summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp1339
1 files changed, 1339 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp b/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp
new file mode 100644
index 0000000..e979c3f
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/MipsISelLowering.cpp
@@ -0,0 +1,1339 @@
+//===-- MipsISelLowering.cpp - Mips DAG Lowering Implementation -----------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that Mips uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "mips-lower"
+#include "MipsISelLowering.h"
+#include "MipsMachineFunction.h"
+#include "MipsTargetMachine.h"
+#include "MipsTargetObjectFile.h"
+#include "MipsSubtarget.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/CallingConv.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+using namespace llvm;
+
+const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch (Opcode) {
+ case MipsISD::JmpLink : return "MipsISD::JmpLink";
+ case MipsISD::Hi : return "MipsISD::Hi";
+ case MipsISD::Lo : return "MipsISD::Lo";
+ case MipsISD::GPRel : return "MipsISD::GPRel";
+ case MipsISD::Ret : return "MipsISD::Ret";
+ case MipsISD::CMov : return "MipsISD::CMov";
+ case MipsISD::SelectCC : return "MipsISD::SelectCC";
+ case MipsISD::FPSelectCC : return "MipsISD::FPSelectCC";
+ case MipsISD::FPBrcond : return "MipsISD::FPBrcond";
+ case MipsISD::FPCmp : return "MipsISD::FPCmp";
+ case MipsISD::FPRound : return "MipsISD::FPRound";
+ default : return NULL;
+ }
+}
+
+MipsTargetLowering::
+MipsTargetLowering(MipsTargetMachine &TM)
+ : TargetLowering(TM, new MipsTargetObjectFile()) {
+ Subtarget = &TM.getSubtarget<MipsSubtarget>();
+
+ // Mips does not have i1 type, so use i32 for
+ // setcc operations results (slt, sgt, ...).
+ setBooleanContents(ZeroOrOneBooleanContent);
+
+ // Set up the register classes
+ addRegisterClass(MVT::i32, Mips::CPURegsRegisterClass);
+ addRegisterClass(MVT::f32, Mips::FGR32RegisterClass);
+
+ // When dealing with single precision only, use libcalls
+ if (!Subtarget->isSingleFloat())
+ if (!Subtarget->isFP64bit())
+ addRegisterClass(MVT::f64, Mips::AFGR64RegisterClass);
+
+ // Load extented operations for i1 types must be promoted
+ setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
+ setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
+
+ // MIPS doesn't have extending float->double load/store
+ setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+
+ // Used by legalize types to correctly generate the setcc result.
+ // Without this, every float setcc comes with a AND/OR with the result,
+ // we don't want this, since the fpcmp result goes to a flag register,
+ // which is used implicitly by brcond and select operations.
+ AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
+
+ // Mips Custom Operations
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
+ setOperationAction(ISD::JumpTable, MVT::i32, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f64, Custom);
+ setOperationAction(ISD::SELECT, MVT::i32, Custom);
+ setOperationAction(ISD::SETCC, MVT::f32, Custom);
+ setOperationAction(ISD::SETCC, MVT::f64, Custom);
+ setOperationAction(ISD::BRCOND, MVT::Other, Custom);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+
+
+ // We custom lower AND/OR to handle the case where the DAG contain 'ands/ors'
+ // with operands comming from setcc fp comparions. This is necessary since
+ // the result from these setcc are in a flag registers (FCR31).
+ setOperationAction(ISD::AND, MVT::i32, Custom);
+ setOperationAction(ISD::OR, MVT::i32, Custom);
+
+ // Operations not directly supported by Mips.
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+ setOperationAction(ISD::BR_CC, MVT::Other, Expand);
+ setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+ setOperationAction(ISD::CTTZ, MVT::i32, Expand);
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ setOperationAction(ISD::ROTR, MVT::i32, Expand);
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FPOWI, MVT::f32, Expand);
+ setOperationAction(ISD::FPOW, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f32, Expand);
+ setOperationAction(ISD::FLOG10, MVT::f32, Expand);
+ setOperationAction(ISD::FEXP, MVT::f32, Expand);
+
+ setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
+
+ // Use the default for now
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+ setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
+
+ if (Subtarget->isSingleFloat())
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
+
+ if (!Subtarget->hasSEInReg()) {
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
+ }
+
+ if (!Subtarget->hasBitCount())
+ setOperationAction(ISD::CTLZ, MVT::i32, Expand);
+
+ if (!Subtarget->hasSwap())
+ setOperationAction(ISD::BSWAP, MVT::i32, Expand);
+
+ setStackPointerRegisterToSaveRestore(Mips::SP);
+ computeRegisterProperties();
+}
+
+MVT::SimpleValueType MipsTargetLowering::getSetCCResultType(EVT VT) const {
+ return MVT::i32;
+}
+
+/// getFunctionAlignment - Return the Log2 alignment of this function.
+unsigned MipsTargetLowering::getFunctionAlignment(const Function *) const {
+ return 2;
+}
+
+SDValue MipsTargetLowering::
+LowerOperation(SDValue Op, SelectionDAG &DAG) const
+{
+ switch (Op.getOpcode())
+ {
+ case ISD::AND: return LowerANDOR(Op, DAG);
+ case ISD::BRCOND: return LowerBRCOND(Op, DAG);
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
+ case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
+ case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::JumpTable: return LowerJumpTable(Op, DAG);
+ case ISD::OR: return LowerANDOR(Op, DAG);
+ case ISD::SELECT: return LowerSELECT(Op, DAG);
+ case ISD::SETCC: return LowerSETCC(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG);
+ }
+ return SDValue();
+}
+
+//===----------------------------------------------------------------------===//
+// Lower helper functions
+//===----------------------------------------------------------------------===//
+
+// AddLiveIn - This helper function adds the specified physical register to the
+// MachineFunction as a live in value. It also creates a corresponding
+// virtual register for it.
+static unsigned
+AddLiveIn(MachineFunction &MF, unsigned PReg, TargetRegisterClass *RC)
+{
+ assert(RC->contains(PReg) && "Not the correct regclass!");
+ unsigned VReg = MF.getRegInfo().createVirtualRegister(RC);
+ MF.getRegInfo().addLiveIn(PReg, VReg);
+ return VReg;
+}
+
+// Get fp branch code (not opcode) from condition code.
+static Mips::FPBranchCode GetFPBranchCodeFromCond(Mips::CondCode CC) {
+ if (CC >= Mips::FCOND_F && CC <= Mips::FCOND_NGT)
+ return Mips::BRANCH_T;
+
+ if (CC >= Mips::FCOND_T && CC <= Mips::FCOND_GT)
+ return Mips::BRANCH_F;
+
+ return Mips::BRANCH_INVALID;
+}
+
+static unsigned FPBranchCodeToOpc(Mips::FPBranchCode BC) {
+ switch(BC) {
+ default:
+ llvm_unreachable("Unknown branch code");
+ case Mips::BRANCH_T : return Mips::BC1T;
+ case Mips::BRANCH_F : return Mips::BC1F;
+ case Mips::BRANCH_TL : return Mips::BC1TL;
+ case Mips::BRANCH_FL : return Mips::BC1FL;
+ }
+}
+
+static Mips::CondCode FPCondCCodeToFCC(ISD::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Unknown fp condition code!");
+ case ISD::SETEQ:
+ case ISD::SETOEQ: return Mips::FCOND_EQ;
+ case ISD::SETUNE: return Mips::FCOND_OGL;
+ case ISD::SETLT:
+ case ISD::SETOLT: return Mips::FCOND_OLT;
+ case ISD::SETGT:
+ case ISD::SETOGT: return Mips::FCOND_OGT;
+ case ISD::SETLE:
+ case ISD::SETOLE: return Mips::FCOND_OLE;
+ case ISD::SETGE:
+ case ISD::SETOGE: return Mips::FCOND_OGE;
+ case ISD::SETULT: return Mips::FCOND_ULT;
+ case ISD::SETULE: return Mips::FCOND_ULE;
+ case ISD::SETUGT: return Mips::FCOND_UGT;
+ case ISD::SETUGE: return Mips::FCOND_UGE;
+ case ISD::SETUO: return Mips::FCOND_UN;
+ case ISD::SETO: return Mips::FCOND_OR;
+ case ISD::SETNE:
+ case ISD::SETONE: return Mips::FCOND_NEQ;
+ case ISD::SETUEQ: return Mips::FCOND_UEQ;
+ }
+}
+
+MachineBasicBlock *
+MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
+ bool isFPCmp = false;
+ DebugLoc dl = MI->getDebugLoc();
+
+ switch (MI->getOpcode()) {
+ default: assert(false && "Unexpected instr type to insert");
+ case Mips::Select_FCC:
+ case Mips::Select_FCC_S32:
+ case Mips::Select_FCC_D32:
+ isFPCmp = true; // FALL THROUGH
+ case Mips::Select_CC:
+ case Mips::Select_CC_S32:
+ case Mips::Select_CC_D32: {
+ // To "insert" a SELECT_CC instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = BB;
+ ++It;
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // setcc r1, r2, r3
+ // bNE r1, r0, copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+
+ // Emit the right instruction according to the type of the operands compared
+ if (isFPCmp) {
+ // Find the condiction code present in the setcc operation.
+ Mips::CondCode CC = (Mips::CondCode)MI->getOperand(4).getImm();
+ // Get the branch opcode from the branch code.
+ unsigned Opc = FPBranchCodeToOpc(GetFPBranchCodeFromCond(CC));
+ BuildMI(BB, dl, TII->get(Opc)).addMBB(sinkMBB);
+ } else
+ BuildMI(BB, dl, TII->get(Mips::BNE)).addReg(MI->getOperand(1).getReg())
+ .addReg(Mips::ZERO).addMBB(sinkMBB);
+
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+ // Update machine-CFG edges by first adding all successors of the current
+ // block to the new block which will contain the Phi node for the select.
+ for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
+ e = BB->succ_end(); i != e; ++i)
+ sinkMBB->addSuccessor(*i);
+ // Next, remove all successors of the current block, and add the true
+ // and fallthrough blocks as its successors.
+ while(!BB->succ_empty())
+ BB->removeSuccessor(BB->succ_begin());
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(BB, dl, TII->get(Mips::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(3).getReg()).addMBB(thisMBB);
+
+ F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
+ return BB;
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Misc Lower Operation implementation
+//===----------------------------------------------------------------------===//
+
+SDValue MipsTargetLowering::
+LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const
+{
+ if (!Subtarget->isMips1())
+ return Op;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ unsigned CCReg = AddLiveIn(MF, Mips::FCR31, Mips::CCRRegisterClass);
+
+ SDValue Chain = DAG.getEntryNode();
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue Src = Op.getOperand(0);
+
+ // Set the condition register
+ SDValue CondReg = DAG.getCopyFromReg(Chain, dl, CCReg, MVT::i32);
+ CondReg = DAG.getCopyToReg(Chain, dl, Mips::AT, CondReg);
+ CondReg = DAG.getCopyFromReg(CondReg, dl, Mips::AT, MVT::i32);
+
+ SDValue Cst = DAG.getConstant(3, MVT::i32);
+ SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i32, CondReg, Cst);
+ Cst = DAG.getConstant(2, MVT::i32);
+ SDValue Xor = DAG.getNode(ISD::XOR, dl, MVT::i32, Or, Cst);
+
+ SDValue InFlag(0, 0);
+ CondReg = DAG.getCopyToReg(Chain, dl, Mips::FCR31, Xor, InFlag);
+
+ // Emit the round instruction and bit convert to integer
+ SDValue Trunc = DAG.getNode(MipsISD::FPRound, dl, MVT::f32,
+ Src, CondReg.getValue(1));
+ SDValue BitCvt = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Trunc);
+ return BitCvt;
+}
+
+SDValue MipsTargetLowering::
+LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const
+{
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+ DebugLoc dl = Op.getDebugLoc();
+
+ // Get a reference from Mips stack pointer
+ SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, Mips::SP, MVT::i32);
+
+ // Subtract the dynamic size from the actual stack size to
+ // obtain the new stack size.
+ SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);
+
+ // The Sub result contains the new stack start address, so it
+ // must be placed in the stack pointer register.
+ Chain = DAG.getCopyToReg(StackPointer.getValue(1), dl, Mips::SP, Sub);
+
+ // This node always has two return values: a new stack pointer
+ // value and a chain
+ SDValue Ops[2] = { Sub, Chain };
+ return DAG.getMergeValues(Ops, 2, dl);
+}
+
+SDValue MipsTargetLowering::
+LowerANDOR(SDValue Op, SelectionDAG &DAG) const
+{
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ DebugLoc dl = Op.getDebugLoc();
+
+ if (LHS.getOpcode() != MipsISD::FPCmp || RHS.getOpcode() != MipsISD::FPCmp)
+ return Op;
+
+ SDValue True = DAG.getConstant(1, MVT::i32);
+ SDValue False = DAG.getConstant(0, MVT::i32);
+
+ SDValue LSEL = DAG.getNode(MipsISD::FPSelectCC, dl, True.getValueType(),
+ LHS, True, False, LHS.getOperand(2));
+ SDValue RSEL = DAG.getNode(MipsISD::FPSelectCC, dl, True.getValueType(),
+ RHS, True, False, RHS.getOperand(2));
+
+ return DAG.getNode(Op.getOpcode(), dl, MVT::i32, LSEL, RSEL);
+}
+
+SDValue MipsTargetLowering::
+LowerBRCOND(SDValue Op, SelectionDAG &DAG) const
+{
+ // The first operand is the chain, the second is the condition, the third is
+ // the block to branch to if the condition is true.
+ SDValue Chain = Op.getOperand(0);
+ SDValue Dest = Op.getOperand(2);
+ DebugLoc dl = Op.getDebugLoc();
+
+ if (Op.getOperand(1).getOpcode() != MipsISD::FPCmp)
+ return Op;
+
+ SDValue CondRes = Op.getOperand(1);
+ SDValue CCNode = CondRes.getOperand(2);
+ Mips::CondCode CC =
+ (Mips::CondCode)cast<ConstantSDNode>(CCNode)->getZExtValue();
+ SDValue BrCode = DAG.getConstant(GetFPBranchCodeFromCond(CC), MVT::i32);
+
+ return DAG.getNode(MipsISD::FPBrcond, dl, Op.getValueType(), Chain, BrCode,
+ Dest, CondRes);
+}
+
+SDValue MipsTargetLowering::
+LowerSETCC(SDValue Op, SelectionDAG &DAG) const
+{
+ // The operands to this are the left and right operands to compare (ops #0,
+ // and #1) and the condition code to compare them with (op #2) as a
+ // CondCodeSDNode.
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ DebugLoc dl = Op.getDebugLoc();
+
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
+
+ return DAG.getNode(MipsISD::FPCmp, dl, Op.getValueType(), LHS, RHS,
+ DAG.getConstant(FPCondCCodeToFCC(CC), MVT::i32));
+}
+
+SDValue MipsTargetLowering::
+LowerSELECT(SDValue Op, SelectionDAG &DAG) const
+{
+ SDValue Cond = Op.getOperand(0);
+ SDValue True = Op.getOperand(1);
+ SDValue False = Op.getOperand(2);
+ DebugLoc dl = Op.getDebugLoc();
+
+ // if the incomming condition comes from a integer compare, the select
+ // operation must be SelectCC or a conditional move if the subtarget
+ // supports it.
+ if (Cond.getOpcode() != MipsISD::FPCmp) {
+ if (Subtarget->hasCondMov() && !True.getValueType().isFloatingPoint())
+ return Op;
+ return DAG.getNode(MipsISD::SelectCC, dl, True.getValueType(),
+ Cond, True, False);
+ }
+
+ // if the incomming condition comes from fpcmp, the select
+ // operation must use FPSelectCC.
+ SDValue CCNode = Cond.getOperand(2);
+ return DAG.getNode(MipsISD::FPSelectCC, dl, True.getValueType(),
+ Cond, True, False, CCNode);
+}
+
+SDValue MipsTargetLowering::LowerGlobalAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ // FIXME there isn't actually debug info here
+ DebugLoc dl = Op.getDebugLoc();
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+
+ if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
+ SDVTList VTs = DAG.getVTList(MVT::i32);
+
+ MipsTargetObjectFile &TLOF = (MipsTargetObjectFile&)getObjFileLowering();
+
+ // %gp_rel relocation
+ if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) {
+ SDValue GA = DAG.getTargetGlobalAddress(GV, MVT::i32, 0,
+ MipsII::MO_GPREL);
+ SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, dl, VTs, &GA, 1);
+ SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
+ return DAG.getNode(ISD::ADD, dl, MVT::i32, GOT, GPRelNode);
+ }
+ // %hi/%lo relocation
+ SDValue GA = DAG.getTargetGlobalAddress(GV, MVT::i32, 0,
+ MipsII::MO_ABS_HILO);
+ SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, VTs, &GA, 1);
+ SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GA);
+ return DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
+
+ } else {
+ SDValue GA = DAG.getTargetGlobalAddress(GV, MVT::i32, 0,
+ MipsII::MO_GOT);
+ SDValue ResNode = DAG.getLoad(MVT::i32, dl,
+ DAG.getEntryNode(), GA, NULL, 0,
+ false, false, 0);
+ // On functions and global targets not internal linked only
+ // a load from got/GP is necessary for PIC to work.
+ if (!GV->hasLocalLinkage() || isa<Function>(GV))
+ return ResNode;
+ SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, GA);
+ return DAG.getNode(ISD::ADD, dl, MVT::i32, ResNode, Lo);
+ }
+
+ llvm_unreachable("Dont know how to handle GlobalAddress");
+ return SDValue(0,0);
+}
+
+SDValue MipsTargetLowering::
+LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const
+{
+ llvm_unreachable("TLS not implemented for MIPS.");
+ return SDValue(); // Not reached
+}
+
+SDValue MipsTargetLowering::
+LowerJumpTable(SDValue Op, SelectionDAG &DAG) const
+{
+ SDValue ResNode;
+ SDValue HiPart;
+ // FIXME there isn't actually debug info here
+ DebugLoc dl = Op.getDebugLoc();
+ bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
+ unsigned char OpFlag = IsPIC ? MipsII::MO_GOT : MipsII::MO_ABS_HILO;
+
+ EVT PtrVT = Op.getValueType();
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
+
+ SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
+
+ if (IsPIC) {
+ SDValue Ops[] = { JTI };
+ HiPart = DAG.getNode(MipsISD::Hi, dl, DAG.getVTList(MVT::i32), Ops, 1);
+ } else // Emit Load from Global Pointer
+ HiPart = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(), JTI, NULL, 0,
+ false, false, 0);
+
+ SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, JTI);
+ ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
+
+ return ResNode;
+}
+
+SDValue MipsTargetLowering::
+LowerConstantPool(SDValue Op, SelectionDAG &DAG) const
+{
+ SDValue ResNode;
+ ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
+ const Constant *C = N->getConstVal();
+ // FIXME there isn't actually debug info here
+ DebugLoc dl = Op.getDebugLoc();
+
+ // gp_rel relocation
+ // FIXME: we should reference the constant pool using small data sections,
+ // but the asm printer currently doens't support this feature without
+ // hacking it. This feature should come soon so we can uncomment the
+ // stuff below.
+ //if (IsInSmallSection(C->getType())) {
+ // SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
+ // SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
+ // ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
+
+ if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
+ SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
+ N->getOffset(), MipsII::MO_ABS_HILO);
+ SDValue HiPart = DAG.getNode(MipsISD::Hi, dl, MVT::i32, CP);
+ SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CP);
+ ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, HiPart, Lo);
+ } else {
+ SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment(),
+ N->getOffset(), MipsII::MO_GOT);
+ SDValue Load = DAG.getLoad(MVT::i32, dl, DAG.getEntryNode(),
+ CP, NULL, 0, false, false, 0);
+ SDValue Lo = DAG.getNode(MipsISD::Lo, dl, MVT::i32, CP);
+ ResNode = DAG.getNode(ISD::ADD, dl, MVT::i32, Load, Lo);
+ }
+
+ return ResNode;
+}
+
+SDValue MipsTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MipsFunctionInfo *FuncInfo = MF.getInfo<MipsFunctionInfo>();
+
+ DebugLoc dl = Op.getDebugLoc();
+ SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
+ getPointerTy());
+
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), dl, FI, Op.getOperand(1), SV, 0,
+ false, false, 0);
+}
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "MipsGenCallingConv.inc"
+
+//===----------------------------------------------------------------------===//
+// TODO: Implement a generic logic using tblgen that can support this.
+// Mips O32 ABI rules:
+// ---
+// i32 - Passed in A0, A1, A2, A3 and stack
+// f32 - Only passed in f32 registers if no int reg has been used yet to hold
+// an argument. Otherwise, passed in A1, A2, A3 and stack.
+// f64 - Only passed in two aliased f32 registers if no int reg has been used
+// yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
+// not used, it must be shadowed. If only A3 is avaiable, shadow it and
+// go to stack.
+//===----------------------------------------------------------------------===//
+
+static bool CC_MipsO32(unsigned ValNo, EVT ValVT,
+ EVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+
+ static const unsigned IntRegsSize=4, FloatRegsSize=2;
+
+ static const unsigned IntRegs[] = {
+ Mips::A0, Mips::A1, Mips::A2, Mips::A3
+ };
+ static const unsigned F32Regs[] = {
+ Mips::F12, Mips::F14
+ };
+ static const unsigned F64Regs[] = {
+ Mips::D6, Mips::D7
+ };
+
+ unsigned Reg=0;
+ unsigned UnallocIntReg = State.getFirstUnallocated(IntRegs, IntRegsSize);
+ bool IntRegUsed = (IntRegs[UnallocIntReg] != (unsigned (Mips::A0)));
+
+ // Promote i8 and i16
+ if (LocVT == MVT::i8 || LocVT == MVT::i16) {
+ LocVT = MVT::i32;
+ if (ArgFlags.isSExt())
+ LocInfo = CCValAssign::SExt;
+ else if (ArgFlags.isZExt())
+ LocInfo = CCValAssign::ZExt;
+ else
+ LocInfo = CCValAssign::AExt;
+ }
+
+ if (ValVT == MVT::i32 || (ValVT == MVT::f32 && IntRegUsed)) {
+ Reg = State.AllocateReg(IntRegs, IntRegsSize);
+ IntRegUsed = true;
+ LocVT = MVT::i32;
+ }
+
+ if (ValVT.isFloatingPoint() && !IntRegUsed) {
+ if (ValVT == MVT::f32)
+ Reg = State.AllocateReg(F32Regs, FloatRegsSize);
+ else
+ Reg = State.AllocateReg(F64Regs, FloatRegsSize);
+ }
+
+ if (ValVT == MVT::f64 && IntRegUsed) {
+ if (UnallocIntReg != IntRegsSize) {
+ // If we hit register A3 as the first not allocated, we must
+ // mark it as allocated (shadow) and use the stack instead.
+ if (IntRegs[UnallocIntReg] != (unsigned (Mips::A3)))
+ Reg = Mips::A2;
+ for (;UnallocIntReg < IntRegsSize; ++UnallocIntReg)
+ State.AllocateReg(UnallocIntReg);
+ }
+ LocVT = MVT::i32;
+ }
+
+ if (!Reg) {
+ unsigned SizeInBytes = ValVT.getSizeInBits() >> 3;
+ unsigned Offset = State.AllocateStack(SizeInBytes, SizeInBytes);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ } else
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+
+ return false; // CC must always match
+}
+
+static bool CC_MipsO32_VarArgs(unsigned ValNo, EVT ValVT,
+ EVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+
+ static const unsigned IntRegsSize=4;
+
+ static const unsigned IntRegs[] = {
+ Mips::A0, Mips::A1, Mips::A2, Mips::A3
+ };
+
+ // Promote i8 and i16
+ if (LocVT == MVT::i8 || LocVT == MVT::i16) {
+ LocVT = MVT::i32;
+ if (ArgFlags.isSExt())
+ LocInfo = CCValAssign::SExt;
+ else if (ArgFlags.isZExt())
+ LocInfo = CCValAssign::ZExt;
+ else
+ LocInfo = CCValAssign::AExt;
+ }
+
+ if (ValVT == MVT::i32 || ValVT == MVT::f32) {
+ if (unsigned Reg = State.AllocateReg(IntRegs, IntRegsSize)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, MVT::i32, LocInfo));
+ return false;
+ }
+ unsigned Off = State.AllocateStack(4, 4);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Off, LocVT, LocInfo));
+ return false;
+ }
+
+ unsigned UnallocIntReg = State.getFirstUnallocated(IntRegs, IntRegsSize);
+ if (ValVT == MVT::f64) {
+ if (IntRegs[UnallocIntReg] == (unsigned (Mips::A1))) {
+ // A1 can't be used anymore, because 64 bit arguments
+ // must be aligned when copied back to the caller stack
+ State.AllocateReg(IntRegs, IntRegsSize);
+ UnallocIntReg++;
+ }
+
+ if (IntRegs[UnallocIntReg] == (unsigned (Mips::A0)) ||
+ IntRegs[UnallocIntReg] == (unsigned (Mips::A2))) {
+ unsigned Reg = State.AllocateReg(IntRegs, IntRegsSize);
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, MVT::i32, LocInfo));
+ // Shadow the next register so it can be used
+ // later to get the other 32bit part.
+ State.AllocateReg(IntRegs, IntRegsSize);
+ return false;
+ }
+
+ // Register is shadowed to preserve alignment, and the
+ // argument goes to a stack location.
+ if (UnallocIntReg != IntRegsSize)
+ State.AllocateReg(IntRegs, IntRegsSize);
+
+ unsigned Off = State.AllocateStack(8, 8);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Off, LocVT, LocInfo));
+ return false;
+ }
+
+ return true; // CC didn't match
+}
+
+//===----------------------------------------------------------------------===//
+// Call Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+/// LowerCall - functions arguments are copied from virtual regs to
+/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
+/// TODO: isTailCall.
+SDValue
+MipsTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
+ CallingConv::ID CallConv, bool isVarArg,
+ bool &isTailCall,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+ // MIPs target does not yet support tail call optimization.
+ isTailCall = false;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ bool IsPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_;
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs,
+ *DAG.getContext());
+
+ // To meet O32 ABI, Mips must always allocate 16 bytes on
+ // the stack (even if less than 4 are used as arguments)
+ if (Subtarget->isABI_O32()) {
+ int VTsize = EVT(MVT::i32).getSizeInBits()/8;
+ MFI->CreateFixedObject(VTsize, (VTsize*3), true, false);
+ CCInfo.AnalyzeCallOperands(Outs,
+ isVarArg ? CC_MipsO32_VarArgs : CC_MipsO32);
+ } else
+ CCInfo.AnalyzeCallOperands(Outs, CC_Mips);
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+ Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
+
+ // With EABI is it possible to have 16 args on registers.
+ SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+
+ // First/LastArgStackLoc contains the first/last
+ // "at stack" argument location.
+ int LastArgStackLoc = 0;
+ unsigned FirstStackArgLoc = (Subtarget->isABI_EABI() ? 0 : 16);
+
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ SDValue Arg = Outs[i].Val;
+ CCValAssign &VA = ArgLocs[i];
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full:
+ if (Subtarget->isABI_O32() && VA.isRegLoc()) {
+ if (VA.getValVT() == MVT::f32 && VA.getLocVT() == MVT::i32)
+ Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Arg);
+ if (VA.getValVT() == MVT::f64 && VA.getLocVT() == MVT::i32) {
+ Arg = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i64, Arg);
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Arg,
+ DAG.getConstant(0, getPointerTy()));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Arg,
+ DAG.getConstant(1, getPointerTy()));
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Lo));
+ RegsToPass.push_back(std::make_pair(VA.getLocReg()+1, Hi));
+ continue;
+ }
+ }
+ break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ // Arguments that can be passed on register must be kept at
+ // RegsToPass vector
+ if (VA.isRegLoc()) {
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ continue;
+ }
+
+ // Register can't get to this point...
+ assert(VA.isMemLoc());
+
+ // Create the frame index object for this incoming parameter
+ // This guarantees that when allocating Local Area the firsts
+ // 16 bytes which are alwayes reserved won't be overwritten
+ // if O32 ABI is used. For EABI the first address is zero.
+ LastArgStackLoc = (FirstStackArgLoc + VA.getLocMemOffset());
+ int FI = MFI->CreateFixedObject(VA.getValVT().getSizeInBits()/8,
+ LastArgStackLoc, true, false);
+
+ SDValue PtrOff = DAG.getFrameIndex(FI,getPointerTy());
+
+ // emit ISD::STORE whichs stores the
+ // parameter value to a stack Location
+ MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, NULL, 0,
+ false, false, 0));
+ }
+
+ // Transform all store nodes into one single node because all store
+ // nodes are independent of each other.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &MemOpChains[0], MemOpChains.size());
+
+ // Build a sequence of copy-to-reg nodes chained together with token
+ // chain and flag operands which copy the outgoing args into registers.
+ // The InFlag in necessary since all emited instructions must be
+ // stuck together.
+ SDValue InFlag;
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
+ // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
+ // node so that legalize doesn't hack it.
+ unsigned char OpFlag = IsPIC ? MipsII::MO_GOT_CALL : MipsII::MO_NO_FLAG;
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(),
+ getPointerTy(), 0, OpFlag);
+ else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
+ Callee = DAG.getTargetExternalSymbol(S->getSymbol(),
+ getPointerTy(), OpFlag);
+
+ // MipsJmpLink = #chain, #target_address, #opt_in_flags...
+ // = Chain, Callee, Reg#1, Reg#2, ...
+ //
+ // Returns a chain & a flag for retval copy to use.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are
+ // known live into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ Chain = DAG.getNode(MipsISD::JmpLink, dl, NodeTys, &Ops[0], Ops.size());
+ InFlag = Chain.getValue(1);
+
+ // Create a stack location to hold GP when PIC is used. This stack
+ // location is used on function prologue to save GP and also after all
+ // emited CALL's to restore GP.
+ if (IsPIC) {
+ // Function can have an arbitrary number of calls, so
+ // hold the LastArgStackLoc with the biggest offset.
+ int FI;
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+ if (LastArgStackLoc >= MipsFI->getGPStackOffset()) {
+ LastArgStackLoc = (!LastArgStackLoc) ? (16) : (LastArgStackLoc+4);
+ // Create the frame index only once. SPOffset here can be anything
+ // (this will be fixed on processFunctionBeforeFrameFinalized)
+ if (MipsFI->getGPStackOffset() == -1) {
+ FI = MFI->CreateFixedObject(4, 0, true, false);
+ MipsFI->setGPFI(FI);
+ }
+ MipsFI->setGPStackOffset(LastArgStackLoc);
+ }
+
+ // Reload GP value.
+ FI = MipsFI->getGPFI();
+ SDValue FIN = DAG.getFrameIndex(FI,getPointerTy());
+ SDValue GPLoad = DAG.getLoad(MVT::i32, dl, Chain, FIN, NULL, 0,
+ false, false, 0);
+ Chain = GPLoad.getValue(1);
+ Chain = DAG.getCopyToReg(Chain, dl, DAG.getRegister(Mips::GP, MVT::i32),
+ GPLoad, SDValue(0,0));
+ InFlag = Chain.getValue(1);
+ }
+
+ // Create the CALLSEQ_END node.
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
+ DAG.getIntPtrConstant(0, true), InFlag);
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
+ Ins, dl, DAG, InVals);
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+SDValue
+MipsTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals) const {
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
+
+ CCInfo.AnalyzeCallResult(Ins, RetCC_Mips);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(),
+ RVLocs[i].getValVT(), InFlag).getValue(1);
+ InFlag = Chain.getValue(2);
+ InVals.push_back(Chain.getValue(0));
+ }
+
+ return Chain;
+}
+
+//===----------------------------------------------------------------------===//
+// Formal Arguments Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+/// LowerFormalArguments - transform physical registers into virtual registers
+/// and generate load operations for arguments places on the stack.
+SDValue
+MipsTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ DebugLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+ const {
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+
+ unsigned StackReg = MF.getTarget().getRegisterInfo()->getFrameRegister(MF);
+ MipsFI->setVarArgsFrameIndex(0);
+
+ // Used with vargs to acumulate store chains.
+ std::vector<SDValue> OutChains;
+
+ // Keep track of the last register used for arguments
+ unsigned ArgRegEnd = 0;
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ ArgLocs, *DAG.getContext());
+
+ if (Subtarget->isABI_O32())
+ CCInfo.AnalyzeFormalArguments(Ins,
+ isVarArg ? CC_MipsO32_VarArgs : CC_MipsO32);
+ else
+ CCInfo.AnalyzeFormalArguments(Ins, CC_Mips);
+
+ SDValue StackPtr;
+
+ unsigned FirstStackArgLoc = (Subtarget->isABI_EABI() ? 0 : 16);
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+
+ // Arguments stored on registers
+ if (VA.isRegLoc()) {
+ EVT RegVT = VA.getLocVT();
+ ArgRegEnd = VA.getLocReg();
+ TargetRegisterClass *RC = 0;
+
+ if (RegVT == MVT::i32)
+ RC = Mips::CPURegsRegisterClass;
+ else if (RegVT == MVT::f32)
+ RC = Mips::FGR32RegisterClass;
+ else if (RegVT == MVT::f64) {
+ if (!Subtarget->isSingleFloat())
+ RC = Mips::AFGR64RegisterClass;
+ } else
+ llvm_unreachable("RegVT not supported by FormalArguments Lowering");
+
+ // Transform the arguments stored on
+ // physical registers into virtual ones
+ unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegEnd, RC);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
+
+ // If this is an 8 or 16-bit value, it has been passed promoted
+ // to 32 bits. Insert an assert[sz]ext to capture this, then
+ // truncate to the right size.
+ if (VA.getLocInfo() != CCValAssign::Full) {
+ unsigned Opcode = 0;
+ if (VA.getLocInfo() == CCValAssign::SExt)
+ Opcode = ISD::AssertSext;
+ else if (VA.getLocInfo() == CCValAssign::ZExt)
+ Opcode = ISD::AssertZext;
+ if (Opcode)
+ ArgValue = DAG.getNode(Opcode, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+ }
+
+ // Handle O32 ABI cases: i32->f32 and (i32,i32)->f64
+ if (Subtarget->isABI_O32()) {
+ if (RegVT == MVT::i32 && VA.getValVT() == MVT::f32)
+ ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, ArgValue);
+ if (RegVT == MVT::i32 && VA.getValVT() == MVT::f64) {
+ unsigned Reg2 = AddLiveIn(DAG.getMachineFunction(),
+ VA.getLocReg()+1, RC);
+ SDValue ArgValue2 = DAG.getCopyFromReg(Chain, dl, Reg2, RegVT);
+ SDValue Hi = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, ArgValue);
+ SDValue Lo = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, ArgValue2);
+ ArgValue = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::f64, Lo, Hi);
+ }
+ }
+
+ InVals.push_back(ArgValue);
+ } else { // VA.isRegLoc()
+
+ // sanity check
+ assert(VA.isMemLoc());
+
+ // The last argument is not a register anymore
+ ArgRegEnd = 0;
+
+ // The stack pointer offset is relative to the caller stack frame.
+ // Since the real stack size is unknown here, a negative SPOffset
+ // is used so there's a way to adjust these offsets when the stack
+ // size get known (on EliminateFrameIndex). A dummy SPOffset is
+ // used instead of a direct negative address (which is recorded to
+ // be used on emitPrologue) to avoid mis-calc of the first stack
+ // offset on PEI::calculateFrameObjectOffsets.
+ // Arguments are always 32-bit.
+ unsigned ArgSize = VA.getLocVT().getSizeInBits()/8;
+ int FI = MFI->CreateFixedObject(ArgSize, 0, true, false);
+ MipsFI->recordLoadArgsFI(FI, -(ArgSize+
+ (FirstStackArgLoc + VA.getLocMemOffset())));
+
+ // Create load nodes to retrieve arguments from the stack
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
+ InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, NULL, 0,
+ false, false, 0));
+ }
+ }
+
+ // The mips ABIs for returning structs by value requires that we copy
+ // the sret argument into $v0 for the return. Save the argument into
+ // a virtual register so that we can access it from the return points.
+ if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
+ unsigned Reg = MipsFI->getSRetReturnReg();
+ if (!Reg) {
+ Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i32));
+ MipsFI->setSRetReturnReg(Reg);
+ }
+ SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
+ }
+
+ // To meet ABI, when VARARGS are passed on registers, the registers
+ // must have their values written to the caller stack frame. If the last
+ // argument was placed in the stack, there's no need to save any register.
+ if ((isVarArg) && (Subtarget->isABI_O32() && ArgRegEnd)) {
+ if (StackPtr.getNode() == 0)
+ StackPtr = DAG.getRegister(StackReg, getPointerTy());
+
+ // The last register argument that must be saved is Mips::A3
+ TargetRegisterClass *RC = Mips::CPURegsRegisterClass;
+ unsigned StackLoc = ArgLocs.size()-1;
+
+ for (++ArgRegEnd; ArgRegEnd <= Mips::A3; ++ArgRegEnd, ++StackLoc) {
+ unsigned Reg = AddLiveIn(DAG.getMachineFunction(), ArgRegEnd, RC);
+ SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, MVT::i32);
+
+ int FI = MFI->CreateFixedObject(4, 0, true, false);
+ MipsFI->recordStoreVarArgsFI(FI, -(4+(StackLoc*4)));
+ SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy());
+ OutChains.push_back(DAG.getStore(Chain, dl, ArgValue, PtrOff, NULL, 0,
+ false, false, 0));
+
+ // Record the frame index of the first variable argument
+ // which is a value necessary to VASTART.
+ if (!MipsFI->getVarArgsFrameIndex())
+ MipsFI->setVarArgsFrameIndex(FI);
+ }
+ }
+
+ // All stores are grouped in one node to allow the matching between
+ // the size of Ins and InVals. This only happens when on varg functions
+ if (!OutChains.empty()) {
+ OutChains.push_back(Chain);
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
+ &OutChains[0], OutChains.size());
+ }
+
+ return Chain;
+}
+
+//===----------------------------------------------------------------------===//
+// Return Value Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+SDValue
+MipsTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ DebugLoc dl, SelectionDAG &DAG) const {
+
+ // CCValAssign - represent the assignment of
+ // the return value to a location
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slot.
+ CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
+ RVLocs, *DAG.getContext());
+
+ // Analize return values.
+ CCInfo.AnalyzeReturn(Outs, RetCC_Mips);
+
+ // If this is the first return lowered for this function, add
+ // the regs to the liveout set for the function.
+ if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
+ for (unsigned i = 0; i != RVLocs.size(); ++i)
+ if (RVLocs[i].isRegLoc())
+ DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
+ }
+
+ SDValue Flag;
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
+ Outs[i].Val, Flag);
+
+ // guarantee that all emitted copies are
+ // stuck together, avoiding something bad
+ Flag = Chain.getValue(1);
+ }
+
+ // The mips ABIs for returning structs by value requires that we copy
+ // the sret argument into $v0 for the return. We saved the argument into
+ // a virtual register in the entry block, so now we copy the value out
+ // and into $v0.
+ if (DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
+ unsigned Reg = MipsFI->getSRetReturnReg();
+
+ if (!Reg)
+ llvm_unreachable("sret virtual register not created in the entry block");
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
+
+ Chain = DAG.getCopyToReg(Chain, dl, Mips::V0, Val, Flag);
+ Flag = Chain.getValue(1);
+ }
+
+ // Return on Mips is always a "jr $ra"
+ if (Flag.getNode())
+ return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
+ Chain, DAG.getRegister(Mips::RA, MVT::i32), Flag);
+ else // Return Void
+ return DAG.getNode(MipsISD::Ret, dl, MVT::Other,
+ Chain, DAG.getRegister(Mips::RA, MVT::i32));
+}
+
+//===----------------------------------------------------------------------===//
+// Mips Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+MipsTargetLowering::ConstraintType MipsTargetLowering::
+getConstraintType(const std::string &Constraint) const
+{
+ // Mips specific constrainy
+ // GCC config/mips/constraints.md
+ //
+ // 'd' : An address register. Equivalent to r
+ // unless generating MIPS16 code.
+ // 'y' : Equivalent to r; retained for
+ // backwards compatibility.
+ // 'f' : Floating Point registers.
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default : break;
+ case 'd':
+ case 'y':
+ case 'f':
+ return C_RegisterClass;
+ break;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+/// getRegClassForInlineAsmConstraint - Given a constraint letter (e.g. "r"),
+/// return a list of registers that can be used to satisfy the constraint.
+/// This should only be used for C_RegisterClass constraints.
+std::pair<unsigned, const TargetRegisterClass*> MipsTargetLowering::
+getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const
+{
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'r':
+ return std::make_pair(0U, Mips::CPURegsRegisterClass);
+ case 'f':
+ if (VT == MVT::f32)
+ return std::make_pair(0U, Mips::FGR32RegisterClass);
+ if (VT == MVT::f64)
+ if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit()))
+ return std::make_pair(0U, Mips::AFGR64RegisterClass);
+ }
+ }
+ return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
+}
+
+/// Given a register class constraint, like 'r', if this corresponds directly
+/// to an LLVM register class, return a register of 0 and the register class
+/// pointer.
+std::vector<unsigned> MipsTargetLowering::
+getRegClassForInlineAsmConstraint(const std::string &Constraint,
+ EVT VT) const
+{
+ if (Constraint.size() != 1)
+ return std::vector<unsigned>();
+
+ switch (Constraint[0]) {
+ default : break;
+ case 'r':
+ // GCC Mips Constraint Letters
+ case 'd':
+ case 'y':
+ return make_vector<unsigned>(Mips::T0, Mips::T1, Mips::T2, Mips::T3,
+ Mips::T4, Mips::T5, Mips::T6, Mips::T7, Mips::S0, Mips::S1,
+ Mips::S2, Mips::S3, Mips::S4, Mips::S5, Mips::S6, Mips::S7,
+ Mips::T8, 0);
+
+ case 'f':
+ if (VT == MVT::f32) {
+ if (Subtarget->isSingleFloat())
+ return make_vector<unsigned>(Mips::F2, Mips::F3, Mips::F4, Mips::F5,
+ Mips::F6, Mips::F7, Mips::F8, Mips::F9, Mips::F10, Mips::F11,
+ Mips::F20, Mips::F21, Mips::F22, Mips::F23, Mips::F24,
+ Mips::F25, Mips::F26, Mips::F27, Mips::F28, Mips::F29,
+ Mips::F30, Mips::F31, 0);
+ else
+ return make_vector<unsigned>(Mips::F2, Mips::F4, Mips::F6, Mips::F8,
+ Mips::F10, Mips::F20, Mips::F22, Mips::F24, Mips::F26,
+ Mips::F28, Mips::F30, 0);
+ }
+
+ if (VT == MVT::f64)
+ if ((!Subtarget->isSingleFloat()) && (!Subtarget->isFP64bit()))
+ return make_vector<unsigned>(Mips::D1, Mips::D2, Mips::D3, Mips::D4,
+ Mips::D5, Mips::D10, Mips::D11, Mips::D12, Mips::D13,
+ Mips::D14, Mips::D15, 0);
+ }
+ return std::vector<unsigned>();
+}
+
+bool
+MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // The Mips target isn't yet aware of offsets.
+ return false;
+}
+
+bool MipsTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ if (VT != MVT::f32 && VT != MVT::f64)
+ return false;
+ return Imm.isZero();
+}
OpenPOWER on IntegriCloud