diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp | 878 |
1 files changed, 878 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp b/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp new file mode 100644 index 0000000..47e1931 --- /dev/null +++ b/contrib/llvm/lib/Target/Mips/MipsSEISelDAGToDAG.cpp @@ -0,0 +1,878 @@ +//===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Subclass of MipsDAGToDAGISel specialized for mips32/64. +// +//===----------------------------------------------------------------------===// + +#include "MipsSEISelDAGToDAG.h" +#include "MCTargetDesc/MipsBaseInfo.h" +#include "Mips.h" +#include "MipsAnalyzeImmediate.h" +#include "MipsMachineFunction.h" +#include "MipsRegisterInfo.h" +#include "llvm/CodeGen/MachineConstantPool.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAGNodes.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +using namespace llvm; + +#define DEBUG_TYPE "mips-isel" + +bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) { + Subtarget = &TM.getSubtarget<MipsSubtarget>(); + if (Subtarget->inMips16Mode()) + return false; + return MipsDAGToDAGISel::runOnMachineFunction(MF); +} + +void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI, + MachineFunction &MF) { + MachineInstrBuilder MIB(MF, &MI); + unsigned Mask = MI.getOperand(1).getImm(); + unsigned Flag = IsDef ? RegState::ImplicitDefine : RegState::Implicit; + + if (Mask & 1) + MIB.addReg(Mips::DSPPos, Flag); + + if (Mask & 2) + MIB.addReg(Mips::DSPSCount, Flag); + + if (Mask & 4) + MIB.addReg(Mips::DSPCarry, Flag); + + if (Mask & 8) + MIB.addReg(Mips::DSPOutFlag, Flag); + + if (Mask & 16) + MIB.addReg(Mips::DSPCCond, Flag); + + if (Mask & 32) + MIB.addReg(Mips::DSPEFI, Flag); +} + +unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const { + switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) { + default: + llvm_unreachable("Could not map int to register"); + case 0: return Mips::MSAIR; + case 1: return Mips::MSACSR; + case 2: return Mips::MSAAccess; + case 3: return Mips::MSASave; + case 4: return Mips::MSAModify; + case 5: return Mips::MSARequest; + case 6: return Mips::MSAMap; + case 7: return Mips::MSAUnmap; + } +} + +bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI, + const MachineInstr& MI) { + unsigned DstReg = 0, ZeroReg = 0; + + // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0". + if ((MI.getOpcode() == Mips::ADDiu) && + (MI.getOperand(1).getReg() == Mips::ZERO) && + (MI.getOperand(2).getImm() == 0)) { + DstReg = MI.getOperand(0).getReg(); + ZeroReg = Mips::ZERO; + } else if ((MI.getOpcode() == Mips::DADDiu) && + (MI.getOperand(1).getReg() == Mips::ZERO_64) && + (MI.getOperand(2).getImm() == 0)) { + DstReg = MI.getOperand(0).getReg(); + ZeroReg = Mips::ZERO_64; + } + + if (!DstReg) + return false; + + // Replace uses with ZeroReg. + for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg), + E = MRI->use_end(); U != E;) { + MachineOperand &MO = *U; + unsigned OpNo = U.getOperandNo(); + MachineInstr *MI = MO.getParent(); + ++U; + + // Do not replace if it is a phi's operand or is tied to def operand. + if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo()) + continue; + + MO.setReg(ZeroReg); + } + + return true; +} + +void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) { + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + + if (!MipsFI->globalBaseRegSet()) + return; + + MachineBasicBlock &MBB = MF.front(); + MachineBasicBlock::iterator I = MBB.begin(); + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo(); + DebugLoc DL = I != MBB.end() ? I->getDebugLoc() : DebugLoc(); + unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg(); + const TargetRegisterClass *RC; + + if (Subtarget->isABI_N64()) + RC = (const TargetRegisterClass*)&Mips::GPR64RegClass; + else + RC = (const TargetRegisterClass*)&Mips::GPR32RegClass; + + V0 = RegInfo.createVirtualRegister(RC); + V1 = RegInfo.createVirtualRegister(RC); + + if (Subtarget->isABI_N64()) { + MF.getRegInfo().addLiveIn(Mips::T9_64); + MBB.addLiveIn(Mips::T9_64); + + // lui $v0, %hi(%neg(%gp_rel(fname))) + // daddu $v1, $v0, $t9 + // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) + const GlobalValue *FName = MF.getFunction(); + BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0) + .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); + BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0) + .addReg(Mips::T9_64); + BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1) + .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); + return; + } + + if (MF.getTarget().getRelocationModel() == Reloc::Static) { + // Set global register to __gnu_local_gp. + // + // lui $v0, %hi(__gnu_local_gp) + // addiu $globalbasereg, $v0, %lo(__gnu_local_gp) + BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) + .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI); + BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0) + .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO); + return; + } + + MF.getRegInfo().addLiveIn(Mips::T9); + MBB.addLiveIn(Mips::T9); + + if (Subtarget->isABI_N32()) { + // lui $v0, %hi(%neg(%gp_rel(fname))) + // addu $v1, $v0, $t9 + // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname))) + const GlobalValue *FName = MF.getFunction(); + BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0) + .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI); + BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9); + BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1) + .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO); + return; + } + + assert(Subtarget->isABI_O32()); + + // For O32 ABI, the following instruction sequence is emitted to initialize + // the global base register: + // + // 0. lui $2, %hi(_gp_disp) + // 1. addiu $2, $2, %lo(_gp_disp) + // 2. addu $globalbasereg, $2, $t9 + // + // We emit only the last instruction here. + // + // GNU linker requires that the first two instructions appear at the beginning + // of a function and no instructions be inserted before or between them. + // The two instructions are emitted during lowering to MC layer in order to + // avoid any reordering. + // + // Register $2 (Mips::V0) is added to the list of live-in registers to ensure + // the value instruction 1 (addiu) defines is valid when instruction 2 (addu) + // reads it. + MF.getRegInfo().addLiveIn(Mips::V0); + MBB.addLiveIn(Mips::V0); + BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg) + .addReg(Mips::V0).addReg(Mips::T9); +} + +void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) { + initGlobalBaseReg(MF); + + MachineRegisterInfo *MRI = &MF.getRegInfo(); + + for (MachineFunction::iterator MFI = MF.begin(), MFE = MF.end(); MFI != MFE; + ++MFI) + for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) { + if (I->getOpcode() == Mips::RDDSP) + addDSPCtrlRegOperands(false, *I, MF); + else if (I->getOpcode() == Mips::WRDSP) + addDSPCtrlRegOperands(true, *I, MF); + else + replaceUsesWithZeroReg(MRI, *I); + } +} + +SDNode *MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag, + SDValue CmpLHS, SDLoc DL, + SDNode *Node) const { + unsigned Opc = InFlag.getOpcode(); (void)Opc; + + assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) || + (Opc == ISD::SUBC || Opc == ISD::SUBE)) && + "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn"); + + SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) }; + SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1); + EVT VT = LHS.getValueType(); + + SDNode *Carry = CurDAG->getMachineNode(Mips::SLTu, DL, VT, Ops); + SDNode *AddCarry = CurDAG->getMachineNode(Mips::ADDu, DL, VT, + SDValue(Carry, 0), RHS); + return CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS, + SDValue(AddCarry, 0)); +} + +/// Match frameindex +bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) { + EVT ValTy = Addr.getValueType(); + + Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); + Offset = CurDAG->getTargetConstant(0, ValTy); + return true; + } + return false; +} + +/// Match frameindex+offset and frameindex|offset +bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(SDValue Addr, SDValue &Base, + SDValue &Offset, + unsigned OffsetBits) const { + if (CurDAG->isBaseWithConstantOffset(Addr)) { + ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1)); + if (isIntN(OffsetBits, CN->getSExtValue())) { + EVT ValTy = Addr.getValueType(); + + // If the first operand is a FI, get the TargetFI Node + if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode> + (Addr.getOperand(0))) + Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy); + else + Base = Addr.getOperand(0); + + Offset = CurDAG->getTargetConstant(CN->getZExtValue(), ValTy); + return true; + } + } + return false; +} + +/// ComplexPattern used on MipsInstrInfo +/// Used on Mips Load/Store instructions +bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + // if Address is FI, get the TargetFrameIndex. + if (selectAddrFrameIndex(Addr, Base, Offset)) + return true; + + // on PIC code Load GA + if (Addr.getOpcode() == MipsISD::Wrapper) { + Base = Addr.getOperand(0); + Offset = Addr.getOperand(1); + return true; + } + + if (TM.getRelocationModel() != Reloc::PIC_) { + if ((Addr.getOpcode() == ISD::TargetExternalSymbol || + Addr.getOpcode() == ISD::TargetGlobalAddress)) + return false; + } + + // Addresses of the form FI+const or FI|const + if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16)) + return true; + + // Operand is a result from an ADD. + if (Addr.getOpcode() == ISD::ADD) { + // When loading from constant pools, load the lower address part in + // the instruction itself. Example, instead of: + // lui $2, %hi($CPI1_0) + // addiu $2, $2, %lo($CPI1_0) + // lwc1 $f0, 0($2) + // Generate: + // lui $2, %hi($CPI1_0) + // lwc1 $f0, %lo($CPI1_0)($2) + if (Addr.getOperand(1).getOpcode() == MipsISD::Lo || + Addr.getOperand(1).getOpcode() == MipsISD::GPRel) { + SDValue Opnd0 = Addr.getOperand(1).getOperand(0); + if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) || + isa<JumpTableSDNode>(Opnd0)) { + Base = Addr.getOperand(0); + Offset = Opnd0; + return true; + } + } + } + + return false; +} + +/// ComplexPattern used on MipsInstrInfo +/// Used on Mips Load/Store instructions +bool MipsSEDAGToDAGISel::selectAddrRegReg(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + // Operand is a result from an ADD. + if (Addr.getOpcode() == ISD::ADD) { + Base = Addr.getOperand(0); + Offset = Addr.getOperand(1); + return true; + } + + return false; +} + +bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + Base = Addr; + Offset = CurDAG->getTargetConstant(0, Addr.getValueType()); + return true; +} + +bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + return selectAddrRegImm(Addr, Base, Offset) || + selectAddrDefault(Addr, Base, Offset); +} + +bool MipsSEDAGToDAGISel::selectAddrRegImm10(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + if (selectAddrFrameIndex(Addr, Base, Offset)) + return true; + + if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10)) + return true; + + return false; +} + +/// Used on microMIPS Load/Store unaligned instructions (12-bit offset) +bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + if (selectAddrFrameIndex(Addr, Base, Offset)) + return true; + + if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12)) + return true; + + return false; +} + +bool MipsSEDAGToDAGISel::selectIntAddrMM(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + return selectAddrRegImm12(Addr, Base, Offset) || + selectAddrDefault(Addr, Base, Offset); +} + +bool MipsSEDAGToDAGISel::selectIntAddrMSA(SDValue Addr, SDValue &Base, + SDValue &Offset) const { + if (selectAddrRegImm10(Addr, Base, Offset)) + return true; + + if (selectAddrDefault(Addr, Base, Offset)) + return true; + + return false; +} + +// Select constant vector splats. +// +// Returns true and sets Imm if: +// * MSA is enabled +// * N is a ISD::BUILD_VECTOR representing a constant splat +bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm) const { + if (!Subtarget->hasMSA()) + return false; + + BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N); + + if (!Node) + return false; + + APInt SplatValue, SplatUndef; + unsigned SplatBitSize; + bool HasAnyUndefs; + + if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, + HasAnyUndefs, 8, + !Subtarget->isLittle())) + return false; + + Imm = SplatValue; + + return true; +} + +// Select constant vector splats. +// +// In addition to the requirements of selectVSplat(), this function returns +// true and sets Imm if: +// * The splat value is the same width as the elements of the vector +// * The splat value fits in an integer with the specified signed-ness and +// width. +// +// This function looks through ISD::BITCAST nodes. +// TODO: This might not be appropriate for big-endian MSA since BITCAST is +// sometimes a shuffle in big-endian mode. +// +// It's worth noting that this function is not used as part of the selection +// of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd] +// instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in +// MipsSEDAGToDAGISel::selectNode. +bool MipsSEDAGToDAGISel:: +selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed, + unsigned ImmBitSize) const { + APInt ImmValue; + EVT EltTy = N->getValueType(0).getVectorElementType(); + + if (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0); + + if (selectVSplat (N.getNode(), ImmValue) && + ImmValue.getBitWidth() == EltTy.getSizeInBits()) { + if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) || + (!Signed && ImmValue.isIntN(ImmBitSize))) { + Imm = CurDAG->getTargetConstant(ImmValue, EltTy); + return true; + } + } + + return false; +} + +// Select constant vector splats. +bool MipsSEDAGToDAGISel:: +selectVSplatUimm1(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, false, 1); +} + +bool MipsSEDAGToDAGISel:: +selectVSplatUimm2(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, false, 2); +} + +bool MipsSEDAGToDAGISel:: +selectVSplatUimm3(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, false, 3); +} + +// Select constant vector splats. +bool MipsSEDAGToDAGISel:: +selectVSplatUimm4(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, false, 4); +} + +// Select constant vector splats. +bool MipsSEDAGToDAGISel:: +selectVSplatUimm5(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, false, 5); +} + +// Select constant vector splats. +bool MipsSEDAGToDAGISel:: +selectVSplatUimm6(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, false, 6); +} + +// Select constant vector splats. +bool MipsSEDAGToDAGISel:: +selectVSplatUimm8(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, false, 8); +} + +// Select constant vector splats. +bool MipsSEDAGToDAGISel:: +selectVSplatSimm5(SDValue N, SDValue &Imm) const { + return selectVSplatCommon(N, Imm, true, 5); +} + +// Select constant vector splats whose value is a power of 2. +// +// In addition to the requirements of selectVSplat(), this function returns +// true and sets Imm if: +// * The splat value is the same width as the elements of the vector +// * The splat value is a power of two. +// +// This function looks through ISD::BITCAST nodes. +// TODO: This might not be appropriate for big-endian MSA since BITCAST is +// sometimes a shuffle in big-endian mode. +bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const { + APInt ImmValue; + EVT EltTy = N->getValueType(0).getVectorElementType(); + + if (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0); + + if (selectVSplat (N.getNode(), ImmValue) && + ImmValue.getBitWidth() == EltTy.getSizeInBits()) { + int32_t Log2 = ImmValue.exactLogBase2(); + + if (Log2 != -1) { + Imm = CurDAG->getTargetConstant(Log2, EltTy); + return true; + } + } + + return false; +} + +// Select constant vector splats whose value only has a consecutive sequence +// of left-most bits set (e.g. 0b11...1100...00). +// +// In addition to the requirements of selectVSplat(), this function returns +// true and sets Imm if: +// * The splat value is the same width as the elements of the vector +// * The splat value is a consecutive sequence of left-most bits. +// +// This function looks through ISD::BITCAST nodes. +// TODO: This might not be appropriate for big-endian MSA since BITCAST is +// sometimes a shuffle in big-endian mode. +bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const { + APInt ImmValue; + EVT EltTy = N->getValueType(0).getVectorElementType(); + + if (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0); + + if (selectVSplat(N.getNode(), ImmValue) && + ImmValue.getBitWidth() == EltTy.getSizeInBits()) { + // Extract the run of set bits starting with bit zero from the bitwise + // inverse of ImmValue, and test that the inverse of this is the same + // as the original value. + if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) { + + Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), EltTy); + return true; + } + } + + return false; +} + +// Select constant vector splats whose value only has a consecutive sequence +// of right-most bits set (e.g. 0b00...0011...11). +// +// In addition to the requirements of selectVSplat(), this function returns +// true and sets Imm if: +// * The splat value is the same width as the elements of the vector +// * The splat value is a consecutive sequence of right-most bits. +// +// This function looks through ISD::BITCAST nodes. +// TODO: This might not be appropriate for big-endian MSA since BITCAST is +// sometimes a shuffle in big-endian mode. +bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const { + APInt ImmValue; + EVT EltTy = N->getValueType(0).getVectorElementType(); + + if (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0); + + if (selectVSplat(N.getNode(), ImmValue) && + ImmValue.getBitWidth() == EltTy.getSizeInBits()) { + // Extract the run of set bits starting with bit zero, and test that the + // result is the same as the original value + if (ImmValue == (ImmValue & ~(ImmValue + 1))) { + Imm = CurDAG->getTargetConstant(ImmValue.countPopulation(), EltTy); + return true; + } + } + + return false; +} + +bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N, + SDValue &Imm) const { + APInt ImmValue; + EVT EltTy = N->getValueType(0).getVectorElementType(); + + if (N->getOpcode() == ISD::BITCAST) + N = N->getOperand(0); + + if (selectVSplat(N.getNode(), ImmValue) && + ImmValue.getBitWidth() == EltTy.getSizeInBits()) { + int32_t Log2 = (~ImmValue).exactLogBase2(); + + if (Log2 != -1) { + Imm = CurDAG->getTargetConstant(Log2, EltTy); + return true; + } + } + + return false; +} + +std::pair<bool, SDNode*> MipsSEDAGToDAGISel::selectNode(SDNode *Node) { + unsigned Opcode = Node->getOpcode(); + SDLoc DL(Node); + + /// + // Instruction Selection not handled by the auto-generated + // tablegen selection should be handled here. + /// + SDNode *Result; + + switch(Opcode) { + default: break; + + case ISD::SUBE: { + SDValue InFlag = Node->getOperand(2); + Result = selectAddESubE(Mips::SUBu, InFlag, InFlag.getOperand(0), DL, Node); + return std::make_pair(true, Result); + } + + case ISD::ADDE: { + if (Subtarget->hasDSP()) // Select DSP instructions, ADDSC and ADDWC. + break; + SDValue InFlag = Node->getOperand(2); + Result = selectAddESubE(Mips::ADDu, InFlag, InFlag.getValue(0), DL, Node); + return std::make_pair(true, Result); + } + + case ISD::ConstantFP: { + ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node); + if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) { + if (Subtarget->isGP64bit()) { + SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, + Mips::ZERO_64, MVT::i64); + Result = CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero); + } else if (Subtarget->isFP64bit()) { + SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, + Mips::ZERO, MVT::i32); + Result = CurDAG->getMachineNode(Mips::BuildPairF64_64, DL, MVT::f64, + Zero, Zero); + } else { + SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL, + Mips::ZERO, MVT::i32); + Result = CurDAG->getMachineNode(Mips::BuildPairF64, DL, MVT::f64, Zero, + Zero); + } + + return std::make_pair(true, Result); + } + break; + } + + case ISD::Constant: { + const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node); + unsigned Size = CN->getValueSizeInBits(0); + + if (Size == 32) + break; + + MipsAnalyzeImmediate AnalyzeImm; + int64_t Imm = CN->getSExtValue(); + + const MipsAnalyzeImmediate::InstSeq &Seq = + AnalyzeImm.Analyze(Imm, Size, false); + + MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin(); + SDLoc DL(CN); + SDNode *RegOpnd; + SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), + MVT::i64); + + // The first instruction can be a LUi which is different from other + // instructions (ADDiu, ORI and SLL) in that it does not have a register + // operand. + if (Inst->Opc == Mips::LUi64) + RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd); + else + RegOpnd = + CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, + CurDAG->getRegister(Mips::ZERO_64, MVT::i64), + ImmOpnd); + + // The remaining instructions in the sequence are handled here. + for (++Inst; Inst != Seq.end(); ++Inst) { + ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), + MVT::i64); + RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, + SDValue(RegOpnd, 0), ImmOpnd); + } + + return std::make_pair(true, RegOpnd); + } + + case ISD::INTRINSIC_W_CHAIN: { + switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { + default: + break; + + case Intrinsic::mips_cfcmsa: { + SDValue ChainIn = Node->getOperand(0); + SDValue RegIdx = Node->getOperand(2); + SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL, + getMSACtrlReg(RegIdx), MVT::i32); + return std::make_pair(true, Reg.getNode()); + } + } + break; + } + + case ISD::INTRINSIC_WO_CHAIN: { + switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) { + default: + break; + + case Intrinsic::mips_move_v: + // Like an assignment but will always produce a move.v even if + // unnecessary. + return std::make_pair(true, + CurDAG->getMachineNode(Mips::MOVE_V, DL, + Node->getValueType(0), + Node->getOperand(1))); + } + break; + } + + case ISD::INTRINSIC_VOID: { + switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { + default: + break; + + case Intrinsic::mips_ctcmsa: { + SDValue ChainIn = Node->getOperand(0); + SDValue RegIdx = Node->getOperand(2); + SDValue Value = Node->getOperand(3); + SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL, + getMSACtrlReg(RegIdx), Value); + return std::make_pair(true, ChainOut.getNode()); + } + } + break; + } + + case MipsISD::ThreadPointer: { + EVT PtrVT = getTargetLowering()->getPointerTy(); + unsigned RdhwrOpc, DestReg; + + if (PtrVT == MVT::i32) { + RdhwrOpc = Mips::RDHWR; + DestReg = Mips::V1; + } else { + RdhwrOpc = Mips::RDHWR64; + DestReg = Mips::V1_64; + } + + SDNode *Rdhwr = + CurDAG->getMachineNode(RdhwrOpc, SDLoc(Node), + Node->getValueType(0), + CurDAG->getRegister(Mips::HWR29, MVT::i32)); + SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg, + SDValue(Rdhwr, 0)); + SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT); + ReplaceUses(SDValue(Node, 0), ResNode); + return std::make_pair(true, ResNode.getNode()); + } + + case ISD::BUILD_VECTOR: { + // Select appropriate ldi.[bhwd] instructions for constant splats of + // 128-bit when MSA is enabled. Fixup any register class mismatches that + // occur as a result. + // + // This allows the compiler to use a wider range of immediates than would + // otherwise be allowed. If, for example, v4i32 could only use ldi.h then + // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101, + // 0x01010101 } without using a constant pool. This would be sub-optimal + // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the + // same set/ of registers. Similarly, ldi.h isn't capable of producing { + // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can. + + BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node); + APInt SplatValue, SplatUndef; + unsigned SplatBitSize; + bool HasAnyUndefs; + unsigned LdiOp; + EVT ResVecTy = BVN->getValueType(0); + EVT ViaVecTy; + + if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector()) + return std::make_pair(false, nullptr); + + if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, + HasAnyUndefs, 8, + !Subtarget->isLittle())) + return std::make_pair(false, nullptr); + + switch (SplatBitSize) { + default: + return std::make_pair(false, nullptr); + case 8: + LdiOp = Mips::LDI_B; + ViaVecTy = MVT::v16i8; + break; + case 16: + LdiOp = Mips::LDI_H; + ViaVecTy = MVT::v8i16; + break; + case 32: + LdiOp = Mips::LDI_W; + ViaVecTy = MVT::v4i32; + break; + case 64: + LdiOp = Mips::LDI_D; + ViaVecTy = MVT::v2i64; + break; + } + + if (!SplatValue.isSignedIntN(10)) + return std::make_pair(false, nullptr); + + SDValue Imm = CurDAG->getTargetConstant(SplatValue, + ViaVecTy.getVectorElementType()); + + SDNode *Res = CurDAG->getMachineNode(LdiOp, SDLoc(Node), ViaVecTy, Imm); + + if (ResVecTy != ViaVecTy) { + // If LdiOp is writing to a different register class to ResVecTy, then + // fix it up here. This COPY_TO_REGCLASS should never cause a move.v + // since the source and destination register sets contain the same + // registers. + const TargetLowering *TLI = getTargetLowering(); + MVT ResVecTySimple = ResVecTy.getSimpleVT(); + const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple); + Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, SDLoc(Node), + ResVecTy, SDValue(Res, 0), + CurDAG->getTargetConstant(RC->getID(), + MVT::i32)); + } + + return std::make_pair(true, Res); + } + + } + + return std::make_pair(false, nullptr); +} + +FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM) { + return new MipsSEDAGToDAGISel(TM); +} |