diff options
Diffstat (limited to 'contrib/llvm/lib/Target/PowerPC/README.txt')
-rw-r--r-- | contrib/llvm/lib/Target/PowerPC/README.txt | 914 |
1 files changed, 914 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/PowerPC/README.txt b/contrib/llvm/lib/Target/PowerPC/README.txt new file mode 100644 index 0000000..3465779 --- /dev/null +++ b/contrib/llvm/lib/Target/PowerPC/README.txt @@ -0,0 +1,914 @@ +//===- README.txt - Notes for improving PowerPC-specific code gen ---------===// + +TODO: +* gpr0 allocation +* implement do-loop -> bdnz transform +* lmw/stmw pass a la arm load store optimizer for prolog/epilog + +===-------------------------------------------------------------------------=== + +On PPC64, this: + +long f2 (long x) { return 0xfffffff000000000UL; } +long f3 (long x) { return 0x1ffffffffUL; } + +could compile into: + +_f2: + li r3,-1 + rldicr r3,r3,0,27 + blr +_f3: + li r3,-1 + rldicl r3,r3,0,31 + blr + +we produce: + +_f2: + lis r2, 4095 + ori r2, r2, 65535 + sldi r3, r2, 36 + blr +_f3: + li r2, 1 + sldi r2, r2, 32 + oris r2, r2, 65535 + ori r3, r2, 65535 + blr + + +===-------------------------------------------------------------------------=== + +Support 'update' load/store instructions. These are cracked on the G5, but are +still a codesize win. + +With preinc enabled, this: + +long *%test4(long *%X, long *%dest) { + %Y = getelementptr long* %X, int 4 + %A = load long* %Y + store long %A, long* %dest + ret long* %Y +} + +compiles to: + +_test4: + mr r2, r3 + lwzu r5, 32(r2) + lwz r3, 36(r3) + stw r5, 0(r4) + stw r3, 4(r4) + mr r3, r2 + blr + +with -sched=list-burr, I get: + +_test4: + lwz r2, 36(r3) + lwzu r5, 32(r3) + stw r2, 4(r4) + stw r5, 0(r4) + blr + +===-------------------------------------------------------------------------=== + +We compile the hottest inner loop of viterbi to: + + li r6, 0 + b LBB1_84 ;bb432.i +LBB1_83: ;bb420.i + lbzx r8, r5, r7 + addi r6, r7, 1 + stbx r8, r4, r7 +LBB1_84: ;bb432.i + mr r7, r6 + cmplwi cr0, r7, 143 + bne cr0, LBB1_83 ;bb420.i + +The CBE manages to produce: + + li r0, 143 + mtctr r0 +loop: + lbzx r2, r2, r11 + stbx r0, r2, r9 + addi r2, r2, 1 + bdz later + b loop + +This could be much better (bdnz instead of bdz) but it still beats us. If we +produced this with bdnz, the loop would be a single dispatch group. + +===-------------------------------------------------------------------------=== + +Compile: + +void foo(int *P) { + if (P) *P = 0; +} + +into: + +_foo: + cmpwi cr0,r3,0 + beqlr cr0 + li r0,0 + stw r0,0(r3) + blr + +This is effectively a simple form of predication. + +===-------------------------------------------------------------------------=== + +Lump the constant pool for each function into ONE pic object, and reference +pieces of it as offsets from the start. For functions like this (contrived +to have lots of constants obviously): + +double X(double Y) { return (Y*1.23 + 4.512)*2.34 + 14.38; } + +We generate: + +_X: + lis r2, ha16(.CPI_X_0) + lfd f0, lo16(.CPI_X_0)(r2) + lis r2, ha16(.CPI_X_1) + lfd f2, lo16(.CPI_X_1)(r2) + fmadd f0, f1, f0, f2 + lis r2, ha16(.CPI_X_2) + lfd f1, lo16(.CPI_X_2)(r2) + lis r2, ha16(.CPI_X_3) + lfd f2, lo16(.CPI_X_3)(r2) + fmadd f1, f0, f1, f2 + blr + +It would be better to materialize .CPI_X into a register, then use immediates +off of the register to avoid the lis's. This is even more important in PIC +mode. + +Note that this (and the static variable version) is discussed here for GCC: +http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html + +Here's another example (the sgn function): +double testf(double a) { + return a == 0.0 ? 0.0 : (a > 0.0 ? 1.0 : -1.0); +} + +it produces a BB like this: +LBB1_1: ; cond_true + lis r2, ha16(LCPI1_0) + lfs f0, lo16(LCPI1_0)(r2) + lis r2, ha16(LCPI1_1) + lis r3, ha16(LCPI1_2) + lfs f2, lo16(LCPI1_2)(r3) + lfs f3, lo16(LCPI1_1)(r2) + fsub f0, f0, f1 + fsel f1, f0, f2, f3 + blr + +===-------------------------------------------------------------------------=== + +PIC Code Gen IPO optimization: + +Squish small scalar globals together into a single global struct, allowing the +address of the struct to be CSE'd, avoiding PIC accesses (also reduces the size +of the GOT on targets with one). + +Note that this is discussed here for GCC: +http://gcc.gnu.org/ml/gcc-patches/2006-02/msg00133.html + +===-------------------------------------------------------------------------=== + +Implement Newton-Rhapson method for improving estimate instructions to the +correct accuracy, and implementing divide as multiply by reciprocal when it has +more than one use. Itanium would want this too. + +===-------------------------------------------------------------------------=== + +Compile offsets from allocas: + +int *%test() { + %X = alloca { int, int } + %Y = getelementptr {int,int}* %X, int 0, uint 1 + ret int* %Y +} + +into a single add, not two: + +_test: + addi r2, r1, -8 + addi r3, r2, 4 + blr + +--> important for C++. + +===-------------------------------------------------------------------------=== + +No loads or stores of the constants should be needed: + +struct foo { double X, Y; }; +void xxx(struct foo F); +void bar() { struct foo R = { 1.0, 2.0 }; xxx(R); } + +===-------------------------------------------------------------------------=== + +Darwin Stub removal: + +We still generate calls to foo$stub, and stubs, on Darwin. This is not +necessary when building with the Leopard (10.5) or later linker, as stubs are +generated by ld when necessary. Parameterizing this based on the deployment +target (-mmacosx-version-min) is probably enough. x86-32 does this right, see +its logic. + +===-------------------------------------------------------------------------=== + +Darwin Stub LICM optimization: + +Loops like this: + + for (...) bar(); + +Have to go through an indirect stub if bar is external or linkonce. It would +be better to compile it as: + + fp = &bar; + for (...) fp(); + +which only computes the address of bar once (instead of each time through the +stub). This is Darwin specific and would have to be done in the code generator. +Probably not a win on x86. + +===-------------------------------------------------------------------------=== + +Simple IPO for argument passing, change: + void foo(int X, double Y, int Z) -> void foo(int X, int Z, double Y) + +the Darwin ABI specifies that any integer arguments in the first 32 bytes worth +of arguments get assigned to r3 through r10. That is, if you have a function +foo(int, double, int) you get r3, f1, r6, since the 64 bit double ate up the +argument bytes for r4 and r5. The trick then would be to shuffle the argument +order for functions we can internalize so that the maximum number of +integers/pointers get passed in regs before you see any of the fp arguments. + +Instead of implementing this, it would actually probably be easier to just +implement a PPC fastcc, where we could do whatever we wanted to the CC, +including having this work sanely. + +===-------------------------------------------------------------------------=== + +Fix Darwin FP-In-Integer Registers ABI + +Darwin passes doubles in structures in integer registers, which is very very +bad. Add something like a BIT_CONVERT to LLVM, then do an i-p transformation +that percolates these things out of functions. + +Check out how horrible this is: +http://gcc.gnu.org/ml/gcc/2005-10/msg01036.html + +This is an extension of "interprocedural CC unmunging" that can't be done with +just fastcc. + +===-------------------------------------------------------------------------=== + +Compile this: + +int foo(int a) { + int b = (a < 8); + if (b) { + return b * 3; // ignore the fact that this is always 3. + } else { + return 2; + } +} + +into something not this: + +_foo: +1) cmpwi cr7, r3, 8 + mfcr r2, 1 + rlwinm r2, r2, 29, 31, 31 +1) cmpwi cr0, r3, 7 + bgt cr0, LBB1_2 ; UnifiedReturnBlock +LBB1_1: ; then + rlwinm r2, r2, 0, 31, 31 + mulli r3, r2, 3 + blr +LBB1_2: ; UnifiedReturnBlock + li r3, 2 + blr + +In particular, the two compares (marked 1) could be shared by reversing one. +This could be done in the dag combiner, by swapping a BR_CC when a SETCC of the +same operands (but backwards) exists. In this case, this wouldn't save us +anything though, because the compares still wouldn't be shared. + +===-------------------------------------------------------------------------=== + +We should custom expand setcc instead of pretending that we have it. That +would allow us to expose the access of the crbit after the mfcr, allowing +that access to be trivially folded into other ops. A simple example: + +int foo(int a, int b) { return (a < b) << 4; } + +compiles into: + +_foo: + cmpw cr7, r3, r4 + mfcr r2, 1 + rlwinm r2, r2, 29, 31, 31 + slwi r3, r2, 4 + blr + +===-------------------------------------------------------------------------=== + +Fold add and sub with constant into non-extern, non-weak addresses so this: + +static int a; +void bar(int b) { a = b; } +void foo(unsigned char *c) { + *c = a; +} + +So that + +_foo: + lis r2, ha16(_a) + la r2, lo16(_a)(r2) + lbz r2, 3(r2) + stb r2, 0(r3) + blr + +Becomes + +_foo: + lis r2, ha16(_a+3) + lbz r2, lo16(_a+3)(r2) + stb r2, 0(r3) + blr + +===-------------------------------------------------------------------------=== + +We generate really bad code for this: + +int f(signed char *a, _Bool b, _Bool c) { + signed char t = 0; + if (b) t = *a; + if (c) *a = t; +} + +===-------------------------------------------------------------------------=== + +This: +int test(unsigned *P) { return *P >> 24; } + +Should compile to: + +_test: + lbz r3,0(r3) + blr + +not: + +_test: + lwz r2, 0(r3) + srwi r3, r2, 24 + blr + +===-------------------------------------------------------------------------=== + +On the G5, logical CR operations are more expensive in their three +address form: ops that read/write the same register are half as expensive as +those that read from two registers that are different from their destination. + +We should model this with two separate instructions. The isel should generate +the "two address" form of the instructions. When the register allocator +detects that it needs to insert a copy due to the two-addresness of the CR +logical op, it will invoke PPCInstrInfo::convertToThreeAddress. At this point +we can convert to the "three address" instruction, to save code space. + +This only matters when we start generating cr logical ops. + +===-------------------------------------------------------------------------=== + +We should compile these two functions to the same thing: + +#include <stdlib.h> +void f(int a, int b, int *P) { + *P = (a-b)>=0?(a-b):(b-a); +} +void g(int a, int b, int *P) { + *P = abs(a-b); +} + +Further, they should compile to something better than: + +_g: + subf r2, r4, r3 + subfic r3, r2, 0 + cmpwi cr0, r2, -1 + bgt cr0, LBB2_2 ; entry +LBB2_1: ; entry + mr r2, r3 +LBB2_2: ; entry + stw r2, 0(r5) + blr + +GCC produces: + +_g: + subf r4,r4,r3 + srawi r2,r4,31 + xor r0,r2,r4 + subf r0,r2,r0 + stw r0,0(r5) + blr + +... which is much nicer. + +This theoretically may help improve twolf slightly (used in dimbox.c:142?). + +===-------------------------------------------------------------------------=== + +PR5945: This: +define i32 @clamp0g(i32 %a) { +entry: + %cmp = icmp slt i32 %a, 0 + %sel = select i1 %cmp, i32 0, i32 %a + ret i32 %sel +} + +Is compile to this with the PowerPC (32-bit) backend: + +_clamp0g: + cmpwi cr0, r3, 0 + li r2, 0 + blt cr0, LBB1_2 +; BB#1: ; %entry + mr r2, r3 +LBB1_2: ; %entry + mr r3, r2 + blr + +This could be reduced to the much simpler: + +_clamp0g: + srawi r2, r3, 31 + andc r3, r3, r2 + blr + +===-------------------------------------------------------------------------=== + +int foo(int N, int ***W, int **TK, int X) { + int t, i; + + for (t = 0; t < N; ++t) + for (i = 0; i < 4; ++i) + W[t / X][i][t % X] = TK[i][t]; + + return 5; +} + +We generate relatively atrocious code for this loop compared to gcc. + +We could also strength reduce the rem and the div: +http://www.lcs.mit.edu/pubs/pdf/MIT-LCS-TM-600.pdf + +===-------------------------------------------------------------------------=== + +float foo(float X) { return (int)(X); } + +Currently produces: + +_foo: + fctiwz f0, f1 + stfd f0, -8(r1) + lwz r2, -4(r1) + extsw r2, r2 + std r2, -16(r1) + lfd f0, -16(r1) + fcfid f0, f0 + frsp f1, f0 + blr + +We could use a target dag combine to turn the lwz/extsw into an lwa when the +lwz has a single use. Since LWA is cracked anyway, this would be a codesize +win only. + +===-------------------------------------------------------------------------=== + +We generate ugly code for this: + +void func(unsigned int *ret, float dx, float dy, float dz, float dw) { + unsigned code = 0; + if(dx < -dw) code |= 1; + if(dx > dw) code |= 2; + if(dy < -dw) code |= 4; + if(dy > dw) code |= 8; + if(dz < -dw) code |= 16; + if(dz > dw) code |= 32; + *ret = code; +} + +===-------------------------------------------------------------------------=== + +Complete the signed i32 to FP conversion code using 64-bit registers +transformation, good for PI. See PPCISelLowering.cpp, this comment: + + // FIXME: disable this lowered code. This generates 64-bit register values, + // and we don't model the fact that the top part is clobbered by calls. We + // need to flag these together so that the value isn't live across a call. + //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); + +Also, if the registers are spilled to the stack, we have to ensure that all +64-bits of them are save/restored, otherwise we will miscompile the code. It +sounds like we need to get the 64-bit register classes going. + +===-------------------------------------------------------------------------=== + +%struct.B = type { i8, [3 x i8] } + +define void @bar(%struct.B* %b) { +entry: + %tmp = bitcast %struct.B* %b to i32* ; <uint*> [#uses=1] + %tmp = load i32* %tmp ; <uint> [#uses=1] + %tmp3 = bitcast %struct.B* %b to i32* ; <uint*> [#uses=1] + %tmp4 = load i32* %tmp3 ; <uint> [#uses=1] + %tmp8 = bitcast %struct.B* %b to i32* ; <uint*> [#uses=2] + %tmp9 = load i32* %tmp8 ; <uint> [#uses=1] + %tmp4.mask17 = shl i32 %tmp4, i8 1 ; <uint> [#uses=1] + %tmp1415 = and i32 %tmp4.mask17, 2147483648 ; <uint> [#uses=1] + %tmp.masked = and i32 %tmp, 2147483648 ; <uint> [#uses=1] + %tmp11 = or i32 %tmp1415, %tmp.masked ; <uint> [#uses=1] + %tmp12 = and i32 %tmp9, 2147483647 ; <uint> [#uses=1] + %tmp13 = or i32 %tmp12, %tmp11 ; <uint> [#uses=1] + store i32 %tmp13, i32* %tmp8 + ret void +} + +We emit: + +_foo: + lwz r2, 0(r3) + slwi r4, r2, 1 + or r4, r4, r2 + rlwimi r2, r4, 0, 0, 0 + stw r2, 0(r3) + blr + +We could collapse a bunch of those ORs and ANDs and generate the following +equivalent code: + +_foo: + lwz r2, 0(r3) + rlwinm r4, r2, 1, 0, 0 + or r2, r2, r4 + stw r2, 0(r3) + blr + +===-------------------------------------------------------------------------=== + +We compile: + +unsigned test6(unsigned x) { + return ((x & 0x00FF0000) >> 16) | ((x & 0x000000FF) << 16); +} + +into: + +_test6: + lis r2, 255 + rlwinm r3, r3, 16, 0, 31 + ori r2, r2, 255 + and r3, r3, r2 + blr + +GCC gets it down to: + +_test6: + rlwinm r0,r3,16,8,15 + rlwinm r3,r3,16,24,31 + or r3,r3,r0 + blr + + +===-------------------------------------------------------------------------=== + +Consider a function like this: + +float foo(float X) { return X + 1234.4123f; } + +The FP constant ends up in the constant pool, so we need to get the LR register. + This ends up producing code like this: + +_foo: +.LBB_foo_0: ; entry + mflr r11 +*** stw r11, 8(r1) + bl "L00000$pb" +"L00000$pb": + mflr r2 + addis r2, r2, ha16(.CPI_foo_0-"L00000$pb") + lfs f0, lo16(.CPI_foo_0-"L00000$pb")(r2) + fadds f1, f1, f0 +*** lwz r11, 8(r1) + mtlr r11 + blr + +This is functional, but there is no reason to spill the LR register all the way +to the stack (the two marked instrs): spilling it to a GPR is quite enough. + +Implementing this will require some codegen improvements. Nate writes: + +"So basically what we need to support the "no stack frame save and restore" is a +generalization of the LR optimization to "callee-save regs". + +Currently, we have LR marked as a callee-save reg. The register allocator sees +that it's callee save, and spills it directly to the stack. + +Ideally, something like this would happen: + +LR would be in a separate register class from the GPRs. The class of LR would be +marked "unspillable". When the register allocator came across an unspillable +reg, it would ask "what is the best class to copy this into that I *can* spill" +If it gets a class back, which it will in this case (the gprs), it grabs a free +register of that class. If it is then later necessary to spill that reg, so be +it. + +===-------------------------------------------------------------------------=== + +We compile this: +int test(_Bool X) { + return X ? 524288 : 0; +} + +to: +_test: + cmplwi cr0, r3, 0 + lis r2, 8 + li r3, 0 + beq cr0, LBB1_2 ;entry +LBB1_1: ;entry + mr r3, r2 +LBB1_2: ;entry + blr + +instead of: +_test: + addic r2,r3,-1 + subfe r0,r2,r3 + slwi r3,r0,19 + blr + +This sort of thing occurs a lot due to globalopt. + +===-------------------------------------------------------------------------=== + +We compile: + +define i32 @bar(i32 %x) nounwind readnone ssp { +entry: + %0 = icmp eq i32 %x, 0 ; <i1> [#uses=1] + %neg = sext i1 %0 to i32 ; <i32> [#uses=1] + ret i32 %neg +} + +to: + +_bar: + cntlzw r2, r3 + slwi r2, r2, 26 + srawi r3, r2, 31 + blr + +it would be better to produce: + +_bar: + addic r3,r3,-1 + subfe r3,r3,r3 + blr + +===-------------------------------------------------------------------------=== + +We currently compile 32-bit bswap: + +declare i32 @llvm.bswap.i32(i32 %A) +define i32 @test(i32 %A) { + %B = call i32 @llvm.bswap.i32(i32 %A) + ret i32 %B +} + +to: + +_test: + rlwinm r2, r3, 24, 16, 23 + slwi r4, r3, 24 + rlwimi r2, r3, 8, 24, 31 + rlwimi r4, r3, 8, 8, 15 + rlwimi r4, r2, 0, 16, 31 + mr r3, r4 + blr + +it would be more efficient to produce: + +_foo: mr r0,r3 + rlwinm r3,r3,8,0xffffffff + rlwimi r3,r0,24,0,7 + rlwimi r3,r0,24,16,23 + blr + +===-------------------------------------------------------------------------=== + +test/CodeGen/PowerPC/2007-03-24-cntlzd.ll compiles to: + +__ZNK4llvm5APInt17countLeadingZerosEv: + ld r2, 0(r3) + cntlzd r2, r2 + or r2, r2, r2 <<-- silly. + addi r3, r2, -64 + blr + +The dead or is a 'truncate' from 64- to 32-bits. + +===-------------------------------------------------------------------------=== + +We generate horrible ppc code for this: + +#define N 2000000 +double a[N],c[N]; +void simpleloop() { + int j; + for (j=0; j<N; j++) + c[j] = a[j]; +} + +LBB1_1: ;bb + lfdx f0, r3, r4 + addi r5, r5, 1 ;; Extra IV for the exit value compare. + stfdx f0, r2, r4 + addi r4, r4, 8 + + xoris r6, r5, 30 ;; This is due to a large immediate. + cmplwi cr0, r6, 33920 + bne cr0, LBB1_1 + +//===---------------------------------------------------------------------===// + +This: + #include <algorithm> + inline std::pair<unsigned, bool> full_add(unsigned a, unsigned b) + { return std::make_pair(a + b, a + b < a); } + bool no_overflow(unsigned a, unsigned b) + { return !full_add(a, b).second; } + +Should compile to: + +__Z11no_overflowjj: + add r4,r3,r4 + subfc r3,r3,r4 + li r3,0 + adde r3,r3,r3 + blr + +(or better) not: + +__Z11no_overflowjj: + add r2, r4, r3 + cmplw cr7, r2, r3 + mfcr r2 + rlwinm r2, r2, 29, 31, 31 + xori r3, r2, 1 + blr + +//===---------------------------------------------------------------------===// + +We compile some FP comparisons into an mfcr with two rlwinms and an or. For +example: +#include <math.h> +int test(double x, double y) { return islessequal(x, y);} +int test2(double x, double y) { return islessgreater(x, y);} +int test3(double x, double y) { return !islessequal(x, y);} + +Compiles into (all three are similar, but the bits differ): + +_test: + fcmpu cr7, f1, f2 + mfcr r2 + rlwinm r3, r2, 29, 31, 31 + rlwinm r2, r2, 31, 31, 31 + or r3, r2, r3 + blr + +GCC compiles this into: + + _test: + fcmpu cr7,f1,f2 + cror 30,28,30 + mfcr r3 + rlwinm r3,r3,31,1 + blr + +which is more efficient and can use mfocr. See PR642 for some more context. + +//===---------------------------------------------------------------------===// + +void foo(float *data, float d) { + long i; + for (i = 0; i < 8000; i++) + data[i] = d; +} +void foo2(float *data, float d) { + long i; + data--; + for (i = 0; i < 8000; i++) { + data[1] = d; + data++; + } +} + +These compile to: + +_foo: + li r2, 0 +LBB1_1: ; bb + addi r4, r2, 4 + stfsx f1, r3, r2 + cmplwi cr0, r4, 32000 + mr r2, r4 + bne cr0, LBB1_1 ; bb + blr +_foo2: + li r2, 0 +LBB2_1: ; bb + addi r4, r2, 4 + stfsx f1, r3, r2 + cmplwi cr0, r4, 32000 + mr r2, r4 + bne cr0, LBB2_1 ; bb + blr + +The 'mr' could be eliminated to folding the add into the cmp better. + +//===---------------------------------------------------------------------===// +Codegen for the following (low-probability) case deteriorated considerably +when the correctness fixes for unordered comparisons went in (PR 642, 58871). +It should be possible to recover the code quality described in the comments. + +; RUN: llvm-as < %s | llc -march=ppc32 | grep or | count 3 +; This should produce one 'or' or 'cror' instruction per function. + +; RUN: llvm-as < %s | llc -march=ppc32 | grep mfcr | count 3 +; PR2964 + +define i32 @test(double %x, double %y) nounwind { +entry: + %tmp3 = fcmp ole double %x, %y ; <i1> [#uses=1] + %tmp345 = zext i1 %tmp3 to i32 ; <i32> [#uses=1] + ret i32 %tmp345 +} + +define i32 @test2(double %x, double %y) nounwind { +entry: + %tmp3 = fcmp one double %x, %y ; <i1> [#uses=1] + %tmp345 = zext i1 %tmp3 to i32 ; <i32> [#uses=1] + ret i32 %tmp345 +} + +define i32 @test3(double %x, double %y) nounwind { +entry: + %tmp3 = fcmp ugt double %x, %y ; <i1> [#uses=1] + %tmp34 = zext i1 %tmp3 to i32 ; <i32> [#uses=1] + ret i32 %tmp34 +} +//===----------------------------------------------------------------------===// +; RUN: llvm-as < %s | llc -march=ppc32 | not grep fneg + +; This could generate FSEL with appropriate flags (FSEL is not IEEE-safe, and +; should not be generated except with -enable-finite-only-fp-math or the like). +; With the correctness fixes for PR642 (58871) LowerSELECT_CC would need to +; recognize a more elaborate tree than a simple SETxx. + +define double @test_FNEG_sel(double %A, double %B, double %C) { + %D = fsub double -0.000000e+00, %A ; <double> [#uses=1] + %Cond = fcmp ugt double %D, -0.000000e+00 ; <i1> [#uses=1] + %E = select i1 %Cond, double %B, double %C ; <double> [#uses=1] + ret double %E +} + +//===----------------------------------------------------------------------===// +The save/restore sequence for CR in prolog/epilog is terrible: +- Each CR subreg is saved individually, rather than doing one save as a unit. +- On Darwin, the save is done after the decrement of SP, which means the offset +from SP of the save slot can be too big for a store instruction, which means we +need an additional register (currently hacked in 96015+96020; the solution there +is correct, but poor). +- On SVR4 the same thing can happen, and I don't think saving before the SP +decrement is safe on that target, as there is no red zone. This is currently +broken AFAIK, although it's not a target I can exercise. +The following demonstrates the problem: +extern void bar(char *p); +void foo() { + char x[100000]; + bar(x); + __asm__("" ::: "cr2"); +} |