summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp694
1 files changed, 694 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
new file mode 100644
index 0000000..b45ada9
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
@@ -0,0 +1,694 @@
+//===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the PowerPC implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCInstrInfo.h"
+#include "PPC.h"
+#include "PPCInstrBuilder.h"
+#include "PPCMachineFunctionInfo.h"
+#include "PPCTargetMachine.h"
+#include "PPCHazardRecognizers.h"
+#include "MCTargetDesc/PPCPredicates.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/ADT/STLExtras.h"
+
+#define GET_INSTRINFO_CTOR
+#include "PPCGenInstrInfo.inc"
+
+namespace llvm {
+extern cl::opt<bool> DisablePPC32RS;
+extern cl::opt<bool> DisablePPC64RS;
+}
+
+using namespace llvm;
+
+PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm)
+ : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP),
+ TM(tm), RI(*TM.getSubtargetImpl(), *this) {}
+
+/// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
+/// this target when scheduling the DAG.
+ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer(
+ const TargetMachine *TM,
+ const ScheduleDAG *DAG) const {
+ unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective();
+ if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2) {
+ const InstrItineraryData *II = TM->getInstrItineraryData();
+ return new PPCScoreboardHazardRecognizer(II, DAG);
+ }
+
+ return TargetInstrInfoImpl::CreateTargetHazardRecognizer(TM, DAG);
+}
+
+/// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer
+/// to use for this target when scheduling the DAG.
+ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer(
+ const InstrItineraryData *II,
+ const ScheduleDAG *DAG) const {
+ unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective();
+
+ // Most subtargets use a PPC970 recognizer.
+ if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2) {
+ const TargetInstrInfo *TII = TM.getInstrInfo();
+ assert(TII && "No InstrInfo?");
+
+ return new PPCHazardRecognizer970(*TII);
+ }
+
+ return new PPCScoreboardHazardRecognizer(II, DAG);
+}
+unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case PPC::LD:
+ case PPC::LWZ:
+ case PPC::LFS:
+ case PPC::LFD:
+ if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
+ MI->getOperand(2).isFI()) {
+ FrameIndex = MI->getOperand(2).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case PPC::STD:
+ case PPC::STW:
+ case PPC::STFS:
+ case PPC::STFD:
+ if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
+ MI->getOperand(2).isFI()) {
+ FrameIndex = MI->getOperand(2).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+// commuteInstruction - We can commute rlwimi instructions, but only if the
+// rotate amt is zero. We also have to munge the immediates a bit.
+MachineInstr *
+PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
+ MachineFunction &MF = *MI->getParent()->getParent();
+
+ // Normal instructions can be commuted the obvious way.
+ if (MI->getOpcode() != PPC::RLWIMI)
+ return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
+
+ // Cannot commute if it has a non-zero rotate count.
+ if (MI->getOperand(3).getImm() != 0)
+ return 0;
+
+ // If we have a zero rotate count, we have:
+ // M = mask(MB,ME)
+ // Op0 = (Op1 & ~M) | (Op2 & M)
+ // Change this to:
+ // M = mask((ME+1)&31, (MB-1)&31)
+ // Op0 = (Op2 & ~M) | (Op1 & M)
+
+ // Swap op1/op2
+ unsigned Reg0 = MI->getOperand(0).getReg();
+ unsigned Reg1 = MI->getOperand(1).getReg();
+ unsigned Reg2 = MI->getOperand(2).getReg();
+ bool Reg1IsKill = MI->getOperand(1).isKill();
+ bool Reg2IsKill = MI->getOperand(2).isKill();
+ bool ChangeReg0 = false;
+ // If machine instrs are no longer in two-address forms, update
+ // destination register as well.
+ if (Reg0 == Reg1) {
+ // Must be two address instruction!
+ assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) &&
+ "Expecting a two-address instruction!");
+ Reg2IsKill = false;
+ ChangeReg0 = true;
+ }
+
+ // Masks.
+ unsigned MB = MI->getOperand(4).getImm();
+ unsigned ME = MI->getOperand(5).getImm();
+
+ if (NewMI) {
+ // Create a new instruction.
+ unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
+ bool Reg0IsDead = MI->getOperand(0).isDead();
+ return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
+ .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
+ .addReg(Reg2, getKillRegState(Reg2IsKill))
+ .addReg(Reg1, getKillRegState(Reg1IsKill))
+ .addImm((ME+1) & 31)
+ .addImm((MB-1) & 31);
+ }
+
+ if (ChangeReg0)
+ MI->getOperand(0).setReg(Reg2);
+ MI->getOperand(2).setReg(Reg1);
+ MI->getOperand(1).setReg(Reg2);
+ MI->getOperand(2).setIsKill(Reg1IsKill);
+ MI->getOperand(1).setIsKill(Reg2IsKill);
+
+ // Swap the mask around.
+ MI->getOperand(4).setImm((ME+1) & 31);
+ MI->getOperand(5).setImm((MB-1) & 31);
+ return MI;
+}
+
+void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const {
+ DebugLoc DL;
+ BuildMI(MBB, MI, DL, get(PPC::NOP));
+}
+
+
+// Branch analysis.
+bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin())
+ return false;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return false;
+ --I;
+ }
+ if (!isUnpredicatedTerminator(I))
+ return false;
+
+ // Get the last instruction in the block.
+ MachineInstr *LastInst = I;
+
+ // If there is only one terminator instruction, process it.
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
+ if (LastInst->getOpcode() == PPC::B) {
+ if (!LastInst->getOperand(0).isMBB())
+ return true;
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ } else if (LastInst->getOpcode() == PPC::BCC) {
+ if (!LastInst->getOperand(2).isMBB())
+ return true;
+ // Block ends with fall-through condbranch.
+ TBB = LastInst->getOperand(2).getMBB();
+ Cond.push_back(LastInst->getOperand(0));
+ Cond.push_back(LastInst->getOperand(1));
+ return false;
+ }
+ // Otherwise, don't know what this is.
+ return true;
+ }
+
+ // Get the instruction before it if it's a terminator.
+ MachineInstr *SecondLastInst = I;
+
+ // If there are three terminators, we don't know what sort of block this is.
+ if (SecondLastInst && I != MBB.begin() &&
+ isUnpredicatedTerminator(--I))
+ return true;
+
+ // If the block ends with PPC::B and PPC:BCC, handle it.
+ if (SecondLastInst->getOpcode() == PPC::BCC &&
+ LastInst->getOpcode() == PPC::B) {
+ if (!SecondLastInst->getOperand(2).isMBB() ||
+ !LastInst->getOperand(0).isMBB())
+ return true;
+ TBB = SecondLastInst->getOperand(2).getMBB();
+ Cond.push_back(SecondLastInst->getOperand(0));
+ Cond.push_back(SecondLastInst->getOperand(1));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+
+ // If the block ends with two PPC:Bs, handle it. The second one is not
+ // executed, so remove it.
+ if (SecondLastInst->getOpcode() == PPC::B &&
+ LastInst->getOpcode() == PPC::B) {
+ if (!SecondLastInst->getOperand(0).isMBB())
+ return true;
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return false;
+ }
+
+ // Otherwise, can't handle this.
+ return true;
+}
+
+unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin()) return 0;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return 0;
+ --I;
+ }
+ if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC)
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin()) return 1;
+ --I;
+ if (I->getOpcode() != PPC::BCC)
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+unsigned
+PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond,
+ DebugLoc DL) const {
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 2 || Cond.size() == 0) &&
+ "PPC branch conditions have two components!");
+
+ // One-way branch.
+ if (FBB == 0) {
+ if (Cond.empty()) // Unconditional branch
+ BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB);
+ else // Conditional branch
+ BuildMI(&MBB, DL, get(PPC::BCC))
+ .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
+ return 1;
+ }
+
+ // Two-way Conditional Branch.
+ BuildMI(&MBB, DL, get(PPC::BCC))
+ .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
+ BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB);
+ return 2;
+}
+
+void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, DebugLoc DL,
+ unsigned DestReg, unsigned SrcReg,
+ bool KillSrc) const {
+ unsigned Opc;
+ if (PPC::GPRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::OR;
+ else if (PPC::G8RCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::OR8;
+ else if (PPC::F4RCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::FMR;
+ else if (PPC::CRRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::MCRF;
+ else if (PPC::VRRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::VOR;
+ else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg))
+ Opc = PPC::CROR;
+ else
+ llvm_unreachable("Impossible reg-to-reg copy");
+
+ const MCInstrDesc &MCID = get(Opc);
+ if (MCID.getNumOperands() == 3)
+ BuildMI(MBB, I, DL, MCID, DestReg)
+ .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc));
+ else
+ BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc));
+}
+
+// This function returns true if a CR spill is necessary and false otherwise.
+bool
+PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
+ unsigned SrcReg, bool isKill,
+ int FrameIdx,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const{
+ DebugLoc DL;
+ if (PPC::GPRCRegisterClass->hasSubClassEq(RC)) {
+ if (SrcReg != PPC::LR) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ } else {
+ // FIXME: this spills LR immediately to memory in one step. To do this,
+ // we use R11, which we know cannot be used in the prolog/epilog. This is
+ // a hack.
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR), PPC::R11));
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
+ .addReg(PPC::R11,
+ getKillRegState(isKill)),
+ FrameIdx));
+ }
+ } else if (PPC::G8RCRegisterClass->hasSubClassEq(RC)) {
+ if (SrcReg != PPC::LR8) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ } else {
+ // FIXME: this spills LR immediately to memory in one step. To do this,
+ // we use X11, which we know cannot be used in the prolog/epilog. This is
+ // a hack.
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR8), PPC::X11));
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
+ .addReg(PPC::X11,
+ getKillRegState(isKill)),
+ FrameIdx));
+ }
+ } else if (PPC::F8RCRegisterClass->hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ } else if (PPC::F4RCRegisterClass->hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ } else if (PPC::CRRCRegisterClass->hasSubClassEq(RC)) {
+ if ((!DisablePPC32RS && !TM.getSubtargetImpl()->isPPC64()) ||
+ (!DisablePPC64RS && TM.getSubtargetImpl()->isPPC64())) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ return true;
+ } else {
+ // FIXME: We need a scatch reg here. The trouble with using R0 is that
+ // it's possible for the stack frame to be so big the save location is
+ // out of range of immediate offsets, necessitating another register.
+ // We hack this on Darwin by reserving R2. It's probably broken on Linux
+ // at the moment.
+
+ bool is64Bit = TM.getSubtargetImpl()->isPPC64();
+ // We need to store the CR in the low 4-bits of the saved value. First,
+ // issue a MFCR to save all of the CRBits.
+ unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ?
+ (is64Bit ? PPC::X2 : PPC::R2) :
+ (is64Bit ? PPC::X0 : PPC::R0);
+ NewMIs.push_back(BuildMI(MF, DL, get(is64Bit ? PPC::MFCR8pseud :
+ PPC::MFCRpseud), ScratchReg)
+ .addReg(SrcReg, getKillRegState(isKill)));
+
+ // If the saved register wasn't CR0, shift the bits left so that they are
+ // in CR0's slot.
+ if (SrcReg != PPC::CR0) {
+ unsigned ShiftBits = getPPCRegisterNumbering(SrcReg)*4;
+ // rlwinm scratch, scratch, ShiftBits, 0, 31.
+ NewMIs.push_back(BuildMI(MF, DL, get(is64Bit ? PPC::RLWINM8 :
+ PPC::RLWINM), ScratchReg)
+ .addReg(ScratchReg).addImm(ShiftBits)
+ .addImm(0).addImm(31));
+ }
+
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(is64Bit ?
+ PPC::STW8 : PPC::STW))
+ .addReg(ScratchReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ }
+ } else if (PPC::CRBITRCRegisterClass->hasSubClassEq(RC)) {
+ // FIXME: We use CRi here because there is no mtcrf on a bit. Since the
+ // backend currently only uses CR1EQ as an individual bit, this should
+ // not cause any bug. If we need other uses of CR bits, the following
+ // code may be invalid.
+ unsigned Reg = 0;
+ if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT ||
+ SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN)
+ Reg = PPC::CR0;
+ else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT ||
+ SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN)
+ Reg = PPC::CR1;
+ else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT ||
+ SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN)
+ Reg = PPC::CR2;
+ else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT ||
+ SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN)
+ Reg = PPC::CR3;
+ else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT ||
+ SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN)
+ Reg = PPC::CR4;
+ else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT ||
+ SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN)
+ Reg = PPC::CR5;
+ else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT ||
+ SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN)
+ Reg = PPC::CR6;
+ else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT ||
+ SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN)
+ Reg = PPC::CR7;
+
+ return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx,
+ PPC::CRRCRegisterClass, NewMIs);
+
+ } else if (PPC::VRRCRegisterClass->hasSubClassEq(RC)) {
+ // We don't have indexed addressing for vector loads. Emit:
+ // R0 = ADDI FI#
+ // STVX VAL, 0, R0
+ //
+ // FIXME: We use R0 here, because it isn't available for RA.
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0),
+ FrameIdx, 0, 0));
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::STVX))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addReg(PPC::R0)
+ .addReg(PPC::R0));
+ } else {
+ llvm_unreachable("Unknown regclass!");
+ }
+
+ return false;
+}
+
+void
+PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction &MF = *MBB.getParent();
+ SmallVector<MachineInstr*, 4> NewMIs;
+
+ if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs)) {
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ FuncInfo->setSpillsCR();
+ }
+
+ for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
+ MBB.insert(MI, NewMIs[i]);
+
+ const MachineFrameInfo &MFI = *MF.getFrameInfo();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
+ MachineMemOperand::MOStore,
+ MFI.getObjectSize(FrameIdx),
+ MFI.getObjectAlignment(FrameIdx));
+ NewMIs.back()->addMemOperand(MF, MMO);
+}
+
+bool
+PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs)const{
+ if (PPC::GPRCRegisterClass->hasSubClassEq(RC)) {
+ if (DestReg != PPC::LR) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
+ DestReg), FrameIdx));
+ } else {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
+ PPC::R11), FrameIdx));
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR)).addReg(PPC::R11));
+ }
+ } else if (PPC::G8RCRegisterClass->hasSubClassEq(RC)) {
+ if (DestReg != PPC::LR8) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
+ FrameIdx));
+ } else {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD),
+ PPC::X11), FrameIdx));
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR8)).addReg(PPC::X11));
+ }
+ } else if (PPC::F8RCRegisterClass->hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
+ FrameIdx));
+ } else if (PPC::F4RCRegisterClass->hasSubClassEq(RC)) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
+ FrameIdx));
+ } else if (PPC::CRRCRegisterClass->hasSubClassEq(RC)) {
+ if ((!DisablePPC32RS && !TM.getSubtargetImpl()->isPPC64()) ||
+ (!DisablePPC64RS && TM.getSubtargetImpl()->isPPC64())) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL,
+ get(PPC::RESTORE_CR), DestReg)
+ , FrameIdx));
+ return true;
+ } else {
+ // FIXME: We need a scatch reg here. The trouble with using R0 is that
+ // it's possible for the stack frame to be so big the save location is
+ // out of range of immediate offsets, necessitating another register.
+ // We hack this on Darwin by reserving R2. It's probably broken on Linux
+ // at the moment.
+ unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ?
+ PPC::R2 : PPC::R0;
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
+ ScratchReg), FrameIdx));
+
+ // If the reloaded register isn't CR0, shift the bits right so that they are
+ // in the right CR's slot.
+ if (DestReg != PPC::CR0) {
+ unsigned ShiftBits = getPPCRegisterNumbering(DestReg)*4;
+ // rlwinm r11, r11, 32-ShiftBits, 0, 31.
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::RLWINM), ScratchReg)
+ .addReg(ScratchReg).addImm(32-ShiftBits).addImm(0)
+ .addImm(31));
+ }
+
+ NewMIs.push_back(BuildMI(MF, DL, get(TM.getSubtargetImpl()->isPPC64() ?
+ PPC::MTCRF8 : PPC::MTCRF), DestReg)
+ .addReg(ScratchReg));
+ }
+ } else if (PPC::CRBITRCRegisterClass->hasSubClassEq(RC)) {
+
+ unsigned Reg = 0;
+ if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT ||
+ DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN)
+ Reg = PPC::CR0;
+ else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT ||
+ DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN)
+ Reg = PPC::CR1;
+ else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT ||
+ DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN)
+ Reg = PPC::CR2;
+ else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT ||
+ DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN)
+ Reg = PPC::CR3;
+ else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT ||
+ DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN)
+ Reg = PPC::CR4;
+ else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT ||
+ DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN)
+ Reg = PPC::CR5;
+ else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT ||
+ DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN)
+ Reg = PPC::CR6;
+ else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT ||
+ DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN)
+ Reg = PPC::CR7;
+
+ return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx,
+ PPC::CRRCRegisterClass, NewMIs);
+
+ } else if (PPC::VRRCRegisterClass->hasSubClassEq(RC)) {
+ // We don't have indexed addressing for vector loads. Emit:
+ // R0 = ADDI FI#
+ // Dest = LVX 0, R0
+ //
+ // FIXME: We use R0 here, because it isn't available for RA.
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0),
+ FrameIdx, 0, 0));
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::LVX),DestReg).addReg(PPC::R0)
+ .addReg(PPC::R0));
+ } else {
+ llvm_unreachable("Unknown regclass!");
+ }
+
+ return false;
+}
+
+void
+PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction &MF = *MBB.getParent();
+ SmallVector<MachineInstr*, 4> NewMIs;
+ DebugLoc DL;
+ if (MI != MBB.end()) DL = MI->getDebugLoc();
+ if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs)) {
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ FuncInfo->setSpillsCR();
+ }
+ for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
+ MBB.insert(MI, NewMIs[i]);
+
+ const MachineFrameInfo &MFI = *MF.getFrameInfo();
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
+ MachineMemOperand::MOLoad,
+ MFI.getObjectSize(FrameIdx),
+ MFI.getObjectAlignment(FrameIdx));
+ NewMIs.back()->addMemOperand(MF, MMO);
+}
+
+MachineInstr*
+PPCInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
+ int FrameIx, uint64_t Offset,
+ const MDNode *MDPtr,
+ DebugLoc DL) const {
+ MachineInstrBuilder MIB = BuildMI(MF, DL, get(PPC::DBG_VALUE));
+ addFrameReference(MIB, FrameIx, 0, false).addImm(Offset).addMetadata(MDPtr);
+ return &*MIB;
+}
+
+bool PPCInstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
+ // Leave the CR# the same, but invert the condition.
+ Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
+ return false;
+}
+
+/// GetInstSize - Return the number of bytes of code the specified
+/// instruction may be. This returns the maximum number of bytes.
+///
+unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ case PPC::INLINEASM: { // Inline Asm: Variable size.
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const char *AsmStr = MI->getOperand(0).getSymbolName();
+ return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
+ }
+ case PPC::PROLOG_LABEL:
+ case PPC::EH_LABEL:
+ case PPC::GC_LABEL:
+ case PPC::DBG_VALUE:
+ return 0;
+ case PPC::BL8_NOP_ELF:
+ case PPC::BLA8_NOP_ELF:
+ return 8;
+ default:
+ return 4; // PowerPC instructions are all 4 bytes
+ }
+}
OpenPOWER on IntegriCloud