summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/R600/AMDGPUISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/R600/AMDGPUISelLowering.cpp2866
1 files changed, 2866 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.cpp b/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.cpp
new file mode 100644
index 0000000..d56838e
--- /dev/null
+++ b/contrib/llvm/lib/Target/R600/AMDGPUISelLowering.cpp
@@ -0,0 +1,2866 @@
+//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// \brief This is the parent TargetLowering class for hardware code gen
+/// targets.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPUISelLowering.h"
+#include "AMDGPU.h"
+#include "AMDGPUFrameLowering.h"
+#include "AMDGPUIntrinsicInfo.h"
+#include "AMDGPURegisterInfo.h"
+#include "AMDGPUSubtarget.h"
+#include "R600MachineFunctionInfo.h"
+#include "SIMachineFunctionInfo.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/DiagnosticPrinter.h"
+
+using namespace llvm;
+
+namespace {
+
+/// Diagnostic information for unimplemented or unsupported feature reporting.
+class DiagnosticInfoUnsupported : public DiagnosticInfo {
+private:
+ const Twine &Description;
+ const Function &Fn;
+
+ static int KindID;
+
+ static int getKindID() {
+ if (KindID == 0)
+ KindID = llvm::getNextAvailablePluginDiagnosticKind();
+ return KindID;
+ }
+
+public:
+ DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc,
+ DiagnosticSeverity Severity = DS_Error)
+ : DiagnosticInfo(getKindID(), Severity),
+ Description(Desc),
+ Fn(Fn) { }
+
+ const Function &getFunction() const { return Fn; }
+ const Twine &getDescription() const { return Description; }
+
+ void print(DiagnosticPrinter &DP) const override {
+ DP << "unsupported " << getDescription() << " in " << Fn.getName();
+ }
+
+ static bool classof(const DiagnosticInfo *DI) {
+ return DI->getKind() == getKindID();
+ }
+};
+
+int DiagnosticInfoUnsupported::KindID = 0;
+}
+
+
+static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ unsigned Offset = State.AllocateStack(ValVT.getStoreSize(),
+ ArgFlags.getOrigAlign());
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+
+ return true;
+}
+
+#include "AMDGPUGenCallingConv.inc"
+
+// Find a larger type to do a load / store of a vector with.
+EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
+ unsigned StoreSize = VT.getStoreSizeInBits();
+ if (StoreSize <= 32)
+ return EVT::getIntegerVT(Ctx, StoreSize);
+
+ assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
+ return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
+}
+
+// Type for a vector that will be loaded to.
+EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) {
+ unsigned StoreSize = VT.getStoreSizeInBits();
+ if (StoreSize <= 32)
+ return EVT::getIntegerVT(Ctx, 32);
+
+ return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
+}
+
+AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM,
+ const AMDGPUSubtarget &STI)
+ : TargetLowering(TM), Subtarget(&STI) {
+ setOperationAction(ISD::Constant, MVT::i32, Legal);
+ setOperationAction(ISD::Constant, MVT::i64, Legal);
+ setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
+ setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
+
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::BRIND, MVT::Other, Expand);
+
+ // We need to custom lower some of the intrinsics
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+
+ // Library functions. These default to Expand, but we have instructions
+ // for them.
+ setOperationAction(ISD::FCEIL, MVT::f32, Legal);
+ setOperationAction(ISD::FEXP2, MVT::f32, Legal);
+ setOperationAction(ISD::FPOW, MVT::f32, Legal);
+ setOperationAction(ISD::FLOG2, MVT::f32, Legal);
+ setOperationAction(ISD::FABS, MVT::f32, Legal);
+ setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
+ setOperationAction(ISD::FRINT, MVT::f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
+ setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
+ setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
+
+ setOperationAction(ISD::FROUND, MVT::f32, Custom);
+ setOperationAction(ISD::FROUND, MVT::f64, Custom);
+
+ setOperationAction(ISD::FREM, MVT::f32, Custom);
+ setOperationAction(ISD::FREM, MVT::f64, Custom);
+
+ // v_mad_f32 does not support denormals according to some sources.
+ if (!Subtarget->hasFP32Denormals())
+ setOperationAction(ISD::FMAD, MVT::f32, Legal);
+
+ // Expand to fneg + fadd.
+ setOperationAction(ISD::FSUB, MVT::f64, Expand);
+
+ // Lower floating point store/load to integer store/load to reduce the number
+ // of patterns in tablegen.
+ setOperationAction(ISD::STORE, MVT::f32, Promote);
+ AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
+
+ setOperationAction(ISD::STORE, MVT::v2f32, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
+
+ setOperationAction(ISD::STORE, MVT::v4f32, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
+
+ setOperationAction(ISD::STORE, MVT::v8f32, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
+
+ setOperationAction(ISD::STORE, MVT::v16f32, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
+
+ setOperationAction(ISD::STORE, MVT::f64, Promote);
+ AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64);
+
+ setOperationAction(ISD::STORE, MVT::v2f64, Promote);
+ AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64);
+
+ // Custom lowering of vector stores is required for local address space
+ // stores.
+ setOperationAction(ISD::STORE, MVT::v4i32, Custom);
+
+ setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
+ setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
+ setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
+
+ // XXX: This can be change to Custom, once ExpandVectorStores can
+ // handle 64-bit stores.
+ setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
+
+ setTruncStoreAction(MVT::i64, MVT::i16, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i8, Expand);
+ setTruncStoreAction(MVT::i64, MVT::i1, Expand);
+ setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
+ setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand);
+
+
+ setOperationAction(ISD::LOAD, MVT::f32, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
+
+ setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
+
+ setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
+
+ setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
+
+ setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
+
+ setOperationAction(ISD::LOAD, MVT::f64, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64);
+
+ setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64);
+
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
+
+ // There are no 64-bit extloads. These should be done as a 32-bit extload and
+ // an extension to 64-bit.
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
+ }
+
+ for (MVT VT : MVT::integer_vector_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
+ }
+
+ setOperationAction(ISD::BR_CC, MVT::i1, Expand);
+
+ if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
+ setOperationAction(ISD::FCEIL, MVT::f64, Custom);
+ setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
+ setOperationAction(ISD::FRINT, MVT::f64, Custom);
+ setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
+ }
+
+ if (!Subtarget->hasBFI()) {
+ // fcopysign can be done in a single instruction with BFI.
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ }
+
+ setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
+
+ setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
+ setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
+
+ setTruncStoreAction(MVT::f32, MVT::f16, Expand);
+ setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
+ setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
+ setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
+
+ setTruncStoreAction(MVT::f64, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
+ const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
+ for (MVT VT : ScalarIntVTs) {
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::SDIV, VT, Expand);
+
+ // GPU does not have divrem function for signed or unsigned.
+ setOperationAction(ISD::SDIVREM, VT, Custom);
+ setOperationAction(ISD::UDIVREM, VT, Custom);
+
+ // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
+ setOperationAction(ISD::SMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, VT, Expand);
+
+ setOperationAction(ISD::BSWAP, VT, Expand);
+ setOperationAction(ISD::CTTZ, VT, Expand);
+ setOperationAction(ISD::CTLZ, VT, Expand);
+ }
+
+ if (!Subtarget->hasBCNT(32))
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+
+ if (!Subtarget->hasBCNT(64))
+ setOperationAction(ISD::CTPOP, MVT::i64, Expand);
+
+ // The hardware supports 32-bit ROTR, but not ROTL.
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::ROTL, MVT::i64, Expand);
+ setOperationAction(ISD::ROTR, MVT::i64, Expand);
+
+ setOperationAction(ISD::MUL, MVT::i64, Expand);
+ setOperationAction(ISD::MULHU, MVT::i64, Expand);
+ setOperationAction(ISD::MULHS, MVT::i64, Expand);
+ setOperationAction(ISD::UDIV, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
+
+ setOperationAction(ISD::SMIN, MVT::i32, Legal);
+ setOperationAction(ISD::UMIN, MVT::i32, Legal);
+ setOperationAction(ISD::SMAX, MVT::i32, Legal);
+ setOperationAction(ISD::UMAX, MVT::i32, Legal);
+
+ if (!Subtarget->hasFFBH())
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
+
+ if (!Subtarget->hasFFBL())
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
+
+ static const MVT::SimpleValueType VectorIntTypes[] = {
+ MVT::v2i32, MVT::v4i32
+ };
+
+ for (MVT VT : VectorIntTypes) {
+ // Expand the following operations for the current type by default.
+ setOperationAction(ISD::ADD, VT, Expand);
+ setOperationAction(ISD::AND, VT, Expand);
+ setOperationAction(ISD::FP_TO_SINT, VT, Expand);
+ setOperationAction(ISD::FP_TO_UINT, VT, Expand);
+ setOperationAction(ISD::MUL, VT, Expand);
+ setOperationAction(ISD::OR, VT, Expand);
+ setOperationAction(ISD::SHL, VT, Expand);
+ setOperationAction(ISD::SRA, VT, Expand);
+ setOperationAction(ISD::SRL, VT, Expand);
+ setOperationAction(ISD::ROTL, VT, Expand);
+ setOperationAction(ISD::ROTR, VT, Expand);
+ setOperationAction(ISD::SUB, VT, Expand);
+ setOperationAction(ISD::SINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::UINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::SDIVREM, VT, Custom);
+ setOperationAction(ISD::UDIVREM, VT, Custom);
+ setOperationAction(ISD::ADDC, VT, Expand);
+ setOperationAction(ISD::SUBC, VT, Expand);
+ setOperationAction(ISD::ADDE, VT, Expand);
+ setOperationAction(ISD::SUBE, VT, Expand);
+ setOperationAction(ISD::SELECT, VT, Expand);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+ setOperationAction(ISD::XOR, VT, Expand);
+ setOperationAction(ISD::BSWAP, VT, Expand);
+ setOperationAction(ISD::CTPOP, VT, Expand);
+ setOperationAction(ISD::CTTZ, VT, Expand);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::CTLZ, VT, Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
+ }
+
+ static const MVT::SimpleValueType FloatVectorTypes[] = {
+ MVT::v2f32, MVT::v4f32
+ };
+
+ for (MVT VT : FloatVectorTypes) {
+ setOperationAction(ISD::FABS, VT, Expand);
+ setOperationAction(ISD::FMINNUM, VT, Expand);
+ setOperationAction(ISD::FMAXNUM, VT, Expand);
+ setOperationAction(ISD::FADD, VT, Expand);
+ setOperationAction(ISD::FCEIL, VT, Expand);
+ setOperationAction(ISD::FCOS, VT, Expand);
+ setOperationAction(ISD::FDIV, VT, Expand);
+ setOperationAction(ISD::FEXP2, VT, Expand);
+ setOperationAction(ISD::FLOG2, VT, Expand);
+ setOperationAction(ISD::FREM, VT, Expand);
+ setOperationAction(ISD::FPOW, VT, Expand);
+ setOperationAction(ISD::FFLOOR, VT, Expand);
+ setOperationAction(ISD::FTRUNC, VT, Expand);
+ setOperationAction(ISD::FMUL, VT, Expand);
+ setOperationAction(ISD::FMA, VT, Expand);
+ setOperationAction(ISD::FRINT, VT, Expand);
+ setOperationAction(ISD::FNEARBYINT, VT, Expand);
+ setOperationAction(ISD::FSQRT, VT, Expand);
+ setOperationAction(ISD::FSIN, VT, Expand);
+ setOperationAction(ISD::FSUB, VT, Expand);
+ setOperationAction(ISD::FNEG, VT, Expand);
+ setOperationAction(ISD::SELECT, VT, Expand);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+ setOperationAction(ISD::FCOPYSIGN, VT, Expand);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
+ }
+
+ setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
+ setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
+
+ setTargetDAGCombine(ISD::MUL);
+ setTargetDAGCombine(ISD::SELECT);
+ setTargetDAGCombine(ISD::SELECT_CC);
+ setTargetDAGCombine(ISD::STORE);
+
+ setTargetDAGCombine(ISD::FADD);
+ setTargetDAGCombine(ISD::FSUB);
+
+ setBooleanContents(ZeroOrNegativeOneBooleanContent);
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+
+ setSchedulingPreference(Sched::RegPressure);
+ setJumpIsExpensive(true);
+
+ // SI at least has hardware support for floating point exceptions, but no way
+ // of using or handling them is implemented. They are also optional in OpenCL
+ // (Section 7.3)
+ setHasFloatingPointExceptions(false);
+
+ setSelectIsExpensive(false);
+ PredictableSelectIsExpensive = false;
+
+ // There are no integer divide instructions, and these expand to a pretty
+ // large sequence of instructions.
+ setIntDivIsCheap(false);
+ setPow2SDivIsCheap(false);
+ setFsqrtIsCheap(true);
+
+ // FIXME: Need to really handle these.
+ MaxStoresPerMemcpy = 4096;
+ MaxStoresPerMemmove = 4096;
+ MaxStoresPerMemset = 4096;
+}
+
+//===----------------------------------------------------------------------===//
+// Target Information
+//===----------------------------------------------------------------------===//
+
+MVT AMDGPUTargetLowering::getVectorIdxTy() const {
+ return MVT::i32;
+}
+
+bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
+ return true;
+}
+
+// The backend supports 32 and 64 bit floating point immediates.
+// FIXME: Why are we reporting vectors of FP immediates as legal?
+bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ EVT ScalarVT = VT.getScalarType();
+ return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
+}
+
+// We don't want to shrink f64 / f32 constants.
+bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
+ EVT ScalarVT = VT.getScalarType();
+ return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
+}
+
+bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
+ ISD::LoadExtType,
+ EVT NewVT) const {
+
+ unsigned NewSize = NewVT.getStoreSizeInBits();
+
+ // If we are reducing to a 32-bit load, this is always better.
+ if (NewSize == 32)
+ return true;
+
+ EVT OldVT = N->getValueType(0);
+ unsigned OldSize = OldVT.getStoreSizeInBits();
+
+ // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
+ // extloads, so doing one requires using a buffer_load. In cases where we
+ // still couldn't use a scalar load, using the wider load shouldn't really
+ // hurt anything.
+
+ // If the old size already had to be an extload, there's no harm in continuing
+ // to reduce the width.
+ return (OldSize < 32);
+}
+
+bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
+ EVT CastTy) const {
+ if (LoadTy.getSizeInBits() != CastTy.getSizeInBits())
+ return true;
+
+ unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits();
+ unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits();
+
+ return ((LScalarSize <= CastScalarSize) ||
+ (CastScalarSize >= 32) ||
+ (LScalarSize < 32));
+}
+
+// SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
+// profitable with the expansion for 64-bit since it's generally good to
+// speculate things.
+// FIXME: These should really have the size as a parameter.
+bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
+ return true;
+}
+
+bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
+ return true;
+}
+
+//===---------------------------------------------------------------------===//
+// Target Properties
+//===---------------------------------------------------------------------===//
+
+bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
+ assert(VT.isFloatingPoint());
+ return VT == MVT::f32 || VT == MVT::f64;
+}
+
+bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
+ assert(VT.isFloatingPoint());
+ return VT == MVT::f32 || VT == MVT::f64;
+}
+
+bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
+ unsigned NumElem,
+ unsigned AS) const {
+ return true;
+}
+
+bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
+ // Truncate is just accessing a subregister.
+ return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
+}
+
+bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
+ // Truncate is just accessing a subregister.
+ return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
+ (Dest->getPrimitiveSizeInBits() % 32 == 0);
+}
+
+bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
+ const DataLayout *DL = getDataLayout();
+ unsigned SrcSize = DL->getTypeSizeInBits(Src->getScalarType());
+ unsigned DestSize = DL->getTypeSizeInBits(Dest->getScalarType());
+
+ return SrcSize == 32 && DestSize == 64;
+}
+
+bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
+ // Any register load of a 64-bit value really requires 2 32-bit moves. For all
+ // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
+ // this will enable reducing 64-bit operations the 32-bit, which is always
+ // good.
+ return Src == MVT::i32 && Dest == MVT::i64;
+}
+
+bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ return isZExtFree(Val.getValueType(), VT2);
+}
+
+bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
+ // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
+ // limited number of native 64-bit operations. Shrinking an operation to fit
+ // in a single 32-bit register should always be helpful. As currently used,
+ // this is much less general than the name suggests, and is only used in
+ // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
+ // not profitable, and may actually be harmful.
+ return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
+}
+
+//===---------------------------------------------------------------------===//
+// TargetLowering Callbacks
+//===---------------------------------------------------------------------===//
+
+void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
+ const SmallVectorImpl<ISD::InputArg> &Ins) const {
+
+ State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
+}
+
+SDValue AMDGPUTargetLowering::LowerReturn(
+ SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc DL, SelectionDAG &DAG) const {
+ return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain);
+}
+
+//===---------------------------------------------------------------------===//
+// Target specific lowering
+//===---------------------------------------------------------------------===//
+
+SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SDValue Callee = CLI.Callee;
+ SelectionDAG &DAG = CLI.DAG;
+
+ const Function &Fn = *DAG.getMachineFunction().getFunction();
+
+ StringRef FuncName("<unknown>");
+
+ if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
+ FuncName = G->getSymbol();
+ else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ FuncName = G->getGlobal()->getName();
+
+ DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName);
+ DAG.getContext()->diagnose(NoCalls);
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
+ SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default:
+ Op.getNode()->dump();
+ llvm_unreachable("Custom lowering code for this"
+ "instruction is not implemented yet!");
+ break;
+ case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
+ case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
+ case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
+ case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
+ case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
+ case ISD::FREM: return LowerFREM(Op, DAG);
+ case ISD::FCEIL: return LowerFCEIL(Op, DAG);
+ case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
+ case ISD::FRINT: return LowerFRINT(Op, DAG);
+ case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
+ case ISD::FROUND: return LowerFROUND(Op, DAG);
+ case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
+ case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
+ case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
+ case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
+ case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
+ }
+ return Op;
+}
+
+void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const {
+ switch (N->getOpcode()) {
+ case ISD::SIGN_EXTEND_INREG:
+ // Different parts of legalization seem to interpret which type of
+ // sign_extend_inreg is the one to check for custom lowering. The extended
+ // from type is what really matters, but some places check for custom
+ // lowering of the result type. This results in trying to use
+ // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
+ // nothing here and let the illegal result integer be handled normally.
+ return;
+ case ISD::LOAD: {
+ SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode();
+ if (!Node)
+ return;
+
+ Results.push_back(SDValue(Node, 0));
+ Results.push_back(SDValue(Node, 1));
+ // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode
+ // function
+ DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1));
+ return;
+ }
+ case ISD::STORE: {
+ SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG);
+ if (Lowered.getNode())
+ Results.push_back(Lowered);
+ return;
+ }
+ default:
+ return;
+ }
+}
+
+// FIXME: This implements accesses to initialized globals in the constant
+// address space by copying them to private and accessing that. It does not
+// properly handle illegal types or vectors. The private vector loads are not
+// scalarized, and the illegal scalars hit an assertion. This technique will not
+// work well with large initializers, and this should eventually be
+// removed. Initialized globals should be placed into a data section that the
+// runtime will load into a buffer before the kernel is executed. Uses of the
+// global need to be replaced with a pointer loaded from an implicit kernel
+// argument into this buffer holding the copy of the data, which will remove the
+// need for any of this.
+SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
+ const GlobalValue *GV,
+ const SDValue &InitPtr,
+ SDValue Chain,
+ SelectionDAG &DAG) const {
+ const DataLayout *TD = getDataLayout();
+ SDLoc DL(InitPtr);
+ Type *InitTy = Init->getType();
+
+ if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) {
+ EVT VT = EVT::getEVT(InitTy);
+ PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
+ return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr,
+ MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
+ TD->getPrefTypeAlignment(InitTy));
+ }
+
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) {
+ EVT VT = EVT::getEVT(CFP->getType());
+ PointerType *PtrTy = PointerType::get(CFP->getType(), 0);
+ return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr,
+ MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
+ TD->getPrefTypeAlignment(CFP->getType()));
+ }
+
+ if (StructType *ST = dyn_cast<StructType>(InitTy)) {
+ const StructLayout *SL = TD->getStructLayout(ST);
+
+ EVT PtrVT = InitPtr.getValueType();
+ SmallVector<SDValue, 8> Chains;
+
+ for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) {
+ SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT);
+ SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
+
+ Constant *Elt = Init->getAggregateElement(I);
+ Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
+ }
+
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
+ }
+
+ if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) {
+ EVT PtrVT = InitPtr.getValueType();
+
+ unsigned NumElements;
+ if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy))
+ NumElements = AT->getNumElements();
+ else if (VectorType *VT = dyn_cast<VectorType>(SeqTy))
+ NumElements = VT->getNumElements();
+ else
+ llvm_unreachable("Unexpected type");
+
+ unsigned EltSize = TD->getTypeAllocSize(SeqTy->getElementType());
+ SmallVector<SDValue, 8> Chains;
+ for (unsigned i = 0; i < NumElements; ++i) {
+ SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT);
+ SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
+
+ Constant *Elt = Init->getAggregateElement(i);
+ Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
+ }
+
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
+ }
+
+ if (isa<UndefValue>(Init)) {
+ EVT VT = EVT::getEVT(InitTy);
+ PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
+ return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr,
+ MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
+ TD->getPrefTypeAlignment(InitTy));
+ }
+
+ Init->dump();
+ llvm_unreachable("Unhandled constant initializer");
+}
+
+static bool hasDefinedInitializer(const GlobalValue *GV) {
+ const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
+ if (!GVar || !GVar->hasInitializer())
+ return false;
+
+ if (isa<UndefValue>(GVar->getInitializer()))
+ return false;
+
+ return true;
+}
+
+SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
+ SDValue Op,
+ SelectionDAG &DAG) const {
+
+ const DataLayout *TD = getDataLayout();
+ GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
+ const GlobalValue *GV = G->getGlobal();
+
+ switch (G->getAddressSpace()) {
+ case AMDGPUAS::LOCAL_ADDRESS: {
+ // XXX: What does the value of G->getOffset() mean?
+ assert(G->getOffset() == 0 &&
+ "Do not know what to do with an non-zero offset");
+
+ // TODO: We could emit code to handle the initialization somewhere.
+ if (hasDefinedInitializer(GV))
+ break;
+
+ unsigned Offset;
+ if (MFI->LocalMemoryObjects.count(GV) == 0) {
+ uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
+ Offset = MFI->LDSSize;
+ MFI->LocalMemoryObjects[GV] = Offset;
+ // XXX: Account for alignment?
+ MFI->LDSSize += Size;
+ } else {
+ Offset = MFI->LocalMemoryObjects[GV];
+ }
+
+ return DAG.getConstant(Offset, SDLoc(Op),
+ getPointerTy(AMDGPUAS::LOCAL_ADDRESS));
+ }
+ case AMDGPUAS::CONSTANT_ADDRESS: {
+ MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
+ Type *EltType = GV->getType()->getElementType();
+ unsigned Size = TD->getTypeAllocSize(EltType);
+ unsigned Alignment = TD->getPrefTypeAlignment(EltType);
+
+ MVT PrivPtrVT = getPointerTy(AMDGPUAS::PRIVATE_ADDRESS);
+ MVT ConstPtrVT = getPointerTy(AMDGPUAS::CONSTANT_ADDRESS);
+
+ int FI = FrameInfo->CreateStackObject(Size, Alignment, false);
+ SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT);
+
+ const GlobalVariable *Var = cast<GlobalVariable>(GV);
+ if (!Var->hasInitializer()) {
+ // This has no use, but bugpoint will hit it.
+ return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
+ }
+
+ const Constant *Init = Var->getInitializer();
+ SmallVector<SDNode*, 8> WorkList;
+
+ for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(),
+ E = DAG.getEntryNode()->use_end(); I != E; ++I) {
+ if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD)
+ continue;
+ WorkList.push_back(*I);
+ }
+ SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG);
+ for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(),
+ E = WorkList.end(); I != E; ++I) {
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) {
+ Ops.push_back((*I)->getOperand(i));
+ }
+ DAG.UpdateNodeOperands(*I, Ops);
+ }
+ return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
+ }
+ }
+
+ const Function &Fn = *DAG.getMachineFunction().getFunction();
+ DiagnosticInfoUnsupported BadInit(Fn,
+ "initializer for address space");
+ DAG.getContext()->diagnose(BadInit);
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
+ SelectionDAG &DAG) const {
+ SmallVector<SDValue, 8> Args;
+
+ for (const SDUse &U : Op->ops())
+ DAG.ExtractVectorElements(U.get(), Args);
+
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
+}
+
+SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+
+ SmallVector<SDValue, 8> Args;
+ unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
+ EVT VT = Op.getValueType();
+ DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
+ VT.getVectorNumElements());
+
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
+}
+
+SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op,
+ SelectionDAG &DAG) const {
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering();
+
+ FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
+
+ unsigned FrameIndex = FIN->getIndex();
+ unsigned Offset = TFL->getFrameIndexOffset(MF, FrameIndex);
+ return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op),
+ Op.getValueType());
+}
+
+SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
+ SelectionDAG &DAG) const {
+ unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+
+ switch (IntrinsicID) {
+ default: return Op;
+ case AMDGPUIntrinsic::AMDGPU_abs:
+ case AMDGPUIntrinsic::AMDIL_abs: // Legacy name.
+ return LowerIntrinsicIABS(Op, DAG);
+ case AMDGPUIntrinsic::AMDGPU_lrp:
+ return LowerIntrinsicLRP(Op, DAG);
+
+ case AMDGPUIntrinsic::AMDGPU_clamp:
+ case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name.
+ return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+
+ case Intrinsic::AMDGPU_div_scale: {
+ // 3rd parameter required to be a constant.
+ const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
+ if (!Param)
+ return DAG.getUNDEF(VT);
+
+ // Translate to the operands expected by the machine instruction. The
+ // first parameter must be the same as the first instruction.
+ SDValue Numerator = Op.getOperand(1);
+ SDValue Denominator = Op.getOperand(2);
+
+ // Note this order is opposite of the machine instruction's operations,
+ // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
+ // intrinsic has the numerator as the first operand to match a normal
+ // division operation.
+
+ SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
+
+ return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
+ Denominator, Numerator);
+ }
+
+ case Intrinsic::AMDGPU_div_fmas:
+ return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
+ Op.getOperand(4));
+
+ case Intrinsic::AMDGPU_div_fixup:
+ return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+
+ case Intrinsic::AMDGPU_trig_preop:
+ return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
+ Op.getOperand(1), Op.getOperand(2));
+
+ case Intrinsic::AMDGPU_rcp:
+ return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
+
+ case Intrinsic::AMDGPU_rsq:
+ return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
+
+ case AMDGPUIntrinsic::AMDGPU_legacy_rsq:
+ return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
+
+ case Intrinsic::AMDGPU_rsq_clamped:
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
+ Type *Type = VT.getTypeForEVT(*DAG.getContext());
+ APFloat Max = APFloat::getLargest(Type->getFltSemantics());
+ APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
+
+ SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
+ SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
+ DAG.getConstantFP(Max, DL, VT));
+ return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
+ DAG.getConstantFP(Min, DL, VT));
+ } else {
+ return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1));
+ }
+
+ case Intrinsic::AMDGPU_ldexp:
+ return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1),
+ Op.getOperand(2));
+
+ case AMDGPUIntrinsic::AMDGPU_imax:
+ return DAG.getNode(ISD::SMAX, DL, VT, Op.getOperand(1),
+ Op.getOperand(2));
+ case AMDGPUIntrinsic::AMDGPU_umax:
+ return DAG.getNode(ISD::UMAX, DL, VT, Op.getOperand(1),
+ Op.getOperand(2));
+ case AMDGPUIntrinsic::AMDGPU_imin:
+ return DAG.getNode(ISD::SMIN, DL, VT, Op.getOperand(1),
+ Op.getOperand(2));
+ case AMDGPUIntrinsic::AMDGPU_umin:
+ return DAG.getNode(ISD::UMIN, DL, VT, Op.getOperand(1),
+ Op.getOperand(2));
+
+ case AMDGPUIntrinsic::AMDGPU_umul24:
+ return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT,
+ Op.getOperand(1), Op.getOperand(2));
+
+ case AMDGPUIntrinsic::AMDGPU_imul24:
+ return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT,
+ Op.getOperand(1), Op.getOperand(2));
+
+ case AMDGPUIntrinsic::AMDGPU_umad24:
+ return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+
+ case AMDGPUIntrinsic::AMDGPU_imad24:
+ return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT,
+ Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
+
+ case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
+ return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
+
+ case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
+ return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
+
+ case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
+ return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
+
+ case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
+ return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
+
+ case AMDGPUIntrinsic::AMDGPU_bfe_i32:
+ return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
+ Op.getOperand(1),
+ Op.getOperand(2),
+ Op.getOperand(3));
+
+ case AMDGPUIntrinsic::AMDGPU_bfe_u32:
+ return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
+ Op.getOperand(1),
+ Op.getOperand(2),
+ Op.getOperand(3));
+
+ case AMDGPUIntrinsic::AMDGPU_bfi:
+ return DAG.getNode(AMDGPUISD::BFI, DL, VT,
+ Op.getOperand(1),
+ Op.getOperand(2),
+ Op.getOperand(3));
+
+ case AMDGPUIntrinsic::AMDGPU_bfm:
+ return DAG.getNode(AMDGPUISD::BFM, DL, VT,
+ Op.getOperand(1),
+ Op.getOperand(2));
+
+ case AMDGPUIntrinsic::AMDGPU_brev:
+ return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1));
+
+ case Intrinsic::AMDGPU_class:
+ return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
+ Op.getOperand(1), Op.getOperand(2));
+
+ case AMDGPUIntrinsic::AMDIL_exp: // Legacy name.
+ return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1));
+
+ case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name.
+ return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1));
+ case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name.
+ return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1));
+ }
+}
+
+///IABS(a) = SMAX(sub(0, a), a)
+SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
+ Op.getOperand(1));
+
+ return DAG.getNode(ISD::SMAX, DL, VT, Neg, Op.getOperand(1));
+}
+
+/// Linear Interpolation
+/// LRP(a, b, c) = muladd(a, b, (1 - a) * c)
+SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT,
+ DAG.getConstantFP(1.0f, DL, MVT::f32),
+ Op.getOperand(1));
+ SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA,
+ Op.getOperand(3));
+ return DAG.getNode(ISD::FADD, DL, VT,
+ DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)),
+ OneSubAC);
+}
+
+/// \brief Generate Min/Max node
+SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL,
+ EVT VT,
+ SDValue LHS,
+ SDValue RHS,
+ SDValue True,
+ SDValue False,
+ SDValue CC,
+ DAGCombinerInfo &DCI) const {
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
+ return SDValue();
+
+ if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
+ switch (CCOpcode) {
+ case ISD::SETOEQ:
+ case ISD::SETONE:
+ case ISD::SETUNE:
+ case ISD::SETNE:
+ case ISD::SETUEQ:
+ case ISD::SETEQ:
+ case ISD::SETFALSE:
+ case ISD::SETFALSE2:
+ case ISD::SETTRUE:
+ case ISD::SETTRUE2:
+ case ISD::SETUO:
+ case ISD::SETO:
+ break;
+ case ISD::SETULE:
+ case ISD::SETULT: {
+ if (LHS == True)
+ return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
+ return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
+ }
+ case ISD::SETOLE:
+ case ISD::SETOLT:
+ case ISD::SETLE:
+ case ISD::SETLT: {
+ // Ordered. Assume ordered for undefined.
+
+ // Only do this after legalization to avoid interfering with other combines
+ // which might occur.
+ if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
+ !DCI.isCalledByLegalizer())
+ return SDValue();
+
+ // We need to permute the operands to get the correct NaN behavior. The
+ // selected operand is the second one based on the failing compare with NaN,
+ // so permute it based on the compare type the hardware uses.
+ if (LHS == True)
+ return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
+ return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
+ }
+ case ISD::SETUGE:
+ case ISD::SETUGT: {
+ if (LHS == True)
+ return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
+ return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
+ }
+ case ISD::SETGT:
+ case ISD::SETGE:
+ case ISD::SETOGE:
+ case ISD::SETOGT: {
+ if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
+ !DCI.isCalledByLegalizer())
+ return SDValue();
+
+ if (LHS == True)
+ return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
+ return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
+ }
+ case ISD::SETCC_INVALID:
+ llvm_unreachable("Invalid setcc condcode!");
+ }
+ return SDValue();
+}
+
+// FIXME: Remove this when combines added to DAGCombiner.
+SDValue AMDGPUTargetLowering::CombineIMinMax(SDLoc DL,
+ EVT VT,
+ SDValue LHS,
+ SDValue RHS,
+ SDValue True,
+ SDValue False,
+ SDValue CC,
+ SelectionDAG &DAG) const {
+ if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
+ return SDValue();
+
+ ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
+ switch (CCOpcode) {
+ case ISD::SETULE:
+ case ISD::SETULT: {
+ unsigned Opc = (LHS == True) ? ISD::UMIN : ISD::UMAX;
+ return DAG.getNode(Opc, DL, VT, LHS, RHS);
+ }
+ case ISD::SETLE:
+ case ISD::SETLT: {
+ unsigned Opc = (LHS == True) ? ISD::SMIN : ISD::SMAX;
+ return DAG.getNode(Opc, DL, VT, LHS, RHS);
+ }
+ case ISD::SETGT:
+ case ISD::SETGE: {
+ unsigned Opc = (LHS == True) ? ISD::SMAX : ISD::SMIN;
+ return DAG.getNode(Opc, DL, VT, LHS, RHS);
+ }
+ case ISD::SETUGE:
+ case ISD::SETUGT: {
+ unsigned Opc = (LHS == True) ? ISD::UMAX : ISD::UMIN;
+ return DAG.getNode(Opc, DL, VT, LHS, RHS);
+ }
+ default:
+ return SDValue();
+ }
+}
+
+SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op,
+ SelectionDAG &DAG) const {
+ LoadSDNode *Load = cast<LoadSDNode>(Op);
+ EVT MemVT = Load->getMemoryVT();
+ EVT MemEltVT = MemVT.getVectorElementType();
+
+ EVT LoadVT = Op.getValueType();
+ EVT EltVT = LoadVT.getVectorElementType();
+ EVT PtrVT = Load->getBasePtr().getValueType();
+
+ unsigned NumElts = Load->getMemoryVT().getVectorNumElements();
+ SmallVector<SDValue, 8> Loads;
+ SmallVector<SDValue, 8> Chains;
+
+ SDLoc SL(Op);
+ unsigned MemEltSize = MemEltVT.getStoreSize();
+ MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(),
+ DAG.getConstant(i * MemEltSize, SL, PtrVT));
+
+ SDValue NewLoad
+ = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT,
+ Load->getChain(), Ptr,
+ SrcValue.getWithOffset(i * MemEltSize),
+ MemEltVT, Load->isVolatile(), Load->isNonTemporal(),
+ Load->isInvariant(), Load->getAlignment());
+ Loads.push_back(NewLoad.getValue(0));
+ Chains.push_back(NewLoad.getValue(1));
+ }
+
+ SDValue Ops[] = {
+ DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads),
+ DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains)
+ };
+
+ return DAG.getMergeValues(Ops, SL);
+}
+
+SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+
+ // If this is a 2 element vector, we really want to scalarize and not create
+ // weird 1 element vectors.
+ if (VT.getVectorNumElements() == 2)
+ return ScalarizeVectorLoad(Op, DAG);
+
+ LoadSDNode *Load = cast<LoadSDNode>(Op);
+ SDValue BasePtr = Load->getBasePtr();
+ EVT PtrVT = BasePtr.getValueType();
+ EVT MemVT = Load->getMemoryVT();
+ SDLoc SL(Op);
+ MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
+
+ EVT LoVT, HiVT;
+ EVT LoMemVT, HiMemVT;
+ SDValue Lo, Hi;
+
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
+ std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
+ SDValue LoLoad
+ = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
+ Load->getChain(), BasePtr,
+ SrcValue,
+ LoMemVT, Load->isVolatile(), Load->isNonTemporal(),
+ Load->isInvariant(), Load->getAlignment());
+
+ SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
+ DAG.getConstant(LoMemVT.getStoreSize(), SL,
+ PtrVT));
+
+ SDValue HiLoad
+ = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT,
+ Load->getChain(), HiPtr,
+ SrcValue.getWithOffset(LoMemVT.getStoreSize()),
+ HiMemVT, Load->isVolatile(), Load->isNonTemporal(),
+ Load->isInvariant(), Load->getAlignment());
+
+ SDValue Ops[] = {
+ DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
+ DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
+ LoLoad.getValue(1), HiLoad.getValue(1))
+ };
+
+ return DAG.getMergeValues(Ops, SL);
+}
+
+SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
+ SelectionDAG &DAG) const {
+ StoreSDNode *Store = cast<StoreSDNode>(Op);
+ EVT MemVT = Store->getMemoryVT();
+ unsigned MemBits = MemVT.getSizeInBits();
+
+ // Byte stores are really expensive, so if possible, try to pack 32-bit vector
+ // truncating store into an i32 store.
+ // XXX: We could also handle optimize other vector bitwidths.
+ if (!MemVT.isVector() || MemBits > 32) {
+ return SDValue();
+ }
+
+ SDLoc DL(Op);
+ SDValue Value = Store->getValue();
+ EVT VT = Value.getValueType();
+ EVT ElemVT = VT.getVectorElementType();
+ SDValue Ptr = Store->getBasePtr();
+ EVT MemEltVT = MemVT.getVectorElementType();
+ unsigned MemEltBits = MemEltVT.getSizeInBits();
+ unsigned MemNumElements = MemVT.getVectorNumElements();
+ unsigned PackedSize = MemVT.getStoreSizeInBits();
+ SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32);
+
+ assert(Value.getValueType().getScalarSizeInBits() >= 32);
+
+ SDValue PackedValue;
+ for (unsigned i = 0; i < MemNumElements; ++i) {
+ SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
+ DAG.getConstant(i, DL, MVT::i32));
+ Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
+ Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
+
+ SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32);
+ Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
+
+ if (i == 0) {
+ PackedValue = Elt;
+ } else {
+ PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
+ }
+ }
+
+ if (PackedSize < 32) {
+ EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
+ return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
+ Store->getMemOperand()->getPointerInfo(),
+ PackedVT,
+ Store->isNonTemporal(), Store->isVolatile(),
+ Store->getAlignment());
+ }
+
+ return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
+ Store->getMemOperand()->getPointerInfo(),
+ Store->isVolatile(), Store->isNonTemporal(),
+ Store->getAlignment());
+}
+
+SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op,
+ SelectionDAG &DAG) const {
+ StoreSDNode *Store = cast<StoreSDNode>(Op);
+ EVT MemEltVT = Store->getMemoryVT().getVectorElementType();
+ EVT EltVT = Store->getValue().getValueType().getVectorElementType();
+ EVT PtrVT = Store->getBasePtr().getValueType();
+ unsigned NumElts = Store->getMemoryVT().getVectorNumElements();
+ SDLoc SL(Op);
+
+ SmallVector<SDValue, 8> Chains;
+
+ unsigned EltSize = MemEltVT.getStoreSize();
+ MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
+
+ for (unsigned i = 0, e = NumElts; i != e; ++i) {
+ SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
+ Store->getValue(),
+ DAG.getConstant(i, SL, MVT::i32));
+
+ SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT);
+ SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset);
+ SDValue NewStore =
+ DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
+ SrcValue.getWithOffset(i * EltSize),
+ MemEltVT, Store->isNonTemporal(), Store->isVolatile(),
+ Store->getAlignment());
+ Chains.push_back(NewStore);
+ }
+
+ return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains);
+}
+
+SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
+ SelectionDAG &DAG) const {
+ StoreSDNode *Store = cast<StoreSDNode>(Op);
+ SDValue Val = Store->getValue();
+ EVT VT = Val.getValueType();
+
+ // If this is a 2 element vector, we really want to scalarize and not create
+ // weird 1 element vectors.
+ if (VT.getVectorNumElements() == 2)
+ return ScalarizeVectorStore(Op, DAG);
+
+ EVT MemVT = Store->getMemoryVT();
+ SDValue Chain = Store->getChain();
+ SDValue BasePtr = Store->getBasePtr();
+ SDLoc SL(Op);
+
+ EVT LoVT, HiVT;
+ EVT LoMemVT, HiMemVT;
+ SDValue Lo, Hi;
+
+ std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
+ std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
+ std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
+
+ EVT PtrVT = BasePtr.getValueType();
+ SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
+ DAG.getConstant(LoMemVT.getStoreSize(), SL,
+ PtrVT));
+
+ MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
+ SDValue LoStore
+ = DAG.getTruncStore(Chain, SL, Lo,
+ BasePtr,
+ SrcValue,
+ LoMemVT,
+ Store->isNonTemporal(),
+ Store->isVolatile(),
+ Store->getAlignment());
+ SDValue HiStore
+ = DAG.getTruncStore(Chain, SL, Hi,
+ HiPtr,
+ SrcValue.getWithOffset(LoMemVT.getStoreSize()),
+ HiMemVT,
+ Store->isNonTemporal(),
+ Store->isVolatile(),
+ Store->getAlignment());
+
+ return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
+}
+
+
+SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ LoadSDNode *Load = cast<LoadSDNode>(Op);
+ ISD::LoadExtType ExtType = Load->getExtensionType();
+ EVT VT = Op.getValueType();
+ EVT MemVT = Load->getMemoryVT();
+
+ if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) {
+ assert(VT == MVT::i1 && "Only i1 non-extloads expected");
+ // FIXME: Copied from PPC
+ // First, load into 32 bits, then truncate to 1 bit.
+
+ SDValue Chain = Load->getChain();
+ SDValue BasePtr = Load->getBasePtr();
+ MachineMemOperand *MMO = Load->getMemOperand();
+
+ SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
+ BasePtr, MVT::i8, MMO);
+
+ SDValue Ops[] = {
+ DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD),
+ NewLD.getValue(1)
+ };
+
+ return DAG.getMergeValues(Ops, DL);
+ }
+
+ if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS ||
+ Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS ||
+ ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32))
+ return SDValue();
+
+ // <SI && AS=PRIVATE && EXTLOAD && size < 32bit,
+ // register (2-)byte extract.
+
+ // Get Register holding the target.
+ SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
+ DAG.getConstant(2, DL, MVT::i32));
+ // Load the Register.
+ SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
+ Load->getChain(), Ptr,
+ DAG.getTargetConstant(0, DL, MVT::i32),
+ Op.getOperand(2));
+
+ // Get offset within the register.
+ SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
+ Load->getBasePtr(),
+ DAG.getConstant(0x3, DL, MVT::i32));
+
+ // Bit offset of target byte (byteIdx * 8).
+ SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
+ DAG.getConstant(3, DL, MVT::i32));
+
+ // Shift to the right.
+ Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt);
+
+ // Eliminate the upper bits by setting them to ...
+ EVT MemEltVT = MemVT.getScalarType();
+
+ // ... ones.
+ if (ExtType == ISD::SEXTLOAD) {
+ SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
+
+ SDValue Ops[] = {
+ DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode),
+ Load->getChain()
+ };
+
+ return DAG.getMergeValues(Ops, DL);
+ }
+
+ // ... or zeros.
+ SDValue Ops[] = {
+ DAG.getZeroExtendInReg(Ret, DL, MemEltVT),
+ Load->getChain()
+ };
+
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG);
+ if (Result.getNode()) {
+ return Result;
+ }
+
+ StoreSDNode *Store = cast<StoreSDNode>(Op);
+ SDValue Chain = Store->getChain();
+ if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
+ Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
+ Store->getValue().getValueType().isVector()) {
+ return ScalarizeVectorStore(Op, DAG);
+ }
+
+ EVT MemVT = Store->getMemoryVT();
+ if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS &&
+ MemVT.bitsLT(MVT::i32)) {
+ unsigned Mask = 0;
+ if (Store->getMemoryVT() == MVT::i8) {
+ Mask = 0xff;
+ } else if (Store->getMemoryVT() == MVT::i16) {
+ Mask = 0xffff;
+ }
+ SDValue BasePtr = Store->getBasePtr();
+ SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr,
+ DAG.getConstant(2, DL, MVT::i32));
+ SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
+ Chain, Ptr,
+ DAG.getTargetConstant(0, DL, MVT::i32));
+
+ SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr,
+ DAG.getConstant(0x3, DL, MVT::i32));
+
+ SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
+ DAG.getConstant(3, DL, MVT::i32));
+
+ SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
+ Store->getValue());
+
+ SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
+
+ SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
+ MaskedValue, ShiftAmt);
+
+ SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32,
+ DAG.getConstant(Mask, DL, MVT::i32),
+ ShiftAmt);
+ DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask,
+ DAG.getConstant(0xffffffff, DL, MVT::i32));
+ Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
+
+ SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
+ return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
+ Chain, Value, Ptr,
+ DAG.getTargetConstant(0, DL, MVT::i32));
+ }
+ return SDValue();
+}
+
+// This is a shortcut for integer division because we have fast i32<->f32
+// conversions, and fast f32 reciprocal instructions. The fractional part of a
+// float is enough to accurately represent up to a 24-bit integer.
+SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ MVT IntVT = MVT::i32;
+ MVT FltVT = MVT::f32;
+
+ ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
+ ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
+
+ if (VT.isVector()) {
+ unsigned NElts = VT.getVectorNumElements();
+ IntVT = MVT::getVectorVT(MVT::i32, NElts);
+ FltVT = MVT::getVectorVT(MVT::f32, NElts);
+ }
+
+ unsigned BitSize = VT.getScalarType().getSizeInBits();
+
+ SDValue jq = DAG.getConstant(1, DL, IntVT);
+
+ if (sign) {
+ // char|short jq = ia ^ ib;
+ jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
+
+ // jq = jq >> (bitsize - 2)
+ jq = DAG.getNode(ISD::SRA, DL, VT, jq,
+ DAG.getConstant(BitSize - 2, DL, VT));
+
+ // jq = jq | 0x1
+ jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
+
+ // jq = (int)jq
+ jq = DAG.getSExtOrTrunc(jq, DL, IntVT);
+ }
+
+ // int ia = (int)LHS;
+ SDValue ia = sign ?
+ DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT);
+
+ // int ib, (int)RHS;
+ SDValue ib = sign ?
+ DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT);
+
+ // float fa = (float)ia;
+ SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
+
+ // float fb = (float)ib;
+ SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
+
+ // float fq = native_divide(fa, fb);
+ SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
+ fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
+
+ // fq = trunc(fq);
+ fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
+
+ // float fqneg = -fq;
+ SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
+
+ // float fr = mad(fqneg, fb, fa);
+ SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT,
+ DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa);
+
+ // int iq = (int)fq;
+ SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
+
+ // fr = fabs(fr);
+ fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
+
+ // fb = fabs(fb);
+ fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
+
+ EVT SetCCVT = getSetCCResultType(*DAG.getContext(), VT);
+
+ // int cv = fr >= fb;
+ SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
+
+ // jq = (cv ? jq : 0);
+ jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
+
+ // dst = trunc/extend to legal type
+ iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT);
+
+ // dst = iq + jq;
+ SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
+
+ // Rem needs compensation, it's easier to recompute it
+ SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
+ Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
+
+ SDValue Res[2] = {
+ Div,
+ Rem
+ };
+ return DAG.getMergeValues(Res, DL);
+}
+
+void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
+ SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &Results) const {
+ assert(Op.getValueType() == MVT::i64);
+
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+ EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
+
+ SDValue one = DAG.getConstant(1, DL, HalfVT);
+ SDValue zero = DAG.getConstant(0, DL, HalfVT);
+
+ //HiLo split
+ SDValue LHS = Op.getOperand(0);
+ SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
+ SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
+
+ SDValue RHS = Op.getOperand(1);
+ SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
+ SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
+
+ if (VT == MVT::i64 &&
+ DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
+ DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
+
+ SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
+ LHS_Lo, RHS_Lo);
+
+ SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero);
+ SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero);
+ Results.push_back(DIV);
+ Results.push_back(REM);
+ return;
+ }
+
+ // Get Speculative values
+ SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
+ SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
+
+ SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
+ SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero);
+
+ SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
+ SDValue DIV_Lo = zero;
+
+ const unsigned halfBitWidth = HalfVT.getSizeInBits();
+
+ for (unsigned i = 0; i < halfBitWidth; ++i) {
+ const unsigned bitPos = halfBitWidth - i - 1;
+ SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
+ // Get value of high bit
+ SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
+ HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
+ HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
+
+ // Shift
+ REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
+ // Add LHS high bit
+ REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
+
+ SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT);
+ SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
+
+ DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
+
+ // Update REM
+ SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
+ REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
+ }
+
+ SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi);
+ Results.push_back(DIV);
+ Results.push_back(REM);
+}
+
+SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+
+ if (VT == MVT::i64) {
+ SmallVector<SDValue, 2> Results;
+ LowerUDIVREM64(Op, DAG, Results);
+ return DAG.getMergeValues(Results, DL);
+ }
+
+ SDValue Num = Op.getOperand(0);
+ SDValue Den = Op.getOperand(1);
+
+ if (VT == MVT::i32) {
+ if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) &&
+ DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) {
+ // TODO: We technically could do this for i64, but shouldn't that just be
+ // handled by something generally reducing 64-bit division on 32-bit
+ // values to 32-bit?
+ return LowerDIVREM24(Op, DAG, false);
+ }
+ }
+
+ // RCP = URECIP(Den) = 2^32 / Den + e
+ // e is rounding error.
+ SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
+
+ // RCP_LO = mul(RCP, Den) */
+ SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
+
+ // RCP_HI = mulhu (RCP, Den) */
+ SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
+
+ // NEG_RCP_LO = -RCP_LO
+ SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
+ RCP_LO);
+
+ // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
+ SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
+ NEG_RCP_LO, RCP_LO,
+ ISD::SETEQ);
+ // Calculate the rounding error from the URECIP instruction
+ // E = mulhu(ABS_RCP_LO, RCP)
+ SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
+
+ // RCP_A_E = RCP + E
+ SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
+
+ // RCP_S_E = RCP - E
+ SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
+
+ // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
+ SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
+ RCP_A_E, RCP_S_E,
+ ISD::SETEQ);
+ // Quotient = mulhu(Tmp0, Num)
+ SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
+
+ // Num_S_Remainder = Quotient * Den
+ SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
+
+ // Remainder = Num - Num_S_Remainder
+ SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
+
+ // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
+ SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
+ DAG.getConstant(-1, DL, VT),
+ DAG.getConstant(0, DL, VT),
+ ISD::SETUGE);
+ // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
+ SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
+ Num_S_Remainder,
+ DAG.getConstant(-1, DL, VT),
+ DAG.getConstant(0, DL, VT),
+ ISD::SETUGE);
+ // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
+ SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
+ Remainder_GE_Zero);
+
+ // Calculate Division result:
+
+ // Quotient_A_One = Quotient + 1
+ SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
+ DAG.getConstant(1, DL, VT));
+
+ // Quotient_S_One = Quotient - 1
+ SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
+ DAG.getConstant(1, DL, VT));
+
+ // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
+ SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
+ Quotient, Quotient_A_One, ISD::SETEQ);
+
+ // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
+ Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
+ Quotient_S_One, Div, ISD::SETEQ);
+
+ // Calculate Rem result:
+
+ // Remainder_S_Den = Remainder - Den
+ SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
+
+ // Remainder_A_Den = Remainder + Den
+ SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
+
+ // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
+ SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
+ Remainder, Remainder_S_Den, ISD::SETEQ);
+
+ // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
+ Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
+ Remainder_A_Den, Rem, ISD::SETEQ);
+ SDValue Ops[2] = {
+ Div,
+ Rem
+ };
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc DL(Op);
+ EVT VT = Op.getValueType();
+
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+
+ SDValue Zero = DAG.getConstant(0, DL, VT);
+ SDValue NegOne = DAG.getConstant(-1, DL, VT);
+
+ if (VT == MVT::i32 &&
+ DAG.ComputeNumSignBits(LHS) > 8 &&
+ DAG.ComputeNumSignBits(RHS) > 8) {
+ return LowerDIVREM24(Op, DAG, true);
+ }
+ if (VT == MVT::i64 &&
+ DAG.ComputeNumSignBits(LHS) > 32 &&
+ DAG.ComputeNumSignBits(RHS) > 32) {
+ EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
+
+ //HiLo split
+ SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
+ SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
+ SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
+ LHS_Lo, RHS_Lo);
+ SDValue Res[2] = {
+ DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
+ DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
+ };
+ return DAG.getMergeValues(Res, DL);
+ }
+
+ SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
+ SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
+ SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
+ SDValue RSign = LHSign; // Remainder sign is the same as LHS
+
+ LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
+ RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
+
+ LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
+ RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
+
+ SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
+ SDValue Rem = Div.getValue(1);
+
+ Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
+ Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
+
+ Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
+ Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
+
+ SDValue Res[2] = {
+ Div,
+ Rem
+ };
+ return DAG.getMergeValues(Res, DL);
+}
+
+// (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
+SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ EVT VT = Op.getValueType();
+ SDValue X = Op.getOperand(0);
+ SDValue Y = Op.getOperand(1);
+
+ SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
+ SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
+ SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
+
+ return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
+}
+
+SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ // result = trunc(src)
+ // if (src > 0.0 && src != result)
+ // result += 1.0
+
+ SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
+
+ const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
+ const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
+
+ EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
+
+ SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
+ SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
+ SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
+
+ SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
+ return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
+}
+
+static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) {
+ const unsigned FractBits = 52;
+ const unsigned ExpBits = 11;
+
+ SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
+ Hi,
+ DAG.getConstant(FractBits - 32, SL, MVT::i32),
+ DAG.getConstant(ExpBits, SL, MVT::i32));
+ SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
+ DAG.getConstant(1023, SL, MVT::i32));
+
+ return Exp;
+}
+
+SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ assert(Op.getValueType() == MVT::f64);
+
+ const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
+ const SDValue One = DAG.getConstant(1, SL, MVT::i32);
+
+ SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
+
+ // Extract the upper half, since this is where we will find the sign and
+ // exponent.
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
+
+ SDValue Exp = extractF64Exponent(Hi, SL, DAG);
+
+ const unsigned FractBits = 52;
+
+ // Extract the sign bit.
+ const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
+ SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
+
+ // Extend back to to 64-bits.
+ SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
+ Zero, SignBit);
+ SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
+
+ SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
+ const SDValue FractMask
+ = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
+
+ SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
+ SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
+ SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
+
+ EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::i32);
+
+ const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
+
+ SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
+ SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
+
+ SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
+ SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
+
+ return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
+}
+
+SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ assert(Op.getValueType() == MVT::f64);
+
+ APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
+ SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
+ SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
+
+ SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
+ SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
+
+ SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
+
+ APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
+ SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
+
+ EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
+ SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
+
+ return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
+}
+
+SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
+ // FNEARBYINT and FRINT are the same, except in their handling of FP
+ // exceptions. Those aren't really meaningful for us, and OpenCL only has
+ // rint, so just treat them as equivalent.
+ return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
+}
+
+// XXX - May require not supporting f32 denormals?
+SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue X = Op.getOperand(0);
+
+ SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
+
+ SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
+
+ SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
+
+ const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32);
+ const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
+ const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32);
+
+ SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
+
+ EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32);
+
+ SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
+
+ SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
+
+ return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
+}
+
+SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue X = Op.getOperand(0);
+
+ SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
+
+ const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
+ const SDValue One = DAG.getConstant(1, SL, MVT::i32);
+ const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
+ const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
+ EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::i32);
+
+
+ SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
+
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
+
+ SDValue Exp = extractF64Exponent(Hi, SL, DAG);
+
+ const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
+ MVT::i64);
+
+ SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
+ SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
+ DAG.getConstant(INT64_C(0x0008000000000000), SL,
+ MVT::i64),
+ Exp);
+
+ SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
+ SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
+ DAG.getConstant(0, SL, MVT::i64), Tmp0,
+ ISD::SETNE);
+
+ SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
+ D, DAG.getConstant(0, SL, MVT::i64));
+ SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
+
+ K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
+ K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
+
+ SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
+ SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
+ SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
+
+ SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
+ ExpEqNegOne,
+ DAG.getConstantFP(1.0, SL, MVT::f64),
+ DAG.getConstantFP(0.0, SL, MVT::f64));
+
+ SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
+
+ K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
+ K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
+
+ return K;
+}
+
+SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+
+ if (VT == MVT::f32)
+ return LowerFROUND32(Op, DAG);
+
+ if (VT == MVT::f64)
+ return LowerFROUND64(Op, DAG);
+
+ llvm_unreachable("unhandled type");
+}
+
+SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ // result = trunc(src);
+ // if (src < 0.0 && src != result)
+ // result += -1.0.
+
+ SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
+
+ const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
+ const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
+
+ EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
+
+ SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
+ SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
+ SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
+
+ SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
+ return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
+}
+
+SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
+ bool Signed) const {
+ SDLoc SL(Op);
+ SDValue Src = Op.getOperand(0);
+
+ SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
+
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
+ DAG.getConstant(0, SL, MVT::i32));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
+ DAG.getConstant(1, SL, MVT::i32));
+
+ SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
+ SL, MVT::f64, Hi);
+
+ SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
+
+ SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
+ DAG.getConstant(32, SL, MVT::i32));
+
+ return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
+}
+
+SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue S0 = Op.getOperand(0);
+ if (S0.getValueType() != MVT::i64)
+ return SDValue();
+
+ EVT DestVT = Op.getValueType();
+ if (DestVT == MVT::f64)
+ return LowerINT_TO_FP64(Op, DAG, false);
+
+ assert(DestVT == MVT::f32);
+
+ SDLoc DL(Op);
+
+ // f32 uint_to_fp i64
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
+ DAG.getConstant(0, DL, MVT::i32));
+ SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo);
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
+ DAG.getConstant(1, DL, MVT::i32));
+ SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi);
+ FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi,
+ DAG.getConstantFP(4294967296.0f, DL, MVT::f32)); // 2^32
+ return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi);
+}
+
+SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Src = Op.getOperand(0);
+ if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64)
+ return LowerINT_TO_FP64(Op, DAG, true);
+
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
+ bool Signed) const {
+ SDLoc SL(Op);
+
+ SDValue Src = Op.getOperand(0);
+
+ SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
+
+ SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
+ MVT::f64);
+ SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
+ MVT::f64);
+
+ SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
+
+ SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
+
+
+ SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
+
+ SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
+ MVT::i32, FloorMul);
+ SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
+
+ SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi);
+
+ return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
+}
+
+SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Src = Op.getOperand(0);
+
+ if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
+ return LowerFP64_TO_INT(Op, DAG, true);
+
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Src = Op.getOperand(0);
+
+ if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
+ return LowerFP64_TO_INT(Op, DAG, false);
+
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
+ MVT VT = Op.getSimpleValueType();
+ MVT ScalarVT = VT.getScalarType();
+
+ if (!VT.isVector())
+ return SDValue();
+
+ SDValue Src = Op.getOperand(0);
+ SDLoc DL(Op);
+
+ // TODO: Don't scalarize on Evergreen?
+ unsigned NElts = VT.getVectorNumElements();
+ SmallVector<SDValue, 8> Args;
+ DAG.ExtractVectorElements(Src, Args, 0, NElts);
+
+ SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
+ for (unsigned I = 0; I < NElts; ++I)
+ Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
+
+ return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args);
+}
+
+//===----------------------------------------------------------------------===//
+// Custom DAG optimizations
+//===----------------------------------------------------------------------===//
+
+static bool isU24(SDValue Op, SelectionDAG &DAG) {
+ APInt KnownZero, KnownOne;
+ EVT VT = Op.getValueType();
+ DAG.computeKnownBits(Op, KnownZero, KnownOne);
+
+ return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
+}
+
+static bool isI24(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+
+ // In order for this to be a signed 24-bit value, bit 23, must
+ // be a sign bit.
+ return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
+ // as unsigned 24-bit values.
+ (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
+}
+
+static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
+
+ SelectionDAG &DAG = DCI.DAG;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT VT = Op.getValueType();
+
+ APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
+ if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
+ DCI.CommitTargetLoweringOpt(TLO);
+}
+
+template <typename IntTy>
+static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0,
+ uint32_t Offset, uint32_t Width, SDLoc DL) {
+ if (Width + Offset < 32) {
+ uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
+ IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
+ return DAG.getConstant(Result, DL, MVT::i32);
+ }
+
+ return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
+}
+
+static bool usesAllNormalStores(SDNode *LoadVal) {
+ for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) {
+ if (!ISD::isNormalStore(*I))
+ return false;
+ }
+
+ return true;
+}
+
+// If we have a copy of an illegal type, replace it with a load / store of an
+// equivalently sized legal type. This avoids intermediate bit pack / unpack
+// instructions emitted when handling extloads and truncstores. Ideally we could
+// recognize the pack / unpack pattern to eliminate it.
+SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ if (!DCI.isBeforeLegalize())
+ return SDValue();
+
+ StoreSDNode *SN = cast<StoreSDNode>(N);
+ SDValue Value = SN->getValue();
+ EVT VT = Value.getValueType();
+
+ if (isTypeLegal(VT) || SN->isVolatile() ||
+ !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8)
+ return SDValue();
+
+ LoadSDNode *LoadVal = cast<LoadSDNode>(Value);
+ if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal))
+ return SDValue();
+
+ EVT MemVT = LoadVal->getMemoryVT();
+
+ SDLoc SL(N);
+ SelectionDAG &DAG = DCI.DAG;
+ EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT);
+
+ SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
+ LoadVT, SL,
+ LoadVal->getChain(),
+ LoadVal->getBasePtr(),
+ LoadVal->getOffset(),
+ LoadVT,
+ LoadVal->getMemOperand());
+
+ SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0));
+ DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false);
+
+ return DAG.getStore(SN->getChain(), SL, NewLoad,
+ SN->getBasePtr(), SN->getMemOperand());
+}
+
+SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ EVT VT = N->getValueType(0);
+
+ if (VT.isVector() || VT.getSizeInBits() > 32)
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue Mul;
+
+ if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
+ N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
+ N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
+ Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
+ } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
+ N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
+ N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
+ Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
+ } else {
+ return SDValue();
+ }
+
+ // We need to use sext even for MUL_U24, because MUL_U24 is used
+ // for signed multiply of 8 and 16-bit types.
+ return DAG.getSExtOrTrunc(Mul, DL, VT);
+}
+
+SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(N);
+
+ switch(N->getOpcode()) {
+ default: break;
+ case ISD::MUL:
+ return performMulCombine(N, DCI);
+ case AMDGPUISD::MUL_I24:
+ case AMDGPUISD::MUL_U24: {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ simplifyI24(N0, DCI);
+ simplifyI24(N1, DCI);
+ return SDValue();
+ }
+ case ISD::SELECT: {
+ SDValue Cond = N->getOperand(0);
+ if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) {
+ EVT VT = N->getValueType(0);
+ SDValue LHS = Cond.getOperand(0);
+ SDValue RHS = Cond.getOperand(1);
+ SDValue CC = Cond.getOperand(2);
+
+ SDValue True = N->getOperand(1);
+ SDValue False = N->getOperand(2);
+
+ if (VT == MVT::f32)
+ return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
+
+ // TODO: Implement min / max Evergreen instructions.
+ if (VT == MVT::i32 &&
+ Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
+ return CombineIMinMax(DL, VT, LHS, RHS, True, False, CC, DAG);
+ }
+ }
+
+ break;
+ }
+ case AMDGPUISD::BFE_I32:
+ case AMDGPUISD::BFE_U32: {
+ assert(!N->getValueType(0).isVector() &&
+ "Vector handling of BFE not implemented");
+ ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
+ if (!Width)
+ break;
+
+ uint32_t WidthVal = Width->getZExtValue() & 0x1f;
+ if (WidthVal == 0)
+ return DAG.getConstant(0, DL, MVT::i32);
+
+ ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!Offset)
+ break;
+
+ SDValue BitsFrom = N->getOperand(0);
+ uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
+
+ bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
+
+ if (OffsetVal == 0) {
+ // This is already sign / zero extended, so try to fold away extra BFEs.
+ unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
+
+ unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
+ if (OpSignBits >= SignBits)
+ return BitsFrom;
+
+ EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
+ if (Signed) {
+ // This is a sign_extend_inreg. Replace it to take advantage of existing
+ // DAG Combines. If not eliminated, we will match back to BFE during
+ // selection.
+
+ // TODO: The sext_inreg of extended types ends, although we can could
+ // handle them in a single BFE.
+ return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
+ DAG.getValueType(SmallVT));
+ }
+
+ return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
+ }
+
+ if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
+ if (Signed) {
+ return constantFoldBFE<int32_t>(DAG,
+ CVal->getSExtValue(),
+ OffsetVal,
+ WidthVal,
+ DL);
+ }
+
+ return constantFoldBFE<uint32_t>(DAG,
+ CVal->getZExtValue(),
+ OffsetVal,
+ WidthVal,
+ DL);
+ }
+
+ if ((OffsetVal + WidthVal) >= 32) {
+ SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
+ return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
+ BitsFrom, ShiftVal);
+ }
+
+ if (BitsFrom.hasOneUse()) {
+ APInt Demanded = APInt::getBitsSet(32,
+ OffsetVal,
+ OffsetVal + WidthVal);
+
+ APInt KnownZero, KnownOne;
+ TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
+ !DCI.isBeforeLegalizeOps());
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
+ TLI.SimplifyDemandedBits(BitsFrom, Demanded,
+ KnownZero, KnownOne, TLO)) {
+ DCI.CommitTargetLoweringOpt(TLO);
+ }
+ }
+
+ break;
+ }
+
+ case ISD::STORE:
+ return performStoreCombine(N, DCI);
+ }
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Helper functions
+//===----------------------------------------------------------------------===//
+
+void AMDGPUTargetLowering::getOriginalFunctionArgs(
+ SelectionDAG &DAG,
+ const Function *F,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SmallVectorImpl<ISD::InputArg> &OrigIns) const {
+
+ for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
+ if (Ins[i].ArgVT == Ins[i].VT) {
+ OrigIns.push_back(Ins[i]);
+ continue;
+ }
+
+ EVT VT;
+ if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
+ // Vector has been split into scalars.
+ VT = Ins[i].ArgVT.getVectorElementType();
+ } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
+ Ins[i].ArgVT.getVectorElementType() !=
+ Ins[i].VT.getVectorElementType()) {
+ // Vector elements have been promoted
+ VT = Ins[i].ArgVT;
+ } else {
+ // Vector has been spilt into smaller vectors.
+ VT = Ins[i].VT;
+ }
+
+ ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
+ Ins[i].OrigArgIndex, Ins[i].PartOffset);
+ OrigIns.push_back(Arg);
+ }
+}
+
+bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const {
+ if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
+ return CFP->isExactlyValue(1.0);
+ }
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ return C->isAllOnesValue();
+ }
+ return false;
+}
+
+bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const {
+ if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
+ return CFP->getValueAPF().isZero();
+ }
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
+ return C->isNullValue();
+ }
+ return false;
+}
+
+SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
+ const TargetRegisterClass *RC,
+ unsigned Reg, EVT VT) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ unsigned VirtualRegister;
+ if (!MRI.isLiveIn(Reg)) {
+ VirtualRegister = MRI.createVirtualRegister(RC);
+ MRI.addLiveIn(Reg, VirtualRegister);
+ } else {
+ VirtualRegister = MRI.getLiveInVirtReg(Reg);
+ }
+ return DAG.getRegister(VirtualRegister, VT);
+}
+
+#define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
+
+const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch ((AMDGPUISD::NodeType)Opcode) {
+ case AMDGPUISD::FIRST_NUMBER: break;
+ // AMDIL DAG nodes
+ NODE_NAME_CASE(CALL);
+ NODE_NAME_CASE(UMUL);
+ NODE_NAME_CASE(RET_FLAG);
+ NODE_NAME_CASE(BRANCH_COND);
+
+ // AMDGPU DAG nodes
+ NODE_NAME_CASE(DWORDADDR)
+ NODE_NAME_CASE(FRACT)
+ NODE_NAME_CASE(CLAMP)
+ NODE_NAME_CASE(COS_HW)
+ NODE_NAME_CASE(SIN_HW)
+ NODE_NAME_CASE(FMAX_LEGACY)
+ NODE_NAME_CASE(FMIN_LEGACY)
+ NODE_NAME_CASE(FMAX3)
+ NODE_NAME_CASE(SMAX3)
+ NODE_NAME_CASE(UMAX3)
+ NODE_NAME_CASE(FMIN3)
+ NODE_NAME_CASE(SMIN3)
+ NODE_NAME_CASE(UMIN3)
+ NODE_NAME_CASE(URECIP)
+ NODE_NAME_CASE(DIV_SCALE)
+ NODE_NAME_CASE(DIV_FMAS)
+ NODE_NAME_CASE(DIV_FIXUP)
+ NODE_NAME_CASE(TRIG_PREOP)
+ NODE_NAME_CASE(RCP)
+ NODE_NAME_CASE(RSQ)
+ NODE_NAME_CASE(RSQ_LEGACY)
+ NODE_NAME_CASE(RSQ_CLAMPED)
+ NODE_NAME_CASE(LDEXP)
+ NODE_NAME_CASE(FP_CLASS)
+ NODE_NAME_CASE(DOT4)
+ NODE_NAME_CASE(CARRY)
+ NODE_NAME_CASE(BORROW)
+ NODE_NAME_CASE(BFE_U32)
+ NODE_NAME_CASE(BFE_I32)
+ NODE_NAME_CASE(BFI)
+ NODE_NAME_CASE(BFM)
+ NODE_NAME_CASE(BREV)
+ NODE_NAME_CASE(MUL_U24)
+ NODE_NAME_CASE(MUL_I24)
+ NODE_NAME_CASE(MAD_U24)
+ NODE_NAME_CASE(MAD_I24)
+ NODE_NAME_CASE(TEXTURE_FETCH)
+ NODE_NAME_CASE(EXPORT)
+ NODE_NAME_CASE(CONST_ADDRESS)
+ NODE_NAME_CASE(REGISTER_LOAD)
+ NODE_NAME_CASE(REGISTER_STORE)
+ NODE_NAME_CASE(LOAD_CONSTANT)
+ NODE_NAME_CASE(LOAD_INPUT)
+ NODE_NAME_CASE(SAMPLE)
+ NODE_NAME_CASE(SAMPLEB)
+ NODE_NAME_CASE(SAMPLED)
+ NODE_NAME_CASE(SAMPLEL)
+ NODE_NAME_CASE(CVT_F32_UBYTE0)
+ NODE_NAME_CASE(CVT_F32_UBYTE1)
+ NODE_NAME_CASE(CVT_F32_UBYTE2)
+ NODE_NAME_CASE(CVT_F32_UBYTE3)
+ NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
+ NODE_NAME_CASE(CONST_DATA_PTR)
+ case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
+ NODE_NAME_CASE(SENDMSG)
+ NODE_NAME_CASE(INTERP_MOV)
+ NODE_NAME_CASE(INTERP_P1)
+ NODE_NAME_CASE(INTERP_P2)
+ NODE_NAME_CASE(STORE_MSKOR)
+ NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
+ case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
+ }
+ return nullptr;
+}
+
+SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand,
+ DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps,
+ bool &UseOneConstNR) const {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = Operand.getValueType();
+
+ if (VT == MVT::f32) {
+ RefinementSteps = 0;
+ return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
+ }
+
+ // TODO: There is also f64 rsq instruction, but the documentation is less
+ // clear on its precision.
+
+ return SDValue();
+}
+
+SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
+ DAGCombinerInfo &DCI,
+ unsigned &RefinementSteps) const {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = Operand.getValueType();
+
+ if (VT == MVT::f32) {
+ // Reciprocal, < 1 ulp error.
+ //
+ // This reciprocal approximation converges to < 0.5 ulp error with one
+ // newton rhapson performed with two fused multiple adds (FMAs).
+
+ RefinementSteps = 0;
+ return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
+ }
+
+ // TODO: There is also f64 rcp instruction, but the documentation is less
+ // clear on its precision.
+
+ return SDValue();
+}
+
+static void computeKnownBitsForMinMax(const SDValue Op0,
+ const SDValue Op1,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) {
+ APInt Op0Zero, Op0One;
+ APInt Op1Zero, Op1One;
+ DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth);
+ DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth);
+
+ KnownZero = Op0Zero & Op1Zero;
+ KnownOne = Op0One & Op1One;
+}
+
+void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
+ const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+
+ KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
+
+ APInt KnownZero2;
+ APInt KnownOne2;
+ unsigned Opc = Op.getOpcode();
+
+ switch (Opc) {
+ default:
+ break;
+ case ISD::INTRINSIC_WO_CHAIN: {
+ // FIXME: The intrinsic should just use the node.
+ switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
+ case AMDGPUIntrinsic::AMDGPU_imax:
+ case AMDGPUIntrinsic::AMDGPU_umax:
+ case AMDGPUIntrinsic::AMDGPU_imin:
+ case AMDGPUIntrinsic::AMDGPU_umin:
+ computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2),
+ KnownZero, KnownOne, DAG, Depth);
+ break;
+ default:
+ break;
+ }
+
+ break;
+ }
+ case AMDGPUISD::CARRY:
+ case AMDGPUISD::BORROW: {
+ KnownZero = APInt::getHighBitsSet(32, 31);
+ break;
+ }
+
+ case AMDGPUISD::BFE_I32:
+ case AMDGPUISD::BFE_U32: {
+ ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+ if (!CWidth)
+ return;
+
+ unsigned BitWidth = 32;
+ uint32_t Width = CWidth->getZExtValue() & 0x1f;
+
+ if (Opc == AMDGPUISD::BFE_U32)
+ KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
+
+ break;
+ }
+ }
+}
+
+unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
+ SDValue Op,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ switch (Op.getOpcode()) {
+ case AMDGPUISD::BFE_I32: {
+ ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+ if (!Width)
+ return 1;
+
+ unsigned SignBits = 32 - Width->getZExtValue() + 1;
+ ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ if (!Offset || !Offset->isNullValue())
+ return SignBits;
+
+ // TODO: Could probably figure something out with non-0 offsets.
+ unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
+ return std::max(SignBits, Op0SignBits);
+ }
+
+ case AMDGPUISD::BFE_U32: {
+ ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
+ return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
+ }
+
+ case AMDGPUISD::CARRY:
+ case AMDGPUISD::BORROW:
+ return 31;
+
+ default:
+ return 1;
+ }
+}
OpenPOWER on IntegriCloud