diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp | 5210 |
1 files changed, 5210 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp b/contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp new file mode 100644 index 0000000..5107d2a --- /dev/null +++ b/contrib/llvm/lib/Target/Mips/AsmParser/MipsAsmParser.cpp @@ -0,0 +1,5210 @@ +//===-- MipsAsmParser.cpp - Parse Mips assembly to MCInst instructions ----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "MCTargetDesc/MipsABIInfo.h" +#include "MCTargetDesc/MipsMCExpr.h" +#include "MCTargetDesc/MipsMCTargetDesc.h" +#include "MipsRegisterInfo.h" +#include "MipsTargetStreamer.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringSwitch.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCInst.h" +#include "llvm/MC/MCInstBuilder.h" +#include "llvm/MC/MCParser/MCAsmLexer.h" +#include "llvm/MC/MCParser/MCParsedAsmOperand.h" +#include "llvm/MC/MCStreamer.h" +#include "llvm/MC/MCSubtargetInfo.h" +#include "llvm/MC/MCSymbol.h" +#include "llvm/MC/MCTargetAsmParser.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/SourceMgr.h" +#include "llvm/Support/TargetRegistry.h" +#include "llvm/Support/raw_ostream.h" +#include <memory> + +using namespace llvm; + +#define DEBUG_TYPE "mips-asm-parser" + +namespace llvm { +class MCInstrInfo; +} + +namespace { +class MipsAssemblerOptions { +public: + MipsAssemblerOptions(const FeatureBitset &Features_) : + ATReg(1), Reorder(true), Macro(true), Features(Features_) {} + + MipsAssemblerOptions(const MipsAssemblerOptions *Opts) { + ATReg = Opts->getATRegIndex(); + Reorder = Opts->isReorder(); + Macro = Opts->isMacro(); + Features = Opts->getFeatures(); + } + + unsigned getATRegIndex() const { return ATReg; } + bool setATRegIndex(unsigned Reg) { + if (Reg > 31) + return false; + + ATReg = Reg; + return true; + } + + bool isReorder() const { return Reorder; } + void setReorder() { Reorder = true; } + void setNoReorder() { Reorder = false; } + + bool isMacro() const { return Macro; } + void setMacro() { Macro = true; } + void setNoMacro() { Macro = false; } + + const FeatureBitset &getFeatures() const { return Features; } + void setFeatures(const FeatureBitset &Features_) { Features = Features_; } + + // Set of features that are either architecture features or referenced + // by them (e.g.: FeatureNaN2008 implied by FeatureMips32r6). + // The full table can be found in MipsGenSubtargetInfo.inc (MipsFeatureKV[]). + // The reason we need this mask is explained in the selectArch function. + // FIXME: Ideally we would like TableGen to generate this information. + static const FeatureBitset AllArchRelatedMask; + +private: + unsigned ATReg; + bool Reorder; + bool Macro; + FeatureBitset Features; +}; +} + +const FeatureBitset MipsAssemblerOptions::AllArchRelatedMask = { + Mips::FeatureMips1, Mips::FeatureMips2, Mips::FeatureMips3, + Mips::FeatureMips3_32, Mips::FeatureMips3_32r2, Mips::FeatureMips4, + Mips::FeatureMips4_32, Mips::FeatureMips4_32r2, Mips::FeatureMips5, + Mips::FeatureMips5_32r2, Mips::FeatureMips32, Mips::FeatureMips32r2, + Mips::FeatureMips32r3, Mips::FeatureMips32r5, Mips::FeatureMips32r6, + Mips::FeatureMips64, Mips::FeatureMips64r2, Mips::FeatureMips64r3, + Mips::FeatureMips64r5, Mips::FeatureMips64r6, Mips::FeatureCnMips, + Mips::FeatureFP64Bit, Mips::FeatureGP64Bit, Mips::FeatureNaN2008 +}; + +namespace { +class MipsAsmParser : public MCTargetAsmParser { + MipsTargetStreamer &getTargetStreamer() { + MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer(); + return static_cast<MipsTargetStreamer &>(TS); + } + + MCSubtargetInfo &STI; + MipsABIInfo ABI; + SmallVector<std::unique_ptr<MipsAssemblerOptions>, 2> AssemblerOptions; + MCSymbol *CurrentFn; // Pointer to the function being parsed. It may be a + // nullptr, which indicates that no function is currently + // selected. This usually happens after an '.end func' + // directive. + bool IsLittleEndian; + + // Print a warning along with its fix-it message at the given range. + void printWarningWithFixIt(const Twine &Msg, const Twine &FixMsg, + SMRange Range, bool ShowColors = true); + +#define GET_ASSEMBLER_HEADER +#include "MipsGenAsmMatcher.inc" + + unsigned checkTargetMatchPredicate(MCInst &Inst) override; + + bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, + OperandVector &Operands, MCStreamer &Out, + uint64_t &ErrorInfo, + bool MatchingInlineAsm) override; + + /// Parse a register as used in CFI directives + bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override; + + bool parseParenSuffix(StringRef Name, OperandVector &Operands); + + bool parseBracketSuffix(StringRef Name, OperandVector &Operands); + + bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, + SMLoc NameLoc, OperandVector &Operands) override; + + bool ParseDirective(AsmToken DirectiveID) override; + + MipsAsmParser::OperandMatchResultTy parseMemOperand(OperandVector &Operands); + + MipsAsmParser::OperandMatchResultTy + matchAnyRegisterNameWithoutDollar(OperandVector &Operands, + StringRef Identifier, SMLoc S); + + MipsAsmParser::OperandMatchResultTy + matchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S); + + MipsAsmParser::OperandMatchResultTy parseAnyRegister(OperandVector &Operands); + + MipsAsmParser::OperandMatchResultTy parseImm(OperandVector &Operands); + + MipsAsmParser::OperandMatchResultTy parseJumpTarget(OperandVector &Operands); + + MipsAsmParser::OperandMatchResultTy parseInvNum(OperandVector &Operands); + + MipsAsmParser::OperandMatchResultTy parseLSAImm(OperandVector &Operands); + + MipsAsmParser::OperandMatchResultTy + parseRegisterPair (OperandVector &Operands); + + MipsAsmParser::OperandMatchResultTy + parseMovePRegPair(OperandVector &Operands); + + MipsAsmParser::OperandMatchResultTy + parseRegisterList (OperandVector &Operands); + + bool searchSymbolAlias(OperandVector &Operands); + + bool parseOperand(OperandVector &, StringRef Mnemonic); + + bool needsExpansion(MCInst &Inst); + + // Expands assembly pseudo instructions. + // Returns false on success, true otherwise. + bool expandInstruction(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions); + + bool expandJalWithRegs(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions); + + bool loadImmediate(int64_t ImmValue, unsigned DstReg, unsigned SrcReg, + bool Is32BitImm, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions); + + bool loadAndAddSymbolAddress(const MCExpr *SymExpr, unsigned DstReg, + unsigned SrcReg, bool Is32BitSym, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions); + + bool expandLoadImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions); + + bool expandLoadAddressImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions); + + bool expandLoadAddressReg(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions); + bool expandUncondBranchMMPseudo(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions); + + void expandMemInst(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions, bool isLoad, + bool isImmOpnd); + + bool expandLoadStoreMultiple(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions); + + bool expandBranchImm(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions); + + bool expandCondBranches(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions); + + bool expandUlhu(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions); + + bool expandUlw(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions); + + void createNop(bool hasShortDelaySlot, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions); + + void createAddu(unsigned DstReg, unsigned SrcReg, unsigned TrgReg, + bool Is64Bit, SmallVectorImpl<MCInst> &Instructions); + + bool reportParseError(Twine ErrorMsg); + bool reportParseError(SMLoc Loc, Twine ErrorMsg); + + bool parseMemOffset(const MCExpr *&Res, bool isParenExpr); + bool parseRelocOperand(const MCExpr *&Res); + + const MCExpr *evaluateRelocExpr(const MCExpr *Expr, StringRef RelocStr); + + bool isEvaluated(const MCExpr *Expr); + bool parseSetMips0Directive(); + bool parseSetArchDirective(); + bool parseSetFeature(uint64_t Feature); + bool parseDirectiveCpLoad(SMLoc Loc); + bool parseDirectiveCPSetup(); + bool parseDirectiveNaN(); + bool parseDirectiveSet(); + bool parseDirectiveOption(); + bool parseInsnDirective(); + + bool parseSetAtDirective(); + bool parseSetNoAtDirective(); + bool parseSetMacroDirective(); + bool parseSetNoMacroDirective(); + bool parseSetMsaDirective(); + bool parseSetNoMsaDirective(); + bool parseSetNoDspDirective(); + bool parseSetReorderDirective(); + bool parseSetNoReorderDirective(); + bool parseSetMips16Directive(); + bool parseSetNoMips16Directive(); + bool parseSetFpDirective(); + bool parseSetOddSPRegDirective(); + bool parseSetNoOddSPRegDirective(); + bool parseSetPopDirective(); + bool parseSetPushDirective(); + bool parseSetSoftFloatDirective(); + bool parseSetHardFloatDirective(); + + bool parseSetAssignment(); + + bool parseDataDirective(unsigned Size, SMLoc L); + bool parseDirectiveGpWord(); + bool parseDirectiveGpDWord(); + bool parseDirectiveModule(); + bool parseDirectiveModuleFP(); + bool parseFpABIValue(MipsABIFlagsSection::FpABIKind &FpABI, + StringRef Directive); + + bool parseInternalDirectiveReallowModule(); + + MCSymbolRefExpr::VariantKind getVariantKind(StringRef Symbol); + + bool eatComma(StringRef ErrorStr); + + int matchCPURegisterName(StringRef Symbol); + + int matchHWRegsRegisterName(StringRef Symbol); + + int matchRegisterByNumber(unsigned RegNum, unsigned RegClass); + + int matchFPURegisterName(StringRef Name); + + int matchFCCRegisterName(StringRef Name); + + int matchACRegisterName(StringRef Name); + + int matchMSA128RegisterName(StringRef Name); + + int matchMSA128CtrlRegisterName(StringRef Name); + + unsigned getReg(int RC, int RegNo); + + unsigned getGPR(int RegNo); + + /// Returns the internal register number for the current AT. Also checks if + /// the current AT is unavailable (set to $0) and gives an error if it is. + /// This should be used in pseudo-instruction expansions which need AT. + unsigned getATReg(SMLoc Loc); + + bool processInstruction(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions); + + // Helper function that checks if the value of a vector index is within the + // boundaries of accepted values for each RegisterKind + // Example: INSERT.B $w0[n], $1 => 16 > n >= 0 + bool validateMSAIndex(int Val, int RegKind); + + // Selects a new architecture by updating the FeatureBits with the necessary + // info including implied dependencies. + // Internally, it clears all the feature bits related to *any* architecture + // and selects the new one using the ToggleFeature functionality of the + // MCSubtargetInfo object that handles implied dependencies. The reason we + // clear all the arch related bits manually is because ToggleFeature only + // clears the features that imply the feature being cleared and not the + // features implied by the feature being cleared. This is easier to see + // with an example: + // -------------------------------------------------- + // | Feature | Implies | + // | -------------------------------------------------| + // | FeatureMips1 | None | + // | FeatureMips2 | FeatureMips1 | + // | FeatureMips3 | FeatureMips2 | FeatureMipsGP64 | + // | FeatureMips4 | FeatureMips3 | + // | ... | | + // -------------------------------------------------- + // + // Setting Mips3 is equivalent to set: (FeatureMips3 | FeatureMips2 | + // FeatureMipsGP64 | FeatureMips1) + // Clearing Mips3 is equivalent to clear (FeatureMips3 | FeatureMips4). + void selectArch(StringRef ArchFeature) { + FeatureBitset FeatureBits = STI.getFeatureBits(); + FeatureBits &= ~MipsAssemblerOptions::AllArchRelatedMask; + STI.setFeatureBits(FeatureBits); + setAvailableFeatures( + ComputeAvailableFeatures(STI.ToggleFeature(ArchFeature))); + AssemblerOptions.back()->setFeatures(STI.getFeatureBits()); + } + + void setFeatureBits(uint64_t Feature, StringRef FeatureString) { + if (!(STI.getFeatureBits()[Feature])) { + setAvailableFeatures( + ComputeAvailableFeatures(STI.ToggleFeature(FeatureString))); + AssemblerOptions.back()->setFeatures(STI.getFeatureBits()); + } + } + + void clearFeatureBits(uint64_t Feature, StringRef FeatureString) { + if (STI.getFeatureBits()[Feature]) { + setAvailableFeatures( + ComputeAvailableFeatures(STI.ToggleFeature(FeatureString))); + AssemblerOptions.back()->setFeatures(STI.getFeatureBits()); + } + } + + void setModuleFeatureBits(uint64_t Feature, StringRef FeatureString) { + setFeatureBits(Feature, FeatureString); + AssemblerOptions.front()->setFeatures(STI.getFeatureBits()); + } + + void clearModuleFeatureBits(uint64_t Feature, StringRef FeatureString) { + clearFeatureBits(Feature, FeatureString); + AssemblerOptions.front()->setFeatures(STI.getFeatureBits()); + } + +public: + enum MipsMatchResultTy { + Match_RequiresDifferentSrcAndDst = FIRST_TARGET_MATCH_RESULT_TY +#define GET_OPERAND_DIAGNOSTIC_TYPES +#include "MipsGenAsmMatcher.inc" +#undef GET_OPERAND_DIAGNOSTIC_TYPES + + }; + + MipsAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser, + const MCInstrInfo &MII, const MCTargetOptions &Options) + : MCTargetAsmParser(), STI(sti), + ABI(MipsABIInfo::computeTargetABI(Triple(sti.getTargetTriple()), + sti.getCPU(), Options)) { + MCAsmParserExtension::Initialize(parser); + + parser.addAliasForDirective(".asciiz", ".asciz"); + + // Initialize the set of available features. + setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits())); + + // Remember the initial assembler options. The user can not modify these. + AssemblerOptions.push_back( + llvm::make_unique<MipsAssemblerOptions>(STI.getFeatureBits())); + + // Create an assembler options environment for the user to modify. + AssemblerOptions.push_back( + llvm::make_unique<MipsAssemblerOptions>(STI.getFeatureBits())); + + getTargetStreamer().updateABIInfo(*this); + + if (!isABI_O32() && !useOddSPReg() != 0) + report_fatal_error("-mno-odd-spreg requires the O32 ABI"); + + CurrentFn = nullptr; + + Triple TheTriple(sti.getTargetTriple()); + if ((TheTriple.getArch() == Triple::mips) || + (TheTriple.getArch() == Triple::mips64)) + IsLittleEndian = false; + else + IsLittleEndian = true; + } + + /// True if all of $fcc0 - $fcc7 exist for the current ISA. + bool hasEightFccRegisters() const { return hasMips4() || hasMips32(); } + + bool isGP64bit() const { return STI.getFeatureBits()[Mips::FeatureGP64Bit]; } + bool isFP64bit() const { return STI.getFeatureBits()[Mips::FeatureFP64Bit]; } + const MipsABIInfo &getABI() const { return ABI; } + bool isABI_N32() const { return ABI.IsN32(); } + bool isABI_N64() const { return ABI.IsN64(); } + bool isABI_O32() const { return ABI.IsO32(); } + bool isABI_FPXX() const { return STI.getFeatureBits()[Mips::FeatureFPXX]; } + + bool useOddSPReg() const { + return !(STI.getFeatureBits()[Mips::FeatureNoOddSPReg]); + } + + bool inMicroMipsMode() const { + return STI.getFeatureBits()[Mips::FeatureMicroMips]; + } + bool hasMips1() const { return STI.getFeatureBits()[Mips::FeatureMips1]; } + bool hasMips2() const { return STI.getFeatureBits()[Mips::FeatureMips2]; } + bool hasMips3() const { return STI.getFeatureBits()[Mips::FeatureMips3]; } + bool hasMips4() const { return STI.getFeatureBits()[Mips::FeatureMips4]; } + bool hasMips5() const { return STI.getFeatureBits()[Mips::FeatureMips5]; } + bool hasMips32() const { + return STI.getFeatureBits()[Mips::FeatureMips32]; + } + bool hasMips64() const { + return STI.getFeatureBits()[Mips::FeatureMips64]; + } + bool hasMips32r2() const { + return STI.getFeatureBits()[Mips::FeatureMips32r2]; + } + bool hasMips64r2() const { + return STI.getFeatureBits()[Mips::FeatureMips64r2]; + } + bool hasMips32r3() const { + return (STI.getFeatureBits()[Mips::FeatureMips32r3]); + } + bool hasMips64r3() const { + return (STI.getFeatureBits()[Mips::FeatureMips64r3]); + } + bool hasMips32r5() const { + return (STI.getFeatureBits()[Mips::FeatureMips32r5]); + } + bool hasMips64r5() const { + return (STI.getFeatureBits()[Mips::FeatureMips64r5]); + } + bool hasMips32r6() const { + return STI.getFeatureBits()[Mips::FeatureMips32r6]; + } + bool hasMips64r6() const { + return STI.getFeatureBits()[Mips::FeatureMips64r6]; + } + + bool hasDSP() const { return STI.getFeatureBits()[Mips::FeatureDSP]; } + bool hasDSPR2() const { return STI.getFeatureBits()[Mips::FeatureDSPR2]; } + bool hasMSA() const { return STI.getFeatureBits()[Mips::FeatureMSA]; } + bool hasCnMips() const { + return (STI.getFeatureBits()[Mips::FeatureCnMips]); + } + + bool inMips16Mode() const { + return STI.getFeatureBits()[Mips::FeatureMips16]; + } + + bool useSoftFloat() const { + return STI.getFeatureBits()[Mips::FeatureSoftFloat]; + } + + /// Warn if RegIndex is the same as the current AT. + void warnIfRegIndexIsAT(unsigned RegIndex, SMLoc Loc); + + void warnIfNoMacro(SMLoc Loc); + + bool isLittle() const { return IsLittleEndian; } +}; +} + +namespace { + +/// MipsOperand - Instances of this class represent a parsed Mips machine +/// instruction. +class MipsOperand : public MCParsedAsmOperand { +public: + /// Broad categories of register classes + /// The exact class is finalized by the render method. + enum RegKind { + RegKind_GPR = 1, /// GPR32 and GPR64 (depending on isGP64bit()) + RegKind_FGR = 2, /// FGR32, FGR64, AFGR64 (depending on context and + /// isFP64bit()) + RegKind_FCC = 4, /// FCC + RegKind_MSA128 = 8, /// MSA128[BHWD] (makes no difference which) + RegKind_MSACtrl = 16, /// MSA control registers + RegKind_COP2 = 32, /// COP2 + RegKind_ACC = 64, /// HI32DSP, LO32DSP, and ACC64DSP (depending on + /// context). + RegKind_CCR = 128, /// CCR + RegKind_HWRegs = 256, /// HWRegs + RegKind_COP3 = 512, /// COP3 + RegKind_COP0 = 1024, /// COP0 + /// Potentially any (e.g. $1) + RegKind_Numeric = RegKind_GPR | RegKind_FGR | RegKind_FCC | RegKind_MSA128 | + RegKind_MSACtrl | RegKind_COP2 | RegKind_ACC | + RegKind_CCR | RegKind_HWRegs | RegKind_COP3 | RegKind_COP0 + }; + +private: + enum KindTy { + k_Immediate, /// An immediate (possibly involving symbol references) + k_Memory, /// Base + Offset Memory Address + k_PhysRegister, /// A physical register from the Mips namespace + k_RegisterIndex, /// A register index in one or more RegKind. + k_Token, /// A simple token + k_RegList, /// A physical register list + k_RegPair /// A pair of physical register + } Kind; + +public: + MipsOperand(KindTy K, MipsAsmParser &Parser) + : MCParsedAsmOperand(), Kind(K), AsmParser(Parser) {} + +private: + /// For diagnostics, and checking the assembler temporary + MipsAsmParser &AsmParser; + + struct Token { + const char *Data; + unsigned Length; + }; + + struct PhysRegOp { + unsigned Num; /// Register Number + }; + + struct RegIdxOp { + unsigned Index; /// Index into the register class + RegKind Kind; /// Bitfield of the kinds it could possibly be + const MCRegisterInfo *RegInfo; + }; + + struct ImmOp { + const MCExpr *Val; + }; + + struct MemOp { + MipsOperand *Base; + const MCExpr *Off; + }; + + struct RegListOp { + SmallVector<unsigned, 10> *List; + }; + + union { + struct Token Tok; + struct PhysRegOp PhysReg; + struct RegIdxOp RegIdx; + struct ImmOp Imm; + struct MemOp Mem; + struct RegListOp RegList; + }; + + SMLoc StartLoc, EndLoc; + + /// Internal constructor for register kinds + static std::unique_ptr<MipsOperand> CreateReg(unsigned Index, RegKind RegKind, + const MCRegisterInfo *RegInfo, + SMLoc S, SMLoc E, + MipsAsmParser &Parser) { + auto Op = make_unique<MipsOperand>(k_RegisterIndex, Parser); + Op->RegIdx.Index = Index; + Op->RegIdx.RegInfo = RegInfo; + Op->RegIdx.Kind = RegKind; + Op->StartLoc = S; + Op->EndLoc = E; + return Op; + } + +public: + /// Coerce the register to GPR32 and return the real register for the current + /// target. + unsigned getGPR32Reg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!"); + AsmParser.warnIfRegIndexIsAT(RegIdx.Index, StartLoc); + unsigned ClassID = Mips::GPR32RegClassID; + return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); + } + + /// Coerce the register to GPR32 and return the real register for the current + /// target. + unsigned getGPRMM16Reg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!"); + unsigned ClassID = Mips::GPR32RegClassID; + return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); + } + + /// Coerce the register to GPR64 and return the real register for the current + /// target. + unsigned getGPR64Reg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_GPR) && "Invalid access!"); + unsigned ClassID = Mips::GPR64RegClassID; + return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); + } + +private: + /// Coerce the register to AFGR64 and return the real register for the current + /// target. + unsigned getAFGR64Reg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!"); + if (RegIdx.Index % 2 != 0) + AsmParser.Warning(StartLoc, "Float register should be even."); + return RegIdx.RegInfo->getRegClass(Mips::AFGR64RegClassID) + .getRegister(RegIdx.Index / 2); + } + + /// Coerce the register to FGR64 and return the real register for the current + /// target. + unsigned getFGR64Reg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!"); + return RegIdx.RegInfo->getRegClass(Mips::FGR64RegClassID) + .getRegister(RegIdx.Index); + } + + /// Coerce the register to FGR32 and return the real register for the current + /// target. + unsigned getFGR32Reg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!"); + return RegIdx.RegInfo->getRegClass(Mips::FGR32RegClassID) + .getRegister(RegIdx.Index); + } + + /// Coerce the register to FGRH32 and return the real register for the current + /// target. + unsigned getFGRH32Reg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_FGR) && "Invalid access!"); + return RegIdx.RegInfo->getRegClass(Mips::FGRH32RegClassID) + .getRegister(RegIdx.Index); + } + + /// Coerce the register to FCC and return the real register for the current + /// target. + unsigned getFCCReg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_FCC) && "Invalid access!"); + return RegIdx.RegInfo->getRegClass(Mips::FCCRegClassID) + .getRegister(RegIdx.Index); + } + + /// Coerce the register to MSA128 and return the real register for the current + /// target. + unsigned getMSA128Reg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_MSA128) && "Invalid access!"); + // It doesn't matter which of the MSA128[BHWD] classes we use. They are all + // identical + unsigned ClassID = Mips::MSA128BRegClassID; + return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); + } + + /// Coerce the register to MSACtrl and return the real register for the + /// current target. + unsigned getMSACtrlReg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_MSACtrl) && "Invalid access!"); + unsigned ClassID = Mips::MSACtrlRegClassID; + return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); + } + + /// Coerce the register to COP0 and return the real register for the + /// current target. + unsigned getCOP0Reg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_COP0) && "Invalid access!"); + unsigned ClassID = Mips::COP0RegClassID; + return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); + } + + /// Coerce the register to COP2 and return the real register for the + /// current target. + unsigned getCOP2Reg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_COP2) && "Invalid access!"); + unsigned ClassID = Mips::COP2RegClassID; + return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); + } + + /// Coerce the register to COP3 and return the real register for the + /// current target. + unsigned getCOP3Reg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_COP3) && "Invalid access!"); + unsigned ClassID = Mips::COP3RegClassID; + return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); + } + + /// Coerce the register to ACC64DSP and return the real register for the + /// current target. + unsigned getACC64DSPReg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!"); + unsigned ClassID = Mips::ACC64DSPRegClassID; + return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); + } + + /// Coerce the register to HI32DSP and return the real register for the + /// current target. + unsigned getHI32DSPReg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!"); + unsigned ClassID = Mips::HI32DSPRegClassID; + return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); + } + + /// Coerce the register to LO32DSP and return the real register for the + /// current target. + unsigned getLO32DSPReg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_ACC) && "Invalid access!"); + unsigned ClassID = Mips::LO32DSPRegClassID; + return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); + } + + /// Coerce the register to CCR and return the real register for the + /// current target. + unsigned getCCRReg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_CCR) && "Invalid access!"); + unsigned ClassID = Mips::CCRRegClassID; + return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); + } + + /// Coerce the register to HWRegs and return the real register for the + /// current target. + unsigned getHWRegsReg() const { + assert(isRegIdx() && (RegIdx.Kind & RegKind_HWRegs) && "Invalid access!"); + unsigned ClassID = Mips::HWRegsRegClassID; + return RegIdx.RegInfo->getRegClass(ClassID).getRegister(RegIdx.Index); + } + +public: + void addExpr(MCInst &Inst, const MCExpr *Expr) const { + // Add as immediate when possible. Null MCExpr = 0. + if (!Expr) + Inst.addOperand(MCOperand::createImm(0)); + else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr)) + Inst.addOperand(MCOperand::createImm(CE->getValue())); + else + Inst.addOperand(MCOperand::createExpr(Expr)); + } + + void addRegOperands(MCInst &Inst, unsigned N) const { + llvm_unreachable("Use a custom parser instead"); + } + + /// Render the operand to an MCInst as a GPR32 + /// Asserts if the wrong number of operands are requested, or the operand + /// is not a k_RegisterIndex compatible with RegKind_GPR + void addGPR32AsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getGPR32Reg())); + } + + void addGPRMM16AsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getGPRMM16Reg())); + } + + void addGPRMM16AsmRegZeroOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getGPRMM16Reg())); + } + + void addGPRMM16AsmRegMovePOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getGPRMM16Reg())); + } + + /// Render the operand to an MCInst as a GPR64 + /// Asserts if the wrong number of operands are requested, or the operand + /// is not a k_RegisterIndex compatible with RegKind_GPR + void addGPR64AsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getGPR64Reg())); + } + + void addAFGR64AsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getAFGR64Reg())); + } + + void addFGR64AsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getFGR64Reg())); + } + + void addFGR32AsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getFGR32Reg())); + // FIXME: We ought to do this for -integrated-as without -via-file-asm too. + if (!AsmParser.useOddSPReg() && RegIdx.Index & 1) + AsmParser.Error(StartLoc, "-mno-odd-spreg prohibits the use of odd FPU " + "registers"); + } + + void addFGRH32AsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getFGRH32Reg())); + } + + void addFCCAsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getFCCReg())); + } + + void addMSA128AsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getMSA128Reg())); + } + + void addMSACtrlAsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getMSACtrlReg())); + } + + void addCOP0AsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getCOP0Reg())); + } + + void addCOP2AsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getCOP2Reg())); + } + + void addCOP3AsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getCOP3Reg())); + } + + void addACC64DSPAsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getACC64DSPReg())); + } + + void addHI32DSPAsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getHI32DSPReg())); + } + + void addLO32DSPAsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getLO32DSPReg())); + } + + void addCCRAsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getCCRReg())); + } + + void addHWRegsAsmRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getHWRegsReg())); + } + + void addImmOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + const MCExpr *Expr = getImm(); + addExpr(Inst, Expr); + } + + void addMemOperands(MCInst &Inst, unsigned N) const { + assert(N == 2 && "Invalid number of operands!"); + + Inst.addOperand(MCOperand::createReg(getMemBase()->getGPR32Reg())); + + const MCExpr *Expr = getMemOff(); + addExpr(Inst, Expr); + } + + void addMicroMipsMemOperands(MCInst &Inst, unsigned N) const { + assert(N == 2 && "Invalid number of operands!"); + + Inst.addOperand(MCOperand::createReg(getMemBase()->getGPRMM16Reg())); + + const MCExpr *Expr = getMemOff(); + addExpr(Inst, Expr); + } + + void addRegListOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + + for (auto RegNo : getRegList()) + Inst.addOperand(MCOperand::createReg(RegNo)); + } + + void addRegPairOperands(MCInst &Inst, unsigned N) const { + assert(N == 2 && "Invalid number of operands!"); + unsigned RegNo = getRegPair(); + Inst.addOperand(MCOperand::createReg(RegNo++)); + Inst.addOperand(MCOperand::createReg(RegNo)); + } + + void addMovePRegPairOperands(MCInst &Inst, unsigned N) const { + assert(N == 2 && "Invalid number of operands!"); + for (auto RegNo : getRegList()) + Inst.addOperand(MCOperand::createReg(RegNo)); + } + + bool isReg() const override { + // As a special case until we sort out the definition of div/divu, pretend + // that $0/$zero are k_PhysRegister so that MCK_ZERO works correctly. + if (isGPRAsmReg() && RegIdx.Index == 0) + return true; + + return Kind == k_PhysRegister; + } + bool isRegIdx() const { return Kind == k_RegisterIndex; } + bool isImm() const override { return Kind == k_Immediate; } + bool isConstantImm() const { + return isImm() && dyn_cast<MCConstantExpr>(getImm()); + } + template <unsigned Bits> bool isUImm() const { + return isImm() && isConstantImm() && isUInt<Bits>(getConstantImm()); + } + bool isToken() const override { + // Note: It's not possible to pretend that other operand kinds are tokens. + // The matcher emitter checks tokens first. + return Kind == k_Token; + } + bool isMem() const override { return Kind == k_Memory; } + bool isConstantMemOff() const { + return isMem() && dyn_cast<MCConstantExpr>(getMemOff()); + } + template <unsigned Bits> bool isMemWithSimmOffset() const { + return isMem() && isConstantMemOff() && isInt<Bits>(getConstantMemOff()); + } + bool isMemWithGRPMM16Base() const { + return isMem() && getMemBase()->isMM16AsmReg(); + } + template <unsigned Bits> bool isMemWithUimmOffsetSP() const { + return isMem() && isConstantMemOff() && isUInt<Bits>(getConstantMemOff()) + && getMemBase()->isRegIdx() && (getMemBase()->getGPR32Reg() == Mips::SP); + } + template <unsigned Bits> bool isMemWithUimmWordAlignedOffsetSP() const { + return isMem() && isConstantMemOff() && isUInt<Bits>(getConstantMemOff()) + && (getConstantMemOff() % 4 == 0) && getMemBase()->isRegIdx() + && (getMemBase()->getGPR32Reg() == Mips::SP); + } + bool isRegList16() const { + if (!isRegList()) + return false; + + int Size = RegList.List->size(); + if (Size < 2 || Size > 5 || *RegList.List->begin() != Mips::S0 || + RegList.List->back() != Mips::RA) + return false; + + int PrevReg = *RegList.List->begin(); + for (int i = 1; i < Size - 1; i++) { + int Reg = (*(RegList.List))[i]; + if ( Reg != PrevReg + 1) + return false; + PrevReg = Reg; + } + + return true; + } + bool isInvNum() const { return Kind == k_Immediate; } + bool isLSAImm() const { + if (!isConstantImm()) + return false; + int64_t Val = getConstantImm(); + return 1 <= Val && Val <= 4; + } + bool isRegList() const { return Kind == k_RegList; } + bool isMovePRegPair() const { + if (Kind != k_RegList || RegList.List->size() != 2) + return false; + + unsigned R0 = RegList.List->front(); + unsigned R1 = RegList.List->back(); + + if ((R0 == Mips::A1 && R1 == Mips::A2) || + (R0 == Mips::A1 && R1 == Mips::A3) || + (R0 == Mips::A2 && R1 == Mips::A3) || + (R0 == Mips::A0 && R1 == Mips::S5) || + (R0 == Mips::A0 && R1 == Mips::S6) || + (R0 == Mips::A0 && R1 == Mips::A1) || + (R0 == Mips::A0 && R1 == Mips::A2) || + (R0 == Mips::A0 && R1 == Mips::A3)) + return true; + + return false; + } + + StringRef getToken() const { + assert(Kind == k_Token && "Invalid access!"); + return StringRef(Tok.Data, Tok.Length); + } + bool isRegPair() const { return Kind == k_RegPair; } + + unsigned getReg() const override { + // As a special case until we sort out the definition of div/divu, pretend + // that $0/$zero are k_PhysRegister so that MCK_ZERO works correctly. + if (Kind == k_RegisterIndex && RegIdx.Index == 0 && + RegIdx.Kind & RegKind_GPR) + return getGPR32Reg(); // FIXME: GPR64 too + + assert(Kind == k_PhysRegister && "Invalid access!"); + return PhysReg.Num; + } + + const MCExpr *getImm() const { + assert((Kind == k_Immediate) && "Invalid access!"); + return Imm.Val; + } + + int64_t getConstantImm() const { + const MCExpr *Val = getImm(); + return static_cast<const MCConstantExpr *>(Val)->getValue(); + } + + MipsOperand *getMemBase() const { + assert((Kind == k_Memory) && "Invalid access!"); + return Mem.Base; + } + + const MCExpr *getMemOff() const { + assert((Kind == k_Memory) && "Invalid access!"); + return Mem.Off; + } + + int64_t getConstantMemOff() const { + return static_cast<const MCConstantExpr *>(getMemOff())->getValue(); + } + + const SmallVectorImpl<unsigned> &getRegList() const { + assert((Kind == k_RegList) && "Invalid access!"); + return *(RegList.List); + } + + unsigned getRegPair() const { + assert((Kind == k_RegPair) && "Invalid access!"); + return RegIdx.Index; + } + + static std::unique_ptr<MipsOperand> CreateToken(StringRef Str, SMLoc S, + MipsAsmParser &Parser) { + auto Op = make_unique<MipsOperand>(k_Token, Parser); + Op->Tok.Data = Str.data(); + Op->Tok.Length = Str.size(); + Op->StartLoc = S; + Op->EndLoc = S; + return Op; + } + + /// Create a numeric register (e.g. $1). The exact register remains + /// unresolved until an instruction successfully matches + static std::unique_ptr<MipsOperand> + createNumericReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, + SMLoc E, MipsAsmParser &Parser) { + DEBUG(dbgs() << "createNumericReg(" << Index << ", ...)\n"); + return CreateReg(Index, RegKind_Numeric, RegInfo, S, E, Parser); + } + + /// Create a register that is definitely a GPR. + /// This is typically only used for named registers such as $gp. + static std::unique_ptr<MipsOperand> + createGPRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E, + MipsAsmParser &Parser) { + return CreateReg(Index, RegKind_GPR, RegInfo, S, E, Parser); + } + + /// Create a register that is definitely a FGR. + /// This is typically only used for named registers such as $f0. + static std::unique_ptr<MipsOperand> + createFGRReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E, + MipsAsmParser &Parser) { + return CreateReg(Index, RegKind_FGR, RegInfo, S, E, Parser); + } + + /// Create a register that is definitely a HWReg. + /// This is typically only used for named registers such as $hwr_cpunum. + static std::unique_ptr<MipsOperand> + createHWRegsReg(unsigned Index, const MCRegisterInfo *RegInfo, + SMLoc S, SMLoc E, MipsAsmParser &Parser) { + return CreateReg(Index, RegKind_HWRegs, RegInfo, S, E, Parser); + } + + /// Create a register that is definitely an FCC. + /// This is typically only used for named registers such as $fcc0. + static std::unique_ptr<MipsOperand> + createFCCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E, + MipsAsmParser &Parser) { + return CreateReg(Index, RegKind_FCC, RegInfo, S, E, Parser); + } + + /// Create a register that is definitely an ACC. + /// This is typically only used for named registers such as $ac0. + static std::unique_ptr<MipsOperand> + createACCReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, SMLoc E, + MipsAsmParser &Parser) { + return CreateReg(Index, RegKind_ACC, RegInfo, S, E, Parser); + } + + /// Create a register that is definitely an MSA128. + /// This is typically only used for named registers such as $w0. + static std::unique_ptr<MipsOperand> + createMSA128Reg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, + SMLoc E, MipsAsmParser &Parser) { + return CreateReg(Index, RegKind_MSA128, RegInfo, S, E, Parser); + } + + /// Create a register that is definitely an MSACtrl. + /// This is typically only used for named registers such as $msaaccess. + static std::unique_ptr<MipsOperand> + createMSACtrlReg(unsigned Index, const MCRegisterInfo *RegInfo, SMLoc S, + SMLoc E, MipsAsmParser &Parser) { + return CreateReg(Index, RegKind_MSACtrl, RegInfo, S, E, Parser); + } + + static std::unique_ptr<MipsOperand> + CreateImm(const MCExpr *Val, SMLoc S, SMLoc E, MipsAsmParser &Parser) { + auto Op = make_unique<MipsOperand>(k_Immediate, Parser); + Op->Imm.Val = Val; + Op->StartLoc = S; + Op->EndLoc = E; + return Op; + } + + static std::unique_ptr<MipsOperand> + CreateMem(std::unique_ptr<MipsOperand> Base, const MCExpr *Off, SMLoc S, + SMLoc E, MipsAsmParser &Parser) { + auto Op = make_unique<MipsOperand>(k_Memory, Parser); + Op->Mem.Base = Base.release(); + Op->Mem.Off = Off; + Op->StartLoc = S; + Op->EndLoc = E; + return Op; + } + + static std::unique_ptr<MipsOperand> + CreateRegList(SmallVectorImpl<unsigned> &Regs, SMLoc StartLoc, SMLoc EndLoc, + MipsAsmParser &Parser) { + assert (Regs.size() > 0 && "Empty list not allowed"); + + auto Op = make_unique<MipsOperand>(k_RegList, Parser); + Op->RegList.List = new SmallVector<unsigned, 10>(Regs.begin(), Regs.end()); + Op->StartLoc = StartLoc; + Op->EndLoc = EndLoc; + return Op; + } + + static std::unique_ptr<MipsOperand> + CreateRegPair(unsigned RegNo, SMLoc S, SMLoc E, MipsAsmParser &Parser) { + auto Op = make_unique<MipsOperand>(k_RegPair, Parser); + Op->RegIdx.Index = RegNo; + Op->StartLoc = S; + Op->EndLoc = E; + return Op; + } + + bool isGPRAsmReg() const { + return isRegIdx() && RegIdx.Kind & RegKind_GPR && RegIdx.Index <= 31; + } + bool isMM16AsmReg() const { + if (!(isRegIdx() && RegIdx.Kind)) + return false; + return ((RegIdx.Index >= 2 && RegIdx.Index <= 7) + || RegIdx.Index == 16 || RegIdx.Index == 17); + } + bool isMM16AsmRegZero() const { + if (!(isRegIdx() && RegIdx.Kind)) + return false; + return (RegIdx.Index == 0 || + (RegIdx.Index >= 2 && RegIdx.Index <= 7) || + RegIdx.Index == 17); + } + bool isMM16AsmRegMoveP() const { + if (!(isRegIdx() && RegIdx.Kind)) + return false; + return (RegIdx.Index == 0 || (RegIdx.Index >= 2 && RegIdx.Index <= 3) || + (RegIdx.Index >= 16 && RegIdx.Index <= 20)); + } + bool isFGRAsmReg() const { + // AFGR64 is $0-$15 but we handle this in getAFGR64() + return isRegIdx() && RegIdx.Kind & RegKind_FGR && RegIdx.Index <= 31; + } + bool isHWRegsAsmReg() const { + return isRegIdx() && RegIdx.Kind & RegKind_HWRegs && RegIdx.Index <= 31; + } + bool isCCRAsmReg() const { + return isRegIdx() && RegIdx.Kind & RegKind_CCR && RegIdx.Index <= 31; + } + bool isFCCAsmReg() const { + if (!(isRegIdx() && RegIdx.Kind & RegKind_FCC)) + return false; + if (!AsmParser.hasEightFccRegisters()) + return RegIdx.Index == 0; + return RegIdx.Index <= 7; + } + bool isACCAsmReg() const { + return isRegIdx() && RegIdx.Kind & RegKind_ACC && RegIdx.Index <= 3; + } + bool isCOP0AsmReg() const { + return isRegIdx() && RegIdx.Kind & RegKind_COP0 && RegIdx.Index <= 31; + } + bool isCOP2AsmReg() const { + return isRegIdx() && RegIdx.Kind & RegKind_COP2 && RegIdx.Index <= 31; + } + bool isCOP3AsmReg() const { + return isRegIdx() && RegIdx.Kind & RegKind_COP3 && RegIdx.Index <= 31; + } + bool isMSA128AsmReg() const { + return isRegIdx() && RegIdx.Kind & RegKind_MSA128 && RegIdx.Index <= 31; + } + bool isMSACtrlAsmReg() const { + return isRegIdx() && RegIdx.Kind & RegKind_MSACtrl && RegIdx.Index <= 7; + } + + /// getStartLoc - Get the location of the first token of this operand. + SMLoc getStartLoc() const override { return StartLoc; } + /// getEndLoc - Get the location of the last token of this operand. + SMLoc getEndLoc() const override { return EndLoc; } + + virtual ~MipsOperand() { + switch (Kind) { + case k_Immediate: + break; + case k_Memory: + delete Mem.Base; + break; + case k_RegList: + delete RegList.List; + case k_PhysRegister: + case k_RegisterIndex: + case k_Token: + case k_RegPair: + break; + } + } + + void print(raw_ostream &OS) const override { + switch (Kind) { + case k_Immediate: + OS << "Imm<"; + OS << *Imm.Val; + OS << ">"; + break; + case k_Memory: + OS << "Mem<"; + Mem.Base->print(OS); + OS << ", "; + OS << *Mem.Off; + OS << ">"; + break; + case k_PhysRegister: + OS << "PhysReg<" << PhysReg.Num << ">"; + break; + case k_RegisterIndex: + OS << "RegIdx<" << RegIdx.Index << ":" << RegIdx.Kind << ">"; + break; + case k_Token: + OS << Tok.Data; + break; + case k_RegList: + OS << "RegList< "; + for (auto Reg : (*RegList.List)) + OS << Reg << " "; + OS << ">"; + break; + case k_RegPair: + OS << "RegPair<" << RegIdx.Index << "," << RegIdx.Index + 1 << ">"; + break; + } + } +}; // class MipsOperand +} // namespace + +namespace llvm { +extern const MCInstrDesc MipsInsts[]; +} +static const MCInstrDesc &getInstDesc(unsigned Opcode) { + return MipsInsts[Opcode]; +} + +static bool hasShortDelaySlot(unsigned Opcode) { + switch (Opcode) { + case Mips::JALS_MM: + case Mips::JALRS_MM: + case Mips::JALRS16_MM: + case Mips::BGEZALS_MM: + case Mips::BLTZALS_MM: + return true; + default: + return false; + } +} + +bool MipsAsmParser::processInstruction(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode()); + + Inst.setLoc(IDLoc); + + if (MCID.isBranch() || MCID.isCall()) { + const unsigned Opcode = Inst.getOpcode(); + MCOperand Offset; + + switch (Opcode) { + default: + break; + case Mips::BBIT0: + case Mips::BBIT032: + case Mips::BBIT1: + case Mips::BBIT132: + assert(hasCnMips() && "instruction only valid for octeon cpus"); + // Fall through + + case Mips::BEQ: + case Mips::BNE: + case Mips::BEQ_MM: + case Mips::BNE_MM: + assert(MCID.getNumOperands() == 3 && "unexpected number of operands"); + Offset = Inst.getOperand(2); + if (!Offset.isImm()) + break; // We'll deal with this situation later on when applying fixups. + if (!isIntN(inMicroMipsMode() ? 17 : 18, Offset.getImm())) + return Error(IDLoc, "branch target out of range"); + if (OffsetToAlignment(Offset.getImm(), + 1LL << (inMicroMipsMode() ? 1 : 2))) + return Error(IDLoc, "branch to misaligned address"); + break; + case Mips::BGEZ: + case Mips::BGTZ: + case Mips::BLEZ: + case Mips::BLTZ: + case Mips::BGEZAL: + case Mips::BLTZAL: + case Mips::BC1F: + case Mips::BC1T: + case Mips::BGEZ_MM: + case Mips::BGTZ_MM: + case Mips::BLEZ_MM: + case Mips::BLTZ_MM: + case Mips::BGEZAL_MM: + case Mips::BLTZAL_MM: + case Mips::BC1F_MM: + case Mips::BC1T_MM: + assert(MCID.getNumOperands() == 2 && "unexpected number of operands"); + Offset = Inst.getOperand(1); + if (!Offset.isImm()) + break; // We'll deal with this situation later on when applying fixups. + if (!isIntN(inMicroMipsMode() ? 17 : 18, Offset.getImm())) + return Error(IDLoc, "branch target out of range"); + if (OffsetToAlignment(Offset.getImm(), + 1LL << (inMicroMipsMode() ? 1 : 2))) + return Error(IDLoc, "branch to misaligned address"); + break; + case Mips::BEQZ16_MM: + case Mips::BNEZ16_MM: + assert(MCID.getNumOperands() == 2 && "unexpected number of operands"); + Offset = Inst.getOperand(1); + if (!Offset.isImm()) + break; // We'll deal with this situation later on when applying fixups. + if (!isIntN(8, Offset.getImm())) + return Error(IDLoc, "branch target out of range"); + if (OffsetToAlignment(Offset.getImm(), 2LL)) + return Error(IDLoc, "branch to misaligned address"); + break; + } + } + + // SSNOP is deprecated on MIPS32r6/MIPS64r6 + // We still accept it but it is a normal nop. + if (hasMips32r6() && Inst.getOpcode() == Mips::SSNOP) { + std::string ISA = hasMips64r6() ? "MIPS64r6" : "MIPS32r6"; + Warning(IDLoc, "ssnop is deprecated for " + ISA + " and is equivalent to a " + "nop instruction"); + } + + if (hasCnMips()) { + const unsigned Opcode = Inst.getOpcode(); + MCOperand Opnd; + int Imm; + + switch (Opcode) { + default: + break; + + case Mips::BBIT0: + case Mips::BBIT032: + case Mips::BBIT1: + case Mips::BBIT132: + assert(MCID.getNumOperands() == 3 && "unexpected number of operands"); + // The offset is handled above + Opnd = Inst.getOperand(1); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (Imm < 0 || Imm > (Opcode == Mips::BBIT0 || + Opcode == Mips::BBIT1 ? 63 : 31)) + return Error(IDLoc, "immediate operand value out of range"); + if (Imm > 31) { + Inst.setOpcode(Opcode == Mips::BBIT0 ? Mips::BBIT032 + : Mips::BBIT132); + Inst.getOperand(1).setImm(Imm - 32); + } + break; + + case Mips::CINS: + case Mips::CINS32: + case Mips::EXTS: + case Mips::EXTS32: + assert(MCID.getNumOperands() == 4 && "unexpected number of operands"); + // Check length + Opnd = Inst.getOperand(3); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (Imm < 0 || Imm > 31) + return Error(IDLoc, "immediate operand value out of range"); + // Check position + Opnd = Inst.getOperand(2); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (Imm < 0 || Imm > (Opcode == Mips::CINS || + Opcode == Mips::EXTS ? 63 : 31)) + return Error(IDLoc, "immediate operand value out of range"); + if (Imm > 31) { + Inst.setOpcode(Opcode == Mips::CINS ? Mips::CINS32 : Mips::EXTS32); + Inst.getOperand(2).setImm(Imm - 32); + } + break; + + case Mips::SEQi: + case Mips::SNEi: + assert(MCID.getNumOperands() == 3 && "unexpected number of operands"); + Opnd = Inst.getOperand(2); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (!isInt<10>(Imm)) + return Error(IDLoc, "immediate operand value out of range"); + break; + } + } + + if (MCID.mayLoad() || MCID.mayStore()) { + // Check the offset of memory operand, if it is a symbol + // reference or immediate we may have to expand instructions. + for (unsigned i = 0; i < MCID.getNumOperands(); i++) { + const MCOperandInfo &OpInfo = MCID.OpInfo[i]; + if ((OpInfo.OperandType == MCOI::OPERAND_MEMORY) || + (OpInfo.OperandType == MCOI::OPERAND_UNKNOWN)) { + MCOperand &Op = Inst.getOperand(i); + if (Op.isImm()) { + int MemOffset = Op.getImm(); + if (MemOffset < -32768 || MemOffset > 32767) { + // Offset can't exceed 16bit value. + expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), true); + return false; + } + } else if (Op.isExpr()) { + const MCExpr *Expr = Op.getExpr(); + if (Expr->getKind() == MCExpr::SymbolRef) { + const MCSymbolRefExpr *SR = + static_cast<const MCSymbolRefExpr *>(Expr); + if (SR->getKind() == MCSymbolRefExpr::VK_None) { + // Expand symbol. + expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false); + return false; + } + } else if (!isEvaluated(Expr)) { + expandMemInst(Inst, IDLoc, Instructions, MCID.mayLoad(), false); + return false; + } + } + } + } // for + } // if load/store + + if (inMicroMipsMode()) { + if (MCID.mayLoad()) { + // Try to create 16-bit GP relative load instruction. + for (unsigned i = 0; i < MCID.getNumOperands(); i++) { + const MCOperandInfo &OpInfo = MCID.OpInfo[i]; + if ((OpInfo.OperandType == MCOI::OPERAND_MEMORY) || + (OpInfo.OperandType == MCOI::OPERAND_UNKNOWN)) { + MCOperand &Op = Inst.getOperand(i); + if (Op.isImm()) { + int MemOffset = Op.getImm(); + MCOperand &DstReg = Inst.getOperand(0); + MCOperand &BaseReg = Inst.getOperand(1); + if (isIntN(9, MemOffset) && (MemOffset % 4 == 0) && + getContext().getRegisterInfo()->getRegClass( + Mips::GPRMM16RegClassID).contains(DstReg.getReg()) && + BaseReg.getReg() == Mips::GP) { + MCInst TmpInst; + TmpInst.setLoc(IDLoc); + TmpInst.setOpcode(Mips::LWGP_MM); + TmpInst.addOperand(MCOperand::createReg(DstReg.getReg())); + TmpInst.addOperand(MCOperand::createReg(Mips::GP)); + TmpInst.addOperand(MCOperand::createImm(MemOffset)); + Instructions.push_back(TmpInst); + return false; + } + } + } + } // for + } // if load + + // TODO: Handle this with the AsmOperandClass.PredicateMethod. + + MCOperand Opnd; + int Imm; + + switch (Inst.getOpcode()) { + default: + break; + case Mips::ADDIUS5_MM: + Opnd = Inst.getOperand(2); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (Imm < -8 || Imm > 7) + return Error(IDLoc, "immediate operand value out of range"); + break; + case Mips::ADDIUSP_MM: + Opnd = Inst.getOperand(0); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (Imm < -1032 || Imm > 1028 || (Imm < 8 && Imm > -12) || + Imm % 4 != 0) + return Error(IDLoc, "immediate operand value out of range"); + break; + case Mips::SLL16_MM: + case Mips::SRL16_MM: + Opnd = Inst.getOperand(2); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (Imm < 1 || Imm > 8) + return Error(IDLoc, "immediate operand value out of range"); + break; + case Mips::LI16_MM: + Opnd = Inst.getOperand(1); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (Imm < -1 || Imm > 126) + return Error(IDLoc, "immediate operand value out of range"); + break; + case Mips::ADDIUR2_MM: + Opnd = Inst.getOperand(2); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (!(Imm == 1 || Imm == -1 || + ((Imm % 4 == 0) && Imm < 28 && Imm > 0))) + return Error(IDLoc, "immediate operand value out of range"); + break; + case Mips::ADDIUR1SP_MM: + Opnd = Inst.getOperand(1); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (OffsetToAlignment(Imm, 4LL)) + return Error(IDLoc, "misaligned immediate operand value"); + if (Imm < 0 || Imm > 255) + return Error(IDLoc, "immediate operand value out of range"); + break; + case Mips::ANDI16_MM: + Opnd = Inst.getOperand(2); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (!(Imm == 128 || (Imm >= 1 && Imm <= 4) || Imm == 7 || Imm == 8 || + Imm == 15 || Imm == 16 || Imm == 31 || Imm == 32 || Imm == 63 || + Imm == 64 || Imm == 255 || Imm == 32768 || Imm == 65535)) + return Error(IDLoc, "immediate operand value out of range"); + break; + case Mips::LBU16_MM: + Opnd = Inst.getOperand(2); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (Imm < -1 || Imm > 14) + return Error(IDLoc, "immediate operand value out of range"); + break; + case Mips::SB16_MM: + Opnd = Inst.getOperand(2); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (Imm < 0 || Imm > 15) + return Error(IDLoc, "immediate operand value out of range"); + break; + case Mips::LHU16_MM: + case Mips::SH16_MM: + Opnd = Inst.getOperand(2); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (Imm < 0 || Imm > 30 || (Imm % 2 != 0)) + return Error(IDLoc, "immediate operand value out of range"); + break; + case Mips::LW16_MM: + case Mips::SW16_MM: + Opnd = Inst.getOperand(2); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (Imm < 0 || Imm > 60 || (Imm % 4 != 0)) + return Error(IDLoc, "immediate operand value out of range"); + break; + case Mips::CACHE: + case Mips::PREF: + Opnd = Inst.getOperand(2); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + Imm = Opnd.getImm(); + if (!isUInt<5>(Imm)) + return Error(IDLoc, "immediate operand value out of range"); + break; + case Mips::ADDIUPC_MM: + MCOperand Opnd = Inst.getOperand(1); + if (!Opnd.isImm()) + return Error(IDLoc, "expected immediate operand kind"); + int Imm = Opnd.getImm(); + if ((Imm % 4 != 0) || !isIntN(25, Imm)) + return Error(IDLoc, "immediate operand value out of range"); + break; + } + } + + if (needsExpansion(Inst)) { + if (expandInstruction(Inst, IDLoc, Instructions)) + return true; + } else + Instructions.push_back(Inst); + + // If this instruction has a delay slot and .set reorder is active, + // emit a NOP after it. + if (MCID.hasDelaySlot() && AssemblerOptions.back()->isReorder()) + createNop(hasShortDelaySlot(Inst.getOpcode()), IDLoc, Instructions); + + return false; +} + +bool MipsAsmParser::needsExpansion(MCInst &Inst) { + + switch (Inst.getOpcode()) { + case Mips::LoadImm32: + case Mips::LoadImm64: + case Mips::LoadAddrImm32: + case Mips::LoadAddrReg32: + case Mips::B_MM_Pseudo: + case Mips::LWM_MM: + case Mips::SWM_MM: + case Mips::JalOneReg: + case Mips::JalTwoReg: + case Mips::BneImm: + case Mips::BeqImm: + case Mips::BLT: + case Mips::BLE: + case Mips::BGE: + case Mips::BGT: + case Mips::BLTU: + case Mips::BLEU: + case Mips::BGEU: + case Mips::BGTU: + case Mips::Ulhu: + case Mips::Ulw: + return true; + default: + return false; + } +} + +bool MipsAsmParser::expandInstruction(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + switch (Inst.getOpcode()) { + default: llvm_unreachable("unimplemented expansion"); + case Mips::LoadImm32: + return expandLoadImm(Inst, true, IDLoc, Instructions); + case Mips::LoadImm64: + return expandLoadImm(Inst, false, IDLoc, Instructions); + case Mips::LoadAddrImm32: + return expandLoadAddressImm(Inst, true, IDLoc, Instructions); + case Mips::LoadAddrReg32: + return expandLoadAddressReg(Inst, true, IDLoc, Instructions); + case Mips::B_MM_Pseudo: + return expandUncondBranchMMPseudo(Inst, IDLoc, Instructions); + case Mips::SWM_MM: + case Mips::LWM_MM: + return expandLoadStoreMultiple(Inst, IDLoc, Instructions); + case Mips::JalOneReg: + case Mips::JalTwoReg: + return expandJalWithRegs(Inst, IDLoc, Instructions); + case Mips::BneImm: + case Mips::BeqImm: + return expandBranchImm(Inst, IDLoc, Instructions); + case Mips::BLT: + case Mips::BLE: + case Mips::BGE: + case Mips::BGT: + case Mips::BLTU: + case Mips::BLEU: + case Mips::BGEU: + case Mips::BGTU: + return expandCondBranches(Inst, IDLoc, Instructions); + case Mips::Ulhu: + return expandUlhu(Inst, IDLoc, Instructions); + case Mips::Ulw: + return expandUlw(Inst, IDLoc, Instructions); + } +} + +namespace { +void emitRX(unsigned Opcode, unsigned DstReg, MCOperand Imm, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + MCInst tmpInst; + tmpInst.setOpcode(Opcode); + tmpInst.addOperand(MCOperand::createReg(DstReg)); + tmpInst.addOperand(Imm); + tmpInst.setLoc(IDLoc); + Instructions.push_back(tmpInst); +} + +void emitRI(unsigned Opcode, unsigned DstReg, int16_t Imm, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + emitRX(Opcode, DstReg, MCOperand::createImm(Imm), IDLoc, Instructions); +} + + +void emitRRX(unsigned Opcode, unsigned DstReg, unsigned SrcReg, MCOperand Imm, + SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) { + MCInst tmpInst; + tmpInst.setOpcode(Opcode); + tmpInst.addOperand(MCOperand::createReg(DstReg)); + tmpInst.addOperand(MCOperand::createReg(SrcReg)); + tmpInst.addOperand(Imm); + tmpInst.setLoc(IDLoc); + Instructions.push_back(tmpInst); +} + +void emitRRR(unsigned Opcode, unsigned DstReg, unsigned SrcReg, + unsigned SrcReg2, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + emitRRX(Opcode, DstReg, SrcReg, MCOperand::createReg(SrcReg2), IDLoc, + Instructions); +} + +void emitRRI(unsigned Opcode, unsigned DstReg, unsigned SrcReg, int16_t Imm, + SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) { + emitRRX(Opcode, DstReg, SrcReg, MCOperand::createImm(Imm), IDLoc, + Instructions); +} + +template <int16_t ShiftAmount> +void createLShiftOri(MCOperand Operand, unsigned RegNo, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + if (ShiftAmount >= 32) + emitRRI(Mips::DSLL32, RegNo, RegNo, ShiftAmount - 32, IDLoc, Instructions); + else if (ShiftAmount > 0) + emitRRI(Mips::DSLL, RegNo, RegNo, ShiftAmount, IDLoc, Instructions); + + // There's no need for an ORi if the immediate is 0. + if (Operand.isImm() && Operand.getImm() == 0) + return; + + emitRRX(Mips::ORi, RegNo, RegNo, Operand, IDLoc, Instructions); +} + +template <unsigned ShiftAmount> +void createLShiftOri(int64_t Value, unsigned RegNo, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + createLShiftOri<ShiftAmount>(MCOperand::createImm(Value), RegNo, IDLoc, + Instructions); +} +} + +bool MipsAsmParser::expandJalWithRegs(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + // Create a JALR instruction which is going to replace the pseudo-JAL. + MCInst JalrInst; + JalrInst.setLoc(IDLoc); + const MCOperand FirstRegOp = Inst.getOperand(0); + const unsigned Opcode = Inst.getOpcode(); + + if (Opcode == Mips::JalOneReg) { + // jal $rs => jalr $rs + if (inMicroMipsMode()) { + JalrInst.setOpcode(Mips::JALR16_MM); + JalrInst.addOperand(FirstRegOp); + } else { + JalrInst.setOpcode(Mips::JALR); + JalrInst.addOperand(MCOperand::createReg(Mips::RA)); + JalrInst.addOperand(FirstRegOp); + } + } else if (Opcode == Mips::JalTwoReg) { + // jal $rd, $rs => jalr $rd, $rs + JalrInst.setOpcode(inMicroMipsMode() ? Mips::JALR_MM : Mips::JALR); + JalrInst.addOperand(FirstRegOp); + const MCOperand SecondRegOp = Inst.getOperand(1); + JalrInst.addOperand(SecondRegOp); + } + Instructions.push_back(JalrInst); + + // If .set reorder is active, emit a NOP after it. + if (AssemblerOptions.back()->isReorder()) { + // This is a 32-bit NOP because these 2 pseudo-instructions + // do not have a short delay slot. + MCInst NopInst; + NopInst.setOpcode(Mips::SLL); + NopInst.addOperand(MCOperand::createReg(Mips::ZERO)); + NopInst.addOperand(MCOperand::createReg(Mips::ZERO)); + NopInst.addOperand(MCOperand::createImm(0)); + Instructions.push_back(NopInst); + } + + return false; +} + +bool MipsAsmParser::loadImmediate(int64_t ImmValue, unsigned DstReg, + unsigned SrcReg, bool Is32BitImm, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + if (!Is32BitImm && !isGP64bit()) { + Error(IDLoc, "instruction requires a 64-bit architecture"); + return true; + } + + if (Is32BitImm) { + if (isInt<32>(ImmValue) || isUInt<32>(ImmValue)) { + // Sign extend up to 64-bit so that the predicates match the hardware + // behaviour. In particular, isInt<16>(0xffff8000) and similar should be + // true. + ImmValue = SignExtend64<32>(ImmValue); + } else { + Error(IDLoc, "instruction requires a 32-bit immediate"); + return true; + } + } + + bool UseSrcReg = false; + if (SrcReg != Mips::NoRegister) + UseSrcReg = true; + + unsigned TmpReg = DstReg; + if (UseSrcReg && (DstReg == SrcReg)) { + // At this point we need AT to perform the expansions and we exit if it is + // not available. + unsigned ATReg = getATReg(IDLoc); + if (!ATReg) + return true; + TmpReg = ATReg; + } + + // FIXME: gas has a special case for values that are 000...1111, which + // becomes a li -1 and then a dsrl + if (isInt<16>(ImmValue)) { + // li d,j => addiu d,$zero,j + if (!UseSrcReg) + SrcReg = Mips::ZERO; + emitRRI(Mips::ADDiu, DstReg, SrcReg, ImmValue, IDLoc, Instructions); + } else if (isUInt<16>(ImmValue)) { + // li d,j => ori d,$zero,j + unsigned TmpReg = DstReg; + if (SrcReg == DstReg) { + unsigned ATReg = getATReg(IDLoc); + if (!ATReg) + return true; + TmpReg = ATReg; + } + + emitRRI(Mips::ORi, TmpReg, Mips::ZERO, ImmValue, IDLoc, Instructions); + if (UseSrcReg) + emitRRR(Mips::ADDu, DstReg, TmpReg, SrcReg, IDLoc, Instructions); + } else if (isInt<32>(ImmValue) || isUInt<32>(ImmValue)) { + warnIfNoMacro(IDLoc); + + // For all other values which are representable as a 32-bit integer: + // li d,j => lui d,hi16(j) + // ori d,d,lo16(j) + uint16_t Bits31To16 = (ImmValue >> 16) & 0xffff; + uint16_t Bits15To0 = ImmValue & 0xffff; + + if (!Is32BitImm && !isInt<32>(ImmValue)) { + // For DLI, expand to an ORi instead of a LUi to avoid sign-extending the + // upper 32 bits. + emitRRI(Mips::ORi, TmpReg, Mips::ZERO, Bits31To16, IDLoc, Instructions); + emitRRI(Mips::DSLL, TmpReg, TmpReg, 16, IDLoc, Instructions); + } else + emitRI(Mips::LUi, TmpReg, Bits31To16, IDLoc, Instructions); + createLShiftOri<0>(Bits15To0, TmpReg, IDLoc, Instructions); + + if (UseSrcReg) + createAddu(DstReg, TmpReg, SrcReg, !Is32BitImm, Instructions); + + } else if ((ImmValue & (0xffffLL << 48)) == 0) { + warnIfNoMacro(IDLoc); + + // <------- lo32 ------> + // <------- hi32 ------> + // <- hi16 -> <- lo16 -> + // _________________________________ + // | | | | + // | 16-bits | 16-bits | 16-bits | + // |__________|__________|__________| + // + // For any 64-bit value that is representable as a 48-bit integer: + // li d,j => lui d,hi16(j) + // ori d,d,hi16(lo32(j)) + // dsll d,d,16 + // ori d,d,lo16(lo32(j)) + uint16_t Bits47To32 = (ImmValue >> 32) & 0xffff; + uint16_t Bits31To16 = (ImmValue >> 16) & 0xffff; + uint16_t Bits15To0 = ImmValue & 0xffff; + + emitRI(Mips::LUi, TmpReg, Bits47To32, IDLoc, Instructions); + createLShiftOri<0>(Bits31To16, TmpReg, IDLoc, Instructions); + createLShiftOri<16>(Bits15To0, TmpReg, IDLoc, Instructions); + + if (UseSrcReg) + createAddu(DstReg, TmpReg, SrcReg, !Is32BitImm, Instructions); + + } else { + warnIfNoMacro(IDLoc); + + // <------- hi32 ------> <------- lo32 ------> + // <- hi16 -> <- lo16 -> + // ___________________________________________ + // | | | | | + // | 16-bits | 16-bits | 16-bits | 16-bits | + // |__________|__________|__________|__________| + // + // For all other values which are representable as a 64-bit integer: + // li d,j => lui d,hi16(j) + // ori d,d,lo16(hi32(j)) + // dsll d,d,16 + // ori d,d,hi16(lo32(j)) + // dsll d,d,16 + // ori d,d,lo16(lo32(j)) + uint16_t Bits63To48 = (ImmValue >> 48) & 0xffff; + uint16_t Bits47To32 = (ImmValue >> 32) & 0xffff; + uint16_t Bits31To16 = (ImmValue >> 16) & 0xffff; + uint16_t Bits15To0 = ImmValue & 0xffff; + + emitRI(Mips::LUi, TmpReg, Bits63To48, IDLoc, Instructions); + createLShiftOri<0>(Bits47To32, TmpReg, IDLoc, Instructions); + + // When Bits31To16 is 0, do a left shift of 32 bits instead of doing + // two left shifts of 16 bits. + if (Bits31To16 == 0) { + createLShiftOri<32>(Bits15To0, TmpReg, IDLoc, Instructions); + } else { + createLShiftOri<16>(Bits31To16, TmpReg, IDLoc, Instructions); + createLShiftOri<16>(Bits15To0, TmpReg, IDLoc, Instructions); + } + + if (UseSrcReg) + createAddu(DstReg, TmpReg, SrcReg, !Is32BitImm, Instructions); + } + return false; +} + +bool MipsAsmParser::expandLoadImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + const MCOperand &ImmOp = Inst.getOperand(1); + assert(ImmOp.isImm() && "expected immediate operand kind"); + const MCOperand &DstRegOp = Inst.getOperand(0); + assert(DstRegOp.isReg() && "expected register operand kind"); + + if (loadImmediate(ImmOp.getImm(), DstRegOp.getReg(), Mips::NoRegister, + Is32BitImm, IDLoc, Instructions)) + return true; + + return false; +} + +bool +MipsAsmParser::expandLoadAddressReg(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + const MCOperand &DstRegOp = Inst.getOperand(0); + assert(DstRegOp.isReg() && "expected register operand kind"); + + const MCOperand &SrcRegOp = Inst.getOperand(1); + assert(SrcRegOp.isReg() && "expected register operand kind"); + + const MCOperand &ImmOp = Inst.getOperand(2); + assert((ImmOp.isImm() || ImmOp.isExpr()) && + "expected immediate operand kind"); + if (!ImmOp.isImm()) { + if (loadAndAddSymbolAddress(ImmOp.getExpr(), DstRegOp.getReg(), + SrcRegOp.getReg(), Is32BitImm, IDLoc, + Instructions)) + return true; + + return false; + } + + if (loadImmediate(ImmOp.getImm(), DstRegOp.getReg(), SrcRegOp.getReg(), + Is32BitImm, IDLoc, Instructions)) + return true; + + return false; +} + +bool +MipsAsmParser::expandLoadAddressImm(MCInst &Inst, bool Is32BitImm, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + const MCOperand &DstRegOp = Inst.getOperand(0); + assert(DstRegOp.isReg() && "expected register operand kind"); + + const MCOperand &ImmOp = Inst.getOperand(1); + assert((ImmOp.isImm() || ImmOp.isExpr()) && + "expected immediate operand kind"); + if (!ImmOp.isImm()) { + if (loadAndAddSymbolAddress(ImmOp.getExpr(), DstRegOp.getReg(), + Mips::NoRegister, Is32BitImm, IDLoc, + Instructions)) + return true; + + return false; + } + + if (loadImmediate(ImmOp.getImm(), DstRegOp.getReg(), Mips::NoRegister, + Is32BitImm, IDLoc, Instructions)) + return true; + + return false; +} + +bool MipsAsmParser::loadAndAddSymbolAddress( + const MCExpr *SymExpr, unsigned DstReg, unsigned SrcReg, bool Is32BitSym, + SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) { + warnIfNoMacro(IDLoc); + + if (Is32BitSym && isABI_N64()) + Warning(IDLoc, "instruction loads the 32-bit address of a 64-bit symbol"); + + MCInst tmpInst; + const MCSymbolRefExpr *Symbol = cast<MCSymbolRefExpr>(SymExpr); + const MCSymbolRefExpr *HiExpr = MCSymbolRefExpr::create( + &Symbol->getSymbol(), MCSymbolRefExpr::VK_Mips_ABS_HI, getContext()); + const MCSymbolRefExpr *LoExpr = MCSymbolRefExpr::create( + &Symbol->getSymbol(), MCSymbolRefExpr::VK_Mips_ABS_LO, getContext()); + + bool UseSrcReg = SrcReg != Mips::NoRegister; + + unsigned TmpReg = DstReg; + if (UseSrcReg && (DstReg == SrcReg)) { + // At this point we need AT to perform the expansions and we exit if it is + // not available. + unsigned ATReg = getATReg(IDLoc); + if (!ATReg) + return true; + TmpReg = ATReg; + } + + if (!Is32BitSym) { + // If it's a 64-bit architecture, expand to: + // la d,sym => lui d,highest(sym) + // ori d,d,higher(sym) + // dsll d,d,16 + // ori d,d,hi16(sym) + // dsll d,d,16 + // ori d,d,lo16(sym) + const MCSymbolRefExpr *HighestExpr = MCSymbolRefExpr::create( + &Symbol->getSymbol(), MCSymbolRefExpr::VK_Mips_HIGHEST, getContext()); + const MCSymbolRefExpr *HigherExpr = MCSymbolRefExpr::create( + &Symbol->getSymbol(), MCSymbolRefExpr::VK_Mips_HIGHER, getContext()); + + tmpInst.setOpcode(Mips::LUi); + tmpInst.addOperand(MCOperand::createReg(TmpReg)); + tmpInst.addOperand(MCOperand::createExpr(HighestExpr)); + Instructions.push_back(tmpInst); + + createLShiftOri<0>(MCOperand::createExpr(HigherExpr), TmpReg, SMLoc(), + Instructions); + createLShiftOri<16>(MCOperand::createExpr(HiExpr), TmpReg, SMLoc(), + Instructions); + createLShiftOri<16>(MCOperand::createExpr(LoExpr), TmpReg, SMLoc(), + Instructions); + } else { + // Otherwise, expand to: + // la d,sym => lui d,hi16(sym) + // ori d,d,lo16(sym) + tmpInst.setOpcode(Mips::LUi); + tmpInst.addOperand(MCOperand::createReg(TmpReg)); + tmpInst.addOperand(MCOperand::createExpr(HiExpr)); + Instructions.push_back(tmpInst); + + emitRRX(Mips::ADDiu, TmpReg, TmpReg, MCOperand::createExpr(LoExpr), SMLoc(), + Instructions); + } + + if (UseSrcReg) + createAddu(DstReg, TmpReg, SrcReg, !Is32BitSym, Instructions); + + return false; +} + +bool MipsAsmParser::expandUncondBranchMMPseudo( + MCInst &Inst, SMLoc IDLoc, SmallVectorImpl<MCInst> &Instructions) { + assert(getInstDesc(Inst.getOpcode()).getNumOperands() == 1 && + "unexpected number of operands"); + + MCOperand Offset = Inst.getOperand(0); + if (Offset.isExpr()) { + Inst.clear(); + Inst.setOpcode(Mips::BEQ_MM); + Inst.addOperand(MCOperand::createReg(Mips::ZERO)); + Inst.addOperand(MCOperand::createReg(Mips::ZERO)); + Inst.addOperand(MCOperand::createExpr(Offset.getExpr())); + } else { + assert(Offset.isImm() && "expected immediate operand kind"); + if (isIntN(11, Offset.getImm())) { + // If offset fits into 11 bits then this instruction becomes microMIPS + // 16-bit unconditional branch instruction. + Inst.setOpcode(Mips::B16_MM); + } else { + if (!isIntN(17, Offset.getImm())) + Error(IDLoc, "branch target out of range"); + if (OffsetToAlignment(Offset.getImm(), 1LL << 1)) + Error(IDLoc, "branch to misaligned address"); + Inst.clear(); + Inst.setOpcode(Mips::BEQ_MM); + Inst.addOperand(MCOperand::createReg(Mips::ZERO)); + Inst.addOperand(MCOperand::createReg(Mips::ZERO)); + Inst.addOperand(MCOperand::createImm(Offset.getImm())); + } + } + Instructions.push_back(Inst); + + // If .set reorder is active, emit a NOP after the branch instruction. + if (AssemblerOptions.back()->isReorder()) + createNop(true, IDLoc, Instructions); + + return false; +} + +bool MipsAsmParser::expandBranchImm(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + const MCOperand &DstRegOp = Inst.getOperand(0); + assert(DstRegOp.isReg() && "expected register operand kind"); + + const MCOperand &ImmOp = Inst.getOperand(1); + assert(ImmOp.isImm() && "expected immediate operand kind"); + + const MCOperand &MemOffsetOp = Inst.getOperand(2); + assert(MemOffsetOp.isImm() && "expected immediate operand kind"); + + unsigned OpCode = 0; + switch(Inst.getOpcode()) { + case Mips::BneImm: + OpCode = Mips::BNE; + break; + case Mips::BeqImm: + OpCode = Mips::BEQ; + break; + default: + llvm_unreachable("Unknown immediate branch pseudo-instruction."); + break; + } + + int64_t ImmValue = ImmOp.getImm(); + if (ImmValue == 0) { + MCInst BranchInst; + BranchInst.setOpcode(OpCode); + BranchInst.addOperand(DstRegOp); + BranchInst.addOperand(MCOperand::createReg(Mips::ZERO)); + BranchInst.addOperand(MemOffsetOp); + Instructions.push_back(BranchInst); + } else { + warnIfNoMacro(IDLoc); + + unsigned ATReg = getATReg(IDLoc); + if (!ATReg) + return true; + + if (loadImmediate(ImmValue, ATReg, Mips::NoRegister, !isGP64bit(), IDLoc, + Instructions)) + return true; + + MCInst BranchInst; + BranchInst.setOpcode(OpCode); + BranchInst.addOperand(DstRegOp); + BranchInst.addOperand(MCOperand::createReg(ATReg)); + BranchInst.addOperand(MemOffsetOp); + Instructions.push_back(BranchInst); + } + return false; +} + +void MipsAsmParser::expandMemInst(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions, + bool isLoad, bool isImmOpnd) { + MCInst TempInst; + unsigned ImmOffset, HiOffset, LoOffset; + const MCExpr *ExprOffset; + unsigned TmpRegNum; + // 1st operand is either the source or destination register. + assert(Inst.getOperand(0).isReg() && "expected register operand kind"); + unsigned RegOpNum = Inst.getOperand(0).getReg(); + // 2nd operand is the base register. + assert(Inst.getOperand(1).isReg() && "expected register operand kind"); + unsigned BaseRegNum = Inst.getOperand(1).getReg(); + // 3rd operand is either an immediate or expression. + if (isImmOpnd) { + assert(Inst.getOperand(2).isImm() && "expected immediate operand kind"); + ImmOffset = Inst.getOperand(2).getImm(); + LoOffset = ImmOffset & 0x0000ffff; + HiOffset = (ImmOffset & 0xffff0000) >> 16; + // If msb of LoOffset is 1(negative number) we must increment HiOffset. + if (LoOffset & 0x8000) + HiOffset++; + } else + ExprOffset = Inst.getOperand(2).getExpr(); + // All instructions will have the same location. + TempInst.setLoc(IDLoc); + // These are some of the types of expansions we perform here: + // 1) lw $8, sym => lui $8, %hi(sym) + // lw $8, %lo(sym)($8) + // 2) lw $8, offset($9) => lui $8, %hi(offset) + // add $8, $8, $9 + // lw $8, %lo(offset)($9) + // 3) lw $8, offset($8) => lui $at, %hi(offset) + // add $at, $at, $8 + // lw $8, %lo(offset)($at) + // 4) sw $8, sym => lui $at, %hi(sym) + // sw $8, %lo(sym)($at) + // 5) sw $8, offset($8) => lui $at, %hi(offset) + // add $at, $at, $8 + // sw $8, %lo(offset)($at) + // 6) ldc1 $f0, sym => lui $at, %hi(sym) + // ldc1 $f0, %lo(sym)($at) + // + // For load instructions we can use the destination register as a temporary + // if base and dst are different (examples 1 and 2) and if the base register + // is general purpose otherwise we must use $at (example 6) and error if it's + // not available. For stores we must use $at (examples 4 and 5) because we + // must not clobber the source register setting up the offset. + const MCInstrDesc &Desc = getInstDesc(Inst.getOpcode()); + int16_t RegClassOp0 = Desc.OpInfo[0].RegClass; + unsigned RegClassIDOp0 = + getContext().getRegisterInfo()->getRegClass(RegClassOp0).getID(); + bool IsGPR = (RegClassIDOp0 == Mips::GPR32RegClassID) || + (RegClassIDOp0 == Mips::GPR64RegClassID); + if (isLoad && IsGPR && (BaseRegNum != RegOpNum)) + TmpRegNum = RegOpNum; + else { + // At this point we need AT to perform the expansions and we exit if it is + // not available. + TmpRegNum = getATReg(IDLoc); + if (!TmpRegNum) + return; + } + + TempInst.setOpcode(Mips::LUi); + TempInst.addOperand(MCOperand::createReg(TmpRegNum)); + if (isImmOpnd) + TempInst.addOperand(MCOperand::createImm(HiOffset)); + else { + const MCExpr *HiExpr = evaluateRelocExpr(ExprOffset, "hi"); + TempInst.addOperand(MCOperand::createExpr(HiExpr)); + } + // Add the instruction to the list. + Instructions.push_back(TempInst); + // Prepare TempInst for next instruction. + TempInst.clear(); + // Add temp register to base. + if (BaseRegNum != Mips::ZERO) { + TempInst.setOpcode(Mips::ADDu); + TempInst.addOperand(MCOperand::createReg(TmpRegNum)); + TempInst.addOperand(MCOperand::createReg(TmpRegNum)); + TempInst.addOperand(MCOperand::createReg(BaseRegNum)); + Instructions.push_back(TempInst); + TempInst.clear(); + } + // And finally, create original instruction with low part + // of offset and new base. + TempInst.setOpcode(Inst.getOpcode()); + TempInst.addOperand(MCOperand::createReg(RegOpNum)); + TempInst.addOperand(MCOperand::createReg(TmpRegNum)); + if (isImmOpnd) + TempInst.addOperand(MCOperand::createImm(LoOffset)); + else { + const MCExpr *LoExpr = evaluateRelocExpr(ExprOffset, "lo"); + TempInst.addOperand(MCOperand::createExpr(LoExpr)); + } + Instructions.push_back(TempInst); + TempInst.clear(); +} + +bool +MipsAsmParser::expandLoadStoreMultiple(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + unsigned OpNum = Inst.getNumOperands(); + unsigned Opcode = Inst.getOpcode(); + unsigned NewOpcode = Opcode == Mips::SWM_MM ? Mips::SWM32_MM : Mips::LWM32_MM; + + assert (Inst.getOperand(OpNum - 1).isImm() && + Inst.getOperand(OpNum - 2).isReg() && + Inst.getOperand(OpNum - 3).isReg() && "Invalid instruction operand."); + + if (OpNum < 8 && Inst.getOperand(OpNum - 1).getImm() <= 60 && + Inst.getOperand(OpNum - 1).getImm() >= 0 && + Inst.getOperand(OpNum - 2).getReg() == Mips::SP && + Inst.getOperand(OpNum - 3).getReg() == Mips::RA) + // It can be implemented as SWM16 or LWM16 instruction. + NewOpcode = Opcode == Mips::SWM_MM ? Mips::SWM16_MM : Mips::LWM16_MM; + + Inst.setOpcode(NewOpcode); + Instructions.push_back(Inst); + return false; +} + +bool MipsAsmParser::expandCondBranches(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + unsigned PseudoOpcode = Inst.getOpcode(); + unsigned SrcReg = Inst.getOperand(0).getReg(); + unsigned TrgReg = Inst.getOperand(1).getReg(); + const MCExpr *OffsetExpr = Inst.getOperand(2).getExpr(); + + unsigned ZeroSrcOpcode, ZeroTrgOpcode; + bool ReverseOrderSLT, IsUnsigned, AcceptsEquality; + + switch (PseudoOpcode) { + case Mips::BLT: + case Mips::BLTU: + AcceptsEquality = false; + ReverseOrderSLT = false; + IsUnsigned = (PseudoOpcode == Mips::BLTU); + ZeroSrcOpcode = Mips::BGTZ; + ZeroTrgOpcode = Mips::BLTZ; + break; + case Mips::BLE: + case Mips::BLEU: + AcceptsEquality = true; + ReverseOrderSLT = true; + IsUnsigned = (PseudoOpcode == Mips::BLEU); + ZeroSrcOpcode = Mips::BGEZ; + ZeroTrgOpcode = Mips::BLEZ; + break; + case Mips::BGE: + case Mips::BGEU: + AcceptsEquality = true; + ReverseOrderSLT = false; + IsUnsigned = (PseudoOpcode == Mips::BGEU); + ZeroSrcOpcode = Mips::BLEZ; + ZeroTrgOpcode = Mips::BGEZ; + break; + case Mips::BGT: + case Mips::BGTU: + AcceptsEquality = false; + ReverseOrderSLT = true; + IsUnsigned = (PseudoOpcode == Mips::BGTU); + ZeroSrcOpcode = Mips::BLTZ; + ZeroTrgOpcode = Mips::BGTZ; + break; + default: + llvm_unreachable("unknown opcode for branch pseudo-instruction"); + } + + MCInst BranchInst; + bool IsTrgRegZero = (TrgReg == Mips::ZERO); + bool IsSrcRegZero = (SrcReg == Mips::ZERO); + if (IsSrcRegZero && IsTrgRegZero) { + // FIXME: All of these Opcode-specific if's are needed for compatibility + // with GAS' behaviour. However, they may not generate the most efficient + // code in some circumstances. + if (PseudoOpcode == Mips::BLT) { + BranchInst.setOpcode(Mips::BLTZ); + BranchInst.addOperand(MCOperand::createReg(Mips::ZERO)); + BranchInst.addOperand(MCOperand::createExpr(OffsetExpr)); + Instructions.push_back(BranchInst); + return false; + } + if (PseudoOpcode == Mips::BLE) { + BranchInst.setOpcode(Mips::BLEZ); + BranchInst.addOperand(MCOperand::createReg(Mips::ZERO)); + BranchInst.addOperand(MCOperand::createExpr(OffsetExpr)); + Instructions.push_back(BranchInst); + Warning(IDLoc, "branch is always taken"); + return false; + } + if (PseudoOpcode == Mips::BGE) { + BranchInst.setOpcode(Mips::BGEZ); + BranchInst.addOperand(MCOperand::createReg(Mips::ZERO)); + BranchInst.addOperand(MCOperand::createExpr(OffsetExpr)); + Instructions.push_back(BranchInst); + Warning(IDLoc, "branch is always taken"); + return false; + } + if (PseudoOpcode == Mips::BGT) { + BranchInst.setOpcode(Mips::BGTZ); + BranchInst.addOperand(MCOperand::createReg(Mips::ZERO)); + BranchInst.addOperand(MCOperand::createExpr(OffsetExpr)); + Instructions.push_back(BranchInst); + return false; + } + if (PseudoOpcode == Mips::BGTU) { + BranchInst.setOpcode(Mips::BNE); + BranchInst.addOperand(MCOperand::createReg(Mips::ZERO)); + BranchInst.addOperand(MCOperand::createReg(Mips::ZERO)); + BranchInst.addOperand(MCOperand::createExpr(OffsetExpr)); + Instructions.push_back(BranchInst); + return false; + } + if (AcceptsEquality) { + // If both registers are $0 and the pseudo-branch accepts equality, it + // will always be taken, so we emit an unconditional branch. + BranchInst.setOpcode(Mips::BEQ); + BranchInst.addOperand(MCOperand::createReg(Mips::ZERO)); + BranchInst.addOperand(MCOperand::createReg(Mips::ZERO)); + BranchInst.addOperand(MCOperand::createExpr(OffsetExpr)); + Instructions.push_back(BranchInst); + Warning(IDLoc, "branch is always taken"); + return false; + } + // If both registers are $0 and the pseudo-branch does not accept + // equality, it will never be taken, so we don't have to emit anything. + return false; + } + if (IsSrcRegZero || IsTrgRegZero) { + if ((IsSrcRegZero && PseudoOpcode == Mips::BGTU) || + (IsTrgRegZero && PseudoOpcode == Mips::BLTU)) { + // If the $rs is $0 and the pseudo-branch is BGTU (0 > x) or + // if the $rt is $0 and the pseudo-branch is BLTU (x < 0), + // the pseudo-branch will never be taken, so we don't emit anything. + // This only applies to unsigned pseudo-branches. + return false; + } + if ((IsSrcRegZero && PseudoOpcode == Mips::BLEU) || + (IsTrgRegZero && PseudoOpcode == Mips::BGEU)) { + // If the $rs is $0 and the pseudo-branch is BLEU (0 <= x) or + // if the $rt is $0 and the pseudo-branch is BGEU (x >= 0), + // the pseudo-branch will always be taken, so we emit an unconditional + // branch. + // This only applies to unsigned pseudo-branches. + BranchInst.setOpcode(Mips::BEQ); + BranchInst.addOperand(MCOperand::createReg(Mips::ZERO)); + BranchInst.addOperand(MCOperand::createReg(Mips::ZERO)); + BranchInst.addOperand(MCOperand::createExpr(OffsetExpr)); + Instructions.push_back(BranchInst); + Warning(IDLoc, "branch is always taken"); + return false; + } + if (IsUnsigned) { + // If the $rs is $0 and the pseudo-branch is BLTU (0 < x) or + // if the $rt is $0 and the pseudo-branch is BGTU (x > 0), + // the pseudo-branch will be taken only when the non-zero register is + // different from 0, so we emit a BNEZ. + // + // If the $rs is $0 and the pseudo-branch is BGEU (0 >= x) or + // if the $rt is $0 and the pseudo-branch is BLEU (x <= 0), + // the pseudo-branch will be taken only when the non-zero register is + // equal to 0, so we emit a BEQZ. + // + // Because only BLEU and BGEU branch on equality, we can use the + // AcceptsEquality variable to decide when to emit the BEQZ. + BranchInst.setOpcode(AcceptsEquality ? Mips::BEQ : Mips::BNE); + BranchInst.addOperand( + MCOperand::createReg(IsSrcRegZero ? TrgReg : SrcReg)); + BranchInst.addOperand(MCOperand::createReg(Mips::ZERO)); + BranchInst.addOperand(MCOperand::createExpr(OffsetExpr)); + Instructions.push_back(BranchInst); + return false; + } + // If we have a signed pseudo-branch and one of the registers is $0, + // we can use an appropriate compare-to-zero branch. We select which one + // to use in the switch statement above. + BranchInst.setOpcode(IsSrcRegZero ? ZeroSrcOpcode : ZeroTrgOpcode); + BranchInst.addOperand(MCOperand::createReg(IsSrcRegZero ? TrgReg : SrcReg)); + BranchInst.addOperand(MCOperand::createExpr(OffsetExpr)); + Instructions.push_back(BranchInst); + return false; + } + + // If neither the SrcReg nor the TrgReg are $0, we need AT to perform the + // expansions. If it is not available, we return. + unsigned ATRegNum = getATReg(IDLoc); + if (!ATRegNum) + return true; + + warnIfNoMacro(IDLoc); + + // SLT fits well with 2 of our 4 pseudo-branches: + // BLT, where $rs < $rt, translates into "slt $at, $rs, $rt" and + // BGT, where $rs > $rt, translates into "slt $at, $rt, $rs". + // If the result of the SLT is 1, we branch, and if it's 0, we don't. + // This is accomplished by using a BNEZ with the result of the SLT. + // + // The other 2 pseudo-branches are opposites of the above 2 (BGE with BLT + // and BLE with BGT), so we change the BNEZ into a a BEQZ. + // Because only BGE and BLE branch on equality, we can use the + // AcceptsEquality variable to decide when to emit the BEQZ. + // Note that the order of the SLT arguments doesn't change between + // opposites. + // + // The same applies to the unsigned variants, except that SLTu is used + // instead of SLT. + MCInst SetInst; + SetInst.setOpcode(IsUnsigned ? Mips::SLTu : Mips::SLT); + SetInst.addOperand(MCOperand::createReg(ATRegNum)); + SetInst.addOperand(MCOperand::createReg(ReverseOrderSLT ? TrgReg : SrcReg)); + SetInst.addOperand(MCOperand::createReg(ReverseOrderSLT ? SrcReg : TrgReg)); + Instructions.push_back(SetInst); + + BranchInst.setOpcode(AcceptsEquality ? Mips::BEQ : Mips::BNE); + BranchInst.addOperand(MCOperand::createReg(ATRegNum)); + BranchInst.addOperand(MCOperand::createReg(Mips::ZERO)); + BranchInst.addOperand(MCOperand::createExpr(OffsetExpr)); + Instructions.push_back(BranchInst); + return false; +} + +bool MipsAsmParser::expandUlhu(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + if (hasMips32r6() || hasMips64r6()) { + Error(IDLoc, "instruction not supported on mips32r6 or mips64r6"); + return false; + } + + warnIfNoMacro(IDLoc); + + const MCOperand &DstRegOp = Inst.getOperand(0); + assert(DstRegOp.isReg() && "expected register operand kind"); + + const MCOperand &SrcRegOp = Inst.getOperand(1); + assert(SrcRegOp.isReg() && "expected register operand kind"); + + const MCOperand &OffsetImmOp = Inst.getOperand(2); + assert(OffsetImmOp.isImm() && "expected immediate operand kind"); + + unsigned DstReg = DstRegOp.getReg(); + unsigned SrcReg = SrcRegOp.getReg(); + int64_t OffsetValue = OffsetImmOp.getImm(); + + // NOTE: We always need AT for ULHU, as it is always used as the source + // register for one of the LBu's. + unsigned ATReg = getATReg(IDLoc); + if (!ATReg) + return true; + + // When the value of offset+1 does not fit in 16 bits, we have to load the + // offset in AT, (D)ADDu the original source register (if there was one), and + // then use AT as the source register for the 2 generated LBu's. + bool LoadedOffsetInAT = false; + if (!isInt<16>(OffsetValue + 1) || !isInt<16>(OffsetValue)) { + LoadedOffsetInAT = true; + + if (loadImmediate(OffsetValue, ATReg, Mips::NoRegister, !ABI.ArePtrs64bit(), + IDLoc, Instructions)) + return true; + + // NOTE: We do this (D)ADDu here instead of doing it in loadImmediate() + // because it will make our output more similar to GAS'. For example, + // generating an "ori $1, $zero, 32768" followed by an "addu $1, $1, $9", + // instead of just an "ori $1, $9, 32768". + // NOTE: If there is no source register specified in the ULHU, the parser + // will interpret it as $0. + if (SrcReg != Mips::ZERO && SrcReg != Mips::ZERO_64) + createAddu(ATReg, ATReg, SrcReg, ABI.ArePtrs64bit(), Instructions); + } + + unsigned FirstLbuDstReg = LoadedOffsetInAT ? DstReg : ATReg; + unsigned SecondLbuDstReg = LoadedOffsetInAT ? ATReg : DstReg; + unsigned LbuSrcReg = LoadedOffsetInAT ? ATReg : SrcReg; + + int64_t FirstLbuOffset = 0, SecondLbuOffset = 0; + if (isLittle()) { + FirstLbuOffset = LoadedOffsetInAT ? 1 : (OffsetValue + 1); + SecondLbuOffset = LoadedOffsetInAT ? 0 : OffsetValue; + } else { + FirstLbuOffset = LoadedOffsetInAT ? 0 : OffsetValue; + SecondLbuOffset = LoadedOffsetInAT ? 1 : (OffsetValue + 1); + } + + unsigned SllReg = LoadedOffsetInAT ? DstReg : ATReg; + + MCInst TmpInst; + TmpInst.setOpcode(Mips::LBu); + TmpInst.addOperand(MCOperand::createReg(FirstLbuDstReg)); + TmpInst.addOperand(MCOperand::createReg(LbuSrcReg)); + TmpInst.addOperand(MCOperand::createImm(FirstLbuOffset)); + Instructions.push_back(TmpInst); + + TmpInst.clear(); + TmpInst.setOpcode(Mips::LBu); + TmpInst.addOperand(MCOperand::createReg(SecondLbuDstReg)); + TmpInst.addOperand(MCOperand::createReg(LbuSrcReg)); + TmpInst.addOperand(MCOperand::createImm(SecondLbuOffset)); + Instructions.push_back(TmpInst); + + TmpInst.clear(); + TmpInst.setOpcode(Mips::SLL); + TmpInst.addOperand(MCOperand::createReg(SllReg)); + TmpInst.addOperand(MCOperand::createReg(SllReg)); + TmpInst.addOperand(MCOperand::createImm(8)); + Instructions.push_back(TmpInst); + + TmpInst.clear(); + TmpInst.setOpcode(Mips::OR); + TmpInst.addOperand(MCOperand::createReg(DstReg)); + TmpInst.addOperand(MCOperand::createReg(DstReg)); + TmpInst.addOperand(MCOperand::createReg(ATReg)); + Instructions.push_back(TmpInst); + + return false; +} + +bool MipsAsmParser::expandUlw(MCInst &Inst, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + if (hasMips32r6() || hasMips64r6()) { + Error(IDLoc, "instruction not supported on mips32r6 or mips64r6"); + return false; + } + + const MCOperand &DstRegOp = Inst.getOperand(0); + assert(DstRegOp.isReg() && "expected register operand kind"); + + const MCOperand &SrcRegOp = Inst.getOperand(1); + assert(SrcRegOp.isReg() && "expected register operand kind"); + + const MCOperand &OffsetImmOp = Inst.getOperand(2); + assert(OffsetImmOp.isImm() && "expected immediate operand kind"); + + unsigned SrcReg = SrcRegOp.getReg(); + int64_t OffsetValue = OffsetImmOp.getImm(); + unsigned ATReg = 0; + + // When the value of offset+3 does not fit in 16 bits, we have to load the + // offset in AT, (D)ADDu the original source register (if there was one), and + // then use AT as the source register for the generated LWL and LWR. + bool LoadedOffsetInAT = false; + if (!isInt<16>(OffsetValue + 3) || !isInt<16>(OffsetValue)) { + ATReg = getATReg(IDLoc); + if (!ATReg) + return true; + LoadedOffsetInAT = true; + + warnIfNoMacro(IDLoc); + + if (loadImmediate(OffsetValue, ATReg, Mips::NoRegister, !ABI.ArePtrs64bit(), + IDLoc, Instructions)) + return true; + + // NOTE: We do this (D)ADDu here instead of doing it in loadImmediate() + // because it will make our output more similar to GAS'. For example, + // generating an "ori $1, $zero, 32768" followed by an "addu $1, $1, $9", + // instead of just an "ori $1, $9, 32768". + // NOTE: If there is no source register specified in the ULW, the parser + // will interpret it as $0. + if (SrcReg != Mips::ZERO && SrcReg != Mips::ZERO_64) + createAddu(ATReg, ATReg, SrcReg, ABI.ArePtrs64bit(), Instructions); + } + + unsigned FinalSrcReg = LoadedOffsetInAT ? ATReg : SrcReg; + int64_t LeftLoadOffset = 0, RightLoadOffset = 0; + if (isLittle()) { + LeftLoadOffset = LoadedOffsetInAT ? 3 : (OffsetValue + 3); + RightLoadOffset = LoadedOffsetInAT ? 0 : OffsetValue; + } else { + LeftLoadOffset = LoadedOffsetInAT ? 0 : OffsetValue; + RightLoadOffset = LoadedOffsetInAT ? 3 : (OffsetValue + 3); + } + + MCInst LeftLoadInst; + LeftLoadInst.setOpcode(Mips::LWL); + LeftLoadInst.addOperand(DstRegOp); + LeftLoadInst.addOperand(MCOperand::createReg(FinalSrcReg)); + LeftLoadInst.addOperand(MCOperand::createImm(LeftLoadOffset)); + Instructions.push_back(LeftLoadInst); + + MCInst RightLoadInst; + RightLoadInst.setOpcode(Mips::LWR); + RightLoadInst.addOperand(DstRegOp); + RightLoadInst.addOperand(MCOperand::createReg(FinalSrcReg)); + RightLoadInst.addOperand(MCOperand::createImm(RightLoadOffset )); + Instructions.push_back(RightLoadInst); + + return false; +} + +void MipsAsmParser::createNop(bool hasShortDelaySlot, SMLoc IDLoc, + SmallVectorImpl<MCInst> &Instructions) { + MCInst NopInst; + if (hasShortDelaySlot) { + NopInst.setOpcode(Mips::MOVE16_MM); + NopInst.addOperand(MCOperand::createReg(Mips::ZERO)); + NopInst.addOperand(MCOperand::createReg(Mips::ZERO)); + } else { + NopInst.setOpcode(Mips::SLL); + NopInst.addOperand(MCOperand::createReg(Mips::ZERO)); + NopInst.addOperand(MCOperand::createReg(Mips::ZERO)); + NopInst.addOperand(MCOperand::createImm(0)); + } + Instructions.push_back(NopInst); +} + +void MipsAsmParser::createAddu(unsigned DstReg, unsigned SrcReg, + unsigned TrgReg, bool Is64Bit, + SmallVectorImpl<MCInst> &Instructions) { + emitRRR(Is64Bit ? Mips::DADDu : Mips::ADDu, DstReg, SrcReg, TrgReg, SMLoc(), + Instructions); +} + +unsigned MipsAsmParser::checkTargetMatchPredicate(MCInst &Inst) { + // As described by the Mips32r2 spec, the registers Rd and Rs for + // jalr.hb must be different. + unsigned Opcode = Inst.getOpcode(); + + if (Opcode == Mips::JALR_HB && + (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg())) + return Match_RequiresDifferentSrcAndDst; + + return Match_Success; +} + +bool MipsAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, + OperandVector &Operands, + MCStreamer &Out, + uint64_t &ErrorInfo, + bool MatchingInlineAsm) { + + MCInst Inst; + SmallVector<MCInst, 8> Instructions; + unsigned MatchResult = + MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm); + + switch (MatchResult) { + case Match_Success: { + if (processInstruction(Inst, IDLoc, Instructions)) + return true; + for (unsigned i = 0; i < Instructions.size(); i++) + Out.EmitInstruction(Instructions[i], STI); + return false; + } + case Match_MissingFeature: + Error(IDLoc, "instruction requires a CPU feature not currently enabled"); + return true; + case Match_InvalidOperand: { + SMLoc ErrorLoc = IDLoc; + if (ErrorInfo != ~0ULL) { + if (ErrorInfo >= Operands.size()) + return Error(IDLoc, "too few operands for instruction"); + + ErrorLoc = ((MipsOperand &)*Operands[ErrorInfo]).getStartLoc(); + if (ErrorLoc == SMLoc()) + ErrorLoc = IDLoc; + } + + return Error(ErrorLoc, "invalid operand for instruction"); + } + case Match_MnemonicFail: + return Error(IDLoc, "invalid instruction"); + case Match_RequiresDifferentSrcAndDst: + return Error(IDLoc, "source and destination must be different"); + } + + llvm_unreachable("Implement any new match types added!"); +} + +void MipsAsmParser::warnIfRegIndexIsAT(unsigned RegIndex, SMLoc Loc) { + if (RegIndex != 0 && AssemblerOptions.back()->getATRegIndex() == RegIndex) + Warning(Loc, "used $at (currently $" + Twine(RegIndex) + + ") without \".set noat\""); +} + +void MipsAsmParser::warnIfNoMacro(SMLoc Loc) { + if (!AssemblerOptions.back()->isMacro()) + Warning(Loc, "macro instruction expanded into multiple instructions"); +} + +void +MipsAsmParser::printWarningWithFixIt(const Twine &Msg, const Twine &FixMsg, + SMRange Range, bool ShowColors) { + getSourceManager().PrintMessage(Range.Start, SourceMgr::DK_Warning, Msg, + Range, SMFixIt(Range, FixMsg), + ShowColors); +} + +int MipsAsmParser::matchCPURegisterName(StringRef Name) { + int CC; + + CC = StringSwitch<unsigned>(Name) + .Case("zero", 0) + .Case("at", 1) + .Case("a0", 4) + .Case("a1", 5) + .Case("a2", 6) + .Case("a3", 7) + .Case("v0", 2) + .Case("v1", 3) + .Case("s0", 16) + .Case("s1", 17) + .Case("s2", 18) + .Case("s3", 19) + .Case("s4", 20) + .Case("s5", 21) + .Case("s6", 22) + .Case("s7", 23) + .Case("k0", 26) + .Case("k1", 27) + .Case("gp", 28) + .Case("sp", 29) + .Case("fp", 30) + .Case("s8", 30) + .Case("ra", 31) + .Case("t0", 8) + .Case("t1", 9) + .Case("t2", 10) + .Case("t3", 11) + .Case("t4", 12) + .Case("t5", 13) + .Case("t6", 14) + .Case("t7", 15) + .Case("t8", 24) + .Case("t9", 25) + .Default(-1); + + if (!(isABI_N32() || isABI_N64())) + return CC; + + if (12 <= CC && CC <= 15) { + // Name is one of t4-t7 + AsmToken RegTok = getLexer().peekTok(); + SMRange RegRange = RegTok.getLocRange(); + + StringRef FixedName = StringSwitch<StringRef>(Name) + .Case("t4", "t0") + .Case("t5", "t1") + .Case("t6", "t2") + .Case("t7", "t3") + .Default(""); + assert(FixedName != "" && "Register name is not one of t4-t7."); + + printWarningWithFixIt("register names $t4-$t7 are only available in O32.", + "Did you mean $" + FixedName + "?", RegRange); + } + + // Although SGI documentation just cuts out t0-t3 for n32/n64, + // GNU pushes the values of t0-t3 to override the o32/o64 values for t4-t7 + // We are supporting both cases, so for t0-t3 we'll just push them to t4-t7. + if (8 <= CC && CC <= 11) + CC += 4; + + if (CC == -1) + CC = StringSwitch<unsigned>(Name) + .Case("a4", 8) + .Case("a5", 9) + .Case("a6", 10) + .Case("a7", 11) + .Case("kt0", 26) + .Case("kt1", 27) + .Default(-1); + + return CC; +} + +int MipsAsmParser::matchHWRegsRegisterName(StringRef Name) { + int CC; + + CC = StringSwitch<unsigned>(Name) + .Case("hwr_cpunum", 0) + .Case("hwr_synci_step", 1) + .Case("hwr_cc", 2) + .Case("hwr_ccres", 3) + .Case("hwr_ulr", 29) + .Default(-1); + + return CC; +} + +int MipsAsmParser::matchFPURegisterName(StringRef Name) { + + if (Name[0] == 'f') { + StringRef NumString = Name.substr(1); + unsigned IntVal; + if (NumString.getAsInteger(10, IntVal)) + return -1; // This is not an integer. + if (IntVal > 31) // Maximum index for fpu register. + return -1; + return IntVal; + } + return -1; +} + +int MipsAsmParser::matchFCCRegisterName(StringRef Name) { + + if (Name.startswith("fcc")) { + StringRef NumString = Name.substr(3); + unsigned IntVal; + if (NumString.getAsInteger(10, IntVal)) + return -1; // This is not an integer. + if (IntVal > 7) // There are only 8 fcc registers. + return -1; + return IntVal; + } + return -1; +} + +int MipsAsmParser::matchACRegisterName(StringRef Name) { + + if (Name.startswith("ac")) { + StringRef NumString = Name.substr(2); + unsigned IntVal; + if (NumString.getAsInteger(10, IntVal)) + return -1; // This is not an integer. + if (IntVal > 3) // There are only 3 acc registers. + return -1; + return IntVal; + } + return -1; +} + +int MipsAsmParser::matchMSA128RegisterName(StringRef Name) { + unsigned IntVal; + + if (Name.front() != 'w' || Name.drop_front(1).getAsInteger(10, IntVal)) + return -1; + + if (IntVal > 31) + return -1; + + return IntVal; +} + +int MipsAsmParser::matchMSA128CtrlRegisterName(StringRef Name) { + int CC; + + CC = StringSwitch<unsigned>(Name) + .Case("msair", 0) + .Case("msacsr", 1) + .Case("msaaccess", 2) + .Case("msasave", 3) + .Case("msamodify", 4) + .Case("msarequest", 5) + .Case("msamap", 6) + .Case("msaunmap", 7) + .Default(-1); + + return CC; +} + +unsigned MipsAsmParser::getATReg(SMLoc Loc) { + unsigned ATIndex = AssemblerOptions.back()->getATRegIndex(); + if (ATIndex == 0) { + reportParseError(Loc, + "pseudo-instruction requires $at, which is not available"); + return 0; + } + unsigned AT = getReg( + (isGP64bit()) ? Mips::GPR64RegClassID : Mips::GPR32RegClassID, ATIndex); + return AT; +} + +unsigned MipsAsmParser::getReg(int RC, int RegNo) { + return *(getContext().getRegisterInfo()->getRegClass(RC).begin() + RegNo); +} + +unsigned MipsAsmParser::getGPR(int RegNo) { + return getReg(isGP64bit() ? Mips::GPR64RegClassID : Mips::GPR32RegClassID, + RegNo); +} + +int MipsAsmParser::matchRegisterByNumber(unsigned RegNum, unsigned RegClass) { + if (RegNum > + getContext().getRegisterInfo()->getRegClass(RegClass).getNumRegs() - 1) + return -1; + + return getReg(RegClass, RegNum); +} + +bool MipsAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) { + MCAsmParser &Parser = getParser(); + DEBUG(dbgs() << "parseOperand\n"); + + // Check if the current operand has a custom associated parser, if so, try to + // custom parse the operand, or fallback to the general approach. + OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic); + if (ResTy == MatchOperand_Success) + return false; + // If there wasn't a custom match, try the generic matcher below. Otherwise, + // there was a match, but an error occurred, in which case, just return that + // the operand parsing failed. + if (ResTy == MatchOperand_ParseFail) + return true; + + DEBUG(dbgs() << ".. Generic Parser\n"); + + switch (getLexer().getKind()) { + default: + Error(Parser.getTok().getLoc(), "unexpected token in operand"); + return true; + case AsmToken::Dollar: { + // Parse the register. + SMLoc S = Parser.getTok().getLoc(); + + // Almost all registers have been parsed by custom parsers. There is only + // one exception to this. $zero (and it's alias $0) will reach this point + // for div, divu, and similar instructions because it is not an operand + // to the instruction definition but an explicit register. Special case + // this situation for now. + if (parseAnyRegister(Operands) != MatchOperand_NoMatch) + return false; + + // Maybe it is a symbol reference. + StringRef Identifier; + if (Parser.parseIdentifier(Identifier)) + return true; + + SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); + MCSymbol *Sym = getContext().getOrCreateSymbol("$" + Identifier); + // Otherwise create a symbol reference. + const MCExpr *Res = + MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext()); + + Operands.push_back(MipsOperand::CreateImm(Res, S, E, *this)); + return false; + } + // Else drop to expression parsing. + case AsmToken::LParen: + case AsmToken::Minus: + case AsmToken::Plus: + case AsmToken::Integer: + case AsmToken::Tilde: + case AsmToken::String: { + DEBUG(dbgs() << ".. generic integer\n"); + OperandMatchResultTy ResTy = parseImm(Operands); + return ResTy != MatchOperand_Success; + } + case AsmToken::Percent: { + // It is a symbol reference or constant expression. + const MCExpr *IdVal; + SMLoc S = Parser.getTok().getLoc(); // Start location of the operand. + if (parseRelocOperand(IdVal)) + return true; + + SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); + + Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this)); + return false; + } // case AsmToken::Percent + } // switch(getLexer().getKind()) + return true; +} + +const MCExpr *MipsAsmParser::evaluateRelocExpr(const MCExpr *Expr, + StringRef RelocStr) { + const MCExpr *Res; + // Check the type of the expression. + if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Expr)) { + // It's a constant, evaluate reloc value. + int16_t Val; + switch (getVariantKind(RelocStr)) { + case MCSymbolRefExpr::VK_Mips_ABS_LO: + // Get the 1st 16-bits. + Val = MCE->getValue() & 0xffff; + break; + case MCSymbolRefExpr::VK_Mips_ABS_HI: + // Get the 2nd 16-bits. Also add 1 if bit 15 is 1, to compensate for low + // 16 bits being negative. + Val = ((MCE->getValue() + 0x8000) >> 16) & 0xffff; + break; + case MCSymbolRefExpr::VK_Mips_HIGHER: + // Get the 3rd 16-bits. + Val = ((MCE->getValue() + 0x80008000LL) >> 32) & 0xffff; + break; + case MCSymbolRefExpr::VK_Mips_HIGHEST: + // Get the 4th 16-bits. + Val = ((MCE->getValue() + 0x800080008000LL) >> 48) & 0xffff; + break; + default: + report_fatal_error("unsupported reloc value"); + } + return MCConstantExpr::create(Val, getContext()); + } + + if (const MCSymbolRefExpr *MSRE = dyn_cast<MCSymbolRefExpr>(Expr)) { + // It's a symbol, create a symbolic expression from the symbol. + const MCSymbol *Symbol = &MSRE->getSymbol(); + MCSymbolRefExpr::VariantKind VK = getVariantKind(RelocStr); + Res = MCSymbolRefExpr::create(Symbol, VK, getContext()); + return Res; + } + + if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) { + MCSymbolRefExpr::VariantKind VK = getVariantKind(RelocStr); + + // Try to create target expression. + if (MipsMCExpr::isSupportedBinaryExpr(VK, BE)) + return MipsMCExpr::create(VK, Expr, getContext()); + + const MCExpr *LExp = evaluateRelocExpr(BE->getLHS(), RelocStr); + const MCExpr *RExp = evaluateRelocExpr(BE->getRHS(), RelocStr); + Res = MCBinaryExpr::create(BE->getOpcode(), LExp, RExp, getContext()); + return Res; + } + + if (const MCUnaryExpr *UN = dyn_cast<MCUnaryExpr>(Expr)) { + const MCExpr *UnExp = evaluateRelocExpr(UN->getSubExpr(), RelocStr); + Res = MCUnaryExpr::create(UN->getOpcode(), UnExp, getContext()); + return Res; + } + // Just return the original expression. + return Expr; +} + +bool MipsAsmParser::isEvaluated(const MCExpr *Expr) { + + switch (Expr->getKind()) { + case MCExpr::Constant: + return true; + case MCExpr::SymbolRef: + return (cast<MCSymbolRefExpr>(Expr)->getKind() != MCSymbolRefExpr::VK_None); + case MCExpr::Binary: + if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(Expr)) { + if (!isEvaluated(BE->getLHS())) + return false; + return isEvaluated(BE->getRHS()); + } + case MCExpr::Unary: + return isEvaluated(cast<MCUnaryExpr>(Expr)->getSubExpr()); + case MCExpr::Target: + return true; + } + return false; +} + +bool MipsAsmParser::parseRelocOperand(const MCExpr *&Res) { + MCAsmParser &Parser = getParser(); + Parser.Lex(); // Eat the % token. + const AsmToken &Tok = Parser.getTok(); // Get next token, operation. + if (Tok.isNot(AsmToken::Identifier)) + return true; + + std::string Str = Tok.getIdentifier(); + + Parser.Lex(); // Eat the identifier. + // Now make an expression from the rest of the operand. + const MCExpr *IdVal; + SMLoc EndLoc; + + if (getLexer().getKind() == AsmToken::LParen) { + while (1) { + Parser.Lex(); // Eat the '(' token. + if (getLexer().getKind() == AsmToken::Percent) { + Parser.Lex(); // Eat the % token. + const AsmToken &nextTok = Parser.getTok(); + if (nextTok.isNot(AsmToken::Identifier)) + return true; + Str += "(%"; + Str += nextTok.getIdentifier(); + Parser.Lex(); // Eat the identifier. + if (getLexer().getKind() != AsmToken::LParen) + return true; + } else + break; + } + if (getParser().parseParenExpression(IdVal, EndLoc)) + return true; + + while (getLexer().getKind() == AsmToken::RParen) + Parser.Lex(); // Eat the ')' token. + + } else + return true; // Parenthesis must follow the relocation operand. + + Res = evaluateRelocExpr(IdVal, Str); + return false; +} + +bool MipsAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, + SMLoc &EndLoc) { + SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands; + OperandMatchResultTy ResTy = parseAnyRegister(Operands); + if (ResTy == MatchOperand_Success) { + assert(Operands.size() == 1); + MipsOperand &Operand = static_cast<MipsOperand &>(*Operands.front()); + StartLoc = Operand.getStartLoc(); + EndLoc = Operand.getEndLoc(); + + // AFAIK, we only support numeric registers and named GPR's in CFI + // directives. + // Don't worry about eating tokens before failing. Using an unrecognised + // register is a parse error. + if (Operand.isGPRAsmReg()) { + // Resolve to GPR32 or GPR64 appropriately. + RegNo = isGP64bit() ? Operand.getGPR64Reg() : Operand.getGPR32Reg(); + } + + return (RegNo == (unsigned)-1); + } + + assert(Operands.size() == 0); + return (RegNo == (unsigned)-1); +} + +bool MipsAsmParser::parseMemOffset(const MCExpr *&Res, bool isParenExpr) { + MCAsmParser &Parser = getParser(); + SMLoc S; + bool Result = true; + unsigned NumOfLParen = 0; + + while (getLexer().getKind() == AsmToken::LParen) { + Parser.Lex(); + ++NumOfLParen; + } + + switch (getLexer().getKind()) { + default: + return true; + case AsmToken::Identifier: + case AsmToken::LParen: + case AsmToken::Integer: + case AsmToken::Minus: + case AsmToken::Plus: + if (isParenExpr) + Result = getParser().parseParenExprOfDepth(NumOfLParen, Res, S); + else + Result = (getParser().parseExpression(Res)); + while (getLexer().getKind() == AsmToken::RParen) + Parser.Lex(); + break; + case AsmToken::Percent: + Result = parseRelocOperand(Res); + } + return Result; +} + +MipsAsmParser::OperandMatchResultTy +MipsAsmParser::parseMemOperand(OperandVector &Operands) { + MCAsmParser &Parser = getParser(); + DEBUG(dbgs() << "parseMemOperand\n"); + const MCExpr *IdVal = nullptr; + SMLoc S; + bool isParenExpr = false; + MipsAsmParser::OperandMatchResultTy Res = MatchOperand_NoMatch; + // First operand is the offset. + S = Parser.getTok().getLoc(); + + if (getLexer().getKind() == AsmToken::LParen) { + Parser.Lex(); + isParenExpr = true; + } + + if (getLexer().getKind() != AsmToken::Dollar) { + if (parseMemOffset(IdVal, isParenExpr)) + return MatchOperand_ParseFail; + + const AsmToken &Tok = Parser.getTok(); // Get the next token. + if (Tok.isNot(AsmToken::LParen)) { + MipsOperand &Mnemonic = static_cast<MipsOperand &>(*Operands[0]); + if (Mnemonic.getToken() == "la") { + SMLoc E = + SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); + Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this)); + return MatchOperand_Success; + } + if (Tok.is(AsmToken::EndOfStatement)) { + SMLoc E = + SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); + + // Zero register assumed, add a memory operand with ZERO as its base. + // "Base" will be managed by k_Memory. + auto Base = MipsOperand::createGPRReg(0, getContext().getRegisterInfo(), + S, E, *this); + Operands.push_back( + MipsOperand::CreateMem(std::move(Base), IdVal, S, E, *this)); + return MatchOperand_Success; + } + Error(Parser.getTok().getLoc(), "'(' expected"); + return MatchOperand_ParseFail; + } + + Parser.Lex(); // Eat the '(' token. + } + + Res = parseAnyRegister(Operands); + if (Res != MatchOperand_Success) + return Res; + + if (Parser.getTok().isNot(AsmToken::RParen)) { + Error(Parser.getTok().getLoc(), "')' expected"); + return MatchOperand_ParseFail; + } + + SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); + + Parser.Lex(); // Eat the ')' token. + + if (!IdVal) + IdVal = MCConstantExpr::create(0, getContext()); + + // Replace the register operand with the memory operand. + std::unique_ptr<MipsOperand> op( + static_cast<MipsOperand *>(Operands.back().release())); + // Remove the register from the operands. + // "op" will be managed by k_Memory. + Operands.pop_back(); + // Add the memory operand. + if (const MCBinaryExpr *BE = dyn_cast<MCBinaryExpr>(IdVal)) { + int64_t Imm; + if (IdVal->evaluateAsAbsolute(Imm)) + IdVal = MCConstantExpr::create(Imm, getContext()); + else if (BE->getLHS()->getKind() != MCExpr::SymbolRef) + IdVal = MCBinaryExpr::create(BE->getOpcode(), BE->getRHS(), BE->getLHS(), + getContext()); + } + + Operands.push_back(MipsOperand::CreateMem(std::move(op), IdVal, S, E, *this)); + return MatchOperand_Success; +} + +bool MipsAsmParser::searchSymbolAlias(OperandVector &Operands) { + MCAsmParser &Parser = getParser(); + MCSymbol *Sym = getContext().lookupSymbol(Parser.getTok().getIdentifier()); + if (Sym) { + SMLoc S = Parser.getTok().getLoc(); + const MCExpr *Expr; + if (Sym->isVariable()) + Expr = Sym->getVariableValue(); + else + return false; + if (Expr->getKind() == MCExpr::SymbolRef) { + const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr); + StringRef DefSymbol = Ref->getSymbol().getName(); + if (DefSymbol.startswith("$")) { + OperandMatchResultTy ResTy = + matchAnyRegisterNameWithoutDollar(Operands, DefSymbol.substr(1), S); + if (ResTy == MatchOperand_Success) { + Parser.Lex(); + return true; + } else if (ResTy == MatchOperand_ParseFail) + llvm_unreachable("Should never ParseFail"); + return false; + } + } else if (Expr->getKind() == MCExpr::Constant) { + Parser.Lex(); + const MCConstantExpr *Const = static_cast<const MCConstantExpr *>(Expr); + Operands.push_back( + MipsOperand::CreateImm(Const, S, Parser.getTok().getLoc(), *this)); + return true; + } + } + return false; +} + +MipsAsmParser::OperandMatchResultTy +MipsAsmParser::matchAnyRegisterNameWithoutDollar(OperandVector &Operands, + StringRef Identifier, + SMLoc S) { + int Index = matchCPURegisterName(Identifier); + if (Index != -1) { + Operands.push_back(MipsOperand::createGPRReg( + Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this)); + return MatchOperand_Success; + } + + Index = matchHWRegsRegisterName(Identifier); + if (Index != -1) { + Operands.push_back(MipsOperand::createHWRegsReg( + Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this)); + return MatchOperand_Success; + } + + Index = matchFPURegisterName(Identifier); + if (Index != -1) { + Operands.push_back(MipsOperand::createFGRReg( + Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this)); + return MatchOperand_Success; + } + + Index = matchFCCRegisterName(Identifier); + if (Index != -1) { + Operands.push_back(MipsOperand::createFCCReg( + Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this)); + return MatchOperand_Success; + } + + Index = matchACRegisterName(Identifier); + if (Index != -1) { + Operands.push_back(MipsOperand::createACCReg( + Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this)); + return MatchOperand_Success; + } + + Index = matchMSA128RegisterName(Identifier); + if (Index != -1) { + Operands.push_back(MipsOperand::createMSA128Reg( + Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this)); + return MatchOperand_Success; + } + + Index = matchMSA128CtrlRegisterName(Identifier); + if (Index != -1) { + Operands.push_back(MipsOperand::createMSACtrlReg( + Index, getContext().getRegisterInfo(), S, getLexer().getLoc(), *this)); + return MatchOperand_Success; + } + + return MatchOperand_NoMatch; +} + +MipsAsmParser::OperandMatchResultTy +MipsAsmParser::matchAnyRegisterWithoutDollar(OperandVector &Operands, SMLoc S) { + MCAsmParser &Parser = getParser(); + auto Token = Parser.getLexer().peekTok(false); + + if (Token.is(AsmToken::Identifier)) { + DEBUG(dbgs() << ".. identifier\n"); + StringRef Identifier = Token.getIdentifier(); + OperandMatchResultTy ResTy = + matchAnyRegisterNameWithoutDollar(Operands, Identifier, S); + return ResTy; + } else if (Token.is(AsmToken::Integer)) { + DEBUG(dbgs() << ".. integer\n"); + Operands.push_back(MipsOperand::createNumericReg( + Token.getIntVal(), getContext().getRegisterInfo(), S, Token.getLoc(), + *this)); + return MatchOperand_Success; + } + + DEBUG(dbgs() << Parser.getTok().getKind() << "\n"); + + return MatchOperand_NoMatch; +} + +MipsAsmParser::OperandMatchResultTy +MipsAsmParser::parseAnyRegister(OperandVector &Operands) { + MCAsmParser &Parser = getParser(); + DEBUG(dbgs() << "parseAnyRegister\n"); + + auto Token = Parser.getTok(); + + SMLoc S = Token.getLoc(); + + if (Token.isNot(AsmToken::Dollar)) { + DEBUG(dbgs() << ".. !$ -> try sym aliasing\n"); + if (Token.is(AsmToken::Identifier)) { + if (searchSymbolAlias(Operands)) + return MatchOperand_Success; + } + DEBUG(dbgs() << ".. !symalias -> NoMatch\n"); + return MatchOperand_NoMatch; + } + DEBUG(dbgs() << ".. $\n"); + + OperandMatchResultTy ResTy = matchAnyRegisterWithoutDollar(Operands, S); + if (ResTy == MatchOperand_Success) { + Parser.Lex(); // $ + Parser.Lex(); // identifier + } + return ResTy; +} + +MipsAsmParser::OperandMatchResultTy +MipsAsmParser::parseImm(OperandVector &Operands) { + MCAsmParser &Parser = getParser(); + switch (getLexer().getKind()) { + default: + return MatchOperand_NoMatch; + case AsmToken::LParen: + case AsmToken::Minus: + case AsmToken::Plus: + case AsmToken::Integer: + case AsmToken::Tilde: + case AsmToken::String: + break; + } + + const MCExpr *IdVal; + SMLoc S = Parser.getTok().getLoc(); + if (getParser().parseExpression(IdVal)) + return MatchOperand_ParseFail; + + SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); + Operands.push_back(MipsOperand::CreateImm(IdVal, S, E, *this)); + return MatchOperand_Success; +} + +MipsAsmParser::OperandMatchResultTy +MipsAsmParser::parseJumpTarget(OperandVector &Operands) { + MCAsmParser &Parser = getParser(); + DEBUG(dbgs() << "parseJumpTarget\n"); + + SMLoc S = getLexer().getLoc(); + + // Integers and expressions are acceptable + OperandMatchResultTy ResTy = parseImm(Operands); + if (ResTy != MatchOperand_NoMatch) + return ResTy; + + // Registers are a valid target and have priority over symbols. + ResTy = parseAnyRegister(Operands); + if (ResTy != MatchOperand_NoMatch) + return ResTy; + + const MCExpr *Expr = nullptr; + if (Parser.parseExpression(Expr)) { + // We have no way of knowing if a symbol was consumed so we must ParseFail + return MatchOperand_ParseFail; + } + Operands.push_back( + MipsOperand::CreateImm(Expr, S, getLexer().getLoc(), *this)); + return MatchOperand_Success; +} + +MipsAsmParser::OperandMatchResultTy +MipsAsmParser::parseInvNum(OperandVector &Operands) { + MCAsmParser &Parser = getParser(); + const MCExpr *IdVal; + // If the first token is '$' we may have register operand. + if (Parser.getTok().is(AsmToken::Dollar)) + return MatchOperand_NoMatch; + SMLoc S = Parser.getTok().getLoc(); + if (getParser().parseExpression(IdVal)) + return MatchOperand_ParseFail; + const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(IdVal); + assert(MCE && "Unexpected MCExpr type."); + int64_t Val = MCE->getValue(); + SMLoc E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1); + Operands.push_back(MipsOperand::CreateImm( + MCConstantExpr::create(0 - Val, getContext()), S, E, *this)); + return MatchOperand_Success; +} + +MipsAsmParser::OperandMatchResultTy +MipsAsmParser::parseLSAImm(OperandVector &Operands) { + MCAsmParser &Parser = getParser(); + switch (getLexer().getKind()) { + default: + return MatchOperand_NoMatch; + case AsmToken::LParen: + case AsmToken::Plus: + case AsmToken::Minus: + case AsmToken::Integer: + break; + } + + const MCExpr *Expr; + SMLoc S = Parser.getTok().getLoc(); + + if (getParser().parseExpression(Expr)) + return MatchOperand_ParseFail; + + int64_t Val; + if (!Expr->evaluateAsAbsolute(Val)) { + Error(S, "expected immediate value"); + return MatchOperand_ParseFail; + } + + // The LSA instruction allows a 2-bit unsigned immediate. For this reason + // and because the CPU always adds one to the immediate field, the allowed + // range becomes 1..4. We'll only check the range here and will deal + // with the addition/subtraction when actually decoding/encoding + // the instruction. + if (Val < 1 || Val > 4) { + Error(S, "immediate not in range (1..4)"); + return MatchOperand_ParseFail; + } + + Operands.push_back( + MipsOperand::CreateImm(Expr, S, Parser.getTok().getLoc(), *this)); + return MatchOperand_Success; +} + +MipsAsmParser::OperandMatchResultTy +MipsAsmParser::parseRegisterList(OperandVector &Operands) { + MCAsmParser &Parser = getParser(); + SmallVector<unsigned, 10> Regs; + unsigned RegNo; + unsigned PrevReg = Mips::NoRegister; + bool RegRange = false; + SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> TmpOperands; + + if (Parser.getTok().isNot(AsmToken::Dollar)) + return MatchOperand_ParseFail; + + SMLoc S = Parser.getTok().getLoc(); + while (parseAnyRegister(TmpOperands) == MatchOperand_Success) { + SMLoc E = getLexer().getLoc(); + MipsOperand &Reg = static_cast<MipsOperand &>(*TmpOperands.back()); + RegNo = isGP64bit() ? Reg.getGPR64Reg() : Reg.getGPR32Reg(); + if (RegRange) { + // Remove last register operand because registers from register range + // should be inserted first. + if (RegNo == Mips::RA) { + Regs.push_back(RegNo); + } else { + unsigned TmpReg = PrevReg + 1; + while (TmpReg <= RegNo) { + if ((TmpReg < Mips::S0) || (TmpReg > Mips::S7)) { + Error(E, "invalid register operand"); + return MatchOperand_ParseFail; + } + + PrevReg = TmpReg; + Regs.push_back(TmpReg++); + } + } + + RegRange = false; + } else { + if ((PrevReg == Mips::NoRegister) && (RegNo != Mips::S0) && + (RegNo != Mips::RA)) { + Error(E, "$16 or $31 expected"); + return MatchOperand_ParseFail; + } else if (((RegNo < Mips::S0) || (RegNo > Mips::S7)) && + (RegNo != Mips::FP) && (RegNo != Mips::RA)) { + Error(E, "invalid register operand"); + return MatchOperand_ParseFail; + } else if ((PrevReg != Mips::NoRegister) && (RegNo != PrevReg + 1) && + (RegNo != Mips::FP) && (RegNo != Mips::RA)) { + Error(E, "consecutive register numbers expected"); + return MatchOperand_ParseFail; + } + + Regs.push_back(RegNo); + } + + if (Parser.getTok().is(AsmToken::Minus)) + RegRange = true; + + if (!Parser.getTok().isNot(AsmToken::Minus) && + !Parser.getTok().isNot(AsmToken::Comma)) { + Error(E, "',' or '-' expected"); + return MatchOperand_ParseFail; + } + + Lex(); // Consume comma or minus + if (Parser.getTok().isNot(AsmToken::Dollar)) + break; + + PrevReg = RegNo; + } + + SMLoc E = Parser.getTok().getLoc(); + Operands.push_back(MipsOperand::CreateRegList(Regs, S, E, *this)); + parseMemOperand(Operands); + return MatchOperand_Success; +} + +MipsAsmParser::OperandMatchResultTy +MipsAsmParser::parseRegisterPair(OperandVector &Operands) { + MCAsmParser &Parser = getParser(); + + SMLoc S = Parser.getTok().getLoc(); + if (parseAnyRegister(Operands) != MatchOperand_Success) + return MatchOperand_ParseFail; + + SMLoc E = Parser.getTok().getLoc(); + MipsOperand &Op = static_cast<MipsOperand &>(*Operands.back()); + unsigned Reg = Op.getGPR32Reg(); + Operands.pop_back(); + Operands.push_back(MipsOperand::CreateRegPair(Reg, S, E, *this)); + return MatchOperand_Success; +} + +MipsAsmParser::OperandMatchResultTy +MipsAsmParser::parseMovePRegPair(OperandVector &Operands) { + MCAsmParser &Parser = getParser(); + SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> TmpOperands; + SmallVector<unsigned, 10> Regs; + + if (Parser.getTok().isNot(AsmToken::Dollar)) + return MatchOperand_ParseFail; + + SMLoc S = Parser.getTok().getLoc(); + + if (parseAnyRegister(TmpOperands) != MatchOperand_Success) + return MatchOperand_ParseFail; + + MipsOperand *Reg = &static_cast<MipsOperand &>(*TmpOperands.back()); + unsigned RegNo = isGP64bit() ? Reg->getGPR64Reg() : Reg->getGPR32Reg(); + Regs.push_back(RegNo); + + SMLoc E = Parser.getTok().getLoc(); + if (Parser.getTok().isNot(AsmToken::Comma)) { + Error(E, "',' expected"); + return MatchOperand_ParseFail; + } + + // Remove comma. + Parser.Lex(); + + if (parseAnyRegister(TmpOperands) != MatchOperand_Success) + return MatchOperand_ParseFail; + + Reg = &static_cast<MipsOperand &>(*TmpOperands.back()); + RegNo = isGP64bit() ? Reg->getGPR64Reg() : Reg->getGPR32Reg(); + Regs.push_back(RegNo); + + Operands.push_back(MipsOperand::CreateRegList(Regs, S, E, *this)); + + return MatchOperand_Success; +} + +MCSymbolRefExpr::VariantKind MipsAsmParser::getVariantKind(StringRef Symbol) { + + MCSymbolRefExpr::VariantKind VK = + StringSwitch<MCSymbolRefExpr::VariantKind>(Symbol) + .Case("hi", MCSymbolRefExpr::VK_Mips_ABS_HI) + .Case("lo", MCSymbolRefExpr::VK_Mips_ABS_LO) + .Case("gp_rel", MCSymbolRefExpr::VK_Mips_GPREL) + .Case("call16", MCSymbolRefExpr::VK_Mips_GOT_CALL) + .Case("got", MCSymbolRefExpr::VK_Mips_GOT) + .Case("tlsgd", MCSymbolRefExpr::VK_Mips_TLSGD) + .Case("tlsldm", MCSymbolRefExpr::VK_Mips_TLSLDM) + .Case("dtprel_hi", MCSymbolRefExpr::VK_Mips_DTPREL_HI) + .Case("dtprel_lo", MCSymbolRefExpr::VK_Mips_DTPREL_LO) + .Case("gottprel", MCSymbolRefExpr::VK_Mips_GOTTPREL) + .Case("tprel_hi", MCSymbolRefExpr::VK_Mips_TPREL_HI) + .Case("tprel_lo", MCSymbolRefExpr::VK_Mips_TPREL_LO) + .Case("got_disp", MCSymbolRefExpr::VK_Mips_GOT_DISP) + .Case("got_page", MCSymbolRefExpr::VK_Mips_GOT_PAGE) + .Case("got_ofst", MCSymbolRefExpr::VK_Mips_GOT_OFST) + .Case("hi(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_HI) + .Case("lo(%neg(%gp_rel", MCSymbolRefExpr::VK_Mips_GPOFF_LO) + .Case("got_hi", MCSymbolRefExpr::VK_Mips_GOT_HI16) + .Case("got_lo", MCSymbolRefExpr::VK_Mips_GOT_LO16) + .Case("call_hi", MCSymbolRefExpr::VK_Mips_CALL_HI16) + .Case("call_lo", MCSymbolRefExpr::VK_Mips_CALL_LO16) + .Case("higher", MCSymbolRefExpr::VK_Mips_HIGHER) + .Case("highest", MCSymbolRefExpr::VK_Mips_HIGHEST) + .Case("pcrel_hi", MCSymbolRefExpr::VK_Mips_PCREL_HI16) + .Case("pcrel_lo", MCSymbolRefExpr::VK_Mips_PCREL_LO16) + .Default(MCSymbolRefExpr::VK_None); + + assert(VK != MCSymbolRefExpr::VK_None); + + return VK; +} + +/// Sometimes (i.e. load/stores) the operand may be followed immediately by +/// either this. +/// ::= '(', register, ')' +/// handle it before we iterate so we don't get tripped up by the lack of +/// a comma. +bool MipsAsmParser::parseParenSuffix(StringRef Name, OperandVector &Operands) { + MCAsmParser &Parser = getParser(); + if (getLexer().is(AsmToken::LParen)) { + Operands.push_back( + MipsOperand::CreateToken("(", getLexer().getLoc(), *this)); + Parser.Lex(); + if (parseOperand(Operands, Name)) { + SMLoc Loc = getLexer().getLoc(); + Parser.eatToEndOfStatement(); + return Error(Loc, "unexpected token in argument list"); + } + if (Parser.getTok().isNot(AsmToken::RParen)) { + SMLoc Loc = getLexer().getLoc(); + Parser.eatToEndOfStatement(); + return Error(Loc, "unexpected token, expected ')'"); + } + Operands.push_back( + MipsOperand::CreateToken(")", getLexer().getLoc(), *this)); + Parser.Lex(); + } + return false; +} + +/// Sometimes (i.e. in MSA) the operand may be followed immediately by +/// either one of these. +/// ::= '[', register, ']' +/// ::= '[', integer, ']' +/// handle it before we iterate so we don't get tripped up by the lack of +/// a comma. +bool MipsAsmParser::parseBracketSuffix(StringRef Name, + OperandVector &Operands) { + MCAsmParser &Parser = getParser(); + if (getLexer().is(AsmToken::LBrac)) { + Operands.push_back( + MipsOperand::CreateToken("[", getLexer().getLoc(), *this)); + Parser.Lex(); + if (parseOperand(Operands, Name)) { + SMLoc Loc = getLexer().getLoc(); + Parser.eatToEndOfStatement(); + return Error(Loc, "unexpected token in argument list"); + } + if (Parser.getTok().isNot(AsmToken::RBrac)) { + SMLoc Loc = getLexer().getLoc(); + Parser.eatToEndOfStatement(); + return Error(Loc, "unexpected token, expected ']'"); + } + Operands.push_back( + MipsOperand::CreateToken("]", getLexer().getLoc(), *this)); + Parser.Lex(); + } + return false; +} + +bool MipsAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name, + SMLoc NameLoc, OperandVector &Operands) { + MCAsmParser &Parser = getParser(); + DEBUG(dbgs() << "ParseInstruction\n"); + + // We have reached first instruction, module directive are now forbidden. + getTargetStreamer().forbidModuleDirective(); + + // Check if we have valid mnemonic + if (!mnemonicIsValid(Name, 0)) { + Parser.eatToEndOfStatement(); + return Error(NameLoc, "unknown instruction"); + } + // First operand in MCInst is instruction mnemonic. + Operands.push_back(MipsOperand::CreateToken(Name, NameLoc, *this)); + + // Read the remaining operands. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + // Read the first operand. + if (parseOperand(Operands, Name)) { + SMLoc Loc = getLexer().getLoc(); + Parser.eatToEndOfStatement(); + return Error(Loc, "unexpected token in argument list"); + } + if (getLexer().is(AsmToken::LBrac) && parseBracketSuffix(Name, Operands)) + return true; + // AFAIK, parenthesis suffixes are never on the first operand + + while (getLexer().is(AsmToken::Comma)) { + Parser.Lex(); // Eat the comma. + // Parse and remember the operand. + if (parseOperand(Operands, Name)) { + SMLoc Loc = getLexer().getLoc(); + Parser.eatToEndOfStatement(); + return Error(Loc, "unexpected token in argument list"); + } + // Parse bracket and parenthesis suffixes before we iterate + if (getLexer().is(AsmToken::LBrac)) { + if (parseBracketSuffix(Name, Operands)) + return true; + } else if (getLexer().is(AsmToken::LParen) && + parseParenSuffix(Name, Operands)) + return true; + } + } + if (getLexer().isNot(AsmToken::EndOfStatement)) { + SMLoc Loc = getLexer().getLoc(); + Parser.eatToEndOfStatement(); + return Error(Loc, "unexpected token in argument list"); + } + Parser.Lex(); // Consume the EndOfStatement. + return false; +} + +bool MipsAsmParser::reportParseError(Twine ErrorMsg) { + MCAsmParser &Parser = getParser(); + SMLoc Loc = getLexer().getLoc(); + Parser.eatToEndOfStatement(); + return Error(Loc, ErrorMsg); +} + +bool MipsAsmParser::reportParseError(SMLoc Loc, Twine ErrorMsg) { + return Error(Loc, ErrorMsg); +} + +bool MipsAsmParser::parseSetNoAtDirective() { + MCAsmParser &Parser = getParser(); + // Line should look like: ".set noat". + + // Set the $at register to $0. + AssemblerOptions.back()->setATRegIndex(0); + + Parser.Lex(); // Eat "noat". + + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + getTargetStreamer().emitDirectiveSetNoAt(); + Parser.Lex(); // Consume the EndOfStatement. + return false; +} + +bool MipsAsmParser::parseSetAtDirective() { + // Line can be: ".set at", which sets $at to $1 + // or ".set at=$reg", which sets $at to $reg. + MCAsmParser &Parser = getParser(); + Parser.Lex(); // Eat "at". + + if (getLexer().is(AsmToken::EndOfStatement)) { + // No register was specified, so we set $at to $1. + AssemblerOptions.back()->setATRegIndex(1); + + getTargetStreamer().emitDirectiveSetAt(); + Parser.Lex(); // Consume the EndOfStatement. + return false; + } + + if (getLexer().isNot(AsmToken::Equal)) { + reportParseError("unexpected token, expected equals sign"); + return false; + } + Parser.Lex(); // Eat "=". + + if (getLexer().isNot(AsmToken::Dollar)) { + if (getLexer().is(AsmToken::EndOfStatement)) { + reportParseError("no register specified"); + return false; + } else { + reportParseError("unexpected token, expected dollar sign '$'"); + return false; + } + } + Parser.Lex(); // Eat "$". + + // Find out what "reg" is. + unsigned AtRegNo; + const AsmToken &Reg = Parser.getTok(); + if (Reg.is(AsmToken::Identifier)) { + AtRegNo = matchCPURegisterName(Reg.getIdentifier()); + } else if (Reg.is(AsmToken::Integer)) { + AtRegNo = Reg.getIntVal(); + } else { + reportParseError("unexpected token, expected identifier or integer"); + return false; + } + + // Check if $reg is a valid register. If it is, set $at to $reg. + if (!AssemblerOptions.back()->setATRegIndex(AtRegNo)) { + reportParseError("invalid register"); + return false; + } + Parser.Lex(); // Eat "reg". + + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + getTargetStreamer().emitDirectiveSetAtWithArg(AtRegNo); + + Parser.Lex(); // Consume the EndOfStatement. + return false; +} + +bool MipsAsmParser::parseSetReorderDirective() { + MCAsmParser &Parser = getParser(); + Parser.Lex(); + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + AssemblerOptions.back()->setReorder(); + getTargetStreamer().emitDirectiveSetReorder(); + Parser.Lex(); // Consume the EndOfStatement. + return false; +} + +bool MipsAsmParser::parseSetNoReorderDirective() { + MCAsmParser &Parser = getParser(); + Parser.Lex(); + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + AssemblerOptions.back()->setNoReorder(); + getTargetStreamer().emitDirectiveSetNoReorder(); + Parser.Lex(); // Consume the EndOfStatement. + return false; +} + +bool MipsAsmParser::parseSetMacroDirective() { + MCAsmParser &Parser = getParser(); + Parser.Lex(); + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + AssemblerOptions.back()->setMacro(); + getTargetStreamer().emitDirectiveSetMacro(); + Parser.Lex(); // Consume the EndOfStatement. + return false; +} + +bool MipsAsmParser::parseSetNoMacroDirective() { + MCAsmParser &Parser = getParser(); + Parser.Lex(); + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + if (AssemblerOptions.back()->isReorder()) { + reportParseError("`noreorder' must be set before `nomacro'"); + return false; + } + AssemblerOptions.back()->setNoMacro(); + getTargetStreamer().emitDirectiveSetNoMacro(); + Parser.Lex(); // Consume the EndOfStatement. + return false; +} + +bool MipsAsmParser::parseSetMsaDirective() { + MCAsmParser &Parser = getParser(); + Parser.Lex(); + + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) + return reportParseError("unexpected token, expected end of statement"); + + setFeatureBits(Mips::FeatureMSA, "msa"); + getTargetStreamer().emitDirectiveSetMsa(); + return false; +} + +bool MipsAsmParser::parseSetNoMsaDirective() { + MCAsmParser &Parser = getParser(); + Parser.Lex(); + + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) + return reportParseError("unexpected token, expected end of statement"); + + clearFeatureBits(Mips::FeatureMSA, "msa"); + getTargetStreamer().emitDirectiveSetNoMsa(); + return false; +} + +bool MipsAsmParser::parseSetNoDspDirective() { + MCAsmParser &Parser = getParser(); + Parser.Lex(); // Eat "nodsp". + + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + clearFeatureBits(Mips::FeatureDSP, "dsp"); + getTargetStreamer().emitDirectiveSetNoDsp(); + return false; +} + +bool MipsAsmParser::parseSetMips16Directive() { + MCAsmParser &Parser = getParser(); + Parser.Lex(); // Eat "mips16". + + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + setFeatureBits(Mips::FeatureMips16, "mips16"); + getTargetStreamer().emitDirectiveSetMips16(); + Parser.Lex(); // Consume the EndOfStatement. + return false; +} + +bool MipsAsmParser::parseSetNoMips16Directive() { + MCAsmParser &Parser = getParser(); + Parser.Lex(); // Eat "nomips16". + + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + clearFeatureBits(Mips::FeatureMips16, "mips16"); + getTargetStreamer().emitDirectiveSetNoMips16(); + Parser.Lex(); // Consume the EndOfStatement. + return false; +} + +bool MipsAsmParser::parseSetFpDirective() { + MCAsmParser &Parser = getParser(); + MipsABIFlagsSection::FpABIKind FpAbiVal; + // Line can be: .set fp=32 + // .set fp=xx + // .set fp=64 + Parser.Lex(); // Eat fp token + AsmToken Tok = Parser.getTok(); + if (Tok.isNot(AsmToken::Equal)) { + reportParseError("unexpected token, expected equals sign '='"); + return false; + } + Parser.Lex(); // Eat '=' token. + Tok = Parser.getTok(); + + if (!parseFpABIValue(FpAbiVal, ".set")) + return false; + + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + getTargetStreamer().emitDirectiveSetFp(FpAbiVal); + Parser.Lex(); // Consume the EndOfStatement. + return false; +} + +bool MipsAsmParser::parseSetOddSPRegDirective() { + MCAsmParser &Parser = getParser(); + + Parser.Lex(); // Eat "oddspreg". + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + clearFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg"); + getTargetStreamer().emitDirectiveSetOddSPReg(); + return false; +} + +bool MipsAsmParser::parseSetNoOddSPRegDirective() { + MCAsmParser &Parser = getParser(); + + Parser.Lex(); // Eat "nooddspreg". + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + setFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg"); + getTargetStreamer().emitDirectiveSetNoOddSPReg(); + return false; +} + +bool MipsAsmParser::parseSetPopDirective() { + MCAsmParser &Parser = getParser(); + SMLoc Loc = getLexer().getLoc(); + + Parser.Lex(); + if (getLexer().isNot(AsmToken::EndOfStatement)) + return reportParseError("unexpected token, expected end of statement"); + + // Always keep an element on the options "stack" to prevent the user + // from changing the initial options. This is how we remember them. + if (AssemblerOptions.size() == 2) + return reportParseError(Loc, ".set pop with no .set push"); + + AssemblerOptions.pop_back(); + setAvailableFeatures( + ComputeAvailableFeatures(AssemblerOptions.back()->getFeatures())); + STI.setFeatureBits(AssemblerOptions.back()->getFeatures()); + + getTargetStreamer().emitDirectiveSetPop(); + return false; +} + +bool MipsAsmParser::parseSetPushDirective() { + MCAsmParser &Parser = getParser(); + Parser.Lex(); + if (getLexer().isNot(AsmToken::EndOfStatement)) + return reportParseError("unexpected token, expected end of statement"); + + // Create a copy of the current assembler options environment and push it. + AssemblerOptions.push_back( + make_unique<MipsAssemblerOptions>(AssemblerOptions.back().get())); + + getTargetStreamer().emitDirectiveSetPush(); + return false; +} + +bool MipsAsmParser::parseSetSoftFloatDirective() { + MCAsmParser &Parser = getParser(); + Parser.Lex(); + if (getLexer().isNot(AsmToken::EndOfStatement)) + return reportParseError("unexpected token, expected end of statement"); + + setFeatureBits(Mips::FeatureSoftFloat, "soft-float"); + getTargetStreamer().emitDirectiveSetSoftFloat(); + return false; +} + +bool MipsAsmParser::parseSetHardFloatDirective() { + MCAsmParser &Parser = getParser(); + Parser.Lex(); + if (getLexer().isNot(AsmToken::EndOfStatement)) + return reportParseError("unexpected token, expected end of statement"); + + clearFeatureBits(Mips::FeatureSoftFloat, "soft-float"); + getTargetStreamer().emitDirectiveSetHardFloat(); + return false; +} + +bool MipsAsmParser::parseSetAssignment() { + StringRef Name; + const MCExpr *Value; + MCAsmParser &Parser = getParser(); + + if (Parser.parseIdentifier(Name)) + reportParseError("expected identifier after .set"); + + if (getLexer().isNot(AsmToken::Comma)) + return reportParseError("unexpected token, expected comma"); + Lex(); // Eat comma + + if (Parser.parseExpression(Value)) + return reportParseError("expected valid expression after comma"); + + MCSymbol *Sym = getContext().getOrCreateSymbol(Name); + Sym->setVariableValue(Value); + + return false; +} + +bool MipsAsmParser::parseSetMips0Directive() { + MCAsmParser &Parser = getParser(); + Parser.Lex(); + if (getLexer().isNot(AsmToken::EndOfStatement)) + return reportParseError("unexpected token, expected end of statement"); + + // Reset assembler options to their initial values. + setAvailableFeatures( + ComputeAvailableFeatures(AssemblerOptions.front()->getFeatures())); + STI.setFeatureBits(AssemblerOptions.front()->getFeatures()); + AssemblerOptions.back()->setFeatures(AssemblerOptions.front()->getFeatures()); + + getTargetStreamer().emitDirectiveSetMips0(); + return false; +} + +bool MipsAsmParser::parseSetArchDirective() { + MCAsmParser &Parser = getParser(); + Parser.Lex(); + if (getLexer().isNot(AsmToken::Equal)) + return reportParseError("unexpected token, expected equals sign"); + + Parser.Lex(); + StringRef Arch; + if (Parser.parseIdentifier(Arch)) + return reportParseError("expected arch identifier"); + + StringRef ArchFeatureName = + StringSwitch<StringRef>(Arch) + .Case("mips1", "mips1") + .Case("mips2", "mips2") + .Case("mips3", "mips3") + .Case("mips4", "mips4") + .Case("mips5", "mips5") + .Case("mips32", "mips32") + .Case("mips32r2", "mips32r2") + .Case("mips32r3", "mips32r3") + .Case("mips32r5", "mips32r5") + .Case("mips32r6", "mips32r6") + .Case("mips64", "mips64") + .Case("mips64r2", "mips64r2") + .Case("mips64r3", "mips64r3") + .Case("mips64r5", "mips64r5") + .Case("mips64r6", "mips64r6") + .Case("cnmips", "cnmips") + .Case("r4000", "mips3") // This is an implementation of Mips3. + .Default(""); + + if (ArchFeatureName.empty()) + return reportParseError("unsupported architecture"); + + selectArch(ArchFeatureName); + getTargetStreamer().emitDirectiveSetArch(Arch); + return false; +} + +bool MipsAsmParser::parseSetFeature(uint64_t Feature) { + MCAsmParser &Parser = getParser(); + Parser.Lex(); + if (getLexer().isNot(AsmToken::EndOfStatement)) + return reportParseError("unexpected token, expected end of statement"); + + switch (Feature) { + default: + llvm_unreachable("Unimplemented feature"); + case Mips::FeatureDSP: + setFeatureBits(Mips::FeatureDSP, "dsp"); + getTargetStreamer().emitDirectiveSetDsp(); + break; + case Mips::FeatureMicroMips: + getTargetStreamer().emitDirectiveSetMicroMips(); + break; + case Mips::FeatureMips1: + selectArch("mips1"); + getTargetStreamer().emitDirectiveSetMips1(); + break; + case Mips::FeatureMips2: + selectArch("mips2"); + getTargetStreamer().emitDirectiveSetMips2(); + break; + case Mips::FeatureMips3: + selectArch("mips3"); + getTargetStreamer().emitDirectiveSetMips3(); + break; + case Mips::FeatureMips4: + selectArch("mips4"); + getTargetStreamer().emitDirectiveSetMips4(); + break; + case Mips::FeatureMips5: + selectArch("mips5"); + getTargetStreamer().emitDirectiveSetMips5(); + break; + case Mips::FeatureMips32: + selectArch("mips32"); + getTargetStreamer().emitDirectiveSetMips32(); + break; + case Mips::FeatureMips32r2: + selectArch("mips32r2"); + getTargetStreamer().emitDirectiveSetMips32R2(); + break; + case Mips::FeatureMips32r3: + selectArch("mips32r3"); + getTargetStreamer().emitDirectiveSetMips32R3(); + break; + case Mips::FeatureMips32r5: + selectArch("mips32r5"); + getTargetStreamer().emitDirectiveSetMips32R5(); + break; + case Mips::FeatureMips32r6: + selectArch("mips32r6"); + getTargetStreamer().emitDirectiveSetMips32R6(); + break; + case Mips::FeatureMips64: + selectArch("mips64"); + getTargetStreamer().emitDirectiveSetMips64(); + break; + case Mips::FeatureMips64r2: + selectArch("mips64r2"); + getTargetStreamer().emitDirectiveSetMips64R2(); + break; + case Mips::FeatureMips64r3: + selectArch("mips64r3"); + getTargetStreamer().emitDirectiveSetMips64R3(); + break; + case Mips::FeatureMips64r5: + selectArch("mips64r5"); + getTargetStreamer().emitDirectiveSetMips64R5(); + break; + case Mips::FeatureMips64r6: + selectArch("mips64r6"); + getTargetStreamer().emitDirectiveSetMips64R6(); + break; + } + return false; +} + +bool MipsAsmParser::eatComma(StringRef ErrorStr) { + MCAsmParser &Parser = getParser(); + if (getLexer().isNot(AsmToken::Comma)) { + SMLoc Loc = getLexer().getLoc(); + Parser.eatToEndOfStatement(); + return Error(Loc, ErrorStr); + } + + Parser.Lex(); // Eat the comma. + return true; +} + +bool MipsAsmParser::parseDirectiveCpLoad(SMLoc Loc) { + if (AssemblerOptions.back()->isReorder()) + Warning(Loc, ".cpload should be inside a noreorder section"); + + if (inMips16Mode()) { + reportParseError(".cpload is not supported in Mips16 mode"); + return false; + } + + SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Reg; + OperandMatchResultTy ResTy = parseAnyRegister(Reg); + if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) { + reportParseError("expected register containing function address"); + return false; + } + + MipsOperand &RegOpnd = static_cast<MipsOperand &>(*Reg[0]); + if (!RegOpnd.isGPRAsmReg()) { + reportParseError(RegOpnd.getStartLoc(), "invalid register"); + return false; + } + + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + getTargetStreamer().emitDirectiveCpLoad(RegOpnd.getGPR32Reg()); + return false; +} + +bool MipsAsmParser::parseDirectiveCPSetup() { + MCAsmParser &Parser = getParser(); + unsigned FuncReg; + unsigned Save; + bool SaveIsReg = true; + + SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> TmpReg; + OperandMatchResultTy ResTy = parseAnyRegister(TmpReg); + if (ResTy == MatchOperand_NoMatch) { + reportParseError("expected register containing function address"); + Parser.eatToEndOfStatement(); + return false; + } + + MipsOperand &FuncRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]); + if (!FuncRegOpnd.isGPRAsmReg()) { + reportParseError(FuncRegOpnd.getStartLoc(), "invalid register"); + Parser.eatToEndOfStatement(); + return false; + } + + FuncReg = FuncRegOpnd.getGPR32Reg(); + TmpReg.clear(); + + if (!eatComma("unexpected token, expected comma")) + return true; + + ResTy = parseAnyRegister(TmpReg); + if (ResTy == MatchOperand_NoMatch) { + const AsmToken &Tok = Parser.getTok(); + if (Tok.is(AsmToken::Integer)) { + Save = Tok.getIntVal(); + SaveIsReg = false; + Parser.Lex(); + } else { + reportParseError("expected save register or stack offset"); + Parser.eatToEndOfStatement(); + return false; + } + } else { + MipsOperand &SaveOpnd = static_cast<MipsOperand &>(*TmpReg[0]); + if (!SaveOpnd.isGPRAsmReg()) { + reportParseError(SaveOpnd.getStartLoc(), "invalid register"); + Parser.eatToEndOfStatement(); + return false; + } + Save = SaveOpnd.getGPR32Reg(); + } + + if (!eatComma("unexpected token, expected comma")) + return true; + + const MCExpr *Expr; + if (Parser.parseExpression(Expr)) { + reportParseError("expected expression"); + return false; + } + + if (Expr->getKind() != MCExpr::SymbolRef) { + reportParseError("expected symbol"); + return false; + } + const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr *>(Expr); + + getTargetStreamer().emitDirectiveCpsetup(FuncReg, Save, Ref->getSymbol(), + SaveIsReg); + return false; +} + +bool MipsAsmParser::parseDirectiveNaN() { + MCAsmParser &Parser = getParser(); + if (getLexer().isNot(AsmToken::EndOfStatement)) { + const AsmToken &Tok = Parser.getTok(); + + if (Tok.getString() == "2008") { + Parser.Lex(); + getTargetStreamer().emitDirectiveNaN2008(); + return false; + } else if (Tok.getString() == "legacy") { + Parser.Lex(); + getTargetStreamer().emitDirectiveNaNLegacy(); + return false; + } + } + // If we don't recognize the option passed to the .nan + // directive (e.g. no option or unknown option), emit an error. + reportParseError("invalid option in .nan directive"); + return false; +} + +bool MipsAsmParser::parseDirectiveSet() { + MCAsmParser &Parser = getParser(); + // Get the next token. + const AsmToken &Tok = Parser.getTok(); + + if (Tok.getString() == "noat") { + return parseSetNoAtDirective(); + } else if (Tok.getString() == "at") { + return parseSetAtDirective(); + } else if (Tok.getString() == "arch") { + return parseSetArchDirective(); + } else if (Tok.getString() == "fp") { + return parseSetFpDirective(); + } else if (Tok.getString() == "oddspreg") { + return parseSetOddSPRegDirective(); + } else if (Tok.getString() == "nooddspreg") { + return parseSetNoOddSPRegDirective(); + } else if (Tok.getString() == "pop") { + return parseSetPopDirective(); + } else if (Tok.getString() == "push") { + return parseSetPushDirective(); + } else if (Tok.getString() == "reorder") { + return parseSetReorderDirective(); + } else if (Tok.getString() == "noreorder") { + return parseSetNoReorderDirective(); + } else if (Tok.getString() == "macro") { + return parseSetMacroDirective(); + } else if (Tok.getString() == "nomacro") { + return parseSetNoMacroDirective(); + } else if (Tok.getString() == "mips16") { + return parseSetMips16Directive(); + } else if (Tok.getString() == "nomips16") { + return parseSetNoMips16Directive(); + } else if (Tok.getString() == "nomicromips") { + getTargetStreamer().emitDirectiveSetNoMicroMips(); + Parser.eatToEndOfStatement(); + return false; + } else if (Tok.getString() == "micromips") { + return parseSetFeature(Mips::FeatureMicroMips); + } else if (Tok.getString() == "mips0") { + return parseSetMips0Directive(); + } else if (Tok.getString() == "mips1") { + return parseSetFeature(Mips::FeatureMips1); + } else if (Tok.getString() == "mips2") { + return parseSetFeature(Mips::FeatureMips2); + } else if (Tok.getString() == "mips3") { + return parseSetFeature(Mips::FeatureMips3); + } else if (Tok.getString() == "mips4") { + return parseSetFeature(Mips::FeatureMips4); + } else if (Tok.getString() == "mips5") { + return parseSetFeature(Mips::FeatureMips5); + } else if (Tok.getString() == "mips32") { + return parseSetFeature(Mips::FeatureMips32); + } else if (Tok.getString() == "mips32r2") { + return parseSetFeature(Mips::FeatureMips32r2); + } else if (Tok.getString() == "mips32r3") { + return parseSetFeature(Mips::FeatureMips32r3); + } else if (Tok.getString() == "mips32r5") { + return parseSetFeature(Mips::FeatureMips32r5); + } else if (Tok.getString() == "mips32r6") { + return parseSetFeature(Mips::FeatureMips32r6); + } else if (Tok.getString() == "mips64") { + return parseSetFeature(Mips::FeatureMips64); + } else if (Tok.getString() == "mips64r2") { + return parseSetFeature(Mips::FeatureMips64r2); + } else if (Tok.getString() == "mips64r3") { + return parseSetFeature(Mips::FeatureMips64r3); + } else if (Tok.getString() == "mips64r5") { + return parseSetFeature(Mips::FeatureMips64r5); + } else if (Tok.getString() == "mips64r6") { + return parseSetFeature(Mips::FeatureMips64r6); + } else if (Tok.getString() == "dsp") { + return parseSetFeature(Mips::FeatureDSP); + } else if (Tok.getString() == "nodsp") { + return parseSetNoDspDirective(); + } else if (Tok.getString() == "msa") { + return parseSetMsaDirective(); + } else if (Tok.getString() == "nomsa") { + return parseSetNoMsaDirective(); + } else if (Tok.getString() == "softfloat") { + return parseSetSoftFloatDirective(); + } else if (Tok.getString() == "hardfloat") { + return parseSetHardFloatDirective(); + } else { + // It is just an identifier, look for an assignment. + parseSetAssignment(); + return false; + } + + return true; +} + +/// parseDataDirective +/// ::= .word [ expression (, expression)* ] +bool MipsAsmParser::parseDataDirective(unsigned Size, SMLoc L) { + MCAsmParser &Parser = getParser(); + if (getLexer().isNot(AsmToken::EndOfStatement)) { + for (;;) { + const MCExpr *Value; + if (getParser().parseExpression(Value)) + return true; + + getParser().getStreamer().EmitValue(Value, Size); + + if (getLexer().is(AsmToken::EndOfStatement)) + break; + + if (getLexer().isNot(AsmToken::Comma)) + return Error(L, "unexpected token, expected comma"); + Parser.Lex(); + } + } + + Parser.Lex(); + return false; +} + +/// parseDirectiveGpWord +/// ::= .gpword local_sym +bool MipsAsmParser::parseDirectiveGpWord() { + MCAsmParser &Parser = getParser(); + const MCExpr *Value; + // EmitGPRel32Value requires an expression, so we are using base class + // method to evaluate the expression. + if (getParser().parseExpression(Value)) + return true; + getParser().getStreamer().EmitGPRel32Value(Value); + + if (getLexer().isNot(AsmToken::EndOfStatement)) + return Error(getLexer().getLoc(), + "unexpected token, expected end of statement"); + Parser.Lex(); // Eat EndOfStatement token. + return false; +} + +/// parseDirectiveGpDWord +/// ::= .gpdword local_sym +bool MipsAsmParser::parseDirectiveGpDWord() { + MCAsmParser &Parser = getParser(); + const MCExpr *Value; + // EmitGPRel64Value requires an expression, so we are using base class + // method to evaluate the expression. + if (getParser().parseExpression(Value)) + return true; + getParser().getStreamer().EmitGPRel64Value(Value); + + if (getLexer().isNot(AsmToken::EndOfStatement)) + return Error(getLexer().getLoc(), + "unexpected token, expected end of statement"); + Parser.Lex(); // Eat EndOfStatement token. + return false; +} + +bool MipsAsmParser::parseDirectiveOption() { + MCAsmParser &Parser = getParser(); + // Get the option token. + AsmToken Tok = Parser.getTok(); + // At the moment only identifiers are supported. + if (Tok.isNot(AsmToken::Identifier)) { + Error(Parser.getTok().getLoc(), "unexpected token, expected identifier"); + Parser.eatToEndOfStatement(); + return false; + } + + StringRef Option = Tok.getIdentifier(); + + if (Option == "pic0") { + getTargetStreamer().emitDirectiveOptionPic0(); + Parser.Lex(); + if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { + Error(Parser.getTok().getLoc(), + "unexpected token, expected end of statement"); + Parser.eatToEndOfStatement(); + } + return false; + } + + if (Option == "pic2") { + getTargetStreamer().emitDirectiveOptionPic2(); + Parser.Lex(); + if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { + Error(Parser.getTok().getLoc(), + "unexpected token, expected end of statement"); + Parser.eatToEndOfStatement(); + } + return false; + } + + // Unknown option. + Warning(Parser.getTok().getLoc(), + "unknown option, expected 'pic0' or 'pic2'"); + Parser.eatToEndOfStatement(); + return false; +} + +/// parseInsnDirective +/// ::= .insn +bool MipsAsmParser::parseInsnDirective() { + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + // The actual label marking happens in + // MipsELFStreamer::createPendingLabelRelocs(). + getTargetStreamer().emitDirectiveInsn(); + + getParser().Lex(); // Eat EndOfStatement token. + return false; +} + +/// parseDirectiveModule +/// ::= .module oddspreg +/// ::= .module nooddspreg +/// ::= .module fp=value +/// ::= .module softfloat +/// ::= .module hardfloat +bool MipsAsmParser::parseDirectiveModule() { + MCAsmParser &Parser = getParser(); + MCAsmLexer &Lexer = getLexer(); + SMLoc L = Lexer.getLoc(); + + if (!getTargetStreamer().isModuleDirectiveAllowed()) { + // TODO : get a better message. + reportParseError(".module directive must appear before any code"); + return false; + } + + StringRef Option; + if (Parser.parseIdentifier(Option)) { + reportParseError("expected .module option identifier"); + return false; + } + + if (Option == "oddspreg") { + clearModuleFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg"); + + // Synchronize the abiflags information with the FeatureBits information we + // changed above. + getTargetStreamer().updateABIInfo(*this); + + // If printing assembly, use the recently updated abiflags information. + // If generating ELF, don't do anything (the .MIPS.abiflags section gets + // emitted at the end). + getTargetStreamer().emitDirectiveModuleOddSPReg(); + + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + return false; // parseDirectiveModule has finished successfully. + } else if (Option == "nooddspreg") { + if (!isABI_O32()) { + Error(L, "'.module nooddspreg' requires the O32 ABI"); + return false; + } + + setModuleFeatureBits(Mips::FeatureNoOddSPReg, "nooddspreg"); + + // Synchronize the abiflags information with the FeatureBits information we + // changed above. + getTargetStreamer().updateABIInfo(*this); + + // If printing assembly, use the recently updated abiflags information. + // If generating ELF, don't do anything (the .MIPS.abiflags section gets + // emitted at the end). + getTargetStreamer().emitDirectiveModuleOddSPReg(); + + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + return false; // parseDirectiveModule has finished successfully. + } else if (Option == "fp") { + return parseDirectiveModuleFP(); + } else if (Option == "softfloat") { + setModuleFeatureBits(Mips::FeatureSoftFloat, "soft-float"); + + // Synchronize the ABI Flags information with the FeatureBits information we + // updated above. + getTargetStreamer().updateABIInfo(*this); + + // If printing assembly, use the recently updated ABI Flags information. + // If generating ELF, don't do anything (the .MIPS.abiflags section gets + // emitted later). + getTargetStreamer().emitDirectiveModuleSoftFloat(); + + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + return false; // parseDirectiveModule has finished successfully. + } else if (Option == "hardfloat") { + clearModuleFeatureBits(Mips::FeatureSoftFloat, "soft-float"); + + // Synchronize the ABI Flags information with the FeatureBits information we + // updated above. + getTargetStreamer().updateABIInfo(*this); + + // If printing assembly, use the recently updated ABI Flags information. + // If generating ELF, don't do anything (the .MIPS.abiflags section gets + // emitted later). + getTargetStreamer().emitDirectiveModuleHardFloat(); + + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + return false; // parseDirectiveModule has finished successfully. + } else { + return Error(L, "'" + Twine(Option) + "' is not a valid .module option."); + } +} + +/// parseDirectiveModuleFP +/// ::= =32 +/// ::= =xx +/// ::= =64 +bool MipsAsmParser::parseDirectiveModuleFP() { + MCAsmParser &Parser = getParser(); + MCAsmLexer &Lexer = getLexer(); + + if (Lexer.isNot(AsmToken::Equal)) { + reportParseError("unexpected token, expected equals sign '='"); + return false; + } + Parser.Lex(); // Eat '=' token. + + MipsABIFlagsSection::FpABIKind FpABI; + if (!parseFpABIValue(FpABI, ".module")) + return false; + + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + // Synchronize the abiflags information with the FeatureBits information we + // changed above. + getTargetStreamer().updateABIInfo(*this); + + // If printing assembly, use the recently updated abiflags information. + // If generating ELF, don't do anything (the .MIPS.abiflags section gets + // emitted at the end). + getTargetStreamer().emitDirectiveModuleFP(); + + Parser.Lex(); // Consume the EndOfStatement. + return false; +} + +bool MipsAsmParser::parseFpABIValue(MipsABIFlagsSection::FpABIKind &FpABI, + StringRef Directive) { + MCAsmParser &Parser = getParser(); + MCAsmLexer &Lexer = getLexer(); + bool ModuleLevelOptions = Directive == ".module"; + + if (Lexer.is(AsmToken::Identifier)) { + StringRef Value = Parser.getTok().getString(); + Parser.Lex(); + + if (Value != "xx") { + reportParseError("unsupported value, expected 'xx', '32' or '64'"); + return false; + } + + if (!isABI_O32()) { + reportParseError("'" + Directive + " fp=xx' requires the O32 ABI"); + return false; + } + + FpABI = MipsABIFlagsSection::FpABIKind::XX; + if (ModuleLevelOptions) { + setModuleFeatureBits(Mips::FeatureFPXX, "fpxx"); + clearModuleFeatureBits(Mips::FeatureFP64Bit, "fp64"); + } else { + setFeatureBits(Mips::FeatureFPXX, "fpxx"); + clearFeatureBits(Mips::FeatureFP64Bit, "fp64"); + } + return true; + } + + if (Lexer.is(AsmToken::Integer)) { + unsigned Value = Parser.getTok().getIntVal(); + Parser.Lex(); + + if (Value != 32 && Value != 64) { + reportParseError("unsupported value, expected 'xx', '32' or '64'"); + return false; + } + + if (Value == 32) { + if (!isABI_O32()) { + reportParseError("'" + Directive + " fp=32' requires the O32 ABI"); + return false; + } + + FpABI = MipsABIFlagsSection::FpABIKind::S32; + if (ModuleLevelOptions) { + clearModuleFeatureBits(Mips::FeatureFPXX, "fpxx"); + clearModuleFeatureBits(Mips::FeatureFP64Bit, "fp64"); + } else { + clearFeatureBits(Mips::FeatureFPXX, "fpxx"); + clearFeatureBits(Mips::FeatureFP64Bit, "fp64"); + } + } else { + FpABI = MipsABIFlagsSection::FpABIKind::S64; + if (ModuleLevelOptions) { + clearModuleFeatureBits(Mips::FeatureFPXX, "fpxx"); + setModuleFeatureBits(Mips::FeatureFP64Bit, "fp64"); + } else { + clearFeatureBits(Mips::FeatureFPXX, "fpxx"); + setFeatureBits(Mips::FeatureFP64Bit, "fp64"); + } + } + + return true; + } + + return false; +} + +bool MipsAsmParser::ParseDirective(AsmToken DirectiveID) { + MCAsmParser &Parser = getParser(); + StringRef IDVal = DirectiveID.getString(); + + if (IDVal == ".cpload") + return parseDirectiveCpLoad(DirectiveID.getLoc()); + if (IDVal == ".dword") { + parseDataDirective(8, DirectiveID.getLoc()); + return false; + } + if (IDVal == ".ent") { + StringRef SymbolName; + + if (Parser.parseIdentifier(SymbolName)) { + reportParseError("expected identifier after .ent"); + return false; + } + + // There's an undocumented extension that allows an integer to + // follow the name of the procedure which AFAICS is ignored by GAS. + // Example: .ent foo,2 + if (getLexer().isNot(AsmToken::EndOfStatement)) { + if (getLexer().isNot(AsmToken::Comma)) { + // Even though we accept this undocumented extension for compatibility + // reasons, the additional integer argument does not actually change + // the behaviour of the '.ent' directive, so we would like to discourage + // its use. We do this by not referring to the extended version in + // error messages which are not directly related to its use. + reportParseError("unexpected token, expected end of statement"); + return false; + } + Parser.Lex(); // Eat the comma. + const MCExpr *DummyNumber; + int64_t DummyNumberVal; + // If the user was explicitly trying to use the extended version, + // we still give helpful extension-related error messages. + if (Parser.parseExpression(DummyNumber)) { + reportParseError("expected number after comma"); + return false; + } + if (!DummyNumber->evaluateAsAbsolute(DummyNumberVal)) { + reportParseError("expected an absolute expression after comma"); + return false; + } + } + + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + MCSymbol *Sym = getContext().getOrCreateSymbol(SymbolName); + + getTargetStreamer().emitDirectiveEnt(*Sym); + CurrentFn = Sym; + return false; + } + + if (IDVal == ".end") { + StringRef SymbolName; + + if (Parser.parseIdentifier(SymbolName)) { + reportParseError("expected identifier after .end"); + return false; + } + + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + if (CurrentFn == nullptr) { + reportParseError(".end used without .ent"); + return false; + } + + if ((SymbolName != CurrentFn->getName())) { + reportParseError(".end symbol does not match .ent symbol"); + return false; + } + + getTargetStreamer().emitDirectiveEnd(SymbolName); + CurrentFn = nullptr; + return false; + } + + if (IDVal == ".frame") { + // .frame $stack_reg, frame_size_in_bytes, $return_reg + SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> TmpReg; + OperandMatchResultTy ResTy = parseAnyRegister(TmpReg); + if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) { + reportParseError("expected stack register"); + return false; + } + + MipsOperand &StackRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]); + if (!StackRegOpnd.isGPRAsmReg()) { + reportParseError(StackRegOpnd.getStartLoc(), + "expected general purpose register"); + return false; + } + unsigned StackReg = StackRegOpnd.getGPR32Reg(); + + if (Parser.getTok().is(AsmToken::Comma)) + Parser.Lex(); + else { + reportParseError("unexpected token, expected comma"); + return false; + } + + // Parse the frame size. + const MCExpr *FrameSize; + int64_t FrameSizeVal; + + if (Parser.parseExpression(FrameSize)) { + reportParseError("expected frame size value"); + return false; + } + + if (!FrameSize->evaluateAsAbsolute(FrameSizeVal)) { + reportParseError("frame size not an absolute expression"); + return false; + } + + if (Parser.getTok().is(AsmToken::Comma)) + Parser.Lex(); + else { + reportParseError("unexpected token, expected comma"); + return false; + } + + // Parse the return register. + TmpReg.clear(); + ResTy = parseAnyRegister(TmpReg); + if (ResTy == MatchOperand_NoMatch || ResTy == MatchOperand_ParseFail) { + reportParseError("expected return register"); + return false; + } + + MipsOperand &ReturnRegOpnd = static_cast<MipsOperand &>(*TmpReg[0]); + if (!ReturnRegOpnd.isGPRAsmReg()) { + reportParseError(ReturnRegOpnd.getStartLoc(), + "expected general purpose register"); + return false; + } + + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + getTargetStreamer().emitFrame(StackReg, FrameSizeVal, + ReturnRegOpnd.getGPR32Reg()); + return false; + } + + if (IDVal == ".set") { + return parseDirectiveSet(); + } + + if (IDVal == ".mask" || IDVal == ".fmask") { + // .mask bitmask, frame_offset + // bitmask: One bit for each register used. + // frame_offset: Offset from Canonical Frame Address ($sp on entry) where + // first register is expected to be saved. + // Examples: + // .mask 0x80000000, -4 + // .fmask 0x80000000, -4 + // + + // Parse the bitmask + const MCExpr *BitMask; + int64_t BitMaskVal; + + if (Parser.parseExpression(BitMask)) { + reportParseError("expected bitmask value"); + return false; + } + + if (!BitMask->evaluateAsAbsolute(BitMaskVal)) { + reportParseError("bitmask not an absolute expression"); + return false; + } + + if (Parser.getTok().is(AsmToken::Comma)) + Parser.Lex(); + else { + reportParseError("unexpected token, expected comma"); + return false; + } + + // Parse the frame_offset + const MCExpr *FrameOffset; + int64_t FrameOffsetVal; + + if (Parser.parseExpression(FrameOffset)) { + reportParseError("expected frame offset value"); + return false; + } + + if (!FrameOffset->evaluateAsAbsolute(FrameOffsetVal)) { + reportParseError("frame offset not an absolute expression"); + return false; + } + + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + if (IDVal == ".mask") + getTargetStreamer().emitMask(BitMaskVal, FrameOffsetVal); + else + getTargetStreamer().emitFMask(BitMaskVal, FrameOffsetVal); + return false; + } + + if (IDVal == ".nan") + return parseDirectiveNaN(); + + if (IDVal == ".gpword") { + parseDirectiveGpWord(); + return false; + } + + if (IDVal == ".gpdword") { + parseDirectiveGpDWord(); + return false; + } + + if (IDVal == ".word") { + parseDataDirective(4, DirectiveID.getLoc()); + return false; + } + + if (IDVal == ".option") + return parseDirectiveOption(); + + if (IDVal == ".abicalls") { + getTargetStreamer().emitDirectiveAbiCalls(); + if (Parser.getTok().isNot(AsmToken::EndOfStatement)) { + Error(Parser.getTok().getLoc(), + "unexpected token, expected end of statement"); + // Clear line + Parser.eatToEndOfStatement(); + } + return false; + } + + if (IDVal == ".cpsetup") + return parseDirectiveCPSetup(); + + if (IDVal == ".module") + return parseDirectiveModule(); + + if (IDVal == ".llvm_internal_mips_reallow_module_directive") + return parseInternalDirectiveReallowModule(); + + if (IDVal == ".insn") + return parseInsnDirective(); + + return true; +} + +bool MipsAsmParser::parseInternalDirectiveReallowModule() { + // If this is not the end of the statement, report an error. + if (getLexer().isNot(AsmToken::EndOfStatement)) { + reportParseError("unexpected token, expected end of statement"); + return false; + } + + getTargetStreamer().reallowModuleDirective(); + + getParser().Lex(); // Eat EndOfStatement token. + return false; +} + +extern "C" void LLVMInitializeMipsAsmParser() { + RegisterMCAsmParser<MipsAsmParser> X(TheMipsTarget); + RegisterMCAsmParser<MipsAsmParser> Y(TheMipselTarget); + RegisterMCAsmParser<MipsAsmParser> A(TheMips64Target); + RegisterMCAsmParser<MipsAsmParser> B(TheMips64elTarget); +} + +#define GET_REGISTER_MATCHER +#define GET_MATCHER_IMPLEMENTATION +#include "MipsGenAsmMatcher.inc" |