diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td')
-rw-r--r-- | contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td | 825 |
1 files changed, 825 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td new file mode 100644 index 0000000..15541ef --- /dev/null +++ b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td @@ -0,0 +1,825 @@ +//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file describes the Sparc instructions in TableGen format. +// +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Instruction format superclass +//===----------------------------------------------------------------------===// + +include "SparcInstrFormats.td" + +//===----------------------------------------------------------------------===// +// Feature predicates. +//===----------------------------------------------------------------------===// + +// HasV9 - This predicate is true when the target processor supports V9 +// instructions. Note that the machine may be running in 32-bit mode. +def HasV9 : Predicate<"Subtarget.isV9()">; + +// HasNoV9 - This predicate is true when the target doesn't have V9 +// instructions. Use of this is just a hack for the isel not having proper +// costs for V8 instructions that are more expensive than their V9 ones. +def HasNoV9 : Predicate<"!Subtarget.isV9()">; + +// HasVIS - This is true when the target processor has VIS extensions. +def HasVIS : Predicate<"Subtarget.isVIS()">; + +// UseDeprecatedInsts - This predicate is true when the target processor is a +// V8, or when it is V9 but the V8 deprecated instructions are efficient enough +// to use when appropriate. In either of these cases, the instruction selector +// will pick deprecated instructions. +def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">; + +//===----------------------------------------------------------------------===// +// Instruction Pattern Stuff +//===----------------------------------------------------------------------===// + +def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>; + +def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>; + +def LO10 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, + MVT::i32); +}]>; + +def HI22 : SDNodeXForm<imm, [{ + // Transformation function: shift the immediate value down into the low bits. + return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32); +}]>; + +def SETHIimm : PatLeaf<(imm), [{ + return (((unsigned)N->getZExtValue() >> 10) << 10) == + (unsigned)N->getZExtValue(); +}], HI22>; + +// Addressing modes. +def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; +def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>; + +// Address operands +def MEMrr : Operand<i32> { + let PrintMethod = "printMemOperand"; + let MIOperandInfo = (ops IntRegs, IntRegs); +} +def MEMri : Operand<i32> { + let PrintMethod = "printMemOperand"; + let MIOperandInfo = (ops IntRegs, i32imm); +} + +// Branch targets have OtherVT type. +def brtarget : Operand<OtherVT>; +def calltarget : Operand<i32>; + +// Operand for printing out a condition code. +let PrintMethod = "printCCOperand" in + def CCOp : Operand<i32>; + +def SDTSPcmpfcc : +SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>; +def SDTSPbrcc : +SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; +def SDTSPselectcc : +SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>; +def SDTSPFTOI : +SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>; +def SDTSPITOF : +SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>; + +def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>; +def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>; +def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; +def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; + +def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>; +def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>; + +def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>; +def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>; + +def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>; +def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>; + +// These are target-independent nodes, but have target-specific formats. +def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; +def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, + SDTCisVT<1, i32> ]>; + +def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, + [SDNPHasChain, SDNPOutGlue]>; +def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, + [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; + +def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>; +def call : SDNode<"SPISD::CALL", SDT_SPCall, + [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, + SDNPVariadic]>; + +def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; +def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRet, + [SDNPHasChain, SDNPOptInGlue]>; + +def flushw : SDNode<"SPISD::FLUSHW", SDTNone, + [SDNPHasChain]>; + +def getPCX : Operand<i32> { + let PrintMethod = "printGetPCX"; +} + +//===----------------------------------------------------------------------===// +// SPARC Flag Conditions +//===----------------------------------------------------------------------===// + +// Note that these values must be kept in sync with the CCOp::CondCode enum +// values. +class ICC_VAL<int N> : PatLeaf<(i32 N)>; +def ICC_NE : ICC_VAL< 9>; // Not Equal +def ICC_E : ICC_VAL< 1>; // Equal +def ICC_G : ICC_VAL<10>; // Greater +def ICC_LE : ICC_VAL< 2>; // Less or Equal +def ICC_GE : ICC_VAL<11>; // Greater or Equal +def ICC_L : ICC_VAL< 3>; // Less +def ICC_GU : ICC_VAL<12>; // Greater Unsigned +def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned +def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned +def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned +def ICC_POS : ICC_VAL<14>; // Positive +def ICC_NEG : ICC_VAL< 6>; // Negative +def ICC_VC : ICC_VAL<15>; // Overflow Clear +def ICC_VS : ICC_VAL< 7>; // Overflow Set + +class FCC_VAL<int N> : PatLeaf<(i32 N)>; +def FCC_U : FCC_VAL<23>; // Unordered +def FCC_G : FCC_VAL<22>; // Greater +def FCC_UG : FCC_VAL<21>; // Unordered or Greater +def FCC_L : FCC_VAL<20>; // Less +def FCC_UL : FCC_VAL<19>; // Unordered or Less +def FCC_LG : FCC_VAL<18>; // Less or Greater +def FCC_NE : FCC_VAL<17>; // Not Equal +def FCC_E : FCC_VAL<25>; // Equal +def FCC_UE : FCC_VAL<24>; // Unordered or Equal +def FCC_GE : FCC_VAL<25>; // Greater or Equal +def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal +def FCC_LE : FCC_VAL<27>; // Less or Equal +def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal +def FCC_O : FCC_VAL<29>; // Ordered + +//===----------------------------------------------------------------------===// +// Instruction Class Templates +//===----------------------------------------------------------------------===// + +/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot. +multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> { + def rr : F3_1<2, Op3Val, + (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), + !strconcat(OpcStr, " $b, $c, $dst"), + [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>; + def ri : F3_2<2, Op3Val, + (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), + !strconcat(OpcStr, " $b, $c, $dst"), + [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>; +} + +/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no +/// pattern. +multiclass F3_12np<string OpcStr, bits<6> Op3Val> { + def rr : F3_1<2, Op3Val, + (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), + !strconcat(OpcStr, " $b, $c, $dst"), []>; + def ri : F3_2<2, Op3Val, + (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), + !strconcat(OpcStr, " $b, $c, $dst"), []>; +} + +//===----------------------------------------------------------------------===// +// Instructions +//===----------------------------------------------------------------------===// + +// Pseudo instructions. +class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> + : InstSP<outs, ins, asmstr, pattern>; + +// GETPCX for PIC +let Defs = [O7] in { + def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >; +} + +let Defs = [O6], Uses = [O6] in { +def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), + "!ADJCALLSTACKDOWN $amt", + [(callseq_start timm:$amt)]>; +def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), + "!ADJCALLSTACKUP $amt1", + [(callseq_end timm:$amt1, timm:$amt2)]>; +} + +let hasSideEffects = 1, mayStore = 1 in { + let rd = 0, rs1 = 0, rs2 = 0 in + def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins), + "flushw", + [(flushw)]>, Requires<[HasV9]>; + let rd = 0, rs1 = 1, simm13 = 3 in + def TA3 : F3_2<0b10, 0b111010, (outs), (ins), + "ta 3", + [(flushw)]>; +} + +def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val), + "unimp $val", []>; + +// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the +// fpmover pass. +let Predicates = [HasNoV9] in { // Only emit these in V8 mode. + def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src), + "!FpMOVD $src, $dst", []>; + def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src), + "!FpNEGD $src, $dst", + [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>; + def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src), + "!FpABSD $src, $dst", + [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>; +} + +// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after +// instruction selection into a branch sequence. This has to handle all +// permutations of selection between i32/f32/f64 on ICC and FCC. + // Expanded after instruction selection. +let Uses = [ICC], usesCustomInserter = 1 in { + def SELECT_CC_Int_ICC + : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), + "; SELECT_CC_Int_ICC PSEUDO!", + [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F, + imm:$Cond))]>; + def SELECT_CC_FP_ICC + : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), + "; SELECT_CC_FP_ICC PSEUDO!", + [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F, + imm:$Cond))]>; + + def SELECT_CC_DFP_ICC + : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), + "; SELECT_CC_DFP_ICC PSEUDO!", + [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F, + imm:$Cond))]>; +} + +let usesCustomInserter = 1, Uses = [FCC] in { + + def SELECT_CC_Int_FCC + : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), + "; SELECT_CC_Int_FCC PSEUDO!", + [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F, + imm:$Cond))]>; + + def SELECT_CC_FP_FCC + : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), + "; SELECT_CC_FP_FCC PSEUDO!", + [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F, + imm:$Cond))]>; + def SELECT_CC_DFP_FCC + : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), + "; SELECT_CC_DFP_FCC PSEUDO!", + [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F, + imm:$Cond))]>; +} + + +// Section A.3 - Synthetic Instructions, p. 85 +// special cases of JMPL: +let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in { + let rd = O7.Num, rs1 = G0.Num in + def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val), + "jmp %o7+$val", [(retflag simm13:$val)]>; + + let rd = I7.Num, rs1 = G0.Num in + def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val), + "jmp %i7+$val", []>; +} + +// Section B.1 - Load Integer Instructions, p. 90 +def LDSBrr : F3_1<3, 0b001001, + (outs IntRegs:$dst), (ins MEMrr:$addr), + "ldsb [$addr], $dst", + [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>; +def LDSBri : F3_2<3, 0b001001, + (outs IntRegs:$dst), (ins MEMri:$addr), + "ldsb [$addr], $dst", + [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>; +def LDSHrr : F3_1<3, 0b001010, + (outs IntRegs:$dst), (ins MEMrr:$addr), + "ldsh [$addr], $dst", + [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>; +def LDSHri : F3_2<3, 0b001010, + (outs IntRegs:$dst), (ins MEMri:$addr), + "ldsh [$addr], $dst", + [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>; +def LDUBrr : F3_1<3, 0b000001, + (outs IntRegs:$dst), (ins MEMrr:$addr), + "ldub [$addr], $dst", + [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>; +def LDUBri : F3_2<3, 0b000001, + (outs IntRegs:$dst), (ins MEMri:$addr), + "ldub [$addr], $dst", + [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>; +def LDUHrr : F3_1<3, 0b000010, + (outs IntRegs:$dst), (ins MEMrr:$addr), + "lduh [$addr], $dst", + [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>; +def LDUHri : F3_2<3, 0b000010, + (outs IntRegs:$dst), (ins MEMri:$addr), + "lduh [$addr], $dst", + [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>; +def LDrr : F3_1<3, 0b000000, + (outs IntRegs:$dst), (ins MEMrr:$addr), + "ld [$addr], $dst", + [(set IntRegs:$dst, (load ADDRrr:$addr))]>; +def LDri : F3_2<3, 0b000000, + (outs IntRegs:$dst), (ins MEMri:$addr), + "ld [$addr], $dst", + [(set IntRegs:$dst, (load ADDRri:$addr))]>; + +// Section B.2 - Load Floating-point Instructions, p. 92 +def LDFrr : F3_1<3, 0b100000, + (outs FPRegs:$dst), (ins MEMrr:$addr), + "ld [$addr], $dst", + [(set FPRegs:$dst, (load ADDRrr:$addr))]>; +def LDFri : F3_2<3, 0b100000, + (outs FPRegs:$dst), (ins MEMri:$addr), + "ld [$addr], $dst", + [(set FPRegs:$dst, (load ADDRri:$addr))]>; +def LDDFrr : F3_1<3, 0b100011, + (outs DFPRegs:$dst), (ins MEMrr:$addr), + "ldd [$addr], $dst", + [(set DFPRegs:$dst, (load ADDRrr:$addr))]>; +def LDDFri : F3_2<3, 0b100011, + (outs DFPRegs:$dst), (ins MEMri:$addr), + "ldd [$addr], $dst", + [(set DFPRegs:$dst, (load ADDRri:$addr))]>; + +// Section B.4 - Store Integer Instructions, p. 95 +def STBrr : F3_1<3, 0b000101, + (outs), (ins MEMrr:$addr, IntRegs:$src), + "stb $src, [$addr]", + [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>; +def STBri : F3_2<3, 0b000101, + (outs), (ins MEMri:$addr, IntRegs:$src), + "stb $src, [$addr]", + [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>; +def STHrr : F3_1<3, 0b000110, + (outs), (ins MEMrr:$addr, IntRegs:$src), + "sth $src, [$addr]", + [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>; +def STHri : F3_2<3, 0b000110, + (outs), (ins MEMri:$addr, IntRegs:$src), + "sth $src, [$addr]", + [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>; +def STrr : F3_1<3, 0b000100, + (outs), (ins MEMrr:$addr, IntRegs:$src), + "st $src, [$addr]", + [(store IntRegs:$src, ADDRrr:$addr)]>; +def STri : F3_2<3, 0b000100, + (outs), (ins MEMri:$addr, IntRegs:$src), + "st $src, [$addr]", + [(store IntRegs:$src, ADDRri:$addr)]>; + +// Section B.5 - Store Floating-point Instructions, p. 97 +def STFrr : F3_1<3, 0b100100, + (outs), (ins MEMrr:$addr, FPRegs:$src), + "st $src, [$addr]", + [(store FPRegs:$src, ADDRrr:$addr)]>; +def STFri : F3_2<3, 0b100100, + (outs), (ins MEMri:$addr, FPRegs:$src), + "st $src, [$addr]", + [(store FPRegs:$src, ADDRri:$addr)]>; +def STDFrr : F3_1<3, 0b100111, + (outs), (ins MEMrr:$addr, DFPRegs:$src), + "std $src, [$addr]", + [(store DFPRegs:$src, ADDRrr:$addr)]>; +def STDFri : F3_2<3, 0b100111, + (outs), (ins MEMri:$addr, DFPRegs:$src), + "std $src, [$addr]", + [(store DFPRegs:$src, ADDRri:$addr)]>; + +// Section B.9 - SETHI Instruction, p. 104 +def SETHIi: F2_1<0b100, + (outs IntRegs:$dst), (ins i32imm:$src), + "sethi $src, $dst", + [(set IntRegs:$dst, SETHIimm:$src)]>; + +// Section B.10 - NOP Instruction, p. 105 +// (It's a special case of SETHI) +let rd = 0, imm22 = 0 in + def NOP : F2_1<0b100, (outs), (ins), "nop", []>; + +// Section B.11 - Logical Instructions, p. 106 +defm AND : F3_12<"and", 0b000001, and>; + +def ANDNrr : F3_1<2, 0b000101, + (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), + "andn $b, $c, $dst", + [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>; +def ANDNri : F3_2<2, 0b000101, + (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), + "andn $b, $c, $dst", []>; + +defm OR : F3_12<"or", 0b000010, or>; + +def ORNrr : F3_1<2, 0b000110, + (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), + "orn $b, $c, $dst", + [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>; +def ORNri : F3_2<2, 0b000110, + (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), + "orn $b, $c, $dst", []>; +defm XOR : F3_12<"xor", 0b000011, xor>; + +def XNORrr : F3_1<2, 0b000111, + (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), + "xnor $b, $c, $dst", + [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>; +def XNORri : F3_2<2, 0b000111, + (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c), + "xnor $b, $c, $dst", []>; + +// Section B.12 - Shift Instructions, p. 107 +defm SLL : F3_12<"sll", 0b100101, shl>; +defm SRL : F3_12<"srl", 0b100110, srl>; +defm SRA : F3_12<"sra", 0b100111, sra>; + +// Section B.13 - Add Instructions, p. 108 +defm ADD : F3_12<"add", 0b000000, add>; + +// "LEA" forms of add (patterns to make tblgen happy) +def LEA_ADDri : F3_2<2, 0b000000, + (outs IntRegs:$dst), (ins MEMri:$addr), + "add ${addr:arith}, $dst", + [(set IntRegs:$dst, ADDRri:$addr)]>; + +let Defs = [ICC] in + defm ADDCC : F3_12<"addcc", 0b010000, addc>; + +let Uses = [ICC] in + defm ADDX : F3_12<"addx", 0b001000, adde>; + +// Section B.15 - Subtract Instructions, p. 110 +defm SUB : F3_12 <"sub" , 0b000100, sub>; +let Uses = [ICC] in + defm SUBX : F3_12 <"subx" , 0b001100, sube>; + +let Defs = [ICC] in + defm SUBCC : F3_12 <"subcc", 0b010100, SPcmpicc>; + +let Uses = [ICC], Defs = [ICC] in + def SUBXCCrr: F3_1<2, 0b011100, + (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), + "subxcc $b, $c, $dst", []>; + + +// Section B.18 - Multiply Instructions, p. 113 +let Defs = [Y] in { + defm UMUL : F3_12np<"umul", 0b001010>; + defm SMUL : F3_12 <"smul", 0b001011, mul>; +} + +// Section B.19 - Divide Instructions, p. 115 +let Defs = [Y] in { + defm UDIV : F3_12np<"udiv", 0b001110>; + defm SDIV : F3_12np<"sdiv", 0b001111>; +} + +// Section B.20 - SAVE and RESTORE, p. 117 +defm SAVE : F3_12np<"save" , 0b111100>; +defm RESTORE : F3_12np<"restore", 0b111101>; + +// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119 + +// conditional branch class: +class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern> + : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> { + let isBranch = 1; + let isTerminator = 1; + let hasDelaySlot = 1; +} + +let isBarrier = 1 in + def BA : BranchSP<0b1000, (ins brtarget:$dst), + "ba $dst", + [(br bb:$dst)]>; + +// FIXME: the encoding for the JIT should look at the condition field. +let Uses = [ICC] in + def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc), + "b$cc $dst", + [(SPbricc bb:$dst, imm:$cc)]>; + + +// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121 + +// floating-point conditional branch class: +class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern> + : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> { + let isBranch = 1; + let isTerminator = 1; + let hasDelaySlot = 1; +} + +// FIXME: the encoding for the JIT should look at the condition field. +let Uses = [FCC] in + def FBCOND : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc), + "fb$cc $dst", + [(SPbrfcc bb:$dst, imm:$cc)]>; + + +// Section B.24 - Call and Link Instruction, p. 125 +// This is the only Format 1 instruction +let Uses = [O6], + hasDelaySlot = 1, isCall = 1, + Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7, + D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15, + ICC, FCC, Y] in { + def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops), + "call $dst", []> { + bits<30> disp; + let op = 1; + let Inst{29-0} = disp; + } + + // indirect calls + def JMPLrr : F3_1<2, 0b111000, + (outs), (ins MEMrr:$ptr, variable_ops), + "call $ptr", + [(call ADDRrr:$ptr)]>; + def JMPLri : F3_2<2, 0b111000, + (outs), (ins MEMri:$ptr, variable_ops), + "call $ptr", + [(call ADDRri:$ptr)]>; +} + +// Section B.28 - Read State Register Instructions +let Uses = [Y] in + def RDY : F3_1<2, 0b101000, + (outs IntRegs:$dst), (ins), + "rd %y, $dst", []>; + +// Section B.29 - Write State Register Instructions +let Defs = [Y] in { + def WRYrr : F3_1<2, 0b110000, + (outs), (ins IntRegs:$b, IntRegs:$c), + "wr $b, $c, %y", []>; + def WRYri : F3_2<2, 0b110000, + (outs), (ins IntRegs:$b, i32imm:$c), + "wr $b, $c, %y", []>; +} +// Convert Integer to Floating-point Instructions, p. 141 +def FITOS : F3_3<2, 0b110100, 0b011000100, + (outs FPRegs:$dst), (ins FPRegs:$src), + "fitos $src, $dst", + [(set FPRegs:$dst, (SPitof FPRegs:$src))]>; +def FITOD : F3_3<2, 0b110100, 0b011001000, + (outs DFPRegs:$dst), (ins FPRegs:$src), + "fitod $src, $dst", + [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>; + +// Convert Floating-point to Integer Instructions, p. 142 +def FSTOI : F3_3<2, 0b110100, 0b011010001, + (outs FPRegs:$dst), (ins FPRegs:$src), + "fstoi $src, $dst", + [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>; +def FDTOI : F3_3<2, 0b110100, 0b011010010, + (outs FPRegs:$dst), (ins DFPRegs:$src), + "fdtoi $src, $dst", + [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>; + +// Convert between Floating-point Formats Instructions, p. 143 +def FSTOD : F3_3<2, 0b110100, 0b011001001, + (outs DFPRegs:$dst), (ins FPRegs:$src), + "fstod $src, $dst", + [(set DFPRegs:$dst, (fextend FPRegs:$src))]>; +def FDTOS : F3_3<2, 0b110100, 0b011000110, + (outs FPRegs:$dst), (ins DFPRegs:$src), + "fdtos $src, $dst", + [(set FPRegs:$dst, (fround DFPRegs:$src))]>; + +// Floating-point Move Instructions, p. 144 +def FMOVS : F3_3<2, 0b110100, 0b000000001, + (outs FPRegs:$dst), (ins FPRegs:$src), + "fmovs $src, $dst", []>; +def FNEGS : F3_3<2, 0b110100, 0b000000101, + (outs FPRegs:$dst), (ins FPRegs:$src), + "fnegs $src, $dst", + [(set FPRegs:$dst, (fneg FPRegs:$src))]>; +def FABSS : F3_3<2, 0b110100, 0b000001001, + (outs FPRegs:$dst), (ins FPRegs:$src), + "fabss $src, $dst", + [(set FPRegs:$dst, (fabs FPRegs:$src))]>; + + +// Floating-point Square Root Instructions, p.145 +def FSQRTS : F3_3<2, 0b110100, 0b000101001, + (outs FPRegs:$dst), (ins FPRegs:$src), + "fsqrts $src, $dst", + [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>; +def FSQRTD : F3_3<2, 0b110100, 0b000101010, + (outs DFPRegs:$dst), (ins DFPRegs:$src), + "fsqrtd $src, $dst", + [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>; + + + +// Floating-point Add and Subtract Instructions, p. 146 +def FADDS : F3_3<2, 0b110100, 0b001000001, + (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), + "fadds $src1, $src2, $dst", + [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>; +def FADDD : F3_3<2, 0b110100, 0b001000010, + (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), + "faddd $src1, $src2, $dst", + [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>; +def FSUBS : F3_3<2, 0b110100, 0b001000101, + (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), + "fsubs $src1, $src2, $dst", + [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>; +def FSUBD : F3_3<2, 0b110100, 0b001000110, + (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), + "fsubd $src1, $src2, $dst", + [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>; + +// Floating-point Multiply and Divide Instructions, p. 147 +def FMULS : F3_3<2, 0b110100, 0b001001001, + (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), + "fmuls $src1, $src2, $dst", + [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>; +def FMULD : F3_3<2, 0b110100, 0b001001010, + (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), + "fmuld $src1, $src2, $dst", + [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>; +def FSMULD : F3_3<2, 0b110100, 0b001101001, + (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), + "fsmuld $src1, $src2, $dst", + [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1), + (fextend FPRegs:$src2)))]>; +def FDIVS : F3_3<2, 0b110100, 0b001001101, + (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2), + "fdivs $src1, $src2, $dst", + [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>; +def FDIVD : F3_3<2, 0b110100, 0b001001110, + (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2), + "fdivd $src1, $src2, $dst", + [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>; + +// Floating-point Compare Instructions, p. 148 +// Note: the 2nd template arg is different for these guys. +// Note 2: the result of a FCMP is not available until the 2nd cycle +// after the instr is retired, but there is no interlock. This behavior +// is modelled with a forced noop after the instruction. +let Defs = [FCC] in { + def FCMPS : F3_3<2, 0b110101, 0b001010001, + (outs), (ins FPRegs:$src1, FPRegs:$src2), + "fcmps $src1, $src2\n\tnop", + [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>; + def FCMPD : F3_3<2, 0b110101, 0b001010010, + (outs), (ins DFPRegs:$src1, DFPRegs:$src2), + "fcmpd $src1, $src2\n\tnop", + [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>; +} + +//===----------------------------------------------------------------------===// +// V9 Instructions +//===----------------------------------------------------------------------===// + +// V9 Conditional Moves. +let Predicates = [HasV9], Constraints = "$T = $dst" in { + // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual. + // FIXME: Add instruction encodings for the JIT some day. + let Uses = [ICC] in { + def MOVICCrr + : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc), + "mov$cc %icc, $F, $dst", + [(set IntRegs:$dst, + (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>; + def MOVICCri + : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc), + "mov$cc %icc, $F, $dst", + [(set IntRegs:$dst, + (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>; + } + + let Uses = [FCC] in { + def MOVFCCrr + : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc), + "mov$cc %fcc0, $F, $dst", + [(set IntRegs:$dst, + (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>; + def MOVFCCri + : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc), + "mov$cc %fcc0, $F, $dst", + [(set IntRegs:$dst, + (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>; + } + + let Uses = [ICC] in { + def FMOVS_ICC + : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc), + "fmovs$cc %icc, $F, $dst", + [(set FPRegs:$dst, + (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>; + def FMOVD_ICC + : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc), + "fmovd$cc %icc, $F, $dst", + [(set DFPRegs:$dst, + (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>; + } + + let Uses = [FCC] in { + def FMOVS_FCC + : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc), + "fmovs$cc %fcc0, $F, $dst", + [(set FPRegs:$dst, + (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>; + def FMOVD_FCC + : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc), + "fmovd$cc %fcc0, $F, $dst", + [(set DFPRegs:$dst, + (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>; + } + +} + +// Floating-Point Move Instructions, p. 164 of the V9 manual. +let Predicates = [HasV9] in { + def FMOVD : F3_3<2, 0b110100, 0b000000010, + (outs DFPRegs:$dst), (ins DFPRegs:$src), + "fmovd $src, $dst", []>; + def FNEGD : F3_3<2, 0b110100, 0b000000110, + (outs DFPRegs:$dst), (ins DFPRegs:$src), + "fnegd $src, $dst", + [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>; + def FABSD : F3_3<2, 0b110100, 0b000001010, + (outs DFPRegs:$dst), (ins DFPRegs:$src), + "fabsd $src, $dst", + [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>; +} + +// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear +// the top 32-bits before using it. To do this clearing, we use a SLLri X,0. +def POPCrr : F3_1<2, 0b101110, + (outs IntRegs:$dst), (ins IntRegs:$src), + "popc $src, $dst", []>, Requires<[HasV9]>; +def : Pat<(ctpop IntRegs:$src), + (POPCrr (SLLri IntRegs:$src, 0))>; + +//===----------------------------------------------------------------------===// +// Non-Instruction Patterns +//===----------------------------------------------------------------------===// + +// Small immediates. +def : Pat<(i32 simm13:$val), + (ORri G0, imm:$val)>; +// Arbitrary immediates. +def : Pat<(i32 imm:$val), + (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>; + +// subc +def : Pat<(subc IntRegs:$b, IntRegs:$c), + (SUBCCrr IntRegs:$b, IntRegs:$c)>; +def : Pat<(subc IntRegs:$b, simm13:$val), + (SUBCCri IntRegs:$b, imm:$val)>; + +// Global addresses, constant pool entries +def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; +def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>; +def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; +def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>; + +// Add reg, lo. This is used when taking the addr of a global/constpool entry. +def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)), + (ADDri IntRegs:$r, tglobaladdr:$in)>; +def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)), + (ADDri IntRegs:$r, tconstpool:$in)>; + +// Calls: +def : Pat<(call tglobaladdr:$dst), + (CALL tglobaladdr:$dst)>; +def : Pat<(call texternalsym:$dst), + (CALL texternalsym:$dst)>; + +// Map integer extload's to zextloads. +def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; +def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; +def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; +def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>; +def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; +def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>; + +// zextload bool -> zextload byte +def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; +def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; |