diff options
Diffstat (limited to 'contrib/llvm/lib/Target/R600/SIISelLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/R600/SIISelLowering.cpp | 2241 |
1 files changed, 0 insertions, 2241 deletions
diff --git a/contrib/llvm/lib/Target/R600/SIISelLowering.cpp b/contrib/llvm/lib/Target/R600/SIISelLowering.cpp deleted file mode 100644 index 12d08cf..0000000 --- a/contrib/llvm/lib/Target/R600/SIISelLowering.cpp +++ /dev/null @@ -1,2241 +0,0 @@ -//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -/// \file -/// \brief Custom DAG lowering for SI -// -//===----------------------------------------------------------------------===// - -#ifdef _MSC_VER -// Provide M_PI. -#define _USE_MATH_DEFINES -#include <cmath> -#endif - -#include "SIISelLowering.h" -#include "AMDGPU.h" -#include "AMDGPUIntrinsicInfo.h" -#include "AMDGPUSubtarget.h" -#include "SIInstrInfo.h" -#include "SIMachineFunctionInfo.h" -#include "SIRegisterInfo.h" -#include "llvm/ADT/BitVector.h" -#include "llvm/CodeGen/CallingConvLower.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/SelectionDAG.h" -#include "llvm/IR/Function.h" -#include "llvm/ADT/SmallString.h" - -using namespace llvm; - -SITargetLowering::SITargetLowering(TargetMachine &TM, - const AMDGPUSubtarget &STI) - : AMDGPUTargetLowering(TM, STI) { - addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); - addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); - - addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass); - addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass); - - addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); - addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); - - addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); - addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); - addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); - - addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass); - addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); - - addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass); - addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); - - addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass); - addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); - - computeRegisterProperties(STI.getRegisterInfo()); - - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); - setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); - - setOperationAction(ISD::ADD, MVT::i32, Legal); - setOperationAction(ISD::ADDC, MVT::i32, Legal); - setOperationAction(ISD::ADDE, MVT::i32, Legal); - setOperationAction(ISD::SUBC, MVT::i32, Legal); - setOperationAction(ISD::SUBE, MVT::i32, Legal); - - setOperationAction(ISD::FSIN, MVT::f32, Custom); - setOperationAction(ISD::FCOS, MVT::f32, Custom); - - setOperationAction(ISD::FMINNUM, MVT::f64, Legal); - setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); - - // We need to custom lower vector stores from local memory - setOperationAction(ISD::LOAD, MVT::v4i32, Custom); - setOperationAction(ISD::LOAD, MVT::v8i32, Custom); - setOperationAction(ISD::LOAD, MVT::v16i32, Custom); - - setOperationAction(ISD::STORE, MVT::v8i32, Custom); - setOperationAction(ISD::STORE, MVT::v16i32, Custom); - - setOperationAction(ISD::STORE, MVT::i1, Custom); - setOperationAction(ISD::STORE, MVT::v4i32, Custom); - - setOperationAction(ISD::SELECT, MVT::i64, Custom); - setOperationAction(ISD::SELECT, MVT::f64, Promote); - AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); - - setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); - setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); - setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); - setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); - - setOperationAction(ISD::SETCC, MVT::v2i1, Expand); - setOperationAction(ISD::SETCC, MVT::v4i1, Expand); - - setOperationAction(ISD::BSWAP, MVT::i32, Legal); - - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal); - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); - - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal); - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); - - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal); - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); - - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); - setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); - - setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); - setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); - setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom); - setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); - - setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); - setOperationAction(ISD::BRCOND, MVT::Other, Custom); - - for (MVT VT : MVT::integer_valuetypes()) { - if (VT == MVT::i64) - continue; - - setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); - setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); - setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); - setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); - - setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); - setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); - setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); - setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); - - setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); - setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); - setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); - setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); - } - - for (MVT VT : MVT::integer_vector_valuetypes()) { - setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand); - setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand); - } - - for (MVT VT : MVT::fp_valuetypes()) - setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); - - setTruncStoreAction(MVT::i64, MVT::i32, Expand); - setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); - setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); - - setOperationAction(ISD::LOAD, MVT::i1, Custom); - - setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); - setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); - setOperationAction(ISD::FrameIndex, MVT::i32, Custom); - - // These should use UDIVREM, so set them to expand - setOperationAction(ISD::UDIV, MVT::i64, Expand); - setOperationAction(ISD::UREM, MVT::i64, Expand); - - setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); - setOperationAction(ISD::SELECT, MVT::i1, Promote); - - // We only support LOAD/STORE and vector manipulation ops for vectors - // with > 4 elements. - for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}) { - for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { - switch(Op) { - case ISD::LOAD: - case ISD::STORE: - case ISD::BUILD_VECTOR: - case ISD::BITCAST: - case ISD::EXTRACT_VECTOR_ELT: - case ISD::INSERT_VECTOR_ELT: - case ISD::INSERT_SUBVECTOR: - case ISD::EXTRACT_SUBVECTOR: - break; - case ISD::CONCAT_VECTORS: - setOperationAction(Op, VT, Custom); - break; - default: - setOperationAction(Op, VT, Expand); - break; - } - } - } - - if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) { - setOperationAction(ISD::FTRUNC, MVT::f64, Legal); - setOperationAction(ISD::FCEIL, MVT::f64, Legal); - setOperationAction(ISD::FRINT, MVT::f64, Legal); - } - - setOperationAction(ISD::FFLOOR, MVT::f64, Legal); - setOperationAction(ISD::FDIV, MVT::f32, Custom); - setOperationAction(ISD::FDIV, MVT::f64, Custom); - - setTargetDAGCombine(ISD::FADD); - setTargetDAGCombine(ISD::FSUB); - setTargetDAGCombine(ISD::FMINNUM); - setTargetDAGCombine(ISD::FMAXNUM); - setTargetDAGCombine(ISD::SMIN); - setTargetDAGCombine(ISD::SMAX); - setTargetDAGCombine(ISD::UMIN); - setTargetDAGCombine(ISD::UMAX); - setTargetDAGCombine(ISD::SELECT_CC); - setTargetDAGCombine(ISD::SETCC); - setTargetDAGCombine(ISD::AND); - setTargetDAGCombine(ISD::OR); - setTargetDAGCombine(ISD::UINT_TO_FP); - - // All memory operations. Some folding on the pointer operand is done to help - // matching the constant offsets in the addressing modes. - setTargetDAGCombine(ISD::LOAD); - setTargetDAGCombine(ISD::STORE); - setTargetDAGCombine(ISD::ATOMIC_LOAD); - setTargetDAGCombine(ISD::ATOMIC_STORE); - setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); - setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); - setTargetDAGCombine(ISD::ATOMIC_SWAP); - setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); - setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); - setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); - setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); - setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); - setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); - setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); - setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); - setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); - setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); - - setSchedulingPreference(Sched::RegPressure); -} - -//===----------------------------------------------------------------------===// -// TargetLowering queries -//===----------------------------------------------------------------------===// - -bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &, - EVT) const { - // SI has some legal vector types, but no legal vector operations. Say no - // shuffles are legal in order to prefer scalarizing some vector operations. - return false; -} - -bool SITargetLowering::isLegalAddressingMode(const AddrMode &AM, - Type *Ty, unsigned AS) const { - // No global is ever allowed as a base. - if (AM.BaseGV) - return false; - - switch (AS) { - case AMDGPUAS::GLOBAL_ADDRESS: - case AMDGPUAS::CONSTANT_ADDRESS: // XXX - Should we assume SMRD instructions? - case AMDGPUAS::PRIVATE_ADDRESS: - case AMDGPUAS::UNKNOWN_ADDRESS_SPACE: { - // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and - // additionally can do r + r + i with addr64. 32-bit has more addressing - // mode options. Depending on the resource constant, it can also do - // (i64 r0) + (i32 r1) * (i14 i). - // - // SMRD instructions have an 8-bit, dword offset. - // - // Assume nonunifom access, since the address space isn't enough to know - // what instruction we will use, and since we don't know if this is a load - // or store and scalar stores are only available on VI. - // - // We also know if we are doing an extload, we can't do a scalar load. - // - // Private arrays end up using a scratch buffer most of the time, so also - // assume those use MUBUF instructions. Scratch loads / stores are currently - // implemented as mubuf instructions with offen bit set, so slightly - // different than the normal addr64. - if (!isUInt<12>(AM.BaseOffs)) - return false; - - // FIXME: Since we can split immediate into soffset and immediate offset, - // would it make sense to allow any immediate? - - switch (AM.Scale) { - case 0: // r + i or just i, depending on HasBaseReg. - return true; - case 1: - return true; // We have r + r or r + i. - case 2: - if (AM.HasBaseReg) { - // Reject 2 * r + r. - return false; - } - - // Allow 2 * r as r + r - // Or 2 * r + i is allowed as r + r + i. - return true; - default: // Don't allow n * r - return false; - } - } - case AMDGPUAS::LOCAL_ADDRESS: - case AMDGPUAS::REGION_ADDRESS: { - // Basic, single offset DS instructions allow a 16-bit unsigned immediate - // field. - // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have - // an 8-bit dword offset but we don't know the alignment here. - if (!isUInt<16>(AM.BaseOffs)) - return false; - - if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. - return true; - - if (AM.Scale == 1 && AM.HasBaseReg) - return true; - - return false; - } - case AMDGPUAS::FLAT_ADDRESS: { - // Flat instructions do not have offsets, and only have the register - // address. - return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1); - } - default: - llvm_unreachable("unhandled address space"); - } -} - -bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT, - unsigned AddrSpace, - unsigned Align, - bool *IsFast) const { - if (IsFast) - *IsFast = false; - - // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, - // which isn't a simple VT. - if (!VT.isSimple() || VT == MVT::Other) - return false; - - // TODO - CI+ supports unaligned memory accesses, but this requires driver - // support. - - // XXX - The only mention I see of this in the ISA manual is for LDS direct - // reads the "byte address and must be dword aligned". Is it also true for the - // normal loads and stores? - if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) { - // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte - // aligned, 8 byte access in a single operation using ds_read2/write2_b32 - // with adjacent offsets. - return Align % 4 == 0; - } - - // Smaller than dword value must be aligned. - // FIXME: This should be allowed on CI+ - if (VT.bitsLT(MVT::i32)) - return false; - - // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the - // byte-address are ignored, thus forcing Dword alignment. - // This applies to private, global, and constant memory. - if (IsFast) - *IsFast = true; - - return VT.bitsGT(MVT::i32) && Align % 4 == 0; -} - -EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, - unsigned SrcAlign, bool IsMemset, - bool ZeroMemset, - bool MemcpyStrSrc, - MachineFunction &MF) const { - // FIXME: Should account for address space here. - - // The default fallback uses the private pointer size as a guess for a type to - // use. Make sure we switch these to 64-bit accesses. - - if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global - return MVT::v4i32; - - if (Size >= 8 && DstAlign >= 4) - return MVT::v2i32; - - // Use the default. - return MVT::Other; -} - -TargetLoweringBase::LegalizeTypeAction -SITargetLowering::getPreferredVectorAction(EVT VT) const { - if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16)) - return TypeSplitVector; - - return TargetLoweringBase::getPreferredVectorAction(VT); -} - -bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, - Type *Ty) const { - const SIInstrInfo *TII = - static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); - return TII->isInlineConstant(Imm); -} - -static EVT toIntegerVT(EVT VT) { - if (VT.isVector()) - return VT.changeVectorElementTypeToInteger(); - return MVT::getIntegerVT(VT.getSizeInBits()); -} - -SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT, - SDLoc SL, SDValue Chain, - unsigned Offset, bool Signed) const { - const DataLayout *DL = getDataLayout(); - MachineFunction &MF = DAG.getMachineFunction(); - const SIRegisterInfo *TRI = - static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); - unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR); - - Type *Ty = VT.getTypeForEVT(*DAG.getContext()); - - MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); - MVT PtrVT = getPointerTy(AMDGPUAS::CONSTANT_ADDRESS); - PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); - SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, - MRI.getLiveInVirtReg(InputPtrReg), PtrVT); - SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, - DAG.getConstant(Offset, SL, PtrVT)); - SDValue PtrOffset = DAG.getUNDEF(getPointerTy(AMDGPUAS::CONSTANT_ADDRESS)); - MachinePointerInfo PtrInfo(UndefValue::get(PtrTy)); - - unsigned Align = DL->getABITypeAlignment(Ty); - - if (VT != MemVT && VT.isFloatingPoint()) { - // Do an integer load and convert. - // FIXME: This is mostly because load legalization after type legalization - // doesn't handle FP extloads. - assert(VT.getScalarType() == MVT::f32 && - MemVT.getScalarType() == MVT::f16); - - EVT IVT = toIntegerVT(VT); - EVT MemIVT = toIntegerVT(MemVT); - SDValue Load = DAG.getLoad(ISD::UNINDEXED, ISD::ZEXTLOAD, - IVT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemIVT, - false, // isVolatile - true, // isNonTemporal - true, // isInvariant - Align); // Alignment - return DAG.getNode(ISD::FP16_TO_FP, SL, VT, Load); - } - - ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD; - return DAG.getLoad(ISD::UNINDEXED, ExtTy, - VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT, - false, // isVolatile - true, // isNonTemporal - true, // isInvariant - Align); // Alignment -} - -SDValue SITargetLowering::LowerFormalArguments( - SDValue Chain, CallingConv::ID CallConv, bool isVarArg, - const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, - SmallVectorImpl<SDValue> &InVals) const { - const SIRegisterInfo *TRI = - static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); - - MachineFunction &MF = DAG.getMachineFunction(); - FunctionType *FType = MF.getFunction()->getFunctionType(); - SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); - - assert(CallConv == CallingConv::C); - - SmallVector<ISD::InputArg, 16> Splits; - BitVector Skipped(Ins.size()); - - for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) { - const ISD::InputArg &Arg = Ins[i]; - - // First check if it's a PS input addr - if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() && - !Arg.Flags.isByVal()) { - - assert((PSInputNum <= 15) && "Too many PS inputs!"); - - if (!Arg.Used) { - // We can savely skip PS inputs - Skipped.set(i); - ++PSInputNum; - continue; - } - - Info->PSInputAddr |= 1 << PSInputNum++; - } - - // Second split vertices into their elements - if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) { - ISD::InputArg NewArg = Arg; - NewArg.Flags.setSplit(); - NewArg.VT = Arg.VT.getVectorElementType(); - - // We REALLY want the ORIGINAL number of vertex elements here, e.g. a - // three or five element vertex only needs three or five registers, - // NOT four or eigth. - Type *ParamType = FType->getParamType(Arg.getOrigArgIndex()); - unsigned NumElements = ParamType->getVectorNumElements(); - - for (unsigned j = 0; j != NumElements; ++j) { - Splits.push_back(NewArg); - NewArg.PartOffset += NewArg.VT.getStoreSize(); - } - - } else if (Info->getShaderType() != ShaderType::COMPUTE) { - Splits.push_back(Arg); - } - } - - SmallVector<CCValAssign, 16> ArgLocs; - CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, - *DAG.getContext()); - - // At least one interpolation mode must be enabled or else the GPU will hang. - if (Info->getShaderType() == ShaderType::PIXEL && - (Info->PSInputAddr & 0x7F) == 0) { - Info->PSInputAddr |= 1; - CCInfo.AllocateReg(AMDGPU::VGPR0); - CCInfo.AllocateReg(AMDGPU::VGPR1); - } - - // The pointer to the list of arguments is stored in SGPR0, SGPR1 - // The pointer to the scratch buffer is stored in SGPR2, SGPR3 - if (Info->getShaderType() == ShaderType::COMPUTE) { - if (Subtarget->isAmdHsaOS()) - Info->NumUserSGPRs = 2; // FIXME: Need to support scratch buffers. - else - Info->NumUserSGPRs = 4; - - unsigned InputPtrReg = - TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR); - unsigned InputPtrRegLo = - TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 0); - unsigned InputPtrRegHi = - TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 1); - - unsigned ScratchPtrReg = - TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR); - unsigned ScratchPtrRegLo = - TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 0); - unsigned ScratchPtrRegHi = - TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 1); - - CCInfo.AllocateReg(InputPtrRegLo); - CCInfo.AllocateReg(InputPtrRegHi); - CCInfo.AllocateReg(ScratchPtrRegLo); - CCInfo.AllocateReg(ScratchPtrRegHi); - MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass); - MF.addLiveIn(ScratchPtrReg, &AMDGPU::SReg_64RegClass); - } - - if (Info->getShaderType() == ShaderType::COMPUTE) { - getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins, - Splits); - } - - AnalyzeFormalArguments(CCInfo, Splits); - - for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { - - const ISD::InputArg &Arg = Ins[i]; - if (Skipped[i]) { - InVals.push_back(DAG.getUNDEF(Arg.VT)); - continue; - } - - CCValAssign &VA = ArgLocs[ArgIdx++]; - MVT VT = VA.getLocVT(); - - if (VA.isMemLoc()) { - VT = Ins[i].VT; - EVT MemVT = Splits[i].VT; - const unsigned Offset = 36 + VA.getLocMemOffset(); - // The first 36 bytes of the input buffer contains information about - // thread group and global sizes. - SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, DAG.getRoot(), - Offset, Ins[i].Flags.isSExt()); - - const PointerType *ParamTy = - dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); - if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && - ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { - // On SI local pointers are just offsets into LDS, so they are always - // less than 16-bits. On CI and newer they could potentially be - // real pointers, so we can't guarantee their size. - Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, - DAG.getValueType(MVT::i16)); - } - - InVals.push_back(Arg); - Info->ABIArgOffset = Offset + MemVT.getStoreSize(); - continue; - } - assert(VA.isRegLoc() && "Parameter must be in a register!"); - - unsigned Reg = VA.getLocReg(); - - if (VT == MVT::i64) { - // For now assume it is a pointer - Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, - &AMDGPU::SReg_64RegClass); - Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass); - InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT)); - continue; - } - - const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); - - Reg = MF.addLiveIn(Reg, RC); - SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); - - if (Arg.VT.isVector()) { - - // Build a vector from the registers - Type *ParamType = FType->getParamType(Arg.getOrigArgIndex()); - unsigned NumElements = ParamType->getVectorNumElements(); - - SmallVector<SDValue, 4> Regs; - Regs.push_back(Val); - for (unsigned j = 1; j != NumElements; ++j) { - Reg = ArgLocs[ArgIdx++].getLocReg(); - Reg = MF.addLiveIn(Reg, RC); - Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT)); - } - - // Fill up the missing vector elements - NumElements = Arg.VT.getVectorNumElements() - NumElements; - Regs.append(NumElements, DAG.getUNDEF(VT)); - - InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs)); - continue; - } - - InVals.push_back(Val); - } - - if (Info->getShaderType() != ShaderType::COMPUTE) { - unsigned ScratchIdx = CCInfo.getFirstUnallocated(ArrayRef<MCPhysReg>( - AMDGPU::SGPR_32RegClass.begin(), AMDGPU::SGPR_32RegClass.getNumRegs())); - Info->ScratchOffsetReg = AMDGPU::SGPR_32RegClass.getRegister(ScratchIdx); - } - return Chain; -} - -MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter( - MachineInstr * MI, MachineBasicBlock * BB) const { - - MachineBasicBlock::iterator I = *MI; - const SIInstrInfo *TII = - static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); - - switch (MI->getOpcode()) { - default: - return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); - case AMDGPU::BRANCH: - return BB; - case AMDGPU::SI_RegisterStorePseudo: { - MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); - unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); - MachineInstrBuilder MIB = - BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore), - Reg); - for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) - MIB.addOperand(MI->getOperand(i)); - - MI->eraseFromParent(); - break; - } - } - return BB; -} - -bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { - // This currently forces unfolding various combinations of fsub into fma with - // free fneg'd operands. As long as we have fast FMA (controlled by - // isFMAFasterThanFMulAndFAdd), we should perform these. - - // When fma is quarter rate, for f64 where add / sub are at best half rate, - // most of these combines appear to be cycle neutral but save on instruction - // count / code size. - return true; -} - -EVT SITargetLowering::getSetCCResultType(LLVMContext &Ctx, EVT VT) const { - if (!VT.isVector()) { - return MVT::i1; - } - return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); -} - -MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const { - return MVT::i32; -} - -// Answering this is somewhat tricky and depends on the specific device which -// have different rates for fma or all f64 operations. -// -// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other -// regardless of which device (although the number of cycles differs between -// devices), so it is always profitable for f64. -// -// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable -// only on full rate devices. Normally, we should prefer selecting v_mad_f32 -// which we can always do even without fused FP ops since it returns the same -// result as the separate operations and since it is always full -// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 -// however does not support denormals, so we do report fma as faster if we have -// a fast fma device and require denormals. -// -bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { - VT = VT.getScalarType(); - - if (!VT.isSimple()) - return false; - - switch (VT.getSimpleVT().SimpleTy) { - case MVT::f32: - // This is as fast on some subtargets. However, we always have full rate f32 - // mad available which returns the same result as the separate operations - // which we should prefer over fma. We can't use this if we want to support - // denormals, so only report this in these cases. - return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32(); - case MVT::f64: - return true; - default: - break; - } - - return false; -} - -//===----------------------------------------------------------------------===// -// Custom DAG Lowering Operations -//===----------------------------------------------------------------------===// - -SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { - switch (Op.getOpcode()) { - default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); - case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); - case ISD::BRCOND: return LowerBRCOND(Op, DAG); - case ISD::LOAD: { - SDValue Result = LowerLOAD(Op, DAG); - assert((!Result.getNode() || - Result.getNode()->getNumValues() == 2) && - "Load should return a value and a chain"); - return Result; - } - - case ISD::FSIN: - case ISD::FCOS: - return LowerTrig(Op, DAG); - case ISD::SELECT: return LowerSELECT(Op, DAG); - case ISD::FDIV: return LowerFDIV(Op, DAG); - case ISD::STORE: return LowerSTORE(Op, DAG); - case ISD::GlobalAddress: { - MachineFunction &MF = DAG.getMachineFunction(); - SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); - return LowerGlobalAddress(MFI, Op, DAG); - } - case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); - case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); - } - return SDValue(); -} - -/// \brief Helper function for LowerBRCOND -static SDNode *findUser(SDValue Value, unsigned Opcode) { - - SDNode *Parent = Value.getNode(); - for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); - I != E; ++I) { - - if (I.getUse().get() != Value) - continue; - - if (I->getOpcode() == Opcode) - return *I; - } - return nullptr; -} - -SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const { - - FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op); - unsigned FrameIndex = FINode->getIndex(); - - return DAG.getTargetFrameIndex(FrameIndex, MVT::i32); -} - -/// This transforms the control flow intrinsics to get the branch destination as -/// last parameter, also switches branch target with BR if the need arise -SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, - SelectionDAG &DAG) const { - - SDLoc DL(BRCOND); - - SDNode *Intr = BRCOND.getOperand(1).getNode(); - SDValue Target = BRCOND.getOperand(2); - SDNode *BR = nullptr; - - if (Intr->getOpcode() == ISD::SETCC) { - // As long as we negate the condition everything is fine - SDNode *SetCC = Intr; - assert(SetCC->getConstantOperandVal(1) == 1); - assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == - ISD::SETNE); - Intr = SetCC->getOperand(0).getNode(); - - } else { - // Get the target from BR if we don't negate the condition - BR = findUser(BRCOND, ISD::BR); - Target = BR->getOperand(1); - } - - assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN); - - // Build the result and - ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); - - // operands of the new intrinsic call - SmallVector<SDValue, 4> Ops; - Ops.push_back(BRCOND.getOperand(0)); - Ops.append(Intr->op_begin() + 1, Intr->op_end()); - Ops.push_back(Target); - - // build the new intrinsic call - SDNode *Result = DAG.getNode( - Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL, - DAG.getVTList(Res), Ops).getNode(); - - if (BR) { - // Give the branch instruction our target - SDValue Ops[] = { - BR->getOperand(0), - BRCOND.getOperand(2) - }; - SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); - DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); - BR = NewBR.getNode(); - } - - SDValue Chain = SDValue(Result, Result->getNumValues() - 1); - - // Copy the intrinsic results to registers - for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { - SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); - if (!CopyToReg) - continue; - - Chain = DAG.getCopyToReg( - Chain, DL, - CopyToReg->getOperand(1), - SDValue(Result, i - 1), - SDValue()); - - DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); - } - - // Remove the old intrinsic from the chain - DAG.ReplaceAllUsesOfValueWith( - SDValue(Intr, Intr->getNumValues() - 1), - Intr->getOperand(0)); - - return Chain; -} - -SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, - SDValue Op, - SelectionDAG &DAG) const { - GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); - - if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) - return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); - - SDLoc DL(GSD); - const GlobalValue *GV = GSD->getGlobal(); - MVT PtrVT = getPointerTy(GSD->getAddressSpace()); - - SDValue Ptr = DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT); - SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32); - - SDValue PtrLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr, - DAG.getConstant(0, DL, MVT::i32)); - SDValue PtrHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr, - DAG.getConstant(1, DL, MVT::i32)); - - SDValue Lo = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i32, MVT::Glue), - PtrLo, GA); - SDValue Hi = DAG.getNode(ISD::ADDE, DL, DAG.getVTList(MVT::i32, MVT::Glue), - PtrHi, DAG.getConstant(0, DL, MVT::i32), - SDValue(Lo.getNode(), 1)); - return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi); -} - -SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, SDLoc DL, - SDValue V) const { - // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, - // so we will end up with redundant moves to m0. - // - // We can't use S_MOV_B32, because there is no way to specify m0 as the - // destination register. - // - // We have to use them both. Machine cse will combine all the S_MOV_B32 - // instructions and the register coalescer eliminate the extra copies. - SDNode *M0 = DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, V.getValueType(), V); - return DAG.getCopyToReg(Chain, DL, DAG.getRegister(AMDGPU::M0, MVT::i32), - SDValue(M0, 0), SDValue()); // Glue - // A Null SDValue creates - // a glue result. -} - -SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, - SelectionDAG &DAG) const { - MachineFunction &MF = DAG.getMachineFunction(); - const SIRegisterInfo *TRI = - static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); - - EVT VT = Op.getValueType(); - SDLoc DL(Op); - unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); - - switch (IntrinsicID) { - case Intrinsic::r600_read_ngroups_x: - return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), - SI::KernelInputOffsets::NGROUPS_X, false); - case Intrinsic::r600_read_ngroups_y: - return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), - SI::KernelInputOffsets::NGROUPS_Y, false); - case Intrinsic::r600_read_ngroups_z: - return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), - SI::KernelInputOffsets::NGROUPS_Z, false); - case Intrinsic::r600_read_global_size_x: - return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), - SI::KernelInputOffsets::GLOBAL_SIZE_X, false); - case Intrinsic::r600_read_global_size_y: - return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), - SI::KernelInputOffsets::GLOBAL_SIZE_Y, false); - case Intrinsic::r600_read_global_size_z: - return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), - SI::KernelInputOffsets::GLOBAL_SIZE_Z, false); - case Intrinsic::r600_read_local_size_x: - return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), - SI::KernelInputOffsets::LOCAL_SIZE_X, false); - case Intrinsic::r600_read_local_size_y: - return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), - SI::KernelInputOffsets::LOCAL_SIZE_Y, false); - case Intrinsic::r600_read_local_size_z: - return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), - SI::KernelInputOffsets::LOCAL_SIZE_Z, false); - - case Intrinsic::AMDGPU_read_workdim: - return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), - MF.getInfo<SIMachineFunctionInfo>()->ABIArgOffset, - false); - - case Intrinsic::r600_read_tgid_x: - return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, - TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_X), VT); - case Intrinsic::r600_read_tgid_y: - return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, - TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Y), VT); - case Intrinsic::r600_read_tgid_z: - return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, - TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Z), VT); - case Intrinsic::r600_read_tidig_x: - return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass, - TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_X), VT); - case Intrinsic::r600_read_tidig_y: - return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass, - TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Y), VT); - case Intrinsic::r600_read_tidig_z: - return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass, - TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Z), VT); - case AMDGPUIntrinsic::SI_load_const: { - SDValue Ops[] = { - Op.getOperand(1), - Op.getOperand(2) - }; - - MachineMemOperand *MMO = MF.getMachineMemOperand( - MachinePointerInfo(), - MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, - VT.getStoreSize(), 4); - return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL, - Op->getVTList(), Ops, VT, MMO); - } - case AMDGPUIntrinsic::SI_sample: - return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG); - case AMDGPUIntrinsic::SI_sampleb: - return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG); - case AMDGPUIntrinsic::SI_sampled: - return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG); - case AMDGPUIntrinsic::SI_samplel: - return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG); - case AMDGPUIntrinsic::SI_vs_load_input: - return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT, - Op.getOperand(1), - Op.getOperand(2), - Op.getOperand(3)); - - case AMDGPUIntrinsic::AMDGPU_fract: - case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name. - return DAG.getNode(ISD::FSUB, DL, VT, Op.getOperand(1), - DAG.getNode(ISD::FFLOOR, DL, VT, Op.getOperand(1))); - case AMDGPUIntrinsic::SI_fs_constant: { - SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3)); - SDValue Glue = M0.getValue(1); - return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, - DAG.getConstant(2, DL, MVT::i32), // P0 - Op.getOperand(1), Op.getOperand(2), Glue); - } - case AMDGPUIntrinsic::SI_fs_interp: { - SDValue IJ = Op.getOperand(4); - SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ, - DAG.getConstant(0, DL, MVT::i32)); - SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ, - DAG.getConstant(1, DL, MVT::i32)); - SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3)); - SDValue Glue = M0.getValue(1); - SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL, - DAG.getVTList(MVT::f32, MVT::Glue), - I, Op.getOperand(1), Op.getOperand(2), Glue); - Glue = SDValue(P1.getNode(), 1); - return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J, - Op.getOperand(1), Op.getOperand(2), Glue); - } - default: - return AMDGPUTargetLowering::LowerOperation(Op, DAG); - } -} - -SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, - SelectionDAG &DAG) const { - MachineFunction &MF = DAG.getMachineFunction(); - SDLoc DL(Op); - SDValue Chain = Op.getOperand(0); - unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); - - switch (IntrinsicID) { - case AMDGPUIntrinsic::SI_sendmsg: { - Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3)); - SDValue Glue = Chain.getValue(1); - return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain, - Op.getOperand(2), Glue); - } - case AMDGPUIntrinsic::SI_tbuffer_store: { - SDValue Ops[] = { - Chain, - Op.getOperand(2), - Op.getOperand(3), - Op.getOperand(4), - Op.getOperand(5), - Op.getOperand(6), - Op.getOperand(7), - Op.getOperand(8), - Op.getOperand(9), - Op.getOperand(10), - Op.getOperand(11), - Op.getOperand(12), - Op.getOperand(13), - Op.getOperand(14) - }; - - EVT VT = Op.getOperand(3).getValueType(); - - MachineMemOperand *MMO = MF.getMachineMemOperand( - MachinePointerInfo(), - MachineMemOperand::MOStore, - VT.getStoreSize(), 4); - return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL, - Op->getVTList(), Ops, VT, MMO); - } - default: - return SDValue(); - } -} - -SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { - SDLoc DL(Op); - LoadSDNode *Load = cast<LoadSDNode>(Op); - - if (Op.getValueType().isVector()) { - assert(Op.getValueType().getVectorElementType() == MVT::i32 && - "Custom lowering for non-i32 vectors hasn't been implemented."); - unsigned NumElements = Op.getValueType().getVectorNumElements(); - assert(NumElements != 2 && "v2 loads are supported for all address spaces."); - switch (Load->getAddressSpace()) { - default: break; - case AMDGPUAS::GLOBAL_ADDRESS: - case AMDGPUAS::PRIVATE_ADDRESS: - // v4 loads are supported for private and global memory. - if (NumElements <= 4) - break; - // fall-through - case AMDGPUAS::LOCAL_ADDRESS: - return ScalarizeVectorLoad(Op, DAG); - } - } - - return AMDGPUTargetLowering::LowerLOAD(Op, DAG); -} - -SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode, - const SDValue &Op, - SelectionDAG &DAG) const { - return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1), - Op.getOperand(2), - Op.getOperand(3), - Op.getOperand(4)); -} - -SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { - if (Op.getValueType() != MVT::i64) - return SDValue(); - - SDLoc DL(Op); - SDValue Cond = Op.getOperand(0); - - SDValue Zero = DAG.getConstant(0, DL, MVT::i32); - SDValue One = DAG.getConstant(1, DL, MVT::i32); - - SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); - SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); - - SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); - SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); - - SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); - - SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); - SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); - - SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); - - SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi); - return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res); -} - -// Catch division cases where we can use shortcuts with rcp and rsq -// instructions. -SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const { - SDLoc SL(Op); - SDValue LHS = Op.getOperand(0); - SDValue RHS = Op.getOperand(1); - EVT VT = Op.getValueType(); - bool Unsafe = DAG.getTarget().Options.UnsafeFPMath; - - if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { - if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) && - CLHS->isExactlyValue(1.0)) { - // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to - // the CI documentation has a worst case error of 1 ulp. - // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to - // use it as long as we aren't trying to use denormals. - - // 1.0 / sqrt(x) -> rsq(x) - // - // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP - // error seems really high at 2^29 ULP. - if (RHS.getOpcode() == ISD::FSQRT) - return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); - - // 1.0 / x -> rcp(x) - return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); - } - } - - if (Unsafe) { - // Turn into multiply by the reciprocal. - // x / y -> x * (1.0 / y) - SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); - return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip); - } - - return SDValue(); -} - -SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { - SDValue FastLowered = LowerFastFDIV(Op, DAG); - if (FastLowered.getNode()) - return FastLowered; - - // This uses v_rcp_f32 which does not handle denormals. Let this hit a - // selection error for now rather than do something incorrect. - if (Subtarget->hasFP32Denormals()) - return SDValue(); - - SDLoc SL(Op); - SDValue LHS = Op.getOperand(0); - SDValue RHS = Op.getOperand(1); - - SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); - - const APFloat K0Val(BitsToFloat(0x6f800000)); - const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); - - const APFloat K1Val(BitsToFloat(0x2f800000)); - const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); - - const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); - - EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32); - - SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); - - SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); - - r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); - - SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); - - SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); - - return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); -} - -SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { - if (DAG.getTarget().Options.UnsafeFPMath) - return LowerFastFDIV(Op, DAG); - - SDLoc SL(Op); - SDValue X = Op.getOperand(0); - SDValue Y = Op.getOperand(1); - - const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); - - SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); - - SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); - - SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); - - SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); - - SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); - - SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); - - SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); - - SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); - - SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); - SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); - - SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, - NegDivScale0, Mul, DivScale1); - - SDValue Scale; - - if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { - // Workaround a hardware bug on SI where the condition output from div_scale - // is not usable. - - const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); - - // Figure out if the scale to use for div_fmas. - SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); - SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); - SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); - SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); - - SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); - SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); - - SDValue Scale0Hi - = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); - SDValue Scale1Hi - = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); - - SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); - SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); - Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); - } else { - Scale = DivScale1.getValue(1); - } - - SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, - Fma4, Fma3, Mul, Scale); - - return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); -} - -SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { - EVT VT = Op.getValueType(); - - if (VT == MVT::f32) - return LowerFDIV32(Op, DAG); - - if (VT == MVT::f64) - return LowerFDIV64(Op, DAG); - - llvm_unreachable("Unexpected type for fdiv"); -} - -SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { - SDLoc DL(Op); - StoreSDNode *Store = cast<StoreSDNode>(Op); - EVT VT = Store->getMemoryVT(); - - // These stores are legal. - if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { - if (VT.isVector() && VT.getVectorNumElements() > 4) - return ScalarizeVectorStore(Op, DAG); - return SDValue(); - } - - SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG); - if (Ret.getNode()) - return Ret; - - if (VT.isVector() && VT.getVectorNumElements() >= 8) - return ScalarizeVectorStore(Op, DAG); - - if (VT == MVT::i1) - return DAG.getTruncStore(Store->getChain(), DL, - DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), - Store->getBasePtr(), MVT::i1, Store->getMemOperand()); - - return SDValue(); -} - -SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { - SDLoc DL(Op); - EVT VT = Op.getValueType(); - SDValue Arg = Op.getOperand(0); - SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT, - DAG.getNode(ISD::FMUL, DL, VT, Arg, - DAG.getConstantFP(0.5/M_PI, DL, - VT))); - - switch (Op.getOpcode()) { - case ISD::FCOS: - return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart); - case ISD::FSIN: - return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart); - default: - llvm_unreachable("Wrong trig opcode"); - } -} - -//===----------------------------------------------------------------------===// -// Custom DAG optimizations -//===----------------------------------------------------------------------===// - -SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, - DAGCombinerInfo &DCI) const { - EVT VT = N->getValueType(0); - EVT ScalarVT = VT.getScalarType(); - if (ScalarVT != MVT::f32) - return SDValue(); - - SelectionDAG &DAG = DCI.DAG; - SDLoc DL(N); - - SDValue Src = N->getOperand(0); - EVT SrcVT = Src.getValueType(); - - // TODO: We could try to match extracting the higher bytes, which would be - // easier if i8 vectors weren't promoted to i32 vectors, particularly after - // types are legalized. v4i8 -> v4f32 is probably the only case to worry - // about in practice. - if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) { - if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { - SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src); - DCI.AddToWorklist(Cvt.getNode()); - return Cvt; - } - } - - // We are primarily trying to catch operations on illegal vector types - // before they are expanded. - // For scalars, we can use the more flexible method of checking masked bits - // after legalization. - if (!DCI.isBeforeLegalize() || - !SrcVT.isVector() || - SrcVT.getVectorElementType() != MVT::i8) { - return SDValue(); - } - - assert(DCI.isBeforeLegalize() && "Unexpected legal type"); - - // Weird sized vectors are a pain to handle, but we know 3 is really the same - // size as 4. - unsigned NElts = SrcVT.getVectorNumElements(); - if (!SrcVT.isSimple() && NElts != 3) - return SDValue(); - - // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to - // prevent a mess from expanding to v4i32 and repacking. - if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) { - EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT); - EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT); - EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts); - LoadSDNode *Load = cast<LoadSDNode>(Src); - - unsigned AS = Load->getAddressSpace(); - unsigned Align = Load->getAlignment(); - Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext()); - unsigned ABIAlignment = getDataLayout()->getABITypeAlignment(Ty); - - // Don't try to replace the load if we have to expand it due to alignment - // problems. Otherwise we will end up scalarizing the load, and trying to - // repack into the vector for no real reason. - if (Align < ABIAlignment && - !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) { - return SDValue(); - } - - SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT, - Load->getChain(), - Load->getBasePtr(), - LoadVT, - Load->getMemOperand()); - - // Make sure successors of the original load stay after it by updating - // them to use the new Chain. - DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1)); - - SmallVector<SDValue, 4> Elts; - if (RegVT.isVector()) - DAG.ExtractVectorElements(NewLoad, Elts); - else - Elts.push_back(NewLoad); - - SmallVector<SDValue, 4> Ops; - - unsigned EltIdx = 0; - for (SDValue Elt : Elts) { - unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx); - for (unsigned I = 0; I < ComponentsInElt; ++I) { - unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I; - SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt); - DCI.AddToWorklist(Cvt.getNode()); - Ops.push_back(Cvt); - } - - ++EltIdx; - } - - assert(Ops.size() == NElts); - - return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops); - } - - return SDValue(); -} - -/// \brief Return true if the given offset Size in bytes can be folded into -/// the immediate offsets of a memory instruction for the given address space. -static bool canFoldOffset(unsigned OffsetSize, unsigned AS, - const AMDGPUSubtarget &STI) { - switch (AS) { - case AMDGPUAS::GLOBAL_ADDRESS: { - // MUBUF instructions a 12-bit offset in bytes. - return isUInt<12>(OffsetSize); - } - case AMDGPUAS::CONSTANT_ADDRESS: { - // SMRD instructions have an 8-bit offset in dwords on SI and - // a 20-bit offset in bytes on VI. - if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) - return isUInt<20>(OffsetSize); - else - return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4); - } - case AMDGPUAS::LOCAL_ADDRESS: - case AMDGPUAS::REGION_ADDRESS: { - // The single offset versions have a 16-bit offset in bytes. - return isUInt<16>(OffsetSize); - } - case AMDGPUAS::PRIVATE_ADDRESS: - // Indirect register addressing does not use any offsets. - default: - return 0; - } -} - -// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) - -// This is a variant of -// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), -// -// The normal DAG combiner will do this, but only if the add has one use since -// that would increase the number of instructions. -// -// This prevents us from seeing a constant offset that can be folded into a -// memory instruction's addressing mode. If we know the resulting add offset of -// a pointer can be folded into an addressing offset, we can replace the pointer -// operand with the add of new constant offset. This eliminates one of the uses, -// and may allow the remaining use to also be simplified. -// -SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, - unsigned AddrSpace, - DAGCombinerInfo &DCI) const { - SDValue N0 = N->getOperand(0); - SDValue N1 = N->getOperand(1); - - if (N0.getOpcode() != ISD::ADD) - return SDValue(); - - const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); - if (!CN1) - return SDValue(); - - const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); - if (!CAdd) - return SDValue(); - - // If the resulting offset is too large, we can't fold it into the addressing - // mode offset. - APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); - if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget)) - return SDValue(); - - SelectionDAG &DAG = DCI.DAG; - SDLoc SL(N); - EVT VT = N->getValueType(0); - - SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); - SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32); - - return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset); -} - -SDValue SITargetLowering::performAndCombine(SDNode *N, - DAGCombinerInfo &DCI) const { - if (DCI.isBeforeLegalize()) - return SDValue(); - - SelectionDAG &DAG = DCI.DAG; - - // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> - // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) - SDValue LHS = N->getOperand(0); - SDValue RHS = N->getOperand(1); - - if (LHS.getOpcode() == ISD::SETCC && - RHS.getOpcode() == ISD::SETCC) { - ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); - ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); - - SDValue X = LHS.getOperand(0); - SDValue Y = RHS.getOperand(0); - if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) - return SDValue(); - - if (LCC == ISD::SETO) { - if (X != LHS.getOperand(1)) - return SDValue(); - - if (RCC == ISD::SETUNE) { - const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); - if (!C1 || !C1->isInfinity() || C1->isNegative()) - return SDValue(); - - const uint32_t Mask = SIInstrFlags::N_NORMAL | - SIInstrFlags::N_SUBNORMAL | - SIInstrFlags::N_ZERO | - SIInstrFlags::P_ZERO | - SIInstrFlags::P_SUBNORMAL | - SIInstrFlags::P_NORMAL; - - static_assert(((~(SIInstrFlags::S_NAN | - SIInstrFlags::Q_NAN | - SIInstrFlags::N_INFINITY | - SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, - "mask not equal"); - - SDLoc DL(N); - return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, - X, DAG.getConstant(Mask, DL, MVT::i32)); - } - } - } - - return SDValue(); -} - -SDValue SITargetLowering::performOrCombine(SDNode *N, - DAGCombinerInfo &DCI) const { - SelectionDAG &DAG = DCI.DAG; - SDValue LHS = N->getOperand(0); - SDValue RHS = N->getOperand(1); - - // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) - if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && - RHS.getOpcode() == AMDGPUISD::FP_CLASS) { - SDValue Src = LHS.getOperand(0); - if (Src != RHS.getOperand(0)) - return SDValue(); - - const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); - const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); - if (!CLHS || !CRHS) - return SDValue(); - - // Only 10 bits are used. - static const uint32_t MaxMask = 0x3ff; - - uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; - SDLoc DL(N); - return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, - Src, DAG.getConstant(NewMask, DL, MVT::i32)); - } - - return SDValue(); -} - -SDValue SITargetLowering::performClassCombine(SDNode *N, - DAGCombinerInfo &DCI) const { - SelectionDAG &DAG = DCI.DAG; - SDValue Mask = N->getOperand(1); - - // fp_class x, 0 -> false - if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { - if (CMask->isNullValue()) - return DAG.getConstant(0, SDLoc(N), MVT::i1); - } - - return SDValue(); -} - -static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { - switch (Opc) { - case ISD::FMAXNUM: - return AMDGPUISD::FMAX3; - case ISD::SMAX: - return AMDGPUISD::SMAX3; - case ISD::UMAX: - return AMDGPUISD::UMAX3; - case ISD::FMINNUM: - return AMDGPUISD::FMIN3; - case ISD::SMIN: - return AMDGPUISD::SMIN3; - case ISD::UMIN: - return AMDGPUISD::UMIN3; - default: - llvm_unreachable("Not a min/max opcode"); - } -} - -SDValue SITargetLowering::performMin3Max3Combine(SDNode *N, - DAGCombinerInfo &DCI) const { - SelectionDAG &DAG = DCI.DAG; - - unsigned Opc = N->getOpcode(); - SDValue Op0 = N->getOperand(0); - SDValue Op1 = N->getOperand(1); - - // Only do this if the inner op has one use since this will just increases - // register pressure for no benefit. - - // max(max(a, b), c) - if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { - SDLoc DL(N); - return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), - DL, - N->getValueType(0), - Op0.getOperand(0), - Op0.getOperand(1), - Op1); - } - - // max(a, max(b, c)) - if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { - SDLoc DL(N); - return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), - DL, - N->getValueType(0), - Op0, - Op1.getOperand(0), - Op1.getOperand(1)); - } - - return SDValue(); -} - -SDValue SITargetLowering::performSetCCCombine(SDNode *N, - DAGCombinerInfo &DCI) const { - SelectionDAG &DAG = DCI.DAG; - SDLoc SL(N); - - SDValue LHS = N->getOperand(0); - SDValue RHS = N->getOperand(1); - EVT VT = LHS.getValueType(); - - if (VT != MVT::f32 && VT != MVT::f64) - return SDValue(); - - // Match isinf pattern - // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) - ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); - if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) { - const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); - if (!CRHS) - return SDValue(); - - const APFloat &APF = CRHS->getValueAPF(); - if (APF.isInfinity() && !APF.isNegative()) { - unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY; - return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), - DAG.getConstant(Mask, SL, MVT::i32)); - } - } - - return SDValue(); -} - -SDValue SITargetLowering::PerformDAGCombine(SDNode *N, - DAGCombinerInfo &DCI) const { - SelectionDAG &DAG = DCI.DAG; - SDLoc DL(N); - - switch (N->getOpcode()) { - default: - return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); - case ISD::SETCC: - return performSetCCCombine(N, DCI); - case ISD::FMAXNUM: // TODO: What about fmax_legacy? - case ISD::FMINNUM: - case ISD::SMAX: - case ISD::SMIN: - case ISD::UMAX: - case ISD::UMIN: { - if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG && - N->getValueType(0) != MVT::f64 && - getTargetMachine().getOptLevel() > CodeGenOpt::None) - return performMin3Max3Combine(N, DCI); - break; - } - - case AMDGPUISD::CVT_F32_UBYTE0: - case AMDGPUISD::CVT_F32_UBYTE1: - case AMDGPUISD::CVT_F32_UBYTE2: - case AMDGPUISD::CVT_F32_UBYTE3: { - unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; - - SDValue Src = N->getOperand(0); - APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); - - APInt KnownZero, KnownOne; - TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), - !DCI.isBeforeLegalizeOps()); - const TargetLowering &TLI = DAG.getTargetLoweringInfo(); - if (TLO.ShrinkDemandedConstant(Src, Demanded) || - TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) { - DCI.CommitTargetLoweringOpt(TLO); - } - - break; - } - - case ISD::UINT_TO_FP: { - return performUCharToFloatCombine(N, DCI); - - case ISD::FADD: { - if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) - break; - - EVT VT = N->getValueType(0); - if (VT != MVT::f32) - break; - - // Only do this if we are not trying to support denormals. v_mad_f32 does - // not support denormals ever. - if (Subtarget->hasFP32Denormals()) - break; - - SDValue LHS = N->getOperand(0); - SDValue RHS = N->getOperand(1); - - // These should really be instruction patterns, but writing patterns with - // source modiifiers is a pain. - - // fadd (fadd (a, a), b) -> mad 2.0, a, b - if (LHS.getOpcode() == ISD::FADD) { - SDValue A = LHS.getOperand(0); - if (A == LHS.getOperand(1)) { - const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32); - return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS); - } - } - - // fadd (b, fadd (a, a)) -> mad 2.0, a, b - if (RHS.getOpcode() == ISD::FADD) { - SDValue A = RHS.getOperand(0); - if (A == RHS.getOperand(1)) { - const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32); - return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS); - } - } - - return SDValue(); - } - case ISD::FSUB: { - if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) - break; - - EVT VT = N->getValueType(0); - - // Try to get the fneg to fold into the source modifier. This undoes generic - // DAG combines and folds them into the mad. - // - // Only do this if we are not trying to support denormals. v_mad_f32 does - // not support denormals ever. - if (VT == MVT::f32 && - !Subtarget->hasFP32Denormals()) { - SDValue LHS = N->getOperand(0); - SDValue RHS = N->getOperand(1); - if (LHS.getOpcode() == ISD::FADD) { - // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) - - SDValue A = LHS.getOperand(0); - if (A == LHS.getOperand(1)) { - const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32); - SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS); - - return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS); - } - } - - if (RHS.getOpcode() == ISD::FADD) { - // (fsub c, (fadd a, a)) -> mad -2.0, a, c - - SDValue A = RHS.getOperand(0); - if (A == RHS.getOperand(1)) { - const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32); - return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS); - } - } - - return SDValue(); - } - - break; - } - } - case ISD::LOAD: - case ISD::STORE: - case ISD::ATOMIC_LOAD: - case ISD::ATOMIC_STORE: - case ISD::ATOMIC_CMP_SWAP: - case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: - case ISD::ATOMIC_SWAP: - case ISD::ATOMIC_LOAD_ADD: - case ISD::ATOMIC_LOAD_SUB: - case ISD::ATOMIC_LOAD_AND: - case ISD::ATOMIC_LOAD_OR: - case ISD::ATOMIC_LOAD_XOR: - case ISD::ATOMIC_LOAD_NAND: - case ISD::ATOMIC_LOAD_MIN: - case ISD::ATOMIC_LOAD_MAX: - case ISD::ATOMIC_LOAD_UMIN: - case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics. - if (DCI.isBeforeLegalize()) - break; - - MemSDNode *MemNode = cast<MemSDNode>(N); - SDValue Ptr = MemNode->getBasePtr(); - - // TODO: We could also do this for multiplies. - unsigned AS = MemNode->getAddressSpace(); - if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) { - SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI); - if (NewPtr) { - SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end()); - - NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; - return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0); - } - } - break; - } - case ISD::AND: - return performAndCombine(N, DCI); - case ISD::OR: - return performOrCombine(N, DCI); - case AMDGPUISD::FP_CLASS: - return performClassCombine(N, DCI); - } - return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); -} - -/// \brief Analyze the possible immediate value Op -/// -/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate -/// and the immediate value if it's a literal immediate -int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const { - - const SIInstrInfo *TII = - static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); - - if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) { - if (TII->isInlineConstant(Node->getAPIntValue())) - return 0; - - uint64_t Val = Node->getZExtValue(); - return isUInt<32>(Val) ? Val : -1; - } - - if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) { - if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt())) - return 0; - - if (Node->getValueType(0) == MVT::f32) - return FloatToBits(Node->getValueAPF().convertToFloat()); - - return -1; - } - - return -1; -} - -/// \brief Helper function for adjustWritemask -static unsigned SubIdx2Lane(unsigned Idx) { - switch (Idx) { - default: return 0; - case AMDGPU::sub0: return 0; - case AMDGPU::sub1: return 1; - case AMDGPU::sub2: return 2; - case AMDGPU::sub3: return 3; - } -} - -/// \brief Adjust the writemask of MIMG instructions -void SITargetLowering::adjustWritemask(MachineSDNode *&Node, - SelectionDAG &DAG) const { - SDNode *Users[4] = { }; - unsigned Lane = 0; - unsigned OldDmask = Node->getConstantOperandVal(0); - unsigned NewDmask = 0; - - // Try to figure out the used register components - for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); - I != E; ++I) { - - // Abort if we can't understand the usage - if (!I->isMachineOpcode() || - I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) - return; - - // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used. - // Note that subregs are packed, i.e. Lane==0 is the first bit set - // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit - // set, etc. - Lane = SubIdx2Lane(I->getConstantOperandVal(1)); - - // Set which texture component corresponds to the lane. - unsigned Comp; - for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) { - assert(Dmask); - Comp = countTrailingZeros(Dmask); - Dmask &= ~(1 << Comp); - } - - // Abort if we have more than one user per component - if (Users[Lane]) - return; - - Users[Lane] = *I; - NewDmask |= 1 << Comp; - } - - // Abort if there's no change - if (NewDmask == OldDmask) - return; - - // Adjust the writemask in the node - std::vector<SDValue> Ops; - Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); - Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end()); - Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops); - - // If we only got one lane, replace it with a copy - // (if NewDmask has only one bit set...) - if (NewDmask && (NewDmask & (NewDmask-1)) == 0) { - SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(), - MVT::i32); - SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, - SDLoc(), Users[Lane]->getValueType(0), - SDValue(Node, 0), RC); - DAG.ReplaceAllUsesWith(Users[Lane], Copy); - return; - } - - // Update the users of the node with the new indices - for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) { - - SDNode *User = Users[i]; - if (!User) - continue; - - SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); - DAG.UpdateNodeOperands(User, User->getOperand(0), Op); - - switch (Idx) { - default: break; - case AMDGPU::sub0: Idx = AMDGPU::sub1; break; - case AMDGPU::sub1: Idx = AMDGPU::sub2; break; - case AMDGPU::sub2: Idx = AMDGPU::sub3; break; - } - } -} - -/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG) -/// with frame index operands. -/// LLVM assumes that inputs are to these instructions are registers. -void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, - SelectionDAG &DAG) const { - - SmallVector<SDValue, 8> Ops; - for (unsigned i = 0; i < Node->getNumOperands(); ++i) { - if (!isa<FrameIndexSDNode>(Node->getOperand(i))) { - Ops.push_back(Node->getOperand(i)); - continue; - } - - SDLoc DL(Node); - Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, - Node->getOperand(i).getValueType(), - Node->getOperand(i)), 0)); - } - - DAG.UpdateNodeOperands(Node, Ops); -} - -/// \brief Fold the instructions after selecting them. -SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, - SelectionDAG &DAG) const { - const SIInstrInfo *TII = - static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); - - if (TII->isMIMG(Node->getMachineOpcode())) - adjustWritemask(Node, DAG); - - if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG || - Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) { - legalizeTargetIndependentNode(Node, DAG); - return Node; - } - return Node; -} - -/// \brief Assign the register class depending on the number of -/// bits set in the writemask -void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, - SDNode *Node) const { - const SIInstrInfo *TII = - static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); - - MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); - TII->legalizeOperands(MI); - - if (TII->isMIMG(MI->getOpcode())) { - unsigned VReg = MI->getOperand(0).getReg(); - unsigned Writemask = MI->getOperand(1).getImm(); - unsigned BitsSet = 0; - for (unsigned i = 0; i < 4; ++i) - BitsSet += Writemask & (1 << i) ? 1 : 0; - - const TargetRegisterClass *RC; - switch (BitsSet) { - default: return; - case 1: RC = &AMDGPU::VGPR_32RegClass; break; - case 2: RC = &AMDGPU::VReg_64RegClass; break; - case 3: RC = &AMDGPU::VReg_96RegClass; break; - } - - unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet); - MI->setDesc(TII->get(NewOpcode)); - MRI.setRegClass(VReg, RC); - return; - } - - // Replace unused atomics with the no return version. - int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode()); - if (NoRetAtomicOp != -1) { - if (!Node->hasAnyUseOfValue(0)) { - MI->setDesc(TII->get(NoRetAtomicOp)); - MI->RemoveOperand(0); - } - - return; - } -} - -static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) { - SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); - return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); -} - -MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, - SDLoc DL, - SDValue Ptr) const { - const SIInstrInfo *TII = - static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); -#if 1 - // XXX - Workaround for moveToVALU not handling different register class - // inserts for REG_SEQUENCE. - - // Build the half of the subregister with the constants. - const SDValue Ops0[] = { - DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), - buildSMovImm32(DAG, DL, 0), - DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), - buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), - DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) - }; - - SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, - MVT::v2i32, Ops0), 0); - - // Combine the constants and the pointer. - const SDValue Ops1[] = { - DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), - Ptr, - DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), - SubRegHi, - DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) - }; - - return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); -#else - const SDValue Ops[] = { - DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32), - Ptr, - DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32), - buildSMovImm32(DAG, DL, 0), - DAG.getTargetConstant(AMDGPU::sub2, MVT::i32), - buildSMovImm32(DAG, DL, TII->getDefaultRsrcFormat() >> 32), - DAG.getTargetConstant(AMDGPU::sub3, MVT::i32) - }; - - return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); - -#endif -} - -/// \brief Return a resource descriptor with the 'Add TID' bit enabled -/// The TID (Thread ID) is multipled by the stride value (bits [61:48] -/// of the resource descriptor) to create an offset, which is added to the -/// resource ponter. -MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, - SDLoc DL, - SDValue Ptr, - uint32_t RsrcDword1, - uint64_t RsrcDword2And3) const { - SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); - SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); - if (RsrcDword1) { - PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, - DAG.getConstant(RsrcDword1, DL, MVT::i32)), - 0); - } - - SDValue DataLo = buildSMovImm32(DAG, DL, - RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); - SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); - - const SDValue Ops[] = { - DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), - PtrLo, - DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), - PtrHi, - DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), - DataLo, - DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), - DataHi, - DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) - }; - - return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); -} - -MachineSDNode *SITargetLowering::buildScratchRSRC(SelectionDAG &DAG, - SDLoc DL, - SDValue Ptr) const { - const SIInstrInfo *TII = - static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); - uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | AMDGPU::RSRC_TID_ENABLE | - 0xffffffff; // Size - - return buildRSRC(DAG, DL, Ptr, 0, Rsrc); -} - -SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG, - const TargetRegisterClass *RC, - unsigned Reg, EVT VT) const { - SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT); - - return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()), - cast<RegisterSDNode>(VReg)->getReg(), VT); -} - -//===----------------------------------------------------------------------===// -// SI Inline Assembly Support -//===----------------------------------------------------------------------===// - -std::pair<unsigned, const TargetRegisterClass *> -SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, - const std::string &Constraint, - MVT VT) const { - if (Constraint == "r") { - switch(VT.SimpleTy) { - default: llvm_unreachable("Unhandled type for 'r' inline asm constraint"); - case MVT::i64: - return std::make_pair(0U, &AMDGPU::SGPR_64RegClass); - case MVT::i32: - return std::make_pair(0U, &AMDGPU::SGPR_32RegClass); - } - } - - if (Constraint.size() > 1) { - const TargetRegisterClass *RC = nullptr; - if (Constraint[1] == 'v') { - RC = &AMDGPU::VGPR_32RegClass; - } else if (Constraint[1] == 's') { - RC = &AMDGPU::SGPR_32RegClass; - } - - if (RC) { - unsigned Idx = std::atoi(Constraint.substr(2).c_str()); - if (Idx < RC->getNumRegs()) - return std::make_pair(RC->getRegister(Idx), RC); - } - } - return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); -} |