diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp | 3088 |
1 files changed, 3088 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp b/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp new file mode 100644 index 0000000..6a23bc3 --- /dev/null +++ b/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp @@ -0,0 +1,3088 @@ +//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the interfaces that Mips uses to lower LLVM code into a +// selection DAG. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "mips-lower" +#include "MipsISelLowering.h" +#include "MipsMachineFunction.h" +#include "MipsTargetMachine.h" +#include "MipsTargetObjectFile.h" +#include "MipsSubtarget.h" +#include "InstPrinter/MipsInstPrinter.h" +#include "MCTargetDesc/MipsBaseInfo.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Function.h" +#include "llvm/GlobalVariable.h" +#include "llvm/Intrinsics.h" +#include "llvm/CallingConv.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAGISel.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +using namespace llvm; + +// If I is a shifted mask, set the size (Size) and the first bit of the +// mask (Pos), and return true. +// For example, if I is 0x003ff800, (Pos, Size) = (11, 11). +static bool IsShiftedMask(uint64_t I, uint64_t &Pos, uint64_t &Size) { + if (!isShiftedMask_64(I)) + return false; + + Size = CountPopulation_64(I); + Pos = CountTrailingZeros_64(I); + return true; +} + +static SDValue GetGlobalReg(SelectionDAG &DAG, EVT Ty) { + MipsFunctionInfo *FI = DAG.getMachineFunction().getInfo<MipsFunctionInfo>(); + return DAG.getRegister(FI->getGlobalBaseReg(), Ty); +} + +const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const { + switch (Opcode) { + case MipsISD::JmpLink: return "MipsISD::JmpLink"; + case MipsISD::Hi: return "MipsISD::Hi"; + case MipsISD::Lo: return "MipsISD::Lo"; + case MipsISD::GPRel: return "MipsISD::GPRel"; + case MipsISD::ThreadPointer: return "MipsISD::ThreadPointer"; + case MipsISD::Ret: return "MipsISD::Ret"; + case MipsISD::FPBrcond: return "MipsISD::FPBrcond"; + case MipsISD::FPCmp: return "MipsISD::FPCmp"; + case MipsISD::CMovFP_T: return "MipsISD::CMovFP_T"; + case MipsISD::CMovFP_F: return "MipsISD::CMovFP_F"; + case MipsISD::FPRound: return "MipsISD::FPRound"; + case MipsISD::MAdd: return "MipsISD::MAdd"; + case MipsISD::MAddu: return "MipsISD::MAddu"; + case MipsISD::MSub: return "MipsISD::MSub"; + case MipsISD::MSubu: return "MipsISD::MSubu"; + case MipsISD::DivRem: return "MipsISD::DivRem"; + case MipsISD::DivRemU: return "MipsISD::DivRemU"; + case MipsISD::BuildPairF64: return "MipsISD::BuildPairF64"; + case MipsISD::ExtractElementF64: return "MipsISD::ExtractElementF64"; + case MipsISD::Wrapper: return "MipsISD::Wrapper"; + case MipsISD::DynAlloc: return "MipsISD::DynAlloc"; + case MipsISD::Sync: return "MipsISD::Sync"; + case MipsISD::Ext: return "MipsISD::Ext"; + case MipsISD::Ins: return "MipsISD::Ins"; + default: return NULL; + } +} + +MipsTargetLowering:: +MipsTargetLowering(MipsTargetMachine &TM) + : TargetLowering(TM, new MipsTargetObjectFile()), + Subtarget(&TM.getSubtarget<MipsSubtarget>()), + HasMips64(Subtarget->hasMips64()), IsN64(Subtarget->isABI_N64()), + IsO32(Subtarget->isABI_O32()) { + + // Mips does not have i1 type, so use i32 for + // setcc operations results (slt, sgt, ...). + setBooleanContents(ZeroOrOneBooleanContent); + setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? + + // Set up the register classes + addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass); + + if (HasMips64) + addRegisterClass(MVT::i64, Mips::CPU64RegsRegisterClass); + + if (!TM.Options.UseSoftFloat) { + addRegisterClass(MVT::f32, Mips::FGR32RegisterClass); + + // When dealing with single precision only, use libcalls + if (!Subtarget->isSingleFloat()) { + if (HasMips64) + addRegisterClass(MVT::f64, Mips::FGR64RegisterClass); + else + addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass); + } + } + + // Load extented operations for i1 types must be promoted + setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); + setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); + setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); + + // MIPS doesn't have extending float->double load/store + setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + + // Used by legalize types to correctly generate the setcc result. + // Without this, every float setcc comes with a AND/OR with the result, + // we don't want this, since the fpcmp result goes to a flag register, + // which is used implicitly by brcond and select operations. + AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32); + + // Mips Custom Operations + setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); + setOperationAction(ISD::BlockAddress, MVT::i32, Custom); + setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); + setOperationAction(ISD::JumpTable, MVT::i32, Custom); + setOperationAction(ISD::ConstantPool, MVT::i32, Custom); + setOperationAction(ISD::SELECT, MVT::f32, Custom); + setOperationAction(ISD::SELECT, MVT::f64, Custom); + setOperationAction(ISD::SELECT, MVT::i32, Custom); + setOperationAction(ISD::SETCC, MVT::f32, Custom); + setOperationAction(ISD::SETCC, MVT::f64, Custom); + setOperationAction(ISD::BRCOND, MVT::Other, Custom); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); + setOperationAction(ISD::VASTART, MVT::Other, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); + setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); + setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom); + setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); + + if (!TM.Options.NoNaNsFPMath) { + setOperationAction(ISD::FABS, MVT::f32, Custom); + setOperationAction(ISD::FABS, MVT::f64, Custom); + } + + if (HasMips64) { + setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); + setOperationAction(ISD::BlockAddress, MVT::i64, Custom); + setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); + setOperationAction(ISD::JumpTable, MVT::i64, Custom); + setOperationAction(ISD::ConstantPool, MVT::i64, Custom); + setOperationAction(ISD::SELECT, MVT::i64, Custom); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Custom); + } + + setOperationAction(ISD::SDIV, MVT::i32, Expand); + setOperationAction(ISD::SREM, MVT::i32, Expand); + setOperationAction(ISD::UDIV, MVT::i32, Expand); + setOperationAction(ISD::UREM, MVT::i32, Expand); + setOperationAction(ISD::SDIV, MVT::i64, Expand); + setOperationAction(ISD::SREM, MVT::i64, Expand); + setOperationAction(ISD::UDIV, MVT::i64, Expand); + setOperationAction(ISD::UREM, MVT::i64, Expand); + + // Operations not directly supported by Mips. + setOperationAction(ISD::BR_JT, MVT::Other, Expand); + setOperationAction(ISD::BR_CC, MVT::Other, Expand); + setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); + setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); + setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); + setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); + setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); + setOperationAction(ISD::CTPOP, MVT::i32, Expand); + setOperationAction(ISD::CTPOP, MVT::i64, Expand); + setOperationAction(ISD::CTTZ, MVT::i32, Expand); + setOperationAction(ISD::CTTZ, MVT::i64, Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); + setOperationAction(ISD::ROTL, MVT::i32, Expand); + setOperationAction(ISD::ROTL, MVT::i64, Expand); + + if (!Subtarget->hasMips32r2()) + setOperationAction(ISD::ROTR, MVT::i32, Expand); + + if (!Subtarget->hasMips64r2()) + setOperationAction(ISD::ROTR, MVT::i64, Expand); + + setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); + setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); + setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); + setOperationAction(ISD::FSIN, MVT::f32, Expand); + setOperationAction(ISD::FSIN, MVT::f64, Expand); + setOperationAction(ISD::FCOS, MVT::f32, Expand); + setOperationAction(ISD::FCOS, MVT::f64, Expand); + setOperationAction(ISD::FPOWI, MVT::f32, Expand); + setOperationAction(ISD::FPOW, MVT::f32, Expand); + setOperationAction(ISD::FPOW, MVT::f64, Expand); + setOperationAction(ISD::FLOG, MVT::f32, Expand); + setOperationAction(ISD::FLOG2, MVT::f32, Expand); + setOperationAction(ISD::FLOG10, MVT::f32, Expand); + setOperationAction(ISD::FEXP, MVT::f32, Expand); + setOperationAction(ISD::FMA, MVT::f32, Expand); + setOperationAction(ISD::FMA, MVT::f64, Expand); + setOperationAction(ISD::FREM, MVT::f32, Expand); + setOperationAction(ISD::FREM, MVT::f64, Expand); + + if (!TM.Options.NoNaNsFPMath) { + setOperationAction(ISD::FNEG, MVT::f32, Expand); + setOperationAction(ISD::FNEG, MVT::f64, Expand); + } + + setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); + setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); + setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); + setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); + + setOperationAction(ISD::VAARG, MVT::Other, Expand); + setOperationAction(ISD::VACOPY, MVT::Other, Expand); + setOperationAction(ISD::VAEND, MVT::Other, Expand); + + // Use the default for now + setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); + + setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand); + setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); + setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand); + setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); + + setInsertFencesForAtomic(true); + + if (Subtarget->isSingleFloat()) + setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); + + if (!Subtarget->hasSEInReg()) { + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); + } + + if (!Subtarget->hasBitCount()) { + setOperationAction(ISD::CTLZ, MVT::i32, Expand); + setOperationAction(ISD::CTLZ, MVT::i64, Expand); + } + + if (!Subtarget->hasSwap()) { + setOperationAction(ISD::BSWAP, MVT::i32, Expand); + setOperationAction(ISD::BSWAP, MVT::i64, Expand); + } + + setTargetDAGCombine(ISD::ADDE); + setTargetDAGCombine(ISD::SUBE); + setTargetDAGCombine(ISD::SDIVREM); + setTargetDAGCombine(ISD::UDIVREM); + setTargetDAGCombine(ISD::SELECT); + setTargetDAGCombine(ISD::AND); + setTargetDAGCombine(ISD::OR); + + setMinFunctionAlignment(HasMips64 ? 3 : 2); + + setStackPointerRegisterToSaveRestore(IsN64 ? Mips::SP_64 : Mips::SP); + computeRegisterProperties(); + + setExceptionPointerRegister(IsN64 ? Mips::A0_64 : Mips::A0); + setExceptionSelectorRegister(IsN64 ? Mips::A1_64 : Mips::A1); +} + +bool MipsTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const { + MVT::SimpleValueType SVT = VT.getSimpleVT().SimpleTy; + + switch (SVT) { + case MVT::i64: + case MVT::i32: + case MVT::i16: + return true; + case MVT::f32: + return Subtarget->hasMips32r2Or64(); + default: + return false; + } +} + +EVT MipsTargetLowering::getSetCCResultType(EVT VT) const { + return MVT::i32; +} + +// SelectMadd - +// Transforms a subgraph in CurDAG if the following pattern is found: +// (addc multLo, Lo0), (adde multHi, Hi0), +// where, +// multHi/Lo: product of multiplication +// Lo0: initial value of Lo register +// Hi0: initial value of Hi register +// Return true if pattern matching was successful. +static bool SelectMadd(SDNode* ADDENode, SelectionDAG* CurDAG) { + // ADDENode's second operand must be a flag output of an ADDC node in order + // for the matching to be successful. + SDNode* ADDCNode = ADDENode->getOperand(2).getNode(); + + if (ADDCNode->getOpcode() != ISD::ADDC) + return false; + + SDValue MultHi = ADDENode->getOperand(0); + SDValue MultLo = ADDCNode->getOperand(0); + SDNode* MultNode = MultHi.getNode(); + unsigned MultOpc = MultHi.getOpcode(); + + // MultHi and MultLo must be generated by the same node, + if (MultLo.getNode() != MultNode) + return false; + + // and it must be a multiplication. + if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI) + return false; + + // MultLo amd MultHi must be the first and second output of MultNode + // respectively. + if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0) + return false; + + // Transform this to a MADD only if ADDENode and ADDCNode are the only users + // of the values of MultNode, in which case MultNode will be removed in later + // phases. + // If there exist users other than ADDENode or ADDCNode, this function returns + // here, which will result in MultNode being mapped to a single MULT + // instruction node rather than a pair of MULT and MADD instructions being + // produced. + if (!MultHi.hasOneUse() || !MultLo.hasOneUse()) + return false; + + SDValue Chain = CurDAG->getEntryNode(); + DebugLoc dl = ADDENode->getDebugLoc(); + + // create MipsMAdd(u) node + MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MAddu : MipsISD::MAdd; + + SDValue MAdd = CurDAG->getNode(MultOpc, dl, MVT::Glue, + MultNode->getOperand(0),// Factor 0 + MultNode->getOperand(1),// Factor 1 + ADDCNode->getOperand(1),// Lo0 + ADDENode->getOperand(1));// Hi0 + + // create CopyFromReg nodes + SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32, + MAdd); + SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl, + Mips::HI, MVT::i32, + CopyFromLo.getValue(2)); + + // replace uses of adde and addc here + if (!SDValue(ADDCNode, 0).use_empty()) + CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDCNode, 0), CopyFromLo); + + if (!SDValue(ADDENode, 0).use_empty()) + CurDAG->ReplaceAllUsesOfValueWith(SDValue(ADDENode, 0), CopyFromHi); + + return true; +} + +// SelectMsub - +// Transforms a subgraph in CurDAG if the following pattern is found: +// (addc Lo0, multLo), (sube Hi0, multHi), +// where, +// multHi/Lo: product of multiplication +// Lo0: initial value of Lo register +// Hi0: initial value of Hi register +// Return true if pattern matching was successful. +static bool SelectMsub(SDNode* SUBENode, SelectionDAG* CurDAG) { + // SUBENode's second operand must be a flag output of an SUBC node in order + // for the matching to be successful. + SDNode* SUBCNode = SUBENode->getOperand(2).getNode(); + + if (SUBCNode->getOpcode() != ISD::SUBC) + return false; + + SDValue MultHi = SUBENode->getOperand(1); + SDValue MultLo = SUBCNode->getOperand(1); + SDNode* MultNode = MultHi.getNode(); + unsigned MultOpc = MultHi.getOpcode(); + + // MultHi and MultLo must be generated by the same node, + if (MultLo.getNode() != MultNode) + return false; + + // and it must be a multiplication. + if (MultOpc != ISD::SMUL_LOHI && MultOpc != ISD::UMUL_LOHI) + return false; + + // MultLo amd MultHi must be the first and second output of MultNode + // respectively. + if (MultHi.getResNo() != 1 || MultLo.getResNo() != 0) + return false; + + // Transform this to a MSUB only if SUBENode and SUBCNode are the only users + // of the values of MultNode, in which case MultNode will be removed in later + // phases. + // If there exist users other than SUBENode or SUBCNode, this function returns + // here, which will result in MultNode being mapped to a single MULT + // instruction node rather than a pair of MULT and MSUB instructions being + // produced. + if (!MultHi.hasOneUse() || !MultLo.hasOneUse()) + return false; + + SDValue Chain = CurDAG->getEntryNode(); + DebugLoc dl = SUBENode->getDebugLoc(); + + // create MipsSub(u) node + MultOpc = MultOpc == ISD::UMUL_LOHI ? MipsISD::MSubu : MipsISD::MSub; + + SDValue MSub = CurDAG->getNode(MultOpc, dl, MVT::Glue, + MultNode->getOperand(0),// Factor 0 + MultNode->getOperand(1),// Factor 1 + SUBCNode->getOperand(0),// Lo0 + SUBENode->getOperand(0));// Hi0 + + // create CopyFromReg nodes + SDValue CopyFromLo = CurDAG->getCopyFromReg(Chain, dl, Mips::LO, MVT::i32, + MSub); + SDValue CopyFromHi = CurDAG->getCopyFromReg(CopyFromLo.getValue(1), dl, + Mips::HI, MVT::i32, + CopyFromLo.getValue(2)); + + // replace uses of sube and subc here + if (!SDValue(SUBCNode, 0).use_empty()) + CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBCNode, 0), CopyFromLo); + + if (!SDValue(SUBENode, 0).use_empty()) + CurDAG->ReplaceAllUsesOfValueWith(SDValue(SUBENode, 0), CopyFromHi); + + return true; +} + +static SDValue PerformADDECombine(SDNode *N, SelectionDAG& DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget* Subtarget) { + if (DCI.isBeforeLegalize()) + return SDValue(); + + if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 && + SelectMadd(N, &DAG)) + return SDValue(N, 0); + + return SDValue(); +} + +static SDValue PerformSUBECombine(SDNode *N, SelectionDAG& DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget* Subtarget) { + if (DCI.isBeforeLegalize()) + return SDValue(); + + if (Subtarget->hasMips32() && N->getValueType(0) == MVT::i32 && + SelectMsub(N, &DAG)) + return SDValue(N, 0); + + return SDValue(); +} + +static SDValue PerformDivRemCombine(SDNode *N, SelectionDAG& DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget* Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + EVT Ty = N->getValueType(0); + unsigned LO = (Ty == MVT::i32) ? Mips::LO : Mips::LO64; + unsigned HI = (Ty == MVT::i32) ? Mips::HI : Mips::HI64; + unsigned opc = N->getOpcode() == ISD::SDIVREM ? MipsISD::DivRem : + MipsISD::DivRemU; + DebugLoc dl = N->getDebugLoc(); + + SDValue DivRem = DAG.getNode(opc, dl, MVT::Glue, + N->getOperand(0), N->getOperand(1)); + SDValue InChain = DAG.getEntryNode(); + SDValue InGlue = DivRem; + + // insert MFLO + if (N->hasAnyUseOfValue(0)) { + SDValue CopyFromLo = DAG.getCopyFromReg(InChain, dl, LO, Ty, + InGlue); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), CopyFromLo); + InChain = CopyFromLo.getValue(1); + InGlue = CopyFromLo.getValue(2); + } + + // insert MFHI + if (N->hasAnyUseOfValue(1)) { + SDValue CopyFromHi = DAG.getCopyFromReg(InChain, dl, + HI, Ty, InGlue); + DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), CopyFromHi); + } + + return SDValue(); +} + +static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) { + switch (CC) { + default: llvm_unreachable("Unknown fp condition code!"); + case ISD::SETEQ: + case ISD::SETOEQ: return Mips::FCOND_OEQ; + case ISD::SETUNE: return Mips::FCOND_UNE; + case ISD::SETLT: + case ISD::SETOLT: return Mips::FCOND_OLT; + case ISD::SETGT: + case ISD::SETOGT: return Mips::FCOND_OGT; + case ISD::SETLE: + case ISD::SETOLE: return Mips::FCOND_OLE; + case ISD::SETGE: + case ISD::SETOGE: return Mips::FCOND_OGE; + case ISD::SETULT: return Mips::FCOND_ULT; + case ISD::SETULE: return Mips::FCOND_ULE; + case ISD::SETUGT: return Mips::FCOND_UGT; + case ISD::SETUGE: return Mips::FCOND_UGE; + case ISD::SETUO: return Mips::FCOND_UN; + case ISD::SETO: return Mips::FCOND_OR; + case ISD::SETNE: + case ISD::SETONE: return Mips::FCOND_ONE; + case ISD::SETUEQ: return Mips::FCOND_UEQ; + } +} + + +// Returns true if condition code has to be inverted. +static bool InvertFPCondCode(Mips::CondCode CC) { + if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT) + return false; + + assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) && + "Illegal Condition Code"); + + return true; +} + +// Creates and returns an FPCmp node from a setcc node. +// Returns Op if setcc is not a floating point comparison. +static SDValue CreateFPCmp(SelectionDAG& DAG, const SDValue& Op) { + // must be a SETCC node + if (Op.getOpcode() != ISD::SETCC) + return Op; + + SDValue LHS = Op.getOperand(0); + + if (!LHS.getValueType().isFloatingPoint()) + return Op; + + SDValue RHS = Op.getOperand(1); + DebugLoc dl = Op.getDebugLoc(); + + // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of + // node if necessary. + ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); + + return DAG.getNode(MipsISD::FPCmp, dl, MVT::Glue, LHS, RHS, + DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32)); +} + +// Creates and returns a CMovFPT/F node. +static SDValue CreateCMovFP(SelectionDAG& DAG, SDValue Cond, SDValue True, + SDValue False, DebugLoc DL) { + bool invert = InvertFPCondCode((Mips::CondCode) + cast<ConstantSDNode>(Cond.getOperand(2)) + ->getSExtValue()); + + return DAG.getNode((invert ? MipsISD::CMovFP_F : MipsISD::CMovFP_T), DL, + True.getValueType(), True, False, Cond); +} + +static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG& DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget* Subtarget) { + if (DCI.isBeforeLegalizeOps()) + return SDValue(); + + SDValue SetCC = N->getOperand(0); + + if ((SetCC.getOpcode() != ISD::SETCC) || + !SetCC.getOperand(0).getValueType().isInteger()) + return SDValue(); + + SDValue False = N->getOperand(2); + EVT FalseTy = False.getValueType(); + + if (!FalseTy.isInteger()) + return SDValue(); + + ConstantSDNode *CN = dyn_cast<ConstantSDNode>(False); + + if (!CN || CN->getZExtValue()) + return SDValue(); + + const DebugLoc DL = N->getDebugLoc(); + ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get(); + SDValue True = N->getOperand(1); + + SetCC = DAG.getSetCC(DL, SetCC.getValueType(), SetCC.getOperand(0), + SetCC.getOperand(1), ISD::getSetCCInverse(CC, true)); + + return DAG.getNode(ISD::SELECT, DL, FalseTy, SetCC, False, True); +} + +static SDValue PerformANDCombine(SDNode *N, SelectionDAG& DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget* Subtarget) { + // Pattern match EXT. + // $dst = and ((sra or srl) $src , pos), (2**size - 1) + // => ext $dst, $src, size, pos + if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2()) + return SDValue(); + + SDValue ShiftRight = N->getOperand(0), Mask = N->getOperand(1); + unsigned ShiftRightOpc = ShiftRight.getOpcode(); + + // Op's first operand must be a shift right. + if (ShiftRightOpc != ISD::SRA && ShiftRightOpc != ISD::SRL) + return SDValue(); + + // The second operand of the shift must be an immediate. + ConstantSDNode *CN; + if (!(CN = dyn_cast<ConstantSDNode>(ShiftRight.getOperand(1)))) + return SDValue(); + + uint64_t Pos = CN->getZExtValue(); + uint64_t SMPos, SMSize; + + // Op's second operand must be a shifted mask. + if (!(CN = dyn_cast<ConstantSDNode>(Mask)) || + !IsShiftedMask(CN->getZExtValue(), SMPos, SMSize)) + return SDValue(); + + // Return if the shifted mask does not start at bit 0 or the sum of its size + // and Pos exceeds the word's size. + EVT ValTy = N->getValueType(0); + if (SMPos != 0 || Pos + SMSize > ValTy.getSizeInBits()) + return SDValue(); + + return DAG.getNode(MipsISD::Ext, N->getDebugLoc(), ValTy, + ShiftRight.getOperand(0), DAG.getConstant(Pos, MVT::i32), + DAG.getConstant(SMSize, MVT::i32)); +} + +static SDValue PerformORCombine(SDNode *N, SelectionDAG& DAG, + TargetLowering::DAGCombinerInfo &DCI, + const MipsSubtarget* Subtarget) { + // Pattern match INS. + // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1), + // where mask1 = (2**size - 1) << pos, mask0 = ~mask1 + // => ins $dst, $src, size, pos, $src1 + if (DCI.isBeforeLegalizeOps() || !Subtarget->hasMips32r2()) + return SDValue(); + + SDValue And0 = N->getOperand(0), And1 = N->getOperand(1); + uint64_t SMPos0, SMSize0, SMPos1, SMSize1; + ConstantSDNode *CN; + + // See if Op's first operand matches (and $src1 , mask0). + if (And0.getOpcode() != ISD::AND) + return SDValue(); + + if (!(CN = dyn_cast<ConstantSDNode>(And0.getOperand(1))) || + !IsShiftedMask(~CN->getSExtValue(), SMPos0, SMSize0)) + return SDValue(); + + // See if Op's second operand matches (and (shl $src, pos), mask1). + if (And1.getOpcode() != ISD::AND) + return SDValue(); + + if (!(CN = dyn_cast<ConstantSDNode>(And1.getOperand(1))) || + !IsShiftedMask(CN->getZExtValue(), SMPos1, SMSize1)) + return SDValue(); + + // The shift masks must have the same position and size. + if (SMPos0 != SMPos1 || SMSize0 != SMSize1) + return SDValue(); + + SDValue Shl = And1.getOperand(0); + if (Shl.getOpcode() != ISD::SHL) + return SDValue(); + + if (!(CN = dyn_cast<ConstantSDNode>(Shl.getOperand(1)))) + return SDValue(); + + unsigned Shamt = CN->getZExtValue(); + + // Return if the shift amount and the first bit position of mask are not the + // same. + EVT ValTy = N->getValueType(0); + if ((Shamt != SMPos0) || (SMPos0 + SMSize0 > ValTy.getSizeInBits())) + return SDValue(); + + return DAG.getNode(MipsISD::Ins, N->getDebugLoc(), ValTy, Shl.getOperand(0), + DAG.getConstant(SMPos0, MVT::i32), + DAG.getConstant(SMSize0, MVT::i32), And0.getOperand(0)); +} + +SDValue MipsTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) + const { + SelectionDAG &DAG = DCI.DAG; + unsigned opc = N->getOpcode(); + + switch (opc) { + default: break; + case ISD::ADDE: + return PerformADDECombine(N, DAG, DCI, Subtarget); + case ISD::SUBE: + return PerformSUBECombine(N, DAG, DCI, Subtarget); + case ISD::SDIVREM: + case ISD::UDIVREM: + return PerformDivRemCombine(N, DAG, DCI, Subtarget); + case ISD::SELECT: + return PerformSELECTCombine(N, DAG, DCI, Subtarget); + case ISD::AND: + return PerformANDCombine(N, DAG, DCI, Subtarget); + case ISD::OR: + return PerformORCombine(N, DAG, DCI, Subtarget); + } + + return SDValue(); +} + +SDValue MipsTargetLowering:: +LowerOperation(SDValue Op, SelectionDAG &DAG) const +{ + switch (Op.getOpcode()) + { + case ISD::BRCOND: return LowerBRCOND(Op, DAG); + case ISD::ConstantPool: return LowerConstantPool(Op, DAG); + case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); + case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); + case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); + case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); + case ISD::JumpTable: return LowerJumpTable(Op, DAG); + case ISD::SELECT: return LowerSELECT(Op, DAG); + case ISD::SETCC: return LowerSETCC(Op, DAG); + case ISD::VASTART: return LowerVASTART(Op, DAG); + case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); + case ISD::FABS: return LowerFABS(Op, DAG); + case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); + case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG); + case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); + } + return SDValue(); +} + +//===----------------------------------------------------------------------===// +// Lower helper functions +//===----------------------------------------------------------------------===// + +// AddLiveIn - This helper function adds the specified physical register to the +// MachineFunction as a live in value. It also creates a corresponding +// virtual register for it. +static unsigned +AddLiveIn(MachineFunction &MF, unsigned PReg, const TargetRegisterClass *RC) +{ + assert(RC->contains(PReg) && "Not the correct regclass!"); + unsigned VReg = MF.getRegInfo().createVirtualRegister(RC); + MF.getRegInfo().addLiveIn(PReg, VReg); + return VReg; +} + +// Get fp branch code (not opcode) from condition code. +static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) { + if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT) + return Mips::BRANCH_T; + + assert((CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT) && + "Invalid CondCode."); + + return Mips::BRANCH_F; +} + +/* +static MachineBasicBlock* ExpandCondMov(MachineInstr *MI, MachineBasicBlock *BB, + DebugLoc dl, + const MipsSubtarget* Subtarget, + const TargetInstrInfo *TII, + bool isFPCmp, unsigned Opc) { + // There is no need to expand CMov instructions if target has + // conditional moves. + if (Subtarget->hasCondMov()) + return BB; + + // To "insert" a SELECT_CC instruction, we actually have to insert the + // diamond control-flow pattern. The incoming instruction knows the + // destination vreg to set, the condition code register to branch on, the + // true/false values to select between, and a branch opcode to use. + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineFunction::iterator It = BB; + ++It; + + // thisMBB: + // ... + // TrueVal = ... + // setcc r1, r2, r3 + // bNE r1, r0, copy1MBB + // fallthrough --> copy0MBB + MachineBasicBlock *thisMBB = BB; + MachineFunction *F = BB->getParent(); + MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); + F->insert(It, copy0MBB); + F->insert(It, sinkMBB); + + // Transfer the remainder of BB and its successor edges to sinkMBB. + sinkMBB->splice(sinkMBB->begin(), BB, + llvm::next(MachineBasicBlock::iterator(MI)), + BB->end()); + sinkMBB->transferSuccessorsAndUpdatePHIs(BB); + + // Next, add the true and fallthrough blocks as its successors. + BB->addSuccessor(copy0MBB); + BB->addSuccessor(sinkMBB); + + // Emit the right instruction according to the type of the operands compared + if (isFPCmp) + BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB); + else + BuildMI(BB, dl, TII->get(Opc)).addReg(MI->getOperand(2).getReg()) + .addReg(Mips::ZERO).addMBB(sinkMBB); + + // copy0MBB: + // %FalseValue = ... + // # fallthrough to sinkMBB + BB = copy0MBB; + + // Update machine-CFG edges + BB->addSuccessor(sinkMBB); + + // sinkMBB: + // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ] + // ... + BB = sinkMBB; + + if (isFPCmp) + BuildMI(*BB, BB->begin(), dl, + TII->get(Mips::PHI), MI->getOperand(0).getReg()) + .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB) + .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB); + else + BuildMI(*BB, BB->begin(), dl, + TII->get(Mips::PHI), MI->getOperand(0).getReg()) + .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB) + .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB); + + MI->eraseFromParent(); // The pseudo instruction is gone now. + return BB; +} +*/ +MachineBasicBlock * +MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, + MachineBasicBlock *BB) const { + switch (MI->getOpcode()) { + default: llvm_unreachable("Unexpected instr type to insert"); + case Mips::ATOMIC_LOAD_ADD_I8: + case Mips::ATOMIC_LOAD_ADD_I8_P8: + return EmitAtomicBinaryPartword(MI, BB, 1, Mips::ADDu); + case Mips::ATOMIC_LOAD_ADD_I16: + case Mips::ATOMIC_LOAD_ADD_I16_P8: + return EmitAtomicBinaryPartword(MI, BB, 2, Mips::ADDu); + case Mips::ATOMIC_LOAD_ADD_I32: + case Mips::ATOMIC_LOAD_ADD_I32_P8: + return EmitAtomicBinary(MI, BB, 4, Mips::ADDu); + case Mips::ATOMIC_LOAD_ADD_I64: + case Mips::ATOMIC_LOAD_ADD_I64_P8: + return EmitAtomicBinary(MI, BB, 8, Mips::DADDu); + + case Mips::ATOMIC_LOAD_AND_I8: + case Mips::ATOMIC_LOAD_AND_I8_P8: + return EmitAtomicBinaryPartword(MI, BB, 1, Mips::AND); + case Mips::ATOMIC_LOAD_AND_I16: + case Mips::ATOMIC_LOAD_AND_I16_P8: + return EmitAtomicBinaryPartword(MI, BB, 2, Mips::AND); + case Mips::ATOMIC_LOAD_AND_I32: + case Mips::ATOMIC_LOAD_AND_I32_P8: + return EmitAtomicBinary(MI, BB, 4, Mips::AND); + case Mips::ATOMIC_LOAD_AND_I64: + case Mips::ATOMIC_LOAD_AND_I64_P8: + return EmitAtomicBinary(MI, BB, 8, Mips::AND64); + + case Mips::ATOMIC_LOAD_OR_I8: + case Mips::ATOMIC_LOAD_OR_I8_P8: + return EmitAtomicBinaryPartword(MI, BB, 1, Mips::OR); + case Mips::ATOMIC_LOAD_OR_I16: + case Mips::ATOMIC_LOAD_OR_I16_P8: + return EmitAtomicBinaryPartword(MI, BB, 2, Mips::OR); + case Mips::ATOMIC_LOAD_OR_I32: + case Mips::ATOMIC_LOAD_OR_I32_P8: + return EmitAtomicBinary(MI, BB, 4, Mips::OR); + case Mips::ATOMIC_LOAD_OR_I64: + case Mips::ATOMIC_LOAD_OR_I64_P8: + return EmitAtomicBinary(MI, BB, 8, Mips::OR64); + + case Mips::ATOMIC_LOAD_XOR_I8: + case Mips::ATOMIC_LOAD_XOR_I8_P8: + return EmitAtomicBinaryPartword(MI, BB, 1, Mips::XOR); + case Mips::ATOMIC_LOAD_XOR_I16: + case Mips::ATOMIC_LOAD_XOR_I16_P8: + return EmitAtomicBinaryPartword(MI, BB, 2, Mips::XOR); + case Mips::ATOMIC_LOAD_XOR_I32: + case Mips::ATOMIC_LOAD_XOR_I32_P8: + return EmitAtomicBinary(MI, BB, 4, Mips::XOR); + case Mips::ATOMIC_LOAD_XOR_I64: + case Mips::ATOMIC_LOAD_XOR_I64_P8: + return EmitAtomicBinary(MI, BB, 8, Mips::XOR64); + + case Mips::ATOMIC_LOAD_NAND_I8: + case Mips::ATOMIC_LOAD_NAND_I8_P8: + return EmitAtomicBinaryPartword(MI, BB, 1, 0, true); + case Mips::ATOMIC_LOAD_NAND_I16: + case Mips::ATOMIC_LOAD_NAND_I16_P8: + return EmitAtomicBinaryPartword(MI, BB, 2, 0, true); + case Mips::ATOMIC_LOAD_NAND_I32: + case Mips::ATOMIC_LOAD_NAND_I32_P8: + return EmitAtomicBinary(MI, BB, 4, 0, true); + case Mips::ATOMIC_LOAD_NAND_I64: + case Mips::ATOMIC_LOAD_NAND_I64_P8: + return EmitAtomicBinary(MI, BB, 8, 0, true); + + case Mips::ATOMIC_LOAD_SUB_I8: + case Mips::ATOMIC_LOAD_SUB_I8_P8: + return EmitAtomicBinaryPartword(MI, BB, 1, Mips::SUBu); + case Mips::ATOMIC_LOAD_SUB_I16: + case Mips::ATOMIC_LOAD_SUB_I16_P8: + return EmitAtomicBinaryPartword(MI, BB, 2, Mips::SUBu); + case Mips::ATOMIC_LOAD_SUB_I32: + case Mips::ATOMIC_LOAD_SUB_I32_P8: + return EmitAtomicBinary(MI, BB, 4, Mips::SUBu); + case Mips::ATOMIC_LOAD_SUB_I64: + case Mips::ATOMIC_LOAD_SUB_I64_P8: + return EmitAtomicBinary(MI, BB, 8, Mips::DSUBu); + + case Mips::ATOMIC_SWAP_I8: + case Mips::ATOMIC_SWAP_I8_P8: + return EmitAtomicBinaryPartword(MI, BB, 1, 0); + case Mips::ATOMIC_SWAP_I16: + case Mips::ATOMIC_SWAP_I16_P8: + return EmitAtomicBinaryPartword(MI, BB, 2, 0); + case Mips::ATOMIC_SWAP_I32: + case Mips::ATOMIC_SWAP_I32_P8: + return EmitAtomicBinary(MI, BB, 4, 0); + case Mips::ATOMIC_SWAP_I64: + case Mips::ATOMIC_SWAP_I64_P8: + return EmitAtomicBinary(MI, BB, 8, 0); + + case Mips::ATOMIC_CMP_SWAP_I8: + case Mips::ATOMIC_CMP_SWAP_I8_P8: + return EmitAtomicCmpSwapPartword(MI, BB, 1); + case Mips::ATOMIC_CMP_SWAP_I16: + case Mips::ATOMIC_CMP_SWAP_I16_P8: + return EmitAtomicCmpSwapPartword(MI, BB, 2); + case Mips::ATOMIC_CMP_SWAP_I32: + case Mips::ATOMIC_CMP_SWAP_I32_P8: + return EmitAtomicCmpSwap(MI, BB, 4); + case Mips::ATOMIC_CMP_SWAP_I64: + case Mips::ATOMIC_CMP_SWAP_I64_P8: + return EmitAtomicCmpSwap(MI, BB, 8); + } +} + +// This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and +// Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true) +MachineBasicBlock * +MipsTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, + unsigned Size, unsigned BinOpcode, + bool Nand) const { + assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicBinary."); + + MachineFunction *MF = BB->getParent(); + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8)); + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + DebugLoc dl = MI->getDebugLoc(); + unsigned LL, SC, AND, NOR, ZERO, BEQ; + + if (Size == 4) { + LL = IsN64 ? Mips::LL_P8 : Mips::LL; + SC = IsN64 ? Mips::SC_P8 : Mips::SC; + AND = Mips::AND; + NOR = Mips::NOR; + ZERO = Mips::ZERO; + BEQ = Mips::BEQ; + } + else { + LL = IsN64 ? Mips::LLD_P8 : Mips::LLD; + SC = IsN64 ? Mips::SCD_P8 : Mips::SCD; + AND = Mips::AND64; + NOR = Mips::NOR64; + ZERO = Mips::ZERO_64; + BEQ = Mips::BEQ64; + } + + unsigned OldVal = MI->getOperand(0).getReg(); + unsigned Ptr = MI->getOperand(1).getReg(); + unsigned Incr = MI->getOperand(2).getReg(); + + unsigned StoreVal = RegInfo.createVirtualRegister(RC); + unsigned AndRes = RegInfo.createVirtualRegister(RC); + unsigned Success = RegInfo.createVirtualRegister(RC); + + // insert new blocks after the current block + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineFunction::iterator It = BB; + ++It; + MF->insert(It, loopMBB); + MF->insert(It, exitMBB); + + // Transfer the remainder of BB and its successor edges to exitMBB. + exitMBB->splice(exitMBB->begin(), BB, + llvm::next(MachineBasicBlock::iterator(MI)), + BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + // thisMBB: + // ... + // fallthrough --> loopMBB + BB->addSuccessor(loopMBB); + loopMBB->addSuccessor(loopMBB); + loopMBB->addSuccessor(exitMBB); + + // loopMBB: + // ll oldval, 0(ptr) + // <binop> storeval, oldval, incr + // sc success, storeval, 0(ptr) + // beq success, $0, loopMBB + BB = loopMBB; + BuildMI(BB, dl, TII->get(LL), OldVal).addReg(Ptr).addImm(0); + if (Nand) { + // and andres, oldval, incr + // nor storeval, $0, andres + BuildMI(BB, dl, TII->get(AND), AndRes).addReg(OldVal).addReg(Incr); + BuildMI(BB, dl, TII->get(NOR), StoreVal).addReg(ZERO).addReg(AndRes); + } else if (BinOpcode) { + // <binop> storeval, oldval, incr + BuildMI(BB, dl, TII->get(BinOpcode), StoreVal).addReg(OldVal).addReg(Incr); + } else { + StoreVal = Incr; + } + BuildMI(BB, dl, TII->get(SC), Success).addReg(StoreVal).addReg(Ptr).addImm(0); + BuildMI(BB, dl, TII->get(BEQ)).addReg(Success).addReg(ZERO).addMBB(loopMBB); + + MI->eraseFromParent(); // The instruction is gone now. + + return exitMBB; +} + +MachineBasicBlock * +MipsTargetLowering::EmitAtomicBinaryPartword(MachineInstr *MI, + MachineBasicBlock *BB, + unsigned Size, unsigned BinOpcode, + bool Nand) const { + assert((Size == 1 || Size == 2) && + "Unsupported size for EmitAtomicBinaryPartial."); + + MachineFunction *MF = BB->getParent(); + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + const TargetRegisterClass *RC = getRegClassFor(MVT::i32); + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + DebugLoc dl = MI->getDebugLoc(); + unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL; + unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC; + + unsigned Dest = MI->getOperand(0).getReg(); + unsigned Ptr = MI->getOperand(1).getReg(); + unsigned Incr = MI->getOperand(2).getReg(); + + unsigned AlignedAddr = RegInfo.createVirtualRegister(RC); + unsigned ShiftAmt = RegInfo.createVirtualRegister(RC); + unsigned Mask = RegInfo.createVirtualRegister(RC); + unsigned Mask2 = RegInfo.createVirtualRegister(RC); + unsigned NewVal = RegInfo.createVirtualRegister(RC); + unsigned OldVal = RegInfo.createVirtualRegister(RC); + unsigned Incr2 = RegInfo.createVirtualRegister(RC); + unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC); + unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC); + unsigned MaskUpper = RegInfo.createVirtualRegister(RC); + unsigned AndRes = RegInfo.createVirtualRegister(RC); + unsigned BinOpRes = RegInfo.createVirtualRegister(RC); + unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC); + unsigned StoreVal = RegInfo.createVirtualRegister(RC); + unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC); + unsigned SrlRes = RegInfo.createVirtualRegister(RC); + unsigned SllRes = RegInfo.createVirtualRegister(RC); + unsigned Success = RegInfo.createVirtualRegister(RC); + + // insert new blocks after the current block + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineFunction::iterator It = BB; + ++It; + MF->insert(It, loopMBB); + MF->insert(It, sinkMBB); + MF->insert(It, exitMBB); + + // Transfer the remainder of BB and its successor edges to exitMBB. + exitMBB->splice(exitMBB->begin(), BB, + llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + BB->addSuccessor(loopMBB); + loopMBB->addSuccessor(loopMBB); + loopMBB->addSuccessor(sinkMBB); + sinkMBB->addSuccessor(exitMBB); + + // thisMBB: + // addiu masklsb2,$0,-4 # 0xfffffffc + // and alignedaddr,ptr,masklsb2 + // andi ptrlsb2,ptr,3 + // sll shiftamt,ptrlsb2,3 + // ori maskupper,$0,255 # 0xff + // sll mask,maskupper,shiftamt + // nor mask2,$0,mask + // sll incr2,incr,shiftamt + + int64_t MaskImm = (Size == 1) ? 255 : 65535; + BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2) + .addReg(Mips::ZERO).addImm(-4); + BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr) + .addReg(Ptr).addReg(MaskLSB2); + BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3); + BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); + BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper) + .addReg(Mips::ZERO).addImm(MaskImm); + BuildMI(BB, dl, TII->get(Mips::SLLV), Mask) + .addReg(ShiftAmt).addReg(MaskUpper); + BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); + BuildMI(BB, dl, TII->get(Mips::SLLV), Incr2).addReg(ShiftAmt).addReg(Incr); + + // atomic.load.binop + // loopMBB: + // ll oldval,0(alignedaddr) + // binop binopres,oldval,incr2 + // and newval,binopres,mask + // and maskedoldval0,oldval,mask2 + // or storeval,maskedoldval0,newval + // sc success,storeval,0(alignedaddr) + // beq success,$0,loopMBB + + // atomic.swap + // loopMBB: + // ll oldval,0(alignedaddr) + // and newval,incr2,mask + // and maskedoldval0,oldval,mask2 + // or storeval,maskedoldval0,newval + // sc success,storeval,0(alignedaddr) + // beq success,$0,loopMBB + + BB = loopMBB; + BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0); + if (Nand) { + // and andres, oldval, incr2 + // nor binopres, $0, andres + // and newval, binopres, mask + BuildMI(BB, dl, TII->get(Mips::AND), AndRes).addReg(OldVal).addReg(Incr2); + BuildMI(BB, dl, TII->get(Mips::NOR), BinOpRes) + .addReg(Mips::ZERO).addReg(AndRes); + BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask); + } else if (BinOpcode) { + // <binop> binopres, oldval, incr2 + // and newval, binopres, mask + BuildMI(BB, dl, TII->get(BinOpcode), BinOpRes).addReg(OldVal).addReg(Incr2); + BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(BinOpRes).addReg(Mask); + } else {// atomic.swap + // and newval, incr2, mask + BuildMI(BB, dl, TII->get(Mips::AND), NewVal).addReg(Incr2).addReg(Mask); + } + + BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0) + .addReg(OldVal).addReg(Mask2); + BuildMI(BB, dl, TII->get(Mips::OR), StoreVal) + .addReg(MaskedOldVal0).addReg(NewVal); + BuildMI(BB, dl, TII->get(SC), Success) + .addReg(StoreVal).addReg(AlignedAddr).addImm(0); + BuildMI(BB, dl, TII->get(Mips::BEQ)) + .addReg(Success).addReg(Mips::ZERO).addMBB(loopMBB); + + // sinkMBB: + // and maskedoldval1,oldval,mask + // srl srlres,maskedoldval1,shiftamt + // sll sllres,srlres,24 + // sra dest,sllres,24 + BB = sinkMBB; + int64_t ShiftImm = (Size == 1) ? 24 : 16; + + BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1) + .addReg(OldVal).addReg(Mask); + BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes) + .addReg(ShiftAmt).addReg(MaskedOldVal1); + BuildMI(BB, dl, TII->get(Mips::SLL), SllRes) + .addReg(SrlRes).addImm(ShiftImm); + BuildMI(BB, dl, TII->get(Mips::SRA), Dest) + .addReg(SllRes).addImm(ShiftImm); + + MI->eraseFromParent(); // The instruction is gone now. + + return exitMBB; +} + +MachineBasicBlock * +MipsTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI, + MachineBasicBlock *BB, + unsigned Size) const { + assert((Size == 4 || Size == 8) && "Unsupported size for EmitAtomicCmpSwap."); + + MachineFunction *MF = BB->getParent(); + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + const TargetRegisterClass *RC = getRegClassFor(MVT::getIntegerVT(Size * 8)); + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + DebugLoc dl = MI->getDebugLoc(); + unsigned LL, SC, ZERO, BNE, BEQ; + + if (Size == 4) { + LL = IsN64 ? Mips::LL_P8 : Mips::LL; + SC = IsN64 ? Mips::SC_P8 : Mips::SC; + ZERO = Mips::ZERO; + BNE = Mips::BNE; + BEQ = Mips::BEQ; + } + else { + LL = IsN64 ? Mips::LLD_P8 : Mips::LLD; + SC = IsN64 ? Mips::SCD_P8 : Mips::SCD; + ZERO = Mips::ZERO_64; + BNE = Mips::BNE64; + BEQ = Mips::BEQ64; + } + + unsigned Dest = MI->getOperand(0).getReg(); + unsigned Ptr = MI->getOperand(1).getReg(); + unsigned OldVal = MI->getOperand(2).getReg(); + unsigned NewVal = MI->getOperand(3).getReg(); + + unsigned Success = RegInfo.createVirtualRegister(RC); + + // insert new blocks after the current block + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineFunction::iterator It = BB; + ++It; + MF->insert(It, loop1MBB); + MF->insert(It, loop2MBB); + MF->insert(It, exitMBB); + + // Transfer the remainder of BB and its successor edges to exitMBB. + exitMBB->splice(exitMBB->begin(), BB, + llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + // thisMBB: + // ... + // fallthrough --> loop1MBB + BB->addSuccessor(loop1MBB); + loop1MBB->addSuccessor(exitMBB); + loop1MBB->addSuccessor(loop2MBB); + loop2MBB->addSuccessor(loop1MBB); + loop2MBB->addSuccessor(exitMBB); + + // loop1MBB: + // ll dest, 0(ptr) + // bne dest, oldval, exitMBB + BB = loop1MBB; + BuildMI(BB, dl, TII->get(LL), Dest).addReg(Ptr).addImm(0); + BuildMI(BB, dl, TII->get(BNE)) + .addReg(Dest).addReg(OldVal).addMBB(exitMBB); + + // loop2MBB: + // sc success, newval, 0(ptr) + // beq success, $0, loop1MBB + BB = loop2MBB; + BuildMI(BB, dl, TII->get(SC), Success) + .addReg(NewVal).addReg(Ptr).addImm(0); + BuildMI(BB, dl, TII->get(BEQ)) + .addReg(Success).addReg(ZERO).addMBB(loop1MBB); + + MI->eraseFromParent(); // The instruction is gone now. + + return exitMBB; +} + +MachineBasicBlock * +MipsTargetLowering::EmitAtomicCmpSwapPartword(MachineInstr *MI, + MachineBasicBlock *BB, + unsigned Size) const { + assert((Size == 1 || Size == 2) && + "Unsupported size for EmitAtomicCmpSwapPartial."); + + MachineFunction *MF = BB->getParent(); + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + const TargetRegisterClass *RC = getRegClassFor(MVT::i32); + const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); + DebugLoc dl = MI->getDebugLoc(); + unsigned LL = IsN64 ? Mips::LL_P8 : Mips::LL; + unsigned SC = IsN64 ? Mips::SC_P8 : Mips::SC; + + unsigned Dest = MI->getOperand(0).getReg(); + unsigned Ptr = MI->getOperand(1).getReg(); + unsigned CmpVal = MI->getOperand(2).getReg(); + unsigned NewVal = MI->getOperand(3).getReg(); + + unsigned AlignedAddr = RegInfo.createVirtualRegister(RC); + unsigned ShiftAmt = RegInfo.createVirtualRegister(RC); + unsigned Mask = RegInfo.createVirtualRegister(RC); + unsigned Mask2 = RegInfo.createVirtualRegister(RC); + unsigned ShiftedCmpVal = RegInfo.createVirtualRegister(RC); + unsigned OldVal = RegInfo.createVirtualRegister(RC); + unsigned MaskedOldVal0 = RegInfo.createVirtualRegister(RC); + unsigned ShiftedNewVal = RegInfo.createVirtualRegister(RC); + unsigned MaskLSB2 = RegInfo.createVirtualRegister(RC); + unsigned PtrLSB2 = RegInfo.createVirtualRegister(RC); + unsigned MaskUpper = RegInfo.createVirtualRegister(RC); + unsigned MaskedCmpVal = RegInfo.createVirtualRegister(RC); + unsigned MaskedNewVal = RegInfo.createVirtualRegister(RC); + unsigned MaskedOldVal1 = RegInfo.createVirtualRegister(RC); + unsigned StoreVal = RegInfo.createVirtualRegister(RC); + unsigned SrlRes = RegInfo.createVirtualRegister(RC); + unsigned SllRes = RegInfo.createVirtualRegister(RC); + unsigned Success = RegInfo.createVirtualRegister(RC); + + // insert new blocks after the current block + const BasicBlock *LLVM_BB = BB->getBasicBlock(); + MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); + MachineFunction::iterator It = BB; + ++It; + MF->insert(It, loop1MBB); + MF->insert(It, loop2MBB); + MF->insert(It, sinkMBB); + MF->insert(It, exitMBB); + + // Transfer the remainder of BB and its successor edges to exitMBB. + exitMBB->splice(exitMBB->begin(), BB, + llvm::next(MachineBasicBlock::iterator(MI)), BB->end()); + exitMBB->transferSuccessorsAndUpdatePHIs(BB); + + BB->addSuccessor(loop1MBB); + loop1MBB->addSuccessor(sinkMBB); + loop1MBB->addSuccessor(loop2MBB); + loop2MBB->addSuccessor(loop1MBB); + loop2MBB->addSuccessor(sinkMBB); + sinkMBB->addSuccessor(exitMBB); + + // FIXME: computation of newval2 can be moved to loop2MBB. + // thisMBB: + // addiu masklsb2,$0,-4 # 0xfffffffc + // and alignedaddr,ptr,masklsb2 + // andi ptrlsb2,ptr,3 + // sll shiftamt,ptrlsb2,3 + // ori maskupper,$0,255 # 0xff + // sll mask,maskupper,shiftamt + // nor mask2,$0,mask + // andi maskedcmpval,cmpval,255 + // sll shiftedcmpval,maskedcmpval,shiftamt + // andi maskednewval,newval,255 + // sll shiftednewval,maskednewval,shiftamt + int64_t MaskImm = (Size == 1) ? 255 : 65535; + BuildMI(BB, dl, TII->get(Mips::ADDiu), MaskLSB2) + .addReg(Mips::ZERO).addImm(-4); + BuildMI(BB, dl, TII->get(Mips::AND), AlignedAddr) + .addReg(Ptr).addReg(MaskLSB2); + BuildMI(BB, dl, TII->get(Mips::ANDi), PtrLSB2).addReg(Ptr).addImm(3); + BuildMI(BB, dl, TII->get(Mips::SLL), ShiftAmt).addReg(PtrLSB2).addImm(3); + BuildMI(BB, dl, TII->get(Mips::ORi), MaskUpper) + .addReg(Mips::ZERO).addImm(MaskImm); + BuildMI(BB, dl, TII->get(Mips::SLLV), Mask) + .addReg(ShiftAmt).addReg(MaskUpper); + BuildMI(BB, dl, TII->get(Mips::NOR), Mask2).addReg(Mips::ZERO).addReg(Mask); + BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedCmpVal) + .addReg(CmpVal).addImm(MaskImm); + BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedCmpVal) + .addReg(ShiftAmt).addReg(MaskedCmpVal); + BuildMI(BB, dl, TII->get(Mips::ANDi), MaskedNewVal) + .addReg(NewVal).addImm(MaskImm); + BuildMI(BB, dl, TII->get(Mips::SLLV), ShiftedNewVal) + .addReg(ShiftAmt).addReg(MaskedNewVal); + + // loop1MBB: + // ll oldval,0(alginedaddr) + // and maskedoldval0,oldval,mask + // bne maskedoldval0,shiftedcmpval,sinkMBB + BB = loop1MBB; + BuildMI(BB, dl, TII->get(LL), OldVal).addReg(AlignedAddr).addImm(0); + BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal0) + .addReg(OldVal).addReg(Mask); + BuildMI(BB, dl, TII->get(Mips::BNE)) + .addReg(MaskedOldVal0).addReg(ShiftedCmpVal).addMBB(sinkMBB); + + // loop2MBB: + // and maskedoldval1,oldval,mask2 + // or storeval,maskedoldval1,shiftednewval + // sc success,storeval,0(alignedaddr) + // beq success,$0,loop1MBB + BB = loop2MBB; + BuildMI(BB, dl, TII->get(Mips::AND), MaskedOldVal1) + .addReg(OldVal).addReg(Mask2); + BuildMI(BB, dl, TII->get(Mips::OR), StoreVal) + .addReg(MaskedOldVal1).addReg(ShiftedNewVal); + BuildMI(BB, dl, TII->get(SC), Success) + .addReg(StoreVal).addReg(AlignedAddr).addImm(0); + BuildMI(BB, dl, TII->get(Mips::BEQ)) + .addReg(Success).addReg(Mips::ZERO).addMBB(loop1MBB); + + // sinkMBB: + // srl srlres,maskedoldval0,shiftamt + // sll sllres,srlres,24 + // sra dest,sllres,24 + BB = sinkMBB; + int64_t ShiftImm = (Size == 1) ? 24 : 16; + + BuildMI(BB, dl, TII->get(Mips::SRLV), SrlRes) + .addReg(ShiftAmt).addReg(MaskedOldVal0); + BuildMI(BB, dl, TII->get(Mips::SLL), SllRes) + .addReg(SrlRes).addImm(ShiftImm); + BuildMI(BB, dl, TII->get(Mips::SRA), Dest) + .addReg(SllRes).addImm(ShiftImm); + + MI->eraseFromParent(); // The instruction is gone now. + + return exitMBB; +} + +//===----------------------------------------------------------------------===// +// Misc Lower Operation implementation +//===----------------------------------------------------------------------===// +SDValue MipsTargetLowering:: +LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const +{ + MachineFunction &MF = DAG.getMachineFunction(); + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + unsigned SP = IsN64 ? Mips::SP_64 : Mips::SP; + + assert(getTargetMachine().getFrameLowering()->getStackAlignment() >= + cast<ConstantSDNode>(Op.getOperand(2).getNode())->getZExtValue() && + "Cannot lower if the alignment of the allocated space is larger than \ + that of the stack."); + + SDValue Chain = Op.getOperand(0); + SDValue Size = Op.getOperand(1); + DebugLoc dl = Op.getDebugLoc(); + + // Get a reference from Mips stack pointer + SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SP, getPointerTy()); + + // Subtract the dynamic size from the actual stack size to + // obtain the new stack size. + SDValue Sub = DAG.getNode(ISD::SUB, dl, getPointerTy(), StackPointer, Size); + + // The Sub result contains the new stack start address, so it + // must be placed in the stack pointer register. + Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, SP, Sub, SDValue()); + + // This node always has two return values: a new stack pointer + // value and a chain + SDVTList VTLs = DAG.getVTList(getPointerTy(), MVT::Other); + SDValue Ptr = DAG.getFrameIndex(MipsFI->getDynAllocFI(), getPointerTy()); + SDValue Ops[] = { Chain, Ptr, Chain.getValue(1) }; + + return DAG.getNode(MipsISD::DynAlloc, dl, VTLs, Ops, 3); +} + +SDValue MipsTargetLowering:: +LowerBRCOND(SDValue Op, SelectionDAG &DAG) const +{ + // The first operand is the chain, the second is the condition, the third is + // the block to branch to if the condition is true. + SDValue Chain = Op.getOperand(0); + SDValue Dest = Op.getOperand(2); + DebugLoc dl = Op.getDebugLoc(); + + SDValue CondRes = CreateFPCmp(DAG, Op.getOperand(1)); + + // Return if flag is not set by a floating point comparison. + if (CondRes.getOpcode() != MipsISD::FPCmp) + return Op; + + SDValue CCNode = CondRes.getOperand(2); + Mips::CondCode CC = + (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue(); + SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32); + + return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode, + Dest, CondRes); +} + +SDValue MipsTargetLowering:: +LowerSELECT(SDValue Op, SelectionDAG &DAG) const +{ + SDValue Cond = CreateFPCmp(DAG, Op.getOperand(0)); + + // Return if flag is not set by a floating point comparison. + if (Cond.getOpcode() != MipsISD::FPCmp) + return Op; + + return CreateCMovFP(DAG, Cond, Op.getOperand(1), Op.getOperand(2), + Op.getDebugLoc()); +} + +SDValue MipsTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { + SDValue Cond = CreateFPCmp(DAG, Op); + + assert(Cond.getOpcode() == MipsISD::FPCmp && + "Floating point operand expected."); + + SDValue True = DAG.getConstant(1, MVT::i32); + SDValue False = DAG.getConstant(0, MVT::i32); + + return CreateCMovFP(DAG, Cond, True, False, Op.getDebugLoc()); +} + +SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op, + SelectionDAG &DAG) const { + // FIXME there isn't actually debug info here + DebugLoc dl = Op.getDebugLoc(); + const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); + + if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) { + SDVTList VTs = DAG.getVTList(MVT::i32); + + MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering(); + + // %gp_rel relocation + if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) { + SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0, + MipsII::MO_GPREL); + SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1); + SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32); + return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode); + } + // %hi/%lo relocation + SDValue GAHi = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0, + MipsII::MO_ABS_HI); + SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, MVT::i32, 0, + MipsII::MO_ABS_LO); + SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GAHi, 1); + SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GALo); + return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo); + } + + EVT ValTy = Op.getValueType(); + bool HasGotOfst = (GV->hasInternalLinkage() || + (GV->hasLocalLinkage() && !isa<Function>(GV))); + unsigned GotFlag = HasMips64 ? + (HasGotOfst ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT_DISP) : + (HasGotOfst ? MipsII::MO_GOT : MipsII::MO_GOT16); + SDValue GA = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, GotFlag); + GA = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), GA); + SDValue ResNode = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), GA, + MachinePointerInfo(), false, false, false, 0); + // On functions and global targets not internal linked only + // a load from got/GP is necessary for PIC to work. + if (!HasGotOfst) + return ResNode; + SDValue GALo = DAG.getTargetGlobalAddress(GV, dl, ValTy, 0, + HasMips64 ? MipsII::MO_GOT_OFST : + MipsII::MO_ABS_LO); + SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, GALo); + return DAG.getNode(ISD::ADD, dl, ValTy, ResNode, Lo); +} + +SDValue MipsTargetLowering::LowerBlockAddress(SDValue Op, + SelectionDAG &DAG) const { + const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); + // FIXME there isn't actually debug info here + DebugLoc dl = Op.getDebugLoc(); + + if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) { + // %hi/%lo relocation + SDValue BAHi = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_HI); + SDValue BALo = DAG.getBlockAddress(BA, MVT::i32, true, MipsII::MO_ABS_LO); + SDValue Hi = DAG.getNode(MipsISD::Hi, dl, MVT::i32, BAHi); + SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, BALo); + return DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, Lo); + } + + EVT ValTy = Op.getValueType(); + unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT; + unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO; + SDValue BAGOTOffset = DAG.getBlockAddress(BA, ValTy, true, GOTFlag); + BAGOTOffset = DAG.getNode(MipsISD::Wrapper, dl, ValTy, + GetGlobalReg(DAG, ValTy), BAGOTOffset); + SDValue BALOOffset = DAG.getBlockAddress(BA, ValTy, true, OFSTFlag); + SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), BAGOTOffset, + MachinePointerInfo(), false, false, false, 0); + SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, BALOOffset); + return DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo); +} + +SDValue MipsTargetLowering:: +LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const +{ + // If the relocation model is PIC, use the General Dynamic TLS Model or + // Local Dynamic TLS model, otherwise use the Initial Exec or + // Local Exec TLS Model. + + GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); + DebugLoc dl = GA->getDebugLoc(); + const GlobalValue *GV = GA->getGlobal(); + EVT PtrVT = getPointerTy(); + + if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { + // General Dynamic TLS Model + bool LocalDynamic = GV->hasInternalLinkage(); + unsigned Flag = LocalDynamic ? MipsII::MO_TLSLDM :MipsII::MO_TLSGD; + SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, Flag); + SDValue Argument = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, + GetGlobalReg(DAG, PtrVT), TGA); + unsigned PtrSize = PtrVT.getSizeInBits(); + IntegerType *PtrTy = Type::getIntNTy(*DAG.getContext(), PtrSize); + + SDValue TlsGetAddr = DAG.getExternalSymbol("__tls_get_addr", PtrVT); + + ArgListTy Args; + ArgListEntry Entry; + Entry.Node = Argument; + Entry.Ty = PtrTy; + Args.push_back(Entry); + + std::pair<SDValue, SDValue> CallResult = + LowerCallTo(DAG.getEntryNode(), PtrTy, + false, false, false, false, 0, CallingConv::C, + /*isTailCall=*/false, /*doesNotRet=*/false, + /*isReturnValueUsed=*/true, + TlsGetAddr, Args, DAG, dl); + + SDValue Ret = CallResult.first; + + if (!LocalDynamic) + return Ret; + + SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, + MipsII::MO_DTPREL_HI); + SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi); + SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, + MipsII::MO_DTPREL_LO); + SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo); + SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Ret); + return DAG.getNode(ISD::ADD, dl, PtrVT, Add, Lo); + } + + SDValue Offset; + if (GV->isDeclaration()) { + // Initial Exec TLS Model + SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, + MipsII::MO_GOTTPREL); + TGA = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT), + TGA); + Offset = DAG.getLoad(PtrVT, dl, + DAG.getEntryNode(), TGA, MachinePointerInfo(), + false, false, false, 0); + } else { + // Local Exec TLS Model + SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, + MipsII::MO_TPREL_HI); + SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, + MipsII::MO_TPREL_LO); + SDValue Hi = DAG.getNode(MipsISD::Hi, dl, PtrVT, TGAHi); + SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, TGALo); + Offset = DAG.getNode(ISD::ADD, dl, PtrVT, Hi, Lo); + } + + SDValue ThreadPointer = DAG.getNode(MipsISD::ThreadPointer, dl, PtrVT); + return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); +} + +SDValue MipsTargetLowering:: +LowerJumpTable(SDValue Op, SelectionDAG &DAG) const +{ + SDValue HiPart, JTI, JTILo; + // FIXME there isn't actually debug info here + DebugLoc dl = Op.getDebugLoc(); + bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_; + EVT PtrVT = Op.getValueType(); + JumpTableSDNode *JT = cast<JumpTableSDNode>(Op); + + if (!IsPIC && !IsN64) { + JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_HI); + HiPart = DAG.getNode(MipsISD::Hi, dl, PtrVT, JTI); + JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MipsII::MO_ABS_LO); + } else {// Emit Load from Global Pointer + unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT; + unsigned OfstFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO; + JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, GOTFlag); + JTI = DAG.getNode(MipsISD::Wrapper, dl, PtrVT, GetGlobalReg(DAG, PtrVT), + JTI); + HiPart = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), JTI, + MachinePointerInfo(), false, false, false, 0); + JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OfstFlag); + } + + SDValue Lo = DAG.getNode(MipsISD::Lo, dl, PtrVT, JTILo); + return DAG.getNode(ISD::ADD, dl, PtrVT, HiPart, Lo); +} + +SDValue MipsTargetLowering:: +LowerConstantPool(SDValue Op, SelectionDAG &DAG) const +{ + SDValue ResNode; + ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op); + const Constant *C = N->getConstVal(); + // FIXME there isn't actually debug info here + DebugLoc dl = Op.getDebugLoc(); + + // gp_rel relocation + // FIXME: we should reference the constant pool using small data sections, + // but the asm printer currently doesn't support this feature without + // hacking it. This feature should come soon so we can uncomment the + // stuff below. + //if (IsInSmallSection(C->getType())) { + // SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP); + // SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32); + // ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode); + + if (getTargetMachine().getRelocationModel() != Reloc::PIC_ && !IsN64) { + SDValue CPHi = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), + N->getOffset(), MipsII::MO_ABS_HI); + SDValue CPLo = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(), + N->getOffset(), MipsII::MO_ABS_LO); + SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CPHi); + SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CPLo); + ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo); + } else { + EVT ValTy = Op.getValueType(); + unsigned GOTFlag = HasMips64 ? MipsII::MO_GOT_PAGE : MipsII::MO_GOT; + unsigned OFSTFlag = HasMips64 ? MipsII::MO_GOT_OFST : MipsII::MO_ABS_LO; + SDValue CP = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(), + N->getOffset(), GOTFlag); + CP = DAG.getNode(MipsISD::Wrapper, dl, ValTy, GetGlobalReg(DAG, ValTy), CP); + SDValue Load = DAG.getLoad(ValTy, dl, DAG.getEntryNode(), CP, + MachinePointerInfo::getConstantPool(), false, + false, false, 0); + SDValue CPLo = DAG.getTargetConstantPool(C, ValTy, N->getAlignment(), + N->getOffset(), OFSTFlag); + SDValue Lo = DAG.getNode(MipsISD::Lo, dl, ValTy, CPLo); + ResNode = DAG.getNode(ISD::ADD, dl, ValTy, Load, Lo); + } + + return ResNode; +} + +SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { + MachineFunction &MF = DAG.getMachineFunction(); + MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>(); + + DebugLoc dl = Op.getDebugLoc(); + SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), + getPointerTy()); + + // vastart just stores the address of the VarArgsFrameIndex slot into the + // memory location argument. + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1), + MachinePointerInfo(SV), false, false, 0); +} + +static SDValue LowerFCOPYSIGN32(SDValue Op, SelectionDAG &DAG, bool HasR2) { + EVT TyX = Op.getOperand(0).getValueType(); + EVT TyY = Op.getOperand(1).getValueType(); + SDValue Const1 = DAG.getConstant(1, MVT::i32); + SDValue Const31 = DAG.getConstant(31, MVT::i32); + DebugLoc DL = Op.getDebugLoc(); + SDValue Res; + + // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it + // to i32. + SDValue X = (TyX == MVT::f32) ? + DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) : + DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), + Const1); + SDValue Y = (TyY == MVT::f32) ? + DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(1)) : + DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(1), + Const1); + + if (HasR2) { + // ext E, Y, 31, 1 ; extract bit31 of Y + // ins X, E, 31, 1 ; insert extracted bit at bit31 of X + SDValue E = DAG.getNode(MipsISD::Ext, DL, MVT::i32, Y, Const31, Const1); + Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, E, Const31, Const1, X); + } else { + // sll SllX, X, 1 + // srl SrlX, SllX, 1 + // srl SrlY, Y, 31 + // sll SllY, SrlX, 31 + // or Or, SrlX, SllY + SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1); + SDValue SrlX = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1); + SDValue SrlY = DAG.getNode(ISD::SRL, DL, MVT::i32, Y, Const31); + SDValue SllY = DAG.getNode(ISD::SHL, DL, MVT::i32, SrlY, Const31); + Res = DAG.getNode(ISD::OR, DL, MVT::i32, SrlX, SllY); + } + + if (TyX == MVT::f32) + return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Res); + + SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, + Op.getOperand(0), DAG.getConstant(0, MVT::i32)); + return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res); +} + +static SDValue LowerFCOPYSIGN64(SDValue Op, SelectionDAG &DAG, bool HasR2) { + unsigned WidthX = Op.getOperand(0).getValueSizeInBits(); + unsigned WidthY = Op.getOperand(1).getValueSizeInBits(); + EVT TyX = MVT::getIntegerVT(WidthX), TyY = MVT::getIntegerVT(WidthY); + SDValue Const1 = DAG.getConstant(1, MVT::i32); + DebugLoc DL = Op.getDebugLoc(); + + // Bitcast to integer nodes. + SDValue X = DAG.getNode(ISD::BITCAST, DL, TyX, Op.getOperand(0)); + SDValue Y = DAG.getNode(ISD::BITCAST, DL, TyY, Op.getOperand(1)); + + if (HasR2) { + // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y + // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X + SDValue E = DAG.getNode(MipsISD::Ext, DL, TyY, Y, + DAG.getConstant(WidthY - 1, MVT::i32), Const1); + + if (WidthX > WidthY) + E = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, E); + else if (WidthY > WidthX) + E = DAG.getNode(ISD::TRUNCATE, DL, TyX, E); + + SDValue I = DAG.getNode(MipsISD::Ins, DL, TyX, E, + DAG.getConstant(WidthX - 1, MVT::i32), Const1, X); + return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), I); + } + + // (d)sll SllX, X, 1 + // (d)srl SrlX, SllX, 1 + // (d)srl SrlY, Y, width(Y)-1 + // (d)sll SllY, SrlX, width(Y)-1 + // or Or, SrlX, SllY + SDValue SllX = DAG.getNode(ISD::SHL, DL, TyX, X, Const1); + SDValue SrlX = DAG.getNode(ISD::SRL, DL, TyX, SllX, Const1); + SDValue SrlY = DAG.getNode(ISD::SRL, DL, TyY, Y, + DAG.getConstant(WidthY - 1, MVT::i32)); + + if (WidthX > WidthY) + SrlY = DAG.getNode(ISD::ZERO_EXTEND, DL, TyX, SrlY); + else if (WidthY > WidthX) + SrlY = DAG.getNode(ISD::TRUNCATE, DL, TyX, SrlY); + + SDValue SllY = DAG.getNode(ISD::SHL, DL, TyX, SrlY, + DAG.getConstant(WidthX - 1, MVT::i32)); + SDValue Or = DAG.getNode(ISD::OR, DL, TyX, SrlX, SllY); + return DAG.getNode(ISD::BITCAST, DL, Op.getOperand(0).getValueType(), Or); +} + +SDValue +MipsTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { + if (Subtarget->hasMips64()) + return LowerFCOPYSIGN64(Op, DAG, Subtarget->hasMips32r2()); + + return LowerFCOPYSIGN32(Op, DAG, Subtarget->hasMips32r2()); +} + +static SDValue LowerFABS32(SDValue Op, SelectionDAG &DAG, bool HasR2) { + SDValue Res, Const1 = DAG.getConstant(1, MVT::i32); + DebugLoc DL = Op.getDebugLoc(); + + // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it + // to i32. + SDValue X = (Op.getValueType() == MVT::f32) ? + DAG.getNode(ISD::BITCAST, DL, MVT::i32, Op.getOperand(0)) : + DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, Op.getOperand(0), + Const1); + + // Clear MSB. + if (HasR2) + Res = DAG.getNode(MipsISD::Ins, DL, MVT::i32, + DAG.getRegister(Mips::ZERO, MVT::i32), + DAG.getConstant(31, MVT::i32), Const1, X); + else { + SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i32, X, Const1); + Res = DAG.getNode(ISD::SRL, DL, MVT::i32, SllX, Const1); + } + + if (Op.getValueType() == MVT::f32) + return DAG.getNode(ISD::BITCAST, DL, MVT::f32, Res); + + SDValue LowX = DAG.getNode(MipsISD::ExtractElementF64, DL, MVT::i32, + Op.getOperand(0), DAG.getConstant(0, MVT::i32)); + return DAG.getNode(MipsISD::BuildPairF64, DL, MVT::f64, LowX, Res); +} + +static SDValue LowerFABS64(SDValue Op, SelectionDAG &DAG, bool HasR2) { + SDValue Res, Const1 = DAG.getConstant(1, MVT::i32); + DebugLoc DL = Op.getDebugLoc(); + + // Bitcast to integer node. + SDValue X = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Op.getOperand(0)); + + // Clear MSB. + if (HasR2) + Res = DAG.getNode(MipsISD::Ins, DL, MVT::i64, + DAG.getRegister(Mips::ZERO_64, MVT::i64), + DAG.getConstant(63, MVT::i32), Const1, X); + else { + SDValue SllX = DAG.getNode(ISD::SHL, DL, MVT::i64, X, Const1); + Res = DAG.getNode(ISD::SRL, DL, MVT::i64, SllX, Const1); + } + + return DAG.getNode(ISD::BITCAST, DL, MVT::f64, Res); +} + +SDValue +MipsTargetLowering::LowerFABS(SDValue Op, SelectionDAG &DAG) const { + if (Subtarget->hasMips64() && (Op.getValueType() == MVT::f64)) + return LowerFABS64(Op, DAG, Subtarget->hasMips32r2()); + + return LowerFABS32(Op, DAG, Subtarget->hasMips32r2()); +} + +SDValue MipsTargetLowering:: +LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { + // check the depth + assert((cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() == 0) && + "Frame address can only be determined for current frame."); + + MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); + MFI->setFrameAddressIsTaken(true); + EVT VT = Op.getValueType(); + DebugLoc dl = Op.getDebugLoc(); + SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, + IsN64 ? Mips::FP_64 : Mips::FP, VT); + return FrameAddr; +} + +// TODO: set SType according to the desired memory barrier behavior. +SDValue +MipsTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG& DAG) const { + unsigned SType = 0; + DebugLoc dl = Op.getDebugLoc(); + return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0), + DAG.getConstant(SType, MVT::i32)); +} + +SDValue MipsTargetLowering::LowerATOMIC_FENCE(SDValue Op, + SelectionDAG& DAG) const { + // FIXME: Need pseudo-fence for 'singlethread' fences + // FIXME: Set SType for weaker fences where supported/appropriate. + unsigned SType = 0; + DebugLoc dl = Op.getDebugLoc(); + return DAG.getNode(MipsISD::Sync, dl, MVT::Other, Op.getOperand(0), + DAG.getConstant(SType, MVT::i32)); +} + +//===----------------------------------------------------------------------===// +// Calling Convention Implementation +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// TODO: Implement a generic logic using tblgen that can support this. +// Mips O32 ABI rules: +// --- +// i32 - Passed in A0, A1, A2, A3 and stack +// f32 - Only passed in f32 registers if no int reg has been used yet to hold +// an argument. Otherwise, passed in A1, A2, A3 and stack. +// f64 - Only passed in two aliased f32 registers if no int reg has been used +// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is +// not used, it must be shadowed. If only A3 is avaiable, shadow it and +// go to stack. +// +// For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack. +//===----------------------------------------------------------------------===// + +static bool CC_MipsO32(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + + static const unsigned IntRegsSize=4, FloatRegsSize=2; + + static const uint16_t IntRegs[] = { + Mips::A0, Mips::A1, Mips::A2, Mips::A3 + }; + static const uint16_t F32Regs[] = { + Mips::F12, Mips::F14 + }; + static const uint16_t F64Regs[] = { + Mips::D6, Mips::D7 + }; + + // ByVal Args + if (ArgFlags.isByVal()) { + State.HandleByVal(ValNo, ValVT, LocVT, LocInfo, + 1 /*MinSize*/, 4 /*MinAlign*/, ArgFlags); + unsigned NextReg = (State.getNextStackOffset() + 3) / 4; + for (unsigned r = State.getFirstUnallocated(IntRegs, IntRegsSize); + r < std::min(IntRegsSize, NextReg); ++r) + State.AllocateReg(IntRegs[r]); + return false; + } + + // Promote i8 and i16 + if (LocVT == MVT::i8 || LocVT == MVT::i16) { + LocVT = MVT::i32; + if (ArgFlags.isSExt()) + LocInfo = CCValAssign::SExt; + else if (ArgFlags.isZExt()) + LocInfo = CCValAssign::ZExt; + else + LocInfo = CCValAssign::AExt; + } + + unsigned Reg; + + // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following + // is true: function is vararg, argument is 3rd or higher, there is previous + // argument which is not f32 or f64. + bool AllocateFloatsInIntReg = State.isVarArg() || ValNo > 1 + || State.getFirstUnallocated(F32Regs, FloatRegsSize) != ValNo; + unsigned OrigAlign = ArgFlags.getOrigAlign(); + bool isI64 = (ValVT == MVT::i32 && OrigAlign == 8); + + if (ValVT == MVT::i32 || (ValVT == MVT::f32 && AllocateFloatsInIntReg)) { + Reg = State.AllocateReg(IntRegs, IntRegsSize); + // If this is the first part of an i64 arg, + // the allocated register must be either A0 or A2. + if (isI64 && (Reg == Mips::A1 || Reg == Mips::A3)) + Reg = State.AllocateReg(IntRegs, IntRegsSize); + LocVT = MVT::i32; + } else if (ValVT == MVT::f64 && AllocateFloatsInIntReg) { + // Allocate int register and shadow next int register. If first + // available register is Mips::A1 or Mips::A3, shadow it too. + Reg = State.AllocateReg(IntRegs, IntRegsSize); + if (Reg == Mips::A1 || Reg == Mips::A3) + Reg = State.AllocateReg(IntRegs, IntRegsSize); + State.AllocateReg(IntRegs, IntRegsSize); + LocVT = MVT::i32; + } else if (ValVT.isFloatingPoint() && !AllocateFloatsInIntReg) { + // we are guaranteed to find an available float register + if (ValVT == MVT::f32) { + Reg = State.AllocateReg(F32Regs, FloatRegsSize); + // Shadow int register + State.AllocateReg(IntRegs, IntRegsSize); + } else { + Reg = State.AllocateReg(F64Regs, FloatRegsSize); + // Shadow int registers + unsigned Reg2 = State.AllocateReg(IntRegs, IntRegsSize); + if (Reg2 == Mips::A1 || Reg2 == Mips::A3) + State.AllocateReg(IntRegs, IntRegsSize); + State.AllocateReg(IntRegs, IntRegsSize); + } + } else + llvm_unreachable("Cannot handle this ValVT."); + + unsigned SizeInBytes = ValVT.getSizeInBits() >> 3; + unsigned Offset = State.AllocateStack(SizeInBytes, OrigAlign); + + if (!Reg) + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + else + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + + return false; // CC must always match +} + +static const uint16_t Mips64IntRegs[8] = + {Mips::A0_64, Mips::A1_64, Mips::A2_64, Mips::A3_64, + Mips::T0_64, Mips::T1_64, Mips::T2_64, Mips::T3_64}; +static const uint16_t Mips64DPRegs[8] = + {Mips::D12_64, Mips::D13_64, Mips::D14_64, Mips::D15_64, + Mips::D16_64, Mips::D17_64, Mips::D18_64, Mips::D19_64}; + +static bool CC_Mips64Byval(unsigned ValNo, MVT ValVT, MVT LocVT, + CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + unsigned Align = std::max(ArgFlags.getByValAlign(), (unsigned)8); + unsigned Size = (ArgFlags.getByValSize() + 7) / 8 * 8; + unsigned FirstIdx = State.getFirstUnallocated(Mips64IntRegs, 8); + + assert(Align <= 16 && "Cannot handle alignments larger than 16."); + + // If byval is 16-byte aligned, the first arg register must be even. + if ((Align == 16) && (FirstIdx % 2)) { + State.AllocateReg(Mips64IntRegs[FirstIdx], Mips64DPRegs[FirstIdx]); + ++FirstIdx; + } + + // Mark the registers allocated. + for (unsigned I = FirstIdx; Size && (I < 8); Size -= 8, ++I) + State.AllocateReg(Mips64IntRegs[I], Mips64DPRegs[I]); + + // Allocate space on caller's stack. + unsigned Offset = State.AllocateStack(Size, Align); + + if (FirstIdx < 8) + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Mips64IntRegs[FirstIdx], + LocVT, LocInfo)); + else + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + + return true; +} + +#include "MipsGenCallingConv.inc" + +static void +AnalyzeMips64CallOperands(CCState &CCInfo, + const SmallVectorImpl<ISD::OutputArg> &Outs) { + unsigned NumOps = Outs.size(); + for (unsigned i = 0; i != NumOps; ++i) { + MVT ArgVT = Outs[i].VT; + ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; + bool R; + + if (Outs[i].IsFixed) + R = CC_MipsN(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); + else + R = CC_MipsN_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); + + if (R) { +#ifndef NDEBUG + dbgs() << "Call operand #" << i << " has unhandled type " + << EVT(ArgVT).getEVTString(); +#endif + llvm_unreachable(0); + } + } +} + +//===----------------------------------------------------------------------===// +// Call Calling Convention Implementation +//===----------------------------------------------------------------------===// + +static const unsigned O32IntRegsSize = 4; + +static const uint16_t O32IntRegs[] = { + Mips::A0, Mips::A1, Mips::A2, Mips::A3 +}; + +// Return next O32 integer argument register. +static unsigned getNextIntArgReg(unsigned Reg) { + assert((Reg == Mips::A0) || (Reg == Mips::A2)); + return (Reg == Mips::A0) ? Mips::A1 : Mips::A3; +} + +// Write ByVal Arg to arg registers and stack. +static void +WriteByValArg(SDValue& ByValChain, SDValue Chain, DebugLoc dl, + SmallVector<std::pair<unsigned, SDValue>, 16>& RegsToPass, + SmallVector<SDValue, 8>& MemOpChains, int& LastFI, + MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg, + const CCValAssign &VA, const ISD::ArgFlagsTy& Flags, + MVT PtrType, bool isLittle) { + unsigned LocMemOffset = VA.getLocMemOffset(); + unsigned Offset = 0; + uint32_t RemainingSize = Flags.getByValSize(); + unsigned ByValAlign = Flags.getByValAlign(); + + // Copy the first 4 words of byval arg to registers A0 - A3. + // FIXME: Use a stricter alignment if it enables better optimization in passes + // run later. + for (; RemainingSize >= 4 && LocMemOffset < 4 * 4; + Offset += 4, RemainingSize -= 4, LocMemOffset += 4) { + SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg, + DAG.getConstant(Offset, MVT::i32)); + SDValue LoadVal = DAG.getLoad(MVT::i32, dl, Chain, LoadPtr, + MachinePointerInfo(), false, false, false, + std::min(ByValAlign, (unsigned )4)); + MemOpChains.push_back(LoadVal.getValue(1)); + unsigned DstReg = O32IntRegs[LocMemOffset / 4]; + RegsToPass.push_back(std::make_pair(DstReg, LoadVal)); + } + + if (RemainingSize == 0) + return; + + // If there still is a register available for argument passing, write the + // remaining part of the structure to it using subword loads and shifts. + if (LocMemOffset < 4 * 4) { + assert(RemainingSize <= 3 && RemainingSize >= 1 && + "There must be one to three bytes remaining."); + unsigned LoadSize = (RemainingSize == 3 ? 2 : RemainingSize); + SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg, + DAG.getConstant(Offset, MVT::i32)); + unsigned Alignment = std::min(ByValAlign, (unsigned )4); + SDValue LoadVal = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain, + LoadPtr, MachinePointerInfo(), + MVT::getIntegerVT(LoadSize * 8), false, + false, Alignment); + MemOpChains.push_back(LoadVal.getValue(1)); + + // If target is big endian, shift it to the most significant half-word or + // byte. + if (!isLittle) + LoadVal = DAG.getNode(ISD::SHL, dl, MVT::i32, LoadVal, + DAG.getConstant(32 - LoadSize * 8, MVT::i32)); + + Offset += LoadSize; + RemainingSize -= LoadSize; + + // Read second subword if necessary. + if (RemainingSize != 0) { + assert(RemainingSize == 1 && "There must be one byte remaining."); + LoadPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg, + DAG.getConstant(Offset, MVT::i32)); + unsigned Alignment = std::min(ByValAlign, (unsigned )2); + SDValue Subword = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, Chain, + LoadPtr, MachinePointerInfo(), + MVT::i8, false, false, Alignment); + MemOpChains.push_back(Subword.getValue(1)); + // Insert the loaded byte to LoadVal. + // FIXME: Use INS if supported by target. + unsigned ShiftAmt = isLittle ? 16 : 8; + SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i32, Subword, + DAG.getConstant(ShiftAmt, MVT::i32)); + LoadVal = DAG.getNode(ISD::OR, dl, MVT::i32, LoadVal, Shift); + } + + unsigned DstReg = O32IntRegs[LocMemOffset / 4]; + RegsToPass.push_back(std::make_pair(DstReg, LoadVal)); + return; + } + + // Create a fixed object on stack at offset LocMemOffset and copy + // remaining part of byval arg to it using memcpy. + SDValue Src = DAG.getNode(ISD::ADD, dl, MVT::i32, Arg, + DAG.getConstant(Offset, MVT::i32)); + LastFI = MFI->CreateFixedObject(RemainingSize, LocMemOffset, true); + SDValue Dst = DAG.getFrameIndex(LastFI, PtrType); + ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src, + DAG.getConstant(RemainingSize, MVT::i32), + std::min(ByValAlign, (unsigned)4), + /*isVolatile=*/false, /*AlwaysInline=*/false, + MachinePointerInfo(0), MachinePointerInfo(0)); +} + +// Copy Mips64 byVal arg to registers and stack. +void static +PassByValArg64(SDValue& ByValChain, SDValue Chain, DebugLoc dl, + SmallVector<std::pair<unsigned, SDValue>, 16>& RegsToPass, + SmallVector<SDValue, 8>& MemOpChains, int& LastFI, + MachineFrameInfo *MFI, SelectionDAG &DAG, SDValue Arg, + const CCValAssign &VA, const ISD::ArgFlagsTy& Flags, + EVT PtrTy, bool isLittle) { + unsigned ByValSize = Flags.getByValSize(); + unsigned Alignment = std::min(Flags.getByValAlign(), (unsigned)8); + bool IsRegLoc = VA.isRegLoc(); + unsigned Offset = 0; // Offset in # of bytes from the beginning of struct. + unsigned LocMemOffset = 0; + unsigned MemCpySize = ByValSize; + + if (!IsRegLoc) + LocMemOffset = VA.getLocMemOffset(); + else { + const uint16_t *Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8, + VA.getLocReg()); + const uint16_t *RegEnd = Mips64IntRegs + 8; + + // Copy double words to registers. + for (; (Reg != RegEnd) && (ByValSize >= Offset + 8); ++Reg, Offset += 8) { + SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg, + DAG.getConstant(Offset, PtrTy)); + SDValue LoadVal = DAG.getLoad(MVT::i64, dl, Chain, LoadPtr, + MachinePointerInfo(), false, false, false, + Alignment); + MemOpChains.push_back(LoadVal.getValue(1)); + RegsToPass.push_back(std::make_pair(*Reg, LoadVal)); + } + + // Return if the struct has been fully copied. + if (!(MemCpySize = ByValSize - Offset)) + return; + + // If there is an argument register available, copy the remainder of the + // byval argument with sub-doubleword loads and shifts. + if (Reg != RegEnd) { + assert((ByValSize < Offset + 8) && + "Size of the remainder should be smaller than 8-byte."); + SDValue Val; + for (unsigned LoadSize = 4; Offset < ByValSize; LoadSize /= 2) { + unsigned RemSize = ByValSize - Offset; + + if (RemSize < LoadSize) + continue; + + SDValue LoadPtr = DAG.getNode(ISD::ADD, dl, PtrTy, Arg, + DAG.getConstant(Offset, PtrTy)); + SDValue LoadVal = + DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i64, Chain, LoadPtr, + MachinePointerInfo(), MVT::getIntegerVT(LoadSize * 8), + false, false, Alignment); + MemOpChains.push_back(LoadVal.getValue(1)); + + // Offset in number of bits from double word boundary. + unsigned OffsetDW = (Offset % 8) * 8; + unsigned Shamt = isLittle ? OffsetDW : 64 - (OffsetDW + LoadSize * 8); + SDValue Shift = DAG.getNode(ISD::SHL, dl, MVT::i64, LoadVal, + DAG.getConstant(Shamt, MVT::i32)); + + Val = Val.getNode() ? DAG.getNode(ISD::OR, dl, MVT::i64, Val, Shift) : + Shift; + Offset += LoadSize; + Alignment = std::min(Alignment, LoadSize); + } + + RegsToPass.push_back(std::make_pair(*Reg, Val)); + return; + } + } + + assert(MemCpySize && "MemCpySize must not be zero."); + + // Create a fixed object on stack at offset LocMemOffset and copy + // remainder of byval arg to it with memcpy. + SDValue Src = DAG.getNode(ISD::ADD, dl, PtrTy, Arg, + DAG.getConstant(Offset, PtrTy)); + LastFI = MFI->CreateFixedObject(MemCpySize, LocMemOffset, true); + SDValue Dst = DAG.getFrameIndex(LastFI, PtrTy); + ByValChain = DAG.getMemcpy(ByValChain, dl, Dst, Src, + DAG.getConstant(MemCpySize, PtrTy), Alignment, + /*isVolatile=*/false, /*AlwaysInline=*/false, + MachinePointerInfo(0), MachinePointerInfo(0)); +} + +/// LowerCall - functions arguments are copied from virtual regs to +/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. +/// TODO: isTailCall. +SDValue +MipsTargetLowering::LowerCall(SDValue InChain, SDValue Callee, + CallingConv::ID CallConv, bool isVarArg, + bool doesNotRet, bool &isTailCall, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + // MIPs target does not yet support tail call optimization. + isTailCall = false; + + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + const TargetFrameLowering *TFL = MF.getTarget().getFrameLowering(); + bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_; + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), ArgLocs, *DAG.getContext()); + + if (IsO32) + CCInfo.AnalyzeCallOperands(Outs, CC_MipsO32); + else if (HasMips64) + AnalyzeMips64CallOperands(CCInfo, Outs); + else + CCInfo.AnalyzeCallOperands(Outs, CC_Mips); + + // Get a count of how many bytes are to be pushed on the stack. + unsigned NextStackOffset = CCInfo.getNextStackOffset(); + + // Chain is the output chain of the last Load/Store or CopyToReg node. + // ByValChain is the output chain of the last Memcpy node created for copying + // byval arguments to the stack. + SDValue Chain, CallSeqStart, ByValChain; + SDValue NextStackOffsetVal = DAG.getIntPtrConstant(NextStackOffset, true); + Chain = CallSeqStart = DAG.getCALLSEQ_START(InChain, NextStackOffsetVal); + ByValChain = InChain; + + // If this is the first call, create a stack frame object that points to + // a location to which .cprestore saves $gp. + if (IsO32 && IsPIC && MipsFI->globalBaseRegFixed() && !MipsFI->getGPFI()) + MipsFI->setGPFI(MFI->CreateFixedObject(4, 0, true)); + + // Get the frame index of the stack frame object that points to the location + // of dynamically allocated area on the stack. + int DynAllocFI = MipsFI->getDynAllocFI(); + + // Update size of the maximum argument space. + // For O32, a minimum of four words (16 bytes) of argument space is + // allocated. + if (IsO32) + NextStackOffset = std::max(NextStackOffset, (unsigned)16); + + unsigned MaxCallFrameSize = MipsFI->getMaxCallFrameSize(); + + if (MaxCallFrameSize < NextStackOffset) { + MipsFI->setMaxCallFrameSize(NextStackOffset); + + // Set the offsets relative to $sp of the $gp restore slot and dynamically + // allocated stack space. These offsets must be aligned to a boundary + // determined by the stack alignment of the ABI. + unsigned StackAlignment = TFL->getStackAlignment(); + NextStackOffset = (NextStackOffset + StackAlignment - 1) / + StackAlignment * StackAlignment; + + if (MipsFI->needGPSaveRestore()) + MFI->setObjectOffset(MipsFI->getGPFI(), NextStackOffset); + + MFI->setObjectOffset(DynAllocFI, NextStackOffset); + } + + // With EABI is it possible to have 16 args on registers. + SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass; + SmallVector<SDValue, 8> MemOpChains; + + int FirstFI = -MFI->getNumFixedObjects() - 1, LastFI = 0; + + // Walk the register/memloc assignments, inserting copies/loads. + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + SDValue Arg = OutVals[i]; + CCValAssign &VA = ArgLocs[i]; + MVT ValVT = VA.getValVT(), LocVT = VA.getLocVT(); + ISD::ArgFlagsTy Flags = Outs[i].Flags; + + // ByVal Arg. + if (Flags.isByVal()) { + assert(Flags.getByValSize() && + "ByVal args of size 0 should have been ignored by front-end."); + if (IsO32) + WriteByValArg(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI, + MFI, DAG, Arg, VA, Flags, getPointerTy(), + Subtarget->isLittle()); + else + PassByValArg64(ByValChain, Chain, dl, RegsToPass, MemOpChains, LastFI, + MFI, DAG, Arg, VA, Flags, getPointerTy(), + Subtarget->isLittle()); + continue; + } + + // Promote the value if needed. + switch (VA.getLocInfo()) { + default: llvm_unreachable("Unknown loc info!"); + case CCValAssign::Full: + if (VA.isRegLoc()) { + if ((ValVT == MVT::f32 && LocVT == MVT::i32) || + (ValVT == MVT::f64 && LocVT == MVT::i64)) + Arg = DAG.getNode(ISD::BITCAST, dl, LocVT, Arg); + else if (ValVT == MVT::f64 && LocVT == MVT::i32) { + SDValue Lo = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32, + Arg, DAG.getConstant(0, MVT::i32)); + SDValue Hi = DAG.getNode(MipsISD::ExtractElementF64, dl, MVT::i32, + Arg, DAG.getConstant(1, MVT::i32)); + if (!Subtarget->isLittle()) + std::swap(Lo, Hi); + unsigned LocRegLo = VA.getLocReg(); + unsigned LocRegHigh = getNextIntArgReg(LocRegLo); + RegsToPass.push_back(std::make_pair(LocRegLo, Lo)); + RegsToPass.push_back(std::make_pair(LocRegHigh, Hi)); + continue; + } + } + break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, LocVT, Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, LocVT, Arg); + break; + case CCValAssign::AExt: + Arg = DAG.getNode(ISD::ANY_EXTEND, dl, LocVT, Arg); + break; + } + + // Arguments that can be passed on register must be kept at + // RegsToPass vector + if (VA.isRegLoc()) { + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + continue; + } + + // Register can't get to this point... + assert(VA.isMemLoc()); + + // Create the frame index object for this incoming parameter + LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, + VA.getLocMemOffset(), true); + SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy()); + + // emit ISD::STORE whichs stores the + // parameter value to a stack Location + MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, + MachinePointerInfo(), false, false, 0)); + } + + // Extend range of indices of frame objects for outgoing arguments that were + // created during this function call. Skip this step if no such objects were + // created. + if (LastFI) + MipsFI->extendOutArgFIRange(FirstFI, LastFI); + + // If a memcpy has been created to copy a byval arg to a stack, replace the + // chain input of CallSeqStart with ByValChain. + if (InChain != ByValChain) + DAG.UpdateNodeOperands(CallSeqStart.getNode(), ByValChain, + NextStackOffsetVal); + + // Transform all store nodes into one single node because all store + // nodes are independent of each other. + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &MemOpChains[0], MemOpChains.size()); + + // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every + // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol + // node so that legalize doesn't hack it. + unsigned char OpFlag; + bool IsPICCall = (IsN64 || IsPIC); // true if calls are translated to jalr $25 + bool GlobalOrExternal = false; + SDValue CalleeLo; + + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + if (IsPICCall && G->getGlobal()->hasInternalLinkage()) { + OpFlag = IsO32 ? MipsII::MO_GOT : MipsII::MO_GOT_PAGE; + unsigned char LoFlag = IsO32 ? MipsII::MO_ABS_LO : MipsII::MO_GOT_OFST; + Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), 0, + OpFlag); + CalleeLo = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy(), + 0, LoFlag); + } else { + OpFlag = IsPICCall ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG; + Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, + getPointerTy(), 0, OpFlag); + } + + GlobalOrExternal = true; + } + else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { + if (IsN64 || (!IsO32 && IsPIC)) + OpFlag = MipsII::MO_GOT_DISP; + else if (!IsPIC) // !N64 && static + OpFlag = MipsII::MO_NO_FLAG; + else // O32 & PIC + OpFlag = MipsII::MO_GOT_CALL; + Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(), + OpFlag); + GlobalOrExternal = true; + } + + SDValue InFlag; + + // Create nodes that load address of callee and copy it to T9 + if (IsPICCall) { + if (GlobalOrExternal) { + // Load callee address + Callee = DAG.getNode(MipsISD::Wrapper, dl, getPointerTy(), + GetGlobalReg(DAG, getPointerTy()), Callee); + SDValue LoadValue = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), + Callee, MachinePointerInfo::getGOT(), + false, false, false, 0); + + // Use GOT+LO if callee has internal linkage. + if (CalleeLo.getNode()) { + SDValue Lo = DAG.getNode(MipsISD::Lo, dl, getPointerTy(), CalleeLo); + Callee = DAG.getNode(ISD::ADD, dl, getPointerTy(), LoadValue, Lo); + } else + Callee = LoadValue; + } + } + + // T9 should contain the address of the callee function if + // -reloction-model=pic or it is an indirect call. + if (IsPICCall || !GlobalOrExternal) { + // copy to T9 + unsigned T9Reg = IsN64 ? Mips::T9_64 : Mips::T9; + Chain = DAG.getCopyToReg(Chain, dl, T9Reg, Callee, SDValue(0, 0)); + InFlag = Chain.getValue(1); + Callee = DAG.getRegister(T9Reg, getPointerTy()); + } + + // Build a sequence of copy-to-reg nodes chained together with token + // chain and flag operands which copy the outgoing args into registers. + // The InFlag in necessary since all emitted instructions must be + // stuck together. + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, + RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + + // MipsJmpLink = #chain, #target_address, #opt_in_flags... + // = Chain, Callee, Reg#1, Reg#2, ... + // + // Returns a chain & a flag for retval copy to use. + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + SmallVector<SDValue, 8> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + + // Add argument registers to the end of the list so that they are + // known live into the call. + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) + Ops.push_back(DAG.getRegister(RegsToPass[i].first, + RegsToPass[i].second.getValueType())); + + // Add a register mask operand representing the call-preserved registers. + const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); + const uint32_t *Mask = TRI->getCallPreservedMask(CallConv); + assert(Mask && "Missing call preserved mask for calling convention"); + Ops.push_back(DAG.getRegisterMask(Mask)); + + if (InFlag.getNode()) + Ops.push_back(InFlag); + + Chain = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size()); + InFlag = Chain.getValue(1); + + // Create the CALLSEQ_END node. + Chain = DAG.getCALLSEQ_END(Chain, + DAG.getIntPtrConstant(NextStackOffset, true), + DAG.getIntPtrConstant(0, true), InFlag); + InFlag = Chain.getValue(1); + + // Handle result values, copying them out of physregs into vregs that we + // return. + return LowerCallResult(Chain, InFlag, CallConv, isVarArg, + Ins, dl, DAG, InVals); +} + +/// LowerCallResult - Lower the result values of a call into the +/// appropriate copies out of appropriate physical registers. +SDValue +MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) const { + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), RVLocs, *DAG.getContext()); + + CCInfo.AnalyzeCallResult(Ins, RetCC_Mips); + + // Copy all of the result registers out of their specified physreg. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), + RVLocs[i].getValVT(), InFlag).getValue(1); + InFlag = Chain.getValue(2); + InVals.push_back(Chain.getValue(0)); + } + + return Chain; +} + +//===----------------------------------------------------------------------===// +// Formal Arguments Calling Convention Implementation +//===----------------------------------------------------------------------===// +static void ReadByValArg(MachineFunction &MF, SDValue Chain, DebugLoc dl, + std::vector<SDValue>& OutChains, + SelectionDAG &DAG, unsigned NumWords, SDValue FIN, + const CCValAssign &VA, const ISD::ArgFlagsTy& Flags, + const Argument *FuncArg) { + unsigned LocMem = VA.getLocMemOffset(); + unsigned FirstWord = LocMem / 4; + + // copy register A0 - A3 to frame object + for (unsigned i = 0; i < NumWords; ++i) { + unsigned CurWord = FirstWord + i; + if (CurWord >= O32IntRegsSize) + break; + + unsigned SrcReg = O32IntRegs[CurWord]; + unsigned Reg = AddLiveIn(MF, SrcReg, Mips::CPURegsRegisterClass); + SDValue StorePtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIN, + DAG.getConstant(i * 4, MVT::i32)); + SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(Reg, MVT::i32), + StorePtr, MachinePointerInfo(FuncArg, i * 4), + false, false, 0); + OutChains.push_back(Store); + } +} + +// Create frame object on stack and copy registers used for byval passing to it. +static unsigned +CopyMips64ByValRegs(MachineFunction &MF, SDValue Chain, DebugLoc dl, + std::vector<SDValue>& OutChains, SelectionDAG &DAG, + const CCValAssign &VA, const ISD::ArgFlagsTy& Flags, + MachineFrameInfo *MFI, bool IsRegLoc, + SmallVectorImpl<SDValue> &InVals, MipsFunctionInfo *MipsFI, + EVT PtrTy, const Argument *FuncArg) { + const uint16_t *Reg = Mips64IntRegs + 8; + int FOOffset; // Frame object offset from virtual frame pointer. + + if (IsRegLoc) { + Reg = std::find(Mips64IntRegs, Mips64IntRegs + 8, VA.getLocReg()); + FOOffset = (Reg - Mips64IntRegs) * 8 - 8 * 8; + } + else + FOOffset = VA.getLocMemOffset(); + + // Create frame object. + unsigned NumRegs = (Flags.getByValSize() + 7) / 8; + unsigned LastFI = MFI->CreateFixedObject(NumRegs * 8, FOOffset, true); + SDValue FIN = DAG.getFrameIndex(LastFI, PtrTy); + InVals.push_back(FIN); + + // Copy arg registers. + for (unsigned I = 0; (Reg != Mips64IntRegs + 8) && (I < NumRegs); + ++Reg, ++I) { + unsigned VReg = AddLiveIn(MF, *Reg, Mips::CPU64RegsRegisterClass); + SDValue StorePtr = DAG.getNode(ISD::ADD, dl, PtrTy, FIN, + DAG.getConstant(I * 8, PtrTy)); + SDValue Store = DAG.getStore(Chain, dl, DAG.getRegister(VReg, MVT::i64), + StorePtr, MachinePointerInfo(FuncArg, I * 8), + false, false, 0); + OutChains.push_back(Store); + } + + return LastFI; +} + +/// LowerFormalArguments - transform physical registers into virtual registers +/// and generate load operations for arguments places on the stack. +SDValue +MipsTargetLowering::LowerFormalArguments(SDValue Chain, + CallingConv::ID CallConv, + bool isVarArg, + const SmallVectorImpl<ISD::InputArg> &Ins, + DebugLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) + const { + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + + MipsFI->setVarArgsFrameIndex(0); + + // Used with vargs to acumulate store chains. + std::vector<SDValue> OutChains; + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), ArgLocs, *DAG.getContext()); + + if (IsO32) + CCInfo.AnalyzeFormalArguments(Ins, CC_MipsO32); + else + CCInfo.AnalyzeFormalArguments(Ins, CC_Mips); + + Function::const_arg_iterator FuncArg = + DAG.getMachineFunction().getFunction()->arg_begin(); + int LastFI = 0;// MipsFI->LastInArgFI is 0 at the entry of this function. + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i, ++FuncArg) { + CCValAssign &VA = ArgLocs[i]; + EVT ValVT = VA.getValVT(); + ISD::ArgFlagsTy Flags = Ins[i].Flags; + bool IsRegLoc = VA.isRegLoc(); + + if (Flags.isByVal()) { + assert(Flags.getByValSize() && + "ByVal args of size 0 should have been ignored by front-end."); + if (IsO32) { + unsigned NumWords = (Flags.getByValSize() + 3) / 4; + LastFI = MFI->CreateFixedObject(NumWords * 4, VA.getLocMemOffset(), + true); + SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy()); + InVals.push_back(FIN); + ReadByValArg(MF, Chain, dl, OutChains, DAG, NumWords, FIN, VA, Flags, + &*FuncArg); + } else // N32/64 + LastFI = CopyMips64ByValRegs(MF, Chain, dl, OutChains, DAG, VA, Flags, + MFI, IsRegLoc, InVals, MipsFI, + getPointerTy(), &*FuncArg); + continue; + } + + // Arguments stored on registers + if (IsRegLoc) { + EVT RegVT = VA.getLocVT(); + unsigned ArgReg = VA.getLocReg(); + const TargetRegisterClass *RC; + + if (RegVT == MVT::i32) + RC = Mips::CPURegsRegisterClass; + else if (RegVT == MVT::i64) + RC = Mips::CPU64RegsRegisterClass; + else if (RegVT == MVT::f32) + RC = Mips::FGR32RegisterClass; + else if (RegVT == MVT::f64) + RC = HasMips64 ? Mips::FGR64RegisterClass : Mips::AFGR64RegisterClass; + else + llvm_unreachable("RegVT not supported by FormalArguments Lowering"); + + // Transform the arguments stored on + // physical registers into virtual ones + unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgReg, RC); + SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); + + // If this is an 8 or 16-bit value, it has been passed promoted + // to 32 bits. Insert an assert[sz]ext to capture this, then + // truncate to the right size. + if (VA.getLocInfo() != CCValAssign::Full) { + unsigned Opcode = 0; + if (VA.getLocInfo() == CCValAssign::SExt) + Opcode = ISD::AssertSext; + else if (VA.getLocInfo() == CCValAssign::ZExt) + Opcode = ISD::AssertZext; + if (Opcode) + ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue, + DAG.getValueType(ValVT)); + ArgValue = DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); + } + + // Handle floating point arguments passed in integer registers. + if ((RegVT == MVT::i32 && ValVT == MVT::f32) || + (RegVT == MVT::i64 && ValVT == MVT::f64)) + ArgValue = DAG.getNode(ISD::BITCAST, dl, ValVT, ArgValue); + else if (IsO32 && RegVT == MVT::i32 && ValVT == MVT::f64) { + unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(), + getNextIntArgReg(ArgReg), RC); + SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT); + if (!Subtarget->isLittle()) + std::swap(ArgValue, ArgValue2); + ArgValue = DAG.getNode(MipsISD::BuildPairF64, dl, MVT::f64, + ArgValue, ArgValue2); + } + + InVals.push_back(ArgValue); + } else { // VA.isRegLoc() + + // sanity check + assert(VA.isMemLoc()); + + // The stack pointer offset is relative to the caller stack frame. + LastFI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8, + VA.getLocMemOffset(), true); + + // Create load nodes to retrieve arguments from the stack + SDValue FIN = DAG.getFrameIndex(LastFI, getPointerTy()); + InVals.push_back(DAG.getLoad(ValVT, dl, Chain, FIN, + MachinePointerInfo::getFixedStack(LastFI), + false, false, false, 0)); + } + } + + // The mips ABIs for returning structs by value requires that we copy + // the sret argument into $v0 for the return. Save the argument into + // a virtual register so that we can access it from the return points. + if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { + unsigned Reg = MipsFI->getSRetReturnReg(); + if (!Reg) { + Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32)); + MipsFI->setSRetReturnReg(Reg); + } + SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]); + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain); + } + + if (isVarArg) { + unsigned NumOfRegs = IsO32 ? 4 : 8; + const uint16_t *ArgRegs = IsO32 ? O32IntRegs : Mips64IntRegs; + unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs, NumOfRegs); + int FirstRegSlotOffset = IsO32 ? 0 : -64 ; // offset of $a0's slot. + const TargetRegisterClass *RC + = IsO32 ? Mips::CPURegsRegisterClass : Mips::CPU64RegsRegisterClass; + unsigned RegSize = RC->getSize(); + int RegSlotOffset = FirstRegSlotOffset + Idx * RegSize; + + // Offset of the first variable argument from stack pointer. + int FirstVaArgOffset; + + if (IsO32 || (Idx == NumOfRegs)) { + FirstVaArgOffset = + (CCInfo.getNextStackOffset() + RegSize - 1) / RegSize * RegSize; + } else + FirstVaArgOffset = RegSlotOffset; + + // Record the frame index of the first variable argument + // which is a value necessary to VASTART. + LastFI = MFI->CreateFixedObject(RegSize, FirstVaArgOffset, true); + MipsFI->setVarArgsFrameIndex(LastFI); + + // Copy the integer registers that have not been used for argument passing + // to the argument register save area. For O32, the save area is allocated + // in the caller's stack frame, while for N32/64, it is allocated in the + // callee's stack frame. + for (int StackOffset = RegSlotOffset; + Idx < NumOfRegs; ++Idx, StackOffset += RegSize) { + unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegs[Idx], RC); + SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, + MVT::getIntegerVT(RegSize * 8)); + LastFI = MFI->CreateFixedObject(RegSize, StackOffset, true); + SDValue PtrOff = DAG.getFrameIndex(LastFI, getPointerTy()); + OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff, + MachinePointerInfo(), false, false, 0)); + } + } + + MipsFI->setLastInArgFI(LastFI); + + // All stores are grouped in one node to allow the matching between + // the size of Ins and InVals. This only happens when on varg functions + if (!OutChains.empty()) { + OutChains.push_back(Chain); + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, + &OutChains[0], OutChains.size()); + } + + return Chain; +} + +//===----------------------------------------------------------------------===// +// Return Value Calling Convention Implementation +//===----------------------------------------------------------------------===// + +SDValue +MipsTargetLowering::LowerReturn(SDValue Chain, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + DebugLoc dl, SelectionDAG &DAG) const { + + // CCValAssign - represent the assignment of + // the return value to a location + SmallVector<CCValAssign, 16> RVLocs; + + // CCState - Info about the registers and stack slot. + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), + getTargetMachine(), RVLocs, *DAG.getContext()); + + // Analize return values. + CCInfo.AnalyzeReturn(Outs, RetCC_Mips); + + // If this is the first return lowered for this function, add + // the regs to the liveout set for the function. + if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { + for (unsigned i = 0; i != RVLocs.size(); ++i) + if (RVLocs[i].isRegLoc()) + DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); + } + + SDValue Flag; + + // Copy the result values into the output registers. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + assert(VA.isRegLoc() && "Can only return in registers!"); + + Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); + + // guarantee that all emitted copies are + // stuck together, avoiding something bad + Flag = Chain.getValue(1); + } + + // The mips ABIs for returning structs by value requires that we copy + // the sret argument into $v0 for the return. We saved the argument into + // a virtual register in the entry block, so now we copy the value out + // and into $v0. + if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) { + MachineFunction &MF = DAG.getMachineFunction(); + MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>(); + unsigned Reg = MipsFI->getSRetReturnReg(); + + if (!Reg) + llvm_unreachable("sret virtual register not created in the entry block"); + SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy()); + + Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag); + Flag = Chain.getValue(1); + } + + // Return on Mips is always a "jr $ra" + if (Flag.getNode()) + return DAG.getNode(MipsISD::Ret, dl, MVT::Other, + Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag); + else // Return Void + return DAG.getNode(MipsISD::Ret, dl, MVT::Other, + Chain, DAG.getRegister(Mips::RA, MVT::i32)); +} + +//===----------------------------------------------------------------------===// +// Mips Inline Assembly Support +//===----------------------------------------------------------------------===// + +/// getConstraintType - Given a constraint letter, return the type of +/// constraint it is for this target. +MipsTargetLowering::ConstraintType MipsTargetLowering:: +getConstraintType(const std::string &Constraint) const +{ + // Mips specific constrainy + // GCC config/mips/constraints.md + // + // 'd' : An address register. Equivalent to r + // unless generating MIPS16 code. + // 'y' : Equivalent to r; retained for + // backwards compatibility. + // 'f' : Floating Point registers. + if (Constraint.size() == 1) { + switch (Constraint[0]) { + default : break; + case 'd': + case 'y': + case 'f': + return C_RegisterClass; + } + } + return TargetLowering::getConstraintType(Constraint); +} + +/// Examine constraint type and operand type and determine a weight value. +/// This object must already have been set up with the operand type +/// and the current alternative constraint selected. +TargetLowering::ConstraintWeight +MipsTargetLowering::getSingleConstraintMatchWeight( + AsmOperandInfo &info, const char *constraint) const { + ConstraintWeight weight = CW_Invalid; + Value *CallOperandVal = info.CallOperandVal; + // If we don't have a value, we can't do a match, + // but allow it at the lowest weight. + if (CallOperandVal == NULL) + return CW_Default; + Type *type = CallOperandVal->getType(); + // Look at the constraint type. + switch (*constraint) { + default: + weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); + break; + case 'd': + case 'y': + if (type->isIntegerTy()) + weight = CW_Register; + break; + case 'f': + if (type->isFloatTy()) + weight = CW_Register; + break; + } + return weight; +} + +/// Given a register class constraint, like 'r', if this corresponds directly +/// to an LLVM register class, return a register of 0 and the register class +/// pointer. +std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering:: +getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const +{ + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 'd': // Address register. Same as 'r' unless generating MIPS16 code. + case 'y': // Same as 'r'. Exists for compatibility. + case 'r': + if (VT == MVT::i32) + return std::make_pair(0U, Mips::CPURegsRegisterClass); + assert(VT == MVT::i64 && "Unexpected type."); + return std::make_pair(0U, Mips::CPU64RegsRegisterClass); + case 'f': + if (VT == MVT::f32) + return std::make_pair(0U, Mips::FGR32RegisterClass); + if ((VT == MVT::f64) && (!Subtarget->isSingleFloat())) { + if (Subtarget->isFP64bit()) + return std::make_pair(0U, Mips::FGR64RegisterClass); + else + return std::make_pair(0U, Mips::AFGR64RegisterClass); + } + } + } + return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); +} + +bool +MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { + // The Mips target isn't yet aware of offsets. + return false; +} + +bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { + if (VT != MVT::f32 && VT != MVT::f64) + return false; + if (Imm.isNegZero()) + return false; + return Imm.isZero(); +} + +unsigned MipsTargetLowering::getJumpTableEncoding() const { + if (IsN64) + return MachineJumpTableInfo::EK_GPRel64BlockAddress; + + return TargetLowering::getJumpTableEncoding(); +} |