summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp798
1 files changed, 798 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
new file mode 100644
index 0000000..1b7a778
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp
@@ -0,0 +1,798 @@
+//===- PPCInstrInfo.cpp - PowerPC32 Instruction Information -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the PowerPC implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PPCInstrInfo.h"
+#include "PPCInstrBuilder.h"
+#include "PPCMachineFunctionInfo.h"
+#include "PPCPredicates.h"
+#include "PPCGenInstrInfo.inc"
+#include "PPCTargetMachine.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/MC/MCAsmInfo.h"
+
+namespace llvm {
+extern cl::opt<bool> EnablePPC32RS; // FIXME (64-bit): See PPCRegisterInfo.cpp.
+extern cl::opt<bool> EnablePPC64RS; // FIXME (64-bit): See PPCRegisterInfo.cpp.
+}
+
+using namespace llvm;
+
+PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm)
+ : TargetInstrInfoImpl(PPCInsts, array_lengthof(PPCInsts)), TM(tm),
+ RI(*TM.getSubtargetImpl(), *this) {}
+
+bool PPCInstrInfo::isMoveInstr(const MachineInstr& MI,
+ unsigned& sourceReg,
+ unsigned& destReg,
+ unsigned& sourceSubIdx,
+ unsigned& destSubIdx) const {
+ sourceSubIdx = destSubIdx = 0; // No sub-registers.
+
+ unsigned oc = MI.getOpcode();
+ if (oc == PPC::OR || oc == PPC::OR8 || oc == PPC::VOR ||
+ oc == PPC::OR4To8 || oc == PPC::OR8To4) { // or r1, r2, r2
+ assert(MI.getNumOperands() >= 3 &&
+ MI.getOperand(0).isReg() &&
+ MI.getOperand(1).isReg() &&
+ MI.getOperand(2).isReg() &&
+ "invalid PPC OR instruction!");
+ if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) {
+ sourceReg = MI.getOperand(1).getReg();
+ destReg = MI.getOperand(0).getReg();
+ return true;
+ }
+ } else if (oc == PPC::ADDI) { // addi r1, r2, 0
+ assert(MI.getNumOperands() >= 3 &&
+ MI.getOperand(0).isReg() &&
+ MI.getOperand(2).isImm() &&
+ "invalid PPC ADDI instruction!");
+ if (MI.getOperand(1).isReg() && MI.getOperand(2).getImm() == 0) {
+ sourceReg = MI.getOperand(1).getReg();
+ destReg = MI.getOperand(0).getReg();
+ return true;
+ }
+ } else if (oc == PPC::ORI) { // ori r1, r2, 0
+ assert(MI.getNumOperands() >= 3 &&
+ MI.getOperand(0).isReg() &&
+ MI.getOperand(1).isReg() &&
+ MI.getOperand(2).isImm() &&
+ "invalid PPC ORI instruction!");
+ if (MI.getOperand(2).getImm() == 0) {
+ sourceReg = MI.getOperand(1).getReg();
+ destReg = MI.getOperand(0).getReg();
+ return true;
+ }
+ } else if (oc == PPC::FMR || oc == PPC::FMRSD) { // fmr r1, r2
+ assert(MI.getNumOperands() >= 2 &&
+ MI.getOperand(0).isReg() &&
+ MI.getOperand(1).isReg() &&
+ "invalid PPC FMR instruction");
+ sourceReg = MI.getOperand(1).getReg();
+ destReg = MI.getOperand(0).getReg();
+ return true;
+ } else if (oc == PPC::MCRF) { // mcrf cr1, cr2
+ assert(MI.getNumOperands() >= 2 &&
+ MI.getOperand(0).isReg() &&
+ MI.getOperand(1).isReg() &&
+ "invalid PPC MCRF instruction");
+ sourceReg = MI.getOperand(1).getReg();
+ destReg = MI.getOperand(0).getReg();
+ return true;
+ }
+ return false;
+}
+
+unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case PPC::LD:
+ case PPC::LWZ:
+ case PPC::LFS:
+ case PPC::LFD:
+ if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
+ MI->getOperand(2).isFI()) {
+ FrameIndex = MI->getOperand(2).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case PPC::STD:
+ case PPC::STW:
+ case PPC::STFS:
+ case PPC::STFD:
+ if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() &&
+ MI->getOperand(2).isFI()) {
+ FrameIndex = MI->getOperand(2).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+// commuteInstruction - We can commute rlwimi instructions, but only if the
+// rotate amt is zero. We also have to munge the immediates a bit.
+MachineInstr *
+PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
+ MachineFunction &MF = *MI->getParent()->getParent();
+
+ // Normal instructions can be commuted the obvious way.
+ if (MI->getOpcode() != PPC::RLWIMI)
+ return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
+
+ // Cannot commute if it has a non-zero rotate count.
+ if (MI->getOperand(3).getImm() != 0)
+ return 0;
+
+ // If we have a zero rotate count, we have:
+ // M = mask(MB,ME)
+ // Op0 = (Op1 & ~M) | (Op2 & M)
+ // Change this to:
+ // M = mask((ME+1)&31, (MB-1)&31)
+ // Op0 = (Op2 & ~M) | (Op1 & M)
+
+ // Swap op1/op2
+ unsigned Reg0 = MI->getOperand(0).getReg();
+ unsigned Reg1 = MI->getOperand(1).getReg();
+ unsigned Reg2 = MI->getOperand(2).getReg();
+ bool Reg1IsKill = MI->getOperand(1).isKill();
+ bool Reg2IsKill = MI->getOperand(2).isKill();
+ bool ChangeReg0 = false;
+ // If machine instrs are no longer in two-address forms, update
+ // destination register as well.
+ if (Reg0 == Reg1) {
+ // Must be two address instruction!
+ assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
+ "Expecting a two-address instruction!");
+ Reg2IsKill = false;
+ ChangeReg0 = true;
+ }
+
+ // Masks.
+ unsigned MB = MI->getOperand(4).getImm();
+ unsigned ME = MI->getOperand(5).getImm();
+
+ if (NewMI) {
+ // Create a new instruction.
+ unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
+ bool Reg0IsDead = MI->getOperand(0).isDead();
+ return BuildMI(MF, MI->getDebugLoc(), MI->getDesc())
+ .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead))
+ .addReg(Reg2, getKillRegState(Reg2IsKill))
+ .addReg(Reg1, getKillRegState(Reg1IsKill))
+ .addImm((ME+1) & 31)
+ .addImm((MB-1) & 31);
+ }
+
+ if (ChangeReg0)
+ MI->getOperand(0).setReg(Reg2);
+ MI->getOperand(2).setReg(Reg1);
+ MI->getOperand(1).setReg(Reg2);
+ MI->getOperand(2).setIsKill(Reg1IsKill);
+ MI->getOperand(1).setIsKill(Reg2IsKill);
+
+ // Swap the mask around.
+ MI->getOperand(4).setImm((ME+1) & 31);
+ MI->getOperand(5).setImm((MB-1) & 31);
+ return MI;
+}
+
+void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const {
+ DebugLoc DL;
+ BuildMI(MBB, MI, DL, get(PPC::NOP));
+}
+
+
+// Branch analysis.
+bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin())
+ return false;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return false;
+ --I;
+ }
+ if (!isUnpredicatedTerminator(I))
+ return false;
+
+ // Get the last instruction in the block.
+ MachineInstr *LastInst = I;
+
+ // If there is only one terminator instruction, process it.
+ if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
+ if (LastInst->getOpcode() == PPC::B) {
+ if (!LastInst->getOperand(0).isMBB())
+ return true;
+ TBB = LastInst->getOperand(0).getMBB();
+ return false;
+ } else if (LastInst->getOpcode() == PPC::BCC) {
+ if (!LastInst->getOperand(2).isMBB())
+ return true;
+ // Block ends with fall-through condbranch.
+ TBB = LastInst->getOperand(2).getMBB();
+ Cond.push_back(LastInst->getOperand(0));
+ Cond.push_back(LastInst->getOperand(1));
+ return false;
+ }
+ // Otherwise, don't know what this is.
+ return true;
+ }
+
+ // Get the instruction before it if it's a terminator.
+ MachineInstr *SecondLastInst = I;
+
+ // If there are three terminators, we don't know what sort of block this is.
+ if (SecondLastInst && I != MBB.begin() &&
+ isUnpredicatedTerminator(--I))
+ return true;
+
+ // If the block ends with PPC::B and PPC:BCC, handle it.
+ if (SecondLastInst->getOpcode() == PPC::BCC &&
+ LastInst->getOpcode() == PPC::B) {
+ if (!SecondLastInst->getOperand(2).isMBB() ||
+ !LastInst->getOperand(0).isMBB())
+ return true;
+ TBB = SecondLastInst->getOperand(2).getMBB();
+ Cond.push_back(SecondLastInst->getOperand(0));
+ Cond.push_back(SecondLastInst->getOperand(1));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+
+ // If the block ends with two PPC:Bs, handle it. The second one is not
+ // executed, so remove it.
+ if (SecondLastInst->getOpcode() == PPC::B &&
+ LastInst->getOpcode() == PPC::B) {
+ if (!SecondLastInst->getOperand(0).isMBB())
+ return true;
+ TBB = SecondLastInst->getOperand(0).getMBB();
+ I = LastInst;
+ if (AllowModify)
+ I->eraseFromParent();
+ return false;
+ }
+
+ // Otherwise, can't handle this.
+ return true;
+}
+
+unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ MachineBasicBlock::iterator I = MBB.end();
+ if (I == MBB.begin()) return 0;
+ --I;
+ while (I->isDebugValue()) {
+ if (I == MBB.begin())
+ return 0;
+ --I;
+ }
+ if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC)
+ return 0;
+
+ // Remove the branch.
+ I->eraseFromParent();
+
+ I = MBB.end();
+
+ if (I == MBB.begin()) return 1;
+ --I;
+ if (I->getOpcode() != PPC::BCC)
+ return 1;
+
+ // Remove the branch.
+ I->eraseFromParent();
+ return 2;
+}
+
+unsigned
+PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
+ MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond) const {
+ // FIXME this should probably have a DebugLoc argument
+ DebugLoc dl;
+ // Shouldn't be a fall through.
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ assert((Cond.size() == 2 || Cond.size() == 0) &&
+ "PPC branch conditions have two components!");
+
+ // One-way branch.
+ if (FBB == 0) {
+ if (Cond.empty()) // Unconditional branch
+ BuildMI(&MBB, dl, get(PPC::B)).addMBB(TBB);
+ else // Conditional branch
+ BuildMI(&MBB, dl, get(PPC::BCC))
+ .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
+ return 1;
+ }
+
+ // Two-way Conditional Branch.
+ BuildMI(&MBB, dl, get(PPC::BCC))
+ .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB);
+ BuildMI(&MBB, dl, get(PPC::B)).addMBB(FBB);
+ return 2;
+}
+
+bool PPCInstrInfo::copyRegToReg(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, unsigned SrcReg,
+ const TargetRegisterClass *DestRC,
+ const TargetRegisterClass *SrcRC,
+ DebugLoc DL) const {
+ if (DestRC != SrcRC) {
+ // Not yet supported!
+ return false;
+ }
+
+ if (DestRC == PPC::GPRCRegisterClass) {
+ BuildMI(MBB, MI, DL, get(PPC::OR), DestReg).addReg(SrcReg).addReg(SrcReg);
+ } else if (DestRC == PPC::G8RCRegisterClass) {
+ BuildMI(MBB, MI, DL, get(PPC::OR8), DestReg).addReg(SrcReg).addReg(SrcReg);
+ } else if (DestRC == PPC::F4RCRegisterClass ||
+ DestRC == PPC::F8RCRegisterClass) {
+ BuildMI(MBB, MI, DL, get(PPC::FMR), DestReg).addReg(SrcReg);
+ } else if (DestRC == PPC::CRRCRegisterClass) {
+ BuildMI(MBB, MI, DL, get(PPC::MCRF), DestReg).addReg(SrcReg);
+ } else if (DestRC == PPC::VRRCRegisterClass) {
+ BuildMI(MBB, MI, DL, get(PPC::VOR), DestReg).addReg(SrcReg).addReg(SrcReg);
+ } else if (DestRC == PPC::CRBITRCRegisterClass) {
+ BuildMI(MBB, MI, DL, get(PPC::CROR), DestReg).addReg(SrcReg).addReg(SrcReg);
+ } else {
+ // Attempt to copy register that is not GPR or FPR
+ return false;
+ }
+
+ return true;
+}
+
+bool
+PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF,
+ unsigned SrcReg, bool isKill,
+ int FrameIdx,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs) const{
+ DebugLoc DL;
+ if (RC == PPC::GPRCRegisterClass) {
+ if (SrcReg != PPC::LR) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ } else {
+ // FIXME: this spills LR immediately to memory in one step. To do this,
+ // we use R11, which we know cannot be used in the prolog/epilog. This is
+ // a hack.
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR), PPC::R11));
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
+ .addReg(PPC::R11,
+ getKillRegState(isKill)),
+ FrameIdx));
+ }
+ } else if (RC == PPC::G8RCRegisterClass) {
+ if (SrcReg != PPC::LR8) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ } else {
+ // FIXME: this spills LR immediately to memory in one step. To do this,
+ // we use R11, which we know cannot be used in the prolog/epilog. This is
+ // a hack.
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR8), PPC::X11));
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD))
+ .addReg(PPC::X11,
+ getKillRegState(isKill)),
+ FrameIdx));
+ }
+ } else if (RC == PPC::F8RCRegisterClass) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ } else if (RC == PPC::F4RCRegisterClass) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ } else if (RC == PPC::CRRCRegisterClass) {
+ if ((EnablePPC32RS && !TM.getSubtargetImpl()->isPPC64()) ||
+ (EnablePPC64RS && TM.getSubtargetImpl()->isPPC64())) {
+ // FIXME (64-bit): Enable
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR))
+ .addReg(SrcReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ return true;
+ } else {
+ // FIXME: We need a scatch reg here. The trouble with using R0 is that
+ // it's possible for the stack frame to be so big the save location is
+ // out of range of immediate offsets, necessitating another register.
+ // We hack this on Darwin by reserving R2. It's probably broken on Linux
+ // at the moment.
+
+ // We need to store the CR in the low 4-bits of the saved value. First,
+ // issue a MFCR to save all of the CRBits.
+ unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ?
+ PPC::R2 : PPC::R0;
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFCRpseud), ScratchReg)
+ .addReg(SrcReg, getKillRegState(isKill)));
+
+ // If the saved register wasn't CR0, shift the bits left so that they are
+ // in CR0's slot.
+ if (SrcReg != PPC::CR0) {
+ unsigned ShiftBits = PPCRegisterInfo::getRegisterNumbering(SrcReg)*4;
+ // rlwinm scratch, scratch, ShiftBits, 0, 31.
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::RLWINM), ScratchReg)
+ .addReg(ScratchReg).addImm(ShiftBits)
+ .addImm(0).addImm(31));
+ }
+
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW))
+ .addReg(ScratchReg,
+ getKillRegState(isKill)),
+ FrameIdx));
+ }
+ } else if (RC == PPC::CRBITRCRegisterClass) {
+ // FIXME: We use CRi here because there is no mtcrf on a bit. Since the
+ // backend currently only uses CR1EQ as an individual bit, this should
+ // not cause any bug. If we need other uses of CR bits, the following
+ // code may be invalid.
+ unsigned Reg = 0;
+ if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT ||
+ SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN)
+ Reg = PPC::CR0;
+ else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT ||
+ SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN)
+ Reg = PPC::CR1;
+ else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT ||
+ SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN)
+ Reg = PPC::CR2;
+ else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT ||
+ SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN)
+ Reg = PPC::CR3;
+ else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT ||
+ SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN)
+ Reg = PPC::CR4;
+ else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT ||
+ SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN)
+ Reg = PPC::CR5;
+ else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT ||
+ SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN)
+ Reg = PPC::CR6;
+ else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT ||
+ SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN)
+ Reg = PPC::CR7;
+
+ return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx,
+ PPC::CRRCRegisterClass, NewMIs);
+
+ } else if (RC == PPC::VRRCRegisterClass) {
+ // We don't have indexed addressing for vector loads. Emit:
+ // R0 = ADDI FI#
+ // STVX VAL, 0, R0
+ //
+ // FIXME: We use R0 here, because it isn't available for RA.
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0),
+ FrameIdx, 0, 0));
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::STVX))
+ .addReg(SrcReg, getKillRegState(isKill))
+ .addReg(PPC::R0)
+ .addReg(PPC::R0));
+ } else {
+ llvm_unreachable("Unknown regclass!");
+ }
+
+ return false;
+}
+
+void
+PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned SrcReg, bool isKill, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction &MF = *MBB.getParent();
+ SmallVector<MachineInstr*, 4> NewMIs;
+
+ if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs)) {
+ PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
+ FuncInfo->setSpillsCR();
+ }
+
+ for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
+ MBB.insert(MI, NewMIs[i]);
+}
+
+void
+PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ SmallVectorImpl<MachineInstr*> &NewMIs)const{
+ if (RC == PPC::GPRCRegisterClass) {
+ if (DestReg != PPC::LR) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
+ DestReg), FrameIdx));
+ } else {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
+ PPC::R11), FrameIdx));
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR)).addReg(PPC::R11));
+ }
+ } else if (RC == PPC::G8RCRegisterClass) {
+ if (DestReg != PPC::LR8) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg),
+ FrameIdx));
+ } else {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD),
+ PPC::R11), FrameIdx));
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR8)).addReg(PPC::R11));
+ }
+ } else if (RC == PPC::F8RCRegisterClass) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg),
+ FrameIdx));
+ } else if (RC == PPC::F4RCRegisterClass) {
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg),
+ FrameIdx));
+ } else if (RC == PPC::CRRCRegisterClass) {
+ // FIXME: We need a scatch reg here. The trouble with using R0 is that
+ // it's possible for the stack frame to be so big the save location is
+ // out of range of immediate offsets, necessitating another register.
+ // We hack this on Darwin by reserving R2. It's probably broken on Linux
+ // at the moment.
+ unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ?
+ PPC::R2 : PPC::R0;
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ),
+ ScratchReg), FrameIdx));
+
+ // If the reloaded register isn't CR0, shift the bits right so that they are
+ // in the right CR's slot.
+ if (DestReg != PPC::CR0) {
+ unsigned ShiftBits = PPCRegisterInfo::getRegisterNumbering(DestReg)*4;
+ // rlwinm r11, r11, 32-ShiftBits, 0, 31.
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::RLWINM), ScratchReg)
+ .addReg(ScratchReg).addImm(32-ShiftBits).addImm(0)
+ .addImm(31));
+ }
+
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTCRF), DestReg)
+ .addReg(ScratchReg));
+ } else if (RC == PPC::CRBITRCRegisterClass) {
+
+ unsigned Reg = 0;
+ if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT ||
+ DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN)
+ Reg = PPC::CR0;
+ else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT ||
+ DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN)
+ Reg = PPC::CR1;
+ else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT ||
+ DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN)
+ Reg = PPC::CR2;
+ else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT ||
+ DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN)
+ Reg = PPC::CR3;
+ else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT ||
+ DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN)
+ Reg = PPC::CR4;
+ else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT ||
+ DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN)
+ Reg = PPC::CR5;
+ else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT ||
+ DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN)
+ Reg = PPC::CR6;
+ else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT ||
+ DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN)
+ Reg = PPC::CR7;
+
+ return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx,
+ PPC::CRRCRegisterClass, NewMIs);
+
+ } else if (RC == PPC::VRRCRegisterClass) {
+ // We don't have indexed addressing for vector loads. Emit:
+ // R0 = ADDI FI#
+ // Dest = LVX 0, R0
+ //
+ // FIXME: We use R0 here, because it isn't available for RA.
+ NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0),
+ FrameIdx, 0, 0));
+ NewMIs.push_back(BuildMI(MF, DL, get(PPC::LVX),DestReg).addReg(PPC::R0)
+ .addReg(PPC::R0));
+ } else {
+ llvm_unreachable("Unknown regclass!");
+ }
+}
+
+void
+PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI,
+ unsigned DestReg, int FrameIdx,
+ const TargetRegisterClass *RC,
+ const TargetRegisterInfo *TRI) const {
+ MachineFunction &MF = *MBB.getParent();
+ SmallVector<MachineInstr*, 4> NewMIs;
+ DebugLoc DL;
+ if (MI != MBB.end()) DL = MI->getDebugLoc();
+ LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs);
+ for (unsigned i = 0, e = NewMIs.size(); i != e; ++i)
+ MBB.insert(MI, NewMIs[i]);
+}
+
+MachineInstr*
+PPCInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
+ int FrameIx, uint64_t Offset,
+ const MDNode *MDPtr,
+ DebugLoc DL) const {
+ MachineInstrBuilder MIB = BuildMI(MF, DL, get(PPC::DBG_VALUE));
+ addFrameReference(MIB, FrameIx, 0, false).addImm(Offset).addMetadata(MDPtr);
+ return &*MIB;
+}
+
+/// foldMemoryOperand - PowerPC (like most RISC's) can only fold spills into
+/// copy instructions, turning them into load/store instructions.
+MachineInstr *PPCInstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
+ MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops,
+ int FrameIndex) const {
+ if (Ops.size() != 1) return NULL;
+
+ // Make sure this is a reg-reg copy. Note that we can't handle MCRF, because
+ // it takes more than one instruction to store it.
+ unsigned Opc = MI->getOpcode();
+ unsigned OpNum = Ops[0];
+
+ MachineInstr *NewMI = NULL;
+ if ((Opc == PPC::OR &&
+ MI->getOperand(1).getReg() == MI->getOperand(2).getReg())) {
+ if (OpNum == 0) { // move -> store
+ unsigned InReg = MI->getOperand(1).getReg();
+ bool isKill = MI->getOperand(1).isKill();
+ bool isUndef = MI->getOperand(1).isUndef();
+ NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::STW))
+ .addReg(InReg,
+ getKillRegState(isKill) |
+ getUndefRegState(isUndef)),
+ FrameIndex);
+ } else { // move -> load
+ unsigned OutReg = MI->getOperand(0).getReg();
+ bool isDead = MI->getOperand(0).isDead();
+ bool isUndef = MI->getOperand(0).isUndef();
+ NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::LWZ))
+ .addReg(OutReg,
+ RegState::Define |
+ getDeadRegState(isDead) |
+ getUndefRegState(isUndef)),
+ FrameIndex);
+ }
+ } else if ((Opc == PPC::OR8 &&
+ MI->getOperand(1).getReg() == MI->getOperand(2).getReg())) {
+ if (OpNum == 0) { // move -> store
+ unsigned InReg = MI->getOperand(1).getReg();
+ bool isKill = MI->getOperand(1).isKill();
+ bool isUndef = MI->getOperand(1).isUndef();
+ NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::STD))
+ .addReg(InReg,
+ getKillRegState(isKill) |
+ getUndefRegState(isUndef)),
+ FrameIndex);
+ } else { // move -> load
+ unsigned OutReg = MI->getOperand(0).getReg();
+ bool isDead = MI->getOperand(0).isDead();
+ bool isUndef = MI->getOperand(0).isUndef();
+ NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::LD))
+ .addReg(OutReg,
+ RegState::Define |
+ getDeadRegState(isDead) |
+ getUndefRegState(isUndef)),
+ FrameIndex);
+ }
+ } else if (Opc == PPC::FMR || Opc == PPC::FMRSD) {
+ // The register may be F4RC or F8RC, and that determines the memory op.
+ unsigned OrigReg = MI->getOperand(OpNum).getReg();
+ // We cannot tell the register class from a physreg alone.
+ if (TargetRegisterInfo::isPhysicalRegister(OrigReg))
+ return NULL;
+ const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(OrigReg);
+ const bool is64 = RC == PPC::F8RCRegisterClass;
+
+ if (OpNum == 0) { // move -> store
+ unsigned InReg = MI->getOperand(1).getReg();
+ bool isKill = MI->getOperand(1).isKill();
+ bool isUndef = MI->getOperand(1).isUndef();
+ NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(),
+ get(is64 ? PPC::STFD : PPC::STFS))
+ .addReg(InReg,
+ getKillRegState(isKill) |
+ getUndefRegState(isUndef)),
+ FrameIndex);
+ } else { // move -> load
+ unsigned OutReg = MI->getOperand(0).getReg();
+ bool isDead = MI->getOperand(0).isDead();
+ bool isUndef = MI->getOperand(0).isUndef();
+ NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(),
+ get(is64 ? PPC::LFD : PPC::LFS))
+ .addReg(OutReg,
+ RegState::Define |
+ getDeadRegState(isDead) |
+ getUndefRegState(isUndef)),
+ FrameIndex);
+ }
+ }
+
+ return NewMI;
+}
+
+bool PPCInstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
+ const SmallVectorImpl<unsigned> &Ops) const {
+ if (Ops.size() != 1) return false;
+
+ // Make sure this is a reg-reg copy. Note that we can't handle MCRF, because
+ // it takes more than one instruction to store it.
+ unsigned Opc = MI->getOpcode();
+
+ if ((Opc == PPC::OR &&
+ MI->getOperand(1).getReg() == MI->getOperand(2).getReg()))
+ return true;
+ else if ((Opc == PPC::OR8 &&
+ MI->getOperand(1).getReg() == MI->getOperand(2).getReg()))
+ return true;
+ else if (Opc == PPC::FMR || Opc == PPC::FMRSD)
+ return true;
+
+ return false;
+}
+
+
+bool PPCInstrInfo::
+ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
+ assert(Cond.size() == 2 && "Invalid PPC branch opcode!");
+ // Leave the CR# the same, but invert the condition.
+ Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm()));
+ return false;
+}
+
+/// GetInstSize - Return the number of bytes of code the specified
+/// instruction may be. This returns the maximum number of bytes.
+///
+unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ case PPC::INLINEASM: { // Inline Asm: Variable size.
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const char *AsmStr = MI->getOperand(0).getSymbolName();
+ return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo());
+ }
+ case PPC::DBG_LABEL:
+ case PPC::EH_LABEL:
+ case PPC::GC_LABEL:
+ case PPC::DBG_VALUE:
+ return 0;
+ default:
+ return 4; // PowerPC instructions are all 4 bytes
+ }
+}
OpenPOWER on IntegriCloud