->get(SystemZ::CR)) + .addReg(Dest).addReg(RetryCmpVal); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_ICMP) + .addImm(SystemZ::CCMASK_CMP_NE).addMBB(DoneMBB); + MBB->addSuccessor(DoneMBB); + MBB->addSuccessor(SetMBB); + + // SetMBB: + // %RetrySwapVal = RISBG32 %SwapVal, %Dest, 32, 63-BitSize, 0 + // ^^ Replace the upper 32-BitSize bits of the new + // value with those that we loaded. + // %StoreVal = RLL %RetrySwapVal, -BitSize(%NegBitShift) + // ^^ Rotate the new field to its proper position. + // %RetryOldVal = CS %Dest, %StoreVal, Disp(%Base) + // JNE LoopMBB + // # fall through to ExitMMB + MBB = SetMBB; + BuildMI(MBB, DL, TII->get(SystemZ::RISBG32), RetrySwapVal) + .addReg(SwapVal).addReg(Dest).addImm(32).addImm(63 - BitSize).addImm(0); + BuildMI(MBB, DL, TII->get(SystemZ::RLL), StoreVal) + .addReg(RetrySwapVal).addReg(NegBitShift).addImm(-BitSize); + BuildMI(MBB, DL, TII->get(CSOpcode), RetryOldVal) + .addReg(OldVal).addReg(StoreVal).addOperand(Base).addImm(Disp); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_CS).addImm(SystemZ::CCMASK_CS_NE).addMBB(LoopMBB); + MBB->addSuccessor(LoopMBB); + MBB->addSuccessor(DoneMBB); + + MI->eraseFromParent(); + return DoneMBB; +} + +// Emit an extension from a GR32 or GR64 to a GR128. ClearEven is true +// if the high register of the GR128 value must be cleared or false if +// it's "don't care". SubReg is subreg_l32 when extending a GR32 +// and subreg_l64 when extending a GR64. +MachineBasicBlock * +SystemZTargetLowering::emitExt128(MachineInstr *MI, + MachineBasicBlock *MBB, + bool ClearEven, unsigned SubReg) const { + MachineFunction &MF = *MBB->getParent(); + const SystemZInstrInfo *TII = + static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); + MachineRegisterInfo &MRI = MF.getRegInfo(); + DebugLoc DL = MI->getDebugLoc(); + + unsigned Dest = MI->getOperand(0).getReg(); + unsigned Src = MI->getOperand(1).getReg(); + unsigned In128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); + + BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::IMPLICIT_DEF), In128); + if (ClearEven) { + unsigned NewIn128 = MRI.createVirtualRegister(&SystemZ::GR128BitRegClass); + unsigned Zero64 = MRI.createVirtualRegister(&SystemZ::GR64BitRegClass); + + BuildMI(*MBB, MI, DL, TII->get(SystemZ::LLILL), Zero64) + .addImm(0); + BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), NewIn128) + .addReg(In128).addReg(Zero64).addImm(SystemZ::subreg_h64); + In128 = NewIn128; + } + BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dest) + .addReg(In128).addReg(Src).addImm(SubReg); + + MI->eraseFromParent(); + return MBB; +} + +MachineBasicBlock * +SystemZTargetLowering::emitMemMemWrapper(MachineInstr *MI, + MachineBasicBlock *MBB, + unsigned Opcode) const { + MachineFunction &MF = *MBB->getParent(); + const SystemZInstrInfo *TII = + static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); + MachineRegisterInfo &MRI = MF.getRegInfo(); + DebugLoc DL = MI->getDebugLoc(); + + MachineOperand DestBase = earlyUseOperand(MI->getOperand(0)); + uint64_t DestDisp = MI->getOperand(1).getImm(); + MachineOperand SrcBase = earlyUseOperand(MI->getOperand(2)); + uint64_t SrcDisp = MI->getOperand(3).getImm(); + uint64_t Length = MI->getOperand(4).getImm(); + + // When generating more than one CLC, all but the last will need to + // branch to the end when a difference is found. + MachineBasicBlock *EndMBB = (Length > 256 && Opcode == SystemZ::CLC ? + splitBlockAfter(MI, MBB) : nullptr); + + // Check for the loop form, in which operand 5 is the trip count. + if (MI->getNumExplicitOperands() > 5) { + bool HaveSingleBase = DestBase.isIdenticalTo(SrcBase); + + uint64_t StartCountReg = MI->getOperand(5).getReg(); + uint64_t StartSrcReg = forceReg(MI, SrcBase, TII); + uint64_t StartDestReg = (HaveSingleBase ? StartSrcReg : + forceReg(MI, DestBase, TII)); + + const TargetRegisterClass *RC = &SystemZ::ADDR64BitRegClass; + uint64_t ThisSrcReg = MRI.createVirtualRegister(RC); + uint64_t ThisDestReg = (HaveSingleBase ? ThisSrcReg : + MRI.createVirtualRegister(RC)); + uint64_t NextSrcReg = MRI.createVirtualRegister(RC); + uint64_t NextDestReg = (HaveSingleBase ? NextSrcReg : + MRI.createVirtualRegister(RC)); + + RC = &SystemZ::GR64BitRegClass; + uint64_t ThisCountReg = MRI.createVirtualRegister(RC); + uint64_t NextCountReg = MRI.createVirtualRegister(RC); + + MachineBasicBlock *StartMBB = MBB; + MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); + MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); + MachineBasicBlock *NextMBB = (EndMBB ? emitBlockAfter(LoopMBB) : LoopMBB); + + // StartMBB: + // # fall through to LoopMMB + MBB->addSuccessor(LoopMBB); + + // LoopMBB: + // %ThisDestReg = phi [ %StartDestReg, StartMBB ], + // [ %NextDestReg, NextMBB ] + // %ThisSrcReg = phi [ %StartSrcReg, StartMBB ], + // [ %NextSrcReg, NextMBB ] + // %ThisCountReg = phi [ %StartCountReg, StartMBB ], + // [ %NextCountReg, NextMBB ] + // ( PFD 2, 768+DestDisp(%ThisDestReg) ) + // Opcode DestDisp(256,%ThisDestReg), SrcDisp(%ThisSrcReg) + // ( JLH EndMBB ) + // + // The prefetch is used only for MVC. The JLH is used only for CLC. + MBB = LoopMBB; + + BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisDestReg) + .addReg(StartDestReg).addMBB(StartMBB) + .addReg(NextDestReg).addMBB(NextMBB); + if (!HaveSingleBase) + BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisSrcReg) + .addReg(StartSrcReg).addMBB(StartMBB) + .addReg(NextSrcReg).addMBB(NextMBB); + BuildMI(MBB, DL, TII->get(SystemZ::PHI), ThisCountReg) + .addReg(StartCountReg).addMBB(StartMBB) + .addReg(NextCountReg).addMBB(NextMBB); + if (Opcode == SystemZ::MVC) + BuildMI(MBB, DL, TII->get(SystemZ::PFD)) + .addImm(SystemZ::PFD_WRITE) + .addReg(ThisDestReg).addImm(DestDisp + 768).addReg(0); + BuildMI(MBB, DL, TII->get(Opcode)) + .addReg(ThisDestReg).addImm(DestDisp).addImm(256) + .addReg(ThisSrcReg).addImm(SrcDisp); + if (EndMBB) { + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) + .addMBB(EndMBB); + MBB->addSuccessor(EndMBB); + MBB->addSuccessor(NextMBB); + } + + // NextMBB: + // %NextDestReg = LA 256(%ThisDestReg) + // %NextSrcReg = LA 256(%ThisSrcReg) + // %NextCountReg = AGHI %ThisCountReg, -1 + // CGHI %NextCountReg, 0 + // JLH LoopMBB + // # fall through to DoneMMB + // + // The AGHI, CGHI and JLH should be converted to BRCTG by later passes. + MBB = NextMBB; + + BuildMI(MBB, DL, TII->get(SystemZ::LA), NextDestReg) + .addReg(ThisDestReg).addImm(256).addReg(0); + if (!HaveSingleBase) + BuildMI(MBB, DL, TII->get(SystemZ::LA), NextSrcReg) + .addReg(ThisSrcReg).addImm(256).addReg(0); + BuildMI(MBB, DL, TII->get(SystemZ::AGHI), NextCountReg) + .addReg(ThisCountReg).addImm(-1); + BuildMI(MBB, DL, TII->get(SystemZ::CGHI)) + .addReg(NextCountReg).addImm(0); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) + .addMBB(LoopMBB); + MBB->addSuccessor(LoopMBB); + MBB->addSuccessor(DoneMBB); + + DestBase = MachineOperand::CreateReg(NextDestReg, false); + SrcBase = MachineOperand::CreateReg(NextSrcReg, false); + Length &= 255; + MBB = DoneMBB; + } + // Handle any remaining bytes with straight-line code. + while (Length > 0) { + uint64_t ThisLength = std::min(Length, uint64_t(256)); + // The previous iteration might have created out-of-range displacements. + // Apply them using LAY if so. + if (!isUInt<12>(DestDisp)) { + unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); + BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) + .addOperand(DestBase).addImm(DestDisp).addReg(0); + DestBase = MachineOperand::CreateReg(Reg, false); + DestDisp = 0; + } + if (!isUInt<12>(SrcDisp)) { + unsigned Reg = MRI.createVirtualRegister(&SystemZ::ADDR64BitRegClass); + BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(SystemZ::LAY), Reg) + .addOperand(SrcBase).addImm(SrcDisp).addReg(0); + SrcBase = MachineOperand::CreateReg(Reg, false); + SrcDisp = 0; + } + BuildMI(*MBB, MI, DL, TII->get(Opcode)) + .addOperand(DestBase).addImm(DestDisp).addImm(ThisLength) + .addOperand(SrcBase).addImm(SrcDisp); + DestDisp += ThisLength; + SrcDisp += ThisLength; + Length -= ThisLength; + // If there's another CLC to go, branch to the end if a difference + // was found. + if (EndMBB && Length > 0) { + MachineBasicBlock *NextMBB = splitBlockBefore(MI, MBB); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_ICMP).addImm(SystemZ::CCMASK_CMP_NE) + .addMBB(EndMBB); + MBB->addSuccessor(EndMBB); + MBB->addSuccessor(NextMBB); + MBB = NextMBB; + } + } + if (EndMBB) { + MBB->addSuccessor(EndMBB); + MBB = EndMBB; + MBB->addLiveIn(SystemZ::CC); + } + + MI->eraseFromParent(); + return MBB; +} + +// Decompose string pseudo-instruction MI into a loop that continually performs +// Opcode until CC != 3. +MachineBasicBlock * +SystemZTargetLowering::emitStringWrapper(MachineInstr *MI, + MachineBasicBlock *MBB, + unsigned Opcode) const { + MachineFunction &MF = *MBB->getParent(); + const SystemZInstrInfo *TII = + static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); + MachineRegisterInfo &MRI = MF.getRegInfo(); + DebugLoc DL = MI->getDebugLoc(); + + uint64_t End1Reg = MI->getOperand(0).getReg(); + uint64_t Start1Reg = MI->getOperand(1).getReg(); + uint64_t Start2Reg = MI->getOperand(2).getReg(); + uint64_t CharReg = MI->getOperand(3).getReg(); + + const TargetRegisterClass *RC = &SystemZ::GR64BitRegClass; + uint64_t This1Reg = MRI.createVirtualRegister(RC); + uint64_t This2Reg = MRI.createVirtualRegister(RC); + uint64_t End2Reg = MRI.createVirtualRegister(RC); + + MachineBasicBlock *StartMBB = MBB; + MachineBasicBlock *DoneMBB = splitBlockBefore(MI, MBB); + MachineBasicBlock *LoopMBB = emitBlockAfter(StartMBB); + + // StartMBB: + // # fall through to LoopMMB + MBB->addSuccessor(LoopMBB); + + // LoopMBB: + // %This1Reg = phi [ %Start1Reg, StartMBB ], [ %End1Reg, LoopMBB ] + // %This2Reg = phi [ %Start2Reg, StartMBB ], [ %End2Reg, LoopMBB ] + // R0L = %CharReg + // %End1Reg, %End2Reg = CLST %This1Reg, %This2Reg -- uses R0L + // JO LoopMBB + // # fall through to DoneMMB + // + // The load of R0L can be hoisted by post-RA LICM. + MBB = LoopMBB; + + BuildMI(MBB, DL, TII->get(SystemZ::PHI), This1Reg) + .addReg(Start1Reg).addMBB(StartMBB) + .addReg(End1Reg).addMBB(LoopMBB); + BuildMI(MBB, DL, TII->get(SystemZ::PHI), This2Reg) + .addReg(Start2Reg).addMBB(StartMBB) + .addReg(End2Reg).addMBB(LoopMBB); + BuildMI(MBB, DL, TII->get(TargetOpcode::COPY), SystemZ::R0L).addReg(CharReg); + BuildMI(MBB, DL, TII->get(Opcode)) + .addReg(End1Reg, RegState::Define).addReg(End2Reg, RegState::Define) + .addReg(This1Reg).addReg(This2Reg); + BuildMI(MBB, DL, TII->get(SystemZ::BRC)) + .addImm(SystemZ::CCMASK_ANY).addImm(SystemZ::CCMASK_3).addMBB(LoopMBB); + MBB->addSuccessor(LoopMBB); + MBB->addSuccessor(DoneMBB); + + DoneMBB->addLiveIn(SystemZ::CC); + + MI->eraseFromParent(); + return DoneMBB; +} + +// Update TBEGIN instruction with final opcode and register clobbers. +MachineBasicBlock * +SystemZTargetLowering::emitTransactionBegin(MachineInstr *MI, + MachineBasicBlock *MBB, + unsigned Opcode, + bool NoFloat) const { + MachineFunction &MF = *MBB->getParent(); + const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); + const SystemZInstrInfo *TII = Subtarget.getInstrInfo(); + + // Update opcode. + MI->setDesc(TII->get(Opcode)); + + // We cannot handle a TBEGIN that clobbers the stack or frame pointer. + // Make sure to add the corresponding GRSM bits if they are missing. + uint64_t Control = MI->getOperand(2).getImm(); + static const unsigned GPRControlBit[16] = { + 0x8000, 0x8000, 0x4000, 0x4000, 0x2000, 0x2000, 0x1000, 0x1000, + 0x0800, 0x0800, 0x0400, 0x0400, 0x0200, 0x0200, 0x0100, 0x0100 + }; + Control |= GPRControlBit[15]; + if (TFI->hasFP(MF)) + Control |= GPRControlBit[11]; + MI->getOperand(2).setImm(Control); + + // Add GPR clobbers. + for (int I = 0; I < 16; I++) { + if ((Control & GPRControlBit[I]) == 0) { + unsigned Reg = SystemZMC::GR64Regs[I]; + MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); + } + } + + // Add FPR/VR clobbers. + if (!NoFloat && (Control & 4) != 0) { + if (Subtarget.hasVector()) { + for (int I = 0; I < 32; I++) { + unsigned Reg = SystemZMC::VR128Regs[I]; + MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); + } + } else { + for (int I = 0; I < 16; I++) { + unsigned Reg = SystemZMC::FP64Regs[I]; + MI->addOperand(MachineOperand::CreateReg(Reg, true, true)); + } + } + } + + return MBB; +} + +MachineBasicBlock * +SystemZTargetLowering::emitLoadAndTestCmp0(MachineInstr *MI, + MachineBasicBlock *MBB, + unsigned Opcode) const { + MachineFunction &MF = *MBB->getParent(); + MachineRegisterInfo *MRI = &MF.getRegInfo(); + const SystemZInstrInfo *TII = + static_cast<const SystemZInstrInfo *>(Subtarget.getInstrInfo()); + DebugLoc DL = MI->getDebugLoc(); + + unsigned SrcReg = MI->getOperand(0).getReg(); + + // Create new virtual register of the same class as source. + const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); + unsigned DstReg = MRI->createVirtualRegister(RC); + + // Replace pseudo with a normal load-and-test that models the def as + // well. + BuildMI(*MBB, MI, DL, TII->get(Opcode), DstReg) + .addReg(SrcReg); + MI->eraseFromParent(); + + return MBB; +} + +MachineBasicBlock *SystemZTargetLowering:: +EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *MBB) const { + switch (MI->getOpcode()) { + case SystemZ::Select32Mux: + case SystemZ::Select32: + case SystemZ::SelectF32: + case SystemZ::Select64: + case SystemZ::SelectF64: + case SystemZ::SelectF128: + return emitSelect(MI, MBB); + + case SystemZ::CondStore8Mux: + return emitCondStore(MI, MBB, SystemZ::STCMux, 0, false); + case SystemZ::CondStore8MuxInv: + return emitCondStore(MI, MBB, SystemZ::STCMux, 0, true); + case SystemZ::CondStore16Mux: + return emitCondStore(MI, MBB, SystemZ::STHMux, 0, false); + case SystemZ::CondStore16MuxInv: + return emitCondStore(MI, MBB, SystemZ::STHMux, 0, true); + case SystemZ::CondStore8: + return emitCondStore(MI, MBB, SystemZ::STC, 0, false); + case SystemZ::CondStore8Inv: + return emitCondStore(MI, MBB, SystemZ::STC, 0, true); + case SystemZ::CondStore16: + return emitCondStore(MI, MBB, SystemZ::STH, 0, false); + case SystemZ::CondStore16Inv: + return emitCondStore(MI, MBB, SystemZ::STH, 0, true); + case SystemZ::CondStore32: + return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, false); + case SystemZ::CondStore32Inv: + return emitCondStore(MI, MBB, SystemZ::ST, SystemZ::STOC, true); + case SystemZ::CondStore64: + return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, false); + case SystemZ::CondStore64Inv: + return emitCondStore(MI, MBB, SystemZ::STG, SystemZ::STOCG, true); + case SystemZ::CondStoreF32: + return emitCondStore(MI, MBB, SystemZ::STE, 0, false); + case SystemZ::CondStoreF32Inv: + return emitCondStore(MI, MBB, SystemZ::STE, 0, true); + case SystemZ::CondStoreF64: + return emitCondStore(MI, MBB, SystemZ::STD, 0, false); + case SystemZ::CondStoreF64Inv: + return emitCondStore(MI, MBB, SystemZ::STD, 0, true); + + case SystemZ::AEXT128_64: + return emitExt128(MI, MBB, false, SystemZ::subreg_l64); + case SystemZ::ZEXT128_32: + return emitExt128(MI, MBB, true, SystemZ::subreg_l32); + case SystemZ::ZEXT128_64: + return emitExt128(MI, MBB, true, SystemZ::subreg_l64); + + case SystemZ::ATOMIC_SWAPW: + return emitAtomicLoadBinary(MI, MBB, 0, 0); + case SystemZ::ATOMIC_SWAP_32: + return emitAtomicLoadBinary(MI, MBB, 0, 32); + case SystemZ::ATOMIC_SWAP_64: + return emitAtomicLoadBinary(MI, MBB, 0, 64); + + case SystemZ::ATOMIC_LOADW_AR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 0); + case SystemZ::ATOMIC_LOADW_AFI: + return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 0); + case SystemZ::ATOMIC_LOAD_AR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::AR, 32); + case SystemZ::ATOMIC_LOAD_AHI: + return emitAtomicLoadBinary(MI, MBB, SystemZ::AHI, 32); + case SystemZ::ATOMIC_LOAD_AFI: + return emitAtomicLoadBinary(MI, MBB, SystemZ::AFI, 32); + case SystemZ::ATOMIC_LOAD_AGR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::AGR, 64); + case SystemZ::ATOMIC_LOAD_AGHI: + return emitAtomicLoadBinary(MI, MBB, SystemZ::AGHI, 64); + case SystemZ::ATOMIC_LOAD_AGFI: + return emitAtomicLoadBinary(MI, MBB, SystemZ::AGFI, 64); + + case SystemZ::ATOMIC_LOADW_SR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 0); + case SystemZ::ATOMIC_LOAD_SR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::SR, 32); + case SystemZ::ATOMIC_LOAD_SGR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::SGR, 64); + + case SystemZ::ATOMIC_LOADW_NR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0); + case SystemZ::ATOMIC_LOADW_NILH: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0); + case SystemZ::ATOMIC_LOAD_NR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32); + case SystemZ::ATOMIC_LOAD_NILL: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32); + case SystemZ::ATOMIC_LOAD_NILH: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32); + case SystemZ::ATOMIC_LOAD_NILF: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32); + case SystemZ::ATOMIC_LOAD_NGR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64); + case SystemZ::ATOMIC_LOAD_NILL64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64); + case SystemZ::ATOMIC_LOAD_NILH64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64); + case SystemZ::ATOMIC_LOAD_NIHL64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64); + case SystemZ::ATOMIC_LOAD_NIHH64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64); + case SystemZ::ATOMIC_LOAD_NILF64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64); + case SystemZ::ATOMIC_LOAD_NIHF64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64); + + case SystemZ::ATOMIC_LOADW_OR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 0); + case SystemZ::ATOMIC_LOADW_OILH: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 0); + case SystemZ::ATOMIC_LOAD_OR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OR, 32); + case SystemZ::ATOMIC_LOAD_OILL: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL, 32); + case SystemZ::ATOMIC_LOAD_OILH: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH, 32); + case SystemZ::ATOMIC_LOAD_OILF: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF, 32); + case SystemZ::ATOMIC_LOAD_OGR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OGR, 64); + case SystemZ::ATOMIC_LOAD_OILL64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OILL64, 64); + case SystemZ::ATOMIC_LOAD_OILH64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OILH64, 64); + case SystemZ::ATOMIC_LOAD_OIHL64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHL64, 64); + case SystemZ::ATOMIC_LOAD_OIHH64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHH64, 64); + case SystemZ::ATOMIC_LOAD_OILF64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OILF64, 64); + case SystemZ::ATOMIC_LOAD_OIHF64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::OIHF64, 64); + + case SystemZ::ATOMIC_LOADW_XR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 0); + case SystemZ::ATOMIC_LOADW_XILF: + return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 0); + case SystemZ::ATOMIC_LOAD_XR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::XR, 32); + case SystemZ::ATOMIC_LOAD_XILF: + return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF, 32); + case SystemZ::ATOMIC_LOAD_XGR: + return emitAtomicLoadBinary(MI, MBB, SystemZ::XGR, 64); + case SystemZ::ATOMIC_LOAD_XILF64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::XILF64, 64); + case SystemZ::ATOMIC_LOAD_XIHF64: + return emitAtomicLoadBinary(MI, MBB, SystemZ::XIHF64, 64); + + case SystemZ::ATOMIC_LOADW_NRi: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 0, true); + case SystemZ::ATOMIC_LOADW_NILHi: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 0, true); + case SystemZ::ATOMIC_LOAD_NRi: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NR, 32, true); + case SystemZ::ATOMIC_LOAD_NILLi: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL, 32, true); + case SystemZ::ATOMIC_LOAD_NILHi: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH, 32, true); + case SystemZ::ATOMIC_LOAD_NILFi: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF, 32, true); + case SystemZ::ATOMIC_LOAD_NGRi: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NGR, 64, true); + case SystemZ::ATOMIC_LOAD_NILL64i: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILL64, 64, true); + case SystemZ::ATOMIC_LOAD_NILH64i: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILH64, 64, true); + case SystemZ::ATOMIC_LOAD_NIHL64i: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHL64, 64, true); + case SystemZ::ATOMIC_LOAD_NIHH64i: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHH64, 64, true); + case SystemZ::ATOMIC_LOAD_NILF64i: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NILF64, 64, true); + case SystemZ::ATOMIC_LOAD_NIHF64i: + return emitAtomicLoadBinary(MI, MBB, SystemZ::NIHF64, 64, true); + + case SystemZ::ATOMIC_LOADW_MIN: + return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, + SystemZ::CCMASK_CMP_LE, 0); + case SystemZ::ATOMIC_LOAD_MIN_32: + return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, + SystemZ::CCMASK_CMP_LE, 32); + case SystemZ::ATOMIC_LOAD_MIN_64: + return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, + SystemZ::CCMASK_CMP_LE, 64); + + case SystemZ::ATOMIC_LOADW_MAX: + return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, + SystemZ::CCMASK_CMP_GE, 0); + case SystemZ::ATOMIC_LOAD_MAX_32: + return emitAtomicLoadMinMax(MI, MBB, SystemZ::CR, + SystemZ::CCMASK_CMP_GE, 32); + case SystemZ::ATOMIC_LOAD_MAX_64: + return emitAtomicLoadMinMax(MI, MBB, SystemZ::CGR, + SystemZ::CCMASK_CMP_GE, 64); + + case SystemZ::ATOMIC_LOADW_UMIN: + return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, + SystemZ::CCMASK_CMP_LE, 0); + case SystemZ::ATOMIC_LOAD_UMIN_32: + return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, + SystemZ::CCMASK_CMP_LE, 32); + case SystemZ::ATOMIC_LOAD_UMIN_64: + return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, + SystemZ::CCMASK_CMP_LE, 64); + + case SystemZ::ATOMIC_LOADW_UMAX: + return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, + SystemZ::CCMASK_CMP_GE, 0); + case SystemZ::ATOMIC_LOAD_UMAX_32: + return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLR, + SystemZ::CCMASK_CMP_GE, 32); + case SystemZ::ATOMIC_LOAD_UMAX_64: + return emitAtomicLoadMinMax(MI, MBB, SystemZ::CLGR, + SystemZ::CCMASK_CMP_GE, 64); + + case SystemZ::ATOMIC_CMP_SWAPW: + return emitAtomicCmpSwapW(MI, MBB); + case SystemZ::MVCSequence: + case SystemZ::MVCLoop: + return emitMemMemWrapper(MI, MBB, SystemZ::MVC); + case SystemZ::NCSequence: + case SystemZ::NCLoop: + return emitMemMemWrapper(MI, MBB, SystemZ::NC); + case SystemZ::OCSequence: + case SystemZ::OCLoop: + return emitMemMemWrapper(MI, MBB, SystemZ::OC); + case SystemZ::XCSequence: + case SystemZ::XCLoop: + return emitMemMemWrapper(MI, MBB, SystemZ::XC); + case SystemZ::CLCSequence: + case SystemZ::CLCLoop: + return emitMemMemWrapper(MI, MBB, SystemZ::CLC); + case SystemZ::CLSTLoop: + return emitStringWrapper(MI, MBB, SystemZ::CLST); + case SystemZ::MVSTLoop: + return emitStringWrapper(MI, MBB, SystemZ::MVST); + case SystemZ::SRSTLoop: + return emitStringWrapper(MI, MBB, SystemZ::SRST); + case SystemZ::TBEGIN: + return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, false); + case SystemZ::TBEGIN_nofloat: + return emitTransactionBegin(MI, MBB, SystemZ::TBEGIN, true); + case SystemZ::TBEGINC: + return emitTransactionBegin(MI, MBB, SystemZ::TBEGINC, true); + case SystemZ::LTEBRCompare_VecPseudo: + return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTEBR); + case SystemZ::LTDBRCompare_VecPseudo: + return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTDBR); + case SystemZ::LTXBRCompare_VecPseudo: + return emitLoadAndTestCmp0(MI, MBB, SystemZ::LTXBR); + + default: + llvm_unreachable("Unexpected instr type to insert"); + } +} |