diff options
Diffstat (limited to 'contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp | 798 |
1 files changed, 798 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp new file mode 100644 index 0000000..1b7a778 --- /dev/null +++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrInfo.cpp @@ -0,0 +1,798 @@ +//===- PPCInstrInfo.cpp - PowerPC32 Instruction Information -----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the PowerPC implementation of the TargetInstrInfo class. +// +//===----------------------------------------------------------------------===// + +#include "PPCInstrInfo.h" +#include "PPCInstrBuilder.h" +#include "PPCMachineFunctionInfo.h" +#include "PPCPredicates.h" +#include "PPCGenInstrInfo.inc" +#include "PPCTargetMachine.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/MC/MCAsmInfo.h" + +namespace llvm { +extern cl::opt<bool> EnablePPC32RS; // FIXME (64-bit): See PPCRegisterInfo.cpp. +extern cl::opt<bool> EnablePPC64RS; // FIXME (64-bit): See PPCRegisterInfo.cpp. +} + +using namespace llvm; + +PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm) + : TargetInstrInfoImpl(PPCInsts, array_lengthof(PPCInsts)), TM(tm), + RI(*TM.getSubtargetImpl(), *this) {} + +bool PPCInstrInfo::isMoveInstr(const MachineInstr& MI, + unsigned& sourceReg, + unsigned& destReg, + unsigned& sourceSubIdx, + unsigned& destSubIdx) const { + sourceSubIdx = destSubIdx = 0; // No sub-registers. + + unsigned oc = MI.getOpcode(); + if (oc == PPC::OR || oc == PPC::OR8 || oc == PPC::VOR || + oc == PPC::OR4To8 || oc == PPC::OR8To4) { // or r1, r2, r2 + assert(MI.getNumOperands() >= 3 && + MI.getOperand(0).isReg() && + MI.getOperand(1).isReg() && + MI.getOperand(2).isReg() && + "invalid PPC OR instruction!"); + if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) { + sourceReg = MI.getOperand(1).getReg(); + destReg = MI.getOperand(0).getReg(); + return true; + } + } else if (oc == PPC::ADDI) { // addi r1, r2, 0 + assert(MI.getNumOperands() >= 3 && + MI.getOperand(0).isReg() && + MI.getOperand(2).isImm() && + "invalid PPC ADDI instruction!"); + if (MI.getOperand(1).isReg() && MI.getOperand(2).getImm() == 0) { + sourceReg = MI.getOperand(1).getReg(); + destReg = MI.getOperand(0).getReg(); + return true; + } + } else if (oc == PPC::ORI) { // ori r1, r2, 0 + assert(MI.getNumOperands() >= 3 && + MI.getOperand(0).isReg() && + MI.getOperand(1).isReg() && + MI.getOperand(2).isImm() && + "invalid PPC ORI instruction!"); + if (MI.getOperand(2).getImm() == 0) { + sourceReg = MI.getOperand(1).getReg(); + destReg = MI.getOperand(0).getReg(); + return true; + } + } else if (oc == PPC::FMR || oc == PPC::FMRSD) { // fmr r1, r2 + assert(MI.getNumOperands() >= 2 && + MI.getOperand(0).isReg() && + MI.getOperand(1).isReg() && + "invalid PPC FMR instruction"); + sourceReg = MI.getOperand(1).getReg(); + destReg = MI.getOperand(0).getReg(); + return true; + } else if (oc == PPC::MCRF) { // mcrf cr1, cr2 + assert(MI.getNumOperands() >= 2 && + MI.getOperand(0).isReg() && + MI.getOperand(1).isReg() && + "invalid PPC MCRF instruction"); + sourceReg = MI.getOperand(1).getReg(); + destReg = MI.getOperand(0).getReg(); + return true; + } + return false; +} + +unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, + int &FrameIndex) const { + switch (MI->getOpcode()) { + default: break; + case PPC::LD: + case PPC::LWZ: + case PPC::LFS: + case PPC::LFD: + if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && + MI->getOperand(2).isFI()) { + FrameIndex = MI->getOperand(2).getIndex(); + return MI->getOperand(0).getReg(); + } + break; + } + return 0; +} + +unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, + int &FrameIndex) const { + switch (MI->getOpcode()) { + default: break; + case PPC::STD: + case PPC::STW: + case PPC::STFS: + case PPC::STFD: + if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && + MI->getOperand(2).isFI()) { + FrameIndex = MI->getOperand(2).getIndex(); + return MI->getOperand(0).getReg(); + } + break; + } + return 0; +} + +// commuteInstruction - We can commute rlwimi instructions, but only if the +// rotate amt is zero. We also have to munge the immediates a bit. +MachineInstr * +PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { + MachineFunction &MF = *MI->getParent()->getParent(); + + // Normal instructions can be commuted the obvious way. + if (MI->getOpcode() != PPC::RLWIMI) + return TargetInstrInfoImpl::commuteInstruction(MI, NewMI); + + // Cannot commute if it has a non-zero rotate count. + if (MI->getOperand(3).getImm() != 0) + return 0; + + // If we have a zero rotate count, we have: + // M = mask(MB,ME) + // Op0 = (Op1 & ~M) | (Op2 & M) + // Change this to: + // M = mask((ME+1)&31, (MB-1)&31) + // Op0 = (Op2 & ~M) | (Op1 & M) + + // Swap op1/op2 + unsigned Reg0 = MI->getOperand(0).getReg(); + unsigned Reg1 = MI->getOperand(1).getReg(); + unsigned Reg2 = MI->getOperand(2).getReg(); + bool Reg1IsKill = MI->getOperand(1).isKill(); + bool Reg2IsKill = MI->getOperand(2).isKill(); + bool ChangeReg0 = false; + // If machine instrs are no longer in two-address forms, update + // destination register as well. + if (Reg0 == Reg1) { + // Must be two address instruction! + assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) && + "Expecting a two-address instruction!"); + Reg2IsKill = false; + ChangeReg0 = true; + } + + // Masks. + unsigned MB = MI->getOperand(4).getImm(); + unsigned ME = MI->getOperand(5).getImm(); + + if (NewMI) { + // Create a new instruction. + unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); + bool Reg0IsDead = MI->getOperand(0).isDead(); + return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) + .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) + .addReg(Reg2, getKillRegState(Reg2IsKill)) + .addReg(Reg1, getKillRegState(Reg1IsKill)) + .addImm((ME+1) & 31) + .addImm((MB-1) & 31); + } + + if (ChangeReg0) + MI->getOperand(0).setReg(Reg2); + MI->getOperand(2).setReg(Reg1); + MI->getOperand(1).setReg(Reg2); + MI->getOperand(2).setIsKill(Reg1IsKill); + MI->getOperand(1).setIsKill(Reg2IsKill); + + // Swap the mask around. + MI->getOperand(4).setImm((ME+1) & 31); + MI->getOperand(5).setImm((MB-1) & 31); + return MI; +} + +void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI) const { + DebugLoc DL; + BuildMI(MBB, MI, DL, get(PPC::NOP)); +} + + +// Branch analysis. +bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, + MachineBasicBlock *&FBB, + SmallVectorImpl<MachineOperand> &Cond, + bool AllowModify) const { + // If the block has no terminators, it just falls into the block after it. + MachineBasicBlock::iterator I = MBB.end(); + if (I == MBB.begin()) + return false; + --I; + while (I->isDebugValue()) { + if (I == MBB.begin()) + return false; + --I; + } + if (!isUnpredicatedTerminator(I)) + return false; + + // Get the last instruction in the block. + MachineInstr *LastInst = I; + + // If there is only one terminator instruction, process it. + if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { + if (LastInst->getOpcode() == PPC::B) { + if (!LastInst->getOperand(0).isMBB()) + return true; + TBB = LastInst->getOperand(0).getMBB(); + return false; + } else if (LastInst->getOpcode() == PPC::BCC) { + if (!LastInst->getOperand(2).isMBB()) + return true; + // Block ends with fall-through condbranch. + TBB = LastInst->getOperand(2).getMBB(); + Cond.push_back(LastInst->getOperand(0)); + Cond.push_back(LastInst->getOperand(1)); + return false; + } + // Otherwise, don't know what this is. + return true; + } + + // Get the instruction before it if it's a terminator. + MachineInstr *SecondLastInst = I; + + // If there are three terminators, we don't know what sort of block this is. + if (SecondLastInst && I != MBB.begin() && + isUnpredicatedTerminator(--I)) + return true; + + // If the block ends with PPC::B and PPC:BCC, handle it. + if (SecondLastInst->getOpcode() == PPC::BCC && + LastInst->getOpcode() == PPC::B) { + if (!SecondLastInst->getOperand(2).isMBB() || + !LastInst->getOperand(0).isMBB()) + return true; + TBB = SecondLastInst->getOperand(2).getMBB(); + Cond.push_back(SecondLastInst->getOperand(0)); + Cond.push_back(SecondLastInst->getOperand(1)); + FBB = LastInst->getOperand(0).getMBB(); + return false; + } + + // If the block ends with two PPC:Bs, handle it. The second one is not + // executed, so remove it. + if (SecondLastInst->getOpcode() == PPC::B && + LastInst->getOpcode() == PPC::B) { + if (!SecondLastInst->getOperand(0).isMBB()) + return true; + TBB = SecondLastInst->getOperand(0).getMBB(); + I = LastInst; + if (AllowModify) + I->eraseFromParent(); + return false; + } + + // Otherwise, can't handle this. + return true; +} + +unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { + MachineBasicBlock::iterator I = MBB.end(); + if (I == MBB.begin()) return 0; + --I; + while (I->isDebugValue()) { + if (I == MBB.begin()) + return 0; + --I; + } + if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC) + return 0; + + // Remove the branch. + I->eraseFromParent(); + + I = MBB.end(); + + if (I == MBB.begin()) return 1; + --I; + if (I->getOpcode() != PPC::BCC) + return 1; + + // Remove the branch. + I->eraseFromParent(); + return 2; +} + +unsigned +PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + const SmallVectorImpl<MachineOperand> &Cond) const { + // FIXME this should probably have a DebugLoc argument + DebugLoc dl; + // Shouldn't be a fall through. + assert(TBB && "InsertBranch must not be told to insert a fallthrough"); + assert((Cond.size() == 2 || Cond.size() == 0) && + "PPC branch conditions have two components!"); + + // One-way branch. + if (FBB == 0) { + if (Cond.empty()) // Unconditional branch + BuildMI(&MBB, dl, get(PPC::B)).addMBB(TBB); + else // Conditional branch + BuildMI(&MBB, dl, get(PPC::BCC)) + .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); + return 1; + } + + // Two-way Conditional Branch. + BuildMI(&MBB, dl, get(PPC::BCC)) + .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); + BuildMI(&MBB, dl, get(PPC::B)).addMBB(FBB); + return 2; +} + +bool PPCInstrInfo::copyRegToReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned DestReg, unsigned SrcReg, + const TargetRegisterClass *DestRC, + const TargetRegisterClass *SrcRC, + DebugLoc DL) const { + if (DestRC != SrcRC) { + // Not yet supported! + return false; + } + + if (DestRC == PPC::GPRCRegisterClass) { + BuildMI(MBB, MI, DL, get(PPC::OR), DestReg).addReg(SrcReg).addReg(SrcReg); + } else if (DestRC == PPC::G8RCRegisterClass) { + BuildMI(MBB, MI, DL, get(PPC::OR8), DestReg).addReg(SrcReg).addReg(SrcReg); + } else if (DestRC == PPC::F4RCRegisterClass || + DestRC == PPC::F8RCRegisterClass) { + BuildMI(MBB, MI, DL, get(PPC::FMR), DestReg).addReg(SrcReg); + } else if (DestRC == PPC::CRRCRegisterClass) { + BuildMI(MBB, MI, DL, get(PPC::MCRF), DestReg).addReg(SrcReg); + } else if (DestRC == PPC::VRRCRegisterClass) { + BuildMI(MBB, MI, DL, get(PPC::VOR), DestReg).addReg(SrcReg).addReg(SrcReg); + } else if (DestRC == PPC::CRBITRCRegisterClass) { + BuildMI(MBB, MI, DL, get(PPC::CROR), DestReg).addReg(SrcReg).addReg(SrcReg); + } else { + // Attempt to copy register that is not GPR or FPR + return false; + } + + return true; +} + +bool +PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, + unsigned SrcReg, bool isKill, + int FrameIdx, + const TargetRegisterClass *RC, + SmallVectorImpl<MachineInstr*> &NewMIs) const{ + DebugLoc DL; + if (RC == PPC::GPRCRegisterClass) { + if (SrcReg != PPC::LR) { + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) + .addReg(SrcReg, + getKillRegState(isKill)), + FrameIdx)); + } else { + // FIXME: this spills LR immediately to memory in one step. To do this, + // we use R11, which we know cannot be used in the prolog/epilog. This is + // a hack. + NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR), PPC::R11)); + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) + .addReg(PPC::R11, + getKillRegState(isKill)), + FrameIdx)); + } + } else if (RC == PPC::G8RCRegisterClass) { + if (SrcReg != PPC::LR8) { + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) + .addReg(SrcReg, + getKillRegState(isKill)), + FrameIdx)); + } else { + // FIXME: this spills LR immediately to memory in one step. To do this, + // we use R11, which we know cannot be used in the prolog/epilog. This is + // a hack. + NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR8), PPC::X11)); + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) + .addReg(PPC::X11, + getKillRegState(isKill)), + FrameIdx)); + } + } else if (RC == PPC::F8RCRegisterClass) { + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) + .addReg(SrcReg, + getKillRegState(isKill)), + FrameIdx)); + } else if (RC == PPC::F4RCRegisterClass) { + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) + .addReg(SrcReg, + getKillRegState(isKill)), + FrameIdx)); + } else if (RC == PPC::CRRCRegisterClass) { + if ((EnablePPC32RS && !TM.getSubtargetImpl()->isPPC64()) || + (EnablePPC64RS && TM.getSubtargetImpl()->isPPC64())) { + // FIXME (64-bit): Enable + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) + .addReg(SrcReg, + getKillRegState(isKill)), + FrameIdx)); + return true; + } else { + // FIXME: We need a scatch reg here. The trouble with using R0 is that + // it's possible for the stack frame to be so big the save location is + // out of range of immediate offsets, necessitating another register. + // We hack this on Darwin by reserving R2. It's probably broken on Linux + // at the moment. + + // We need to store the CR in the low 4-bits of the saved value. First, + // issue a MFCR to save all of the CRBits. + unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ? + PPC::R2 : PPC::R0; + NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFCRpseud), ScratchReg) + .addReg(SrcReg, getKillRegState(isKill))); + + // If the saved register wasn't CR0, shift the bits left so that they are + // in CR0's slot. + if (SrcReg != PPC::CR0) { + unsigned ShiftBits = PPCRegisterInfo::getRegisterNumbering(SrcReg)*4; + // rlwinm scratch, scratch, ShiftBits, 0, 31. + NewMIs.push_back(BuildMI(MF, DL, get(PPC::RLWINM), ScratchReg) + .addReg(ScratchReg).addImm(ShiftBits) + .addImm(0).addImm(31)); + } + + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) + .addReg(ScratchReg, + getKillRegState(isKill)), + FrameIdx)); + } + } else if (RC == PPC::CRBITRCRegisterClass) { + // FIXME: We use CRi here because there is no mtcrf on a bit. Since the + // backend currently only uses CR1EQ as an individual bit, this should + // not cause any bug. If we need other uses of CR bits, the following + // code may be invalid. + unsigned Reg = 0; + if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT || + SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN) + Reg = PPC::CR0; + else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT || + SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN) + Reg = PPC::CR1; + else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT || + SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN) + Reg = PPC::CR2; + else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT || + SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN) + Reg = PPC::CR3; + else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT || + SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN) + Reg = PPC::CR4; + else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT || + SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN) + Reg = PPC::CR5; + else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT || + SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN) + Reg = PPC::CR6; + else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT || + SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN) + Reg = PPC::CR7; + + return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx, + PPC::CRRCRegisterClass, NewMIs); + + } else if (RC == PPC::VRRCRegisterClass) { + // We don't have indexed addressing for vector loads. Emit: + // R0 = ADDI FI# + // STVX VAL, 0, R0 + // + // FIXME: We use R0 here, because it isn't available for RA. + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0), + FrameIdx, 0, 0)); + NewMIs.push_back(BuildMI(MF, DL, get(PPC::STVX)) + .addReg(SrcReg, getKillRegState(isKill)) + .addReg(PPC::R0) + .addReg(PPC::R0)); + } else { + llvm_unreachable("Unknown regclass!"); + } + + return false; +} + +void +PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned SrcReg, bool isKill, int FrameIdx, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const { + MachineFunction &MF = *MBB.getParent(); + SmallVector<MachineInstr*, 4> NewMIs; + + if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs)) { + PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); + FuncInfo->setSpillsCR(); + } + + for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) + MBB.insert(MI, NewMIs[i]); +} + +void +PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, + unsigned DestReg, int FrameIdx, + const TargetRegisterClass *RC, + SmallVectorImpl<MachineInstr*> &NewMIs)const{ + if (RC == PPC::GPRCRegisterClass) { + if (DestReg != PPC::LR) { + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), + DestReg), FrameIdx)); + } else { + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), + PPC::R11), FrameIdx)); + NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR)).addReg(PPC::R11)); + } + } else if (RC == PPC::G8RCRegisterClass) { + if (DestReg != PPC::LR8) { + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), + FrameIdx)); + } else { + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), + PPC::R11), FrameIdx)); + NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR8)).addReg(PPC::R11)); + } + } else if (RC == PPC::F8RCRegisterClass) { + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), + FrameIdx)); + } else if (RC == PPC::F4RCRegisterClass) { + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), + FrameIdx)); + } else if (RC == PPC::CRRCRegisterClass) { + // FIXME: We need a scatch reg here. The trouble with using R0 is that + // it's possible for the stack frame to be so big the save location is + // out of range of immediate offsets, necessitating another register. + // We hack this on Darwin by reserving R2. It's probably broken on Linux + // at the moment. + unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ? + PPC::R2 : PPC::R0; + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), + ScratchReg), FrameIdx)); + + // If the reloaded register isn't CR0, shift the bits right so that they are + // in the right CR's slot. + if (DestReg != PPC::CR0) { + unsigned ShiftBits = PPCRegisterInfo::getRegisterNumbering(DestReg)*4; + // rlwinm r11, r11, 32-ShiftBits, 0, 31. + NewMIs.push_back(BuildMI(MF, DL, get(PPC::RLWINM), ScratchReg) + .addReg(ScratchReg).addImm(32-ShiftBits).addImm(0) + .addImm(31)); + } + + NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTCRF), DestReg) + .addReg(ScratchReg)); + } else if (RC == PPC::CRBITRCRegisterClass) { + + unsigned Reg = 0; + if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT || + DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN) + Reg = PPC::CR0; + else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT || + DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN) + Reg = PPC::CR1; + else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT || + DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN) + Reg = PPC::CR2; + else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT || + DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN) + Reg = PPC::CR3; + else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT || + DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN) + Reg = PPC::CR4; + else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT || + DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN) + Reg = PPC::CR5; + else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT || + DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN) + Reg = PPC::CR6; + else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT || + DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN) + Reg = PPC::CR7; + + return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx, + PPC::CRRCRegisterClass, NewMIs); + + } else if (RC == PPC::VRRCRegisterClass) { + // We don't have indexed addressing for vector loads. Emit: + // R0 = ADDI FI# + // Dest = LVX 0, R0 + // + // FIXME: We use R0 here, because it isn't available for RA. + NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::ADDI), PPC::R0), + FrameIdx, 0, 0)); + NewMIs.push_back(BuildMI(MF, DL, get(PPC::LVX),DestReg).addReg(PPC::R0) + .addReg(PPC::R0)); + } else { + llvm_unreachable("Unknown regclass!"); + } +} + +void +PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, + MachineBasicBlock::iterator MI, + unsigned DestReg, int FrameIdx, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const { + MachineFunction &MF = *MBB.getParent(); + SmallVector<MachineInstr*, 4> NewMIs; + DebugLoc DL; + if (MI != MBB.end()) DL = MI->getDebugLoc(); + LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs); + for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) + MBB.insert(MI, NewMIs[i]); +} + +MachineInstr* +PPCInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, + int FrameIx, uint64_t Offset, + const MDNode *MDPtr, + DebugLoc DL) const { + MachineInstrBuilder MIB = BuildMI(MF, DL, get(PPC::DBG_VALUE)); + addFrameReference(MIB, FrameIx, 0, false).addImm(Offset).addMetadata(MDPtr); + return &*MIB; +} + +/// foldMemoryOperand - PowerPC (like most RISC's) can only fold spills into +/// copy instructions, turning them into load/store instructions. +MachineInstr *PPCInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, + MachineInstr *MI, + const SmallVectorImpl<unsigned> &Ops, + int FrameIndex) const { + if (Ops.size() != 1) return NULL; + + // Make sure this is a reg-reg copy. Note that we can't handle MCRF, because + // it takes more than one instruction to store it. + unsigned Opc = MI->getOpcode(); + unsigned OpNum = Ops[0]; + + MachineInstr *NewMI = NULL; + if ((Opc == PPC::OR && + MI->getOperand(1).getReg() == MI->getOperand(2).getReg())) { + if (OpNum == 0) { // move -> store + unsigned InReg = MI->getOperand(1).getReg(); + bool isKill = MI->getOperand(1).isKill(); + bool isUndef = MI->getOperand(1).isUndef(); + NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::STW)) + .addReg(InReg, + getKillRegState(isKill) | + getUndefRegState(isUndef)), + FrameIndex); + } else { // move -> load + unsigned OutReg = MI->getOperand(0).getReg(); + bool isDead = MI->getOperand(0).isDead(); + bool isUndef = MI->getOperand(0).isUndef(); + NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::LWZ)) + .addReg(OutReg, + RegState::Define | + getDeadRegState(isDead) | + getUndefRegState(isUndef)), + FrameIndex); + } + } else if ((Opc == PPC::OR8 && + MI->getOperand(1).getReg() == MI->getOperand(2).getReg())) { + if (OpNum == 0) { // move -> store + unsigned InReg = MI->getOperand(1).getReg(); + bool isKill = MI->getOperand(1).isKill(); + bool isUndef = MI->getOperand(1).isUndef(); + NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::STD)) + .addReg(InReg, + getKillRegState(isKill) | + getUndefRegState(isUndef)), + FrameIndex); + } else { // move -> load + unsigned OutReg = MI->getOperand(0).getReg(); + bool isDead = MI->getOperand(0).isDead(); + bool isUndef = MI->getOperand(0).isUndef(); + NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), get(PPC::LD)) + .addReg(OutReg, + RegState::Define | + getDeadRegState(isDead) | + getUndefRegState(isUndef)), + FrameIndex); + } + } else if (Opc == PPC::FMR || Opc == PPC::FMRSD) { + // The register may be F4RC or F8RC, and that determines the memory op. + unsigned OrigReg = MI->getOperand(OpNum).getReg(); + // We cannot tell the register class from a physreg alone. + if (TargetRegisterInfo::isPhysicalRegister(OrigReg)) + return NULL; + const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(OrigReg); + const bool is64 = RC == PPC::F8RCRegisterClass; + + if (OpNum == 0) { // move -> store + unsigned InReg = MI->getOperand(1).getReg(); + bool isKill = MI->getOperand(1).isKill(); + bool isUndef = MI->getOperand(1).isUndef(); + NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), + get(is64 ? PPC::STFD : PPC::STFS)) + .addReg(InReg, + getKillRegState(isKill) | + getUndefRegState(isUndef)), + FrameIndex); + } else { // move -> load + unsigned OutReg = MI->getOperand(0).getReg(); + bool isDead = MI->getOperand(0).isDead(); + bool isUndef = MI->getOperand(0).isUndef(); + NewMI = addFrameReference(BuildMI(MF, MI->getDebugLoc(), + get(is64 ? PPC::LFD : PPC::LFS)) + .addReg(OutReg, + RegState::Define | + getDeadRegState(isDead) | + getUndefRegState(isUndef)), + FrameIndex); + } + } + + return NewMI; +} + +bool PPCInstrInfo::canFoldMemoryOperand(const MachineInstr *MI, + const SmallVectorImpl<unsigned> &Ops) const { + if (Ops.size() != 1) return false; + + // Make sure this is a reg-reg copy. Note that we can't handle MCRF, because + // it takes more than one instruction to store it. + unsigned Opc = MI->getOpcode(); + + if ((Opc == PPC::OR && + MI->getOperand(1).getReg() == MI->getOperand(2).getReg())) + return true; + else if ((Opc == PPC::OR8 && + MI->getOperand(1).getReg() == MI->getOperand(2).getReg())) + return true; + else if (Opc == PPC::FMR || Opc == PPC::FMRSD) + return true; + + return false; +} + + +bool PPCInstrInfo:: +ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { + assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); + // Leave the CR# the same, but invert the condition. + Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); + return false; +} + +/// GetInstSize - Return the number of bytes of code the specified +/// instruction may be. This returns the maximum number of bytes. +/// +unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { + switch (MI->getOpcode()) { + case PPC::INLINEASM: { // Inline Asm: Variable size. + const MachineFunction *MF = MI->getParent()->getParent(); + const char *AsmStr = MI->getOperand(0).getSymbolName(); + return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); + } + case PPC::DBG_LABEL: + case PPC::EH_LABEL: + case PPC::GC_LABEL: + case PPC::DBG_VALUE: + return 0; + default: + return 4; // PowerPC instructions are all 4 bytes + } +} |