summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp')
-rw-r--r--contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp5210
1 files changed, 5210 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp b/contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp
new file mode 100644
index 0000000..5107d2a
--- /dev/null
+++ b/contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp
@@ -0,0 +1,5210 @@
+//===-- MipsAsmParser.cpp - Parse Mips assembly to MCInst instructions ----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/MipsABIInfo.h"
+#include "MCTargetDesc/MipsMCExpr.h"
+#include "MCTargetDesc/MipsMCTargetDesc.h"
+#include "MipsRegisterInfo.h"
+#include "MipsTargetStreamer.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCInstBuilder.h"
+#include "llvm/MC/MCParser/MCAsmLexer.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCSymbol.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include <memory>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "mips-asm-parser"
+
+namespace llvm {
+class MCInstrInfo;
+}
+
+namespace {
+class MipsAssemblerOptions {
+public:
+ MipsAssemblerOptions(const FeatureBitset &Features_) :
+ ATReg(1), Reorder(true), Macro(true), Features(Features_) {}
+
+ MipsAssemblerOptions(const MipsAssemblerOptions *Opts) {
+ ATReg = Opts->getATRegIndex();
+ Reorder = Opts->isReorder();
+ Macro = Opts->isMacro();
+ Features = Opts->getFeatures();
+ }
+
+ unsigned getATRegIndex() const { return ATReg; }
+ bool setATRegIndex(unsigned Reg) {
+ if (Reg > 31)
+ return false;
+
+ ATReg = Reg;
+ return true;
+ }
+
+ bool isReorder() const { return Reorder; }
+ void setReorder() { Reorder = true; }
+ void setNoReorder() { Reorder = false; }
+
+ bool isMacro() const { return Macro; }
+ void setMacro() { Macro = true; }
+ void setNoMacro() { Macro = false; }
+
+ const FeatureBitset &getFeatures() const { return Features; }
+ void setFeatures(const FeatureBitset &Features_) { Features = Features_; }
+
+ // Set of features that are either architecture features or referenced
+ // by them (e.g.: FeatureNaN2008 implied by FeatureMips32r6).
+ // The full table can be found in MipsGenSubtargetInfo.inc (MipsFeatureKV[]).
+ // The reason we need this mask is explained in the selectArch function.
+ // FIXME: Ideally we would like TableGen to generate this information.
+ static const FeatureBitset AllArchRelatedMask;
+
+private:
+ unsigned ATReg;
+ bool Reorder;
+ bool Macro;
+ FeatureBitset Features;
+};
+}
+
+const FeatureBitset MipsAssemblerOptions::AllArchRelatedMask = {
+ Mips::FeatureMips1, Mips::FeatureMips2, Mips::FeatureMips3,
+ Mips::FeatureMips3_32, Mips::FeatureMips3_32r2, Mips::FeatureMips4,
+ Mips::FeatureMips4_32, Mips::FeatureMips4_32r2, Mips::FeatureMips5,
+ Mips::FeatureMips5_32r2, Mips::FeatureMips32, Mips::FeatureMips32r2,
+ Mips::FeatureMips32r3, Mips::FeatureMips32r5, Mips::FeatureMips32r6,
+ Mips::FeatureMips64, Mips::FeatureMips64r2, Mips::FeatureMips64r3,
+ Mips::FeatureMips64r5, Mips::FeatureMips64r6, Mips::FeatureCnMips,
+ Mips::FeatureFP64Bit, Mips::FeatureGP64Bit, Mips::FeatureNaN2008
+};
+
+namespace {
+class MipsAsmParser : public MCTargetAsmParser {
+ MipsTargetStreamer &getTargetStreamer() {
+ MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
+ return static_cast<MipsTargetStreamer &>(TS);
+ }
+
+ MCSubtargetInfo &STI;
+ MipsABIInfo ABI;
+ SmallVector<std::unique_ptr<MipsAssemblerOptions>, 2> AssemblerOptions;
+ MCSymbol *CurrentFn; // Pointer to the function being parsed. It may be a
+ // nullptr, which indicates that no function is currently
+ // selected. This usually happens after an '.end func'
+ // directive.
+ bool IsLittleEndian;
+
+ // Print a warning along with its fix-it message at the given range.
+ void printWarningWithFixIt(const Twine &Msg, const Twine &FixMsg,
+ SMRange Range, bool ShowColors = true);
+
+#define GET_ASSEMBLER_HEADER
+#include "MipsGenAsmMatcher.inc"
+
+ unsigned checkTargetMatchPredicate(MCInst &Inst) override;
+
+ bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) override;
+
+ /// Parse a register as used in CFI directives
+ bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
+
+ bool parseParenSuffix(StringRef Name, OperandVector &Operands);
+
+ bool parseBracketSuffix(StringRef Name, OperandVector &Operands);
+
+ bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) override;
+
+ bool ParseDirective(AsmToken DirectiveID) override;
+
+ MipsAsmParser::OperandMatchResultTy parseMemOperand(OperandVector &Operands);
+
+ MipsAsmParser::OperandMatchResultTy
+ matchAnyRegisterNameWithoutDollar(OperandVector &Operands,
+ StringRef Identifier, SMLoc S);
+
+ MipsAsmParser::OperandMatchResultTy
+ matchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S);
+
+ MipsAsmParser::OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
+
+ MipsAsmParser::OperandMatchResultTy parseImm(OperandVector &Operands);
+
+ MipsAsmParser::OperandMatchResultTy parseJumpTarget(OperandVector &Operands);
+
+ MipsAsmParser::OperandMatchResultTy parseInvNum(OperandVector &Operands);
+
+ MipsAsmParser::OperandMatchResultTy parseLSAImm(OperandVector &Operands);
+
+ MipsAsmParser::OperandMatchResultTy
+ parseRegisterPair (OperandVector &Operands);
+
+ MipsAsmParser::OperandMatchResultTy
+ parseMovePRegPair(OperandVector &Operands);
+
+ MipsAsmParser::OperandMatchResultTy
+ parseRegisterList (OperandVector &Operands);
+
+ bool searchSymbolAlias(OperandVector &Operands);
+
+ bool parseOperand(OperandVector &, StringRef Mnemonic);
+
+ bool needsExpansion(MCInst &Inst);
+
+ // Expands assembly pseudo instructions.
+ // Returns false on success, true otherwise.
+ bool expandInstruction(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ bool expandJalWithRegs(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ bool loadImmediate(int64_t ImmValue, unsigned DstReg, unsigned SrcReg,
+ bool Is32BitImm, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ bool loadAndAddSymbolAddress(const MCExpr *SymExpr, unsigned DstReg,
+ unsigned SrcReg, bool Is32BitSym, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ bool expandLoadImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ bool expandLoadAddressImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ bool expandLoadAddressReg(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+ bool expandUncondBranchMMPseudo(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ void expandMemInst(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions, bool isLoad,
+ bool isImmOpnd);
+
+ bool expandLoadStoreMultiple(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ bool expandBranchImm(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ bool expandCondBranches(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ bool expandUlhu(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ bool expandUlw(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ void createNop(bool hasShortDelaySlot, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ void createAddu(unsigned DstReg, unsigned SrcReg, unsigned TrgReg,
+ bool Is64Bit, SmallVectorImpl<MCInst> &Instructions);
+
+ bool reportParseError(Twine ErrorMsg);
+ bool reportParseError(SMLoc Loc, Twine ErrorMsg);
+
+ bool parseMemOffset(const MCExpr *&Res, bool isParenExpr);
+ bool parseRelocOperand(const MCExpr *&Res);
+
+ const MCExpr *evaluateRelocExpr(const MCExpr *Expr, StringRef RelocStr);
+
+ bool isEvaluated(const MCExpr *Expr);
+ bool parseSetMips0Directive();
+ bool parseSetArchDirective();
+ bool parseSetFeature(uint64_t Feature);
+ bool parseDirectiveCpLoad(SMLoc Loc);
+ bool parseDirectiveCPSetup();
+ bool parseDirectiveNaN();
+ bool parseDirectiveSet();
+ bool parseDirectiveOption();
+ bool parseInsnDirective();
+
+ bool parseSetAtDirective();
+ bool parseSetNoAtDirective();
+ bool parseSetMacroDirective();
+ bool parseSetNoMacroDirective();
+ bool parseSetMsaDirective();
+ bool parseSetNoMsaDirective();
+ bool parseSetNoDspDirective();
+ bool parseSetReorderDirective();
+ bool parseSetNoReorderDirective();
+ bool parseSetMips16Directive();
+ bool parseSetNoMips16Directive();
+ bool parseSetFpDirective();
+ bool parseSetOddSPRegDirective();
+ bool parseSetNoOddSPRegDirective();
+ bool parseSetPopDirective();
+ bool parseSetPushDirective();
+ bool parseSetSoftFloatDirective();
+ bool parseSetHardFloatDirective();
+
+ bool parseSetAssignment();
+
+ bool parseDataDirective(unsigned Size, SMLoc L);
+ bool parseDirectiveGpWord();
+ bool parseDirectiveGpDWord();
+ bool parseDirectiveModule();
+ bool parseDirectiveModuleFP();
+ bool parseFpABIValue(MipsABIFlagsSection::FpABIKind &FpABI,
+ StringRef Directive);
+
+ bool parseInternalDirectiveReallowModule();
+
+ MCSymbolRefExpr::VariantKind getVariantKind(StringRef Symbol);
+
+ bool eatComma(StringRef ErrorStr);
+
+ int matchCPURegisterName(StringRef Symbol);
+
+ int matchHWRegsRegisterName(StringRef Symbol);
+
+ int matchRegisterByNumber(unsigned RegNum, unsigned RegClass);
+
+ int matchFPURegisterName(StringRef Name);
+
+ int matchFCCRegisterName(StringRef Name);
+
+ int matchACRegisterName(StringRef Name);
+
+ int matchMSA128RegisterName(StringRef Name);
+
+ int matchMSA128CtrlRegisterName(StringRef Name);
+
+ unsigned getReg(int RC, int RegNo);
+
+ unsigned getGPR(int RegNo);
+
+ /// Returns the internal register number for the current AT. Also checks if
+ /// the current AT is unavailable (set to $0) and gives an error if it is.
+ /// This should be used in pseudo-instruction expansions which need AT.
+ unsigned getATReg(SMLoc Loc);
+
+ bool processInstruction(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions);
+
+ // Helper function that checks if the value of a vector index is within the
+ // boundaries of accepted values for each RegisterKind
+ // Example: INSERT.B $w0[n], $1 => 16 > n >= 0
+ bool validateMSAIndex(int Val, int RegKind);
+
+ // Selects a new architecture by updating the FeatureBits with the necessary
+ // info including implied dependencies.
+ // Internally, it clears all the feature bits related to *any* architecture
+ // and selects the new one using the ToggleFeature functionality of the
+ // MCSubtargetInfo object that handles implied dependencies. The reason we
+ // clear all the arch related bits manually is because ToggleFeature only
+ // clears the features that imply the feature being cleared and not the
+ // features implied by the feature being cleared. This is easier to see
+ // with an example:
+ // --------------------------------------------------
+ // | Feature | Implies |
+ // | -------------------------------------------------|
+ // | FeatureMips1 | None |
+ // | FeatureMips2 | FeatureMips1 |
+ // | FeatureMips3 | FeatureMips2 | FeatureMipsGP64 |
+ // | FeatureMips4 | FeatureMips3 |
+ // | ... | |
+ // --------------------------------------------------
+ //
+ // Setting Mips3 is equivalent to set: (FeatureMips3 | FeatureMips2 |
+ // FeatureMipsGP64 | FeatureMips1)
+ // Clearing Mips3 is equivalent to clear (FeatureMips3 | FeatureMips4).
+ void selectArch(StringRef ArchFeature) {
+ FeatureBitset FeatureBits = STI.getFeatureBits();
+ FeatureBits &= ~MipsAssemblerOptions::AllArchRelatedMask;
+ STI.setFeatureBits(FeatureBits);
+ setAvailableFeatures(
+ ComputeAvailableFeatures(STI.ToggleFeature(ArchFeature)));
+ AssemblerOptions.back()->setFeatures(STI.getFeatureBits());
+ }
+
+ void setFeatureBits(uint64_t Feature, StringRef FeatureString) {
+ if (!(STI.getFeatureBits()[Feature])) {
+ setAvailableFeatures(
+ ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
+ AssemblerOptions.back()->setFeatures(STI.getFeatureBits());
+ }
+ }
+
+ void clearFeatureBits(uint64_t Feature, StringRef FeatureString) {
+ if (STI.getFeatureBits()[Feature]) {
+ setAvailableFeatures(
+ ComputeAvailableFeatures(STI.ToggleFeature(FeatureString)));
+ AssemblerOptions.back()->setFeatures(STI.getFeatureBits());
+ }
+ }
+
+ void setModuleFeatureBits(uint64_t Feature, StringRef FeatureString) {
+ setFeatureBits(Feature, FeatureString);
+ AssemblerOptions.front()->setFeatures(STI.getFeatureBits());
+ }
+
+ void clearModuleFeatureBits(uint64_t Feature, StringRef FeatureString) {
+ clearFeatureBits(Feature, FeatureString);
+ AssemblerOptions.front()->setFeatures(STI.getFeatureBits());
+ }
+
+public:
+ enum MipsMatchResultTy {
+ Match_RequiresDifferentSrcAndDst = FIRST_TARGET_MATCH_RESULT_TY
+#define GET_OPERAND_DIAGNOSTIC_TYPES
+#include "MipsGenAsmMatcher.inc"
+#undef GET_OPERAND_DIAGNOSTIC_TYPES
+
+ };
+
+ MipsAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
+ const MCInstrInfo &MII, const MCTargetOptions &Options)
+ : MCTargetAsmParser(), STI(sti),
+ ABI(MipsABIInfo::computeTargetABI(Triple(sti.getTargetTriple()),
+ sti.getCPU(), Options)) {
+ MCAsmParserExtension::Initialize(parser);
+
+ parser.addAliasForDirective(".asciiz", ".asciz");
+
+ // Initialize the set of available features.
+ setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
+
+ // Remember the initial assembler options. The user can not modify these.
+ AssemblerOptions.push_back(
+ llvm::make_unique<MipsAssemblerOptions>(STI.getFeatureBits()));
+
+ // Create an assembler options environment for the user to modify.
+ AssemblerOptions.push_back(
+ llvm::make_unique<MipsAssemblerOptions>(STI.getFeatureBits()));
+
+ getTargetStreamer().updateABIInfo(*this);
+
+ if (!isABI_O32() && !useOddSPReg() != 0)
+ report_fatal_error("-mno-odd-spreg requires the O32 ABI");
+
+ CurrentFn = nullptr;
+
+ Triple TheTriple(sti.getTargetTriple());
+ if ((TheTriple.getArch() == Triple::mips) ||
+ (TheTriple.getArch() == Triple::mips64))
+ IsLittleEndian = false;
+ else
+ IsLittleEndian = true;
+ }
+
+ /// True if all of $fcc0 - $fcc7 exist for the current ISA.
+ bool hasEightFccRegisters() const { return hasMips4() || hasMips32(); }
+
+ bool isGP64bit() const { return STI.getFeatureBits()[Mips::FeatureGP64Bit]; }
+ bool isFP64bit() const { return STI.getFeatureBits()[Mips::FeatureFP64Bit]; }
+ const MipsABIInfo &getABI() const { return ABI; }
+ bool isABI_N32() const { return ABI.IsN32(); }
+ bool isABI_N64() const { return ABI.IsN64(); }
+ bool isABI_O32() const { return ABI.IsO32(); }
+ bool isABI_FPXX() const { return STI.getFeatureBits()[Mips::FeatureFPXX]; }
+
+ bool useOddSPReg() const {
+ return !(STI.getFeatureBits()[Mips::FeatureNoOddSPReg]);
+ }
+
+ bool inMicroMipsMode() const {
+ return STI.getFeatureBits()[Mips::FeatureMicroMips];
+ }
+ bool hasMips1() const { return STI.getFeatureBits()[Mips::FeatureMips1]; }
+ bool hasMips2() const { return STI.getFeatureBits()[Mips::FeatureMips2]; }
+ bool hasMips3() const { return STI.getFeatureBits()[Mips::FeatureMips3]; }
+ bool hasMips4() const { return STI.getFeatureBits()[Mips::FeatureMips4]; }
+ bool hasMips5() const { return STI.getFeatureBits()[Mips::FeatureMips5]; }
+ bool hasMips32() const {
+ return STI.getFeatureBits()[Mips::FeatureMips32];
+ }
+ bool hasMips64() const {
+ return STI.getFeatureBits()[Mips::FeatureMips64];
+ }
+ bool hasMips32r2() const {
+ return STI.getFeatureBits()[Mips::FeatureMips32r2];
+ }
+ bool hasMips64r2() const {
+ return STI.getFeatureBits()[Mips::FeatureMips64r2];
+ }
+ bool hasMips32r3() const {
+ return (STI.getFeatureBits()[Mips::FeatureMips32r3]);
+ }
+ bool hasMips64r3() const {
+ return (STI.getFeatureBits()[Mips::FeatureMips64r3]);
+ }
+ bool hasMips32r5() const {
+ return (STI.getFeatureBits()[Mips::FeatureMips32r5]);
+ }
+ bool hasMips64r5() const {
+ return (STI.getFeatureBits()[Mips::FeatureMips64r5]);
+ }
+ bool hasMips32r6() const {
+ return STI.getFeatureBits()[Mips::FeatureMips32r6];
+ }
+ bool hasMips64r6() const {
+ return STI.getFeatureBits()[Mips::FeatureMips64r6];
+ }
+
+ bool hasDSP() const { return STI.getFeatureBits()[Mips::FeatureDSP]; }
+ bool hasDSPR2() const { return STI.getFeatureBits()[Mips::FeatureDSPR2]; }
+ bool hasMSA() const { return STI.getFeatureBits()[Mips::FeatureMSA]; }
+ bool hasCnMips() const {
+ return (STI.getFeatureBits()[Mips::FeatureCnMips]);
+ }
+
+ bool inMips16Mode() const {
+ return STI.getFeatureBits()[Mips::FeatureMips16];
+ }
+
+ bool useSoftFloat() const {
+ return STI.getFeatureBits()[Mips::FeatureSoftFloat];
+ }
+
+ /// Warn if RegIndex is the same as the current AT.
+ void warnIfRegIndexIsAT(unsigned RegIndex, SMLoc Loc);
+
+ void warnIfNoMacro(SMLoc Loc);
+
+ bool isLittle() const { return IsLittleEndian; }
+};
+}
+
+namespace {
+
+/// MipsOperand - Instances of this class represent a parsed Mips machine
+/// instruction.
+class MipsOperand : public MCParsedAsmOperand {
+public:
+ /// Broad categories of register classes
+ /// The exact class is finalized by the render method.
+ enum RegKind {
+ RegKind_GPR = 1, /// GPR32 and GPR64 (depending on isGP64bit())
+ RegKind_FGR = 2, /// FGR32, FGR64, AFGR64 (depending on context and
+ /// isFP64bit())
+ RegKind_FCC = 4, /// FCC
+ RegKind_MSA128 = 8, /// MSA128[BHWD] (makes no difference which)
+ RegKind_MSACtrl = 16, /// MSA control registers
+ RegKind_COP2 = 32, /// COP2
+ RegKind_ACC = 64, /// HI32DSP, LO32DSP, and ACC64DSP (depending on
+ /// context).
+ RegKind_CCR = 128, /// CCR
+ RegKind_HWRegs = 256, /// HWRegs
+ RegKind_COP3 = 512, /// COP3
+ RegKind_COP0 = 1024, /// COP0
+ /// Potentially any (e.g. $1)
+ RegKind_Numeric = RegKind_GPR | RegKind_FGR | RegKind_FCC | RegKind_MSA128 |
+ RegKind_MSACtrl | RegKind_COP2 | RegKind_ACC |
+ RegKind_CCR | RegKind_HWRegs | RegKind_COP3 | RegKind_COP0
+ };
+
+private:
+ enum KindTy {
+ k_Immediate, /// An immediate (possibly involving symbol references)
+ k_Memory, /// Base + Offset Memory Address
+ k_PhysRegister, /// A physical register from the Mips namespace
+ k_RegisterIndex, /// A register index in one or more RegKind.
+ k_Token, /// A simple token
+ k_RegList, /// A physical register list
+ k_RegPair /// A pair of physical register
+ } Kind;
+
+public:
+ MipsOperand(KindTy K, MipsAsmParser &Parser)
+ : MCParsedAsmOperand(), Kind(K), AsmParser(Parser) {}
+
+private:
+ /// For diagnostics, and checking the assembler temporary
+ MipsAsmParser &AsmParser;
+
+ struct Token {
+ const char *Data;
+ unsigned Length;
+ };
+
+ struct PhysRegOp {
+ unsigned Num; /// Register Number
+ };
+
+ struct RegIdxOp {
+ unsigned Index; /// Index into the register class
+ RegKind Kind; /// Bitfield of the kinds it could possibly be
+ const MCRegisterInfo *RegInfo;
+ };
+
+ struct ImmOp {
+ const MCExpr *Val;
+ };
+
+ struct MemOp {
+ MipsOperand *Base;
+ const MCExpr *Off;
+ };
+
+ struct RegListOp {
+ SmallVector<unsigned, 10> *List;
+ };
+
+ union {
+ struct Token Tok;
+ struct PhysRegOp PhysReg;
+ struct RegIdxOp RegIdx;
+ struct ImmOp Imm;
+ struct MemOp Mem;
+ struct RegListOp RegList;
+ };
+
+ SMLoc StartLoc, EndLoc;
+
+ /// Internal constructor for register kinds
+ static std::unique_ptr<MipsOperand> CreateReg(unsigned Index, RegKind RegKind,
+ const MCRegisterInfo *RegInfo,
+ SMLoc S, SMLoc E,
+ MipsAsmParser &Parser) {
+ auto Op = make_unique<MipsOperand>(k_RegisterIndex, Parser);
+ Op->RegIdx.Index = Index;
+ Op->RegIdx.RegInfo = RegInfo;
+ Op->RegIdx.Kind = RegKind;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+public:
+ /// Coerce the register to GPR32 and return the real register for the current
+ /// target.
+ unsigned getGPR32Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!");
+ AsmParser.warnIfRegIndexIsAT(RegIdx.Index, StartLoc);
+ unsigned ClassID = Mips::GPR32RegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to GPR32 and return the real register for the current
+ /// target.
+ unsigned getGPRMM16Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!");
+ unsigned ClassID = Mips::GPR32RegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to GPR64 and return the real register for the current
+ /// target.
+ unsigned getGPR64Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!");
+ unsigned ClassID = Mips::GPR64RegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+private:
+ /// Coerce the register to AFGR64 and return the real register for the current
+ /// target.
+ unsigned getAFGR64Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
+ if (RegIdx.Index % 2 != 0)
+ AsmParser.Warning(StartLoc, "Float register should be even.");
+ return RegIdx.RegInfo->getRegClass(Mips::AFGR64RegClassID)
+ .getRegister(RegIdx.Index / 2);
+ }
+
+ /// Coerce the register to FGR64 and return the real register for the current
+ /// target.
+ unsigned getFGR64Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
+ return RegIdx.RegInfo->getRegClass(Mips::FGR64RegClassID)
+ .getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to FGR32 and return the real register for the current
+ /// target.
+ unsigned getFGR32Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
+ return RegIdx.RegInfo->getRegClass(Mips::FGR32RegClassID)
+ .getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to FGRH32 and return the real register for the current
+ /// target.
+ unsigned getFGRH32Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!");
+ return RegIdx.RegInfo->getRegClass(Mips::FGRH32RegClassID)
+ .getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to FCC and return the real register for the current
+ /// target.
+ unsigned getFCCReg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_FCC) && "Invalid access!");
+ return RegIdx.RegInfo->getRegClass(Mips::FCCRegClassID)
+ .getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to MSA128 and return the real register for the current
+ /// target.
+ unsigned getMSA128Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_MSA128) && "Invalid access!");
+ // It doesn't matter which of the MSA128[BHWD] classes we use. They are all
+ // identical
+ unsigned ClassID = Mips::MSA128BRegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to MSACtrl and return the real register for the
+ /// current target.
+ unsigned getMSACtrlReg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_MSACtrl) && "Invalid access!");
+ unsigned ClassID = Mips::MSACtrlRegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to COP0 and return the real register for the
+ /// current target.
+ unsigned getCOP0Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_COP0) && "Invalid access!");
+ unsigned ClassID = Mips::COP0RegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to COP2 and return the real register for the
+ /// current target.
+ unsigned getCOP2Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_COP2) && "Invalid access!");
+ unsigned ClassID = Mips::COP2RegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to COP3 and return the real register for the
+ /// current target.
+ unsigned getCOP3Reg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_COP3) && "Invalid access!");
+ unsigned ClassID = Mips::COP3RegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to ACC64DSP and return the real register for the
+ /// current target.
+ unsigned getACC64DSPReg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!");
+ unsigned ClassID = Mips::ACC64DSPRegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to HI32DSP and return the real register for the
+ /// current target.
+ unsigned getHI32DSPReg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!");
+ unsigned ClassID = Mips::HI32DSPRegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to LO32DSP and return the real register for the
+ /// current target.
+ unsigned getLO32DSPReg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!");
+ unsigned ClassID = Mips::LO32DSPRegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to CCR and return the real register for the
+ /// current target.
+ unsigned getCCRReg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_CCR) && "Invalid access!");
+ unsigned ClassID = Mips::CCRRegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+ /// Coerce the register to HWRegs and return the real register for the
+ /// current target.
+ unsigned getHWRegsReg() const {
+ assert(isRegIdx() && (RegIdx.Kind & RegKind_HWRegs) && "Invalid access!");
+ unsigned ClassID = Mips::HWRegsRegClassID;
+ return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index);
+ }
+
+public:
+ void addExpr(MCInst &Inst, const MCExpr *Expr) const {
+ // Add as immediate when possible. Null MCExpr = 0.
+ if (!Expr)
+ Inst.addOperand(MCOperand::createImm(0));
+ else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
+ Inst.addOperand(MCOperand::createImm(CE->getValue()));
+ else
+ Inst.addOperand(MCOperand::createExpr(Expr));
+ }
+
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ llvm_unreachable("Use a custom parser instead");
+ }
+
+ /// Render the operand to an MCInst as a GPR32
+ /// Asserts if the wrong number of operands are requested, or the operand
+ /// is not a k_RegisterIndex compatible with RegKind_GPR
+ void addGPR32AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getGPR32Reg()));
+ }
+
+ void addGPRMM16AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getGPRMM16Reg()));
+ }
+
+ void addGPRMM16AsmRegZeroOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getGPRMM16Reg()));
+ }
+
+ void addGPRMM16AsmRegMovePOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getGPRMM16Reg()));
+ }
+
+ /// Render the operand to an MCInst as a GPR64
+ /// Asserts if the wrong number of operands are requested, or the operand
+ /// is not a k_RegisterIndex compatible with RegKind_GPR
+ void addGPR64AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getGPR64Reg()));
+ }
+
+ void addAFGR64AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getAFGR64Reg()));
+ }
+
+ void addFGR64AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getFGR64Reg()));
+ }
+
+ void addFGR32AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getFGR32Reg()));
+ // FIXME: We ought to do this for -integrated-as without -via-file-asm too.
+ if (!AsmParser.useOddSPReg() && RegIdx.Index & 1)
+ AsmParser.Error(StartLoc, "-mno-odd-spreg prohibits the use of odd FPU "
+ "registers");
+ }
+
+ void addFGRH32AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getFGRH32Reg()));
+ }
+
+ void addFCCAsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getFCCReg()));
+ }
+
+ void addMSA128AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getMSA128Reg()));
+ }
+
+ void addMSACtrlAsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getMSACtrlReg()));
+ }
+
+ void addCOP0AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getCOP0Reg()));
+ }
+
+ void addCOP2AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getCOP2Reg()));
+ }
+
+ void addCOP3AsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getCOP3Reg()));
+ }
+
+ void addACC64DSPAsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getACC64DSPReg()));
+ }
+
+ void addHI32DSPAsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getHI32DSPReg()));
+ }
+
+ void addLO32DSPAsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getLO32DSPReg()));
+ }
+
+ void addCCRAsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getCCRReg()));
+ }
+
+ void addHWRegsAsmRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getHWRegsReg()));
+ }
+
+ void addImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCExpr *Expr = getImm();
+ addExpr(Inst, Expr);
+ }
+
+ void addMemOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+
+ Inst.addOperand(MCOperand::createReg(getMemBase()->getGPR32Reg()));
+
+ const MCExpr *Expr = getMemOff();
+ addExpr(Inst, Expr);
+ }
+
+ void addMicroMipsMemOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+
+ Inst.addOperand(MCOperand::createReg(getMemBase()->getGPRMM16Reg()));
+
+ const MCExpr *Expr = getMemOff();
+ addExpr(Inst, Expr);
+ }
+
+ void addRegListOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+
+ for (auto RegNo : getRegList())
+ Inst.addOperand(MCOperand::createReg(RegNo));
+ }
+
+ void addRegPairOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ unsigned RegNo = getRegPair();
+ Inst.addOperand(MCOperand::createReg(RegNo++));
+ Inst.addOperand(MCOperand::createReg(RegNo));
+ }
+
+ void addMovePRegPairOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 2 && "Invalid number of operands!");
+ for (auto RegNo : getRegList())
+ Inst.addOperand(MCOperand::createReg(RegNo));
+ }
+
+ bool isReg() const override {
+ // As a special case until we sort out the definition of div/divu, pretend
+ // that $0/$zero are k_PhysRegister so that MCK_ZERO works correctly.
+ if (isGPRAsmReg() && RegIdx.Index == 0)
+ return true;
+
+ return Kind == k_PhysRegister;
+ }
+ bool isRegIdx() const { return Kind == k_RegisterIndex; }
+ bool isImm() const override { return Kind == k_Immediate; }
+ bool isConstantImm() const {
+ return isImm() && dyn_cast<MCConstantExpr>(getImm());
+ }
+ template <unsigned Bits> bool isUImm() const {
+ return isImm() && isConstantImm() && isUInt<Bits>(getConstantImm());
+ }
+ bool isToken() const override {
+ // Note: It's not possible to pretend that other operand kinds are tokens.
+ // The matcher emitter checks tokens first.
+ return Kind == k_Token;
+ }
+ bool isMem() const override { return Kind == k_Memory; }
+ bool isConstantMemOff() const {
+ return isMem() && dyn_cast<MCConstantExpr>(getMemOff());
+ }
+ template <unsigned Bits> bool isMemWithSimmOffset() const {
+ return isMem() && isConstantMemOff() && isInt<Bits>(getConstantMemOff());
+ }
+ bool isMemWithGRPMM16Base() const {
+ return isMem() && getMemBase()->isMM16AsmReg();
+ }
+ template <unsigned Bits> bool isMemWithUimmOffsetSP() const {
+ return isMem() && isConstantMemOff() && isUInt<Bits>(getConstantMemOff())
+ && getMemBase()->isRegIdx() && (getMemBase()->getGPR32Reg() == Mips::SP);
+ }
+ template <unsigned Bits> bool isMemWithUimmWordAlignedOffsetSP() const {
+ return isMem() && isConstantMemOff() && isUInt<Bits>(getConstantMemOff())
+ && (getConstantMemOff() % 4 == 0) && getMemBase()->isRegIdx()
+ && (getMemBase()->getGPR32Reg() == Mips::SP);
+ }
+ bool isRegList16() const {
+ if (!isRegList())
+ return false;
+
+ int Size = RegList.List->size();
+ if (Size < 2 || Size > 5 || *RegList.List->begin() != Mips::S0 ||
+ RegList.List->back() != Mips::RA)
+ return false;
+
+ int PrevReg = *RegList.List->begin();
+ for (int i = 1; i < Size - 1; i++) {
+ int Reg = (*(RegList.List))[i];
+ if ( Reg != PrevReg + 1)
+ return false;
+ PrevReg = Reg;
+ }
+
+ return true;
+ }
+ bool isInvNum() const { return Kind == k_Immediate; }
+ bool isLSAImm() const {
+ if (!isConstantImm())
+ return false;
+ int64_t Val = getConstantImm();
+ return 1 <= Val && Val <= 4;
+ }
+ bool isRegList() const { return Kind == k_RegList; }
+ bool isMovePRegPair() const {
+ if (Kind != k_RegList || RegList.List->size() != 2)
+ return false;
+
+ unsigned R0 = RegList.List->front();
+ unsigned R1 = RegList.List->back();
+
+ if ((R0 == Mips::A1 && R1 == Mips::A2) ||
+ (R0 == Mips::A1 && R1 == Mips::A3) ||
+ (R0 == Mips::A2 && R1 == Mips::A3) ||
+ (R0 == Mips::A0 && R1 == Mips::S5) ||
+ (R0 == Mips::A0 && R1 == Mips::S6) ||
+ (R0 == Mips::A0 && R1 == Mips::A1) ||
+ (R0 == Mips::A0 && R1 == Mips::A2) ||
+ (R0 == Mips::A0 && R1 == Mips::A3))
+ return true;
+
+ return false;
+ }
+
+ StringRef getToken() const {
+ assert(Kind == k_Token && "Invalid access!");
+ return StringRef(Tok.Data, Tok.Length);
+ }
+ bool isRegPair() const { return Kind == k_RegPair; }
+
+ unsigned getReg() const override {
+ // As a special case until we sort out the definition of div/divu, pretend
+ // that $0/$zero are k_PhysRegister so that MCK_ZERO works correctly.
+ if (Kind == k_RegisterIndex && RegIdx.Index == 0 &&
+ RegIdx.Kind & RegKind_GPR)
+ return getGPR32Reg(); // FIXME: GPR64 too
+
+ assert(Kind == k_PhysRegister && "Invalid access!");
+ return PhysReg.Num;
+ }
+
+ const MCExpr *getImm() const {
+ assert((Kind == k_Immediate) && "Invalid access!");
+ return Imm.Val;
+ }
+
+ int64_t getConstantImm() const {
+ const MCExpr *Val = getImm();
+ return static_cast<const MCConstantExpr *>(Val)->getValue();
+ }
+
+ MipsOperand *getMemBase() const {
+ assert((Kind == k_Memory) && "Invalid access!");
+ return Mem.Base;
+ }
+
+ const MCExpr *getMemOff() const {
+ assert((Kind == k_Memory) && "Invalid access!");
+ return Mem.Off;
+ }
+
+ int64_t getConstantMemOff() const {
+ return static_cast<const MCConstantExpr *>(getMemOff())->getValue();
+ }
+
+ const SmallVectorImpl<unsigned> &getRegList() const {
+ assert((Kind == k_RegList) && "Invalid access!");
+ return *(RegList.List);
+ }
+
+ unsigned getRegPair() const {
+ assert((Kind == k_RegPair) && "Invalid access!");
+ return RegIdx.Index;
+ }
+
+ static std::unique_ptr<MipsOperand> CreateToken(StringRef Str, SMLoc S,
+ MipsAsmParser &Parser) {
+ auto Op = make_unique<MipsOperand>(k_Token, Parser);
+ Op->Tok.Data = Str.data();
+ Op->Tok.Length = Str.size();
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return Op;
+ }
+
+ /// Create a numeric register (e.g. $1). The exact register remains
+ /// unresolved until an instruction successfully matches
+ static std::unique_ptr<MipsOperand>
+ createNumericReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
+ SMLoc E, MipsAsmParser &Parser) {
+ DEBUG(dbgs() << "createNumericReg(" << Index << ", ...)\n");
+ return CreateReg(Index, RegKind_Numeric, RegInfo, S, E, Parser);
+ }
+
+ /// Create a register that is definitely a GPR.
+ /// This is typically only used for named registers such as $gp.
+ static std::unique_ptr<MipsOperand>
+ createGPRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
+ MipsAsmParser &Parser) {
+ return CreateReg(Index, RegKind_GPR, RegInfo, S, E, Parser);
+ }
+
+ /// Create a register that is definitely a FGR.
+ /// This is typically only used for named registers such as $f0.
+ static std::unique_ptr<MipsOperand>
+ createFGRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
+ MipsAsmParser &Parser) {
+ return CreateReg(Index, RegKind_FGR, RegInfo, S, E, Parser);
+ }
+
+ /// Create a register that is definitely a HWReg.
+ /// This is typically only used for named registers such as $hwr_cpunum.
+ static std::unique_ptr<MipsOperand>
+ createHWRegsReg(unsigned Index, const MCRegisterInfo *RegInfo,
+ SMLoc S, SMLoc E, MipsAsmParser &Parser) {
+ return CreateReg(Index, RegKind_HWRegs, RegInfo, S, E, Parser);
+ }
+
+ /// Create a register that is definitely an FCC.
+ /// This is typically only used for named registers such as $fcc0.
+ static std::unique_ptr<MipsOperand>
+ createFCCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
+ MipsAsmParser &Parser) {
+ return CreateReg(Index, RegKind_FCC, RegInfo, S, E, Parser);
+ }
+
+ /// Create a register that is definitely an ACC.
+ /// This is typically only used for named registers such as $ac0.
+ static std::unique_ptr<MipsOperand>
+ createACCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E,
+ MipsAsmParser &Parser) {
+ return CreateReg(Index, RegKind_ACC, RegInfo, S, E, Parser);
+ }
+
+ /// Create a register that is definitely an MSA128.
+ /// This is typically only used for named registers such as $w0.
+ static std::unique_ptr<MipsOperand>
+ createMSA128Reg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
+ SMLoc E, MipsAsmParser &Parser) {
+ return CreateReg(Index, RegKind_MSA128, RegInfo, S, E, Parser);
+ }
+
+ /// Create a register that is definitely an MSACtrl.
+ /// This is typically only used for named registers such as $msaaccess.
+ static std::unique_ptr<MipsOperand>
+ createMSACtrlReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S,
+ SMLoc E, MipsAsmParser &Parser) {
+ return CreateReg(Index, RegKind_MSACtrl, RegInfo, S, E, Parser);
+ }
+
+ static std::unique_ptr<MipsOperand>
+ CreateImm(const MCExpr *Val, SMLoc S, SMLoc E, MipsAsmParser &Parser) {
+ auto Op = make_unique<MipsOperand>(k_Immediate, Parser);
+ Op->Imm.Val = Val;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<MipsOperand>
+ CreateMem(std::unique_ptr<MipsOperand> Base, const MCExpr *Off, SMLoc S,
+ SMLoc E, MipsAsmParser &Parser) {
+ auto Op = make_unique<MipsOperand>(k_Memory, Parser);
+ Op->Mem.Base = Base.release();
+ Op->Mem.Off = Off;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ static std::unique_ptr<MipsOperand>
+ CreateRegList(SmallVectorImpl<unsigned> &Regs, SMLoc StartLoc, SMLoc EndLoc,
+ MipsAsmParser &Parser) {
+ assert (Regs.size() > 0 && "Empty list not allowed");
+
+ auto Op = make_unique<MipsOperand>(k_RegList, Parser);
+ Op->RegList.List = new SmallVector<unsigned, 10>(Regs.begin(), Regs.end());
+ Op->StartLoc = StartLoc;
+ Op->EndLoc = EndLoc;
+ return Op;
+ }
+
+ static std::unique_ptr<MipsOperand>
+ CreateRegPair(unsigned RegNo, SMLoc S, SMLoc E, MipsAsmParser &Parser) {
+ auto Op = make_unique<MipsOperand>(k_RegPair, Parser);
+ Op->RegIdx.Index = RegNo;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return Op;
+ }
+
+ bool isGPRAsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_GPR && RegIdx.Index <= 31;
+ }
+ bool isMM16AsmReg() const {
+ if (!(isRegIdx() && RegIdx.Kind))
+ return false;
+ return ((RegIdx.Index >= 2 && RegIdx.Index <= 7)
+ || RegIdx.Index == 16 || RegIdx.Index == 17);
+ }
+ bool isMM16AsmRegZero() const {
+ if (!(isRegIdx() && RegIdx.Kind))
+ return false;
+ return (RegIdx.Index == 0 ||
+ (RegIdx.Index >= 2 && RegIdx.Index <= 7) ||
+ RegIdx.Index == 17);
+ }
+ bool isMM16AsmRegMoveP() const {
+ if (!(isRegIdx() && RegIdx.Kind))
+ return false;
+ return (RegIdx.Index == 0 || (RegIdx.Index >= 2 && RegIdx.Index <= 3) ||
+ (RegIdx.Index >= 16 && RegIdx.Index <= 20));
+ }
+ bool isFGRAsmReg() const {
+ // AFGR64 is $0-$15 but we handle this in getAFGR64()
+ return isRegIdx() && RegIdx.Kind & RegKind_FGR && RegIdx.Index <= 31;
+ }
+ bool isHWRegsAsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_HWRegs && RegIdx.Index <= 31;
+ }
+ bool isCCRAsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_CCR && RegIdx.Index <= 31;
+ }
+ bool isFCCAsmReg() const {
+ if (!(isRegIdx() && RegIdx.Kind & RegKind_FCC))
+ return false;
+ if (!AsmParser.hasEightFccRegisters())
+ return RegIdx.Index == 0;
+ return RegIdx.Index <= 7;
+ }
+ bool isACCAsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_ACC && RegIdx.Index <= 3;
+ }
+ bool isCOP0AsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_COP0 && RegIdx.Index <= 31;
+ }
+ bool isCOP2AsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_COP2 && RegIdx.Index <= 31;
+ }
+ bool isCOP3AsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_COP3 && RegIdx.Index <= 31;
+ }
+ bool isMSA128AsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_MSA128 && RegIdx.Index <= 31;
+ }
+ bool isMSACtrlAsmReg() const {
+ return isRegIdx() && RegIdx.Kind & RegKind_MSACtrl && RegIdx.Index <= 7;
+ }
+
+ /// getStartLoc - Get the location of the first token of this operand.
+ SMLoc getStartLoc() const override { return StartLoc; }
+ /// getEndLoc - Get the location of the last token of this operand.
+ SMLoc getEndLoc() const override { return EndLoc; }
+
+ virtual ~MipsOperand() {
+ switch (Kind) {
+ case k_Immediate:
+ break;
+ case k_Memory:
+ delete Mem.Base;
+ break;
+ case k_RegList:
+ delete RegList.List;
+ case k_PhysRegister:
+ case k_RegisterIndex:
+ case k_Token:
+ case k_RegPair:
+ break;
+ }
+ }
+
+ void print(raw_ostream &OS) const override {
+ switch (Kind) {
+ case k_Immediate:
+ OS << "Imm<";
+ OS << *Imm.Val;
+ OS << ">";
+ break;
+ case k_Memory:
+ OS << "Mem<";
+ Mem.Base->print(OS);
+ OS << ", ";
+ OS << *Mem.Off;
+ OS << ">";
+ break;
+ case k_PhysRegister:
+ OS << "PhysReg<" << PhysReg.Num << ">";
+ break;
+ case k_RegisterIndex:
+ OS << "RegIdx<" << RegIdx.Index << ":" << RegIdx.Kind << ">";
+ break;
+ case k_Token:
+ OS << Tok.Data;
+ break;
+ case k_RegList:
+ OS << "RegList< ";
+ for (auto Reg : (*RegList.List))
+ OS << Reg << " ";
+ OS << ">";
+ break;
+ case k_RegPair:
+ OS << "RegPair<" << RegIdx.Index << "," << RegIdx.Index + 1 << ">";
+ break;
+ }
+ }
+}; // class MipsOperand
+} // namespace
+
+namespace llvm {
+extern const MCInstrDesc MipsInsts[];
+}
+static const MCInstrDesc &getInstDesc(unsigned Opcode) {
+ return MipsInsts[Opcode];
+}
+
+static bool hasShortDelaySlot(unsigned Opcode) {
+ switch (Opcode) {
+ case Mips::JALS_MM:
+ case Mips::JALRS_MM:
+ case Mips::JALRS16_MM:
+ case Mips::BGEZALS_MM:
+ case Mips::BLTZALS_MM:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool MipsAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
+
+ Inst.setLoc(IDLoc);
+
+ if (MCID.isBranch() || MCID.isCall()) {
+ const unsigned Opcode = Inst.getOpcode();
+ MCOperand Offset;
+
+ switch (Opcode) {
+ default:
+ break;
+ case Mips::BBIT0:
+ case Mips::BBIT032:
+ case Mips::BBIT1:
+ case Mips::BBIT132:
+ assert(hasCnMips() && "instruction only valid for octeon cpus");
+ // Fall through
+
+ case Mips::BEQ:
+ case Mips::BNE:
+ case Mips::BEQ_MM:
+ case Mips::BNE_MM:
+ assert(MCID.getNumOperands() == 3 && "unexpected number of operands");
+ Offset = Inst.getOperand(2);
+ if (!Offset.isImm())
+ break; // We'll deal with this situation later on when applying fixups.
+ if (!isIntN(inMicroMipsMode() ? 17 : 18, Offset.getImm()))
+ return Error(IDLoc, "branch target out of range");
+ if (OffsetToAlignment(Offset.getImm(),
+ 1LL << (inMicroMipsMode() ? 1 : 2)))
+ return Error(IDLoc, "branch to misaligned address");
+ break;
+ case Mips::BGEZ:
+ case Mips::BGTZ:
+ case Mips::BLEZ:
+ case Mips::BLTZ:
+ case Mips::BGEZAL:
+ case Mips::BLTZAL:
+ case Mips::BC1F:
+ case Mips::BC1T:
+ case Mips::BGEZ_MM:
+ case Mips::BGTZ_MM:
+ case Mips::BLEZ_MM:
+ case Mips::BLTZ_MM:
+ case Mips::BGEZAL_MM:
+ case Mips::BLTZAL_MM:
+ case Mips::BC1F_MM:
+ case Mips::BC1T_MM:
+ assert(MCID.getNumOperands() == 2 && "unexpected number of operands");
+ Offset = Inst.getOperand(1);
+ if (!Offset.isImm())
+ break; // We'll deal with this situation later on when applying fixups.
+ if (!isIntN(inMicroMipsMode() ? 17 : 18, Offset.getImm()))
+ return Error(IDLoc, "branch target out of range");
+ if (OffsetToAlignment(Offset.getImm(),
+ 1LL << (inMicroMipsMode() ? 1 : 2)))
+ return Error(IDLoc, "branch to misaligned address");
+ break;
+ case Mips::BEQZ16_MM:
+ case Mips::BNEZ16_MM:
+ assert(MCID.getNumOperands() == 2 && "unexpected number of operands");
+ Offset = Inst.getOperand(1);
+ if (!Offset.isImm())
+ break; // We'll deal with this situation later on when applying fixups.
+ if (!isIntN(8, Offset.getImm()))
+ return Error(IDLoc, "branch target out of range");
+ if (OffsetToAlignment(Offset.getImm(), 2LL))
+ return Error(IDLoc, "branch to misaligned address");
+ break;
+ }
+ }
+
+ // SSNOP is deprecated on MIPS32r6/MIPS64r6
+ // We still accept it but it is a normal nop.
+ if (hasMips32r6() && Inst.getOpcode() == Mips::SSNOP) {
+ std::string ISA = hasMips64r6() ? "MIPS64r6" : "MIPS32r6";
+ Warning(IDLoc, "ssnop is deprecated for " + ISA + " and is equivalent to a "
+ "nop instruction");
+ }
+
+ if (hasCnMips()) {
+ const unsigned Opcode = Inst.getOpcode();
+ MCOperand Opnd;
+ int Imm;
+
+ switch (Opcode) {
+ default:
+ break;
+
+ case Mips::BBIT0:
+ case Mips::BBIT032:
+ case Mips::BBIT1:
+ case Mips::BBIT132:
+ assert(MCID.getNumOperands() == 3 && "unexpected number of operands");
+ // The offset is handled above
+ Opnd = Inst.getOperand(1);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < 0 || Imm > (Opcode == Mips::BBIT0 ||
+ Opcode == Mips::BBIT1 ? 63 : 31))
+ return Error(IDLoc, "immediate operand value out of range");
+ if (Imm > 31) {
+ Inst.setOpcode(Opcode == Mips::BBIT0 ? Mips::BBIT032
+ : Mips::BBIT132);
+ Inst.getOperand(1).setImm(Imm - 32);
+ }
+ break;
+
+ case Mips::CINS:
+ case Mips::CINS32:
+ case Mips::EXTS:
+ case Mips::EXTS32:
+ assert(MCID.getNumOperands() == 4 && "unexpected number of operands");
+ // Check length
+ Opnd = Inst.getOperand(3);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < 0 || Imm > 31)
+ return Error(IDLoc, "immediate operand value out of range");
+ // Check position
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < 0 || Imm > (Opcode == Mips::CINS ||
+ Opcode == Mips::EXTS ? 63 : 31))
+ return Error(IDLoc, "immediate operand value out of range");
+ if (Imm > 31) {
+ Inst.setOpcode(Opcode == Mips::CINS ? Mips::CINS32 : Mips::EXTS32);
+ Inst.getOperand(2).setImm(Imm - 32);
+ }
+ break;
+
+ case Mips::SEQi:
+ case Mips::SNEi:
+ assert(MCID.getNumOperands() == 3 && "unexpected number of operands");
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (!isInt<10>(Imm))
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ }
+ }
+
+ if (MCID.mayLoad() || MCID.mayStore()) {
+ // Check the offset of memory operand, if it is a symbol
+ // reference or immediate we may have to expand instructions.
+ for (unsigned i = 0; i < MCID.getNumOperands(); i++) {
+ const MCOperandInfo &OpInfo = MCID.OpInfo[i];
+ if ((OpInfo.OperandType == MCOI::OPERAND_MEMORY) ||
+ (OpInfo.OperandType == MCOI::OPERAND_UNKNOWN)) {
+ MCOperand &Op = Inst.getOperand(i);
+ if (Op.isImm()) {
+ int MemOffset = Op.getImm();
+ if (MemOffset < -32768 || MemOffset > 32767) {
+ // Offset can't exceed 16bit value.
+ expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), true);
+ return false;
+ }
+ } else if (Op.isExpr()) {
+ const MCExpr *Expr = Op.getExpr();
+ if (Expr->getKind() == MCExpr::SymbolRef) {
+ const MCSymbolRefExpr *SR =
+ static_cast<const MCSymbolRefExpr *>(Expr);
+ if (SR->getKind() == MCSymbolRefExpr::VK_None) {
+ // Expand symbol.
+ expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false);
+ return false;
+ }
+ } else if (!isEvaluated(Expr)) {
+ expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false);
+ return false;
+ }
+ }
+ }
+ } // for
+ } // if load/store
+
+ if (inMicroMipsMode()) {
+ if (MCID.mayLoad()) {
+ // Try to create 16-bit GP relative load instruction.
+ for (unsigned i = 0; i < MCID.getNumOperands(); i++) {
+ const MCOperandInfo &OpInfo = MCID.OpInfo[i];
+ if ((OpInfo.OperandType == MCOI::OPERAND_MEMORY) ||
+ (OpInfo.OperandType == MCOI::OPERAND_UNKNOWN)) {
+ MCOperand &Op = Inst.getOperand(i);
+ if (Op.isImm()) {
+ int MemOffset = Op.getImm();
+ MCOperand &DstReg = Inst.getOperand(0);
+ MCOperand &BaseReg = Inst.getOperand(1);
+ if (isIntN(9, MemOffset) && (MemOffset % 4 == 0) &&
+ getContext().getRegisterInfo()->getRegClass(
+ Mips::GPRMM16RegClassID).contains(DstReg.getReg()) &&
+ BaseReg.getReg() == Mips::GP) {
+ MCInst TmpInst;
+ TmpInst.setLoc(IDLoc);
+ TmpInst.setOpcode(Mips::LWGP_MM);
+ TmpInst.addOperand(MCOperand::createReg(DstReg.getReg()));
+ TmpInst.addOperand(MCOperand::createReg(Mips::GP));
+ TmpInst.addOperand(MCOperand::createImm(MemOffset));
+ Instructions.push_back(TmpInst);
+ return false;
+ }
+ }
+ }
+ } // for
+ } // if load
+
+ // TODO: Handle this with the AsmOperandClass.PredicateMethod.
+
+ MCOperand Opnd;
+ int Imm;
+
+ switch (Inst.getOpcode()) {
+ default:
+ break;
+ case Mips::ADDIUS5_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < -8 || Imm > 7)
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::ADDIUSP_MM:
+ Opnd = Inst.getOperand(0);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < -1032 || Imm > 1028 || (Imm < 8 && Imm > -12) ||
+ Imm % 4 != 0)
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::SLL16_MM:
+ case Mips::SRL16_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < 1 || Imm > 8)
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::LI16_MM:
+ Opnd = Inst.getOperand(1);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < -1 || Imm > 126)
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::ADDIUR2_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (!(Imm == 1 || Imm == -1 ||
+ ((Imm % 4 == 0) && Imm < 28 && Imm > 0)))
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::ADDIUR1SP_MM:
+ Opnd = Inst.getOperand(1);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (OffsetToAlignment(Imm, 4LL))
+ return Error(IDLoc, "misaligned immediate operand value");
+ if (Imm < 0 || Imm > 255)
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::ANDI16_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (!(Imm == 128 || (Imm >= 1 && Imm <= 4) || Imm == 7 || Imm == 8 ||
+ Imm == 15 || Imm == 16 || Imm == 31 || Imm == 32 || Imm == 63 ||
+ Imm == 64 || Imm == 255 || Imm == 32768 || Imm == 65535))
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::LBU16_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < -1 || Imm > 14)
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::SB16_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < 0 || Imm > 15)
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::LHU16_MM:
+ case Mips::SH16_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < 0 || Imm > 30 || (Imm % 2 != 0))
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::LW16_MM:
+ case Mips::SW16_MM:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (Imm < 0 || Imm > 60 || (Imm % 4 != 0))
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::CACHE:
+ case Mips::PREF:
+ Opnd = Inst.getOperand(2);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ Imm = Opnd.getImm();
+ if (!isUInt<5>(Imm))
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ case Mips::ADDIUPC_MM:
+ MCOperand Opnd = Inst.getOperand(1);
+ if (!Opnd.isImm())
+ return Error(IDLoc, "expected immediate operand kind");
+ int Imm = Opnd.getImm();
+ if ((Imm % 4 != 0) || !isIntN(25, Imm))
+ return Error(IDLoc, "immediate operand value out of range");
+ break;
+ }
+ }
+
+ if (needsExpansion(Inst)) {
+ if (expandInstruction(Inst, IDLoc, Instructions))
+ return true;
+ } else
+ Instructions.push_back(Inst);
+
+ // If this instruction has a delay slot and .set reorder is active,
+ // emit a NOP after it.
+ if (MCID.hasDelaySlot() && AssemblerOptions.back()->isReorder())
+ createNop(hasShortDelaySlot(Inst.getOpcode()), IDLoc, Instructions);
+
+ return false;
+}
+
+bool MipsAsmParser::needsExpansion(MCInst &Inst) {
+
+ switch (Inst.getOpcode()) {
+ case Mips::LoadImm32:
+ case Mips::LoadImm64:
+ case Mips::LoadAddrImm32:
+ case Mips::LoadAddrReg32:
+ case Mips::B_MM_Pseudo:
+ case Mips::LWM_MM:
+ case Mips::SWM_MM:
+ case Mips::JalOneReg:
+ case Mips::JalTwoReg:
+ case Mips::BneImm:
+ case Mips::BeqImm:
+ case Mips::BLT:
+ case Mips::BLE:
+ case Mips::BGE:
+ case Mips::BGT:
+ case Mips::BLTU:
+ case Mips::BLEU:
+ case Mips::BGEU:
+ case Mips::BGTU:
+ case Mips::Ulhu:
+ case Mips::Ulw:
+ return true;
+ default:
+ return false;
+ }
+}
+
+bool MipsAsmParser::expandInstruction(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ switch (Inst.getOpcode()) {
+ default: llvm_unreachable("unimplemented expansion");
+ case Mips::LoadImm32:
+ return expandLoadImm(Inst, true, IDLoc, Instructions);
+ case Mips::LoadImm64:
+ return expandLoadImm(Inst, false, IDLoc, Instructions);
+ case Mips::LoadAddrImm32:
+ return expandLoadAddressImm(Inst, true, IDLoc, Instructions);
+ case Mips::LoadAddrReg32:
+ return expandLoadAddressReg(Inst, true, IDLoc, Instructions);
+ case Mips::B_MM_Pseudo:
+ return expandUncondBranchMMPseudo(Inst, IDLoc, Instructions);
+ case Mips::SWM_MM:
+ case Mips::LWM_MM:
+ return expandLoadStoreMultiple(Inst, IDLoc, Instructions);
+ case Mips::JalOneReg:
+ case Mips::JalTwoReg:
+ return expandJalWithRegs(Inst, IDLoc, Instructions);
+ case Mips::BneImm:
+ case Mips::BeqImm:
+ return expandBranchImm(Inst, IDLoc, Instructions);
+ case Mips::BLT:
+ case Mips::BLE:
+ case Mips::BGE:
+ case Mips::BGT:
+ case Mips::BLTU:
+ case Mips::BLEU:
+ case Mips::BGEU:
+ case Mips::BGTU:
+ return expandCondBranches(Inst, IDLoc, Instructions);
+ case Mips::Ulhu:
+ return expandUlhu(Inst, IDLoc, Instructions);
+ case Mips::Ulw:
+ return expandUlw(Inst, IDLoc, Instructions);
+ }
+}
+
+namespace {
+void emitRX(unsigned Opcode, unsigned DstReg, MCOperand Imm, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ MCInst tmpInst;
+ tmpInst.setOpcode(Opcode);
+ tmpInst.addOperand(MCOperand::createReg(DstReg));
+ tmpInst.addOperand(Imm);
+ tmpInst.setLoc(IDLoc);
+ Instructions.push_back(tmpInst);
+}
+
+void emitRI(unsigned Opcode, unsigned DstReg, int16_t Imm, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ emitRX(Opcode, DstReg, MCOperand::createImm(Imm), IDLoc, Instructions);
+}
+
+
+void emitRRX(unsigned Opcode, unsigned DstReg, unsigned SrcReg, MCOperand Imm,
+ SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) {
+ MCInst tmpInst;
+ tmpInst.setOpcode(Opcode);
+ tmpInst.addOperand(MCOperand::createReg(DstReg));
+ tmpInst.addOperand(MCOperand::createReg(SrcReg));
+ tmpInst.addOperand(Imm);
+ tmpInst.setLoc(IDLoc);
+ Instructions.push_back(tmpInst);
+}
+
+void emitRRR(unsigned Opcode, unsigned DstReg, unsigned SrcReg,
+ unsigned SrcReg2, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ emitRRX(Opcode, DstReg, SrcReg, MCOperand::createReg(SrcReg2), IDLoc,
+ Instructions);
+}
+
+void emitRRI(unsigned Opcode, unsigned DstReg, unsigned SrcReg, int16_t Imm,
+ SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) {
+ emitRRX(Opcode, DstReg, SrcReg, MCOperand::createImm(Imm), IDLoc,
+ Instructions);
+}
+
+template <int16_t ShiftAmount>
+void createLShiftOri(MCOperand Operand, unsigned RegNo, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ if (ShiftAmount >= 32)
+ emitRRI(Mips::DSLL32, RegNo, RegNo, ShiftAmount - 32, IDLoc, Instructions);
+ else if (ShiftAmount > 0)
+ emitRRI(Mips::DSLL, RegNo, RegNo, ShiftAmount, IDLoc, Instructions);
+
+ // There's no need for an ORi if the immediate is 0.
+ if (Operand.isImm() && Operand.getImm() == 0)
+ return;
+
+ emitRRX(Mips::ORi, RegNo, RegNo, Operand, IDLoc, Instructions);
+}
+
+template <unsigned ShiftAmount>
+void createLShiftOri(int64_t Value, unsigned RegNo, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ createLShiftOri<ShiftAmount>(MCOperand::createImm(Value), RegNo, IDLoc,
+ Instructions);
+}
+}
+
+bool MipsAsmParser::expandJalWithRegs(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ // Create a JALR instruction which is going to replace the pseudo-JAL.
+ MCInst JalrInst;
+ JalrInst.setLoc(IDLoc);
+ const MCOperand FirstRegOp = Inst.getOperand(0);
+ const unsigned Opcode = Inst.getOpcode();
+
+ if (Opcode == Mips::JalOneReg) {
+ // jal $rs => jalr $rs
+ if (inMicroMipsMode()) {
+ JalrInst.setOpcode(Mips::JALR16_MM);
+ JalrInst.addOperand(FirstRegOp);
+ } else {
+ JalrInst.setOpcode(Mips::JALR);
+ JalrInst.addOperand(MCOperand::createReg(Mips::RA));
+ JalrInst.addOperand(FirstRegOp);
+ }
+ } else if (Opcode == Mips::JalTwoReg) {
+ // jal $rd, $rs => jalr $rd, $rs
+ JalrInst.setOpcode(inMicroMipsMode() ? Mips::JALR_MM : Mips::JALR);
+ JalrInst.addOperand(FirstRegOp);
+ const MCOperand SecondRegOp = Inst.getOperand(1);
+ JalrInst.addOperand(SecondRegOp);
+ }
+ Instructions.push_back(JalrInst);
+
+ // If .set reorder is active, emit a NOP after it.
+ if (AssemblerOptions.back()->isReorder()) {
+ // This is a 32-bit NOP because these 2 pseudo-instructions
+ // do not have a short delay slot.
+ MCInst NopInst;
+ NopInst.setOpcode(Mips::SLL);
+ NopInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ NopInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ NopInst.addOperand(MCOperand::createImm(0));
+ Instructions.push_back(NopInst);
+ }
+
+ return false;
+}
+
+bool MipsAsmParser::loadImmediate(int64_t ImmValue, unsigned DstReg,
+ unsigned SrcReg, bool Is32BitImm, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ if (!Is32BitImm && !isGP64bit()) {
+ Error(IDLoc, "instruction requires a 64-bit architecture");
+ return true;
+ }
+
+ if (Is32BitImm) {
+ if (isInt<32>(ImmValue) || isUInt<32>(ImmValue)) {
+ // Sign extend up to 64-bit so that the predicates match the hardware
+ // behaviour. In particular, isInt<16>(0xffff8000) and similar should be
+ // true.
+ ImmValue = SignExtend64<32>(ImmValue);
+ } else {
+ Error(IDLoc, "instruction requires a 32-bit immediate");
+ return true;
+ }
+ }
+
+ bool UseSrcReg = false;
+ if (SrcReg != Mips::NoRegister)
+ UseSrcReg = true;
+
+ unsigned TmpReg = DstReg;
+ if (UseSrcReg && (DstReg == SrcReg)) {
+ // At this point we need AT to perform the expansions and we exit if it is
+ // not available.
+ unsigned ATReg = getATReg(IDLoc);
+ if (!ATReg)
+ return true;
+ TmpReg = ATReg;
+ }
+
+ // FIXME: gas has a special case for values that are 000...1111, which
+ // becomes a li -1 and then a dsrl
+ if (isInt<16>(ImmValue)) {
+ // li d,j => addiu d,$zero,j
+ if (!UseSrcReg)
+ SrcReg = Mips::ZERO;
+ emitRRI(Mips::ADDiu, DstReg, SrcReg, ImmValue, IDLoc, Instructions);
+ } else if (isUInt<16>(ImmValue)) {
+ // li d,j => ori d,$zero,j
+ unsigned TmpReg = DstReg;
+ if (SrcReg == DstReg) {
+ unsigned ATReg = getATReg(IDLoc);
+ if (!ATReg)
+ return true;
+ TmpReg = ATReg;
+ }
+
+ emitRRI(Mips::ORi, TmpReg, Mips::ZERO, ImmValue, IDLoc, Instructions);
+ if (UseSrcReg)
+ emitRRR(Mips::ADDu, DstReg, TmpReg, SrcReg, IDLoc, Instructions);
+ } else if (isInt<32>(ImmValue) || isUInt<32>(ImmValue)) {
+ warnIfNoMacro(IDLoc);
+
+ // For all other values which are representable as a 32-bit integer:
+ // li d,j => lui d,hi16(j)
+ // ori d,d,lo16(j)
+ uint16_t Bits31To16 = (ImmValue >> 16) & 0xffff;
+ uint16_t Bits15To0 = ImmValue & 0xffff;
+
+ if (!Is32BitImm && !isInt<32>(ImmValue)) {
+ // For DLI, expand to an ORi instead of a LUi to avoid sign-extending the
+ // upper 32 bits.
+ emitRRI(Mips::ORi, TmpReg, Mips::ZERO, Bits31To16, IDLoc, Instructions);
+ emitRRI(Mips::DSLL, TmpReg, TmpReg, 16, IDLoc, Instructions);
+ } else
+ emitRI(Mips::LUi, TmpReg, Bits31To16, IDLoc, Instructions);
+ createLShiftOri<0>(Bits15To0, TmpReg, IDLoc, Instructions);
+
+ if (UseSrcReg)
+ createAddu(DstReg, TmpReg, SrcReg, !Is32BitImm, Instructions);
+
+ } else if ((ImmValue & (0xffffLL << 48)) == 0) {
+ warnIfNoMacro(IDLoc);
+
+ // <------- lo32 ------>
+ // <------- hi32 ------>
+ // <- hi16 -> <- lo16 ->
+ // _________________________________
+ // | | | |
+ // | 16-bits | 16-bits | 16-bits |
+ // |__________|__________|__________|
+ //
+ // For any 64-bit value that is representable as a 48-bit integer:
+ // li d,j => lui d,hi16(j)
+ // ori d,d,hi16(lo32(j))
+ // dsll d,d,16
+ // ori d,d,lo16(lo32(j))
+ uint16_t Bits47To32 = (ImmValue >> 32) & 0xffff;
+ uint16_t Bits31To16 = (ImmValue >> 16) & 0xffff;
+ uint16_t Bits15To0 = ImmValue & 0xffff;
+
+ emitRI(Mips::LUi, TmpReg, Bits47To32, IDLoc, Instructions);
+ createLShiftOri<0>(Bits31To16, TmpReg, IDLoc, Instructions);
+ createLShiftOri<16>(Bits15To0, TmpReg, IDLoc, Instructions);
+
+ if (UseSrcReg)
+ createAddu(DstReg, TmpReg, SrcReg, !Is32BitImm, Instructions);
+
+ } else {
+ warnIfNoMacro(IDLoc);
+
+ // <------- hi32 ------> <------- lo32 ------>
+ // <- hi16 -> <- lo16 ->
+ // ___________________________________________
+ // | | | | |
+ // | 16-bits | 16-bits | 16-bits | 16-bits |
+ // |__________|__________|__________|__________|
+ //
+ // For all other values which are representable as a 64-bit integer:
+ // li d,j => lui d,hi16(j)
+ // ori d,d,lo16(hi32(j))
+ // dsll d,d,16
+ // ori d,d,hi16(lo32(j))
+ // dsll d,d,16
+ // ori d,d,lo16(lo32(j))
+ uint16_t Bits63To48 = (ImmValue >> 48) & 0xffff;
+ uint16_t Bits47To32 = (ImmValue >> 32) & 0xffff;
+ uint16_t Bits31To16 = (ImmValue >> 16) & 0xffff;
+ uint16_t Bits15To0 = ImmValue & 0xffff;
+
+ emitRI(Mips::LUi, TmpReg, Bits63To48, IDLoc, Instructions);
+ createLShiftOri<0>(Bits47To32, TmpReg, IDLoc, Instructions);
+
+ // When Bits31To16 is 0, do a left shift of 32 bits instead of doing
+ // two left shifts of 16 bits.
+ if (Bits31To16 == 0) {
+ createLShiftOri<32>(Bits15To0, TmpReg, IDLoc, Instructions);
+ } else {
+ createLShiftOri<16>(Bits31To16, TmpReg, IDLoc, Instructions);
+ createLShiftOri<16>(Bits15To0, TmpReg, IDLoc, Instructions);
+ }
+
+ if (UseSrcReg)
+ createAddu(DstReg, TmpReg, SrcReg, !Is32BitImm, Instructions);
+ }
+ return false;
+}
+
+bool MipsAsmParser::expandLoadImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ const MCOperand &ImmOp = Inst.getOperand(1);
+ assert(ImmOp.isImm() && "expected immediate operand kind");
+ const MCOperand &DstRegOp = Inst.getOperand(0);
+ assert(DstRegOp.isReg() && "expected register operand kind");
+
+ if (loadImmediate(ImmOp.getImm(), DstRegOp.getReg(), Mips::NoRegister,
+ Is32BitImm, IDLoc, Instructions))
+ return true;
+
+ return false;
+}
+
+bool
+MipsAsmParser::expandLoadAddressReg(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ const MCOperand &DstRegOp = Inst.getOperand(0);
+ assert(DstRegOp.isReg() && "expected register operand kind");
+
+ const MCOperand &SrcRegOp = Inst.getOperand(1);
+ assert(SrcRegOp.isReg() && "expected register operand kind");
+
+ const MCOperand &ImmOp = Inst.getOperand(2);
+ assert((ImmOp.isImm() || ImmOp.isExpr()) &&
+ "expected immediate operand kind");
+ if (!ImmOp.isImm()) {
+ if (loadAndAddSymbolAddress(ImmOp.getExpr(), DstRegOp.getReg(),
+ SrcRegOp.getReg(), Is32BitImm, IDLoc,
+ Instructions))
+ return true;
+
+ return false;
+ }
+
+ if (loadImmediate(ImmOp.getImm(), DstRegOp.getReg(), SrcRegOp.getReg(),
+ Is32BitImm, IDLoc, Instructions))
+ return true;
+
+ return false;
+}
+
+bool
+MipsAsmParser::expandLoadAddressImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ const MCOperand &DstRegOp = Inst.getOperand(0);
+ assert(DstRegOp.isReg() && "expected register operand kind");
+
+ const MCOperand &ImmOp = Inst.getOperand(1);
+ assert((ImmOp.isImm() || ImmOp.isExpr()) &&
+ "expected immediate operand kind");
+ if (!ImmOp.isImm()) {
+ if (loadAndAddSymbolAddress(ImmOp.getExpr(), DstRegOp.getReg(),
+ Mips::NoRegister, Is32BitImm, IDLoc,
+ Instructions))
+ return true;
+
+ return false;
+ }
+
+ if (loadImmediate(ImmOp.getImm(), DstRegOp.getReg(), Mips::NoRegister,
+ Is32BitImm, IDLoc, Instructions))
+ return true;
+
+ return false;
+}
+
+bool MipsAsmParser::loadAndAddSymbolAddress(
+ const MCExpr *SymExpr, unsigned DstReg, unsigned SrcReg, bool Is32BitSym,
+ SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) {
+ warnIfNoMacro(IDLoc);
+
+ if (Is32BitSym && isABI_N64())
+ Warning(IDLoc, "instruction loads the 32-bit address of a 64-bit symbol");
+
+ MCInst tmpInst;
+ const MCSymbolRefExpr *Symbol = cast<MCSymbolRefExpr>(SymExpr);
+ const MCSymbolRefExpr *HiExpr = MCSymbolRefExpr::create(
+ &Symbol->getSymbol(), MCSymbolRefExpr::VK_Mips_ABS_HI, getContext());
+ const MCSymbolRefExpr *LoExpr = MCSymbolRefExpr::create(
+ &Symbol->getSymbol(), MCSymbolRefExpr::VK_Mips_ABS_LO, getContext());
+
+ bool UseSrcReg = SrcReg != Mips::NoRegister;
+
+ unsigned TmpReg = DstReg;
+ if (UseSrcReg && (DstReg == SrcReg)) {
+ // At this point we need AT to perform the expansions and we exit if it is
+ // not available.
+ unsigned ATReg = getATReg(IDLoc);
+ if (!ATReg)
+ return true;
+ TmpReg = ATReg;
+ }
+
+ if (!Is32BitSym) {
+ // If it's a 64-bit architecture, expand to:
+ // la d,sym => lui d,highest(sym)
+ // ori d,d,higher(sym)
+ // dsll d,d,16
+ // ori d,d,hi16(sym)
+ // dsll d,d,16
+ // ori d,d,lo16(sym)
+ const MCSymbolRefExpr *HighestExpr = MCSymbolRefExpr::create(
+ &Symbol->getSymbol(), MCSymbolRefExpr::VK_Mips_HIGHEST, getContext());
+ const MCSymbolRefExpr *HigherExpr = MCSymbolRefExpr::create(
+ &Symbol->getSymbol(), MCSymbolRefExpr::VK_Mips_HIGHER, getContext());
+
+ tmpInst.setOpcode(Mips::LUi);
+ tmpInst.addOperand(MCOperand::createReg(TmpReg));
+ tmpInst.addOperand(MCOperand::createExpr(HighestExpr));
+ Instructions.push_back(tmpInst);
+
+ createLShiftOri<0>(MCOperand::createExpr(HigherExpr), TmpReg, SMLoc(),
+ Instructions);
+ createLShiftOri<16>(MCOperand::createExpr(HiExpr), TmpReg, SMLoc(),
+ Instructions);
+ createLShiftOri<16>(MCOperand::createExpr(LoExpr), TmpReg, SMLoc(),
+ Instructions);
+ } else {
+ // Otherwise, expand to:
+ // la d,sym => lui d,hi16(sym)
+ // ori d,d,lo16(sym)
+ tmpInst.setOpcode(Mips::LUi);
+ tmpInst.addOperand(MCOperand::createReg(TmpReg));
+ tmpInst.addOperand(MCOperand::createExpr(HiExpr));
+ Instructions.push_back(tmpInst);
+
+ emitRRX(Mips::ADDiu, TmpReg, TmpReg, MCOperand::createExpr(LoExpr), SMLoc(),
+ Instructions);
+ }
+
+ if (UseSrcReg)
+ createAddu(DstReg, TmpReg, SrcReg, !Is32BitSym, Instructions);
+
+ return false;
+}
+
+bool MipsAsmParser::expandUncondBranchMMPseudo(
+ MCInst &Inst, SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) {
+ assert(getInstDesc(Inst.getOpcode()).getNumOperands() == 1 &&
+ "unexpected number of operands");
+
+ MCOperand Offset = Inst.getOperand(0);
+ if (Offset.isExpr()) {
+ Inst.clear();
+ Inst.setOpcode(Mips::BEQ_MM);
+ Inst.addOperand(MCOperand::createReg(Mips::ZERO));
+ Inst.addOperand(MCOperand::createReg(Mips::ZERO));
+ Inst.addOperand(MCOperand::createExpr(Offset.getExpr()));
+ } else {
+ assert(Offset.isImm() && "expected immediate operand kind");
+ if (isIntN(11, Offset.getImm())) {
+ // If offset fits into 11 bits then this instruction becomes microMIPS
+ // 16-bit unconditional branch instruction.
+ Inst.setOpcode(Mips::B16_MM);
+ } else {
+ if (!isIntN(17, Offset.getImm()))
+ Error(IDLoc, "branch target out of range");
+ if (OffsetToAlignment(Offset.getImm(), 1LL << 1))
+ Error(IDLoc, "branch to misaligned address");
+ Inst.clear();
+ Inst.setOpcode(Mips::BEQ_MM);
+ Inst.addOperand(MCOperand::createReg(Mips::ZERO));
+ Inst.addOperand(MCOperand::createReg(Mips::ZERO));
+ Inst.addOperand(MCOperand::createImm(Offset.getImm()));
+ }
+ }
+ Instructions.push_back(Inst);
+
+ // If .set reorder is active, emit a NOP after the branch instruction.
+ if (AssemblerOptions.back()->isReorder())
+ createNop(true, IDLoc, Instructions);
+
+ return false;
+}
+
+bool MipsAsmParser::expandBranchImm(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ const MCOperand &DstRegOp = Inst.getOperand(0);
+ assert(DstRegOp.isReg() && "expected register operand kind");
+
+ const MCOperand &ImmOp = Inst.getOperand(1);
+ assert(ImmOp.isImm() && "expected immediate operand kind");
+
+ const MCOperand &MemOffsetOp = Inst.getOperand(2);
+ assert(MemOffsetOp.isImm() && "expected immediate operand kind");
+
+ unsigned OpCode = 0;
+ switch(Inst.getOpcode()) {
+ case Mips::BneImm:
+ OpCode = Mips::BNE;
+ break;
+ case Mips::BeqImm:
+ OpCode = Mips::BEQ;
+ break;
+ default:
+ llvm_unreachable("Unknown immediate branch pseudo-instruction.");
+ break;
+ }
+
+ int64_t ImmValue = ImmOp.getImm();
+ if (ImmValue == 0) {
+ MCInst BranchInst;
+ BranchInst.setOpcode(OpCode);
+ BranchInst.addOperand(DstRegOp);
+ BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ BranchInst.addOperand(MemOffsetOp);
+ Instructions.push_back(BranchInst);
+ } else {
+ warnIfNoMacro(IDLoc);
+
+ unsigned ATReg = getATReg(IDLoc);
+ if (!ATReg)
+ return true;
+
+ if (loadImmediate(ImmValue, ATReg, Mips::NoRegister, !isGP64bit(), IDLoc,
+ Instructions))
+ return true;
+
+ MCInst BranchInst;
+ BranchInst.setOpcode(OpCode);
+ BranchInst.addOperand(DstRegOp);
+ BranchInst.addOperand(MCOperand::createReg(ATReg));
+ BranchInst.addOperand(MemOffsetOp);
+ Instructions.push_back(BranchInst);
+ }
+ return false;
+}
+
+void MipsAsmParser::expandMemInst(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions,
+ bool isLoad, bool isImmOpnd) {
+ MCInst TempInst;
+ unsigned ImmOffset, HiOffset, LoOffset;
+ const MCExpr *ExprOffset;
+ unsigned TmpRegNum;
+ // 1st operand is either the source or destination register.
+ assert(Inst.getOperand(0).isReg() && "expected register operand kind");
+ unsigned RegOpNum = Inst.getOperand(0).getReg();
+ // 2nd operand is the base register.
+ assert(Inst.getOperand(1).isReg() && "expected register operand kind");
+ unsigned BaseRegNum = Inst.getOperand(1).getReg();
+ // 3rd operand is either an immediate or expression.
+ if (isImmOpnd) {
+ assert(Inst.getOperand(2).isImm() && "expected immediate operand kind");
+ ImmOffset = Inst.getOperand(2).getImm();
+ LoOffset = ImmOffset & 0x0000ffff;
+ HiOffset = (ImmOffset & 0xffff0000) >> 16;
+ // If msb of LoOffset is 1(negative number) we must increment HiOffset.
+ if (LoOffset & 0x8000)
+ HiOffset++;
+ } else
+ ExprOffset = Inst.getOperand(2).getExpr();
+ // All instructions will have the same location.
+ TempInst.setLoc(IDLoc);
+ // These are some of the types of expansions we perform here:
+ // 1) lw $8, sym => lui $8, %hi(sym)
+ // lw $8, %lo(sym)($8)
+ // 2) lw $8, offset($9) => lui $8, %hi(offset)
+ // add $8, $8, $9
+ // lw $8, %lo(offset)($9)
+ // 3) lw $8, offset($8) => lui $at, %hi(offset)
+ // add $at, $at, $8
+ // lw $8, %lo(offset)($at)
+ // 4) sw $8, sym => lui $at, %hi(sym)
+ // sw $8, %lo(sym)($at)
+ // 5) sw $8, offset($8) => lui $at, %hi(offset)
+ // add $at, $at, $8
+ // sw $8, %lo(offset)($at)
+ // 6) ldc1 $f0, sym => lui $at, %hi(sym)
+ // ldc1 $f0, %lo(sym)($at)
+ //
+ // For load instructions we can use the destination register as a temporary
+ // if base and dst are different (examples 1 and 2) and if the base register
+ // is general purpose otherwise we must use $at (example 6) and error if it's
+ // not available. For stores we must use $at (examples 4 and 5) because we
+ // must not clobber the source register setting up the offset.
+ const MCInstrDesc &Desc = getInstDesc(Inst.getOpcode());
+ int16_t RegClassOp0 = Desc.OpInfo[0].RegClass;
+ unsigned RegClassIDOp0 =
+ getContext().getRegisterInfo()->getRegClass(RegClassOp0).getID();
+ bool IsGPR = (RegClassIDOp0 == Mips::GPR32RegClassID) ||
+ (RegClassIDOp0 == Mips::GPR64RegClassID);
+ if (isLoad && IsGPR && (BaseRegNum != RegOpNum))
+ TmpRegNum = RegOpNum;
+ else {
+ // At this point we need AT to perform the expansions and we exit if it is
+ // not available.
+ TmpRegNum = getATReg(IDLoc);
+ if (!TmpRegNum)
+ return;
+ }
+
+ TempInst.setOpcode(Mips::LUi);
+ TempInst.addOperand(MCOperand::createReg(TmpRegNum));
+ if (isImmOpnd)
+ TempInst.addOperand(MCOperand::createImm(HiOffset));
+ else {
+ const MCExpr *HiExpr = evaluateRelocExpr(ExprOffset, "hi");
+ TempInst.addOperand(MCOperand::createExpr(HiExpr));
+ }
+ // Add the instruction to the list.
+ Instructions.push_back(TempInst);
+ // Prepare TempInst for next instruction.
+ TempInst.clear();
+ // Add temp register to base.
+ if (BaseRegNum != Mips::ZERO) {
+ TempInst.setOpcode(Mips::ADDu);
+ TempInst.addOperand(MCOperand::createReg(TmpRegNum));
+ TempInst.addOperand(MCOperand::createReg(TmpRegNum));
+ TempInst.addOperand(MCOperand::createReg(BaseRegNum));
+ Instructions.push_back(TempInst);
+ TempInst.clear();
+ }
+ // And finally, create original instruction with low part
+ // of offset and new base.
+ TempInst.setOpcode(Inst.getOpcode());
+ TempInst.addOperand(MCOperand::createReg(RegOpNum));
+ TempInst.addOperand(MCOperand::createReg(TmpRegNum));
+ if (isImmOpnd)
+ TempInst.addOperand(MCOperand::createImm(LoOffset));
+ else {
+ const MCExpr *LoExpr = evaluateRelocExpr(ExprOffset, "lo");
+ TempInst.addOperand(MCOperand::createExpr(LoExpr));
+ }
+ Instructions.push_back(TempInst);
+ TempInst.clear();
+}
+
+bool
+MipsAsmParser::expandLoadStoreMultiple(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ unsigned OpNum = Inst.getNumOperands();
+ unsigned Opcode = Inst.getOpcode();
+ unsigned NewOpcode = Opcode == Mips::SWM_MM ? Mips::SWM32_MM : Mips::LWM32_MM;
+
+ assert (Inst.getOperand(OpNum - 1).isImm() &&
+ Inst.getOperand(OpNum - 2).isReg() &&
+ Inst.getOperand(OpNum - 3).isReg() && "Invalid instruction operand.");
+
+ if (OpNum < 8 && Inst.getOperand(OpNum - 1).getImm() <= 60 &&
+ Inst.getOperand(OpNum - 1).getImm() >= 0 &&
+ Inst.getOperand(OpNum - 2).getReg() == Mips::SP &&
+ Inst.getOperand(OpNum - 3).getReg() == Mips::RA)
+ // It can be implemented as SWM16 or LWM16 instruction.
+ NewOpcode = Opcode == Mips::SWM_MM ? Mips::SWM16_MM : Mips::LWM16_MM;
+
+ Inst.setOpcode(NewOpcode);
+ Instructions.push_back(Inst);
+ return false;
+}
+
+bool MipsAsmParser::expandCondBranches(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ unsigned PseudoOpcode = Inst.getOpcode();
+ unsigned SrcReg = Inst.getOperand(0).getReg();
+ unsigned TrgReg = Inst.getOperand(1).getReg();
+ const MCExpr *OffsetExpr = Inst.getOperand(2).getExpr();
+
+ unsigned ZeroSrcOpcode, ZeroTrgOpcode;
+ bool ReverseOrderSLT, IsUnsigned, AcceptsEquality;
+
+ switch (PseudoOpcode) {
+ case Mips::BLT:
+ case Mips::BLTU:
+ AcceptsEquality = false;
+ ReverseOrderSLT = false;
+ IsUnsigned = (PseudoOpcode == Mips::BLTU);
+ ZeroSrcOpcode = Mips::BGTZ;
+ ZeroTrgOpcode = Mips::BLTZ;
+ break;
+ case Mips::BLE:
+ case Mips::BLEU:
+ AcceptsEquality = true;
+ ReverseOrderSLT = true;
+ IsUnsigned = (PseudoOpcode == Mips::BLEU);
+ ZeroSrcOpcode = Mips::BGEZ;
+ ZeroTrgOpcode = Mips::BLEZ;
+ break;
+ case Mips::BGE:
+ case Mips::BGEU:
+ AcceptsEquality = true;
+ ReverseOrderSLT = false;
+ IsUnsigned = (PseudoOpcode == Mips::BGEU);
+ ZeroSrcOpcode = Mips::BLEZ;
+ ZeroTrgOpcode = Mips::BGEZ;
+ break;
+ case Mips::BGT:
+ case Mips::BGTU:
+ AcceptsEquality = false;
+ ReverseOrderSLT = true;
+ IsUnsigned = (PseudoOpcode == Mips::BGTU);
+ ZeroSrcOpcode = Mips::BLTZ;
+ ZeroTrgOpcode = Mips::BGTZ;
+ break;
+ default:
+ llvm_unreachable("unknown opcode for branch pseudo-instruction");
+ }
+
+ MCInst BranchInst;
+ bool IsTrgRegZero = (TrgReg == Mips::ZERO);
+ bool IsSrcRegZero = (SrcReg == Mips::ZERO);
+ if (IsSrcRegZero && IsTrgRegZero) {
+ // FIXME: All of these Opcode-specific if's are needed for compatibility
+ // with GAS' behaviour. However, they may not generate the most efficient
+ // code in some circumstances.
+ if (PseudoOpcode == Mips::BLT) {
+ BranchInst.setOpcode(Mips::BLTZ);
+ BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
+ Instructions.push_back(BranchInst);
+ return false;
+ }
+ if (PseudoOpcode == Mips::BLE) {
+ BranchInst.setOpcode(Mips::BLEZ);
+ BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
+ Instructions.push_back(BranchInst);
+ Warning(IDLoc, "branch is always taken");
+ return false;
+ }
+ if (PseudoOpcode == Mips::BGE) {
+ BranchInst.setOpcode(Mips::BGEZ);
+ BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
+ Instructions.push_back(BranchInst);
+ Warning(IDLoc, "branch is always taken");
+ return false;
+ }
+ if (PseudoOpcode == Mips::BGT) {
+ BranchInst.setOpcode(Mips::BGTZ);
+ BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
+ Instructions.push_back(BranchInst);
+ return false;
+ }
+ if (PseudoOpcode == Mips::BGTU) {
+ BranchInst.setOpcode(Mips::BNE);
+ BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
+ Instructions.push_back(BranchInst);
+ return false;
+ }
+ if (AcceptsEquality) {
+ // If both registers are $0 and the pseudo-branch accepts equality, it
+ // will always be taken, so we emit an unconditional branch.
+ BranchInst.setOpcode(Mips::BEQ);
+ BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
+ Instructions.push_back(BranchInst);
+ Warning(IDLoc, "branch is always taken");
+ return false;
+ }
+ // If both registers are $0 and the pseudo-branch does not accept
+ // equality, it will never be taken, so we don't have to emit anything.
+ return false;
+ }
+ if (IsSrcRegZero || IsTrgRegZero) {
+ if ((IsSrcRegZero && PseudoOpcode == Mips::BGTU) ||
+ (IsTrgRegZero && PseudoOpcode == Mips::BLTU)) {
+ // If the $rs is $0 and the pseudo-branch is BGTU (0 > x) or
+ // if the $rt is $0 and the pseudo-branch is BLTU (x < 0),
+ // the pseudo-branch will never be taken, so we don't emit anything.
+ // This only applies to unsigned pseudo-branches.
+ return false;
+ }
+ if ((IsSrcRegZero && PseudoOpcode == Mips::BLEU) ||
+ (IsTrgRegZero && PseudoOpcode == Mips::BGEU)) {
+ // If the $rs is $0 and the pseudo-branch is BLEU (0 <= x) or
+ // if the $rt is $0 and the pseudo-branch is BGEU (x >= 0),
+ // the pseudo-branch will always be taken, so we emit an unconditional
+ // branch.
+ // This only applies to unsigned pseudo-branches.
+ BranchInst.setOpcode(Mips::BEQ);
+ BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
+ Instructions.push_back(BranchInst);
+ Warning(IDLoc, "branch is always taken");
+ return false;
+ }
+ if (IsUnsigned) {
+ // If the $rs is $0 and the pseudo-branch is BLTU (0 < x) or
+ // if the $rt is $0 and the pseudo-branch is BGTU (x > 0),
+ // the pseudo-branch will be taken only when the non-zero register is
+ // different from 0, so we emit a BNEZ.
+ //
+ // If the $rs is $0 and the pseudo-branch is BGEU (0 >= x) or
+ // if the $rt is $0 and the pseudo-branch is BLEU (x <= 0),
+ // the pseudo-branch will be taken only when the non-zero register is
+ // equal to 0, so we emit a BEQZ.
+ //
+ // Because only BLEU and BGEU branch on equality, we can use the
+ // AcceptsEquality variable to decide when to emit the BEQZ.
+ BranchInst.setOpcode(AcceptsEquality ? Mips::BEQ : Mips::BNE);
+ BranchInst.addOperand(
+ MCOperand::createReg(IsSrcRegZero ? TrgReg : SrcReg));
+ BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
+ Instructions.push_back(BranchInst);
+ return false;
+ }
+ // If we have a signed pseudo-branch and one of the registers is $0,
+ // we can use an appropriate compare-to-zero branch. We select which one
+ // to use in the switch statement above.
+ BranchInst.setOpcode(IsSrcRegZero ? ZeroSrcOpcode : ZeroTrgOpcode);
+ BranchInst.addOperand(MCOperand::createReg(IsSrcRegZero ? TrgReg : SrcReg));
+ BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
+ Instructions.push_back(BranchInst);
+ return false;
+ }
+
+ // If neither the SrcReg nor the TrgReg are $0, we need AT to perform the
+ // expansions. If it is not available, we return.
+ unsigned ATRegNum = getATReg(IDLoc);
+ if (!ATRegNum)
+ return true;
+
+ warnIfNoMacro(IDLoc);
+
+ // SLT fits well with 2 of our 4 pseudo-branches:
+ // BLT, where $rs < $rt, translates into "slt $at, $rs, $rt" and
+ // BGT, where $rs > $rt, translates into "slt $at, $rt, $rs".
+ // If the result of the SLT is 1, we branch, and if it's 0, we don't.
+ // This is accomplished by using a BNEZ with the result of the SLT.
+ //
+ // The other 2 pseudo-branches are opposites of the above 2 (BGE with BLT
+ // and BLE with BGT), so we change the BNEZ into a a BEQZ.
+ // Because only BGE and BLE branch on equality, we can use the
+ // AcceptsEquality variable to decide when to emit the BEQZ.
+ // Note that the order of the SLT arguments doesn't change between
+ // opposites.
+ //
+ // The same applies to the unsigned variants, except that SLTu is used
+ // instead of SLT.
+ MCInst SetInst;
+ SetInst.setOpcode(IsUnsigned ? Mips::SLTu : Mips::SLT);
+ SetInst.addOperand(MCOperand::createReg(ATRegNum));
+ SetInst.addOperand(MCOperand::createReg(ReverseOrderSLT ? TrgReg : SrcReg));
+ SetInst.addOperand(MCOperand::createReg(ReverseOrderSLT ? SrcReg : TrgReg));
+ Instructions.push_back(SetInst);
+
+ BranchInst.setOpcode(AcceptsEquality ? Mips::BEQ : Mips::BNE);
+ BranchInst.addOperand(MCOperand::createReg(ATRegNum));
+ BranchInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ BranchInst.addOperand(MCOperand::createExpr(OffsetExpr));
+ Instructions.push_back(BranchInst);
+ return false;
+}
+
+bool MipsAsmParser::expandUlhu(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ if (hasMips32r6() || hasMips64r6()) {
+ Error(IDLoc, "instruction not supported on mips32r6 or mips64r6");
+ return false;
+ }
+
+ warnIfNoMacro(IDLoc);
+
+ const MCOperand &DstRegOp = Inst.getOperand(0);
+ assert(DstRegOp.isReg() && "expected register operand kind");
+
+ const MCOperand &SrcRegOp = Inst.getOperand(1);
+ assert(SrcRegOp.isReg() && "expected register operand kind");
+
+ const MCOperand &OffsetImmOp = Inst.getOperand(2);
+ assert(OffsetImmOp.isImm() && "expected immediate operand kind");
+
+ unsigned DstReg = DstRegOp.getReg();
+ unsigned SrcReg = SrcRegOp.getReg();
+ int64_t OffsetValue = OffsetImmOp.getImm();
+
+ // NOTE: We always need AT for ULHU, as it is always used as the source
+ // register for one of the LBu's.
+ unsigned ATReg = getATReg(IDLoc);
+ if (!ATReg)
+ return true;
+
+ // When the value of offset+1 does not fit in 16 bits, we have to load the
+ // offset in AT, (D)ADDu the original source register (if there was one), and
+ // then use AT as the source register for the 2 generated LBu's.
+ bool LoadedOffsetInAT = false;
+ if (!isInt<16>(OffsetValue + 1) || !isInt<16>(OffsetValue)) {
+ LoadedOffsetInAT = true;
+
+ if (loadImmediate(OffsetValue, ATReg, Mips::NoRegister, !ABI.ArePtrs64bit(),
+ IDLoc, Instructions))
+ return true;
+
+ // NOTE: We do this (D)ADDu here instead of doing it in loadImmediate()
+ // because it will make our output more similar to GAS'. For example,
+ // generating an "ori $1, $zero, 32768" followed by an "addu $1, $1, $9",
+ // instead of just an "ori $1, $9, 32768".
+ // NOTE: If there is no source register specified in the ULHU, the parser
+ // will interpret it as $0.
+ if (SrcReg != Mips::ZERO && SrcReg != Mips::ZERO_64)
+ createAddu(ATReg, ATReg, SrcReg, ABI.ArePtrs64bit(), Instructions);
+ }
+
+ unsigned FirstLbuDstReg = LoadedOffsetInAT ? DstReg : ATReg;
+ unsigned SecondLbuDstReg = LoadedOffsetInAT ? ATReg : DstReg;
+ unsigned LbuSrcReg = LoadedOffsetInAT ? ATReg : SrcReg;
+
+ int64_t FirstLbuOffset = 0, SecondLbuOffset = 0;
+ if (isLittle()) {
+ FirstLbuOffset = LoadedOffsetInAT ? 1 : (OffsetValue + 1);
+ SecondLbuOffset = LoadedOffsetInAT ? 0 : OffsetValue;
+ } else {
+ FirstLbuOffset = LoadedOffsetInAT ? 0 : OffsetValue;
+ SecondLbuOffset = LoadedOffsetInAT ? 1 : (OffsetValue + 1);
+ }
+
+ unsigned SllReg = LoadedOffsetInAT ? DstReg : ATReg;
+
+ MCInst TmpInst;
+ TmpInst.setOpcode(Mips::LBu);
+ TmpInst.addOperand(MCOperand::createReg(FirstLbuDstReg));
+ TmpInst.addOperand(MCOperand::createReg(LbuSrcReg));
+ TmpInst.addOperand(MCOperand::createImm(FirstLbuOffset));
+ Instructions.push_back(TmpInst);
+
+ TmpInst.clear();
+ TmpInst.setOpcode(Mips::LBu);
+ TmpInst.addOperand(MCOperand::createReg(SecondLbuDstReg));
+ TmpInst.addOperand(MCOperand::createReg(LbuSrcReg));
+ TmpInst.addOperand(MCOperand::createImm(SecondLbuOffset));
+ Instructions.push_back(TmpInst);
+
+ TmpInst.clear();
+ TmpInst.setOpcode(Mips::SLL);
+ TmpInst.addOperand(MCOperand::createReg(SllReg));
+ TmpInst.addOperand(MCOperand::createReg(SllReg));
+ TmpInst.addOperand(MCOperand::createImm(8));
+ Instructions.push_back(TmpInst);
+
+ TmpInst.clear();
+ TmpInst.setOpcode(Mips::OR);
+ TmpInst.addOperand(MCOperand::createReg(DstReg));
+ TmpInst.addOperand(MCOperand::createReg(DstReg));
+ TmpInst.addOperand(MCOperand::createReg(ATReg));
+ Instructions.push_back(TmpInst);
+
+ return false;
+}
+
+bool MipsAsmParser::expandUlw(MCInst &Inst, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ if (hasMips32r6() || hasMips64r6()) {
+ Error(IDLoc, "instruction not supported on mips32r6 or mips64r6");
+ return false;
+ }
+
+ const MCOperand &DstRegOp = Inst.getOperand(0);
+ assert(DstRegOp.isReg() && "expected register operand kind");
+
+ const MCOperand &SrcRegOp = Inst.getOperand(1);
+ assert(SrcRegOp.isReg() && "expected register operand kind");
+
+ const MCOperand &OffsetImmOp = Inst.getOperand(2);
+ assert(OffsetImmOp.isImm() && "expected immediate operand kind");
+
+ unsigned SrcReg = SrcRegOp.getReg();
+ int64_t OffsetValue = OffsetImmOp.getImm();
+ unsigned ATReg = 0;
+
+ // When the value of offset+3 does not fit in 16 bits, we have to load the
+ // offset in AT, (D)ADDu the original source register (if there was one), and
+ // then use AT as the source register for the generated LWL and LWR.
+ bool LoadedOffsetInAT = false;
+ if (!isInt<16>(OffsetValue + 3) || !isInt<16>(OffsetValue)) {
+ ATReg = getATReg(IDLoc);
+ if (!ATReg)
+ return true;
+ LoadedOffsetInAT = true;
+
+ warnIfNoMacro(IDLoc);
+
+ if (loadImmediate(OffsetValue, ATReg, Mips::NoRegister, !ABI.ArePtrs64bit(),
+ IDLoc, Instructions))
+ return true;
+
+ // NOTE: We do this (D)ADDu here instead of doing it in loadImmediate()
+ // because it will make our output more similar to GAS'. For example,
+ // generating an "ori $1, $zero, 32768" followed by an "addu $1, $1, $9",
+ // instead of just an "ori $1, $9, 32768".
+ // NOTE: If there is no source register specified in the ULW, the parser
+ // will interpret it as $0.
+ if (SrcReg != Mips::ZERO && SrcReg != Mips::ZERO_64)
+ createAddu(ATReg, ATReg, SrcReg, ABI.ArePtrs64bit(), Instructions);
+ }
+
+ unsigned FinalSrcReg = LoadedOffsetInAT ? ATReg : SrcReg;
+ int64_t LeftLoadOffset = 0, RightLoadOffset = 0;
+ if (isLittle()) {
+ LeftLoadOffset = LoadedOffsetInAT ? 3 : (OffsetValue + 3);
+ RightLoadOffset = LoadedOffsetInAT ? 0 : OffsetValue;
+ } else {
+ LeftLoadOffset = LoadedOffsetInAT ? 0 : OffsetValue;
+ RightLoadOffset = LoadedOffsetInAT ? 3 : (OffsetValue + 3);
+ }
+
+ MCInst LeftLoadInst;
+ LeftLoadInst.setOpcode(Mips::LWL);
+ LeftLoadInst.addOperand(DstRegOp);
+ LeftLoadInst.addOperand(MCOperand::createReg(FinalSrcReg));
+ LeftLoadInst.addOperand(MCOperand::createImm(LeftLoadOffset));
+ Instructions.push_back(LeftLoadInst);
+
+ MCInst RightLoadInst;
+ RightLoadInst.setOpcode(Mips::LWR);
+ RightLoadInst.addOperand(DstRegOp);
+ RightLoadInst.addOperand(MCOperand::createReg(FinalSrcReg));
+ RightLoadInst.addOperand(MCOperand::createImm(RightLoadOffset ));
+ Instructions.push_back(RightLoadInst);
+
+ return false;
+}
+
+void MipsAsmParser::createNop(bool hasShortDelaySlot, SMLoc IDLoc,
+ SmallVectorImpl<MCInst> &Instructions) {
+ MCInst NopInst;
+ if (hasShortDelaySlot) {
+ NopInst.setOpcode(Mips::MOVE16_MM);
+ NopInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ NopInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ } else {
+ NopInst.setOpcode(Mips::SLL);
+ NopInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ NopInst.addOperand(MCOperand::createReg(Mips::ZERO));
+ NopInst.addOperand(MCOperand::createImm(0));
+ }
+ Instructions.push_back(NopInst);
+}
+
+void MipsAsmParser::createAddu(unsigned DstReg, unsigned SrcReg,
+ unsigned TrgReg, bool Is64Bit,
+ SmallVectorImpl<MCInst> &Instructions) {
+ emitRRR(Is64Bit ? Mips::DADDu : Mips::ADDu, DstReg, SrcReg, TrgReg, SMLoc(),
+ Instructions);
+}
+
+unsigned MipsAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
+ // As described by the Mips32r2 spec, the registers Rd and Rs for
+ // jalr.hb must be different.
+ unsigned Opcode = Inst.getOpcode();
+
+ if (Opcode == Mips::JALR_HB &&
+ (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()))
+ return Match_RequiresDifferentSrcAndDst;
+
+ return Match_Success;
+}
+
+bool MipsAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) {
+
+ MCInst Inst;
+ SmallVector<MCInst, 8> Instructions;
+ unsigned MatchResult =
+ MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm);
+
+ switch (MatchResult) {
+ case Match_Success: {
+ if (processInstruction(Inst, IDLoc, Instructions))
+ return true;
+ for (unsigned i = 0; i < Instructions.size(); i++)
+ Out.EmitInstruction(Instructions[i], STI);
+ return false;
+ }
+ case Match_MissingFeature:
+ Error(IDLoc, "instruction requires a CPU feature not currently enabled");
+ return true;
+ case Match_InvalidOperand: {
+ SMLoc ErrorLoc = IDLoc;
+ if (ErrorInfo != ~0ULL) {
+ if (ErrorInfo >= Operands.size())
+ return Error(IDLoc, "too few operands for instruction");
+
+ ErrorLoc = ((MipsOperand &)*Operands[ErrorInfo]).getStartLoc();
+ if (ErrorLoc == SMLoc())
+ ErrorLoc = IDLoc;
+ }
+
+ return Error(ErrorLoc, "invalid operand for instruction");
+ }
+ case Match_MnemonicFail:
+ return Error(IDLoc, "invalid instruction");
+ case Match_RequiresDifferentSrcAndDst:
+ return Error(IDLoc, "source and destination must be different");
+ }
+
+ llvm_unreachable("Implement any new match types added!");
+}
+
+void MipsAsmParser::warnIfRegIndexIsAT(unsigned RegIndex, SMLoc Loc) {
+ if (RegIndex != 0 && AssemblerOptions.back()->getATRegIndex() == RegIndex)
+ Warning(Loc, "used $at (currently $" + Twine(RegIndex) +
+ ") without \".set noat\"");
+}
+
+void MipsAsmParser::warnIfNoMacro(SMLoc Loc) {
+ if (!AssemblerOptions.back()->isMacro())
+ Warning(Loc, "macro instruction expanded into multiple instructions");
+}
+
+void
+MipsAsmParser::printWarningWithFixIt(const Twine &Msg, const Twine &FixMsg,
+ SMRange Range, bool ShowColors) {
+ getSourceManager().PrintMessage(Range.Start, SourceMgr::DK_Warning, Msg,
+ Range, SMFixIt(Range, FixMsg),
+ ShowColors);
+}
+
+int MipsAsmParser::matchCPURegisterName(StringRef Name) {
+ int CC;
+
+ CC = StringSwitch<unsigned>(Name)
+ .Case("zero", 0)
+ .Case("at", 1)
+ .Case("a0", 4)
+ .Case("a1", 5)
+ .Case("a2", 6)
+ .Case("a3", 7)
+ .Case("v0", 2)
+ .Case("v1", 3)
+ .Case("s0", 16)
+ .Case("s1", 17)
+ .Case("s2", 18)
+ .Case("s3", 19)
+ .Case("s4", 20)
+ .Case("s5", 21)
+ .Case("s6", 22)
+ .Case("s7", 23)
+ .Case("k0", 26)
+ .Case("k1", 27)
+ .Case("gp", 28)
+ .Case("sp", 29)
+ .Case("fp", 30)
+ .Case("s8", 30)
+ .Case("ra", 31)
+ .Case("t0", 8)
+ .Case("t1", 9)
+ .Case("t2", 10)
+ .Case("t3", 11)
+ .Case("t4", 12)
+ .Case("t5", 13)
+ .Case("t6", 14)
+ .Case("t7", 15)
+ .Case("t8", 24)
+ .Case("t9", 25)
+ .Default(-1);
+
+ if (!(isABI_N32() || isABI_N64()))
+ return CC;
+
+ if (12 <= CC && CC <= 15) {
+ // Name is one of t4-t7
+ AsmToken RegTok = getLexer().peekTok();
+ SMRange RegRange = RegTok.getLocRange();
+
+ StringRef FixedName = StringSwitch<StringRef>(Name)
+ .Case("t4", "t0")
+ .Case("t5", "t1")
+ .Case("t6", "t2")
+ .Case("t7", "t3")
+ .Default("");
+ assert(FixedName != "" && "Register name is not one of t4-t7.");
+
+ printWarningWithFixIt("register names $t4-$t7 are only available in O32.",
+ "Did you mean $" + FixedName + "?", RegRange);
+ }
+
+ // Although SGI documentation just cuts out t0-t3 for n32/n64,
+ // GNU pushes the values of t0-t3 to override the o32/o64 values for t4-t7
+ // We are supporting both cases, so for t0-t3 we'll just push them to t4-t7.
+ if (8 <= CC && CC <= 11)
+ CC += 4;
+
+ if (CC == -1)
+ CC = StringSwitch<unsigned>(Name)
+ .Case("a4", 8)
+ .Case("a5", 9)
+ .Case("a6", 10)
+ .Case("a7", 11)
+ .Case("kt0", 26)
+ .Case("kt1", 27)
+ .Default(-1);
+
+ return CC;
+}
+
+int MipsAsmParser::matchHWRegsRegisterName(StringRef Name) {
+ int CC;
+
+ CC = StringSwitch<unsigned>(Name)
+ .Case("hwr_cpunum", 0)
+ .Case("hwr_synci_step", 1)
+ .Case("hwr_cc", 2)
+ .Case("hwr_ccres", 3)
+ .Case("hwr_ulr", 29)
+ .Default(-1);
+
+ return CC;
+}
+
+int MipsAsmParser::matchFPURegisterName(StringRef Name) {
+
+ if (Name[0] == 'f') {
+ StringRef NumString = Name.substr(1);
+ unsigned IntVal;
+ if (NumString.getAsInteger(10, IntVal))
+ return -1; // This is not an integer.
+ if (IntVal > 31) // Maximum index for fpu register.
+ return -1;
+ return IntVal;
+ }
+ return -1;
+}
+
+int MipsAsmParser::matchFCCRegisterName(StringRef Name) {
+
+ if (Name.startswith("fcc")) {
+ StringRef NumString = Name.substr(3);
+ unsigned IntVal;
+ if (NumString.getAsInteger(10, IntVal))
+ return -1; // This is not an integer.
+ if (IntVal > 7) // There are only 8 fcc registers.
+ return -1;
+ return IntVal;
+ }
+ return -1;
+}
+
+int MipsAsmParser::matchACRegisterName(StringRef Name) {
+
+ if (Name.startswith("ac")) {
+ StringRef NumString = Name.substr(2);
+ unsigned IntVal;
+ if (NumString.getAsInteger(10, IntVal))
+ return -1; // This is not an integer.
+ if (IntVal > 3) // There are only 3 acc registers.
+ return -1;
+ return IntVal;
+ }
+ return -1;
+}
+
+int MipsAsmParser::matchMSA128RegisterName(StringRef Name) {
+ unsigned IntVal;
+
+ if (Name.front() != 'w' || Name.drop_front(1).getAsInteger(10, IntVal))
+ return -1;
+
+ if (IntVal > 31)
+ return -1;
+
+ return IntVal;
+}
+
+int MipsAsmParser::matchMSA128CtrlRegisterName(StringRef Name) {
+ int CC;
+
+ CC = StringSwitch<unsigned>(Name)
+ .Case("msair", 0)
+ .Case("msacsr", 1)
+ .Case("msaaccess", 2)
+ .Case("msasave", 3)
+ .Case("msamodify", 4)
+ .Case("msarequest", 5)
+ .Case("msamap", 6)
+ .Case("msaunmap", 7)
+ .Default(-1);
+
+ return CC;
+}
+
+unsigned MipsAsmParser::getATReg(SMLoc Loc) {
+ unsigned ATIndex = AssemblerOptions.back()->getATRegIndex();
+ if (ATIndex == 0) {
+ reportParseError(Loc,
+ "pseudo-instruction requires $at, which is not available");
+ return 0;
+ }
+ unsigned AT = getReg(
+ (isGP64bit()) ? Mips::GPR64RegClassID : Mips::GPR32RegClassID, ATIndex);
+ return AT;
+}
+
+unsigned MipsAsmParser::getReg(int RC, int RegNo) {
+ return *(getContext().getRegisterInfo()->getRegClass(RC).begin() + RegNo);
+}
+
+unsigned MipsAsmParser::getGPR(int RegNo) {
+ return getReg(isGP64bit() ? Mips::GPR64RegClassID : Mips::GPR32RegClassID,
+ RegNo);
+}
+
+int MipsAsmParser::matchRegisterByNumber(unsigned RegNum, unsigned RegClass) {
+ if (RegNum >
+ getContext().getRegisterInfo()->getRegClass(RegClass).getNumRegs() - 1)
+ return -1;
+
+ return getReg(RegClass, RegNum);
+}
+
+bool MipsAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
+ MCAsmParser &Parser = getParser();
+ DEBUG(dbgs() << "parseOperand\n");
+
+ // Check if the current operand has a custom associated parser, if so, try to
+ // custom parse the operand, or fallback to the general approach.
+ OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
+ if (ResTy == MatchOperand_Success)
+ return false;
+ // If there wasn't a custom match, try the generic matcher below. Otherwise,
+ // there was a match, but an error occurred, in which case, just return that
+ // the operand parsing failed.
+ if (ResTy == MatchOperand_ParseFail)
+ return true;
+
+ DEBUG(dbgs() << ".. Generic Parser\n");
+
+ switch (getLexer().getKind()) {
+ default:
+ Error(Parser.getTok().getLoc(), "unexpected token in operand");
+ return true;
+ case AsmToken::Dollar: {
+ // Parse the register.
+ SMLoc S = Parser.getTok().getLoc();
+
+ // Almost all registers have been parsed by custom parsers. There is only
+ // one exception to this. $zero (and it's alias $0) will reach this point
+ // for div, divu, and similar instructions because it is not an operand
+ // to the instruction definition but an explicit register. Special case
+ // this situation for now.
+ if (parseAnyRegister(Operands) != MatchOperand_NoMatch)
+ return false;
+
+ // Maybe it is a symbol reference.
+ StringRef Identifier;
+ if (Parser.parseIdentifier(Identifier))
+ return true;
+
+ SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ MCSymbol *Sym = getContext().getOrCreateSymbol("$" + Identifier);
+ // Otherwise create a symbol reference.
+ const MCExpr *Res =
+ MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
+
+ Operands.push_back(MipsOperand::CreateImm(Res, S, E, *this));
+ return false;
+ }
+ // Else drop to expression parsing.
+ case AsmToken::LParen:
+ case AsmToken::Minus:
+ case AsmToken::Plus:
+ case AsmToken::Integer:
+ case AsmToken::Tilde:
+ case AsmToken::String: {
+ DEBUG(dbgs() << ".. generic integer\n");
+ OperandMatchResultTy ResTy = parseImm(Operands);
+ return ResTy != MatchOperand_Success;
+ }
+ case AsmToken::Percent: {
+ // It is a symbol reference or constant expression.
+ const MCExpr *IdVal;
+ SMLoc S = Parser.getTok().getLoc(); // Start location of the operand.
+ if (parseRelocOperand(IdVal))
+ return true;
+
+ SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+
+ Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this));
+ return false;
+ } // case AsmToken::Percent
+ } // switch(getLexer().getKind())
+ return true;
+}
+
+const MCExpr *MipsAsmParser::evaluateRelocExpr(const MCExpr *Expr,
+ StringRef RelocStr) {
+ const MCExpr *Res;
+ // Check the type of the expression.
+ if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Expr)) {
+ // It's a constant, evaluate reloc value.
+ int16_t Val;
+ switch (getVariantKind(RelocStr)) {
+ case MCSymbolRefExpr::VK_Mips_ABS_LO:
+ // Get the 1st 16-bits.
+ Val = MCE->getValue() & 0xffff;
+ break;
+ case MCSymbolRefExpr::VK_Mips_ABS_HI:
+ // Get the 2nd 16-bits. Also add 1 if bit 15 is 1, to compensate for low
+ // 16 bits being negative.
+ Val = ((MCE->getValue() + 0x8000) >> 16) & 0xffff;
+ break;
+ case MCSymbolRefExpr::VK_Mips_HIGHER:
+ // Get the 3rd 16-bits.
+ Val = ((MCE->getValue() + 0x80008000LL) >> 32) & 0xffff;
+ break;
+ case MCSymbolRefExpr::VK_Mips_HIGHEST:
+ // Get the 4th 16-bits.
+ Val = ((MCE->getValue() + 0x800080008000LL) >> 48) & 0xffff;
+ break;
+ default:
+ report_fatal_error("unsupported reloc value");
+ }
+ return MCConstantExpr::create(Val, getContext());
+ }
+
+ if (const MCSymbolRefExpr *MSRE = dyn_cast<MCSymbolRefExpr>(Expr)) {
+ // It's a symbol, create a symbolic expression from the symbol.
+ const MCSymbol *Symbol = &MSRE->getSymbol();
+ MCSymbolRefExpr::VariantKind VK = getVariantKind(RelocStr);
+ Res = MCSymbolRefExpr::create(Symbol, VK, getContext());
+ return Res;
+ }
+
+ if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
+ MCSymbolRefExpr::VariantKind VK = getVariantKind(RelocStr);
+
+ // Try to create target expression.
+ if (MipsMCExpr::isSupportedBinaryExpr(VK, BE))
+ return MipsMCExpr::create(VK, Expr, getContext());
+
+ const MCExpr *LExp = evaluateRelocExpr(BE->getLHS(), RelocStr);
+ const MCExpr *RExp = evaluateRelocExpr(BE->getRHS(), RelocStr);
+ Res = MCBinaryExpr::create(BE->getOpcode(), LExp, RExp, getContext());
+ return Res;
+ }
+
+ if (const MCUnaryExpr *UN = dyn_cast<MCUnaryExpr>(Expr)) {
+ const MCExpr *UnExp = evaluateRelocExpr(UN->getSubExpr(), RelocStr);
+ Res = MCUnaryExpr::create(UN->getOpcode(), UnExp, getContext());
+ return Res;
+ }
+ // Just return the original expression.
+ return Expr;
+}
+
+bool MipsAsmParser::isEvaluated(const MCExpr *Expr) {
+
+ switch (Expr->getKind()) {
+ case MCExpr::Constant:
+ return true;
+ case MCExpr::SymbolRef:
+ return (cast<MCSymbolRefExpr>(Expr)->getKind() != MCSymbolRefExpr::VK_None);
+ case MCExpr::Binary:
+ if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) {
+ if (!isEvaluated(BE->getLHS()))
+ return false;
+ return isEvaluated(BE->getRHS());
+ }
+ case MCExpr::Unary:
+ return isEvaluated(cast<MCUnaryExpr>(Expr)->getSubExpr());
+ case MCExpr::Target:
+ return true;
+ }
+ return false;
+}
+
+bool MipsAsmParser::parseRelocOperand(const MCExpr *&Res) {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex(); // Eat the % token.
+ const AsmToken &Tok = Parser.getTok(); // Get next token, operation.
+ if (Tok.isNot(AsmToken::Identifier))
+ return true;
+
+ std::string Str = Tok.getIdentifier();
+
+ Parser.Lex(); // Eat the identifier.
+ // Now make an expression from the rest of the operand.
+ const MCExpr *IdVal;
+ SMLoc EndLoc;
+
+ if (getLexer().getKind() == AsmToken::LParen) {
+ while (1) {
+ Parser.Lex(); // Eat the '(' token.
+ if (getLexer().getKind() == AsmToken::Percent) {
+ Parser.Lex(); // Eat the % token.
+ const AsmToken &nextTok = Parser.getTok();
+ if (nextTok.isNot(AsmToken::Identifier))
+ return true;
+ Str += "(%";
+ Str += nextTok.getIdentifier();
+ Parser.Lex(); // Eat the identifier.
+ if (getLexer().getKind() != AsmToken::LParen)
+ return true;
+ } else
+ break;
+ }
+ if (getParser().parseParenExpression(IdVal, EndLoc))
+ return true;
+
+ while (getLexer().getKind() == AsmToken::RParen)
+ Parser.Lex(); // Eat the ')' token.
+
+ } else
+ return true; // Parenthesis must follow the relocation operand.
+
+ Res = evaluateRelocExpr(IdVal, Str);
+ return false;
+}
+
+bool MipsAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
+ SMLoc &EndLoc) {
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
+ OperandMatchResultTy ResTy = parseAnyRegister(Operands);
+ if (ResTy == MatchOperand_Success) {
+ assert(Operands.size() == 1);
+ MipsOperand &Operand = static_cast<MipsOperand &>(*Operands.front());
+ StartLoc = Operand.getStartLoc();
+ EndLoc = Operand.getEndLoc();
+
+ // AFAIK, we only support numeric registers and named GPR's in CFI
+ // directives.
+ // Don't worry about eating tokens before failing. Using an unrecognised
+ // register is a parse error.
+ if (Operand.isGPRAsmReg()) {
+ // Resolve to GPR32 or GPR64 appropriately.
+ RegNo = isGP64bit() ? Operand.getGPR64Reg() : Operand.getGPR32Reg();
+ }
+
+ return (RegNo == (unsigned)-1);
+ }
+
+ assert(Operands.size() == 0);
+ return (RegNo == (unsigned)-1);
+}
+
+bool MipsAsmParser::parseMemOffset(const MCExpr *&Res, bool isParenExpr) {
+ MCAsmParser &Parser = getParser();
+ SMLoc S;
+ bool Result = true;
+ unsigned NumOfLParen = 0;
+
+ while (getLexer().getKind() == AsmToken::LParen) {
+ Parser.Lex();
+ ++NumOfLParen;
+ }
+
+ switch (getLexer().getKind()) {
+ default:
+ return true;
+ case AsmToken::Identifier:
+ case AsmToken::LParen:
+ case AsmToken::Integer:
+ case AsmToken::Minus:
+ case AsmToken::Plus:
+ if (isParenExpr)
+ Result = getParser().parseParenExprOfDepth(NumOfLParen, Res, S);
+ else
+ Result = (getParser().parseExpression(Res));
+ while (getLexer().getKind() == AsmToken::RParen)
+ Parser.Lex();
+ break;
+ case AsmToken::Percent:
+ Result = parseRelocOperand(Res);
+ }
+ return Result;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::parseMemOperand(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ DEBUG(dbgs() << "parseMemOperand\n");
+ const MCExpr *IdVal = nullptr;
+ SMLoc S;
+ bool isParenExpr = false;
+ MipsAsmParser::OperandMatchResultTy Res = MatchOperand_NoMatch;
+ // First operand is the offset.
+ S = Parser.getTok().getLoc();
+
+ if (getLexer().getKind() == AsmToken::LParen) {
+ Parser.Lex();
+ isParenExpr = true;
+ }
+
+ if (getLexer().getKind() != AsmToken::Dollar) {
+ if (parseMemOffset(IdVal, isParenExpr))
+ return MatchOperand_ParseFail;
+
+ const AsmToken &Tok = Parser.getTok(); // Get the next token.
+ if (Tok.isNot(AsmToken::LParen)) {
+ MipsOperand &Mnemonic = static_cast<MipsOperand &>(*Operands[0]);
+ if (Mnemonic.getToken() == "la") {
+ SMLoc E =
+ SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this));
+ return MatchOperand_Success;
+ }
+ if (Tok.is(AsmToken::EndOfStatement)) {
+ SMLoc E =
+ SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+
+ // Zero register assumed, add a memory operand with ZERO as its base.
+ // "Base" will be managed by k_Memory.
+ auto Base = MipsOperand::createGPRReg(0, getContext().getRegisterInfo(),
+ S, E, *this);
+ Operands.push_back(
+ MipsOperand::CreateMem(std::move(Base), IdVal, S, E, *this));
+ return MatchOperand_Success;
+ }
+ Error(Parser.getTok().getLoc(), "'(' expected");
+ return MatchOperand_ParseFail;
+ }
+
+ Parser.Lex(); // Eat the '(' token.
+ }
+
+ Res = parseAnyRegister(Operands);
+ if (Res != MatchOperand_Success)
+ return Res;
+
+ if (Parser.getTok().isNot(AsmToken::RParen)) {
+ Error(Parser.getTok().getLoc(), "')' expected");
+ return MatchOperand_ParseFail;
+ }
+
+ SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+
+ Parser.Lex(); // Eat the ')' token.
+
+ if (!IdVal)
+ IdVal = MCConstantExpr::create(0, getContext());
+
+ // Replace the register operand with the memory operand.
+ std::unique_ptr<MipsOperand> op(
+ static_cast<MipsOperand *>(Operands.back().release()));
+ // Remove the register from the operands.
+ // "op" will be managed by k_Memory.
+ Operands.pop_back();
+ // Add the memory operand.
+ if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(IdVal)) {
+ int64_t Imm;
+ if (IdVal->evaluateAsAbsolute(Imm))
+ IdVal = MCConstantExpr::create(Imm, getContext());
+ else if (BE->getLHS()->getKind() != MCExpr::SymbolRef)
+ IdVal = MCBinaryExpr::create(BE->getOpcode(), BE->getRHS(), BE->getLHS(),
+ getContext());
+ }
+
+ Operands.push_back(MipsOperand::CreateMem(std::move(op), IdVal, S, E, *this));
+ return MatchOperand_Success;
+}
+
+bool MipsAsmParser::searchSymbolAlias(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ MCSymbol *Sym = getContext().lookupSymbol(Parser.getTok().getIdentifier());
+ if (Sym) {
+ SMLoc S = Parser.getTok().getLoc();
+ const MCExpr *Expr;
+ if (Sym->isVariable())
+ Expr = Sym->getVariableValue();
+ else
+ return false;
+ if (Expr->getKind() == MCExpr::SymbolRef) {
+ const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
+ StringRef DefSymbol = Ref->getSymbol().getName();
+ if (DefSymbol.startswith("$")) {
+ OperandMatchResultTy ResTy =
+ matchAnyRegisterNameWithoutDollar(Operands, DefSymbol.substr(1), S);
+ if (ResTy == MatchOperand_Success) {
+ Parser.Lex();
+ return true;
+ } else if (ResTy == MatchOperand_ParseFail)
+ llvm_unreachable("Should never ParseFail");
+ return false;
+ }
+ } else if (Expr->getKind() == MCExpr::Constant) {
+ Parser.Lex();
+ const MCConstantExpr *Const = static_cast<const MCConstantExpr *>(Expr);
+ Operands.push_back(
+ MipsOperand::CreateImm(Const, S, Parser.getTok().getLoc(), *this));
+ return true;
+ }
+ }
+ return false;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::matchAnyRegisterNameWithoutDollar(OperandVector &Operands,
+ StringRef Identifier,
+ SMLoc S) {
+ int Index = matchCPURegisterName(Identifier);
+ if (Index != -1) {
+ Operands.push_back(MipsOperand::createGPRReg(
+ Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+ }
+
+ Index = matchHWRegsRegisterName(Identifier);
+ if (Index != -1) {
+ Operands.push_back(MipsOperand::createHWRegsReg(
+ Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+ }
+
+ Index = matchFPURegisterName(Identifier);
+ if (Index != -1) {
+ Operands.push_back(MipsOperand::createFGRReg(
+ Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+ }
+
+ Index = matchFCCRegisterName(Identifier);
+ if (Index != -1) {
+ Operands.push_back(MipsOperand::createFCCReg(
+ Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+ }
+
+ Index = matchACRegisterName(Identifier);
+ if (Index != -1) {
+ Operands.push_back(MipsOperand::createACCReg(
+ Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+ }
+
+ Index = matchMSA128RegisterName(Identifier);
+ if (Index != -1) {
+ Operands.push_back(MipsOperand::createMSA128Reg(
+ Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+ }
+
+ Index = matchMSA128CtrlRegisterName(Identifier);
+ if (Index != -1) {
+ Operands.push_back(MipsOperand::createMSACtrlReg(
+ Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+ }
+
+ return MatchOperand_NoMatch;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::matchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S) {
+ MCAsmParser &Parser = getParser();
+ auto Token = Parser.getLexer().peekTok(false);
+
+ if (Token.is(AsmToken::Identifier)) {
+ DEBUG(dbgs() << ".. identifier\n");
+ StringRef Identifier = Token.getIdentifier();
+ OperandMatchResultTy ResTy =
+ matchAnyRegisterNameWithoutDollar(Operands, Identifier, S);
+ return ResTy;
+ } else if (Token.is(AsmToken::Integer)) {
+ DEBUG(dbgs() << ".. integer\n");
+ Operands.push_back(MipsOperand::createNumericReg(
+ Token.getIntVal(), getContext().getRegisterInfo(), S, Token.getLoc(),
+ *this));
+ return MatchOperand_Success;
+ }
+
+ DEBUG(dbgs() << Parser.getTok().getKind() << "\n");
+
+ return MatchOperand_NoMatch;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::parseAnyRegister(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ DEBUG(dbgs() << "parseAnyRegister\n");
+
+ auto Token = Parser.getTok();
+
+ SMLoc S = Token.getLoc();
+
+ if (Token.isNot(AsmToken::Dollar)) {
+ DEBUG(dbgs() << ".. !$ -> try sym aliasing\n");
+ if (Token.is(AsmToken::Identifier)) {
+ if (searchSymbolAlias(Operands))
+ return MatchOperand_Success;
+ }
+ DEBUG(dbgs() << ".. !symalias -> NoMatch\n");
+ return MatchOperand_NoMatch;
+ }
+ DEBUG(dbgs() << ".. $\n");
+
+ OperandMatchResultTy ResTy = matchAnyRegisterWithoutDollar(Operands, S);
+ if (ResTy == MatchOperand_Success) {
+ Parser.Lex(); // $
+ Parser.Lex(); // identifier
+ }
+ return ResTy;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::parseImm(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ switch (getLexer().getKind()) {
+ default:
+ return MatchOperand_NoMatch;
+ case AsmToken::LParen:
+ case AsmToken::Minus:
+ case AsmToken::Plus:
+ case AsmToken::Integer:
+ case AsmToken::Tilde:
+ case AsmToken::String:
+ break;
+ }
+
+ const MCExpr *IdVal;
+ SMLoc S = Parser.getTok().getLoc();
+ if (getParser().parseExpression(IdVal))
+ return MatchOperand_ParseFail;
+
+ SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this));
+ return MatchOperand_Success;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::parseJumpTarget(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ DEBUG(dbgs() << "parseJumpTarget\n");
+
+ SMLoc S = getLexer().getLoc();
+
+ // Integers and expressions are acceptable
+ OperandMatchResultTy ResTy = parseImm(Operands);
+ if (ResTy != MatchOperand_NoMatch)
+ return ResTy;
+
+ // Registers are a valid target and have priority over symbols.
+ ResTy = parseAnyRegister(Operands);
+ if (ResTy != MatchOperand_NoMatch)
+ return ResTy;
+
+ const MCExpr *Expr = nullptr;
+ if (Parser.parseExpression(Expr)) {
+ // We have no way of knowing if a symbol was consumed so we must ParseFail
+ return MatchOperand_ParseFail;
+ }
+ Operands.push_back(
+ MipsOperand::CreateImm(Expr, S, getLexer().getLoc(), *this));
+ return MatchOperand_Success;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::parseInvNum(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ const MCExpr *IdVal;
+ // If the first token is '$' we may have register operand.
+ if (Parser.getTok().is(AsmToken::Dollar))
+ return MatchOperand_NoMatch;
+ SMLoc S = Parser.getTok().getLoc();
+ if (getParser().parseExpression(IdVal))
+ return MatchOperand_ParseFail;
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(IdVal);
+ assert(MCE && "Unexpected MCExpr type.");
+ int64_t Val = MCE->getValue();
+ SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
+ Operands.push_back(MipsOperand::CreateImm(
+ MCConstantExpr::create(0 - Val, getContext()), S, E, *this));
+ return MatchOperand_Success;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::parseLSAImm(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ switch (getLexer().getKind()) {
+ default:
+ return MatchOperand_NoMatch;
+ case AsmToken::LParen:
+ case AsmToken::Plus:
+ case AsmToken::Minus:
+ case AsmToken::Integer:
+ break;
+ }
+
+ const MCExpr *Expr;
+ SMLoc S = Parser.getTok().getLoc();
+
+ if (getParser().parseExpression(Expr))
+ return MatchOperand_ParseFail;
+
+ int64_t Val;
+ if (!Expr->evaluateAsAbsolute(Val)) {
+ Error(S, "expected immediate value");
+ return MatchOperand_ParseFail;
+ }
+
+ // The LSA instruction allows a 2-bit unsigned immediate. For this reason
+ // and because the CPU always adds one to the immediate field, the allowed
+ // range becomes 1..4. We'll only check the range here and will deal
+ // with the addition/subtraction when actually decoding/encoding
+ // the instruction.
+ if (Val < 1 || Val > 4) {
+ Error(S, "immediate not in range (1..4)");
+ return MatchOperand_ParseFail;
+ }
+
+ Operands.push_back(
+ MipsOperand::CreateImm(Expr, S, Parser.getTok().getLoc(), *this));
+ return MatchOperand_Success;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::parseRegisterList(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ SmallVector<unsigned, 10> Regs;
+ unsigned RegNo;
+ unsigned PrevReg = Mips::NoRegister;
+ bool RegRange = false;
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> TmpOperands;
+
+ if (Parser.getTok().isNot(AsmToken::Dollar))
+ return MatchOperand_ParseFail;
+
+ SMLoc S = Parser.getTok().getLoc();
+ while (parseAnyRegister(TmpOperands) == MatchOperand_Success) {
+ SMLoc E = getLexer().getLoc();
+ MipsOperand &Reg = static_cast<MipsOperand &>(*TmpOperands.back());
+ RegNo = isGP64bit() ? Reg.getGPR64Reg() : Reg.getGPR32Reg();
+ if (RegRange) {
+ // Remove last register operand because registers from register range
+ // should be inserted first.
+ if (RegNo == Mips::RA) {
+ Regs.push_back(RegNo);
+ } else {
+ unsigned TmpReg = PrevReg + 1;
+ while (TmpReg <= RegNo) {
+ if ((TmpReg < Mips::S0) || (TmpReg > Mips::S7)) {
+ Error(E, "invalid register operand");
+ return MatchOperand_ParseFail;
+ }
+
+ PrevReg = TmpReg;
+ Regs.push_back(TmpReg++);
+ }
+ }
+
+ RegRange = false;
+ } else {
+ if ((PrevReg == Mips::NoRegister) && (RegNo != Mips::S0) &&
+ (RegNo != Mips::RA)) {
+ Error(E, "$16 or $31 expected");
+ return MatchOperand_ParseFail;
+ } else if (((RegNo < Mips::S0) || (RegNo > Mips::S7)) &&
+ (RegNo != Mips::FP) && (RegNo != Mips::RA)) {
+ Error(E, "invalid register operand");
+ return MatchOperand_ParseFail;
+ } else if ((PrevReg != Mips::NoRegister) && (RegNo != PrevReg + 1) &&
+ (RegNo != Mips::FP) && (RegNo != Mips::RA)) {
+ Error(E, "consecutive register numbers expected");
+ return MatchOperand_ParseFail;
+ }
+
+ Regs.push_back(RegNo);
+ }
+
+ if (Parser.getTok().is(AsmToken::Minus))
+ RegRange = true;
+
+ if (!Parser.getTok().isNot(AsmToken::Minus) &&
+ !Parser.getTok().isNot(AsmToken::Comma)) {
+ Error(E, "',' or '-' expected");
+ return MatchOperand_ParseFail;
+ }
+
+ Lex(); // Consume comma or minus
+ if (Parser.getTok().isNot(AsmToken::Dollar))
+ break;
+
+ PrevReg = RegNo;
+ }
+
+ SMLoc E = Parser.getTok().getLoc();
+ Operands.push_back(MipsOperand::CreateRegList(Regs, S, E, *this));
+ parseMemOperand(Operands);
+ return MatchOperand_Success;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::parseRegisterPair(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+
+ SMLoc S = Parser.getTok().getLoc();
+ if (parseAnyRegister(Operands) != MatchOperand_Success)
+ return MatchOperand_ParseFail;
+
+ SMLoc E = Parser.getTok().getLoc();
+ MipsOperand &Op = static_cast<MipsOperand &>(*Operands.back());
+ unsigned Reg = Op.getGPR32Reg();
+ Operands.pop_back();
+ Operands.push_back(MipsOperand::CreateRegPair(Reg, S, E, *this));
+ return MatchOperand_Success;
+}
+
+MipsAsmParser::OperandMatchResultTy
+MipsAsmParser::parseMovePRegPair(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> TmpOperands;
+ SmallVector<unsigned, 10> Regs;
+
+ if (Parser.getTok().isNot(AsmToken::Dollar))
+ return MatchOperand_ParseFail;
+
+ SMLoc S = Parser.getTok().getLoc();
+
+ if (parseAnyRegister(TmpOperands) != MatchOperand_Success)
+ return MatchOperand_ParseFail;
+
+ MipsOperand *Reg = &static_cast<MipsOperand &>(*TmpOperands.back());
+ unsigned RegNo = isGP64bit() ? Reg->getGPR64Reg() : Reg->getGPR32Reg();
+ Regs.push_back(RegNo);
+
+ SMLoc E = Parser.getTok().getLoc();
+ if (Parser.getTok().isNot(AsmToken::Comma)) {
+ Error(E, "',' expected");
+ return MatchOperand_ParseFail;
+ }
+
+ // Remove comma.
+ Parser.Lex();
+
+ if (parseAnyRegister(TmpOperands) != MatchOperand_Success)
+ return MatchOperand_ParseFail;
+
+ Reg = &static_cast<MipsOperand &>(*TmpOperands.back());
+ RegNo = isGP64bit() ? Reg->getGPR64Reg() : Reg->getGPR32Reg();
+ Regs.push_back(RegNo);
+
+ Operands.push_back(MipsOperand::CreateRegList(Regs, S, E, *this));
+
+ return MatchOperand_Success;
+}
+
+MCSymbolRefExpr::VariantKind MipsAsmParser::getVariantKind(StringRef Symbol) {
+
+ MCSymbolRefExpr::VariantKind VK =
+ StringSwitch<MCSymbolRefExpr::VariantKind>(Symbol)
+ .Case("hi", MCSymbolRefExpr::VK_Mips_ABS_HI)
+ .Case("lo", MCSymbolRefExpr::VK_Mips_ABS_LO)
+ .Case("gp_rel", MCSymbolRefExpr::VK_Mips_GPREL)
+ .Case("call16", MCSymbolRefExpr::VK_Mips_GOT_CALL)
+ .Case("got", MCSymbolRefExpr::VK_Mips_GOT)
+ .Case("tlsgd", MCSymbolRefExpr::VK_Mips_TLSGD)
+ .Case("tlsldm", MCSymbolRefExpr::VK_Mips_TLSLDM)
+ .Case("dtprel_hi", MCSymbolRefExpr::VK_Mips_DTPREL_HI)
+ .Case("dtprel_lo", MCSymbolRefExpr::VK_Mips_DTPREL_LO)
+ .Case("gottprel", MCSymbolRefExpr::VK_Mips_GOTTPREL)
+ .Case("tprel_hi", MCSymbolRefExpr::VK_Mips_TPREL_HI)
+ .Case("tprel_lo", MCSymbolRefExpr::VK_Mips_TPREL_LO)
+ .Case("got_disp", MCSymbolRefExpr::VK_Mips_GOT_DISP)
+ .Case("got_page", MCSymbolRefExpr::VK_Mips_GOT_PAGE)
+ .Case("got_ofst", MCSymbolRefExpr::VK_Mips_GOT_OFST)
+ .Case("hi(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_HI)
+ .Case("lo(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_LO)
+ .Case("got_hi", MCSymbolRefExpr::VK_Mips_GOT_HI16)
+ .Case("got_lo", MCSymbolRefExpr::VK_Mips_GOT_LO16)
+ .Case("call_hi", MCSymbolRefExpr::VK_Mips_CALL_HI16)
+ .Case("call_lo", MCSymbolRefExpr::VK_Mips_CALL_LO16)
+ .Case("higher", MCSymbolRefExpr::VK_Mips_HIGHER)
+ .Case("highest", MCSymbolRefExpr::VK_Mips_HIGHEST)
+ .Case("pcrel_hi", MCSymbolRefExpr::VK_Mips_PCREL_HI16)
+ .Case("pcrel_lo", MCSymbolRefExpr::VK_Mips_PCREL_LO16)
+ .Default(MCSymbolRefExpr::VK_None);
+
+ assert(VK != MCSymbolRefExpr::VK_None);
+
+ return VK;
+}
+
+/// Sometimes (i.e. load/stores) the operand may be followed immediately by
+/// either this.
+/// ::= '(', register, ')'
+/// handle it before we iterate so we don't get tripped up by the lack of
+/// a comma.
+bool MipsAsmParser::parseParenSuffix(StringRef Name, OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ if (getLexer().is(AsmToken::LParen)) {
+ Operands.push_back(
+ MipsOperand::CreateToken("(", getLexer().getLoc(), *this));
+ Parser.Lex();
+ if (parseOperand(Operands, Name)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token in argument list");
+ }
+ if (Parser.getTok().isNot(AsmToken::RParen)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token, expected ')'");
+ }
+ Operands.push_back(
+ MipsOperand::CreateToken(")", getLexer().getLoc(), *this));
+ Parser.Lex();
+ }
+ return false;
+}
+
+/// Sometimes (i.e. in MSA) the operand may be followed immediately by
+/// either one of these.
+/// ::= '[', register, ']'
+/// ::= '[', integer, ']'
+/// handle it before we iterate so we don't get tripped up by the lack of
+/// a comma.
+bool MipsAsmParser::parseBracketSuffix(StringRef Name,
+ OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ if (getLexer().is(AsmToken::LBrac)) {
+ Operands.push_back(
+ MipsOperand::CreateToken("[", getLexer().getLoc(), *this));
+ Parser.Lex();
+ if (parseOperand(Operands, Name)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token in argument list");
+ }
+ if (Parser.getTok().isNot(AsmToken::RBrac)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token, expected ']'");
+ }
+ Operands.push_back(
+ MipsOperand::CreateToken("]", getLexer().getLoc(), *this));
+ Parser.Lex();
+ }
+ return false;
+}
+
+bool MipsAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ DEBUG(dbgs() << "ParseInstruction\n");
+
+ // We have reached first instruction, module directive are now forbidden.
+ getTargetStreamer().forbidModuleDirective();
+
+ // Check if we have valid mnemonic
+ if (!mnemonicIsValid(Name, 0)) {
+ Parser.eatToEndOfStatement();
+ return Error(NameLoc, "unknown instruction");
+ }
+ // First operand in MCInst is instruction mnemonic.
+ Operands.push_back(MipsOperand::CreateToken(Name, NameLoc, *this));
+
+ // Read the remaining operands.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ // Read the first operand.
+ if (parseOperand(Operands, Name)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token in argument list");
+ }
+ if (getLexer().is(AsmToken::LBrac) && parseBracketSuffix(Name, Operands))
+ return true;
+ // AFAIK, parenthesis suffixes are never on the first operand
+
+ while (getLexer().is(AsmToken::Comma)) {
+ Parser.Lex(); // Eat the comma.
+ // Parse and remember the operand.
+ if (parseOperand(Operands, Name)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token in argument list");
+ }
+ // Parse bracket and parenthesis suffixes before we iterate
+ if (getLexer().is(AsmToken::LBrac)) {
+ if (parseBracketSuffix(Name, Operands))
+ return true;
+ } else if (getLexer().is(AsmToken::LParen) &&
+ parseParenSuffix(Name, Operands))
+ return true;
+ }
+ }
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, "unexpected token in argument list");
+ }
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::reportParseError(Twine ErrorMsg) {
+ MCAsmParser &Parser = getParser();
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, ErrorMsg);
+}
+
+bool MipsAsmParser::reportParseError(SMLoc Loc, Twine ErrorMsg) {
+ return Error(Loc, ErrorMsg);
+}
+
+bool MipsAsmParser::parseSetNoAtDirective() {
+ MCAsmParser &Parser = getParser();
+ // Line should look like: ".set noat".
+
+ // Set the $at register to $0.
+ AssemblerOptions.back()->setATRegIndex(0);
+
+ Parser.Lex(); // Eat "noat".
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ getTargetStreamer().emitDirectiveSetNoAt();
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetAtDirective() {
+ // Line can be: ".set at", which sets $at to $1
+ // or ".set at=$reg", which sets $at to $reg.
+ MCAsmParser &Parser = getParser();
+ Parser.Lex(); // Eat "at".
+
+ if (getLexer().is(AsmToken::EndOfStatement)) {
+ // No register was specified, so we set $at to $1.
+ AssemblerOptions.back()->setATRegIndex(1);
+
+ getTargetStreamer().emitDirectiveSetAt();
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+ }
+
+ if (getLexer().isNot(AsmToken::Equal)) {
+ reportParseError("unexpected token, expected equals sign");
+ return false;
+ }
+ Parser.Lex(); // Eat "=".
+
+ if (getLexer().isNot(AsmToken::Dollar)) {
+ if (getLexer().is(AsmToken::EndOfStatement)) {
+ reportParseError("no register specified");
+ return false;
+ } else {
+ reportParseError("unexpected token, expected dollar sign '$'");
+ return false;
+ }
+ }
+ Parser.Lex(); // Eat "$".
+
+ // Find out what "reg" is.
+ unsigned AtRegNo;
+ const AsmToken &Reg = Parser.getTok();
+ if (Reg.is(AsmToken::Identifier)) {
+ AtRegNo = matchCPURegisterName(Reg.getIdentifier());
+ } else if (Reg.is(AsmToken::Integer)) {
+ AtRegNo = Reg.getIntVal();
+ } else {
+ reportParseError("unexpected token, expected identifier or integer");
+ return false;
+ }
+
+ // Check if $reg is a valid register. If it is, set $at to $reg.
+ if (!AssemblerOptions.back()->setATRegIndex(AtRegNo)) {
+ reportParseError("invalid register");
+ return false;
+ }
+ Parser.Lex(); // Eat "reg".
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ getTargetStreamer().emitDirectiveSetAtWithArg(AtRegNo);
+
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetReorderDirective() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+ AssemblerOptions.back()->setReorder();
+ getTargetStreamer().emitDirectiveSetReorder();
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetNoReorderDirective() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+ AssemblerOptions.back()->setNoReorder();
+ getTargetStreamer().emitDirectiveSetNoReorder();
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetMacroDirective() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+ AssemblerOptions.back()->setMacro();
+ getTargetStreamer().emitDirectiveSetMacro();
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetNoMacroDirective() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+ if (AssemblerOptions.back()->isReorder()) {
+ reportParseError("`noreorder' must be set before `nomacro'");
+ return false;
+ }
+ AssemblerOptions.back()->setNoMacro();
+ getTargetStreamer().emitDirectiveSetNoMacro();
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetMsaDirective() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return reportParseError("unexpected token, expected end of statement");
+
+ setFeatureBits(Mips::FeatureMSA, "msa");
+ getTargetStreamer().emitDirectiveSetMsa();
+ return false;
+}
+
+bool MipsAsmParser::parseSetNoMsaDirective() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return reportParseError("unexpected token, expected end of statement");
+
+ clearFeatureBits(Mips::FeatureMSA, "msa");
+ getTargetStreamer().emitDirectiveSetNoMsa();
+ return false;
+}
+
+bool MipsAsmParser::parseSetNoDspDirective() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex(); // Eat "nodsp".
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ clearFeatureBits(Mips::FeatureDSP, "dsp");
+ getTargetStreamer().emitDirectiveSetNoDsp();
+ return false;
+}
+
+bool MipsAsmParser::parseSetMips16Directive() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex(); // Eat "mips16".
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ setFeatureBits(Mips::FeatureMips16, "mips16");
+ getTargetStreamer().emitDirectiveSetMips16();
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetNoMips16Directive() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex(); // Eat "nomips16".
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ clearFeatureBits(Mips::FeatureMips16, "mips16");
+ getTargetStreamer().emitDirectiveSetNoMips16();
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetFpDirective() {
+ MCAsmParser &Parser = getParser();
+ MipsABIFlagsSection::FpABIKind FpAbiVal;
+ // Line can be: .set fp=32
+ // .set fp=xx
+ // .set fp=64
+ Parser.Lex(); // Eat fp token
+ AsmToken Tok = Parser.getTok();
+ if (Tok.isNot(AsmToken::Equal)) {
+ reportParseError("unexpected token, expected equals sign '='");
+ return false;
+ }
+ Parser.Lex(); // Eat '=' token.
+ Tok = Parser.getTok();
+
+ if (!parseFpABIValue(FpAbiVal, ".set"))
+ return false;
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+ getTargetStreamer().emitDirectiveSetFp(FpAbiVal);
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseSetOddSPRegDirective() {
+ MCAsmParser &Parser = getParser();
+
+ Parser.Lex(); // Eat "oddspreg".
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ clearFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
+ getTargetStreamer().emitDirectiveSetOddSPReg();
+ return false;
+}
+
+bool MipsAsmParser::parseSetNoOddSPRegDirective() {
+ MCAsmParser &Parser = getParser();
+
+ Parser.Lex(); // Eat "nooddspreg".
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ setFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
+ getTargetStreamer().emitDirectiveSetNoOddSPReg();
+ return false;
+}
+
+bool MipsAsmParser::parseSetPopDirective() {
+ MCAsmParser &Parser = getParser();
+ SMLoc Loc = getLexer().getLoc();
+
+ Parser.Lex();
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return reportParseError("unexpected token, expected end of statement");
+
+ // Always keep an element on the options "stack" to prevent the user
+ // from changing the initial options. This is how we remember them.
+ if (AssemblerOptions.size() == 2)
+ return reportParseError(Loc, ".set pop with no .set push");
+
+ AssemblerOptions.pop_back();
+ setAvailableFeatures(
+ ComputeAvailableFeatures(AssemblerOptions.back()->getFeatures()));
+ STI.setFeatureBits(AssemblerOptions.back()->getFeatures());
+
+ getTargetStreamer().emitDirectiveSetPop();
+ return false;
+}
+
+bool MipsAsmParser::parseSetPushDirective() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return reportParseError("unexpected token, expected end of statement");
+
+ // Create a copy of the current assembler options environment and push it.
+ AssemblerOptions.push_back(
+ make_unique<MipsAssemblerOptions>(AssemblerOptions.back().get()));
+
+ getTargetStreamer().emitDirectiveSetPush();
+ return false;
+}
+
+bool MipsAsmParser::parseSetSoftFloatDirective() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return reportParseError("unexpected token, expected end of statement");
+
+ setFeatureBits(Mips::FeatureSoftFloat, "soft-float");
+ getTargetStreamer().emitDirectiveSetSoftFloat();
+ return false;
+}
+
+bool MipsAsmParser::parseSetHardFloatDirective() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return reportParseError("unexpected token, expected end of statement");
+
+ clearFeatureBits(Mips::FeatureSoftFloat, "soft-float");
+ getTargetStreamer().emitDirectiveSetHardFloat();
+ return false;
+}
+
+bool MipsAsmParser::parseSetAssignment() {
+ StringRef Name;
+ const MCExpr *Value;
+ MCAsmParser &Parser = getParser();
+
+ if (Parser.parseIdentifier(Name))
+ reportParseError("expected identifier after .set");
+
+ if (getLexer().isNot(AsmToken::Comma))
+ return reportParseError("unexpected token, expected comma");
+ Lex(); // Eat comma
+
+ if (Parser.parseExpression(Value))
+ return reportParseError("expected valid expression after comma");
+
+ MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
+ Sym->setVariableValue(Value);
+
+ return false;
+}
+
+bool MipsAsmParser::parseSetMips0Directive() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return reportParseError("unexpected token, expected end of statement");
+
+ // Reset assembler options to their initial values.
+ setAvailableFeatures(
+ ComputeAvailableFeatures(AssemblerOptions.front()->getFeatures()));
+ STI.setFeatureBits(AssemblerOptions.front()->getFeatures());
+ AssemblerOptions.back()->setFeatures(AssemblerOptions.front()->getFeatures());
+
+ getTargetStreamer().emitDirectiveSetMips0();
+ return false;
+}
+
+bool MipsAsmParser::parseSetArchDirective() {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+ if (getLexer().isNot(AsmToken::Equal))
+ return reportParseError("unexpected token, expected equals sign");
+
+ Parser.Lex();
+ StringRef Arch;
+ if (Parser.parseIdentifier(Arch))
+ return reportParseError("expected arch identifier");
+
+ StringRef ArchFeatureName =
+ StringSwitch<StringRef>(Arch)
+ .Case("mips1", "mips1")
+ .Case("mips2", "mips2")
+ .Case("mips3", "mips3")
+ .Case("mips4", "mips4")
+ .Case("mips5", "mips5")
+ .Case("mips32", "mips32")
+ .Case("mips32r2", "mips32r2")
+ .Case("mips32r3", "mips32r3")
+ .Case("mips32r5", "mips32r5")
+ .Case("mips32r6", "mips32r6")
+ .Case("mips64", "mips64")
+ .Case("mips64r2", "mips64r2")
+ .Case("mips64r3", "mips64r3")
+ .Case("mips64r5", "mips64r5")
+ .Case("mips64r6", "mips64r6")
+ .Case("cnmips", "cnmips")
+ .Case("r4000", "mips3") // This is an implementation of Mips3.
+ .Default("");
+
+ if (ArchFeatureName.empty())
+ return reportParseError("unsupported architecture");
+
+ selectArch(ArchFeatureName);
+ getTargetStreamer().emitDirectiveSetArch(Arch);
+ return false;
+}
+
+bool MipsAsmParser::parseSetFeature(uint64_t Feature) {
+ MCAsmParser &Parser = getParser();
+ Parser.Lex();
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return reportParseError("unexpected token, expected end of statement");
+
+ switch (Feature) {
+ default:
+ llvm_unreachable("Unimplemented feature");
+ case Mips::FeatureDSP:
+ setFeatureBits(Mips::FeatureDSP, "dsp");
+ getTargetStreamer().emitDirectiveSetDsp();
+ break;
+ case Mips::FeatureMicroMips:
+ getTargetStreamer().emitDirectiveSetMicroMips();
+ break;
+ case Mips::FeatureMips1:
+ selectArch("mips1");
+ getTargetStreamer().emitDirectiveSetMips1();
+ break;
+ case Mips::FeatureMips2:
+ selectArch("mips2");
+ getTargetStreamer().emitDirectiveSetMips2();
+ break;
+ case Mips::FeatureMips3:
+ selectArch("mips3");
+ getTargetStreamer().emitDirectiveSetMips3();
+ break;
+ case Mips::FeatureMips4:
+ selectArch("mips4");
+ getTargetStreamer().emitDirectiveSetMips4();
+ break;
+ case Mips::FeatureMips5:
+ selectArch("mips5");
+ getTargetStreamer().emitDirectiveSetMips5();
+ break;
+ case Mips::FeatureMips32:
+ selectArch("mips32");
+ getTargetStreamer().emitDirectiveSetMips32();
+ break;
+ case Mips::FeatureMips32r2:
+ selectArch("mips32r2");
+ getTargetStreamer().emitDirectiveSetMips32R2();
+ break;
+ case Mips::FeatureMips32r3:
+ selectArch("mips32r3");
+ getTargetStreamer().emitDirectiveSetMips32R3();
+ break;
+ case Mips::FeatureMips32r5:
+ selectArch("mips32r5");
+ getTargetStreamer().emitDirectiveSetMips32R5();
+ break;
+ case Mips::FeatureMips32r6:
+ selectArch("mips32r6");
+ getTargetStreamer().emitDirectiveSetMips32R6();
+ break;
+ case Mips::FeatureMips64:
+ selectArch("mips64");
+ getTargetStreamer().emitDirectiveSetMips64();
+ break;
+ case Mips::FeatureMips64r2:
+ selectArch("mips64r2");
+ getTargetStreamer().emitDirectiveSetMips64R2();
+ break;
+ case Mips::FeatureMips64r3:
+ selectArch("mips64r3");
+ getTargetStreamer().emitDirectiveSetMips64R3();
+ break;
+ case Mips::FeatureMips64r5:
+ selectArch("mips64r5");
+ getTargetStreamer().emitDirectiveSetMips64R5();
+ break;
+ case Mips::FeatureMips64r6:
+ selectArch("mips64r6");
+ getTargetStreamer().emitDirectiveSetMips64R6();
+ break;
+ }
+ return false;
+}
+
+bool MipsAsmParser::eatComma(StringRef ErrorStr) {
+ MCAsmParser &Parser = getParser();
+ if (getLexer().isNot(AsmToken::Comma)) {
+ SMLoc Loc = getLexer().getLoc();
+ Parser.eatToEndOfStatement();
+ return Error(Loc, ErrorStr);
+ }
+
+ Parser.Lex(); // Eat the comma.
+ return true;
+}
+
+bool MipsAsmParser::parseDirectiveCpLoad(SMLoc Loc) {
+ if (AssemblerOptions.back()->isReorder())
+ Warning(Loc, ".cpload should be inside a noreorder section");
+
+ if (inMips16Mode()) {
+ reportParseError(".cpload is not supported in Mips16 mode");
+ return false;
+ }
+
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Reg;
+ OperandMatchResultTy ResTy = parseAnyRegister(Reg);
+ if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) {
+ reportParseError("expected register containing function address");
+ return false;
+ }
+
+ MipsOperand &RegOpnd = static_cast<MipsOperand &>(*Reg[0]);
+ if (!RegOpnd.isGPRAsmReg()) {
+ reportParseError(RegOpnd.getStartLoc(), "invalid register");
+ return false;
+ }
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ getTargetStreamer().emitDirectiveCpLoad(RegOpnd.getGPR32Reg());
+ return false;
+}
+
+bool MipsAsmParser::parseDirectiveCPSetup() {
+ MCAsmParser &Parser = getParser();
+ unsigned FuncReg;
+ unsigned Save;
+ bool SaveIsReg = true;
+
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> TmpReg;
+ OperandMatchResultTy ResTy = parseAnyRegister(TmpReg);
+ if (ResTy == MatchOperand_NoMatch) {
+ reportParseError("expected register containing function address");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ MipsOperand &FuncRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
+ if (!FuncRegOpnd.isGPRAsmReg()) {
+ reportParseError(FuncRegOpnd.getStartLoc(), "invalid register");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ FuncReg = FuncRegOpnd.getGPR32Reg();
+ TmpReg.clear();
+
+ if (!eatComma("unexpected token, expected comma"))
+ return true;
+
+ ResTy = parseAnyRegister(TmpReg);
+ if (ResTy == MatchOperand_NoMatch) {
+ const AsmToken &Tok = Parser.getTok();
+ if (Tok.is(AsmToken::Integer)) {
+ Save = Tok.getIntVal();
+ SaveIsReg = false;
+ Parser.Lex();
+ } else {
+ reportParseError("expected save register or stack offset");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+ } else {
+ MipsOperand &SaveOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
+ if (!SaveOpnd.isGPRAsmReg()) {
+ reportParseError(SaveOpnd.getStartLoc(), "invalid register");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+ Save = SaveOpnd.getGPR32Reg();
+ }
+
+ if (!eatComma("unexpected token, expected comma"))
+ return true;
+
+ const MCExpr *Expr;
+ if (Parser.parseExpression(Expr)) {
+ reportParseError("expected expression");
+ return false;
+ }
+
+ if (Expr->getKind() != MCExpr::SymbolRef) {
+ reportParseError("expected symbol");
+ return false;
+ }
+ const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr);
+
+ getTargetStreamer().emitDirectiveCpsetup(FuncReg, Save, Ref->getSymbol(),
+ SaveIsReg);
+ return false;
+}
+
+bool MipsAsmParser::parseDirectiveNaN() {
+ MCAsmParser &Parser = getParser();
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ const AsmToken &Tok = Parser.getTok();
+
+ if (Tok.getString() == "2008") {
+ Parser.Lex();
+ getTargetStreamer().emitDirectiveNaN2008();
+ return false;
+ } else if (Tok.getString() == "legacy") {
+ Parser.Lex();
+ getTargetStreamer().emitDirectiveNaNLegacy();
+ return false;
+ }
+ }
+ // If we don't recognize the option passed to the .nan
+ // directive (e.g. no option or unknown option), emit an error.
+ reportParseError("invalid option in .nan directive");
+ return false;
+}
+
+bool MipsAsmParser::parseDirectiveSet() {
+ MCAsmParser &Parser = getParser();
+ // Get the next token.
+ const AsmToken &Tok = Parser.getTok();
+
+ if (Tok.getString() == "noat") {
+ return parseSetNoAtDirective();
+ } else if (Tok.getString() == "at") {
+ return parseSetAtDirective();
+ } else if (Tok.getString() == "arch") {
+ return parseSetArchDirective();
+ } else if (Tok.getString() == "fp") {
+ return parseSetFpDirective();
+ } else if (Tok.getString() == "oddspreg") {
+ return parseSetOddSPRegDirective();
+ } else if (Tok.getString() == "nooddspreg") {
+ return parseSetNoOddSPRegDirective();
+ } else if (Tok.getString() == "pop") {
+ return parseSetPopDirective();
+ } else if (Tok.getString() == "push") {
+ return parseSetPushDirective();
+ } else if (Tok.getString() == "reorder") {
+ return parseSetReorderDirective();
+ } else if (Tok.getString() == "noreorder") {
+ return parseSetNoReorderDirective();
+ } else if (Tok.getString() == "macro") {
+ return parseSetMacroDirective();
+ } else if (Tok.getString() == "nomacro") {
+ return parseSetNoMacroDirective();
+ } else if (Tok.getString() == "mips16") {
+ return parseSetMips16Directive();
+ } else if (Tok.getString() == "nomips16") {
+ return parseSetNoMips16Directive();
+ } else if (Tok.getString() == "nomicromips") {
+ getTargetStreamer().emitDirectiveSetNoMicroMips();
+ Parser.eatToEndOfStatement();
+ return false;
+ } else if (Tok.getString() == "micromips") {
+ return parseSetFeature(Mips::FeatureMicroMips);
+ } else if (Tok.getString() == "mips0") {
+ return parseSetMips0Directive();
+ } else if (Tok.getString() == "mips1") {
+ return parseSetFeature(Mips::FeatureMips1);
+ } else if (Tok.getString() == "mips2") {
+ return parseSetFeature(Mips::FeatureMips2);
+ } else if (Tok.getString() == "mips3") {
+ return parseSetFeature(Mips::FeatureMips3);
+ } else if (Tok.getString() == "mips4") {
+ return parseSetFeature(Mips::FeatureMips4);
+ } else if (Tok.getString() == "mips5") {
+ return parseSetFeature(Mips::FeatureMips5);
+ } else if (Tok.getString() == "mips32") {
+ return parseSetFeature(Mips::FeatureMips32);
+ } else if (Tok.getString() == "mips32r2") {
+ return parseSetFeature(Mips::FeatureMips32r2);
+ } else if (Tok.getString() == "mips32r3") {
+ return parseSetFeature(Mips::FeatureMips32r3);
+ } else if (Tok.getString() == "mips32r5") {
+ return parseSetFeature(Mips::FeatureMips32r5);
+ } else if (Tok.getString() == "mips32r6") {
+ return parseSetFeature(Mips::FeatureMips32r6);
+ } else if (Tok.getString() == "mips64") {
+ return parseSetFeature(Mips::FeatureMips64);
+ } else if (Tok.getString() == "mips64r2") {
+ return parseSetFeature(Mips::FeatureMips64r2);
+ } else if (Tok.getString() == "mips64r3") {
+ return parseSetFeature(Mips::FeatureMips64r3);
+ } else if (Tok.getString() == "mips64r5") {
+ return parseSetFeature(Mips::FeatureMips64r5);
+ } else if (Tok.getString() == "mips64r6") {
+ return parseSetFeature(Mips::FeatureMips64r6);
+ } else if (Tok.getString() == "dsp") {
+ return parseSetFeature(Mips::FeatureDSP);
+ } else if (Tok.getString() == "nodsp") {
+ return parseSetNoDspDirective();
+ } else if (Tok.getString() == "msa") {
+ return parseSetMsaDirective();
+ } else if (Tok.getString() == "nomsa") {
+ return parseSetNoMsaDirective();
+ } else if (Tok.getString() == "softfloat") {
+ return parseSetSoftFloatDirective();
+ } else if (Tok.getString() == "hardfloat") {
+ return parseSetHardFloatDirective();
+ } else {
+ // It is just an identifier, look for an assignment.
+ parseSetAssignment();
+ return false;
+ }
+
+ return true;
+}
+
+/// parseDataDirective
+/// ::= .word [ expression (, expression)* ]
+bool MipsAsmParser::parseDataDirective(unsigned Size, SMLoc L) {
+ MCAsmParser &Parser = getParser();
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ for (;;) {
+ const MCExpr *Value;
+ if (getParser().parseExpression(Value))
+ return true;
+
+ getParser().getStreamer().EmitValue(Value, Size);
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ break;
+
+ if (getLexer().isNot(AsmToken::Comma))
+ return Error(L, "unexpected token, expected comma");
+ Parser.Lex();
+ }
+ }
+
+ Parser.Lex();
+ return false;
+}
+
+/// parseDirectiveGpWord
+/// ::= .gpword local_sym
+bool MipsAsmParser::parseDirectiveGpWord() {
+ MCAsmParser &Parser = getParser();
+ const MCExpr *Value;
+ // EmitGPRel32Value requires an expression, so we are using base class
+ // method to evaluate the expression.
+ if (getParser().parseExpression(Value))
+ return true;
+ getParser().getStreamer().EmitGPRel32Value(Value);
+
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return Error(getLexer().getLoc(),
+ "unexpected token, expected end of statement");
+ Parser.Lex(); // Eat EndOfStatement token.
+ return false;
+}
+
+/// parseDirectiveGpDWord
+/// ::= .gpdword local_sym
+bool MipsAsmParser::parseDirectiveGpDWord() {
+ MCAsmParser &Parser = getParser();
+ const MCExpr *Value;
+ // EmitGPRel64Value requires an expression, so we are using base class
+ // method to evaluate the expression.
+ if (getParser().parseExpression(Value))
+ return true;
+ getParser().getStreamer().EmitGPRel64Value(Value);
+
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return Error(getLexer().getLoc(),
+ "unexpected token, expected end of statement");
+ Parser.Lex(); // Eat EndOfStatement token.
+ return false;
+}
+
+bool MipsAsmParser::parseDirectiveOption() {
+ MCAsmParser &Parser = getParser();
+ // Get the option token.
+ AsmToken Tok = Parser.getTok();
+ // At the moment only identifiers are supported.
+ if (Tok.isNot(AsmToken::Identifier)) {
+ Error(Parser.getTok().getLoc(), "unexpected token, expected identifier");
+ Parser.eatToEndOfStatement();
+ return false;
+ }
+
+ StringRef Option = Tok.getIdentifier();
+
+ if (Option == "pic0") {
+ getTargetStreamer().emitDirectiveOptionPic0();
+ Parser.Lex();
+ if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
+ Error(Parser.getTok().getLoc(),
+ "unexpected token, expected end of statement");
+ Parser.eatToEndOfStatement();
+ }
+ return false;
+ }
+
+ if (Option == "pic2") {
+ getTargetStreamer().emitDirectiveOptionPic2();
+ Parser.Lex();
+ if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
+ Error(Parser.getTok().getLoc(),
+ "unexpected token, expected end of statement");
+ Parser.eatToEndOfStatement();
+ }
+ return false;
+ }
+
+ // Unknown option.
+ Warning(Parser.getTok().getLoc(),
+ "unknown option, expected 'pic0' or 'pic2'");
+ Parser.eatToEndOfStatement();
+ return false;
+}
+
+/// parseInsnDirective
+/// ::= .insn
+bool MipsAsmParser::parseInsnDirective() {
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ // The actual label marking happens in
+ // MipsELFStreamer::createPendingLabelRelocs().
+ getTargetStreamer().emitDirectiveInsn();
+
+ getParser().Lex(); // Eat EndOfStatement token.
+ return false;
+}
+
+/// parseDirectiveModule
+/// ::= .module oddspreg
+/// ::= .module nooddspreg
+/// ::= .module fp=value
+/// ::= .module softfloat
+/// ::= .module hardfloat
+bool MipsAsmParser::parseDirectiveModule() {
+ MCAsmParser &Parser = getParser();
+ MCAsmLexer &Lexer = getLexer();
+ SMLoc L = Lexer.getLoc();
+
+ if (!getTargetStreamer().isModuleDirectiveAllowed()) {
+ // TODO : get a better message.
+ reportParseError(".module directive must appear before any code");
+ return false;
+ }
+
+ StringRef Option;
+ if (Parser.parseIdentifier(Option)) {
+ reportParseError("expected .module option identifier");
+ return false;
+ }
+
+ if (Option == "oddspreg") {
+ clearModuleFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
+
+ // Synchronize the abiflags information with the FeatureBits information we
+ // changed above.
+ getTargetStreamer().updateABIInfo(*this);
+
+ // If printing assembly, use the recently updated abiflags information.
+ // If generating ELF, don't do anything (the .MIPS.abiflags section gets
+ // emitted at the end).
+ getTargetStreamer().emitDirectiveModuleOddSPReg();
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ return false; // parseDirectiveModule has finished successfully.
+ } else if (Option == "nooddspreg") {
+ if (!isABI_O32()) {
+ Error(L, "'.module nooddspreg' requires the O32 ABI");
+ return false;
+ }
+
+ setModuleFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg");
+
+ // Synchronize the abiflags information with the FeatureBits information we
+ // changed above.
+ getTargetStreamer().updateABIInfo(*this);
+
+ // If printing assembly, use the recently updated abiflags information.
+ // If generating ELF, don't do anything (the .MIPS.abiflags section gets
+ // emitted at the end).
+ getTargetStreamer().emitDirectiveModuleOddSPReg();
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ return false; // parseDirectiveModule has finished successfully.
+ } else if (Option == "fp") {
+ return parseDirectiveModuleFP();
+ } else if (Option == "softfloat") {
+ setModuleFeatureBits(Mips::FeatureSoftFloat, "soft-float");
+
+ // Synchronize the ABI Flags information with the FeatureBits information we
+ // updated above.
+ getTargetStreamer().updateABIInfo(*this);
+
+ // If printing assembly, use the recently updated ABI Flags information.
+ // If generating ELF, don't do anything (the .MIPS.abiflags section gets
+ // emitted later).
+ getTargetStreamer().emitDirectiveModuleSoftFloat();
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ return false; // parseDirectiveModule has finished successfully.
+ } else if (Option == "hardfloat") {
+ clearModuleFeatureBits(Mips::FeatureSoftFloat, "soft-float");
+
+ // Synchronize the ABI Flags information with the FeatureBits information we
+ // updated above.
+ getTargetStreamer().updateABIInfo(*this);
+
+ // If printing assembly, use the recently updated ABI Flags information.
+ // If generating ELF, don't do anything (the .MIPS.abiflags section gets
+ // emitted later).
+ getTargetStreamer().emitDirectiveModuleHardFloat();
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ return false; // parseDirectiveModule has finished successfully.
+ } else {
+ return Error(L, "'" + Twine(Option) + "' is not a valid .module option.");
+ }
+}
+
+/// parseDirectiveModuleFP
+/// ::= =32
+/// ::= =xx
+/// ::= =64
+bool MipsAsmParser::parseDirectiveModuleFP() {
+ MCAsmParser &Parser = getParser();
+ MCAsmLexer &Lexer = getLexer();
+
+ if (Lexer.isNot(AsmToken::Equal)) {
+ reportParseError("unexpected token, expected equals sign '='");
+ return false;
+ }
+ Parser.Lex(); // Eat '=' token.
+
+ MipsABIFlagsSection::FpABIKind FpABI;
+ if (!parseFpABIValue(FpABI, ".module"))
+ return false;
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ // Synchronize the abiflags information with the FeatureBits information we
+ // changed above.
+ getTargetStreamer().updateABIInfo(*this);
+
+ // If printing assembly, use the recently updated abiflags information.
+ // If generating ELF, don't do anything (the .MIPS.abiflags section gets
+ // emitted at the end).
+ getTargetStreamer().emitDirectiveModuleFP();
+
+ Parser.Lex(); // Consume the EndOfStatement.
+ return false;
+}
+
+bool MipsAsmParser::parseFpABIValue(MipsABIFlagsSection::FpABIKind &FpABI,
+ StringRef Directive) {
+ MCAsmParser &Parser = getParser();
+ MCAsmLexer &Lexer = getLexer();
+ bool ModuleLevelOptions = Directive == ".module";
+
+ if (Lexer.is(AsmToken::Identifier)) {
+ StringRef Value = Parser.getTok().getString();
+ Parser.Lex();
+
+ if (Value != "xx") {
+ reportParseError("unsupported value, expected 'xx', '32' or '64'");
+ return false;
+ }
+
+ if (!isABI_O32()) {
+ reportParseError("'" + Directive + " fp=xx' requires the O32 ABI");
+ return false;
+ }
+
+ FpABI = MipsABIFlagsSection::FpABIKind::XX;
+ if (ModuleLevelOptions) {
+ setModuleFeatureBits(Mips::FeatureFPXX, "fpxx");
+ clearModuleFeatureBits(Mips::FeatureFP64Bit, "fp64");
+ } else {
+ setFeatureBits(Mips::FeatureFPXX, "fpxx");
+ clearFeatureBits(Mips::FeatureFP64Bit, "fp64");
+ }
+ return true;
+ }
+
+ if (Lexer.is(AsmToken::Integer)) {
+ unsigned Value = Parser.getTok().getIntVal();
+ Parser.Lex();
+
+ if (Value != 32 && Value != 64) {
+ reportParseError("unsupported value, expected 'xx', '32' or '64'");
+ return false;
+ }
+
+ if (Value == 32) {
+ if (!isABI_O32()) {
+ reportParseError("'" + Directive + " fp=32' requires the O32 ABI");
+ return false;
+ }
+
+ FpABI = MipsABIFlagsSection::FpABIKind::S32;
+ if (ModuleLevelOptions) {
+ clearModuleFeatureBits(Mips::FeatureFPXX, "fpxx");
+ clearModuleFeatureBits(Mips::FeatureFP64Bit, "fp64");
+ } else {
+ clearFeatureBits(Mips::FeatureFPXX, "fpxx");
+ clearFeatureBits(Mips::FeatureFP64Bit, "fp64");
+ }
+ } else {
+ FpABI = MipsABIFlagsSection::FpABIKind::S64;
+ if (ModuleLevelOptions) {
+ clearModuleFeatureBits(Mips::FeatureFPXX, "fpxx");
+ setModuleFeatureBits(Mips::FeatureFP64Bit, "fp64");
+ } else {
+ clearFeatureBits(Mips::FeatureFPXX, "fpxx");
+ setFeatureBits(Mips::FeatureFP64Bit, "fp64");
+ }
+ }
+
+ return true;
+ }
+
+ return false;
+}
+
+bool MipsAsmParser::ParseDirective(AsmToken DirectiveID) {
+ MCAsmParser &Parser = getParser();
+ StringRef IDVal = DirectiveID.getString();
+
+ if (IDVal == ".cpload")
+ return parseDirectiveCpLoad(DirectiveID.getLoc());
+ if (IDVal == ".dword") {
+ parseDataDirective(8, DirectiveID.getLoc());
+ return false;
+ }
+ if (IDVal == ".ent") {
+ StringRef SymbolName;
+
+ if (Parser.parseIdentifier(SymbolName)) {
+ reportParseError("expected identifier after .ent");
+ return false;
+ }
+
+ // There's an undocumented extension that allows an integer to
+ // follow the name of the procedure which AFAICS is ignored by GAS.
+ // Example: .ent foo,2
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ if (getLexer().isNot(AsmToken::Comma)) {
+ // Even though we accept this undocumented extension for compatibility
+ // reasons, the additional integer argument does not actually change
+ // the behaviour of the '.ent' directive, so we would like to discourage
+ // its use. We do this by not referring to the extended version in
+ // error messages which are not directly related to its use.
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+ Parser.Lex(); // Eat the comma.
+ const MCExpr *DummyNumber;
+ int64_t DummyNumberVal;
+ // If the user was explicitly trying to use the extended version,
+ // we still give helpful extension-related error messages.
+ if (Parser.parseExpression(DummyNumber)) {
+ reportParseError("expected number after comma");
+ return false;
+ }
+ if (!DummyNumber->evaluateAsAbsolute(DummyNumberVal)) {
+ reportParseError("expected an absolute expression after comma");
+ return false;
+ }
+ }
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ MCSymbol *Sym = getContext().getOrCreateSymbol(SymbolName);
+
+ getTargetStreamer().emitDirectiveEnt(*Sym);
+ CurrentFn = Sym;
+ return false;
+ }
+
+ if (IDVal == ".end") {
+ StringRef SymbolName;
+
+ if (Parser.parseIdentifier(SymbolName)) {
+ reportParseError("expected identifier after .end");
+ return false;
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ if (CurrentFn == nullptr) {
+ reportParseError(".end used without .ent");
+ return false;
+ }
+
+ if ((SymbolName != CurrentFn->getName())) {
+ reportParseError(".end symbol does not match .ent symbol");
+ return false;
+ }
+
+ getTargetStreamer().emitDirectiveEnd(SymbolName);
+ CurrentFn = nullptr;
+ return false;
+ }
+
+ if (IDVal == ".frame") {
+ // .frame $stack_reg, frame_size_in_bytes, $return_reg
+ SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> TmpReg;
+ OperandMatchResultTy ResTy = parseAnyRegister(TmpReg);
+ if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) {
+ reportParseError("expected stack register");
+ return false;
+ }
+
+ MipsOperand &StackRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
+ if (!StackRegOpnd.isGPRAsmReg()) {
+ reportParseError(StackRegOpnd.getStartLoc(),
+ "expected general purpose register");
+ return false;
+ }
+ unsigned StackReg = StackRegOpnd.getGPR32Reg();
+
+ if (Parser.getTok().is(AsmToken::Comma))
+ Parser.Lex();
+ else {
+ reportParseError("unexpected token, expected comma");
+ return false;
+ }
+
+ // Parse the frame size.
+ const MCExpr *FrameSize;
+ int64_t FrameSizeVal;
+
+ if (Parser.parseExpression(FrameSize)) {
+ reportParseError("expected frame size value");
+ return false;
+ }
+
+ if (!FrameSize->evaluateAsAbsolute(FrameSizeVal)) {
+ reportParseError("frame size not an absolute expression");
+ return false;
+ }
+
+ if (Parser.getTok().is(AsmToken::Comma))
+ Parser.Lex();
+ else {
+ reportParseError("unexpected token, expected comma");
+ return false;
+ }
+
+ // Parse the return register.
+ TmpReg.clear();
+ ResTy = parseAnyRegister(TmpReg);
+ if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) {
+ reportParseError("expected return register");
+ return false;
+ }
+
+ MipsOperand &ReturnRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]);
+ if (!ReturnRegOpnd.isGPRAsmReg()) {
+ reportParseError(ReturnRegOpnd.getStartLoc(),
+ "expected general purpose register");
+ return false;
+ }
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ getTargetStreamer().emitFrame(StackReg, FrameSizeVal,
+ ReturnRegOpnd.getGPR32Reg());
+ return false;
+ }
+
+ if (IDVal == ".set") {
+ return parseDirectiveSet();
+ }
+
+ if (IDVal == ".mask" || IDVal == ".fmask") {
+ // .mask bitmask, frame_offset
+ // bitmask: One bit for each register used.
+ // frame_offset: Offset from Canonical Frame Address ($sp on entry) where
+ // first register is expected to be saved.
+ // Examples:
+ // .mask 0x80000000, -4
+ // .fmask 0x80000000, -4
+ //
+
+ // Parse the bitmask
+ const MCExpr *BitMask;
+ int64_t BitMaskVal;
+
+ if (Parser.parseExpression(BitMask)) {
+ reportParseError("expected bitmask value");
+ return false;
+ }
+
+ if (!BitMask->evaluateAsAbsolute(BitMaskVal)) {
+ reportParseError("bitmask not an absolute expression");
+ return false;
+ }
+
+ if (Parser.getTok().is(AsmToken::Comma))
+ Parser.Lex();
+ else {
+ reportParseError("unexpected token, expected comma");
+ return false;
+ }
+
+ // Parse the frame_offset
+ const MCExpr *FrameOffset;
+ int64_t FrameOffsetVal;
+
+ if (Parser.parseExpression(FrameOffset)) {
+ reportParseError("expected frame offset value");
+ return false;
+ }
+
+ if (!FrameOffset->evaluateAsAbsolute(FrameOffsetVal)) {
+ reportParseError("frame offset not an absolute expression");
+ return false;
+ }
+
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ if (IDVal == ".mask")
+ getTargetStreamer().emitMask(BitMaskVal, FrameOffsetVal);
+ else
+ getTargetStreamer().emitFMask(BitMaskVal, FrameOffsetVal);
+ return false;
+ }
+
+ if (IDVal == ".nan")
+ return parseDirectiveNaN();
+
+ if (IDVal == ".gpword") {
+ parseDirectiveGpWord();
+ return false;
+ }
+
+ if (IDVal == ".gpdword") {
+ parseDirectiveGpDWord();
+ return false;
+ }
+
+ if (IDVal == ".word") {
+ parseDataDirective(4, DirectiveID.getLoc());
+ return false;
+ }
+
+ if (IDVal == ".option")
+ return parseDirectiveOption();
+
+ if (IDVal == ".abicalls") {
+ getTargetStreamer().emitDirectiveAbiCalls();
+ if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
+ Error(Parser.getTok().getLoc(),
+ "unexpected token, expected end of statement");
+ // Clear line
+ Parser.eatToEndOfStatement();
+ }
+ return false;
+ }
+
+ if (IDVal == ".cpsetup")
+ return parseDirectiveCPSetup();
+
+ if (IDVal == ".module")
+ return parseDirectiveModule();
+
+ if (IDVal == ".llvm_internal_mips_reallow_module_directive")
+ return parseInternalDirectiveReallowModule();
+
+ if (IDVal == ".insn")
+ return parseInsnDirective();
+
+ return true;
+}
+
+bool MipsAsmParser::parseInternalDirectiveReallowModule() {
+ // If this is not the end of the statement, report an error.
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ reportParseError("unexpected token, expected end of statement");
+ return false;
+ }
+
+ getTargetStreamer().reallowModuleDirective();
+
+ getParser().Lex(); // Eat EndOfStatement token.
+ return false;
+}
+
+extern "C" void LLVMInitializeMipsAsmParser() {
+ RegisterMCAsmParser<MipsAsmParser> X(TheMipsTarget);
+ RegisterMCAsmParser<MipsAsmParser> Y(TheMipselTarget);
+ RegisterMCAsmParser<MipsAsmParser> A(TheMips64Target);
+ RegisterMCAsmParser<MipsAsmParser> B(TheMips64elTarget);
+}
+
+#define GET_REGISTER_MATCHER
+#define GET_MATCHER_IMPLEMENTATION
+#include "MipsGenAsmMatcher.inc"
OpenPOWER on IntegriCloud