summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td')
-rw-r--r--contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td825
1 files changed, 825 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td
new file mode 100644
index 0000000..15541ef
--- /dev/null
+++ b/contrib/llvm/lib/Target/Sparc/SparcInstrInfo.td
@@ -0,0 +1,825 @@
+//===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Sparc instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Instruction format superclass
+//===----------------------------------------------------------------------===//
+
+include "SparcInstrFormats.td"
+
+//===----------------------------------------------------------------------===//
+// Feature predicates.
+//===----------------------------------------------------------------------===//
+
+// HasV9 - This predicate is true when the target processor supports V9
+// instructions. Note that the machine may be running in 32-bit mode.
+def HasV9 : Predicate<"Subtarget.isV9()">;
+
+// HasNoV9 - This predicate is true when the target doesn't have V9
+// instructions. Use of this is just a hack for the isel not having proper
+// costs for V8 instructions that are more expensive than their V9 ones.
+def HasNoV9 : Predicate<"!Subtarget.isV9()">;
+
+// HasVIS - This is true when the target processor has VIS extensions.
+def HasVIS : Predicate<"Subtarget.isVIS()">;
+
+// UseDeprecatedInsts - This predicate is true when the target processor is a
+// V8, or when it is V9 but the V8 deprecated instructions are efficient enough
+// to use when appropriate. In either of these cases, the instruction selector
+// will pick deprecated instructions.
+def UseDeprecatedInsts : Predicate<"Subtarget.useDeprecatedV8Instructions()">;
+
+//===----------------------------------------------------------------------===//
+// Instruction Pattern Stuff
+//===----------------------------------------------------------------------===//
+
+def simm11 : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>;
+
+def simm13 : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>;
+
+def LO10 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023,
+ MVT::i32);
+}]>;
+
+def HI22 : SDNodeXForm<imm, [{
+ // Transformation function: shift the immediate value down into the low bits.
+ return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32);
+}]>;
+
+def SETHIimm : PatLeaf<(imm), [{
+ return (((unsigned)N->getZExtValue() >> 10) << 10) ==
+ (unsigned)N->getZExtValue();
+}], HI22>;
+
+// Addressing modes.
+def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
+def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
+
+// Address operands
+def MEMrr : Operand<i32> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops IntRegs, IntRegs);
+}
+def MEMri : Operand<i32> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops IntRegs, i32imm);
+}
+
+// Branch targets have OtherVT type.
+def brtarget : Operand<OtherVT>;
+def calltarget : Operand<i32>;
+
+// Operand for printing out a condition code.
+let PrintMethod = "printCCOperand" in
+ def CCOp : Operand<i32>;
+
+def SDTSPcmpfcc :
+SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>;
+def SDTSPbrcc :
+SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>;
+def SDTSPselectcc :
+SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>;
+def SDTSPFTOI :
+SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>;
+def SDTSPITOF :
+SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>;
+
+def SPcmpicc : SDNode<"SPISD::CMPICC", SDTIntBinOp, [SDNPOutGlue]>;
+def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>;
+def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
+def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>;
+
+def SPhi : SDNode<"SPISD::Hi", SDTIntUnaryOp>;
+def SPlo : SDNode<"SPISD::Lo", SDTIntUnaryOp>;
+
+def SPftoi : SDNode<"SPISD::FTOI", SDTSPFTOI>;
+def SPitof : SDNode<"SPISD::ITOF", SDTSPITOF>;
+
+def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>;
+def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>;
+
+// These are target-independent nodes, but have target-specific formats.
+def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
+def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
+ SDTCisVT<1, i32> ]>;
+
+def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
+ [SDNPHasChain, SDNPOutGlue]>;
+def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+
+def SDT_SPCall : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>;
+def call : SDNode<"SPISD::CALL", SDT_SPCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPVariadic]>;
+
+def SDT_SPRet : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
+def retflag : SDNode<"SPISD::RET_FLAG", SDT_SPRet,
+ [SDNPHasChain, SDNPOptInGlue]>;
+
+def flushw : SDNode<"SPISD::FLUSHW", SDTNone,
+ [SDNPHasChain]>;
+
+def getPCX : Operand<i32> {
+ let PrintMethod = "printGetPCX";
+}
+
+//===----------------------------------------------------------------------===//
+// SPARC Flag Conditions
+//===----------------------------------------------------------------------===//
+
+// Note that these values must be kept in sync with the CCOp::CondCode enum
+// values.
+class ICC_VAL<int N> : PatLeaf<(i32 N)>;
+def ICC_NE : ICC_VAL< 9>; // Not Equal
+def ICC_E : ICC_VAL< 1>; // Equal
+def ICC_G : ICC_VAL<10>; // Greater
+def ICC_LE : ICC_VAL< 2>; // Less or Equal
+def ICC_GE : ICC_VAL<11>; // Greater or Equal
+def ICC_L : ICC_VAL< 3>; // Less
+def ICC_GU : ICC_VAL<12>; // Greater Unsigned
+def ICC_LEU : ICC_VAL< 4>; // Less or Equal Unsigned
+def ICC_CC : ICC_VAL<13>; // Carry Clear/Great or Equal Unsigned
+def ICC_CS : ICC_VAL< 5>; // Carry Set/Less Unsigned
+def ICC_POS : ICC_VAL<14>; // Positive
+def ICC_NEG : ICC_VAL< 6>; // Negative
+def ICC_VC : ICC_VAL<15>; // Overflow Clear
+def ICC_VS : ICC_VAL< 7>; // Overflow Set
+
+class FCC_VAL<int N> : PatLeaf<(i32 N)>;
+def FCC_U : FCC_VAL<23>; // Unordered
+def FCC_G : FCC_VAL<22>; // Greater
+def FCC_UG : FCC_VAL<21>; // Unordered or Greater
+def FCC_L : FCC_VAL<20>; // Less
+def FCC_UL : FCC_VAL<19>; // Unordered or Less
+def FCC_LG : FCC_VAL<18>; // Less or Greater
+def FCC_NE : FCC_VAL<17>; // Not Equal
+def FCC_E : FCC_VAL<25>; // Equal
+def FCC_UE : FCC_VAL<24>; // Unordered or Equal
+def FCC_GE : FCC_VAL<25>; // Greater or Equal
+def FCC_UGE : FCC_VAL<26>; // Unordered or Greater or Equal
+def FCC_LE : FCC_VAL<27>; // Less or Equal
+def FCC_ULE : FCC_VAL<28>; // Unordered or Less or Equal
+def FCC_O : FCC_VAL<29>; // Ordered
+
+//===----------------------------------------------------------------------===//
+// Instruction Class Templates
+//===----------------------------------------------------------------------===//
+
+/// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot.
+multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode> {
+ def rr : F3_1<2, Op3Val,
+ (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+ !strconcat(OpcStr, " $b, $c, $dst"),
+ [(set IntRegs:$dst, (OpNode IntRegs:$b, IntRegs:$c))]>;
+ def ri : F3_2<2, Op3Val,
+ (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
+ !strconcat(OpcStr, " $b, $c, $dst"),
+ [(set IntRegs:$dst, (OpNode IntRegs:$b, simm13:$c))]>;
+}
+
+/// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no
+/// pattern.
+multiclass F3_12np<string OpcStr, bits<6> Op3Val> {
+ def rr : F3_1<2, Op3Val,
+ (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+ !strconcat(OpcStr, " $b, $c, $dst"), []>;
+ def ri : F3_2<2, Op3Val,
+ (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
+ !strconcat(OpcStr, " $b, $c, $dst"), []>;
+}
+
+//===----------------------------------------------------------------------===//
+// Instructions
+//===----------------------------------------------------------------------===//
+
+// Pseudo instructions.
+class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : InstSP<outs, ins, asmstr, pattern>;
+
+// GETPCX for PIC
+let Defs = [O7] in {
+ def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >;
+}
+
+let Defs = [O6], Uses = [O6] in {
+def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
+ "!ADJCALLSTACKDOWN $amt",
+ [(callseq_start timm:$amt)]>;
+def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "!ADJCALLSTACKUP $amt1",
+ [(callseq_end timm:$amt1, timm:$amt2)]>;
+}
+
+let hasSideEffects = 1, mayStore = 1 in {
+ let rd = 0, rs1 = 0, rs2 = 0 in
+ def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins),
+ "flushw",
+ [(flushw)]>, Requires<[HasV9]>;
+ let rd = 0, rs1 = 1, simm13 = 3 in
+ def TA3 : F3_2<0b10, 0b111010, (outs), (ins),
+ "ta 3",
+ [(flushw)]>;
+}
+
+def UNIMP : F2_1<0b000, (outs), (ins i32imm:$val),
+ "unimp $val", []>;
+
+// FpMOVD/FpNEGD/FpABSD - These are lowered to single-precision ops by the
+// fpmover pass.
+let Predicates = [HasNoV9] in { // Only emit these in V8 mode.
+ def FpMOVD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
+ "!FpMOVD $src, $dst", []>;
+ def FpNEGD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
+ "!FpNEGD $src, $dst",
+ [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
+ def FpABSD : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$src),
+ "!FpABSD $src, $dst",
+ [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
+}
+
+// SELECT_CC_* - Used to implement the SELECT_CC DAG operation. Expanded after
+// instruction selection into a branch sequence. This has to handle all
+// permutations of selection between i32/f32/f64 on ICC and FCC.
+ // Expanded after instruction selection.
+let Uses = [ICC], usesCustomInserter = 1 in {
+ def SELECT_CC_Int_ICC
+ : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_Int_ICC PSEUDO!",
+ [(set IntRegs:$dst, (SPselecticc IntRegs:$T, IntRegs:$F,
+ imm:$Cond))]>;
+ def SELECT_CC_FP_ICC
+ : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_FP_ICC PSEUDO!",
+ [(set FPRegs:$dst, (SPselecticc FPRegs:$T, FPRegs:$F,
+ imm:$Cond))]>;
+
+ def SELECT_CC_DFP_ICC
+ : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_DFP_ICC PSEUDO!",
+ [(set DFPRegs:$dst, (SPselecticc DFPRegs:$T, DFPRegs:$F,
+ imm:$Cond))]>;
+}
+
+let usesCustomInserter = 1, Uses = [FCC] in {
+
+ def SELECT_CC_Int_FCC
+ : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_Int_FCC PSEUDO!",
+ [(set IntRegs:$dst, (SPselectfcc IntRegs:$T, IntRegs:$F,
+ imm:$Cond))]>;
+
+ def SELECT_CC_FP_FCC
+ : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_FP_FCC PSEUDO!",
+ [(set FPRegs:$dst, (SPselectfcc FPRegs:$T, FPRegs:$F,
+ imm:$Cond))]>;
+ def SELECT_CC_DFP_FCC
+ : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond),
+ "; SELECT_CC_DFP_FCC PSEUDO!",
+ [(set DFPRegs:$dst, (SPselectfcc DFPRegs:$T, DFPRegs:$F,
+ imm:$Cond))]>;
+}
+
+
+// Section A.3 - Synthetic Instructions, p. 85
+// special cases of JMPL:
+let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1 in {
+ let rd = O7.Num, rs1 = G0.Num in
+ def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
+ "jmp %o7+$val", [(retflag simm13:$val)]>;
+
+ let rd = I7.Num, rs1 = G0.Num in
+ def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val),
+ "jmp %i7+$val", []>;
+}
+
+// Section B.1 - Load Integer Instructions, p. 90
+def LDSBrr : F3_1<3, 0b001001,
+ (outs IntRegs:$dst), (ins MEMrr:$addr),
+ "ldsb [$addr], $dst",
+ [(set IntRegs:$dst, (sextloadi8 ADDRrr:$addr))]>;
+def LDSBri : F3_2<3, 0b001001,
+ (outs IntRegs:$dst), (ins MEMri:$addr),
+ "ldsb [$addr], $dst",
+ [(set IntRegs:$dst, (sextloadi8 ADDRri:$addr))]>;
+def LDSHrr : F3_1<3, 0b001010,
+ (outs IntRegs:$dst), (ins MEMrr:$addr),
+ "ldsh [$addr], $dst",
+ [(set IntRegs:$dst, (sextloadi16 ADDRrr:$addr))]>;
+def LDSHri : F3_2<3, 0b001010,
+ (outs IntRegs:$dst), (ins MEMri:$addr),
+ "ldsh [$addr], $dst",
+ [(set IntRegs:$dst, (sextloadi16 ADDRri:$addr))]>;
+def LDUBrr : F3_1<3, 0b000001,
+ (outs IntRegs:$dst), (ins MEMrr:$addr),
+ "ldub [$addr], $dst",
+ [(set IntRegs:$dst, (zextloadi8 ADDRrr:$addr))]>;
+def LDUBri : F3_2<3, 0b000001,
+ (outs IntRegs:$dst), (ins MEMri:$addr),
+ "ldub [$addr], $dst",
+ [(set IntRegs:$dst, (zextloadi8 ADDRri:$addr))]>;
+def LDUHrr : F3_1<3, 0b000010,
+ (outs IntRegs:$dst), (ins MEMrr:$addr),
+ "lduh [$addr], $dst",
+ [(set IntRegs:$dst, (zextloadi16 ADDRrr:$addr))]>;
+def LDUHri : F3_2<3, 0b000010,
+ (outs IntRegs:$dst), (ins MEMri:$addr),
+ "lduh [$addr], $dst",
+ [(set IntRegs:$dst, (zextloadi16 ADDRri:$addr))]>;
+def LDrr : F3_1<3, 0b000000,
+ (outs IntRegs:$dst), (ins MEMrr:$addr),
+ "ld [$addr], $dst",
+ [(set IntRegs:$dst, (load ADDRrr:$addr))]>;
+def LDri : F3_2<3, 0b000000,
+ (outs IntRegs:$dst), (ins MEMri:$addr),
+ "ld [$addr], $dst",
+ [(set IntRegs:$dst, (load ADDRri:$addr))]>;
+
+// Section B.2 - Load Floating-point Instructions, p. 92
+def LDFrr : F3_1<3, 0b100000,
+ (outs FPRegs:$dst), (ins MEMrr:$addr),
+ "ld [$addr], $dst",
+ [(set FPRegs:$dst, (load ADDRrr:$addr))]>;
+def LDFri : F3_2<3, 0b100000,
+ (outs FPRegs:$dst), (ins MEMri:$addr),
+ "ld [$addr], $dst",
+ [(set FPRegs:$dst, (load ADDRri:$addr))]>;
+def LDDFrr : F3_1<3, 0b100011,
+ (outs DFPRegs:$dst), (ins MEMrr:$addr),
+ "ldd [$addr], $dst",
+ [(set DFPRegs:$dst, (load ADDRrr:$addr))]>;
+def LDDFri : F3_2<3, 0b100011,
+ (outs DFPRegs:$dst), (ins MEMri:$addr),
+ "ldd [$addr], $dst",
+ [(set DFPRegs:$dst, (load ADDRri:$addr))]>;
+
+// Section B.4 - Store Integer Instructions, p. 95
+def STBrr : F3_1<3, 0b000101,
+ (outs), (ins MEMrr:$addr, IntRegs:$src),
+ "stb $src, [$addr]",
+ [(truncstorei8 IntRegs:$src, ADDRrr:$addr)]>;
+def STBri : F3_2<3, 0b000101,
+ (outs), (ins MEMri:$addr, IntRegs:$src),
+ "stb $src, [$addr]",
+ [(truncstorei8 IntRegs:$src, ADDRri:$addr)]>;
+def STHrr : F3_1<3, 0b000110,
+ (outs), (ins MEMrr:$addr, IntRegs:$src),
+ "sth $src, [$addr]",
+ [(truncstorei16 IntRegs:$src, ADDRrr:$addr)]>;
+def STHri : F3_2<3, 0b000110,
+ (outs), (ins MEMri:$addr, IntRegs:$src),
+ "sth $src, [$addr]",
+ [(truncstorei16 IntRegs:$src, ADDRri:$addr)]>;
+def STrr : F3_1<3, 0b000100,
+ (outs), (ins MEMrr:$addr, IntRegs:$src),
+ "st $src, [$addr]",
+ [(store IntRegs:$src, ADDRrr:$addr)]>;
+def STri : F3_2<3, 0b000100,
+ (outs), (ins MEMri:$addr, IntRegs:$src),
+ "st $src, [$addr]",
+ [(store IntRegs:$src, ADDRri:$addr)]>;
+
+// Section B.5 - Store Floating-point Instructions, p. 97
+def STFrr : F3_1<3, 0b100100,
+ (outs), (ins MEMrr:$addr, FPRegs:$src),
+ "st $src, [$addr]",
+ [(store FPRegs:$src, ADDRrr:$addr)]>;
+def STFri : F3_2<3, 0b100100,
+ (outs), (ins MEMri:$addr, FPRegs:$src),
+ "st $src, [$addr]",
+ [(store FPRegs:$src, ADDRri:$addr)]>;
+def STDFrr : F3_1<3, 0b100111,
+ (outs), (ins MEMrr:$addr, DFPRegs:$src),
+ "std $src, [$addr]",
+ [(store DFPRegs:$src, ADDRrr:$addr)]>;
+def STDFri : F3_2<3, 0b100111,
+ (outs), (ins MEMri:$addr, DFPRegs:$src),
+ "std $src, [$addr]",
+ [(store DFPRegs:$src, ADDRri:$addr)]>;
+
+// Section B.9 - SETHI Instruction, p. 104
+def SETHIi: F2_1<0b100,
+ (outs IntRegs:$dst), (ins i32imm:$src),
+ "sethi $src, $dst",
+ [(set IntRegs:$dst, SETHIimm:$src)]>;
+
+// Section B.10 - NOP Instruction, p. 105
+// (It's a special case of SETHI)
+let rd = 0, imm22 = 0 in
+ def NOP : F2_1<0b100, (outs), (ins), "nop", []>;
+
+// Section B.11 - Logical Instructions, p. 106
+defm AND : F3_12<"and", 0b000001, and>;
+
+def ANDNrr : F3_1<2, 0b000101,
+ (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+ "andn $b, $c, $dst",
+ [(set IntRegs:$dst, (and IntRegs:$b, (not IntRegs:$c)))]>;
+def ANDNri : F3_2<2, 0b000101,
+ (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
+ "andn $b, $c, $dst", []>;
+
+defm OR : F3_12<"or", 0b000010, or>;
+
+def ORNrr : F3_1<2, 0b000110,
+ (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+ "orn $b, $c, $dst",
+ [(set IntRegs:$dst, (or IntRegs:$b, (not IntRegs:$c)))]>;
+def ORNri : F3_2<2, 0b000110,
+ (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
+ "orn $b, $c, $dst", []>;
+defm XOR : F3_12<"xor", 0b000011, xor>;
+
+def XNORrr : F3_1<2, 0b000111,
+ (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+ "xnor $b, $c, $dst",
+ [(set IntRegs:$dst, (not (xor IntRegs:$b, IntRegs:$c)))]>;
+def XNORri : F3_2<2, 0b000111,
+ (outs IntRegs:$dst), (ins IntRegs:$b, i32imm:$c),
+ "xnor $b, $c, $dst", []>;
+
+// Section B.12 - Shift Instructions, p. 107
+defm SLL : F3_12<"sll", 0b100101, shl>;
+defm SRL : F3_12<"srl", 0b100110, srl>;
+defm SRA : F3_12<"sra", 0b100111, sra>;
+
+// Section B.13 - Add Instructions, p. 108
+defm ADD : F3_12<"add", 0b000000, add>;
+
+// "LEA" forms of add (patterns to make tblgen happy)
+def LEA_ADDri : F3_2<2, 0b000000,
+ (outs IntRegs:$dst), (ins MEMri:$addr),
+ "add ${addr:arith}, $dst",
+ [(set IntRegs:$dst, ADDRri:$addr)]>;
+
+let Defs = [ICC] in
+ defm ADDCC : F3_12<"addcc", 0b010000, addc>;
+
+let Uses = [ICC] in
+ defm ADDX : F3_12<"addx", 0b001000, adde>;
+
+// Section B.15 - Subtract Instructions, p. 110
+defm SUB : F3_12 <"sub" , 0b000100, sub>;
+let Uses = [ICC] in
+ defm SUBX : F3_12 <"subx" , 0b001100, sube>;
+
+let Defs = [ICC] in
+ defm SUBCC : F3_12 <"subcc", 0b010100, SPcmpicc>;
+
+let Uses = [ICC], Defs = [ICC] in
+ def SUBXCCrr: F3_1<2, 0b011100,
+ (outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+ "subxcc $b, $c, $dst", []>;
+
+
+// Section B.18 - Multiply Instructions, p. 113
+let Defs = [Y] in {
+ defm UMUL : F3_12np<"umul", 0b001010>;
+ defm SMUL : F3_12 <"smul", 0b001011, mul>;
+}
+
+// Section B.19 - Divide Instructions, p. 115
+let Defs = [Y] in {
+ defm UDIV : F3_12np<"udiv", 0b001110>;
+ defm SDIV : F3_12np<"sdiv", 0b001111>;
+}
+
+// Section B.20 - SAVE and RESTORE, p. 117
+defm SAVE : F3_12np<"save" , 0b111100>;
+defm RESTORE : F3_12np<"restore", 0b111101>;
+
+// Section B.21 - Branch on Integer Condition Codes Instructions, p. 119
+
+// conditional branch class:
+class BranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
+ : F2_2<cc, 0b010, (outs), ins, asmstr, pattern> {
+ let isBranch = 1;
+ let isTerminator = 1;
+ let hasDelaySlot = 1;
+}
+
+let isBarrier = 1 in
+ def BA : BranchSP<0b1000, (ins brtarget:$dst),
+ "ba $dst",
+ [(br bb:$dst)]>;
+
+// FIXME: the encoding for the JIT should look at the condition field.
+let Uses = [ICC] in
+ def BCOND : BranchSP<0, (ins brtarget:$dst, CCOp:$cc),
+ "b$cc $dst",
+ [(SPbricc bb:$dst, imm:$cc)]>;
+
+
+// Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121
+
+// floating-point conditional branch class:
+class FPBranchSP<bits<4> cc, dag ins, string asmstr, list<dag> pattern>
+ : F2_2<cc, 0b110, (outs), ins, asmstr, pattern> {
+ let isBranch = 1;
+ let isTerminator = 1;
+ let hasDelaySlot = 1;
+}
+
+// FIXME: the encoding for the JIT should look at the condition field.
+let Uses = [FCC] in
+ def FBCOND : FPBranchSP<0, (ins brtarget:$dst, CCOp:$cc),
+ "fb$cc $dst",
+ [(SPbrfcc bb:$dst, imm:$cc)]>;
+
+
+// Section B.24 - Call and Link Instruction, p. 125
+// This is the only Format 1 instruction
+let Uses = [O6],
+ hasDelaySlot = 1, isCall = 1,
+ Defs = [O0, O1, O2, O3, O4, O5, O7, G1, G2, G3, G4, G5, G6, G7,
+ D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11, D12, D13, D14, D15,
+ ICC, FCC, Y] in {
+ def CALL : InstSP<(outs), (ins calltarget:$dst, variable_ops),
+ "call $dst", []> {
+ bits<30> disp;
+ let op = 1;
+ let Inst{29-0} = disp;
+ }
+
+ // indirect calls
+ def JMPLrr : F3_1<2, 0b111000,
+ (outs), (ins MEMrr:$ptr, variable_ops),
+ "call $ptr",
+ [(call ADDRrr:$ptr)]>;
+ def JMPLri : F3_2<2, 0b111000,
+ (outs), (ins MEMri:$ptr, variable_ops),
+ "call $ptr",
+ [(call ADDRri:$ptr)]>;
+}
+
+// Section B.28 - Read State Register Instructions
+let Uses = [Y] in
+ def RDY : F3_1<2, 0b101000,
+ (outs IntRegs:$dst), (ins),
+ "rd %y, $dst", []>;
+
+// Section B.29 - Write State Register Instructions
+let Defs = [Y] in {
+ def WRYrr : F3_1<2, 0b110000,
+ (outs), (ins IntRegs:$b, IntRegs:$c),
+ "wr $b, $c, %y", []>;
+ def WRYri : F3_2<2, 0b110000,
+ (outs), (ins IntRegs:$b, i32imm:$c),
+ "wr $b, $c, %y", []>;
+}
+// Convert Integer to Floating-point Instructions, p. 141
+def FITOS : F3_3<2, 0b110100, 0b011000100,
+ (outs FPRegs:$dst), (ins FPRegs:$src),
+ "fitos $src, $dst",
+ [(set FPRegs:$dst, (SPitof FPRegs:$src))]>;
+def FITOD : F3_3<2, 0b110100, 0b011001000,
+ (outs DFPRegs:$dst), (ins FPRegs:$src),
+ "fitod $src, $dst",
+ [(set DFPRegs:$dst, (SPitof FPRegs:$src))]>;
+
+// Convert Floating-point to Integer Instructions, p. 142
+def FSTOI : F3_3<2, 0b110100, 0b011010001,
+ (outs FPRegs:$dst), (ins FPRegs:$src),
+ "fstoi $src, $dst",
+ [(set FPRegs:$dst, (SPftoi FPRegs:$src))]>;
+def FDTOI : F3_3<2, 0b110100, 0b011010010,
+ (outs FPRegs:$dst), (ins DFPRegs:$src),
+ "fdtoi $src, $dst",
+ [(set FPRegs:$dst, (SPftoi DFPRegs:$src))]>;
+
+// Convert between Floating-point Formats Instructions, p. 143
+def FSTOD : F3_3<2, 0b110100, 0b011001001,
+ (outs DFPRegs:$dst), (ins FPRegs:$src),
+ "fstod $src, $dst",
+ [(set DFPRegs:$dst, (fextend FPRegs:$src))]>;
+def FDTOS : F3_3<2, 0b110100, 0b011000110,
+ (outs FPRegs:$dst), (ins DFPRegs:$src),
+ "fdtos $src, $dst",
+ [(set FPRegs:$dst, (fround DFPRegs:$src))]>;
+
+// Floating-point Move Instructions, p. 144
+def FMOVS : F3_3<2, 0b110100, 0b000000001,
+ (outs FPRegs:$dst), (ins FPRegs:$src),
+ "fmovs $src, $dst", []>;
+def FNEGS : F3_3<2, 0b110100, 0b000000101,
+ (outs FPRegs:$dst), (ins FPRegs:$src),
+ "fnegs $src, $dst",
+ [(set FPRegs:$dst, (fneg FPRegs:$src))]>;
+def FABSS : F3_3<2, 0b110100, 0b000001001,
+ (outs FPRegs:$dst), (ins FPRegs:$src),
+ "fabss $src, $dst",
+ [(set FPRegs:$dst, (fabs FPRegs:$src))]>;
+
+
+// Floating-point Square Root Instructions, p.145
+def FSQRTS : F3_3<2, 0b110100, 0b000101001,
+ (outs FPRegs:$dst), (ins FPRegs:$src),
+ "fsqrts $src, $dst",
+ [(set FPRegs:$dst, (fsqrt FPRegs:$src))]>;
+def FSQRTD : F3_3<2, 0b110100, 0b000101010,
+ (outs DFPRegs:$dst), (ins DFPRegs:$src),
+ "fsqrtd $src, $dst",
+ [(set DFPRegs:$dst, (fsqrt DFPRegs:$src))]>;
+
+
+
+// Floating-point Add and Subtract Instructions, p. 146
+def FADDS : F3_3<2, 0b110100, 0b001000001,
+ (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
+ "fadds $src1, $src2, $dst",
+ [(set FPRegs:$dst, (fadd FPRegs:$src1, FPRegs:$src2))]>;
+def FADDD : F3_3<2, 0b110100, 0b001000010,
+ (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
+ "faddd $src1, $src2, $dst",
+ [(set DFPRegs:$dst, (fadd DFPRegs:$src1, DFPRegs:$src2))]>;
+def FSUBS : F3_3<2, 0b110100, 0b001000101,
+ (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
+ "fsubs $src1, $src2, $dst",
+ [(set FPRegs:$dst, (fsub FPRegs:$src1, FPRegs:$src2))]>;
+def FSUBD : F3_3<2, 0b110100, 0b001000110,
+ (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
+ "fsubd $src1, $src2, $dst",
+ [(set DFPRegs:$dst, (fsub DFPRegs:$src1, DFPRegs:$src2))]>;
+
+// Floating-point Multiply and Divide Instructions, p. 147
+def FMULS : F3_3<2, 0b110100, 0b001001001,
+ (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
+ "fmuls $src1, $src2, $dst",
+ [(set FPRegs:$dst, (fmul FPRegs:$src1, FPRegs:$src2))]>;
+def FMULD : F3_3<2, 0b110100, 0b001001010,
+ (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
+ "fmuld $src1, $src2, $dst",
+ [(set DFPRegs:$dst, (fmul DFPRegs:$src1, DFPRegs:$src2))]>;
+def FSMULD : F3_3<2, 0b110100, 0b001101001,
+ (outs DFPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
+ "fsmuld $src1, $src2, $dst",
+ [(set DFPRegs:$dst, (fmul (fextend FPRegs:$src1),
+ (fextend FPRegs:$src2)))]>;
+def FDIVS : F3_3<2, 0b110100, 0b001001101,
+ (outs FPRegs:$dst), (ins FPRegs:$src1, FPRegs:$src2),
+ "fdivs $src1, $src2, $dst",
+ [(set FPRegs:$dst, (fdiv FPRegs:$src1, FPRegs:$src2))]>;
+def FDIVD : F3_3<2, 0b110100, 0b001001110,
+ (outs DFPRegs:$dst), (ins DFPRegs:$src1, DFPRegs:$src2),
+ "fdivd $src1, $src2, $dst",
+ [(set DFPRegs:$dst, (fdiv DFPRegs:$src1, DFPRegs:$src2))]>;
+
+// Floating-point Compare Instructions, p. 148
+// Note: the 2nd template arg is different for these guys.
+// Note 2: the result of a FCMP is not available until the 2nd cycle
+// after the instr is retired, but there is no interlock. This behavior
+// is modelled with a forced noop after the instruction.
+let Defs = [FCC] in {
+ def FCMPS : F3_3<2, 0b110101, 0b001010001,
+ (outs), (ins FPRegs:$src1, FPRegs:$src2),
+ "fcmps $src1, $src2\n\tnop",
+ [(SPcmpfcc FPRegs:$src1, FPRegs:$src2)]>;
+ def FCMPD : F3_3<2, 0b110101, 0b001010010,
+ (outs), (ins DFPRegs:$src1, DFPRegs:$src2),
+ "fcmpd $src1, $src2\n\tnop",
+ [(SPcmpfcc DFPRegs:$src1, DFPRegs:$src2)]>;
+}
+
+//===----------------------------------------------------------------------===//
+// V9 Instructions
+//===----------------------------------------------------------------------===//
+
+// V9 Conditional Moves.
+let Predicates = [HasV9], Constraints = "$T = $dst" in {
+ // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual.
+ // FIXME: Add instruction encodings for the JIT some day.
+ let Uses = [ICC] in {
+ def MOVICCrr
+ : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
+ "mov$cc %icc, $F, $dst",
+ [(set IntRegs:$dst,
+ (SPselecticc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
+ def MOVICCri
+ : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
+ "mov$cc %icc, $F, $dst",
+ [(set IntRegs:$dst,
+ (SPselecticc simm11:$F, IntRegs:$T, imm:$cc))]>;
+ }
+
+ let Uses = [FCC] in {
+ def MOVFCCrr
+ : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, CCOp:$cc),
+ "mov$cc %fcc0, $F, $dst",
+ [(set IntRegs:$dst,
+ (SPselectfcc IntRegs:$F, IntRegs:$T, imm:$cc))]>;
+ def MOVFCCri
+ : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, i32imm:$F, CCOp:$cc),
+ "mov$cc %fcc0, $F, $dst",
+ [(set IntRegs:$dst,
+ (SPselectfcc simm11:$F, IntRegs:$T, imm:$cc))]>;
+ }
+
+ let Uses = [ICC] in {
+ def FMOVS_ICC
+ : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
+ "fmovs$cc %icc, $F, $dst",
+ [(set FPRegs:$dst,
+ (SPselecticc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
+ def FMOVD_ICC
+ : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
+ "fmovd$cc %icc, $F, $dst",
+ [(set DFPRegs:$dst,
+ (SPselecticc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
+ }
+
+ let Uses = [FCC] in {
+ def FMOVS_FCC
+ : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, CCOp:$cc),
+ "fmovs$cc %fcc0, $F, $dst",
+ [(set FPRegs:$dst,
+ (SPselectfcc FPRegs:$F, FPRegs:$T, imm:$cc))]>;
+ def FMOVD_FCC
+ : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, CCOp:$cc),
+ "fmovd$cc %fcc0, $F, $dst",
+ [(set DFPRegs:$dst,
+ (SPselectfcc DFPRegs:$F, DFPRegs:$T, imm:$cc))]>;
+ }
+
+}
+
+// Floating-Point Move Instructions, p. 164 of the V9 manual.
+let Predicates = [HasV9] in {
+ def FMOVD : F3_3<2, 0b110100, 0b000000010,
+ (outs DFPRegs:$dst), (ins DFPRegs:$src),
+ "fmovd $src, $dst", []>;
+ def FNEGD : F3_3<2, 0b110100, 0b000000110,
+ (outs DFPRegs:$dst), (ins DFPRegs:$src),
+ "fnegd $src, $dst",
+ [(set DFPRegs:$dst, (fneg DFPRegs:$src))]>;
+ def FABSD : F3_3<2, 0b110100, 0b000001010,
+ (outs DFPRegs:$dst), (ins DFPRegs:$src),
+ "fabsd $src, $dst",
+ [(set DFPRegs:$dst, (fabs DFPRegs:$src))]>;
+}
+
+// POPCrr - This does a ctpop of a 64-bit register. As such, we have to clear
+// the top 32-bits before using it. To do this clearing, we use a SLLri X,0.
+def POPCrr : F3_1<2, 0b101110,
+ (outs IntRegs:$dst), (ins IntRegs:$src),
+ "popc $src, $dst", []>, Requires<[HasV9]>;
+def : Pat<(ctpop IntRegs:$src),
+ (POPCrr (SLLri IntRegs:$src, 0))>;
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns
+//===----------------------------------------------------------------------===//
+
+// Small immediates.
+def : Pat<(i32 simm13:$val),
+ (ORri G0, imm:$val)>;
+// Arbitrary immediates.
+def : Pat<(i32 imm:$val),
+ (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>;
+
+// subc
+def : Pat<(subc IntRegs:$b, IntRegs:$c),
+ (SUBCCrr IntRegs:$b, IntRegs:$c)>;
+def : Pat<(subc IntRegs:$b, simm13:$val),
+ (SUBCCri IntRegs:$b, imm:$val)>;
+
+// Global addresses, constant pool entries
+def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>;
+def : Pat<(SPlo tglobaladdr:$in), (ORri G0, tglobaladdr:$in)>;
+def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>;
+def : Pat<(SPlo tconstpool:$in), (ORri G0, tconstpool:$in)>;
+
+// Add reg, lo. This is used when taking the addr of a global/constpool entry.
+def : Pat<(add IntRegs:$r, (SPlo tglobaladdr:$in)),
+ (ADDri IntRegs:$r, tglobaladdr:$in)>;
+def : Pat<(add IntRegs:$r, (SPlo tconstpool:$in)),
+ (ADDri IntRegs:$r, tconstpool:$in)>;
+
+// Calls:
+def : Pat<(call tglobaladdr:$dst),
+ (CALL tglobaladdr:$dst)>;
+def : Pat<(call texternalsym:$dst),
+ (CALL texternalsym:$dst)>;
+
+// Map integer extload's to zextloads.
+def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
+def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
+def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
+def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>;
+def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>;
+def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>;
+
+// zextload bool -> zextload byte
+def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>;
+def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>;
OpenPOWER on IntegriCloud