diff options
Diffstat (limited to 'contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp | 2064 |
1 files changed, 2064 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp b/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp new file mode 100644 index 0000000..f2b9616 --- /dev/null +++ b/contrib/llvm/lib/Target/NVPTX/NVPTXAsmPrinter.cpp @@ -0,0 +1,2064 @@ +//===-- NVPTXAsmPrinter.cpp - NVPTX LLVM assembly writer ------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains a printer that converts from our internal representation +// of machine-dependent LLVM code to NVPTX assembly language. +// +//===----------------------------------------------------------------------===// + +#include "NVPTXAsmPrinter.h" +#include "NVPTX.h" +#include "NVPTXInstrInfo.h" +#include "NVPTXTargetMachine.h" +#include "NVPTXRegisterInfo.h" +#include "NVPTXUtilities.h" +#include "MCTargetDesc/NVPTXMCAsmInfo.h" +#include "NVPTXNumRegisters.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/DebugInfo.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Module.h" +#include "llvm/CodeGen/Analysis.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/MC/MCStreamer.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/Target/Mangler.h" +#include "llvm/Target/TargetLoweringObjectFile.h" +#include "llvm/Support/TargetRegistry.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/FormattedStream.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Support/TimeValue.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Support/Path.h" +#include "llvm/Assembly/Writer.h" +#include "cl_common_defines.h" +#include <sstream> +using namespace llvm; + + +#include "NVPTXGenAsmWriter.inc" + +bool RegAllocNilUsed = true; + +#define DEPOTNAME "__local_depot" + +static cl::opt<bool> +EmitLineNumbers("nvptx-emit-line-numbers", + cl::desc("NVPTX Specific: Emit Line numbers even without -G"), + cl::init(true)); + +namespace llvm { +bool InterleaveSrcInPtx = false; +} + +static cl::opt<bool, true>InterleaveSrc("nvptx-emit-src", + cl::ZeroOrMore, + cl::desc("NVPTX Specific: Emit source line in ptx file"), + cl::location(llvm::InterleaveSrcInPtx)); + + + + +// @TODO: This is a copy from AsmPrinter.cpp. The function is static, so we +// cannot just link to the existing version. +/// LowerConstant - Lower the specified LLVM Constant to an MCExpr. +/// +using namespace nvptx; +const MCExpr *nvptx::LowerConstant(const Constant *CV, AsmPrinter &AP) { + MCContext &Ctx = AP.OutContext; + + if (CV->isNullValue() || isa<UndefValue>(CV)) + return MCConstantExpr::Create(0, Ctx); + + if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) + return MCConstantExpr::Create(CI->getZExtValue(), Ctx); + + if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) + return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); + + if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) + return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); + + const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); + if (CE == 0) + llvm_unreachable("Unknown constant value to lower!"); + + + switch (CE->getOpcode()) { + default: + // If the code isn't optimized, there may be outstanding folding + // opportunities. Attempt to fold the expression using TargetData as a + // last resort before giving up. + if (Constant *C = + ConstantFoldConstantExpression(CE, AP.TM.getTargetData())) + if (C != CE) + return LowerConstant(C, AP); + + // Otherwise report the problem to the user. + { + std::string S; + raw_string_ostream OS(S); + OS << "Unsupported expression in static initializer: "; + WriteAsOperand(OS, CE, /*PrintType=*/false, + !AP.MF ? 0 : AP.MF->getFunction()->getParent()); + report_fatal_error(OS.str()); + } + case Instruction::GetElementPtr: { + const TargetData &TD = *AP.TM.getTargetData(); + // Generate a symbolic expression for the byte address + const Constant *PtrVal = CE->getOperand(0); + SmallVector<Value*, 8> IdxVec(CE->op_begin()+1, CE->op_end()); + int64_t Offset = TD.getIndexedOffset(PtrVal->getType(), IdxVec); + + const MCExpr *Base = LowerConstant(CE->getOperand(0), AP); + if (Offset == 0) + return Base; + + // Truncate/sext the offset to the pointer size. + if (TD.getPointerSizeInBits() != 64) { + int SExtAmount = 64-TD.getPointerSizeInBits(); + Offset = (Offset << SExtAmount) >> SExtAmount; + } + + return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), + Ctx); + } + + case Instruction::Trunc: + // We emit the value and depend on the assembler to truncate the generated + // expression properly. This is important for differences between + // blockaddress labels. Since the two labels are in the same function, it + // is reasonable to treat their delta as a 32-bit value. + // FALL THROUGH. + case Instruction::BitCast: + return LowerConstant(CE->getOperand(0), AP); + + case Instruction::IntToPtr: { + const TargetData &TD = *AP.TM.getTargetData(); + // Handle casts to pointers by changing them into casts to the appropriate + // integer type. This promotes constant folding and simplifies this code. + Constant *Op = CE->getOperand(0); + Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), + false/*ZExt*/); + return LowerConstant(Op, AP); + } + + case Instruction::PtrToInt: { + const TargetData &TD = *AP.TM.getTargetData(); + // Support only foldable casts to/from pointers that can be eliminated by + // changing the pointer to the appropriately sized integer type. + Constant *Op = CE->getOperand(0); + Type *Ty = CE->getType(); + + const MCExpr *OpExpr = LowerConstant(Op, AP); + + // We can emit the pointer value into this slot if the slot is an + // integer slot equal to the size of the pointer. + if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) + return OpExpr; + + // Otherwise the pointer is smaller than the resultant integer, mask off + // the high bits so we are sure to get a proper truncation if the input is + // a constant expr. + unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); + const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); + return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); + } + + // The MC library also has a right-shift operator, but it isn't consistently + // signed or unsigned between different targets. + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::SDiv: + case Instruction::SRem: + case Instruction::Shl: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + const MCExpr *LHS = LowerConstant(CE->getOperand(0), AP); + const MCExpr *RHS = LowerConstant(CE->getOperand(1), AP); + switch (CE->getOpcode()) { + default: llvm_unreachable("Unknown binary operator constant cast expr"); + case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); + case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); + case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); + case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); + case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); + case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); + case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); + case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); + case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); + } + } + } +} + + +void NVPTXAsmPrinter::emitLineNumberAsDotLoc(const MachineInstr &MI) +{ + if (!EmitLineNumbers) + return; + if (ignoreLoc(MI)) + return; + + DebugLoc curLoc = MI.getDebugLoc(); + + if (prevDebugLoc.isUnknown() && curLoc.isUnknown()) + return; + + if (prevDebugLoc == curLoc) + return; + + prevDebugLoc = curLoc; + + if (curLoc.isUnknown()) + return; + + + const MachineFunction *MF = MI.getParent()->getParent(); + //const TargetMachine &TM = MF->getTarget(); + + const LLVMContext &ctx = MF->getFunction()->getContext(); + DIScope Scope(curLoc.getScope(ctx)); + + if (!Scope.Verify()) + return; + + StringRef fileName(Scope.getFilename()); + StringRef dirName(Scope.getDirectory()); + SmallString<128> FullPathName = dirName; + if (!dirName.empty() && !sys::path::is_absolute(fileName)) { + sys::path::append(FullPathName, fileName); + fileName = FullPathName.str(); + } + + if (filenameMap.find(fileName.str()) == filenameMap.end()) + return; + + + // Emit the line from the source file. + if (llvm::InterleaveSrcInPtx) + this->emitSrcInText(fileName.str(), curLoc.getLine()); + + std::stringstream temp; + temp << "\t.loc " << filenameMap[fileName.str()] + << " " << curLoc.getLine() << " " << curLoc.getCol(); + OutStreamer.EmitRawText(Twine(temp.str().c_str())); +} + +void NVPTXAsmPrinter::EmitInstruction(const MachineInstr *MI) { + SmallString<128> Str; + raw_svector_ostream OS(Str); + if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) + emitLineNumberAsDotLoc(*MI); + printInstruction(MI, OS); + OutStreamer.EmitRawText(OS.str()); +} + +void NVPTXAsmPrinter::printReturnValStr(const Function *F, + raw_ostream &O) +{ + const TargetData *TD = TM.getTargetData(); + const TargetLowering *TLI = TM.getTargetLowering(); + + Type *Ty = F->getReturnType(); + + bool isABI = (nvptxSubtarget.getSmVersion() >= 20); + + if (Ty->getTypeID() == Type::VoidTyID) + return; + + O << " ("; + + if (isABI) { + if (Ty->isPrimitiveType() || Ty->isIntegerTy()) { + unsigned size = 0; + if (const IntegerType *ITy = dyn_cast<IntegerType>(Ty)) { + size = ITy->getBitWidth(); + if (size < 32) size = 32; + } else { + assert(Ty->isFloatingPointTy() && + "Floating point type expected here"); + size = Ty->getPrimitiveSizeInBits(); + } + + O << ".param .b" << size << " func_retval0"; + } + else if (isa<PointerType>(Ty)) { + O << ".param .b" << TLI->getPointerTy().getSizeInBits() + << " func_retval0"; + } else { + if ((Ty->getTypeID() == Type::StructTyID) || + isa<VectorType>(Ty)) { + SmallVector<EVT, 16> vtparts; + ComputeValueVTs(*TLI, Ty, vtparts); + unsigned totalsz = 0; + for (unsigned i=0,e=vtparts.size(); i!=e; ++i) { + unsigned elems = 1; + EVT elemtype = vtparts[i]; + if (vtparts[i].isVector()) { + elems = vtparts[i].getVectorNumElements(); + elemtype = vtparts[i].getVectorElementType(); + } + for (unsigned j=0, je=elems; j!=je; ++j) { + unsigned sz = elemtype.getSizeInBits(); + if (elemtype.isInteger() && (sz < 8)) sz = 8; + totalsz += sz/8; + } + } + unsigned retAlignment = 0; + if (!llvm::getAlign(*F, 0, retAlignment)) + retAlignment = TD->getABITypeAlignment(Ty); + O << ".param .align " + << retAlignment + << " .b8 func_retval0[" + << totalsz << "]"; + } else + assert(false && + "Unknown return type"); + } + } else { + SmallVector<EVT, 16> vtparts; + ComputeValueVTs(*TLI, Ty, vtparts); + unsigned idx = 0; + for (unsigned i=0,e=vtparts.size(); i!=e; ++i) { + unsigned elems = 1; + EVT elemtype = vtparts[i]; + if (vtparts[i].isVector()) { + elems = vtparts[i].getVectorNumElements(); + elemtype = vtparts[i].getVectorElementType(); + } + + for (unsigned j=0, je=elems; j!=je; ++j) { + unsigned sz = elemtype.getSizeInBits(); + if (elemtype.isInteger() && (sz < 32)) sz = 32; + O << ".reg .b" << sz << " func_retval" << idx; + if (j<je-1) O << ", "; + ++idx; + } + if (i < e-1) + O << ", "; + } + } + O << ") "; + return; +} + +void NVPTXAsmPrinter::printReturnValStr(const MachineFunction &MF, + raw_ostream &O) { + const Function *F = MF.getFunction(); + printReturnValStr(F, O); +} + +void NVPTXAsmPrinter::EmitFunctionEntryLabel() { + SmallString<128> Str; + raw_svector_ostream O(Str); + + // Set up + MRI = &MF->getRegInfo(); + F = MF->getFunction(); + emitLinkageDirective(F,O); + if (llvm::isKernelFunction(*F)) + O << ".entry "; + else { + O << ".func "; + printReturnValStr(*MF, O); + } + + O << *CurrentFnSym; + + emitFunctionParamList(*MF, O); + + if (llvm::isKernelFunction(*F)) + emitKernelFunctionDirectives(*F, O); + + OutStreamer.EmitRawText(O.str()); + + prevDebugLoc = DebugLoc(); +} + +void NVPTXAsmPrinter::EmitFunctionBodyStart() { + const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); + unsigned numRegClasses = TRI.getNumRegClasses(); + VRidGlobal2LocalMap = new std::map<unsigned, unsigned>[numRegClasses+1]; + OutStreamer.EmitRawText(StringRef("{\n")); + setAndEmitFunctionVirtualRegisters(*MF); + + SmallString<128> Str; + raw_svector_ostream O(Str); + emitDemotedVars(MF->getFunction(), O); + OutStreamer.EmitRawText(O.str()); +} + +void NVPTXAsmPrinter::EmitFunctionBodyEnd() { + OutStreamer.EmitRawText(StringRef("}\n")); + delete []VRidGlobal2LocalMap; +} + + +void +NVPTXAsmPrinter::emitKernelFunctionDirectives(const Function& F, + raw_ostream &O) const { + // If the NVVM IR has some of reqntid* specified, then output + // the reqntid directive, and set the unspecified ones to 1. + // If none of reqntid* is specified, don't output reqntid directive. + unsigned reqntidx, reqntidy, reqntidz; + bool specified = false; + if (llvm::getReqNTIDx(F, reqntidx) == false) reqntidx = 1; + else specified = true; + if (llvm::getReqNTIDy(F, reqntidy) == false) reqntidy = 1; + else specified = true; + if (llvm::getReqNTIDz(F, reqntidz) == false) reqntidz = 1; + else specified = true; + + if (specified) + O << ".reqntid " << reqntidx << ", " + << reqntidy << ", " << reqntidz << "\n"; + + // If the NVVM IR has some of maxntid* specified, then output + // the maxntid directive, and set the unspecified ones to 1. + // If none of maxntid* is specified, don't output maxntid directive. + unsigned maxntidx, maxntidy, maxntidz; + specified = false; + if (llvm::getMaxNTIDx(F, maxntidx) == false) maxntidx = 1; + else specified = true; + if (llvm::getMaxNTIDy(F, maxntidy) == false) maxntidy = 1; + else specified = true; + if (llvm::getMaxNTIDz(F, maxntidz) == false) maxntidz = 1; + else specified = true; + + if (specified) + O << ".maxntid " << maxntidx << ", " + << maxntidy << ", " << maxntidz << "\n"; + + unsigned mincta; + if (llvm::getMinCTASm(F, mincta)) + O << ".minnctapersm " << mincta << "\n"; +} + +void +NVPTXAsmPrinter::getVirtualRegisterName(unsigned vr, bool isVec, + raw_ostream &O) { + const TargetRegisterClass * RC = MRI->getRegClass(vr); + unsigned id = RC->getID(); + + std::map<unsigned, unsigned> ®map = VRidGlobal2LocalMap[id]; + unsigned mapped_vr = regmap[vr]; + + if (!isVec) { + O << getNVPTXRegClassStr(RC) << mapped_vr; + return; + } + // Vector virtual register + if (getNVPTXVectorSize(RC) == 4) + O << "{" + << getNVPTXRegClassStr(RC) << mapped_vr << "_0, " + << getNVPTXRegClassStr(RC) << mapped_vr << "_1, " + << getNVPTXRegClassStr(RC) << mapped_vr << "_2, " + << getNVPTXRegClassStr(RC) << mapped_vr << "_3" + << "}"; + else if (getNVPTXVectorSize(RC) == 2) + O << "{" + << getNVPTXRegClassStr(RC) << mapped_vr << "_0, " + << getNVPTXRegClassStr(RC) << mapped_vr << "_1" + << "}"; + else + llvm_unreachable("Unsupported vector size"); +} + +void +NVPTXAsmPrinter::emitVirtualRegister(unsigned int vr, bool isVec, + raw_ostream &O) { + getVirtualRegisterName(vr, isVec, O); +} + +void NVPTXAsmPrinter::printVecModifiedImmediate(const MachineOperand &MO, + const char *Modifier, + raw_ostream &O) { + static const char vecelem[] = {'0', '1', '2', '3', '0', '1', '2', '3'}; + int Imm = (int)MO.getImm(); + if(0 == strcmp(Modifier, "vecelem")) + O << "_" << vecelem[Imm]; + else if(0 == strcmp(Modifier, "vecv4comm1")) { + if((Imm < 0) || (Imm > 3)) + O << "//"; + } + else if(0 == strcmp(Modifier, "vecv4comm2")) { + if((Imm < 4) || (Imm > 7)) + O << "//"; + } + else if(0 == strcmp(Modifier, "vecv4pos")) { + if(Imm < 0) Imm = 0; + O << "_" << vecelem[Imm%4]; + } + else if(0 == strcmp(Modifier, "vecv2comm1")) { + if((Imm < 0) || (Imm > 1)) + O << "//"; + } + else if(0 == strcmp(Modifier, "vecv2comm2")) { + if((Imm < 2) || (Imm > 3)) + O << "//"; + } + else if(0 == strcmp(Modifier, "vecv2pos")) { + if(Imm < 0) Imm = 0; + O << "_" << vecelem[Imm%2]; + } + else + llvm_unreachable("Unknown Modifier on immediate operand"); +} + +void NVPTXAsmPrinter::printOperand(const MachineInstr *MI, int opNum, + raw_ostream &O, const char *Modifier) { + const MachineOperand &MO = MI->getOperand(opNum); + switch (MO.getType()) { + case MachineOperand::MO_Register: + if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) { + if (MO.getReg() == NVPTX::VRDepot) + O << DEPOTNAME << getFunctionNumber(); + else + O << getRegisterName(MO.getReg()); + } else { + if (!Modifier) + emitVirtualRegister(MO.getReg(), false, O); + else { + if (strcmp(Modifier, "vecfull") == 0) + emitVirtualRegister(MO.getReg(), true, O); + else + llvm_unreachable( + "Don't know how to handle the modifier on virtual register."); + } + } + return; + + case MachineOperand::MO_Immediate: + if (!Modifier) + O << MO.getImm(); + else if (strstr(Modifier, "vec") == Modifier) + printVecModifiedImmediate(MO, Modifier, O); + else + llvm_unreachable("Don't know how to handle modifier on immediate operand"); + return; + + case MachineOperand::MO_FPImmediate: + printFPConstant(MO.getFPImm(), O); + break; + + case MachineOperand::MO_GlobalAddress: + O << *Mang->getSymbol(MO.getGlobal()); + break; + + case MachineOperand::MO_ExternalSymbol: { + const char * symbname = MO.getSymbolName(); + if (strstr(symbname, ".PARAM") == symbname) { + unsigned index; + sscanf(symbname+6, "%u[];", &index); + printParamName(index, O); + } + else if (strstr(symbname, ".HLPPARAM") == symbname) { + unsigned index; + sscanf(symbname+9, "%u[];", &index); + O << *CurrentFnSym << "_param_" << index << "_offset"; + } + else + O << symbname; + break; + } + + case MachineOperand::MO_MachineBasicBlock: + O << *MO.getMBB()->getSymbol(); + return; + + default: + llvm_unreachable("Operand type not supported."); + } +} + +void NVPTXAsmPrinter:: +printImplicitDef(const MachineInstr *MI, raw_ostream &O) const { +#ifndef __OPTIMIZE__ + O << "\t// Implicit def :"; + //printOperand(MI, 0); + O << "\n"; +#endif +} + +void NVPTXAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum, + raw_ostream &O, const char *Modifier) { + printOperand(MI, opNum, O); + + if (Modifier && !strcmp(Modifier, "add")) { + O << ", "; + printOperand(MI, opNum+1, O); + } else { + if (MI->getOperand(opNum+1).isImm() && + MI->getOperand(opNum+1).getImm() == 0) + return; // don't print ',0' or '+0' + O << "+"; + printOperand(MI, opNum+1, O); + } +} + +void NVPTXAsmPrinter::printLdStCode(const MachineInstr *MI, int opNum, + raw_ostream &O, const char *Modifier) +{ + if (Modifier) { + const MachineOperand &MO = MI->getOperand(opNum); + int Imm = (int)MO.getImm(); + if (!strcmp(Modifier, "volatile")) { + if (Imm) + O << ".volatile"; + } else if (!strcmp(Modifier, "addsp")) { + switch (Imm) { + case NVPTX::PTXLdStInstCode::GLOBAL: O << ".global"; break; + case NVPTX::PTXLdStInstCode::SHARED: O << ".shared"; break; + case NVPTX::PTXLdStInstCode::LOCAL: O << ".local"; break; + case NVPTX::PTXLdStInstCode::PARAM: O << ".param"; break; + case NVPTX::PTXLdStInstCode::CONSTANT: O << ".const"; break; + case NVPTX::PTXLdStInstCode::GENERIC: + if (!nvptxSubtarget.hasGenericLdSt()) + O << ".global"; + break; + default: + assert("wrong value"); + } + } + else if (!strcmp(Modifier, "sign")) { + if (Imm==NVPTX::PTXLdStInstCode::Signed) + O << "s"; + else if (Imm==NVPTX::PTXLdStInstCode::Unsigned) + O << "u"; + else + O << "f"; + } + else if (!strcmp(Modifier, "vec")) { + if (Imm==NVPTX::PTXLdStInstCode::V2) + O << ".v2"; + else if (Imm==NVPTX::PTXLdStInstCode::V4) + O << ".v4"; + } + else + assert("unknown modifier"); + } + else + assert("unknown modifier"); +} + +void NVPTXAsmPrinter::emitDeclaration (const Function *F, raw_ostream &O) { + + emitLinkageDirective(F,O); + if (llvm::isKernelFunction(*F)) + O << ".entry "; + else + O << ".func "; + printReturnValStr(F, O); + O << *CurrentFnSym << "\n"; + emitFunctionParamList(F, O); + O << ";\n"; +} + +static bool usedInGlobalVarDef(const Constant *C) +{ + if (!C) + return false; + + if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) { + if (GV->getName().str() == "llvm.used") + return false; + return true; + } + + for (Value::const_use_iterator ui=C->use_begin(), ue=C->use_end(); + ui!=ue; ++ui) { + const Constant *C = dyn_cast<Constant>(*ui); + if (usedInGlobalVarDef(C)) + return true; + } + return false; +} + +static bool usedInOneFunc(const User *U, Function const *&oneFunc) +{ + if (const GlobalVariable *othergv = dyn_cast<GlobalVariable>(U)) { + if (othergv->getName().str() == "llvm.used") + return true; + } + + if (const Instruction *instr = dyn_cast<Instruction>(U)) { + if (instr->getParent() && instr->getParent()->getParent()) { + const Function *curFunc = instr->getParent()->getParent(); + if (oneFunc && (curFunc != oneFunc)) + return false; + oneFunc = curFunc; + return true; + } + else + return false; + } + + if (const MDNode *md = dyn_cast<MDNode>(U)) + if (md->hasName() && ((md->getName().str() == "llvm.dbg.gv") || + (md->getName().str() == "llvm.dbg.sp"))) + return true; + + + for (User::const_use_iterator ui=U->use_begin(), ue=U->use_end(); + ui!=ue; ++ui) { + if (usedInOneFunc(*ui, oneFunc) == false) + return false; + } + return true; +} + +/* Find out if a global variable can be demoted to local scope. + * Currently, this is valid for CUDA shared variables, which have local + * scope and global lifetime. So the conditions to check are : + * 1. Is the global variable in shared address space? + * 2. Does it have internal linkage? + * 3. Is the global variable referenced only in one function? + */ +static bool canDemoteGlobalVar(const GlobalVariable *gv, Function const *&f) { + if (gv->hasInternalLinkage() == false) + return false; + const PointerType *Pty = gv->getType(); + if (Pty->getAddressSpace() != llvm::ADDRESS_SPACE_SHARED) + return false; + + const Function *oneFunc = 0; + + bool flag = usedInOneFunc(gv, oneFunc); + if (flag == false) + return false; + if (!oneFunc) + return false; + f = oneFunc; + return true; +} + +static bool useFuncSeen(const Constant *C, + llvm::DenseMap<const Function *, bool> &seenMap) { + for (Value::const_use_iterator ui=C->use_begin(), ue=C->use_end(); + ui!=ue; ++ui) { + if (const Constant *cu = dyn_cast<Constant>(*ui)) { + if (useFuncSeen(cu, seenMap)) + return true; + } else if (const Instruction *I = dyn_cast<Instruction>(*ui)) { + const BasicBlock *bb = I->getParent(); + if (!bb) continue; + const Function *caller = bb->getParent(); + if (!caller) continue; + if (seenMap.find(caller) != seenMap.end()) + return true; + } + } + return false; +} + +void NVPTXAsmPrinter::emitDeclarations (Module &M, raw_ostream &O) { + llvm::DenseMap<const Function *, bool> seenMap; + for (Module::const_iterator FI=M.begin(), FE=M.end(); + FI!=FE; ++FI) { + const Function *F = FI; + + if (F->isDeclaration()) { + if (F->use_empty()) + continue; + if (F->getIntrinsicID()) + continue; + CurrentFnSym = Mang->getSymbol(F); + emitDeclaration(F, O); + continue; + } + for (Value::const_use_iterator iter=F->use_begin(), + iterEnd=F->use_end(); iter!=iterEnd; ++iter) { + if (const Constant *C = dyn_cast<Constant>(*iter)) { + if (usedInGlobalVarDef(C)) { + // The use is in the initialization of a global variable + // that is a function pointer, so print a declaration + // for the original function + CurrentFnSym = Mang->getSymbol(F); + emitDeclaration(F, O); + break; + } + // Emit a declaration of this function if the function that + // uses this constant expr has already been seen. + if (useFuncSeen(C, seenMap)) { + CurrentFnSym = Mang->getSymbol(F); + emitDeclaration(F, O); + break; + } + } + + if (!isa<Instruction>(*iter)) continue; + const Instruction *instr = cast<Instruction>(*iter); + const BasicBlock *bb = instr->getParent(); + if (!bb) continue; + const Function *caller = bb->getParent(); + if (!caller) continue; + + // If a caller has already been seen, then the caller is + // appearing in the module before the callee. so print out + // a declaration for the callee. + if (seenMap.find(caller) != seenMap.end()) { + CurrentFnSym = Mang->getSymbol(F); + emitDeclaration(F, O); + break; + } + } + seenMap[F] = true; + } +} + +void NVPTXAsmPrinter::recordAndEmitFilenames(Module &M) { + DebugInfoFinder DbgFinder; + DbgFinder.processModule(M); + + unsigned i=1; + for (DebugInfoFinder::iterator I = DbgFinder.compile_unit_begin(), + E = DbgFinder.compile_unit_end(); I != E; ++I) { + DICompileUnit DIUnit(*I); + StringRef Filename(DIUnit.getFilename()); + StringRef Dirname(DIUnit.getDirectory()); + SmallString<128> FullPathName = Dirname; + if (!Dirname.empty() && !sys::path::is_absolute(Filename)) { + sys::path::append(FullPathName, Filename); + Filename = FullPathName.str(); + } + if (filenameMap.find(Filename.str()) != filenameMap.end()) + continue; + filenameMap[Filename.str()] = i; + OutStreamer.EmitDwarfFileDirective(i, "", Filename.str()); + ++i; + } + + for (DebugInfoFinder::iterator I = DbgFinder.subprogram_begin(), + E = DbgFinder.subprogram_end(); I != E; ++I) { + DISubprogram SP(*I); + StringRef Filename(SP.getFilename()); + StringRef Dirname(SP.getDirectory()); + SmallString<128> FullPathName = Dirname; + if (!Dirname.empty() && !sys::path::is_absolute(Filename)) { + sys::path::append(FullPathName, Filename); + Filename = FullPathName.str(); + } + if (filenameMap.find(Filename.str()) != filenameMap.end()) + continue; + filenameMap[Filename.str()] = i; + ++i; + } +} + +bool NVPTXAsmPrinter::doInitialization (Module &M) { + + SmallString<128> Str1; + raw_svector_ostream OS1(Str1); + + MMI = getAnalysisIfAvailable<MachineModuleInfo>(); + MMI->AnalyzeModule(M); + + // We need to call the parent's one explicitly. + //bool Result = AsmPrinter::doInitialization(M); + + // Initialize TargetLoweringObjectFile. + const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) + .Initialize(OutContext, TM); + + Mang = new Mangler(OutContext, *TM.getTargetData()); + + // Emit header before any dwarf directives are emitted below. + emitHeader(M, OS1); + OutStreamer.EmitRawText(OS1.str()); + + + // Already commented out + //bool Result = AsmPrinter::doInitialization(M); + + + if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) + recordAndEmitFilenames(M); + + SmallString<128> Str2; + raw_svector_ostream OS2(Str2); + + emitDeclarations(M, OS2); + + // Print out module-level global variables here. + for (Module::global_iterator I = M.global_begin(), E = M.global_end(); + I != E; ++I) + printModuleLevelGV(I, OS2); + + OS2 << '\n'; + + OutStreamer.EmitRawText(OS2.str()); + return false; // success +} + +void NVPTXAsmPrinter::emitHeader (Module &M, raw_ostream &O) { + O << "//\n"; + O << "// Generated by LLVM NVPTX Back-End\n"; + O << "//\n"; + O << "\n"; + + O << ".version 3.0\n"; + + O << ".target "; + O << nvptxSubtarget.getTargetName(); + + if (nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) + O << ", texmode_independent"; + if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) { + if (!nvptxSubtarget.hasDouble()) + O << ", map_f64_to_f32"; + } + + if (MAI->doesSupportDebugInformation()) + O << ", debug"; + + O << "\n"; + + O << ".address_size "; + if (nvptxSubtarget.is64Bit()) + O << "64"; + else + O << "32"; + O << "\n"; + + O << "\n"; +} + +bool NVPTXAsmPrinter::doFinalization(Module &M) { + // XXX Temproarily remove global variables so that doFinalization() will not + // emit them again (global variables are emitted at beginning). + + Module::GlobalListType &global_list = M.getGlobalList(); + int i, n = global_list.size(); + GlobalVariable **gv_array = new GlobalVariable* [n]; + + // first, back-up GlobalVariable in gv_array + i = 0; + for (Module::global_iterator I = global_list.begin(), E = global_list.end(); + I != E; ++I) + gv_array[i++] = &*I; + + // second, empty global_list + while (!global_list.empty()) + global_list.remove(global_list.begin()); + + // call doFinalization + bool ret = AsmPrinter::doFinalization(M); + + // now we restore global variables + for (i = 0; i < n; i ++) + global_list.insert(global_list.end(), gv_array[i]); + + delete[] gv_array; + return ret; + + + //bool Result = AsmPrinter::doFinalization(M); + // Instead of calling the parents doFinalization, we may + // clone parents doFinalization and customize here. + // Currently, we if NVISA out the EmitGlobals() in + // parent's doFinalization, which is too intrusive. + // + // Same for the doInitialization. + //return Result; +} + +// This function emits appropriate linkage directives for +// functions and global variables. +// +// extern function declaration -> .extern +// extern function definition -> .visible +// external global variable with init -> .visible +// external without init -> .extern +// appending -> not allowed, assert. + +void NVPTXAsmPrinter::emitLinkageDirective(const GlobalValue* V, raw_ostream &O) +{ + if (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA) { + if (V->hasExternalLinkage()) { + if (isa<GlobalVariable>(V)) { + const GlobalVariable *GVar = cast<GlobalVariable>(V); + if (GVar) { + if (GVar->hasInitializer()) + O << ".visible "; + else + O << ".extern "; + } + } else if (V->isDeclaration()) + O << ".extern "; + else + O << ".visible "; + } else if (V->hasAppendingLinkage()) { + std::string msg; + msg.append("Error: "); + msg.append("Symbol "); + if (V->hasName()) + msg.append(V->getName().str()); + msg.append("has unsupported appending linkage type"); + llvm_unreachable(msg.c_str()); + } + } +} + + +void NVPTXAsmPrinter::printModuleLevelGV(GlobalVariable* GVar, raw_ostream &O, + bool processDemoted) { + + // Skip meta data + if (GVar->hasSection()) { + if (GVar->getSection() == "llvm.metadata") + return; + } + + const TargetData *TD = TM.getTargetData(); + + // GlobalVariables are always constant pointers themselves. + const PointerType *PTy = GVar->getType(); + Type *ETy = PTy->getElementType(); + + if (GVar->hasExternalLinkage()) { + if (GVar->hasInitializer()) + O << ".visible "; + else + O << ".extern "; + } + + if (llvm::isTexture(*GVar)) { + O << ".global .texref " << llvm::getTextureName(*GVar) << ";\n"; + return; + } + + if (llvm::isSurface(*GVar)) { + O << ".global .surfref " << llvm::getSurfaceName(*GVar) << ";\n"; + return; + } + + if (GVar->isDeclaration()) { + // (extern) declarations, no definition or initializer + // Currently the only known declaration is for an automatic __local + // (.shared) promoted to global. + emitPTXGlobalVariable(GVar, O); + O << ";\n"; + return; + } + + if (llvm::isSampler(*GVar)) { + O << ".global .samplerref " << llvm::getSamplerName(*GVar); + + Constant *Initializer = NULL; + if (GVar->hasInitializer()) + Initializer = GVar->getInitializer(); + ConstantInt *CI = NULL; + if (Initializer) + CI = dyn_cast<ConstantInt>(Initializer); + if (CI) { + unsigned sample=CI->getZExtValue(); + + O << " = { "; + + for (int i =0, addr=((sample & __CLK_ADDRESS_MASK ) >> + __CLK_ADDRESS_BASE) ; i < 3 ; i++) { + O << "addr_mode_" << i << " = "; + switch (addr) { + case 0: O << "wrap"; break; + case 1: O << "clamp_to_border"; break; + case 2: O << "clamp_to_edge"; break; + case 3: O << "wrap"; break; + case 4: O << "mirror"; break; + } + O <<", "; + } + O << "filter_mode = "; + switch (( sample & __CLK_FILTER_MASK ) >> __CLK_FILTER_BASE ) { + case 0: O << "nearest"; break; + case 1: O << "linear"; break; + case 2: assert ( 0 && "Anisotropic filtering is not supported"); + default: O << "nearest"; break; + } + if (!(( sample &__CLK_NORMALIZED_MASK ) >> __CLK_NORMALIZED_BASE)) { + O << ", force_unnormalized_coords = 1"; + } + O << " }"; + } + + O << ";\n"; + return; + } + + if (GVar->hasPrivateLinkage()) { + + if (!strncmp(GVar->getName().data(), "unrollpragma", 12)) + return; + + // FIXME - need better way (e.g. Metadata) to avoid generating this global + if (!strncmp(GVar->getName().data(), "filename", 8)) + return; + if (GVar->use_empty()) + return; + } + + const Function *demotedFunc = 0; + if (!processDemoted && canDemoteGlobalVar(GVar, demotedFunc)) { + O << "// " << GVar->getName().str() << " has been demoted\n"; + if (localDecls.find(demotedFunc) != localDecls.end()) + localDecls[demotedFunc].push_back(GVar); + else { + std::vector<GlobalVariable *> temp; + temp.push_back(GVar); + localDecls[demotedFunc] = temp; + } + return; + } + + O << "."; + emitPTXAddressSpace(PTy->getAddressSpace(), O); + if (GVar->getAlignment() == 0) + O << " .align " << (int) TD->getPrefTypeAlignment(ETy); + else + O << " .align " << GVar->getAlignment(); + + + if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) { + O << " ."; + O << getPTXFundamentalTypeStr(ETy, false); + O << " "; + O << *Mang->getSymbol(GVar); + + // Ptx allows variable initilization only for constant and global state + // spaces. + if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) || + (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) || + (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) + && GVar->hasInitializer()) { + Constant *Initializer = GVar->getInitializer(); + if (!Initializer->isNullValue()) { + O << " = " ; + printScalarConstant(Initializer, O); + } + } + } else { + unsigned int ElementSize =0; + + // Although PTX has direct support for struct type and array type and + // LLVM IR is very similar to PTX, the LLVM CodeGen does not support for + // targets that support these high level field accesses. Structs, arrays + // and vectors are lowered into arrays of bytes. + switch (ETy->getTypeID()) { + case Type::StructTyID: + case Type::ArrayTyID: + case Type::VectorTyID: + ElementSize = TD->getTypeStoreSize(ETy); + // Ptx allows variable initilization only for constant and + // global state spaces. + if (((PTy->getAddressSpace() == llvm::ADDRESS_SPACE_GLOBAL) || + (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST_NOT_GEN) || + (PTy->getAddressSpace() == llvm::ADDRESS_SPACE_CONST)) + && GVar->hasInitializer()) { + Constant *Initializer = GVar->getInitializer(); + if (!isa<UndefValue>(Initializer) && + !Initializer->isNullValue()) { + AggBuffer aggBuffer(ElementSize, O, *this); + bufferAggregateConstant(Initializer, &aggBuffer); + if (aggBuffer.numSymbols) { + if (nvptxSubtarget.is64Bit()) { + O << " .u64 " << *Mang->getSymbol(GVar) <<"[" ; + O << ElementSize/8; + } + else { + O << " .u32 " << *Mang->getSymbol(GVar) <<"[" ; + O << ElementSize/4; + } + O << "]"; + } + else { + O << " .b8 " << *Mang->getSymbol(GVar) <<"[" ; + O << ElementSize; + O << "]"; + } + O << " = {" ; + aggBuffer.print(); + O << "}"; + } + else { + O << " .b8 " << *Mang->getSymbol(GVar) ; + if (ElementSize) { + O <<"[" ; + O << ElementSize; + O << "]"; + } + } + } + else { + O << " .b8 " << *Mang->getSymbol(GVar); + if (ElementSize) { + O <<"[" ; + O << ElementSize; + O << "]"; + } + } + break; + default: + assert( 0 && "type not supported yet"); + } + + } + O << ";\n"; +} + +void NVPTXAsmPrinter::emitDemotedVars(const Function *f, raw_ostream &O) { + if (localDecls.find(f) == localDecls.end()) + return; + + std::vector<GlobalVariable *> &gvars = localDecls[f]; + + for (unsigned i=0, e=gvars.size(); i!=e; ++i) { + O << "\t// demoted variable\n\t"; + printModuleLevelGV(gvars[i], O, true); + } +} + +void NVPTXAsmPrinter::emitPTXAddressSpace(unsigned int AddressSpace, + raw_ostream &O) const { + switch (AddressSpace) { + case llvm::ADDRESS_SPACE_LOCAL: + O << "local" ; + break; + case llvm::ADDRESS_SPACE_GLOBAL: + O << "global" ; + break; + case llvm::ADDRESS_SPACE_CONST: + // This logic should be consistent with that in + // getCodeAddrSpace() (NVPTXISelDATToDAT.cpp) + if (nvptxSubtarget.hasGenericLdSt()) + O << "global" ; + else + O << "const" ; + break; + case llvm::ADDRESS_SPACE_CONST_NOT_GEN: + O << "const" ; + break; + case llvm::ADDRESS_SPACE_SHARED: + O << "shared" ; + break; + default: + llvm_unreachable("unexpected address space"); + } +} + +std::string NVPTXAsmPrinter::getPTXFundamentalTypeStr(const Type *Ty, + bool useB4PTR) const { + switch (Ty->getTypeID()) { + default: + llvm_unreachable("unexpected type"); + break; + case Type::IntegerTyID: { + unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); + if (NumBits == 1) + return "pred"; + else if (NumBits <= 64) { + std::string name = "u"; + return name + utostr(NumBits); + } else { + llvm_unreachable("Integer too large"); + break; + } + break; + } + case Type::FloatTyID: + return "f32"; + case Type::DoubleTyID: + return "f64"; + case Type::PointerTyID: + if (nvptxSubtarget.is64Bit()) + if (useB4PTR) return "b64"; + else return "u64"; + else + if (useB4PTR) return "b32"; + else return "u32"; + } + llvm_unreachable("unexpected type"); + return NULL; +} + +void NVPTXAsmPrinter::emitPTXGlobalVariable(const GlobalVariable* GVar, + raw_ostream &O) { + + const TargetData *TD = TM.getTargetData(); + + // GlobalVariables are always constant pointers themselves. + const PointerType *PTy = GVar->getType(); + Type *ETy = PTy->getElementType(); + + O << "."; + emitPTXAddressSpace(PTy->getAddressSpace(), O); + if (GVar->getAlignment() == 0) + O << " .align " << (int) TD->getPrefTypeAlignment(ETy); + else + O << " .align " << GVar->getAlignment(); + + if (ETy->isPrimitiveType() || ETy->isIntegerTy() || isa<PointerType>(ETy)) { + O << " ."; + O << getPTXFundamentalTypeStr(ETy); + O << " "; + O << *Mang->getSymbol(GVar); + return; + } + + int64_t ElementSize =0; + + // Although PTX has direct support for struct type and array type and LLVM IR + // is very similar to PTX, the LLVM CodeGen does not support for targets that + // support these high level field accesses. Structs and arrays are lowered + // into arrays of bytes. + switch (ETy->getTypeID()) { + case Type::StructTyID: + case Type::ArrayTyID: + case Type::VectorTyID: + ElementSize = TD->getTypeStoreSize(ETy); + O << " .b8 " << *Mang->getSymbol(GVar) <<"[" ; + if (ElementSize) { + O << itostr(ElementSize) ; + } + O << "]"; + break; + default: + assert( 0 && "type not supported yet"); + } + return ; +} + + +static unsigned int +getOpenCLAlignment(const TargetData *TD, + Type *Ty) { + if (Ty->isPrimitiveType() || Ty->isIntegerTy() || isa<PointerType>(Ty)) + return TD->getPrefTypeAlignment(Ty); + + const ArrayType *ATy = dyn_cast<ArrayType>(Ty); + if (ATy) + return getOpenCLAlignment(TD, ATy->getElementType()); + + const VectorType *VTy = dyn_cast<VectorType>(Ty); + if (VTy) { + Type *ETy = VTy->getElementType(); + unsigned int numE = VTy->getNumElements(); + unsigned int alignE = TD->getPrefTypeAlignment(ETy); + if (numE == 3) + return 4*alignE; + else + return numE*alignE; + } + + const StructType *STy = dyn_cast<StructType>(Ty); + if (STy) { + unsigned int alignStruct = 1; + // Go through each element of the struct and find the + // largest alignment. + for (unsigned i=0, e=STy->getNumElements(); i != e; i++) { + Type *ETy = STy->getElementType(i); + unsigned int align = getOpenCLAlignment(TD, ETy); + if (align > alignStruct) + alignStruct = align; + } + return alignStruct; + } + + const FunctionType *FTy = dyn_cast<FunctionType>(Ty); + if (FTy) + return TD->getPointerPrefAlignment(); + return TD->getPrefTypeAlignment(Ty); +} + +void NVPTXAsmPrinter::printParamName(Function::const_arg_iterator I, + int paramIndex, raw_ostream &O) { + if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) || + (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) + O << *CurrentFnSym << "_param_" << paramIndex; + else { + std::string argName = I->getName(); + const char *p = argName.c_str(); + while (*p) { + if (*p == '.') + O << "_"; + else + O << *p; + p++; + } + } +} + +void NVPTXAsmPrinter::printParamName(int paramIndex, raw_ostream &O) { + Function::const_arg_iterator I, E; + int i = 0; + + if ((nvptxSubtarget.getDrvInterface() == NVPTX::NVCL) || + (nvptxSubtarget.getDrvInterface() == NVPTX::CUDA)) { + O << *CurrentFnSym << "_param_" << paramIndex; + return; + } + + for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, i++) { + if (i==paramIndex) { + printParamName(I, paramIndex, O); + return; + } + } + llvm_unreachable("paramIndex out of bound"); +} + +void NVPTXAsmPrinter::emitFunctionParamList(const Function *F, + raw_ostream &O) { + const TargetData *TD = TM.getTargetData(); + const AttrListPtr &PAL = F->getAttributes(); + const TargetLowering *TLI = TM.getTargetLowering(); + Function::const_arg_iterator I, E; + unsigned paramIndex = 0; + bool first = true; + bool isKernelFunc = llvm::isKernelFunction(*F); + bool isABI = (nvptxSubtarget.getSmVersion() >= 20); + MVT thePointerTy = TLI->getPointerTy(); + + O << "(\n"; + + for (I = F->arg_begin(), E = F->arg_end(); I != E; ++I, paramIndex++) { + const Type *Ty = I->getType(); + + if (!first) + O << ",\n"; + + first = false; + + // Handle image/sampler parameters + if (llvm::isSampler(*I) || llvm::isImage(*I)) { + if (llvm::isImage(*I)) { + std::string sname = I->getName(); + if (llvm::isImageWriteOnly(*I)) + O << "\t.param .surfref " << *CurrentFnSym << "_param_" << paramIndex; + else // Default image is read_only + O << "\t.param .texref " << *CurrentFnSym << "_param_" << paramIndex; + } + else // Should be llvm::isSampler(*I) + O << "\t.param .samplerref " << *CurrentFnSym << "_param_" + << paramIndex; + continue; + } + + if (PAL.paramHasAttr(paramIndex+1, Attribute::ByVal) == false) { + // Just a scalar + const PointerType *PTy = dyn_cast<PointerType>(Ty); + if (isKernelFunc) { + if (PTy) { + // Special handling for pointer arguments to kernel + O << "\t.param .u" << thePointerTy.getSizeInBits() << " "; + + if (nvptxSubtarget.getDrvInterface() != NVPTX::CUDA) { + Type *ETy = PTy->getElementType(); + int addrSpace = PTy->getAddressSpace(); + switch(addrSpace) { + default: + O << ".ptr "; + break; + case llvm::ADDRESS_SPACE_CONST_NOT_GEN: + O << ".ptr .const "; + break; + case llvm::ADDRESS_SPACE_SHARED: + O << ".ptr .shared "; + break; + case llvm::ADDRESS_SPACE_GLOBAL: + case llvm::ADDRESS_SPACE_CONST: + O << ".ptr .global "; + break; + } + O << ".align " << (int)getOpenCLAlignment(TD, ETy) << " "; + } + printParamName(I, paramIndex, O); + continue; + } + + // non-pointer scalar to kernel func + O << "\t.param ." + << getPTXFundamentalTypeStr(Ty) << " "; + printParamName(I, paramIndex, O); + continue; + } + // Non-kernel function, just print .param .b<size> for ABI + // and .reg .b<size> for non ABY + unsigned sz = 0; + if (isa<IntegerType>(Ty)) { + sz = cast<IntegerType>(Ty)->getBitWidth(); + if (sz < 32) sz = 32; + } + else if (isa<PointerType>(Ty)) + sz = thePointerTy.getSizeInBits(); + else + sz = Ty->getPrimitiveSizeInBits(); + if (isABI) + O << "\t.param .b" << sz << " "; + else + O << "\t.reg .b" << sz << " "; + printParamName(I, paramIndex, O); + continue; + } + + // param has byVal attribute. So should be a pointer + const PointerType *PTy = dyn_cast<PointerType>(Ty); + assert(PTy && + "Param with byval attribute should be a pointer type"); + Type *ETy = PTy->getElementType(); + + if (isABI || isKernelFunc) { + // Just print .param .b8 .align <a> .param[size]; + // <a> = PAL.getparamalignment + // size = typeallocsize of element type + unsigned align = PAL.getParamAlignment(paramIndex+1); + unsigned sz = TD->getTypeAllocSize(ETy); + O << "\t.param .align " << align + << " .b8 "; + printParamName(I, paramIndex, O); + O << "[" << sz << "]"; + continue; + } else { + // Split the ETy into constituent parts and + // print .param .b<size> <name> for each part. + // Further, if a part is vector, print the above for + // each vector element. + SmallVector<EVT, 16> vtparts; + ComputeValueVTs(*TLI, ETy, vtparts); + for (unsigned i=0,e=vtparts.size(); i!=e; ++i) { + unsigned elems = 1; + EVT elemtype = vtparts[i]; + if (vtparts[i].isVector()) { + elems = vtparts[i].getVectorNumElements(); + elemtype = vtparts[i].getVectorElementType(); + } + + for (unsigned j=0,je=elems; j!=je; ++j) { + unsigned sz = elemtype.getSizeInBits(); + if (elemtype.isInteger() && (sz < 32)) sz = 32; + O << "\t.reg .b" << sz << " "; + printParamName(I, paramIndex, O); + if (j<je-1) O << ",\n"; + ++paramIndex; + } + if (i<e-1) + O << ",\n"; + } + --paramIndex; + continue; + } + } + + O << "\n)\n"; +} + +void NVPTXAsmPrinter::emitFunctionParamList(const MachineFunction &MF, + raw_ostream &O) { + const Function *F = MF.getFunction(); + emitFunctionParamList(F, O); +} + + +void NVPTXAsmPrinter:: +setAndEmitFunctionVirtualRegisters(const MachineFunction &MF) { + SmallString<128> Str; + raw_svector_ostream O(Str); + + // Map the global virtual register number to a register class specific + // virtual register number starting from 1 with that class. + const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo(); + //unsigned numRegClasses = TRI->getNumRegClasses(); + + // Emit the Fake Stack Object + const MachineFrameInfo *MFI = MF.getFrameInfo(); + int NumBytes = (int) MFI->getStackSize(); + if (NumBytes) { + O << "\t.local .align " << MFI->getMaxAlignment() << " .b8 \t" + << DEPOTNAME + << getFunctionNumber() << "[" << NumBytes << "];\n"; + if (nvptxSubtarget.is64Bit()) { + O << "\t.reg .b64 \t%SP;\n"; + O << "\t.reg .b64 \t%SPL;\n"; + } + else { + O << "\t.reg .b32 \t%SP;\n"; + O << "\t.reg .b32 \t%SPL;\n"; + } + } + + // Go through all virtual registers to establish the mapping between the + // global virtual + // register number and the per class virtual register number. + // We use the per class virtual register number in the ptx output. + unsigned int numVRs = MRI->getNumVirtRegs(); + for (unsigned i=0; i< numVRs; i++) { + unsigned int vr = TRI->index2VirtReg(i); + const TargetRegisterClass *RC = MRI->getRegClass(vr); + std::map<unsigned, unsigned> ®map = VRidGlobal2LocalMap[RC->getID()]; + int n = regmap.size(); + regmap.insert(std::make_pair(vr, n+1)); + } + + // Emit register declarations + // @TODO: Extract out the real register usage + O << "\t.reg .pred %p<" << NVPTXNumRegisters << ">;\n"; + O << "\t.reg .s16 %rc<" << NVPTXNumRegisters << ">;\n"; + O << "\t.reg .s16 %rs<" << NVPTXNumRegisters << ">;\n"; + O << "\t.reg .s32 %r<" << NVPTXNumRegisters << ">;\n"; + O << "\t.reg .s64 %rl<" << NVPTXNumRegisters << ">;\n"; + O << "\t.reg .f32 %f<" << NVPTXNumRegisters << ">;\n"; + O << "\t.reg .f64 %fl<" << NVPTXNumRegisters << ">;\n"; + + // Emit declaration of the virtual registers or 'physical' registers for + // each register class + //for (unsigned i=0; i< numRegClasses; i++) { + // std::map<unsigned, unsigned> ®map = VRidGlobal2LocalMap[i]; + // const TargetRegisterClass *RC = TRI->getRegClass(i); + // std::string rcname = getNVPTXRegClassName(RC); + // std::string rcStr = getNVPTXRegClassStr(RC); + // //int n = regmap.size(); + // if (!isNVPTXVectorRegClass(RC)) { + // O << "\t.reg " << rcname << " \t" << rcStr << "<" + // << NVPTXNumRegisters << ">;\n"; + // } + + // Only declare those registers that may be used. And do not emit vector + // registers as + // they are all elementized to scalar registers. + //if (n && !isNVPTXVectorRegClass(RC)) { + // if (RegAllocNilUsed) { + // O << "\t.reg " << rcname << " \t" << rcStr << "<" << (n+1) + // << ">;\n"; + // } + // else { + // O << "\t.reg " << rcname << " \t" << StrToUpper(rcStr) + // << "<" << 32 << ">;\n"; + // } + //} + //} + + OutStreamer.EmitRawText(O.str()); +} + + +void NVPTXAsmPrinter::printFPConstant(const ConstantFP *Fp, raw_ostream &O) { + APFloat APF = APFloat(Fp->getValueAPF()); // make a copy + bool ignored; + unsigned int numHex; + const char *lead; + + if (Fp->getType()->getTypeID()==Type::FloatTyID) { + numHex = 8; + lead = "0f"; + APF.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, + &ignored); + } else if (Fp->getType()->getTypeID() == Type::DoubleTyID) { + numHex = 16; + lead = "0d"; + APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, + &ignored); + } else + llvm_unreachable("unsupported fp type"); + + APInt API = APF.bitcastToAPInt(); + std::string hexstr(utohexstr(API.getZExtValue())); + O << lead; + if (hexstr.length() < numHex) + O << std::string(numHex - hexstr.length(), '0'); + O << utohexstr(API.getZExtValue()); +} + +void NVPTXAsmPrinter::printScalarConstant(Constant *CPV, raw_ostream &O) { + if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) { + O << CI->getValue(); + return; + } + if (ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) { + printFPConstant(CFP, O); + return; + } + if (isa<ConstantPointerNull>(CPV)) { + O << "0"; + return; + } + if (GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) { + O << *Mang->getSymbol(GVar); + return; + } + if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) { + Value *v = Cexpr->stripPointerCasts(); + if (GlobalValue *GVar = dyn_cast<GlobalValue>(v)) { + O << *Mang->getSymbol(GVar); + return; + } else { + O << *LowerConstant(CPV, *this); + return; + } + } + llvm_unreachable("Not scalar type found in printScalarConstant()"); +} + + +void NVPTXAsmPrinter::bufferLEByte(Constant *CPV, int Bytes, + AggBuffer *aggBuffer) { + + const TargetData *TD = TM.getTargetData(); + + if (isa<UndefValue>(CPV) || CPV->isNullValue()) { + int s = TD->getTypeAllocSize(CPV->getType()); + if (s<Bytes) + s = Bytes; + aggBuffer->addZeros(s); + return; + } + + unsigned char *ptr; + switch (CPV->getType()->getTypeID()) { + + case Type::IntegerTyID: { + const Type *ETy = CPV->getType(); + if ( ETy == Type::getInt8Ty(CPV->getContext()) ){ + unsigned char c = + (unsigned char)(dyn_cast<ConstantInt>(CPV))->getZExtValue(); + ptr = &c; + aggBuffer->addBytes(ptr, 1, Bytes); + } else if ( ETy == Type::getInt16Ty(CPV->getContext()) ) { + short int16 = + (short)(dyn_cast<ConstantInt>(CPV))->getZExtValue(); + ptr = (unsigned char*)&int16; + aggBuffer->addBytes(ptr, 2, Bytes); + } else if ( ETy == Type::getInt32Ty(CPV->getContext()) ) { + if (ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) { + int int32 =(int)(constInt->getZExtValue()); + ptr = (unsigned char*)&int32; + aggBuffer->addBytes(ptr, 4, Bytes); + break; + } else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) { + if (ConstantInt *constInt = + dyn_cast<ConstantInt>(ConstantFoldConstantExpression( + Cexpr, TD))) { + int int32 =(int)(constInt->getZExtValue()); + ptr = (unsigned char*)&int32; + aggBuffer->addBytes(ptr, 4, Bytes); + break; + } + if (Cexpr->getOpcode() == Instruction::PtrToInt) { + Value *v = Cexpr->getOperand(0)->stripPointerCasts(); + aggBuffer->addSymbol(v); + aggBuffer->addZeros(4); + break; + } + } + llvm_unreachable("unsupported integer const type"); + } else if (ETy == Type::getInt64Ty(CPV->getContext()) ) { + if (ConstantInt *constInt = dyn_cast<ConstantInt>(CPV)) { + long long int64 =(long long)(constInt->getZExtValue()); + ptr = (unsigned char*)&int64; + aggBuffer->addBytes(ptr, 8, Bytes); + break; + } else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) { + if (ConstantInt *constInt = dyn_cast<ConstantInt>( + ConstantFoldConstantExpression(Cexpr, TD))) { + long long int64 =(long long)(constInt->getZExtValue()); + ptr = (unsigned char*)&int64; + aggBuffer->addBytes(ptr, 8, Bytes); + break; + } + if (Cexpr->getOpcode() == Instruction::PtrToInt) { + Value *v = Cexpr->getOperand(0)->stripPointerCasts(); + aggBuffer->addSymbol(v); + aggBuffer->addZeros(8); + break; + } + } + llvm_unreachable("unsupported integer const type"); + } else + llvm_unreachable("unsupported integer const type"); + break; + } + case Type::FloatTyID: + case Type::DoubleTyID: { + ConstantFP *CFP = dyn_cast<ConstantFP>(CPV); + const Type* Ty = CFP->getType(); + if (Ty == Type::getFloatTy(CPV->getContext())) { + float float32 = (float)CFP->getValueAPF().convertToFloat(); + ptr = (unsigned char*)&float32; + aggBuffer->addBytes(ptr, 4, Bytes); + } else if (Ty == Type::getDoubleTy(CPV->getContext())) { + double float64 = CFP->getValueAPF().convertToDouble(); + ptr = (unsigned char*)&float64; + aggBuffer->addBytes(ptr, 8, Bytes); + } + else { + llvm_unreachable("unsupported fp const type"); + } + break; + } + case Type::PointerTyID: { + if (GlobalValue *GVar = dyn_cast<GlobalValue>(CPV)) { + aggBuffer->addSymbol(GVar); + } + else if (ConstantExpr *Cexpr = dyn_cast<ConstantExpr>(CPV)) { + Value *v = Cexpr->stripPointerCasts(); + aggBuffer->addSymbol(v); + } + unsigned int s = TD->getTypeAllocSize(CPV->getType()); + aggBuffer->addZeros(s); + break; + } + + case Type::ArrayTyID: + case Type::VectorTyID: + case Type::StructTyID: { + if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV) || + isa<ConstantStruct>(CPV)) { + int ElementSize = TD->getTypeAllocSize(CPV->getType()); + bufferAggregateConstant(CPV, aggBuffer); + if ( Bytes > ElementSize ) + aggBuffer->addZeros(Bytes-ElementSize); + } + else if (isa<ConstantAggregateZero>(CPV)) + aggBuffer->addZeros(Bytes); + else + llvm_unreachable("Unexpected Constant type"); + break; + } + + default: + llvm_unreachable("unsupported type"); + } +} + +void NVPTXAsmPrinter::bufferAggregateConstant(Constant *CPV, + AggBuffer *aggBuffer) { + const TargetData *TD = TM.getTargetData(); + int Bytes; + + // Old constants + if (isa<ConstantArray>(CPV) || isa<ConstantVector>(CPV)) { + if (CPV->getNumOperands()) + for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) + bufferLEByte(cast<Constant>(CPV->getOperand(i)), 0, aggBuffer); + return; + } + + if (const ConstantDataSequential *CDS = + dyn_cast<ConstantDataSequential>(CPV)) { + if (CDS->getNumElements()) + for (unsigned i = 0; i < CDS->getNumElements(); ++i) + bufferLEByte(cast<Constant>(CDS->getElementAsConstant(i)), 0, + aggBuffer); + return; + } + + + if (isa<ConstantStruct>(CPV)) { + if (CPV->getNumOperands()) { + StructType *ST = cast<StructType>(CPV->getType()); + for (unsigned i = 0, e = CPV->getNumOperands(); i != e; ++i) { + if ( i == (e - 1)) + Bytes = TD->getStructLayout(ST)->getElementOffset(0) + + TD->getTypeAllocSize(ST) + - TD->getStructLayout(ST)->getElementOffset(i); + else + Bytes = TD->getStructLayout(ST)->getElementOffset(i+1) - + TD->getStructLayout(ST)->getElementOffset(i); + bufferLEByte(cast<Constant>(CPV->getOperand(i)), Bytes, + aggBuffer); + } + } + return; + } + llvm_unreachable("unsupported constant type in printAggregateConstant()"); +} + +// buildTypeNameMap - Run through symbol table looking for type names. +// + + +bool NVPTXAsmPrinter::isImageType(const Type *Ty) { + + std::map<const Type *, std::string>::iterator PI = TypeNameMap.find(Ty); + + if (PI != TypeNameMap.end() && + (!PI->second.compare("struct._image1d_t") || + !PI->second.compare("struct._image2d_t") || + !PI->second.compare("struct._image3d_t"))) + return true; + + return false; +} + +/// PrintAsmOperand - Print out an operand for an inline asm expression. +/// +bool NVPTXAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, + unsigned AsmVariant, + const char *ExtraCode, + raw_ostream &O) { + if (ExtraCode && ExtraCode[0]) { + if (ExtraCode[1] != 0) return true; // Unknown modifier. + + switch (ExtraCode[0]) { + default: + // See if this is a generic print operand + return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O); + case 'r': + break; + } + } + + printOperand(MI, OpNo, O); + + return false; +} + +bool NVPTXAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, + unsigned OpNo, + unsigned AsmVariant, + const char *ExtraCode, + raw_ostream &O) { + if (ExtraCode && ExtraCode[0]) + return true; // Unknown modifier + + O << '['; + printMemOperand(MI, OpNo, O); + O << ']'; + + return false; +} + +bool NVPTXAsmPrinter::ignoreLoc(const MachineInstr &MI) +{ + switch(MI.getOpcode()) { + default: + return false; + case NVPTX::CallArgBeginInst: case NVPTX::CallArgEndInst0: + case NVPTX::CallArgEndInst1: case NVPTX::CallArgF32: + case NVPTX::CallArgF64: case NVPTX::CallArgI16: + case NVPTX::CallArgI32: case NVPTX::CallArgI32imm: + case NVPTX::CallArgI64: case NVPTX::CallArgI8: + case NVPTX::CallArgParam: case NVPTX::CallVoidInst: + case NVPTX::CallVoidInstReg: case NVPTX::Callseq_End: + case NVPTX::CallVoidInstReg64: + case NVPTX::DeclareParamInst: case NVPTX::DeclareRetMemInst: + case NVPTX::DeclareRetRegInst: case NVPTX::DeclareRetScalarInst: + case NVPTX::DeclareScalarParamInst: case NVPTX::DeclareScalarRegInst: + case NVPTX::StoreParamF32: case NVPTX::StoreParamF64: + case NVPTX::StoreParamI16: case NVPTX::StoreParamI32: + case NVPTX::StoreParamI64: case NVPTX::StoreParamI8: + case NVPTX::StoreParamS32I8: case NVPTX::StoreParamU32I8: + case NVPTX::StoreParamS32I16: case NVPTX::StoreParamU32I16: + case NVPTX::StoreParamScalar2F32: case NVPTX::StoreParamScalar2F64: + case NVPTX::StoreParamScalar2I16: case NVPTX::StoreParamScalar2I32: + case NVPTX::StoreParamScalar2I64: case NVPTX::StoreParamScalar2I8: + case NVPTX::StoreParamScalar4F32: case NVPTX::StoreParamScalar4I16: + case NVPTX::StoreParamScalar4I32: case NVPTX::StoreParamScalar4I8: + case NVPTX::StoreParamV2F32: case NVPTX::StoreParamV2F64: + case NVPTX::StoreParamV2I16: case NVPTX::StoreParamV2I32: + case NVPTX::StoreParamV2I64: case NVPTX::StoreParamV2I8: + case NVPTX::StoreParamV4F32: case NVPTX::StoreParamV4I16: + case NVPTX::StoreParamV4I32: case NVPTX::StoreParamV4I8: + case NVPTX::StoreRetvalF32: case NVPTX::StoreRetvalF64: + case NVPTX::StoreRetvalI16: case NVPTX::StoreRetvalI32: + case NVPTX::StoreRetvalI64: case NVPTX::StoreRetvalI8: + case NVPTX::StoreRetvalScalar2F32: case NVPTX::StoreRetvalScalar2F64: + case NVPTX::StoreRetvalScalar2I16: case NVPTX::StoreRetvalScalar2I32: + case NVPTX::StoreRetvalScalar2I64: case NVPTX::StoreRetvalScalar2I8: + case NVPTX::StoreRetvalScalar4F32: case NVPTX::StoreRetvalScalar4I16: + case NVPTX::StoreRetvalScalar4I32: case NVPTX::StoreRetvalScalar4I8: + case NVPTX::StoreRetvalV2F32: case NVPTX::StoreRetvalV2F64: + case NVPTX::StoreRetvalV2I16: case NVPTX::StoreRetvalV2I32: + case NVPTX::StoreRetvalV2I64: case NVPTX::StoreRetvalV2I8: + case NVPTX::StoreRetvalV4F32: case NVPTX::StoreRetvalV4I16: + case NVPTX::StoreRetvalV4I32: case NVPTX::StoreRetvalV4I8: + case NVPTX::LastCallArgF32: case NVPTX::LastCallArgF64: + case NVPTX::LastCallArgI16: case NVPTX::LastCallArgI32: + case NVPTX::LastCallArgI32imm: case NVPTX::LastCallArgI64: + case NVPTX::LastCallArgI8: case NVPTX::LastCallArgParam: + case NVPTX::LoadParamMemF32: case NVPTX::LoadParamMemF64: + case NVPTX::LoadParamMemI16: case NVPTX::LoadParamMemI32: + case NVPTX::LoadParamMemI64: case NVPTX::LoadParamMemI8: + case NVPTX::LoadParamRegF32: case NVPTX::LoadParamRegF64: + case NVPTX::LoadParamRegI16: case NVPTX::LoadParamRegI32: + case NVPTX::LoadParamRegI64: case NVPTX::LoadParamRegI8: + case NVPTX::LoadParamScalar2F32: case NVPTX::LoadParamScalar2F64: + case NVPTX::LoadParamScalar2I16: case NVPTX::LoadParamScalar2I32: + case NVPTX::LoadParamScalar2I64: case NVPTX::LoadParamScalar2I8: + case NVPTX::LoadParamScalar4F32: case NVPTX::LoadParamScalar4I16: + case NVPTX::LoadParamScalar4I32: case NVPTX::LoadParamScalar4I8: + case NVPTX::LoadParamV2F32: case NVPTX::LoadParamV2F64: + case NVPTX::LoadParamV2I16: case NVPTX::LoadParamV2I32: + case NVPTX::LoadParamV2I64: case NVPTX::LoadParamV2I8: + case NVPTX::LoadParamV4F32: case NVPTX::LoadParamV4I16: + case NVPTX::LoadParamV4I32: case NVPTX::LoadParamV4I8: + case NVPTX::PrototypeInst: case NVPTX::DBG_VALUE: + return true; + } + return false; +} + +// Force static initialization. +extern "C" void LLVMInitializeNVPTXBackendAsmPrinter() { + RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32); + RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64); +} + + +void NVPTXAsmPrinter::emitSrcInText(StringRef filename, unsigned line) { + std::stringstream temp; + LineReader * reader = this->getReader(filename.str()); + temp << "\n//"; + temp << filename.str(); + temp << ":"; + temp << line; + temp << " "; + temp << reader->readLine(line); + temp << "\n"; + this->OutStreamer.EmitRawText(Twine(temp.str())); +} + + +LineReader *NVPTXAsmPrinter::getReader(std::string filename) { + if (reader == NULL) { + reader = new LineReader(filename); + } + + if (reader->fileName() != filename) { + delete reader; + reader = new LineReader(filename); + } + + return reader; +} + + +std::string +LineReader::readLine(unsigned lineNum) { + if (lineNum < theCurLine) { + theCurLine = 0; + fstr.seekg(0,std::ios::beg); + } + while (theCurLine < lineNum) { + fstr.getline(buff,500); + theCurLine++; + } + return buff; +} + +// Force static initialization. +extern "C" void LLVMInitializeNVPTXAsmPrinter() { + RegisterAsmPrinter<NVPTXAsmPrinter> X(TheNVPTXTarget32); + RegisterAsmPrinter<NVPTXAsmPrinter> Y(TheNVPTXTarget64); +} |