diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Sparc/SparcInstr64Bit.td')
-rw-r--r-- | contrib/llvm/lib/Target/Sparc/SparcInstr64Bit.td | 574 |
1 files changed, 574 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Sparc/SparcInstr64Bit.td b/contrib/llvm/lib/Target/Sparc/SparcInstr64Bit.td new file mode 100644 index 0000000..419e8cc --- /dev/null +++ b/contrib/llvm/lib/Target/Sparc/SparcInstr64Bit.td @@ -0,0 +1,574 @@ +//===-- SparcInstr64Bit.td - 64-bit instructions for Sparc Target ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains instruction definitions and patterns needed for 64-bit +// code generation on SPARC v9. +// +// Some SPARC v9 instructions are defined in SparcInstrInfo.td because they can +// also be used in 32-bit code running on a SPARC v9 CPU. +// +//===----------------------------------------------------------------------===// + +let Predicates = [Is64Bit] in { +// The same integer registers are used for i32 and i64 values. +// When registers hold i32 values, the high bits are don't care. +// This give us free trunc and anyext. +def : Pat<(i64 (anyext i32:$val)), (COPY_TO_REGCLASS $val, I64Regs)>; +def : Pat<(i32 (trunc i64:$val)), (COPY_TO_REGCLASS $val, IntRegs)>; + +} // Predicates = [Is64Bit] + + +//===----------------------------------------------------------------------===// +// 64-bit Shift Instructions. +//===----------------------------------------------------------------------===// +// +// The 32-bit shift instructions are still available. The left shift srl +// instructions shift all 64 bits, but it only accepts a 5-bit shift amount. +// +// The srl instructions only shift the low 32 bits and clear the high 32 bits. +// Finally, sra shifts the low 32 bits and sign-extends to 64 bits. + +let Predicates = [Is64Bit] in { + +def : Pat<(i64 (zext i32:$val)), (SRLri $val, 0)>; +def : Pat<(i64 (sext i32:$val)), (SRAri $val, 0)>; + +def : Pat<(i64 (and i64:$val, 0xffffffff)), (SRLri $val, 0)>; +def : Pat<(i64 (sext_inreg i64:$val, i32)), (SRAri $val, 0)>; + +defm SLLX : F3_S<"sllx", 0b100101, 1, shl, i64, I64Regs>; +defm SRLX : F3_S<"srlx", 0b100110, 1, srl, i64, I64Regs>; +defm SRAX : F3_S<"srax", 0b100111, 1, sra, i64, I64Regs>; + +} // Predicates = [Is64Bit] + + +//===----------------------------------------------------------------------===// +// 64-bit Immediates. +//===----------------------------------------------------------------------===// +// +// All 32-bit immediates can be materialized with sethi+or, but 64-bit +// immediates may require more code. There may be a point where it is +// preferable to use a constant pool load instead, depending on the +// microarchitecture. + +// Single-instruction patterns. + +// The ALU instructions want their simm13 operands as i32 immediates. +def as_i32imm : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(N->getSExtValue(), SDLoc(N), MVT::i32); +}]>; +def : Pat<(i64 simm13:$val), (ORri (i64 G0), (as_i32imm $val))>; +def : Pat<(i64 SETHIimm:$val), (SETHIi (HI22 $val))>; + +// Double-instruction patterns. + +// All unsigned i32 immediates can be handled by sethi+or. +def uimm32 : PatLeaf<(imm), [{ return isUInt<32>(N->getZExtValue()); }]>; +def : Pat<(i64 uimm32:$val), (ORri (SETHIi (HI22 $val)), (LO10 $val))>, + Requires<[Is64Bit]>; + +// All negative i33 immediates can be handled by sethi+xor. +def nimm33 : PatLeaf<(imm), [{ + int64_t Imm = N->getSExtValue(); + return Imm < 0 && isInt<33>(Imm); +}]>; +// Bits 10-31 inverted. Same as assembler's %hix. +def HIX22 : SDNodeXForm<imm, [{ + uint64_t Val = (~N->getZExtValue() >> 10) & ((1u << 22) - 1); + return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32); +}]>; +// Bits 0-9 with ones in bits 10-31. Same as assembler's %lox. +def LOX10 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(~(~N->getZExtValue() & 0x3ff), SDLoc(N), + MVT::i32); +}]>; +def : Pat<(i64 nimm33:$val), (XORri (SETHIi (HIX22 $val)), (LOX10 $val))>, + Requires<[Is64Bit]>; + +// More possible patterns: +// +// (sllx sethi, n) +// (sllx simm13, n) +// +// 3 instrs: +// +// (xor (sllx sethi), simm13) +// (sllx (xor sethi, simm13)) +// +// 4 instrs: +// +// (or sethi, (sllx sethi)) +// (xnor sethi, (sllx sethi)) +// +// 5 instrs: +// +// (or (sllx sethi), (or sethi, simm13)) +// (xnor (sllx sethi), (or sethi, simm13)) +// (or (sllx sethi), (sllx sethi)) +// (xnor (sllx sethi), (sllx sethi)) +// +// Worst case is 6 instrs: +// +// (or (sllx (or sethi, simmm13)), (or sethi, simm13)) + +// Bits 42-63, same as assembler's %hh. +def HH22 : SDNodeXForm<imm, [{ + uint64_t Val = (N->getZExtValue() >> 42) & ((1u << 22) - 1); + return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32); +}]>; +// Bits 32-41, same as assembler's %hm. +def HM10 : SDNodeXForm<imm, [{ + uint64_t Val = (N->getZExtValue() >> 32) & ((1u << 10) - 1); + return CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32); +}]>; +def : Pat<(i64 imm:$val), + (ORrr (SLLXri (ORri (SETHIi (HH22 $val)), (HM10 $val)), (i32 32)), + (ORri (SETHIi (HI22 $val)), (LO10 $val)))>, + Requires<[Is64Bit]>; + + +//===----------------------------------------------------------------------===// +// 64-bit Integer Arithmetic and Logic. +//===----------------------------------------------------------------------===// + +let Predicates = [Is64Bit] in { + +// Register-register instructions. +let isCodeGenOnly = 1 in { +defm ANDX : F3_12<"and", 0b000001, and, I64Regs, i64, i64imm>; +defm ORX : F3_12<"or", 0b000010, or, I64Regs, i64, i64imm>; +defm XORX : F3_12<"xor", 0b000011, xor, I64Regs, i64, i64imm>; + +def ANDXNrr : F3_1<2, 0b000101, + (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c), + "andn $b, $c, $dst", + [(set i64:$dst, (and i64:$b, (not i64:$c)))]>; +def ORXNrr : F3_1<2, 0b000110, + (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c), + "orn $b, $c, $dst", + [(set i64:$dst, (or i64:$b, (not i64:$c)))]>; +def XNORXrr : F3_1<2, 0b000111, + (outs I64Regs:$dst), (ins I64Regs:$b, I64Regs:$c), + "xnor $b, $c, $dst", + [(set i64:$dst, (not (xor i64:$b, i64:$c)))]>; + +defm ADDX : F3_12<"add", 0b000000, add, I64Regs, i64, i64imm>; +defm SUBX : F3_12<"sub", 0b000100, sub, I64Regs, i64, i64imm>; + +def TLS_ADDXrr : F3_1<2, 0b000000, (outs I64Regs:$rd), + (ins I64Regs:$rs1, I64Regs:$rs2, TLSSym:$sym), + "add $rs1, $rs2, $rd, $sym", + [(set i64:$rd, + (tlsadd i64:$rs1, i64:$rs2, tglobaltlsaddr:$sym))]>; + +// "LEA" form of add +def LEAX_ADDri : F3_2<2, 0b000000, + (outs I64Regs:$dst), (ins MEMri:$addr), + "add ${addr:arith}, $dst", + [(set iPTR:$dst, ADDRri:$addr)]>; +} + +def : Pat<(SPcmpicc i64:$a, i64:$b), (CMPrr $a, $b)>; +def : Pat<(SPcmpicc i64:$a, (i64 simm13:$b)), (CMPri $a, (as_i32imm $b))>; +def : Pat<(ctpop i64:$src), (POPCrr $src)>; + +} // Predicates = [Is64Bit] + + +//===----------------------------------------------------------------------===// +// 64-bit Integer Multiply and Divide. +//===----------------------------------------------------------------------===// + +let Predicates = [Is64Bit] in { + +def MULXrr : F3_1<2, 0b001001, + (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), + "mulx $rs1, $rs2, $rd", + [(set i64:$rd, (mul i64:$rs1, i64:$rs2))]>; +def MULXri : F3_2<2, 0b001001, + (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13), + "mulx $rs1, $simm13, $rd", + [(set i64:$rd, (mul i64:$rs1, (i64 simm13:$simm13)))]>; + +// Division can trap. +let hasSideEffects = 1 in { +def SDIVXrr : F3_1<2, 0b101101, + (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), + "sdivx $rs1, $rs2, $rd", + [(set i64:$rd, (sdiv i64:$rs1, i64:$rs2))]>; +def SDIVXri : F3_2<2, 0b101101, + (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13), + "sdivx $rs1, $simm13, $rd", + [(set i64:$rd, (sdiv i64:$rs1, (i64 simm13:$simm13)))]>; + +def UDIVXrr : F3_1<2, 0b001101, + (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2), + "udivx $rs1, $rs2, $rd", + [(set i64:$rd, (udiv i64:$rs1, i64:$rs2))]>; +def UDIVXri : F3_2<2, 0b001101, + (outs IntRegs:$rd), (ins IntRegs:$rs1, i64imm:$simm13), + "udivx $rs1, $simm13, $rd", + [(set i64:$rd, (udiv i64:$rs1, (i64 simm13:$simm13)))]>; +} // hasSideEffects = 1 + +} // Predicates = [Is64Bit] + + +//===----------------------------------------------------------------------===// +// 64-bit Loads and Stores. +//===----------------------------------------------------------------------===// +// +// All the 32-bit loads and stores are available. The extending loads are sign +// or zero-extending to 64 bits. The LDrr and LDri instructions load 32 bits +// zero-extended to i64. Their mnemonic is lduw in SPARC v9 (Load Unsigned +// Word). +// +// SPARC v9 adds 64-bit loads as well as a sign-extending ldsw i32 loads. + +let Predicates = [Is64Bit] in { + +// 64-bit loads. +let DecoderMethod = "DecodeLoadInt" in + defm LDX : Load<"ldx", 0b001011, load, I64Regs, i64>; + +let mayLoad = 1, isCodeGenOnly = 1, isAsmParserOnly = 1 in + def TLS_LDXrr : F3_1<3, 0b001011, + (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym), + "ldx [$addr], $dst, $sym", + [(set i64:$dst, + (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>; + +// Extending loads to i64. +def : Pat<(i64 (zextloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; +def : Pat<(i64 (zextloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; +def : Pat<(i64 (extloadi1 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; +def : Pat<(i64 (extloadi1 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; + +def : Pat<(i64 (zextloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; +def : Pat<(i64 (zextloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; +def : Pat<(i64 (extloadi8 ADDRrr:$addr)), (LDUBrr ADDRrr:$addr)>; +def : Pat<(i64 (extloadi8 ADDRri:$addr)), (LDUBri ADDRri:$addr)>; +def : Pat<(i64 (sextloadi8 ADDRrr:$addr)), (LDSBrr ADDRrr:$addr)>; +def : Pat<(i64 (sextloadi8 ADDRri:$addr)), (LDSBri ADDRri:$addr)>; + +def : Pat<(i64 (zextloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>; +def : Pat<(i64 (zextloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>; +def : Pat<(i64 (extloadi16 ADDRrr:$addr)), (LDUHrr ADDRrr:$addr)>; +def : Pat<(i64 (extloadi16 ADDRri:$addr)), (LDUHri ADDRri:$addr)>; +def : Pat<(i64 (sextloadi16 ADDRrr:$addr)), (LDSHrr ADDRrr:$addr)>; +def : Pat<(i64 (sextloadi16 ADDRri:$addr)), (LDSHri ADDRri:$addr)>; + +def : Pat<(i64 (zextloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>; +def : Pat<(i64 (zextloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>; +def : Pat<(i64 (extloadi32 ADDRrr:$addr)), (LDrr ADDRrr:$addr)>; +def : Pat<(i64 (extloadi32 ADDRri:$addr)), (LDri ADDRri:$addr)>; + +// Sign-extending load of i32 into i64 is a new SPARC v9 instruction. +let DecoderMethod = "DecodeLoadInt" in + defm LDSW : Load<"ldsw", 0b001000, sextloadi32, I64Regs, i64>; + +// 64-bit stores. +let DecoderMethod = "DecodeStoreInt" in + defm STX : Store<"stx", 0b001110, store, I64Regs, i64>; + +// Truncating stores from i64 are identical to the i32 stores. +def : Pat<(truncstorei8 i64:$src, ADDRrr:$addr), (STBrr ADDRrr:$addr, $src)>; +def : Pat<(truncstorei8 i64:$src, ADDRri:$addr), (STBri ADDRri:$addr, $src)>; +def : Pat<(truncstorei16 i64:$src, ADDRrr:$addr), (STHrr ADDRrr:$addr, $src)>; +def : Pat<(truncstorei16 i64:$src, ADDRri:$addr), (STHri ADDRri:$addr, $src)>; +def : Pat<(truncstorei32 i64:$src, ADDRrr:$addr), (STrr ADDRrr:$addr, $src)>; +def : Pat<(truncstorei32 i64:$src, ADDRri:$addr), (STri ADDRri:$addr, $src)>; + +// store 0, addr -> store %g0, addr +def : Pat<(store (i64 0), ADDRrr:$dst), (STXrr ADDRrr:$dst, (i64 G0))>; +def : Pat<(store (i64 0), ADDRri:$dst), (STXri ADDRri:$dst, (i64 G0))>; + +} // Predicates = [Is64Bit] + + +//===----------------------------------------------------------------------===// +// 64-bit Conditionals. +//===----------------------------------------------------------------------===// + +// +// Flag-setting instructions like subcc and addcc set both icc and xcc flags. +// The icc flags correspond to the 32-bit result, and the xcc are for the +// full 64-bit result. +// +// We reuse CMPICC SDNodes for compares, but use new BRXCC branch nodes for +// 64-bit compares. See LowerBR_CC. + +let Predicates = [Is64Bit] in { + +let Uses = [ICC], cc = 0b10 in + defm BPX : IPredBranch<"%xcc", [(SPbrxcc bb:$imm19, imm:$cond)]>; + +// Conditional moves on %xcc. +let Uses = [ICC], Constraints = "$f = $rd" in { +let intcc = 1, cc = 0b10 in { +def MOVXCCrr : F4_1<0b101100, (outs IntRegs:$rd), + (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), + "mov$cond %xcc, $rs2, $rd", + [(set i32:$rd, + (SPselectxcc i32:$rs2, i32:$f, imm:$cond))]>; +def MOVXCCri : F4_2<0b101100, (outs IntRegs:$rd), + (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), + "mov$cond %xcc, $simm11, $rd", + [(set i32:$rd, + (SPselectxcc simm11:$simm11, i32:$f, imm:$cond))]>; +} // cc + +let intcc = 1, opf_cc = 0b10 in { +def FMOVS_XCC : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), + (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), + "fmovs$cond %xcc, $rs2, $rd", + [(set f32:$rd, + (SPselectxcc f32:$rs2, f32:$f, imm:$cond))]>; +def FMOVD_XCC : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), + (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), + "fmovd$cond %xcc, $rs2, $rd", + [(set f64:$rd, + (SPselectxcc f64:$rs2, f64:$f, imm:$cond))]>; +def FMOVQ_XCC : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), + (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), + "fmovq$cond %xcc, $rs2, $rd", + [(set f128:$rd, + (SPselectxcc f128:$rs2, f128:$f, imm:$cond))]>; +} // opf_cc +} // Uses, Constraints + +// Branch On integer register with Prediction (BPr). +let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in +multiclass BranchOnReg<bits<3> cond, string OpcStr> { + def napt : F2_4<cond, 0, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16), + !strconcat(OpcStr, " $rs1, $imm16"), []>; + def apt : F2_4<cond, 1, 1, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16), + !strconcat(OpcStr, ",a $rs1, $imm16"), []>; + def napn : F2_4<cond, 0, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16), + !strconcat(OpcStr, ",pn $rs1, $imm16"), []>; + def apn : F2_4<cond, 1, 0, (outs), (ins I64Regs:$rs1, bprtarget16:$imm16), + !strconcat(OpcStr, ",a,pn $rs1, $imm16"), []>; +} + +multiclass bpr_alias<string OpcStr, Instruction NAPT, Instruction APT> { + def : InstAlias<!strconcat(OpcStr, ",pt $rs1, $imm16"), + (NAPT I64Regs:$rs1, bprtarget16:$imm16), 0>; + def : InstAlias<!strconcat(OpcStr, ",a,pt $rs1, $imm16"), + (APT I64Regs:$rs1, bprtarget16:$imm16), 0>; +} + +defm BPZ : BranchOnReg<0b001, "brz">; +defm BPLEZ : BranchOnReg<0b010, "brlez">; +defm BPLZ : BranchOnReg<0b011, "brlz">; +defm BPNZ : BranchOnReg<0b101, "brnz">; +defm BPGZ : BranchOnReg<0b110, "brgz">; +defm BPGEZ : BranchOnReg<0b111, "brgez">; + +defm : bpr_alias<"brz", BPZnapt, BPZapt >; +defm : bpr_alias<"brlez", BPLEZnapt, BPLEZapt>; +defm : bpr_alias<"brlz", BPLZnapt, BPLZapt >; +defm : bpr_alias<"brnz", BPNZnapt, BPNZapt >; +defm : bpr_alias<"brgz", BPGZnapt, BPGZapt >; +defm : bpr_alias<"brgez", BPGEZnapt, BPGEZapt>; + +// Move integer register on register condition (MOVr). +multiclass MOVR< bits<3> rcond, string OpcStr> { + def rr : F4_4r<0b101111, 0b00000, rcond, (outs I64Regs:$rd), + (ins I64Regs:$rs1, IntRegs:$rs2), + !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>; + + def ri : F4_4i<0b101111, rcond, (outs I64Regs:$rd), + (ins I64Regs:$rs1, i64imm:$simm10), + !strconcat(OpcStr, " $rs1, $simm10, $rd"), []>; +} + +defm MOVRRZ : MOVR<0b001, "movrz">; +defm MOVRLEZ : MOVR<0b010, "movrlez">; +defm MOVRLZ : MOVR<0b011, "movrlz">; +defm MOVRNZ : MOVR<0b101, "movrnz">; +defm MOVRGZ : MOVR<0b110, "movrgz">; +defm MOVRGEZ : MOVR<0b111, "movrgez">; + +// Move FP register on integer register condition (FMOVr). +multiclass FMOVR<bits<3> rcond, string OpcStr> { + + def S : F4_4r<0b110101, 0b00101, rcond, + (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2), + !strconcat(!strconcat("fmovrs", OpcStr)," $rs1, $rs2, $rd"), + []>; + def D : F4_4r<0b110101, 0b00110, rcond, + (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2), + !strconcat(!strconcat("fmovrd", OpcStr)," $rs1, $rs2, $rd"), + []>; + def Q : F4_4r<0b110101, 0b00111, rcond, + (outs FPRegs:$rd), (ins I64Regs:$rs1, FPRegs:$rs2), + !strconcat(!strconcat("fmovrq", OpcStr)," $rs1, $rs2, $rd"), + []>, Requires<[HasHardQuad]>; +} + +let Predicates = [HasV9] in { + defm FMOVRZ : FMOVR<0b001, "z">; + defm FMOVRLEZ : FMOVR<0b010, "lez">; + defm FMOVRLZ : FMOVR<0b011, "lz">; + defm FMOVRNZ : FMOVR<0b101, "nz">; + defm FMOVRGZ : FMOVR<0b110, "gz">; + defm FMOVRGEZ : FMOVR<0b111, "gez">; +} + +//===----------------------------------------------------------------------===// +// 64-bit Floating Point Conversions. +//===----------------------------------------------------------------------===// + +let Predicates = [Is64Bit] in { + +def FXTOS : F3_3u<2, 0b110100, 0b010000100, + (outs FPRegs:$rd), (ins DFPRegs:$rs2), + "fxtos $rs2, $rd", + [(set FPRegs:$rd, (SPxtof DFPRegs:$rs2))]>; +def FXTOD : F3_3u<2, 0b110100, 0b010001000, + (outs DFPRegs:$rd), (ins DFPRegs:$rs2), + "fxtod $rs2, $rd", + [(set DFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>; +def FXTOQ : F3_3u<2, 0b110100, 0b010001100, + (outs QFPRegs:$rd), (ins DFPRegs:$rs2), + "fxtoq $rs2, $rd", + [(set QFPRegs:$rd, (SPxtof DFPRegs:$rs2))]>, + Requires<[HasHardQuad]>; + +def FSTOX : F3_3u<2, 0b110100, 0b010000001, + (outs DFPRegs:$rd), (ins FPRegs:$rs2), + "fstox $rs2, $rd", + [(set DFPRegs:$rd, (SPftox FPRegs:$rs2))]>; +def FDTOX : F3_3u<2, 0b110100, 0b010000010, + (outs DFPRegs:$rd), (ins DFPRegs:$rs2), + "fdtox $rs2, $rd", + [(set DFPRegs:$rd, (SPftox DFPRegs:$rs2))]>; +def FQTOX : F3_3u<2, 0b110100, 0b010000011, + (outs DFPRegs:$rd), (ins QFPRegs:$rs2), + "fqtox $rs2, $rd", + [(set DFPRegs:$rd, (SPftox QFPRegs:$rs2))]>, + Requires<[HasHardQuad]>; + +} // Predicates = [Is64Bit] + +def : Pat<(SPselectxcc i64:$t, i64:$f, imm:$cond), + (MOVXCCrr $t, $f, imm:$cond)>; +def : Pat<(SPselectxcc (i64 simm11:$t), i64:$f, imm:$cond), + (MOVXCCri (as_i32imm $t), $f, imm:$cond)>; + +def : Pat<(SPselecticc i64:$t, i64:$f, imm:$cond), + (MOVICCrr $t, $f, imm:$cond)>; +def : Pat<(SPselecticc (i64 simm11:$t), i64:$f, imm:$cond), + (MOVICCri (as_i32imm $t), $f, imm:$cond)>; + +def : Pat<(SPselectfcc i64:$t, i64:$f, imm:$cond), + (MOVFCCrr $t, $f, imm:$cond)>; +def : Pat<(SPselectfcc (i64 simm11:$t), i64:$f, imm:$cond), + (MOVFCCri (as_i32imm $t), $f, imm:$cond)>; + +} // Predicates = [Is64Bit] + + +// 64 bit SETHI +let Predicates = [Is64Bit], isCodeGenOnly = 1 in { +def SETHIXi : F2_1<0b100, + (outs IntRegs:$rd), (ins i64imm:$imm22), + "sethi $imm22, $rd", + [(set i64:$rd, SETHIimm:$imm22)]>; +} + +// ATOMICS. +let Predicates = [Is64Bit], Constraints = "$swap = $rd", asi = 0b10000000 in { + def CASXrr: F3_1_asi<3, 0b111110, + (outs I64Regs:$rd), (ins I64Regs:$rs1, I64Regs:$rs2, + I64Regs:$swap), + "casx [$rs1], $rs2, $rd", + [(set i64:$rd, + (atomic_cmp_swap i64:$rs1, i64:$rs2, i64:$swap))]>; + +} // Predicates = [Is64Bit], Constraints = ... + +let Predicates = [Is64Bit] in { + +def : Pat<(atomic_fence imm, imm), (MEMBARi 0xf)>; + +// atomic_load_64 addr -> load addr +def : Pat<(i64 (atomic_load ADDRrr:$src)), (LDXrr ADDRrr:$src)>; +def : Pat<(i64 (atomic_load ADDRri:$src)), (LDXri ADDRri:$src)>; + +// atomic_store_64 val, addr -> store val, addr +def : Pat<(atomic_store ADDRrr:$dst, i64:$val), (STXrr ADDRrr:$dst, $val)>; +def : Pat<(atomic_store ADDRri:$dst, i64:$val), (STXri ADDRri:$dst, $val)>; + +} // Predicates = [Is64Bit] + +let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1, + Defs = [ICC] in +multiclass AtomicRMW<SDPatternOperator op32, SDPatternOperator op64> { + + def _32 : Pseudo<(outs IntRegs:$rd), + (ins ptr_rc:$addr, IntRegs:$rs2), "", + [(set i32:$rd, (op32 iPTR:$addr, i32:$rs2))]>; + + let Predicates = [Is64Bit] in + def _64 : Pseudo<(outs I64Regs:$rd), + (ins ptr_rc:$addr, I64Regs:$rs2), "", + [(set i64:$rd, (op64 iPTR:$addr, i64:$rs2))]>; +} + +defm ATOMIC_LOAD_ADD : AtomicRMW<atomic_load_add_32, atomic_load_add_64>; +defm ATOMIC_LOAD_SUB : AtomicRMW<atomic_load_sub_32, atomic_load_sub_64>; +defm ATOMIC_LOAD_AND : AtomicRMW<atomic_load_and_32, atomic_load_and_64>; +defm ATOMIC_LOAD_OR : AtomicRMW<atomic_load_or_32, atomic_load_or_64>; +defm ATOMIC_LOAD_XOR : AtomicRMW<atomic_load_xor_32, atomic_load_xor_64>; +defm ATOMIC_LOAD_NAND : AtomicRMW<atomic_load_nand_32, atomic_load_nand_64>; +defm ATOMIC_LOAD_MIN : AtomicRMW<atomic_load_min_32, atomic_load_min_64>; +defm ATOMIC_LOAD_MAX : AtomicRMW<atomic_load_max_32, atomic_load_max_64>; +defm ATOMIC_LOAD_UMIN : AtomicRMW<atomic_load_umin_32, atomic_load_umin_64>; +defm ATOMIC_LOAD_UMAX : AtomicRMW<atomic_load_umax_32, atomic_load_umax_64>; + +// There is no 64-bit variant of SWAP, so use a pseudo. +let usesCustomInserter = 1, hasCtrlDep = 1, mayLoad = 1, mayStore = 1, + Defs = [ICC], Predicates = [Is64Bit] in +def ATOMIC_SWAP_64 : Pseudo<(outs I64Regs:$rd), + (ins ptr_rc:$addr, I64Regs:$rs2), "", + [(set i64:$rd, + (atomic_swap_64 iPTR:$addr, i64:$rs2))]>; + +let Predicates = [Is64Bit], hasSideEffects = 1, Uses = [ICC], cc = 0b10 in + defm TXCC : TRAP<"%xcc">; + +// Global addresses, constant pool entries +let Predicates = [Is64Bit] in { + +def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; +def : Pat<(SPlo tglobaladdr:$in), (ORXri (i64 G0), tglobaladdr:$in)>; +def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; +def : Pat<(SPlo tconstpool:$in), (ORXri (i64 G0), tconstpool:$in)>; + +// GlobalTLS addresses +def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>; +def : Pat<(SPlo tglobaltlsaddr:$in), (ORXri (i64 G0), tglobaltlsaddr:$in)>; +def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), + (ADDXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; +def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), + (XORXri (SETHIXi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; + +// Blockaddress +def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>; +def : Pat<(SPlo tblockaddress:$in), (ORXri (i64 G0), tblockaddress:$in)>; + +// Add reg, lo. This is used when taking the addr of a global/constpool entry. +def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDXri $r, tglobaladdr:$in)>; +def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)), (ADDXri $r, tconstpool:$in)>; +def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)), + (ADDXri $r, tblockaddress:$in)>; +} |