diff options
Diffstat (limited to 'contrib/llvm/lib/Target/PowerPC/PPCInstrAltivec.td')
-rw-r--r-- | contrib/llvm/lib/Target/PowerPC/PPCInstrAltivec.td | 248 |
1 files changed, 240 insertions, 8 deletions
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCInstrAltivec.td b/contrib/llvm/lib/Target/PowerPC/PPCInstrAltivec.td index 4ef08eb..e27bf7f5 100644 --- a/contrib/llvm/lib/Target/PowerPC/PPCInstrAltivec.td +++ b/contrib/llvm/lib/Target/PowerPC/PPCInstrAltivec.td @@ -11,6 +11,21 @@ // //===----------------------------------------------------------------------===// +// *********************************** NOTE *********************************** +// ** For POWER8 Little Endian, the VSX swap optimization relies on knowing ** +// ** which VMX and VSX instructions are lane-sensitive and which are not. ** +// ** A lane-sensitive instruction relies, implicitly or explicitly, on ** +// ** whether lanes are numbered from left to right. An instruction like ** +// ** VADDFP is not lane-sensitive, because each lane of the result vector ** +// ** relies only on the corresponding lane of the source vectors. However, ** +// ** an instruction like VMULESB is lane-sensitive, because "even" and ** +// ** "odd" lanes are different for big-endian and little-endian numbering. ** +// ** ** +// ** When adding new VMX and VSX instructions, please consider whether they ** +// ** are lane-sensitive. If so, they must be added to a switch statement ** +// ** in PPCVSXSwapRemoval::gatherVectorInstructions(). ** +// **************************************************************************** + //===----------------------------------------------------------------------===// // Altivec transformation functions and pattern fragments. // @@ -28,6 +43,10 @@ def vpkuwum_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG); }]>; +def vpkudum_shuffle : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return PPC::isVPKUDUMShuffleMask(cast<ShuffleVectorSDNode>(N), 0, *CurDAG); +}]>; def vpkuhum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVPKUHUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG); @@ -36,6 +55,10 @@ def vpkuwum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG); }]>; +def vpkudum_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return PPC::isVPKUDUMShuffleMask(cast<ShuffleVectorSDNode>(N), 1, *CurDAG); +}]>; // These fragments are provided for little-endian, where the inputs must be // swapped for correct semantics. @@ -47,6 +70,10 @@ def vpkuwum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isVPKUWUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG); }]>; +def vpkudum_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), + (vector_shuffle node:$lhs, node:$rhs), [{ + return PPC::isVPKUDUMShuffleMask(cast<ShuffleVectorSDNode>(N), 2, *CurDAG); +}]>; def vmrglb_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle (v16i8 node:$lhs), node:$rhs), [{ @@ -129,7 +156,7 @@ def vmrghw_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), def VSLDOI_get_imm : SDNodeXForm<vector_shuffle, [{ - return getI32Imm(PPC::isVSLDOIShuffleMask(N, 0, *CurDAG)); + return getI32Imm(PPC::isVSLDOIShuffleMask(N, 0, *CurDAG), SDLoc(N)); }]>; def vsldoi_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ @@ -140,7 +167,7 @@ def vsldoi_shuffle : PatFrag<(ops node:$lhs, node:$rhs), /// VSLDOI_unary* - These are used to match vsldoi(X,X), which is turned into /// vector_shuffle(X,undef,mask) by the dag combiner. def VSLDOI_unary_get_imm : SDNodeXForm<vector_shuffle, [{ - return getI32Imm(PPC::isVSLDOIShuffleMask(N, 1, *CurDAG)); + return getI32Imm(PPC::isVSLDOIShuffleMask(N, 1, *CurDAG), SDLoc(N)); }]>; def vsldoi_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ @@ -151,7 +178,7 @@ def vsldoi_unary_shuffle : PatFrag<(ops node:$lhs, node:$rhs), /// VSLDOI_swapped* - These fragments are provided for little-endian, where /// the inputs must be swapped for correct semantics. def VSLDOI_swapped_get_imm : SDNodeXForm<vector_shuffle, [{ - return getI32Imm(PPC::isVSLDOIShuffleMask(N, 2, *CurDAG)); + return getI32Imm(PPC::isVSLDOIShuffleMask(N, 2, *CurDAG), SDLoc(N)); }]>; def vsldoi_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ @@ -161,21 +188,21 @@ def vsldoi_swapped_shuffle : PatFrag<(ops node:$lhs, node:$rhs), // VSPLT*_get_imm xform function: convert vector_shuffle mask to VSPLT* imm. def VSPLTB_get_imm : SDNodeXForm<vector_shuffle, [{ - return getI32Imm(PPC::getVSPLTImmediate(N, 1, *CurDAG)); + return getI32Imm(PPC::getVSPLTImmediate(N, 1, *CurDAG), SDLoc(N)); }]>; def vspltb_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 1); }], VSPLTB_get_imm>; def VSPLTH_get_imm : SDNodeXForm<vector_shuffle, [{ - return getI32Imm(PPC::getVSPLTImmediate(N, 2, *CurDAG)); + return getI32Imm(PPC::getVSPLTImmediate(N, 2, *CurDAG), SDLoc(N)); }]>; def vsplth_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ return PPC::isSplatShuffleMask(cast<ShuffleVectorSDNode>(N), 2); }], VSPLTH_get_imm>; def VSPLTW_get_imm : SDNodeXForm<vector_shuffle, [{ - return getI32Imm(PPC::getVSPLTImmediate(N, 4, *CurDAG)); + return getI32Imm(PPC::getVSPLTImmediate(N, 4, *CurDAG), SDLoc(N)); }]>; def vspltw_shuffle : PatFrag<(ops node:$lhs, node:$rhs), (vector_shuffle node:$lhs, node:$rhs), [{ @@ -269,6 +296,16 @@ class VX2_Int_Ty2<bits<11> xo, string opc, Intrinsic IntID, ValueType OutTy, !strconcat(opc, " $vD, $vB"), IIC_VecFP, [(set OutTy:$vD, (IntID InTy:$vB))]>; +class VXBX_Int_Ty<bits<11> xo, string opc, Intrinsic IntID, ValueType Ty> + : VXForm_BX<xo, (outs vrrc:$vD), (ins vrrc:$vA), + !strconcat(opc, " $vD, $vA"), IIC_VecFP, + [(set Ty:$vD, (IntID Ty:$vA))]>; + +class VXCR_Int_Ty<bits<11> xo, string opc, Intrinsic IntID, ValueType Ty> + : VXForm_CR<xo, (outs vrrc:$vD), (ins vrrc:$vA, u1imm:$ST, u4imm:$SIX), + !strconcat(opc, " $vD, $vA, $ST, $SIX"), IIC_VecFP, + [(set Ty:$vD, (IntID Ty:$vA, imm:$ST, imm:$SIX))]>; + //===----------------------------------------------------------------------===// // Instruction Definitions. @@ -342,7 +379,7 @@ def MTVSCR : VXForm_5<1604, (outs), (ins vrrc:$vB), "mtvscr $vB", IIC_LdStLoad, [(int_ppc_altivec_mtvscr v4i32:$vB)]>; -let canFoldAsLoad = 1, PPC970_Unit = 2 in { // Loads. +let PPC970_Unit = 2 in { // Loads. def LVEBX: XForm_1<31, 7, (outs vrrc:$vD), (ins memrr:$src), "lvebx $vD, $src", IIC_LdStLoad, [(set v16i8:$vD, (int_ppc_altivec_lvebx xoaddr:$src))]>; @@ -750,7 +787,7 @@ def VCMPGTSW : VCMP <902, "vcmpgtsw $vD, $vA, $vB" , v4i32>; def VCMPGTSWo : VCMPo<902, "vcmpgtsw. $vD, $vA, $vB", v4i32>; def VCMPGTUW : VCMP <646, "vcmpgtuw $vD, $vA, $vB" , v4i32>; def VCMPGTUWo : VCMPo<646, "vcmpgtuw. $vD, $vA, $vB", v4i32>; - + let isCodeGenOnly = 1 in { def V_SET0B : VXForm_setzero<1220, (outs vrrc:$vD), (ins), "vxor $vD, $vD, $vD", IIC_VecFP, @@ -791,18 +828,38 @@ def : Pat<(store v4i32:$rS, xoaddr:$dst), def : Pat<(v16i8 (bitconvert (v8i16 VRRC:$src))), (v16i8 VRRC:$src)>; def : Pat<(v16i8 (bitconvert (v4i32 VRRC:$src))), (v16i8 VRRC:$src)>; def : Pat<(v16i8 (bitconvert (v4f32 VRRC:$src))), (v16i8 VRRC:$src)>; +def : Pat<(v16i8 (bitconvert (v2i64 VRRC:$src))), (v16i8 VRRC:$src)>; +def : Pat<(v16i8 (bitconvert (v1i128 VRRC:$src))), (v16i8 VRRC:$src)>; def : Pat<(v8i16 (bitconvert (v16i8 VRRC:$src))), (v8i16 VRRC:$src)>; def : Pat<(v8i16 (bitconvert (v4i32 VRRC:$src))), (v8i16 VRRC:$src)>; def : Pat<(v8i16 (bitconvert (v4f32 VRRC:$src))), (v8i16 VRRC:$src)>; +def : Pat<(v8i16 (bitconvert (v2i64 VRRC:$src))), (v8i16 VRRC:$src)>; +def : Pat<(v8i16 (bitconvert (v1i128 VRRC:$src))), (v8i16 VRRC:$src)>; def : Pat<(v4i32 (bitconvert (v16i8 VRRC:$src))), (v4i32 VRRC:$src)>; def : Pat<(v4i32 (bitconvert (v8i16 VRRC:$src))), (v4i32 VRRC:$src)>; def : Pat<(v4i32 (bitconvert (v4f32 VRRC:$src))), (v4i32 VRRC:$src)>; +def : Pat<(v4i32 (bitconvert (v2i64 VRRC:$src))), (v4i32 VRRC:$src)>; +def : Pat<(v4i32 (bitconvert (v1i128 VRRC:$src))), (v4i32 VRRC:$src)>; def : Pat<(v4f32 (bitconvert (v16i8 VRRC:$src))), (v4f32 VRRC:$src)>; def : Pat<(v4f32 (bitconvert (v8i16 VRRC:$src))), (v4f32 VRRC:$src)>; def : Pat<(v4f32 (bitconvert (v4i32 VRRC:$src))), (v4f32 VRRC:$src)>; +def : Pat<(v4f32 (bitconvert (v2i64 VRRC:$src))), (v4f32 VRRC:$src)>; +def : Pat<(v4f32 (bitconvert (v1i128 VRRC:$src))), (v4f32 VRRC:$src)>; + +def : Pat<(v2i64 (bitconvert (v16i8 VRRC:$src))), (v2i64 VRRC:$src)>; +def : Pat<(v2i64 (bitconvert (v8i16 VRRC:$src))), (v2i64 VRRC:$src)>; +def : Pat<(v2i64 (bitconvert (v4i32 VRRC:$src))), (v2i64 VRRC:$src)>; +def : Pat<(v2i64 (bitconvert (v4f32 VRRC:$src))), (v2i64 VRRC:$src)>; +def : Pat<(v2i64 (bitconvert (v1i128 VRRC:$src))), (v2i64 VRRC:$src)>; + +def : Pat<(v1i128 (bitconvert (v16i8 VRRC:$src))), (v1i128 VRRC:$src)>; +def : Pat<(v1i128 (bitconvert (v8i16 VRRC:$src))), (v1i128 VRRC:$src)>; +def : Pat<(v1i128 (bitconvert (v4i32 VRRC:$src))), (v1i128 VRRC:$src)>; +def : Pat<(v1i128 (bitconvert (v4f32 VRRC:$src))), (v1i128 VRRC:$src)>; +def : Pat<(v1i128 (bitconvert (v2i64 VRRC:$src))), (v1i128 VRRC:$src)>; // Shuffles. @@ -929,3 +986,178 @@ def : Pat<(v4f32 (fnearbyint v4f32:$vA)), } // end HasAltivec +def HasP8Altivec : Predicate<"PPCSubTarget->hasP8Altivec()">; +def HasP8Crypto : Predicate<"PPCSubTarget->hasP8Crypto()">; +let Predicates = [HasP8Altivec] in { + +let isCommutable = 1 in { +def VMULESW : VX1_Int_Ty2<904, "vmulesw", int_ppc_altivec_vmulesw, + v2i64, v4i32>; +def VMULEUW : VX1_Int_Ty2<648, "vmuleuw", int_ppc_altivec_vmuleuw, + v2i64, v4i32>; +def VMULOSW : VX1_Int_Ty2<392, "vmulosw", int_ppc_altivec_vmulosw, + v2i64, v4i32>; +def VMULOUW : VX1_Int_Ty2<136, "vmulouw", int_ppc_altivec_vmulouw, + v2i64, v4i32>; +def VMULUWM : VXForm_1<137, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), + "vmuluwm $vD, $vA, $vB", IIC_VecGeneral, + [(set v4i32:$vD, (mul v4i32:$vA, v4i32:$vB))]>; +def VMAXSD : VX1_Int_Ty<450, "vmaxsd", int_ppc_altivec_vmaxsd, v2i64>; +def VMAXUD : VX1_Int_Ty<194, "vmaxud", int_ppc_altivec_vmaxud, v2i64>; +def VMINSD : VX1_Int_Ty<962, "vminsd", int_ppc_altivec_vminsd, v2i64>; +def VMINUD : VX1_Int_Ty<706, "vminud", int_ppc_altivec_vminud, v2i64>; +} // isCommutable + +// Vector shifts +def VRLD : VX1_Int_Ty<196, "vrld", int_ppc_altivec_vrld, v2i64>; +def VSLD : VXForm_1<1476, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), + "vsld $vD, $vA, $vB", IIC_VecGeneral, + [(set v2i64:$vD, (shl v2i64:$vA, v2i64:$vB))]>; +def VSRD : VXForm_1<1732, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), + "vsrd $vD, $vA, $vB", IIC_VecGeneral, + [(set v2i64:$vD, (srl v2i64:$vA, v2i64:$vB))]>; +def VSRAD : VXForm_1<964, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), + "vsrad $vD, $vA, $vB", IIC_VecGeneral, + [(set v2i64:$vD, (sra v2i64:$vA, v2i64:$vB))]>; + +// Vector Integer Arithmetic Instructions +let isCommutable = 1 in { +def VADDUDM : VXForm_1<192, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), + "vaddudm $vD, $vA, $vB", IIC_VecGeneral, + [(set v2i64:$vD, (add v2i64:$vA, v2i64:$vB))]>; +def VADDUQM : VXForm_1<256, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), + "vadduqm $vD, $vA, $vB", IIC_VecGeneral, + [(set v1i128:$vD, (add v1i128:$vA, v1i128:$vB))]>; +} // isCommutable + +// Vector Quadword Add +def VADDEUQM : VA1a_Int_Ty<60, "vaddeuqm", int_ppc_altivec_vaddeuqm, v1i128>; +def VADDCUQ : VX1_Int_Ty<320, "vaddcuq", int_ppc_altivec_vaddcuq, v1i128>; +def VADDECUQ : VA1a_Int_Ty<61, "vaddecuq", int_ppc_altivec_vaddecuq, v1i128>; + +// Vector Doubleword Subtract +def VSUBUDM : VXForm_1<1216, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), + "vsubudm $vD, $vA, $vB", IIC_VecGeneral, + [(set v2i64:$vD, (sub v2i64:$vA, v2i64:$vB))]>; + +// Vector Quadword Subtract +def VSUBUQM : VXForm_1<1280, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), + "vsubuqm $vD, $vA, $vB", IIC_VecGeneral, + [(set v1i128:$vD, (sub v1i128:$vA, v1i128:$vB))]>; +def VSUBEUQM : VA1a_Int_Ty<62, "vsubeuqm", int_ppc_altivec_vsubeuqm, v1i128>; +def VSUBCUQ : VX1_Int_Ty<1344, "vsubcuq", int_ppc_altivec_vsubcuq, v1i128>; +def VSUBECUQ : VA1a_Int_Ty<63, "vsubecuq", int_ppc_altivec_vsubecuq, v1i128>; + +// Count Leading Zeros +def VCLZB : VXForm_2<1794, (outs vrrc:$vD), (ins vrrc:$vB), + "vclzb $vD, $vB", IIC_VecGeneral, + [(set v16i8:$vD, (ctlz v16i8:$vB))]>; +def VCLZH : VXForm_2<1858, (outs vrrc:$vD), (ins vrrc:$vB), + "vclzh $vD, $vB", IIC_VecGeneral, + [(set v8i16:$vD, (ctlz v8i16:$vB))]>; +def VCLZW : VXForm_2<1922, (outs vrrc:$vD), (ins vrrc:$vB), + "vclzw $vD, $vB", IIC_VecGeneral, + [(set v4i32:$vD, (ctlz v4i32:$vB))]>; +def VCLZD : VXForm_2<1986, (outs vrrc:$vD), (ins vrrc:$vB), + "vclzd $vD, $vB", IIC_VecGeneral, + [(set v2i64:$vD, (ctlz v2i64:$vB))]>; + +// Population Count +def VPOPCNTB : VXForm_2<1795, (outs vrrc:$vD), (ins vrrc:$vB), + "vpopcntb $vD, $vB", IIC_VecGeneral, + [(set v16i8:$vD, (ctpop v16i8:$vB))]>; +def VPOPCNTH : VXForm_2<1859, (outs vrrc:$vD), (ins vrrc:$vB), + "vpopcnth $vD, $vB", IIC_VecGeneral, + [(set v8i16:$vD, (ctpop v8i16:$vB))]>; +def VPOPCNTW : VXForm_2<1923, (outs vrrc:$vD), (ins vrrc:$vB), + "vpopcntw $vD, $vB", IIC_VecGeneral, + [(set v4i32:$vD, (ctpop v4i32:$vB))]>; +def VPOPCNTD : VXForm_2<1987, (outs vrrc:$vD), (ins vrrc:$vB), + "vpopcntd $vD, $vB", IIC_VecGeneral, + [(set v2i64:$vD, (ctpop v2i64:$vB))]>; + +let isCommutable = 1 in { +// FIXME: Use AddedComplexity > 400 to ensure these patterns match before the +// VSX equivalents. We need to fix this up at some point. Two possible +// solutions for this problem: +// 1. Disable Altivec patterns that compete with VSX patterns using the +// !HasVSX predicate. This essentially favours VSX over Altivec, in +// hopes of reducing register pressure (larger register set using VSX +// instructions than VMX instructions) +// 2. Employ a more disciplined use of AddedComplexity, which would provide +// more fine-grained control than option 1. This would be beneficial +// if we find situations where Altivec is really preferred over VSX. +def VEQV : VXForm_1<1668, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), + "veqv $vD, $vA, $vB", IIC_VecGeneral, + [(set v4i32:$vD, (vnot_ppc (xor v4i32:$vA, v4i32:$vB)))]>; +def VNAND : VXForm_1<1412, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), + "vnand $vD, $vA, $vB", IIC_VecGeneral, + [(set v4i32:$vD, (vnot_ppc (and v4i32:$vA, v4i32:$vB)))]>; +} // isCommutable + +def VORC : VXForm_1<1348, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), + "vorc $vD, $vA, $vB", IIC_VecGeneral, + [(set v4i32:$vD, (or v4i32:$vA, + (vnot_ppc v4i32:$vB)))]>; + +// i64 element comparisons. +def VCMPEQUD : VCMP <199, "vcmpequd $vD, $vA, $vB" , v2i64>; +def VCMPEQUDo : VCMPo<199, "vcmpequd. $vD, $vA, $vB", v2i64>; +def VCMPGTSD : VCMP <967, "vcmpgtsd $vD, $vA, $vB" , v2i64>; +def VCMPGTSDo : VCMPo<967, "vcmpgtsd. $vD, $vA, $vB", v2i64>; +def VCMPGTUD : VCMP <711, "vcmpgtud $vD, $vA, $vB" , v2i64>; +def VCMPGTUDo : VCMPo<711, "vcmpgtud. $vD, $vA, $vB", v2i64>; + +// The cryptography instructions that do not require Category:Vector.Crypto +def VPMSUMB : VX1_Int_Ty<1032, "vpmsumb", + int_ppc_altivec_crypto_vpmsumb, v16i8>; +def VPMSUMH : VX1_Int_Ty<1096, "vpmsumh", + int_ppc_altivec_crypto_vpmsumh, v8i16>; +def VPMSUMW : VX1_Int_Ty<1160, "vpmsumw", + int_ppc_altivec_crypto_vpmsumw, v4i32>; +def VPMSUMD : VX1_Int_Ty<1224, "vpmsumd", + int_ppc_altivec_crypto_vpmsumd, v2i64>; +def VPERMXOR : VA1a_Int_Ty<45, "vpermxor", + int_ppc_altivec_crypto_vpermxor, v16i8>; + +// Vector doubleword integer pack and unpack. +def VPKSDSS : VX1_Int_Ty2<1486, "vpksdss", int_ppc_altivec_vpksdss, + v4i32, v2i64>; +def VPKSDUS : VX1_Int_Ty2<1358, "vpksdus", int_ppc_altivec_vpksdus, + v4i32, v2i64>; +def VPKUDUM : VXForm_1<1102, (outs vrrc:$vD), (ins vrrc:$vA, vrrc:$vB), + "vpkudum $vD, $vA, $vB", IIC_VecFP, + [(set v16i8:$vD, + (vpkudum_shuffle v16i8:$vA, v16i8:$vB))]>; +def VPKUDUS : VX1_Int_Ty2<1230, "vpkudus", int_ppc_altivec_vpkudus, + v4i32, v2i64>; +def VUPKHSW : VX2_Int_Ty2<1614, "vupkhsw", int_ppc_altivec_vupkhsw, + v2i64, v4i32>; +def VUPKLSW : VX2_Int_Ty2<1742, "vupklsw", int_ppc_altivec_vupklsw, + v2i64, v4i32>; + +// Shuffle patterns for unary and swapped (LE) vector pack modulo. +def:Pat<(vpkudum_unary_shuffle v16i8:$vA, undef), + (VPKUDUM $vA, $vA)>; +def:Pat<(vpkudum_swapped_shuffle v16i8:$vA, v16i8:$vB), + (VPKUDUM $vB, $vA)>; + + +} // end HasP8Altivec + +// Crypto instructions (from builtins) +let Predicates = [HasP8Crypto] in { +def VSHASIGMAW : VXCR_Int_Ty<1666, "vshasigmaw", + int_ppc_altivec_crypto_vshasigmaw, v4i32>; +def VSHASIGMAD : VXCR_Int_Ty<1730, "vshasigmad", + int_ppc_altivec_crypto_vshasigmad, v2i64>; +def VCIPHER : VX1_Int_Ty<1288, "vcipher", int_ppc_altivec_crypto_vcipher, + v2i64>; +def VCIPHERLAST : VX1_Int_Ty<1289, "vcipherlast", + int_ppc_altivec_crypto_vcipherlast, v2i64>; +def VNCIPHER : VX1_Int_Ty<1352, "vncipher", + int_ppc_altivec_crypto_vncipher, v2i64>; +def VNCIPHERLAST : VX1_Int_Ty<1353, "vncipherlast", + int_ppc_altivec_crypto_vncipherlast, v2i64>; +def VSBOX : VXBX_Int_Ty<1480, "vsbox", int_ppc_altivec_crypto_vsbox, v2i64>; +} // HasP8Crypto |