summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp')
-rw-r--r--contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp1134
1 files changed, 1134 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp b/contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
new file mode 100644
index 0000000..a00f686
--- /dev/null
+++ b/contrib/llvm/lib/Target/PowerPC/PPCISelDAGToDAG.cpp
@@ -0,0 +1,1134 @@
+//===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines a pattern matching instruction selector for PowerPC,
+// converting from a legalized dag to a PPC dag.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "ppc-codegen"
+#include "PPC.h"
+#include "PPCTargetMachine.h"
+#include "MCTargetDesc/PPCPredicates.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalValue.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace llvm;
+
+namespace {
+ //===--------------------------------------------------------------------===//
+ /// PPCDAGToDAGISel - PPC specific code to select PPC machine
+ /// instructions for SelectionDAG operations.
+ ///
+ class PPCDAGToDAGISel : public SelectionDAGISel {
+ const PPCTargetMachine &TM;
+ const PPCTargetLowering &PPCLowering;
+ const PPCSubtarget &PPCSubTarget;
+ unsigned GlobalBaseReg;
+ public:
+ explicit PPCDAGToDAGISel(PPCTargetMachine &tm)
+ : SelectionDAGISel(tm), TM(tm),
+ PPCLowering(*TM.getTargetLowering()),
+ PPCSubTarget(*TM.getSubtargetImpl()) {}
+
+ virtual bool runOnMachineFunction(MachineFunction &MF) {
+ // Make sure we re-emit a set of the global base reg if necessary
+ GlobalBaseReg = 0;
+ SelectionDAGISel::runOnMachineFunction(MF);
+
+ InsertVRSaveCode(MF);
+ return true;
+ }
+
+ /// getI32Imm - Return a target constant with the specified value, of type
+ /// i32.
+ inline SDValue getI32Imm(unsigned Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i32);
+ }
+
+ /// getI64Imm - Return a target constant with the specified value, of type
+ /// i64.
+ inline SDValue getI64Imm(uint64_t Imm) {
+ return CurDAG->getTargetConstant(Imm, MVT::i64);
+ }
+
+ /// getSmallIPtrImm - Return a target constant of pointer type.
+ inline SDValue getSmallIPtrImm(unsigned Imm) {
+ return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
+ }
+
+ /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
+ /// with any number of 0s on either side. The 1s are allowed to wrap from
+ /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
+ /// 0x0F0F0000 is not, since all 1s are not contiguous.
+ static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
+
+
+ /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
+ /// rotate and mask opcode and mask operation.
+ static bool isRotateAndMask(SDNode *N, unsigned Mask, bool isShiftMask,
+ unsigned &SH, unsigned &MB, unsigned &ME);
+
+ /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
+ /// base register. Return the virtual register that holds this value.
+ SDNode *getGlobalBaseReg();
+
+ // Select - Convert the specified operand from a target-independent to a
+ // target-specific node if it hasn't already been changed.
+ SDNode *Select(SDNode *N);
+
+ SDNode *SelectBitfieldInsert(SDNode *N);
+
+ /// SelectCC - Select a comparison of the specified values with the
+ /// specified condition code, returning the CR# of the expression.
+ SDValue SelectCC(SDValue LHS, SDValue RHS, ISD::CondCode CC, DebugLoc dl);
+
+ /// SelectAddrImm - Returns true if the address N can be represented by
+ /// a base register plus a signed 16-bit displacement [r+imm].
+ bool SelectAddrImm(SDValue N, SDValue &Disp,
+ SDValue &Base) {
+ return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
+ }
+
+ /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
+ /// immediate field. Because preinc imms have already been validated, just
+ /// accept it.
+ bool SelectAddrImmOffs(SDValue N, SDValue &Out) const {
+ if (isa<ConstantSDNode>(N) || N.getOpcode() == PPCISD::Lo ||
+ N.getOpcode() == ISD::TargetGlobalAddress) {
+ Out = N;
+ return true;
+ }
+
+ return false;
+ }
+
+ /// SelectAddrIdxOffs - Return true if the operand is valid for a preinc
+ /// index field. Because preinc imms have already been validated, just
+ /// accept it.
+ bool SelectAddrIdxOffs(SDValue N, SDValue &Out) const {
+ if (isa<ConstantSDNode>(N) || N.getOpcode() == PPCISD::Lo ||
+ N.getOpcode() == ISD::TargetGlobalAddress)
+ return false;
+
+ Out = N;
+ return true;
+ }
+
+ /// SelectAddrIdx - Given the specified addressed, check to see if it can be
+ /// represented as an indexed [r+r] operation. Returns false if it can
+ /// be represented by [r+imm], which are preferred.
+ bool SelectAddrIdx(SDValue N, SDValue &Base, SDValue &Index) {
+ return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
+ }
+
+ /// SelectAddrIdxOnly - Given the specified addressed, force it to be
+ /// represented as an indexed [r+r] operation.
+ bool SelectAddrIdxOnly(SDValue N, SDValue &Base, SDValue &Index) {
+ return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
+ }
+
+ /// SelectAddrImmShift - Returns true if the address N can be represented by
+ /// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable
+ /// for use by STD and friends.
+ bool SelectAddrImmShift(SDValue N, SDValue &Disp, SDValue &Base) {
+ return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
+ }
+
+ /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
+ /// inline asm expressions. It is always correct to compute the value into
+ /// a register. The case of adding a (possibly relocatable) constant to a
+ /// register can be improved, but it is wrong to substitute Reg+Reg for
+ /// Reg in an asm, because the load or store opcode would have to change.
+ virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
+ char ConstraintCode,
+ std::vector<SDValue> &OutOps) {
+ OutOps.push_back(Op);
+ return false;
+ }
+
+ void InsertVRSaveCode(MachineFunction &MF);
+
+ virtual const char *getPassName() const {
+ return "PowerPC DAG->DAG Pattern Instruction Selection";
+ }
+
+// Include the pieces autogenerated from the target description.
+#include "PPCGenDAGISel.inc"
+
+private:
+ SDNode *SelectSETCC(SDNode *N);
+ };
+}
+
+/// InsertVRSaveCode - Once the entire function has been instruction selected,
+/// all virtual registers are created and all machine instructions are built,
+/// check to see if we need to save/restore VRSAVE. If so, do it.
+void PPCDAGToDAGISel::InsertVRSaveCode(MachineFunction &Fn) {
+ // Check to see if this function uses vector registers, which means we have to
+ // save and restore the VRSAVE register and update it with the regs we use.
+ //
+ // In this case, there will be virtual registers of vector type created
+ // by the scheduler. Detect them now.
+ bool HasVectorVReg = false;
+ for (unsigned i = 0, e = RegInfo->getNumVirtRegs(); i != e; ++i) {
+ unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
+ if (RegInfo->getRegClass(Reg) == &PPC::VRRCRegClass) {
+ HasVectorVReg = true;
+ break;
+ }
+ }
+ if (!HasVectorVReg) return; // nothing to do.
+
+ // If we have a vector register, we want to emit code into the entry and exit
+ // blocks to save and restore the VRSAVE register. We do this here (instead
+ // of marking all vector instructions as clobbering VRSAVE) for two reasons:
+ //
+ // 1. This (trivially) reduces the load on the register allocator, by not
+ // having to represent the live range of the VRSAVE register.
+ // 2. This (more significantly) allows us to create a temporary virtual
+ // register to hold the saved VRSAVE value, allowing this temporary to be
+ // register allocated, instead of forcing it to be spilled to the stack.
+
+ // Create two vregs - one to hold the VRSAVE register that is live-in to the
+ // function and one for the value after having bits or'd into it.
+ unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
+ unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
+
+ const TargetInstrInfo &TII = *TM.getInstrInfo();
+ MachineBasicBlock &EntryBB = *Fn.begin();
+ DebugLoc dl;
+ // Emit the following code into the entry block:
+ // InVRSAVE = MFVRSAVE
+ // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
+ // MTVRSAVE UpdatedVRSAVE
+ MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
+ BuildMI(EntryBB, IP, dl, TII.get(PPC::MFVRSAVE), InVRSAVE);
+ BuildMI(EntryBB, IP, dl, TII.get(PPC::UPDATE_VRSAVE),
+ UpdatedVRSAVE).addReg(InVRSAVE);
+ BuildMI(EntryBB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
+
+ // Find all return blocks, outputting a restore in each epilog.
+ for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
+ if (!BB->empty() && BB->back().isReturn()) {
+ IP = BB->end(); --IP;
+
+ // Skip over all terminator instructions, which are part of the return
+ // sequence.
+ MachineBasicBlock::iterator I2 = IP;
+ while (I2 != BB->begin() && (--I2)->isTerminator())
+ IP = I2;
+
+ // Emit: MTVRSAVE InVRSave
+ BuildMI(*BB, IP, dl, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
+ }
+ }
+}
+
+
+/// getGlobalBaseReg - Output the instructions required to put the
+/// base address to use for accessing globals into a register.
+///
+SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
+ if (!GlobalBaseReg) {
+ const TargetInstrInfo &TII = *TM.getInstrInfo();
+ // Insert the set of GlobalBaseReg into the first MBB of the function
+ MachineBasicBlock &FirstMBB = MF->front();
+ MachineBasicBlock::iterator MBBI = FirstMBB.begin();
+ DebugLoc dl;
+
+ if (PPCLowering.getPointerTy() == MVT::i32) {
+ GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
+ BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR));
+ BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR), GlobalBaseReg);
+ } else {
+ GlobalBaseReg = RegInfo->createVirtualRegister(&PPC::G8RCRegClass);
+ BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MovePCtoLR8));
+ BuildMI(FirstMBB, MBBI, dl, TII.get(PPC::MFLR8), GlobalBaseReg);
+ }
+ }
+ return CurDAG->getRegister(GlobalBaseReg,
+ PPCLowering.getPointerTy()).getNode();
+}
+
+/// isIntS16Immediate - This method tests to see if the node is either a 32-bit
+/// or 64-bit immediate, and if the value can be accurately represented as a
+/// sign extension from a 16-bit value. If so, this returns true and the
+/// immediate.
+static bool isIntS16Immediate(SDNode *N, short &Imm) {
+ if (N->getOpcode() != ISD::Constant)
+ return false;
+
+ Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
+ if (N->getValueType(0) == MVT::i32)
+ return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
+ else
+ return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
+}
+
+static bool isIntS16Immediate(SDValue Op, short &Imm) {
+ return isIntS16Immediate(Op.getNode(), Imm);
+}
+
+
+/// isInt32Immediate - This method tests to see if the node is a 32-bit constant
+/// operand. If so Imm will receive the 32-bit value.
+static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
+ if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
+ Imm = cast<ConstantSDNode>(N)->getZExtValue();
+ return true;
+ }
+ return false;
+}
+
+/// isInt64Immediate - This method tests to see if the node is a 64-bit constant
+/// operand. If so Imm will receive the 64-bit value.
+static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
+ if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
+ Imm = cast<ConstantSDNode>(N)->getZExtValue();
+ return true;
+ }
+ return false;
+}
+
+// isInt32Immediate - This method tests to see if a constant operand.
+// If so Imm will receive the 32 bit value.
+static bool isInt32Immediate(SDValue N, unsigned &Imm) {
+ return isInt32Immediate(N.getNode(), Imm);
+}
+
+
+// isOpcWithIntImmediate - This method tests to see if the node is a specific
+// opcode and that it has a immediate integer right operand.
+// If so Imm will receive the 32 bit value.
+static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
+ return N->getOpcode() == Opc
+ && isInt32Immediate(N->getOperand(1).getNode(), Imm);
+}
+
+bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
+ if (isShiftedMask_32(Val)) {
+ // look for the first non-zero bit
+ MB = CountLeadingZeros_32(Val);
+ // look for the first zero bit after the run of ones
+ ME = CountLeadingZeros_32((Val - 1) ^ Val);
+ return true;
+ } else {
+ Val = ~Val; // invert mask
+ if (isShiftedMask_32(Val)) {
+ // effectively look for the first zero bit
+ ME = CountLeadingZeros_32(Val) - 1;
+ // effectively look for the first one bit after the run of zeros
+ MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
+ return true;
+ }
+ }
+ // no run present
+ return false;
+}
+
+bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
+ bool isShiftMask, unsigned &SH,
+ unsigned &MB, unsigned &ME) {
+ // Don't even go down this path for i64, since different logic will be
+ // necessary for rldicl/rldicr/rldimi.
+ if (N->getValueType(0) != MVT::i32)
+ return false;
+
+ unsigned Shift = 32;
+ unsigned Indeterminant = ~0; // bit mask marking indeterminant results
+ unsigned Opcode = N->getOpcode();
+ if (N->getNumOperands() != 2 ||
+ !isInt32Immediate(N->getOperand(1).getNode(), Shift) || (Shift > 31))
+ return false;
+
+ if (Opcode == ISD::SHL) {
+ // apply shift left to mask if it comes first
+ if (isShiftMask) Mask = Mask << Shift;
+ // determine which bits are made indeterminant by shift
+ Indeterminant = ~(0xFFFFFFFFu << Shift);
+ } else if (Opcode == ISD::SRL) {
+ // apply shift right to mask if it comes first
+ if (isShiftMask) Mask = Mask >> Shift;
+ // determine which bits are made indeterminant by shift
+ Indeterminant = ~(0xFFFFFFFFu >> Shift);
+ // adjust for the left rotate
+ Shift = 32 - Shift;
+ } else if (Opcode == ISD::ROTL) {
+ Indeterminant = 0;
+ } else {
+ return false;
+ }
+
+ // if the mask doesn't intersect any Indeterminant bits
+ if (Mask && !(Mask & Indeterminant)) {
+ SH = Shift & 31;
+ // make sure the mask is still a mask (wrap arounds may not be)
+ return isRunOfOnes(Mask, MB, ME);
+ }
+ return false;
+}
+
+/// SelectBitfieldInsert - turn an or of two masked values into
+/// the rotate left word immediate then mask insert (rlwimi) instruction.
+SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ DebugLoc dl = N->getDebugLoc();
+
+ APInt LKZ, LKO, RKZ, RKO;
+ CurDAG->ComputeMaskedBits(Op0, LKZ, LKO);
+ CurDAG->ComputeMaskedBits(Op1, RKZ, RKO);
+
+ unsigned TargetMask = LKZ.getZExtValue();
+ unsigned InsertMask = RKZ.getZExtValue();
+
+ if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
+ unsigned Op0Opc = Op0.getOpcode();
+ unsigned Op1Opc = Op1.getOpcode();
+ unsigned Value, SH = 0;
+ TargetMask = ~TargetMask;
+ InsertMask = ~InsertMask;
+
+ // If the LHS has a foldable shift and the RHS does not, then swap it to the
+ // RHS so that we can fold the shift into the insert.
+ if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
+ if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
+ Op0.getOperand(0).getOpcode() == ISD::SRL) {
+ if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
+ Op1.getOperand(0).getOpcode() != ISD::SRL) {
+ std::swap(Op0, Op1);
+ std::swap(Op0Opc, Op1Opc);
+ std::swap(TargetMask, InsertMask);
+ }
+ }
+ } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
+ if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
+ Op1.getOperand(0).getOpcode() != ISD::SRL) {
+ std::swap(Op0, Op1);
+ std::swap(Op0Opc, Op1Opc);
+ std::swap(TargetMask, InsertMask);
+ }
+ }
+
+ unsigned MB, ME;
+ if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
+ SDValue Tmp1, Tmp2;
+
+ if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
+ isInt32Immediate(Op1.getOperand(1), Value)) {
+ Op1 = Op1.getOperand(0);
+ SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
+ }
+ if (Op1Opc == ISD::AND) {
+ unsigned SHOpc = Op1.getOperand(0).getOpcode();
+ if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
+ isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
+ Op1 = Op1.getOperand(0).getOperand(0);
+ SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
+ } else {
+ Op1 = Op1.getOperand(0);
+ }
+ }
+
+ SH &= 31;
+ SDValue Ops[] = { Op0, Op1, getI32Imm(SH), getI32Imm(MB),
+ getI32Imm(ME) };
+ return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
+ }
+ }
+ return 0;
+}
+
+/// SelectCC - Select a comparison of the specified values with the specified
+/// condition code, returning the CR# of the expression.
+SDValue PPCDAGToDAGISel::SelectCC(SDValue LHS, SDValue RHS,
+ ISD::CondCode CC, DebugLoc dl) {
+ // Always select the LHS.
+ unsigned Opc;
+
+ if (LHS.getValueType() == MVT::i32) {
+ unsigned Imm;
+ if (CC == ISD::SETEQ || CC == ISD::SETNE) {
+ if (isInt32Immediate(RHS, Imm)) {
+ // SETEQ/SETNE comparison with 16-bit immediate, fold it.
+ if (isUInt<16>(Imm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
+ getI32Imm(Imm & 0xFFFF)), 0);
+ // If this is a 16-bit signed immediate, fold it.
+ if (isInt<16>((int)Imm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
+ getI32Imm(Imm & 0xFFFF)), 0);
+
+ // For non-equality comparisons, the default code would materialize the
+ // constant, then compare against it, like this:
+ // lis r2, 4660
+ // ori r2, r2, 22136
+ // cmpw cr0, r3, r2
+ // Since we are just comparing for equality, we can emit this instead:
+ // xoris r0,r3,0x1234
+ // cmplwi cr0,r0,0x5678
+ // beq cr0,L6
+ SDValue Xor(CurDAG->getMachineNode(PPC::XORIS, dl, MVT::i32, LHS,
+ getI32Imm(Imm >> 16)), 0);
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, Xor,
+ getI32Imm(Imm & 0xFFFF)), 0);
+ }
+ Opc = PPC::CMPLW;
+ } else if (ISD::isUnsignedIntSetCC(CC)) {
+ if (isInt32Immediate(RHS, Imm) && isUInt<16>(Imm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLWI, dl, MVT::i32, LHS,
+ getI32Imm(Imm & 0xFFFF)), 0);
+ Opc = PPC::CMPLW;
+ } else {
+ short SImm;
+ if (isIntS16Immediate(RHS, SImm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPWI, dl, MVT::i32, LHS,
+ getI32Imm((int)SImm & 0xFFFF)),
+ 0);
+ Opc = PPC::CMPW;
+ }
+ } else if (LHS.getValueType() == MVT::i64) {
+ uint64_t Imm;
+ if (CC == ISD::SETEQ || CC == ISD::SETNE) {
+ if (isInt64Immediate(RHS.getNode(), Imm)) {
+ // SETEQ/SETNE comparison with 16-bit immediate, fold it.
+ if (isUInt<16>(Imm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
+ getI32Imm(Imm & 0xFFFF)), 0);
+ // If this is a 16-bit signed immediate, fold it.
+ if (isInt<16>(Imm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
+ getI32Imm(Imm & 0xFFFF)), 0);
+
+ // For non-equality comparisons, the default code would materialize the
+ // constant, then compare against it, like this:
+ // lis r2, 4660
+ // ori r2, r2, 22136
+ // cmpd cr0, r3, r2
+ // Since we are just comparing for equality, we can emit this instead:
+ // xoris r0,r3,0x1234
+ // cmpldi cr0,r0,0x5678
+ // beq cr0,L6
+ if (isUInt<32>(Imm)) {
+ SDValue Xor(CurDAG->getMachineNode(PPC::XORIS8, dl, MVT::i64, LHS,
+ getI64Imm(Imm >> 16)), 0);
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, Xor,
+ getI64Imm(Imm & 0xFFFF)), 0);
+ }
+ }
+ Opc = PPC::CMPLD;
+ } else if (ISD::isUnsignedIntSetCC(CC)) {
+ if (isInt64Immediate(RHS.getNode(), Imm) && isUInt<16>(Imm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPLDI, dl, MVT::i64, LHS,
+ getI64Imm(Imm & 0xFFFF)), 0);
+ Opc = PPC::CMPLD;
+ } else {
+ short SImm;
+ if (isIntS16Immediate(RHS, SImm))
+ return SDValue(CurDAG->getMachineNode(PPC::CMPDI, dl, MVT::i64, LHS,
+ getI64Imm(SImm & 0xFFFF)),
+ 0);
+ Opc = PPC::CMPD;
+ }
+ } else if (LHS.getValueType() == MVT::f32) {
+ Opc = PPC::FCMPUS;
+ } else {
+ assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
+ Opc = PPC::FCMPUD;
+ }
+ return SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i32, LHS, RHS), 0);
+}
+
+static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
+ switch (CC) {
+ case ISD::SETUEQ:
+ case ISD::SETONE:
+ case ISD::SETOLE:
+ case ISD::SETOGE:
+ llvm_unreachable("Should be lowered by legalize!");
+ default: llvm_unreachable("Unknown condition!");
+ case ISD::SETOEQ:
+ case ISD::SETEQ: return PPC::PRED_EQ;
+ case ISD::SETUNE:
+ case ISD::SETNE: return PPC::PRED_NE;
+ case ISD::SETOLT:
+ case ISD::SETLT: return PPC::PRED_LT;
+ case ISD::SETULE:
+ case ISD::SETLE: return PPC::PRED_LE;
+ case ISD::SETOGT:
+ case ISD::SETGT: return PPC::PRED_GT;
+ case ISD::SETUGE:
+ case ISD::SETGE: return PPC::PRED_GE;
+ case ISD::SETO: return PPC::PRED_NU;
+ case ISD::SETUO: return PPC::PRED_UN;
+ // These two are invalid for floating point. Assume we have int.
+ case ISD::SETULT: return PPC::PRED_LT;
+ case ISD::SETUGT: return PPC::PRED_GT;
+ }
+}
+
+/// getCRIdxForSetCC - Return the index of the condition register field
+/// associated with the SetCC condition, and whether or not the field is
+/// treated as inverted. That is, lt = 0; ge = 0 inverted.
+///
+/// If this returns with Other != -1, then the returned comparison is an or of
+/// two simpler comparisons. In this case, Invert is guaranteed to be false.
+static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) {
+ Invert = false;
+ Other = -1;
+ switch (CC) {
+ default: llvm_unreachable("Unknown condition!");
+ case ISD::SETOLT:
+ case ISD::SETLT: return 0; // Bit #0 = SETOLT
+ case ISD::SETOGT:
+ case ISD::SETGT: return 1; // Bit #1 = SETOGT
+ case ISD::SETOEQ:
+ case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
+ case ISD::SETUO: return 3; // Bit #3 = SETUO
+ case ISD::SETUGE:
+ case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
+ case ISD::SETULE:
+ case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
+ case ISD::SETUNE:
+ case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
+ case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
+ case ISD::SETUEQ:
+ case ISD::SETOGE:
+ case ISD::SETOLE:
+ case ISD::SETONE:
+ llvm_unreachable("Invalid branch code: should be expanded by legalize");
+ // These are invalid for floating point. Assume integer.
+ case ISD::SETULT: return 0;
+ case ISD::SETUGT: return 1;
+ }
+}
+
+SDNode *PPCDAGToDAGISel::SelectSETCC(SDNode *N) {
+ DebugLoc dl = N->getDebugLoc();
+ unsigned Imm;
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
+ EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
+ bool isPPC64 = (PtrVT == MVT::i64);
+
+ if (isInt32Immediate(N->getOperand(1), Imm)) {
+ // We can codegen setcc op, imm very efficiently compared to a brcond.
+ // Check for those cases here.
+ // setcc op, 0
+ if (Imm == 0) {
+ SDValue Op = N->getOperand(0);
+ switch (CC) {
+ default: break;
+ case ISD::SETEQ: {
+ Op = SDValue(CurDAG->getMachineNode(PPC::CNTLZW, dl, MVT::i32, Op), 0);
+ SDValue Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+ }
+ case ISD::SETNE: {
+ if (isPPC64) break;
+ SDValue AD =
+ SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
+ Op, getI32Imm(~0U)), 0);
+ return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
+ AD.getValue(1));
+ }
+ case ISD::SETLT: {
+ SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+ }
+ case ISD::SETGT: {
+ SDValue T =
+ SDValue(CurDAG->getMachineNode(PPC::NEG, dl, MVT::i32, Op), 0);
+ T = SDValue(CurDAG->getMachineNode(PPC::ANDC, dl, MVT::i32, T, Op), 0);
+ SDValue Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+ }
+ }
+ } else if (Imm == ~0U) { // setcc op, -1
+ SDValue Op = N->getOperand(0);
+ switch (CC) {
+ default: break;
+ case ISD::SETEQ:
+ if (isPPC64) break;
+ Op = SDValue(CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
+ Op, getI32Imm(1)), 0);
+ return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
+ SDValue(CurDAG->getMachineNode(PPC::LI, dl,
+ MVT::i32,
+ getI32Imm(0)), 0),
+ Op.getValue(1));
+ case ISD::SETNE: {
+ if (isPPC64) break;
+ Op = SDValue(CurDAG->getMachineNode(PPC::NOR, dl, MVT::i32, Op, Op), 0);
+ SDNode *AD = CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
+ Op, getI32Imm(~0U));
+ return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDValue(AD, 0),
+ Op, SDValue(AD, 1));
+ }
+ case ISD::SETLT: {
+ SDValue AD = SDValue(CurDAG->getMachineNode(PPC::ADDI, dl, MVT::i32, Op,
+ getI32Imm(1)), 0);
+ SDValue AN = SDValue(CurDAG->getMachineNode(PPC::AND, dl, MVT::i32, AD,
+ Op), 0);
+ SDValue Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+ }
+ case ISD::SETGT: {
+ SDValue Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
+ Op = SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4),
+ 0);
+ return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
+ getI32Imm(1));
+ }
+ }
+ }
+ }
+
+ bool Inv;
+ int OtherCondIdx;
+ unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx);
+ SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
+ SDValue IntCR;
+
+ // Force the ccreg into CR7.
+ SDValue CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
+
+ SDValue InFlag(0, 0); // Null incoming flag value.
+ CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, CR7Reg, CCReg,
+ InFlag).getValue(1);
+
+ if (PPCSubTarget.hasMFOCRF() && OtherCondIdx == -1)
+ IntCR = SDValue(CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32, CR7Reg,
+ CCReg), 0);
+ else
+ IntCR = SDValue(CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
+ CR7Reg, CCReg), 0);
+
+ SDValue Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
+ getI32Imm(31), getI32Imm(31) };
+ if (OtherCondIdx == -1 && !Inv)
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+
+ // Get the specified bit.
+ SDValue Tmp =
+ SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
+ if (Inv) {
+ assert(OtherCondIdx == -1 && "Can't have split plus negation");
+ return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
+ }
+
+ // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT.
+ // We already got the bit for the first part of the comparison (e.g. SETULE).
+
+ // Get the other bit of the comparison.
+ Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31);
+ SDValue OtherCond =
+ SDValue(CurDAG->getMachineNode(PPC::RLWINM, dl, MVT::i32, Ops, 4), 0);
+
+ return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond);
+}
+
+
+// Select - Convert the specified operand from a target-independent to a
+// target-specific node if it hasn't already been changed.
+SDNode *PPCDAGToDAGISel::Select(SDNode *N) {
+ DebugLoc dl = N->getDebugLoc();
+ if (N->isMachineOpcode())
+ return NULL; // Already selected.
+
+ switch (N->getOpcode()) {
+ default: break;
+
+ case ISD::Constant: {
+ if (N->getValueType(0) == MVT::i64) {
+ // Get 64 bit value.
+ int64_t Imm = cast<ConstantSDNode>(N)->getZExtValue();
+ // Assume no remaining bits.
+ unsigned Remainder = 0;
+ // Assume no shift required.
+ unsigned Shift = 0;
+
+ // If it can't be represented as a 32 bit value.
+ if (!isInt<32>(Imm)) {
+ Shift = CountTrailingZeros_64(Imm);
+ int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
+
+ // If the shifted value fits 32 bits.
+ if (isInt<32>(ImmSh)) {
+ // Go with the shifted value.
+ Imm = ImmSh;
+ } else {
+ // Still stuck with a 64 bit value.
+ Remainder = Imm;
+ Shift = 32;
+ Imm >>= 32;
+ }
+ }
+
+ // Intermediate operand.
+ SDNode *Result;
+
+ // Handle first 32 bits.
+ unsigned Lo = Imm & 0xFFFF;
+ unsigned Hi = (Imm >> 16) & 0xFFFF;
+
+ // Simple value.
+ if (isInt<16>(Imm)) {
+ // Just the Lo bits.
+ Result = CurDAG->getMachineNode(PPC::LI8, dl, MVT::i64, getI32Imm(Lo));
+ } else if (Lo) {
+ // Handle the Hi bits.
+ unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
+ Result = CurDAG->getMachineNode(OpC, dl, MVT::i64, getI32Imm(Hi));
+ // And Lo bits.
+ Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
+ SDValue(Result, 0), getI32Imm(Lo));
+ } else {
+ // Just the Hi bits.
+ Result = CurDAG->getMachineNode(PPC::LIS8, dl, MVT::i64, getI32Imm(Hi));
+ }
+
+ // If no shift, we're done.
+ if (!Shift) return Result;
+
+ // Shift for next step if the upper 32-bits were not zero.
+ if (Imm) {
+ Result = CurDAG->getMachineNode(PPC::RLDICR, dl, MVT::i64,
+ SDValue(Result, 0),
+ getI32Imm(Shift),
+ getI32Imm(63 - Shift));
+ }
+
+ // Add in the last bits as required.
+ if ((Hi = (Remainder >> 16) & 0xFFFF)) {
+ Result = CurDAG->getMachineNode(PPC::ORIS8, dl, MVT::i64,
+ SDValue(Result, 0), getI32Imm(Hi));
+ }
+ if ((Lo = Remainder & 0xFFFF)) {
+ Result = CurDAG->getMachineNode(PPC::ORI8, dl, MVT::i64,
+ SDValue(Result, 0), getI32Imm(Lo));
+ }
+
+ return Result;
+ }
+ break;
+ }
+
+ case ISD::SETCC:
+ return SelectSETCC(N);
+ case PPCISD::GlobalBaseReg:
+ return getGlobalBaseReg();
+
+ case ISD::FrameIndex: {
+ int FI = cast<FrameIndexSDNode>(N)->getIndex();
+ SDValue TFI = CurDAG->getTargetFrameIndex(FI, N->getValueType(0));
+ unsigned Opc = N->getValueType(0) == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
+ if (N->hasOneUse())
+ return CurDAG->SelectNodeTo(N, Opc, N->getValueType(0), TFI,
+ getSmallIPtrImm(0));
+ return CurDAG->getMachineNode(Opc, dl, N->getValueType(0), TFI,
+ getSmallIPtrImm(0));
+ }
+
+ case PPCISD::MFCR: {
+ SDValue InFlag = N->getOperand(1);
+ // Use MFOCRF if supported.
+ if (PPCSubTarget.hasMFOCRF())
+ return CurDAG->getMachineNode(PPC::MFOCRF, dl, MVT::i32,
+ N->getOperand(0), InFlag);
+ else
+ return CurDAG->getMachineNode(PPC::MFCRpseud, dl, MVT::i32,
+ N->getOperand(0), InFlag);
+ }
+
+ case ISD::SDIV: {
+ // FIXME: since this depends on the setting of the carry flag from the srawi
+ // we should really be making notes about that for the scheduler.
+ // FIXME: It sure would be nice if we could cheaply recognize the
+ // srl/add/sra pattern the dag combiner will generate for this as
+ // sra/addze rather than having to handle sdiv ourselves. oh well.
+ unsigned Imm;
+ if (isInt32Immediate(N->getOperand(1), Imm)) {
+ SDValue N0 = N->getOperand(0);
+ if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
+ SDNode *Op =
+ CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
+ N0, getI32Imm(Log2_32(Imm)));
+ return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
+ SDValue(Op, 0), SDValue(Op, 1));
+ } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
+ SDNode *Op =
+ CurDAG->getMachineNode(PPC::SRAWI, dl, MVT::i32, MVT::Glue,
+ N0, getI32Imm(Log2_32(-Imm)));
+ SDValue PT =
+ SDValue(CurDAG->getMachineNode(PPC::ADDZE, dl, MVT::i32,
+ SDValue(Op, 0), SDValue(Op, 1)),
+ 0);
+ return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
+ }
+ }
+
+ // Other cases are autogenerated.
+ break;
+ }
+
+ case ISD::LOAD: {
+ // Handle preincrement loads.
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ EVT LoadedVT = LD->getMemoryVT();
+
+ // Normal loads are handled by code generated from the .td file.
+ if (LD->getAddressingMode() != ISD::PRE_INC)
+ break;
+
+ SDValue Offset = LD->getOffset();
+ if (isa<ConstantSDNode>(Offset) ||
+ Offset.getOpcode() == ISD::TargetGlobalAddress) {
+
+ unsigned Opcode;
+ bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
+ if (LD->getValueType(0) != MVT::i64) {
+ // Handle PPC32 integer and normal FP loads.
+ assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
+ switch (LoadedVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Invalid PPC load type!");
+ case MVT::f64: Opcode = PPC::LFDU; break;
+ case MVT::f32: Opcode = PPC::LFSU; break;
+ case MVT::i32: Opcode = PPC::LWZU; break;
+ case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
+ case MVT::i1:
+ case MVT::i8: Opcode = PPC::LBZU; break;
+ }
+ } else {
+ assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
+ assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
+ switch (LoadedVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Invalid PPC load type!");
+ case MVT::i64: Opcode = PPC::LDU; break;
+ case MVT::i32: Opcode = PPC::LWZU8; break;
+ case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
+ case MVT::i1:
+ case MVT::i8: Opcode = PPC::LBZU8; break;
+ }
+ }
+
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ SDValue Ops[] = { Offset, Base, Chain };
+ return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
+ PPCLowering.getPointerTy(),
+ MVT::Other, Ops, 3);
+ } else {
+ unsigned Opcode;
+ bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
+ if (LD->getValueType(0) != MVT::i64) {
+ // Handle PPC32 integer and normal FP loads.
+ assert((!isSExt || LoadedVT == MVT::i16) && "Invalid sext update load");
+ switch (LoadedVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Invalid PPC load type!");
+ case MVT::f64: Opcode = PPC::LFDUX; break;
+ case MVT::f32: Opcode = PPC::LFSUX; break;
+ case MVT::i32: Opcode = PPC::LWZUX; break;
+ case MVT::i16: Opcode = isSExt ? PPC::LHAUX : PPC::LHZUX; break;
+ case MVT::i1:
+ case MVT::i8: Opcode = PPC::LBZUX; break;
+ }
+ } else {
+ assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
+ assert((!isSExt || LoadedVT == MVT::i16 || LoadedVT == MVT::i32) &&
+ "Invalid sext update load");
+ switch (LoadedVT.getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Invalid PPC load type!");
+ case MVT::i64: Opcode = PPC::LDUX; break;
+ case MVT::i32: Opcode = isSExt ? PPC::LWAUX : PPC::LWZUX8; break;
+ case MVT::i16: Opcode = isSExt ? PPC::LHAUX8 : PPC::LHZUX8; break;
+ case MVT::i1:
+ case MVT::i8: Opcode = PPC::LBZUX8; break;
+ }
+ }
+
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ SDValue Ops[] = { Offset, Base, Chain };
+ return CurDAG->getMachineNode(Opcode, dl, LD->getValueType(0),
+ PPCLowering.getPointerTy(),
+ MVT::Other, Ops, 3);
+ }
+ }
+
+ case ISD::AND: {
+ unsigned Imm, Imm2, SH, MB, ME;
+
+ // If this is an and of a value rotated between 0 and 31 bits and then and'd
+ // with a mask, emit rlwinm
+ if (isInt32Immediate(N->getOperand(1), Imm) &&
+ isRotateAndMask(N->getOperand(0).getNode(), Imm, false, SH, MB, ME)) {
+ SDValue Val = N->getOperand(0).getOperand(0);
+ SDValue Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+ }
+ // If this is just a masked value where the input is not handled above, and
+ // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
+ if (isInt32Immediate(N->getOperand(1), Imm) &&
+ isRunOfOnes(Imm, MB, ME) &&
+ N->getOperand(0).getOpcode() != ISD::ROTL) {
+ SDValue Val = N->getOperand(0);
+ SDValue Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+ }
+ // AND X, 0 -> 0, not "rlwinm 32".
+ if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
+ ReplaceUses(SDValue(N, 0), N->getOperand(1));
+ return NULL;
+ }
+ // ISD::OR doesn't get all the bitfield insertion fun.
+ // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
+ if (isInt32Immediate(N->getOperand(1), Imm) &&
+ N->getOperand(0).getOpcode() == ISD::OR &&
+ isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
+ unsigned MB, ME;
+ Imm = ~(Imm^Imm2);
+ if (isRunOfOnes(Imm, MB, ME)) {
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
+ N->getOperand(0).getOperand(1),
+ getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
+ return CurDAG->getMachineNode(PPC::RLWIMI, dl, MVT::i32, Ops, 5);
+ }
+ }
+
+ // Other cases are autogenerated.
+ break;
+ }
+ case ISD::OR:
+ if (N->getValueType(0) == MVT::i32)
+ if (SDNode *I = SelectBitfieldInsert(N))
+ return I;
+
+ // Other cases are autogenerated.
+ break;
+ case ISD::SHL: {
+ unsigned Imm, SH, MB, ME;
+ if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
+ isRotateAndMask(N, Imm, true, SH, MB, ME)) {
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
+ getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+ }
+
+ // Other cases are autogenerated.
+ break;
+ }
+ case ISD::SRL: {
+ unsigned Imm, SH, MB, ME;
+ if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, Imm) &&
+ isRotateAndMask(N, Imm, true, SH, MB, ME)) {
+ SDValue Ops[] = { N->getOperand(0).getOperand(0),
+ getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
+ return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
+ }
+
+ // Other cases are autogenerated.
+ break;
+ }
+ case ISD::SELECT_CC: {
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
+ EVT PtrVT = CurDAG->getTargetLoweringInfo().getPointerTy();
+ bool isPPC64 = (PtrVT == MVT::i64);
+
+ // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
+ if (!isPPC64)
+ if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
+ if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
+ if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
+ if (N1C->isNullValue() && N3C->isNullValue() &&
+ N2C->getZExtValue() == 1ULL && CC == ISD::SETNE &&
+ // FIXME: Implement this optzn for PPC64.
+ N->getValueType(0) == MVT::i32) {
+ SDNode *Tmp =
+ CurDAG->getMachineNode(PPC::ADDIC, dl, MVT::i32, MVT::Glue,
+ N->getOperand(0), getI32Imm(~0U));
+ return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
+ SDValue(Tmp, 0), N->getOperand(0),
+ SDValue(Tmp, 1));
+ }
+
+ SDValue CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC, dl);
+ unsigned BROpc = getPredicateForSetCC(CC);
+
+ unsigned SelectCCOp;
+ if (N->getValueType(0) == MVT::i32)
+ SelectCCOp = PPC::SELECT_CC_I4;
+ else if (N->getValueType(0) == MVT::i64)
+ SelectCCOp = PPC::SELECT_CC_I8;
+ else if (N->getValueType(0) == MVT::f32)
+ SelectCCOp = PPC::SELECT_CC_F4;
+ else if (N->getValueType(0) == MVT::f64)
+ SelectCCOp = PPC::SELECT_CC_F8;
+ else
+ SelectCCOp = PPC::SELECT_CC_VRRC;
+
+ SDValue Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
+ getI32Imm(BROpc) };
+ return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
+ }
+ case PPCISD::COND_BRANCH: {
+ // Op #0 is the Chain.
+ // Op #1 is the PPC::PRED_* number.
+ // Op #2 is the CR#
+ // Op #3 is the Dest MBB
+ // Op #4 is the Flag.
+ // Prevent PPC::PRED_* from being selected into LI.
+ SDValue Pred =
+ getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getZExtValue());
+ SDValue Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
+ N->getOperand(0), N->getOperand(4) };
+ return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
+ }
+ case ISD::BR_CC: {
+ ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
+ SDValue CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC, dl);
+ SDValue Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode,
+ N->getOperand(4), N->getOperand(0) };
+ return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
+ }
+ case ISD::BRIND: {
+ // FIXME: Should custom lower this.
+ SDValue Chain = N->getOperand(0);
+ SDValue Target = N->getOperand(1);
+ unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
+ unsigned Reg = Target.getValueType() == MVT::i32 ? PPC::BCTR : PPC::BCTR8;
+ Chain = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, Target,
+ Chain), 0);
+ return CurDAG->SelectNodeTo(N, Reg, MVT::Other, Chain);
+ }
+ }
+
+ return SelectCode(N);
+}
+
+
+
+/// createPPCISelDag - This pass converts a legalized DAG into a
+/// PowerPC-specific DAG, ready for instruction scheduling.
+///
+FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
+ return new PPCDAGToDAGISel(TM);
+}
+
OpenPOWER on IntegriCloud