diff options
Diffstat (limited to 'contrib/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp | 663 |
1 files changed, 663 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp b/contrib/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp new file mode 100644 index 0000000..ec1e34d --- /dev/null +++ b/contrib/llvm/lib/Target/PowerPC/PPCCTRLoops.cpp @@ -0,0 +1,663 @@ +//===-- PPCCTRLoops.cpp - Identify and generate CTR loops -----------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass identifies loops where we can generate the PPC branch instructions +// that decrement and test the count register (CTR) (bdnz and friends). +// +// The pattern that defines the induction variable can changed depending on +// prior optimizations. For example, the IndVarSimplify phase run by 'opt' +// normalizes induction variables, and the Loop Strength Reduction pass +// run by 'llc' may also make changes to the induction variable. +// +// Criteria for CTR loops: +// - Countable loops (w/ ind. var for a trip count) +// - Try inner-most loops first +// - No nested CTR loops. +// - No function calls in loops. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar.h" +#include "PPC.h" +#include "PPCTargetMachine.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/PassSupport.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetLibraryInfo.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/LoopUtils.h" + +#ifndef NDEBUG +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#endif + +#include <algorithm> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "ctrloops" + +#ifndef NDEBUG +static cl::opt<int> CTRLoopLimit("ppc-max-ctrloop", cl::Hidden, cl::init(-1)); +#endif + +STATISTIC(NumCTRLoops, "Number of loops converted to CTR loops"); + +namespace llvm { + void initializePPCCTRLoopsPass(PassRegistry&); +#ifndef NDEBUG + void initializePPCCTRLoopsVerifyPass(PassRegistry&); +#endif +} + +namespace { + struct PPCCTRLoops : public FunctionPass { + +#ifndef NDEBUG + static int Counter; +#endif + + public: + static char ID; + + PPCCTRLoops() : FunctionPass(ID), TM(nullptr) { + initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry()); + } + PPCCTRLoops(PPCTargetMachine &TM) : FunctionPass(ID), TM(&TM) { + initializePPCCTRLoopsPass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<LoopInfo>(); + AU.addPreserved<LoopInfo>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addRequired<ScalarEvolution>(); + } + + private: + bool mightUseCTR(const Triple &TT, BasicBlock *BB); + bool convertToCTRLoop(Loop *L); + + private: + PPCTargetMachine *TM; + LoopInfo *LI; + ScalarEvolution *SE; + const DataLayout *DL; + DominatorTree *DT; + const TargetLibraryInfo *LibInfo; + }; + + char PPCCTRLoops::ID = 0; +#ifndef NDEBUG + int PPCCTRLoops::Counter = 0; +#endif + +#ifndef NDEBUG + struct PPCCTRLoopsVerify : public MachineFunctionPass { + public: + static char ID; + + PPCCTRLoopsVerify() : MachineFunctionPass(ID) { + initializePPCCTRLoopsVerifyPass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<MachineDominatorTree>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + bool runOnMachineFunction(MachineFunction &MF) override; + + private: + MachineDominatorTree *MDT; + }; + + char PPCCTRLoopsVerify::ID = 0; +#endif // NDEBUG +} // end anonymous namespace + +INITIALIZE_PASS_BEGIN(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", + false, false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfo) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) +INITIALIZE_PASS_END(PPCCTRLoops, "ppc-ctr-loops", "PowerPC CTR Loops", + false, false) + +FunctionPass *llvm::createPPCCTRLoops(PPCTargetMachine &TM) { + return new PPCCTRLoops(TM); +} + +#ifndef NDEBUG +INITIALIZE_PASS_BEGIN(PPCCTRLoopsVerify, "ppc-ctr-loops-verify", + "PowerPC CTR Loops Verify", false, false) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_END(PPCCTRLoopsVerify, "ppc-ctr-loops-verify", + "PowerPC CTR Loops Verify", false, false) + +FunctionPass *llvm::createPPCCTRLoopsVerify() { + return new PPCCTRLoopsVerify(); +} +#endif // NDEBUG + +bool PPCCTRLoops::runOnFunction(Function &F) { + LI = &getAnalysis<LoopInfo>(); + SE = &getAnalysis<ScalarEvolution>(); + DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); + DL = DLP ? &DLP->getDataLayout() : nullptr; + LibInfo = getAnalysisIfAvailable<TargetLibraryInfo>(); + + bool MadeChange = false; + + for (LoopInfo::iterator I = LI->begin(), E = LI->end(); + I != E; ++I) { + Loop *L = *I; + if (!L->getParentLoop()) + MadeChange |= convertToCTRLoop(L); + } + + return MadeChange; +} + +static bool isLargeIntegerTy(bool Is32Bit, Type *Ty) { + if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) + return ITy->getBitWidth() > (Is32Bit ? 32U : 64U); + + return false; +} + +bool PPCCTRLoops::mightUseCTR(const Triple &TT, BasicBlock *BB) { + for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); + J != JE; ++J) { + if (CallInst *CI = dyn_cast<CallInst>(J)) { + if (InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue())) { + // Inline ASM is okay, unless it clobbers the ctr register. + InlineAsm::ConstraintInfoVector CIV = IA->ParseConstraints(); + for (unsigned i = 0, ie = CIV.size(); i < ie; ++i) { + InlineAsm::ConstraintInfo &C = CIV[i]; + if (C.Type != InlineAsm::isInput) + for (unsigned j = 0, je = C.Codes.size(); j < je; ++j) + if (StringRef(C.Codes[j]).equals_lower("{ctr}")) + return true; + } + + continue; + } + + if (!TM) + return true; + const TargetLowering *TLI = TM->getTargetLowering(); + + if (Function *F = CI->getCalledFunction()) { + // Most intrinsics don't become function calls, but some might. + // sin, cos, exp and log are always calls. + unsigned Opcode; + if (F->getIntrinsicID() != Intrinsic::not_intrinsic) { + switch (F->getIntrinsicID()) { + default: continue; + +// VisualStudio defines setjmp as _setjmp +#if defined(_MSC_VER) && defined(setjmp) && \ + !defined(setjmp_undefined_for_msvc) +# pragma push_macro("setjmp") +# undef setjmp +# define setjmp_undefined_for_msvc +#endif + + case Intrinsic::setjmp: + +#if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc) + // let's return it to _setjmp state +# pragma pop_macro("setjmp") +# undef setjmp_undefined_for_msvc +#endif + + case Intrinsic::longjmp: + + // Exclude eh_sjlj_setjmp; we don't need to exclude eh_sjlj_longjmp + // because, although it does clobber the counter register, the + // control can't then return to inside the loop unless there is also + // an eh_sjlj_setjmp. + case Intrinsic::eh_sjlj_setjmp: + + case Intrinsic::memcpy: + case Intrinsic::memmove: + case Intrinsic::memset: + case Intrinsic::powi: + case Intrinsic::log: + case Intrinsic::log2: + case Intrinsic::log10: + case Intrinsic::exp: + case Intrinsic::exp2: + case Intrinsic::pow: + case Intrinsic::sin: + case Intrinsic::cos: + return true; + case Intrinsic::copysign: + if (CI->getArgOperand(0)->getType()->getScalarType()-> + isPPC_FP128Ty()) + return true; + else + continue; // ISD::FCOPYSIGN is never a library call. + case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; + case Intrinsic::floor: Opcode = ISD::FFLOOR; break; + case Intrinsic::ceil: Opcode = ISD::FCEIL; break; + case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; + case Intrinsic::rint: Opcode = ISD::FRINT; break; + case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; + case Intrinsic::round: Opcode = ISD::FROUND; break; + } + } + + // PowerPC does not use [US]DIVREM or other library calls for + // operations on regular types which are not otherwise library calls + // (i.e. soft float or atomics). If adapting for targets that do, + // additional care is required here. + + LibFunc::Func Func; + if (!F->hasLocalLinkage() && F->hasName() && LibInfo && + LibInfo->getLibFunc(F->getName(), Func) && + LibInfo->hasOptimizedCodeGen(Func)) { + // Non-read-only functions are never treated as intrinsics. + if (!CI->onlyReadsMemory()) + return true; + + // Conversion happens only for FP calls. + if (!CI->getArgOperand(0)->getType()->isFloatingPointTy()) + return true; + + switch (Func) { + default: return true; + case LibFunc::copysign: + case LibFunc::copysignf: + continue; // ISD::FCOPYSIGN is never a library call. + case LibFunc::copysignl: + return true; + case LibFunc::fabs: + case LibFunc::fabsf: + case LibFunc::fabsl: + continue; // ISD::FABS is never a library call. + case LibFunc::sqrt: + case LibFunc::sqrtf: + case LibFunc::sqrtl: + Opcode = ISD::FSQRT; break; + case LibFunc::floor: + case LibFunc::floorf: + case LibFunc::floorl: + Opcode = ISD::FFLOOR; break; + case LibFunc::nearbyint: + case LibFunc::nearbyintf: + case LibFunc::nearbyintl: + Opcode = ISD::FNEARBYINT; break; + case LibFunc::ceil: + case LibFunc::ceilf: + case LibFunc::ceill: + Opcode = ISD::FCEIL; break; + case LibFunc::rint: + case LibFunc::rintf: + case LibFunc::rintl: + Opcode = ISD::FRINT; break; + case LibFunc::round: + case LibFunc::roundf: + case LibFunc::roundl: + Opcode = ISD::FROUND; break; + case LibFunc::trunc: + case LibFunc::truncf: + case LibFunc::truncl: + Opcode = ISD::FTRUNC; break; + } + + MVT VTy = + TLI->getSimpleValueType(CI->getArgOperand(0)->getType(), true); + if (VTy == MVT::Other) + return true; + + if (TLI->isOperationLegalOrCustom(Opcode, VTy)) + continue; + else if (VTy.isVector() && + TLI->isOperationLegalOrCustom(Opcode, VTy.getScalarType())) + continue; + + return true; + } + } + + return true; + } else if (isa<BinaryOperator>(J) && + J->getType()->getScalarType()->isPPC_FP128Ty()) { + // Most operations on ppc_f128 values become calls. + return true; + } else if (isa<UIToFPInst>(J) || isa<SIToFPInst>(J) || + isa<FPToUIInst>(J) || isa<FPToSIInst>(J)) { + CastInst *CI = cast<CastInst>(J); + if (CI->getSrcTy()->getScalarType()->isPPC_FP128Ty() || + CI->getDestTy()->getScalarType()->isPPC_FP128Ty() || + isLargeIntegerTy(TT.isArch32Bit(), CI->getSrcTy()->getScalarType()) || + isLargeIntegerTy(TT.isArch32Bit(), CI->getDestTy()->getScalarType())) + return true; + } else if (isLargeIntegerTy(TT.isArch32Bit(), + J->getType()->getScalarType()) && + (J->getOpcode() == Instruction::UDiv || + J->getOpcode() == Instruction::SDiv || + J->getOpcode() == Instruction::URem || + J->getOpcode() == Instruction::SRem)) { + return true; + } else if (TT.isArch32Bit() && + isLargeIntegerTy(false, J->getType()->getScalarType()) && + (J->getOpcode() == Instruction::Shl || + J->getOpcode() == Instruction::AShr || + J->getOpcode() == Instruction::LShr)) { + // Only on PPC32, for 128-bit integers (specifically not 64-bit + // integers), these might be runtime calls. + return true; + } else if (isa<IndirectBrInst>(J) || isa<InvokeInst>(J)) { + // On PowerPC, indirect jumps use the counter register. + return true; + } else if (SwitchInst *SI = dyn_cast<SwitchInst>(J)) { + if (!TM) + return true; + const TargetLowering *TLI = TM->getTargetLowering(); + + if (TLI->supportJumpTables() && + SI->getNumCases()+1 >= (unsigned) TLI->getMinimumJumpTableEntries()) + return true; + } + } + + return false; +} + +bool PPCCTRLoops::convertToCTRLoop(Loop *L) { + bool MadeChange = false; + + Triple TT = Triple(L->getHeader()->getParent()->getParent()-> + getTargetTriple()); + if (!TT.isArch32Bit() && !TT.isArch64Bit()) + return MadeChange; // Unknown arch. type. + + // Process nested loops first. + for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) { + MadeChange |= convertToCTRLoop(*I); + } + + // If a nested loop has been converted, then we can't convert this loop. + if (MadeChange) + return MadeChange; + +#ifndef NDEBUG + // Stop trying after reaching the limit (if any). + int Limit = CTRLoopLimit; + if (Limit >= 0) { + if (Counter >= CTRLoopLimit) + return false; + Counter++; + } +#endif + + // We don't want to spill/restore the counter register, and so we don't + // want to use the counter register if the loop contains calls. + for (Loop::block_iterator I = L->block_begin(), IE = L->block_end(); + I != IE; ++I) + if (mightUseCTR(TT, *I)) + return MadeChange; + + SmallVector<BasicBlock*, 4> ExitingBlocks; + L->getExitingBlocks(ExitingBlocks); + + BasicBlock *CountedExitBlock = nullptr; + const SCEV *ExitCount = nullptr; + BranchInst *CountedExitBranch = nullptr; + for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), + IE = ExitingBlocks.end(); I != IE; ++I) { + const SCEV *EC = SE->getExitCount(L, *I); + DEBUG(dbgs() << "Exit Count for " << *L << " from block " << + (*I)->getName() << ": " << *EC << "\n"); + if (isa<SCEVCouldNotCompute>(EC)) + continue; + if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) { + if (ConstEC->getValue()->isZero()) + continue; + } else if (!SE->isLoopInvariant(EC, L)) + continue; + + if (SE->getTypeSizeInBits(EC->getType()) > (TT.isArch64Bit() ? 64 : 32)) + continue; + + // We now have a loop-invariant count of loop iterations (which is not the + // constant zero) for which we know that this loop will not exit via this + // exisiting block. + + // We need to make sure that this block will run on every loop iteration. + // For this to be true, we must dominate all blocks with backedges. Such + // blocks are in-loop predecessors to the header block. + bool NotAlways = false; + for (pred_iterator PI = pred_begin(L->getHeader()), + PIE = pred_end(L->getHeader()); PI != PIE; ++PI) { + if (!L->contains(*PI)) + continue; + + if (!DT->dominates(*I, *PI)) { + NotAlways = true; + break; + } + } + + if (NotAlways) + continue; + + // Make sure this blocks ends with a conditional branch. + Instruction *TI = (*I)->getTerminator(); + if (!TI) + continue; + + if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { + if (!BI->isConditional()) + continue; + + CountedExitBranch = BI; + } else + continue; + + // Note that this block may not be the loop latch block, even if the loop + // has a latch block. + CountedExitBlock = *I; + ExitCount = EC; + break; + } + + if (!CountedExitBlock) + return MadeChange; + + BasicBlock *Preheader = L->getLoopPreheader(); + + // If we don't have a preheader, then insert one. If we already have a + // preheader, then we can use it (except if the preheader contains a use of + // the CTR register because some such uses might be reordered by the + // selection DAG after the mtctr instruction). + if (!Preheader || mightUseCTR(TT, Preheader)) + Preheader = InsertPreheaderForLoop(L, this); + if (!Preheader) + return MadeChange; + + DEBUG(dbgs() << "Preheader for exit count: " << Preheader->getName() << "\n"); + + // Insert the count into the preheader and replace the condition used by the + // selected branch. + MadeChange = true; + + SCEVExpander SCEVE(*SE, "loopcnt"); + LLVMContext &C = SE->getContext(); + Type *CountType = TT.isArch64Bit() ? Type::getInt64Ty(C) : + Type::getInt32Ty(C); + if (!ExitCount->getType()->isPointerTy() && + ExitCount->getType() != CountType) + ExitCount = SE->getZeroExtendExpr(ExitCount, CountType); + ExitCount = SE->getAddExpr(ExitCount, + SE->getConstant(CountType, 1)); + Value *ECValue = SCEVE.expandCodeFor(ExitCount, CountType, + Preheader->getTerminator()); + + IRBuilder<> CountBuilder(Preheader->getTerminator()); + Module *M = Preheader->getParent()->getParent(); + Value *MTCTRFunc = Intrinsic::getDeclaration(M, Intrinsic::ppc_mtctr, + CountType); + CountBuilder.CreateCall(MTCTRFunc, ECValue); + + IRBuilder<> CondBuilder(CountedExitBranch); + Value *DecFunc = + Intrinsic::getDeclaration(M, Intrinsic::ppc_is_decremented_ctr_nonzero); + Value *NewCond = CondBuilder.CreateCall(DecFunc); + Value *OldCond = CountedExitBranch->getCondition(); + CountedExitBranch->setCondition(NewCond); + + // The false branch must exit the loop. + if (!L->contains(CountedExitBranch->getSuccessor(0))) + CountedExitBranch->swapSuccessors(); + + // The old condition may be dead now, and may have even created a dead PHI + // (the original induction variable). + RecursivelyDeleteTriviallyDeadInstructions(OldCond); + DeleteDeadPHIs(CountedExitBlock); + + ++NumCTRLoops; + return MadeChange; +} + +#ifndef NDEBUG +static bool clobbersCTR(const MachineInstr *MI) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (MO.isReg()) { + if (MO.isDef() && (MO.getReg() == PPC::CTR || MO.getReg() == PPC::CTR8)) + return true; + } else if (MO.isRegMask()) { + if (MO.clobbersPhysReg(PPC::CTR) || MO.clobbersPhysReg(PPC::CTR8)) + return true; + } + } + + return false; +} + +static bool verifyCTRBranch(MachineBasicBlock *MBB, + MachineBasicBlock::iterator I) { + MachineBasicBlock::iterator BI = I; + SmallSet<MachineBasicBlock *, 16> Visited; + SmallVector<MachineBasicBlock *, 8> Preds; + bool CheckPreds; + + if (I == MBB->begin()) { + Visited.insert(MBB); + goto queue_preds; + } else + --I; + +check_block: + Visited.insert(MBB); + if (I == MBB->end()) + goto queue_preds; + + CheckPreds = true; + for (MachineBasicBlock::iterator IE = MBB->begin();; --I) { + unsigned Opc = I->getOpcode(); + if (Opc == PPC::MTCTRloop || Opc == PPC::MTCTR8loop) { + CheckPreds = false; + break; + } + + if (I != BI && clobbersCTR(I)) { + DEBUG(dbgs() << "BB#" << MBB->getNumber() << " (" << + MBB->getFullName() << ") instruction " << *I << + " clobbers CTR, invalidating " << "BB#" << + BI->getParent()->getNumber() << " (" << + BI->getParent()->getFullName() << ") instruction " << + *BI << "\n"); + return false; + } + + if (I == IE) + break; + } + + if (!CheckPreds && Preds.empty()) + return true; + + if (CheckPreds) { +queue_preds: + if (MachineFunction::iterator(MBB) == MBB->getParent()->begin()) { + DEBUG(dbgs() << "Unable to find a MTCTR instruction for BB#" << + BI->getParent()->getNumber() << " (" << + BI->getParent()->getFullName() << ") instruction " << + *BI << "\n"); + return false; + } + + for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), + PIE = MBB->pred_end(); PI != PIE; ++PI) + Preds.push_back(*PI); + } + + do { + MBB = Preds.pop_back_val(); + if (!Visited.count(MBB)) { + I = MBB->getLastNonDebugInstr(); + goto check_block; + } + } while (!Preds.empty()); + + return true; +} + +bool PPCCTRLoopsVerify::runOnMachineFunction(MachineFunction &MF) { + MDT = &getAnalysis<MachineDominatorTree>(); + + // Verify that all bdnz/bdz instructions are dominated by a loop mtctr before + // any other instructions that might clobber the ctr register. + for (MachineFunction::iterator I = MF.begin(), IE = MF.end(); + I != IE; ++I) { + MachineBasicBlock *MBB = I; + if (!MDT->isReachableFromEntry(MBB)) + continue; + + for (MachineBasicBlock::iterator MII = MBB->getFirstTerminator(), + MIIE = MBB->end(); MII != MIIE; ++MII) { + unsigned Opc = MII->getOpcode(); + if (Opc == PPC::BDNZ8 || Opc == PPC::BDNZ || + Opc == PPC::BDZ8 || Opc == PPC::BDZ) + if (!verifyCTRBranch(MBB, MII)) + llvm_unreachable("Invalid PPC CTR loop!"); + } + } + + return false; +} +#endif // NDEBUG + |