diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/RDFLiveness.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/RDFLiveness.cpp | 848 |
1 files changed, 848 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/RDFLiveness.cpp b/contrib/llvm/lib/Target/Hexagon/RDFLiveness.cpp new file mode 100644 index 0000000..1d9bd37 --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/RDFLiveness.cpp @@ -0,0 +1,848 @@ +//===--- RDFLiveness.cpp --------------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Computation of the liveness information from the data-flow graph. +// +// The main functionality of this code is to compute block live-in +// information. With the live-in information in place, the placement +// of kill flags can also be recalculated. +// +// The block live-in calculation is based on the ideas from the following +// publication: +// +// Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin. +// "Efficient Liveness Computation Using Merge Sets and DJ-Graphs." +// ACM Transactions on Architecture and Code Optimization, Association for +// Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance +// and Embedded Architectures and Compilers", 8 (4), +// <10.1145/2086696.2086706>. <hal-00647369> +// +#include "RDFGraph.h" +#include "RDFLiveness.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineDominanceFrontier.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Target/TargetRegisterInfo.h" + +using namespace llvm; +using namespace rdf; + +namespace rdf { + template<> + raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) { + OS << '{'; + for (auto I : P.Obj) { + OS << ' ' << Print<RegisterRef>(I.first, P.G) << '{'; + for (auto J = I.second.begin(), E = I.second.end(); J != E; ) { + OS << Print<NodeId>(*J, P.G); + if (++J != E) + OS << ','; + } + OS << '}'; + } + OS << " }"; + return OS; + } +} + +// The order in the returned sequence is the order of reaching defs in the +// upward traversal: the first def is the closest to the given reference RefA, +// the next one is further up, and so on. +// The list ends at a reaching phi def, or when the reference from RefA is +// covered by the defs in the list (see FullChain). +// This function provides two modes of operation: +// (1) Returning the sequence of reaching defs for a particular reference +// node. This sequence will terminate at the first phi node [1]. +// (2) Returning a partial sequence of reaching defs, where the final goal +// is to traverse past phi nodes to the actual defs arising from the code +// itself. +// In mode (2), the register reference for which the search was started +// may be different from the reference node RefA, for which this call was +// made, hence the argument RefRR, which holds the original register. +// Also, some definitions may have already been encountered in a previous +// call that will influence register covering. The register references +// already defined are passed in through DefRRs. +// In mode (1), the "continuation" considerations do not apply, and the +// RefRR is the same as the register in RefA, and the set DefRRs is empty. +// +// [1] It is possible for multiple phi nodes to be included in the returned +// sequence: +// SubA = phi ... +// SubB = phi ... +// ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB) +// However, these phi nodes are independent from one another in terms of +// the data-flow. + +NodeList Liveness::getAllReachingDefs(RegisterRef RefRR, + NodeAddr<RefNode*> RefA, bool FullChain, const RegisterSet &DefRRs) { + SetVector<NodeId> DefQ; + SetVector<NodeId> Owners; + + // The initial queue should not have reaching defs for shadows. The + // whole point of a shadow is that it will have a reaching def that + // is not aliased to the reaching defs of the related shadows. + NodeId Start = RefA.Id; + auto SNA = DFG.addr<RefNode*>(Start); + if (NodeId RD = SNA.Addr->getReachingDef()) + DefQ.insert(RD); + + // Collect all the reaching defs, going up until a phi node is encountered, + // or there are no more reaching defs. From this set, the actual set of + // reaching defs will be selected. + // The traversal upwards must go on until a covering def is encountered. + // It is possible that a collection of non-covering (individually) defs + // will be sufficient, but keep going until a covering one is found. + for (unsigned i = 0; i < DefQ.size(); ++i) { + auto TA = DFG.addr<DefNode*>(DefQ[i]); + if (TA.Addr->getFlags() & NodeAttrs::PhiRef) + continue; + // Stop at the covering/overwriting def of the initial register reference. + RegisterRef RR = TA.Addr->getRegRef(); + if (RAI.covers(RR, RefRR)) { + uint16_t Flags = TA.Addr->getFlags(); + if (!(Flags & NodeAttrs::Preserving)) + continue; + } + // Get the next level of reaching defs. This will include multiple + // reaching defs for shadows. + for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA)) + if (auto RD = NodeAddr<RefNode*>(S).Addr->getReachingDef()) + DefQ.insert(RD); + } + + // Remove all non-phi defs that are not aliased to RefRR, and collect + // the owners of the remaining defs. + SetVector<NodeId> Defs; + for (auto N : DefQ) { + auto TA = DFG.addr<DefNode*>(N); + bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef; + if (!IsPhi && !RAI.alias(RefRR, TA.Addr->getRegRef())) + continue; + Defs.insert(TA.Id); + Owners.insert(TA.Addr->getOwner(DFG).Id); + } + + // Return the MachineBasicBlock containing a given instruction. + auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* { + if (IA.Addr->getKind() == NodeAttrs::Stmt) + return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent(); + assert(IA.Addr->getKind() == NodeAttrs::Phi); + NodeAddr<PhiNode*> PA = IA; + NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG); + return BA.Addr->getCode(); + }; + // Less(A,B) iff instruction A is further down in the dominator tree than B. + auto Less = [&Block,this] (NodeId A, NodeId B) -> bool { + if (A == B) + return false; + auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B); + MachineBasicBlock *BA = Block(OA), *BB = Block(OB); + if (BA != BB) + return MDT.dominates(BB, BA); + // They are in the same block. + bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt; + bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt; + if (StmtA) { + if (!StmtB) // OB is a phi and phis dominate statements. + return true; + auto CA = NodeAddr<StmtNode*>(OA).Addr->getCode(); + auto CB = NodeAddr<StmtNode*>(OB).Addr->getCode(); + // The order must be linear, so tie-break such equalities. + if (CA == CB) + return A < B; + return MDT.dominates(CB, CA); + } else { + // OA is a phi. + if (StmtB) + return false; + // Both are phis. There is no ordering between phis (in terms of + // the data-flow), so tie-break this via node id comparison. + return A < B; + } + }; + + std::vector<NodeId> Tmp(Owners.begin(), Owners.end()); + std::sort(Tmp.begin(), Tmp.end(), Less); + + // The vector is a list of instructions, so that defs coming from + // the same instruction don't need to be artificially ordered. + // Then, when computing the initial segment, and iterating over an + // instruction, pick the defs that contribute to the covering (i.e. is + // not covered by previously added defs). Check the defs individually, + // i.e. first check each def if is covered or not (without adding them + // to the tracking set), and then add all the selected ones. + + // The reason for this is this example: + // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes). + // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be + // covered if we added A first, and A would be covered + // if we added B first. + + NodeList RDefs; + RegisterSet RRs = DefRRs; + + auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool { + return TA.Addr->getKind() == NodeAttrs::Def && + Defs.count(TA.Id); + }; + for (auto T : Tmp) { + if (!FullChain && RAI.covers(RRs, RefRR)) + break; + auto TA = DFG.addr<InstrNode*>(T); + bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA); + NodeList Ds; + for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) { + auto QR = DA.Addr->getRegRef(); + // Add phi defs even if they are covered by subsequent defs. This is + // for cases where the reached use is not covered by any of the defs + // encountered so far: the phi def is needed to expose the liveness + // of that use to the entry of the block. + // Example: + // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2. + // d2<R3>(d1,,u3), ... + // ..., u3<D1>(d2) This use needs to be live on entry. + if (FullChain || IsPhi || !RAI.covers(RRs, QR)) + Ds.push_back(DA); + } + RDefs.insert(RDefs.end(), Ds.begin(), Ds.end()); + for (NodeAddr<DefNode*> DA : Ds) { + // When collecting a full chain of definitions, do not consider phi + // defs to actually define a register. + uint16_t Flags = DA.Addr->getFlags(); + if (!FullChain || !(Flags & NodeAttrs::PhiRef)) + if (!(Flags & NodeAttrs::Preserving)) + RRs.insert(DA.Addr->getRegRef()); + } + } + + return RDefs; +} + + +static const RegisterSet NoRegs; + +NodeList Liveness::getAllReachingDefs(NodeAddr<RefNode*> RefA) { + return getAllReachingDefs(RefA.Addr->getRegRef(), RefA, false, NoRegs); +} + + +void Liveness::computePhiInfo() { + NodeList Phis; + NodeAddr<FuncNode*> FA = DFG.getFunc(); + auto Blocks = FA.Addr->members(DFG); + for (NodeAddr<BlockNode*> BA : Blocks) { + auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); + Phis.insert(Phis.end(), Ps.begin(), Ps.end()); + } + + // phi use -> (map: reaching phi -> set of registers defined in between) + std::map<NodeId,std::map<NodeId,RegisterSet>> PhiUp; + std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation. + + // Go over all phis. + for (NodeAddr<PhiNode*> PhiA : Phis) { + // Go over all defs and collect the reached uses that are non-phi uses + // (i.e. the "real uses"). + auto &RealUses = RealUseMap[PhiA.Id]; + auto PhiRefs = PhiA.Addr->members(DFG); + + // Have a work queue of defs whose reached uses need to be found. + // For each def, add to the queue all reached (non-phi) defs. + SetVector<NodeId> DefQ; + NodeSet PhiDefs; + for (auto R : PhiRefs) { + if (!DFG.IsRef<NodeAttrs::Def>(R)) + continue; + DefQ.insert(R.Id); + PhiDefs.insert(R.Id); + } + for (unsigned i = 0; i < DefQ.size(); ++i) { + NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]); + NodeId UN = DA.Addr->getReachedUse(); + while (UN != 0) { + NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN); + if (!(A.Addr->getFlags() & NodeAttrs::PhiRef)) + RealUses[getRestrictedRegRef(A)].insert(A.Id); + UN = A.Addr->getSibling(); + } + NodeId DN = DA.Addr->getReachedDef(); + while (DN != 0) { + NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN); + for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) { + uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags(); + // Must traverse the reached-def chain. Consider: + // def(D0) -> def(R0) -> def(R0) -> use(D0) + // The reachable use of D0 passes through a def of R0. + if (!(Flags & NodeAttrs::PhiRef)) + DefQ.insert(T.Id); + } + DN = A.Addr->getSibling(); + } + } + // Filter out these uses that appear to be reachable, but really + // are not. For example: + // + // R1:0 = d1 + // = R1:0 u2 Reached by d1. + // R0 = d3 + // = R1:0 u4 Still reached by d1: indirectly through + // the def d3. + // R1 = d5 + // = R1:0 u6 Not reached by d1 (covered collectively + // by d3 and d5), but following reached + // defs and uses from d1 will lead here. + auto HasDef = [&PhiDefs] (NodeAddr<DefNode*> DA) -> bool { + return PhiDefs.count(DA.Id); + }; + for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) { + // For each reached register UI->first, there is a set UI->second, of + // uses of it. For each such use, check if it is reached by this phi, + // i.e. check if the set of its reaching uses intersects the set of + // this phi's defs. + auto &Uses = UI->second; + for (auto I = Uses.begin(), E = Uses.end(); I != E; ) { + auto UA = DFG.addr<UseNode*>(*I); + NodeList RDs = getAllReachingDefs(UI->first, UA); + if (std::any_of(RDs.begin(), RDs.end(), HasDef)) + ++I; + else + I = Uses.erase(I); + } + if (Uses.empty()) + UI = RealUses.erase(UI); + else + ++UI; + } + + // If this phi reaches some "real" uses, add it to the queue for upward + // propagation. + if (!RealUses.empty()) + PhiUQ.push_back(PhiA.Id); + + // Go over all phi uses and check if the reaching def is another phi. + // Collect the phis that are among the reaching defs of these uses. + // While traversing the list of reaching defs for each phi use, collect + // the set of registers defined between this phi (Phi) and the owner phi + // of the reaching def. + for (auto I : PhiRefs) { + if (!DFG.IsRef<NodeAttrs::Use>(I)) + continue; + NodeAddr<UseNode*> UA = I; + auto &UpMap = PhiUp[UA.Id]; + RegisterSet DefRRs; + for (NodeAddr<DefNode*> DA : getAllReachingDefs(UA)) { + if (DA.Addr->getFlags() & NodeAttrs::PhiRef) + UpMap[DA.Addr->getOwner(DFG).Id] = DefRRs; + else + DefRRs.insert(DA.Addr->getRegRef()); + } + } + } + + if (Trace) { + dbgs() << "Phi-up-to-phi map:\n"; + for (auto I : PhiUp) { + dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {"; + for (auto R : I.second) + dbgs() << ' ' << Print<NodeId>(R.first, DFG) + << Print<RegisterSet>(R.second, DFG); + dbgs() << " }\n"; + } + } + + // Propagate the reached registers up in the phi chain. + // + // The following type of situation needs careful handling: + // + // phi d1<R1:0> (1) + // | + // ... d2<R1> + // | + // phi u3<R1:0> (2) + // | + // ... u4<R1> + // + // The phi node (2) defines a register pair R1:0, and reaches a "real" + // use u4 of just R1. The same phi node is also known to reach (upwards) + // the phi node (1). However, the use u4 is not reached by phi (1), + // because of the intervening definition d2 of R1. The data flow between + // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0. + // + // When propagating uses up the phi chains, get the all reaching defs + // for a given phi use, and traverse the list until the propagated ref + // is covered, or until or until reaching the final phi. Only assume + // that the reference reaches the phi in the latter case. + + for (unsigned i = 0; i < PhiUQ.size(); ++i) { + auto PA = DFG.addr<PhiNode*>(PhiUQ[i]); + auto &RealUses = RealUseMap[PA.Id]; + for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { + NodeAddr<UseNode*> UA = U; + auto &UpPhis = PhiUp[UA.Id]; + for (auto UP : UpPhis) { + bool Changed = false; + auto &MidDefs = UP.second; + // Collect the set UpReached of uses that are reached by the current + // phi PA, and are not covered by any intervening def between PA and + // the upward phi UP. + RegisterSet UpReached; + for (auto T : RealUses) { + if (!isRestricted(PA, UA, T.first)) + continue; + if (!RAI.covers(MidDefs, T.first)) + UpReached.insert(T.first); + } + if (UpReached.empty()) + continue; + // Update the set PRUs of real uses reached by the upward phi UP with + // the actual set of uses (UpReached) that the UP phi reaches. + auto &PRUs = RealUseMap[UP.first]; + for (auto R : UpReached) { + unsigned Z = PRUs[R].size(); + PRUs[R].insert(RealUses[R].begin(), RealUses[R].end()); + Changed |= (PRUs[R].size() != Z); + } + if (Changed) + PhiUQ.push_back(UP.first); + } + } + } + + if (Trace) { + dbgs() << "Real use map:\n"; + for (auto I : RealUseMap) { + dbgs() << "phi " << Print<NodeId>(I.first, DFG); + NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first); + NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG); + if (!Ds.empty()) { + RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(); + dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>'; + } else { + dbgs() << "<noreg>"; + } + dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n'; + } + } +} + + +void Liveness::computeLiveIns() { + // Populate the node-to-block map. This speeds up the calculations + // significantly. + NBMap.clear(); + for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) { + MachineBasicBlock *BB = BA.Addr->getCode(); + for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) { + for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG)) + NBMap.insert(std::make_pair(RA.Id, BB)); + NBMap.insert(std::make_pair(IA.Id, BB)); + } + } + + MachineFunction &MF = DFG.getMF(); + + // Compute IDF first, then the inverse. + decltype(IIDF) IDF; + for (auto &B : MF) { + auto F1 = MDF.find(&B); + if (F1 == MDF.end()) + continue; + SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end()); + for (unsigned i = 0; i < IDFB.size(); ++i) { + auto F2 = MDF.find(IDFB[i]); + if (F2 != MDF.end()) + IDFB.insert(F2->second.begin(), F2->second.end()); + } + // Add B to the IDF(B). This will put B in the IIDF(B). + IDFB.insert(&B); + IDF[&B].insert(IDFB.begin(), IDFB.end()); + } + + for (auto I : IDF) + for (auto S : I.second) + IIDF[S].insert(I.first); + + computePhiInfo(); + + NodeAddr<FuncNode*> FA = DFG.getFunc(); + auto Blocks = FA.Addr->members(DFG); + + // Build the phi live-on-entry map. + for (NodeAddr<BlockNode*> BA : Blocks) { + MachineBasicBlock *MB = BA.Addr->getCode(); + auto &LON = PhiLON[MB]; + for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG)) + for (auto S : RealUseMap[P.Id]) + LON[S.first].insert(S.second.begin(), S.second.end()); + } + + if (Trace) { + dbgs() << "Phi live-on-entry map:\n"; + for (auto I : PhiLON) + dbgs() << "block #" << I.first->getNumber() << " -> " + << Print<RefMap>(I.second, DFG) << '\n'; + } + + // Build the phi live-on-exit map. Each phi node has some set of reached + // "real" uses. Propagate this set backwards into the block predecessors + // through the reaching defs of the corresponding phi uses. + for (NodeAddr<BlockNode*> BA : Blocks) { + auto Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG); + for (NodeAddr<PhiNode*> PA : Phis) { + auto &RUs = RealUseMap[PA.Id]; + if (RUs.empty()) + continue; + + for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) { + NodeAddr<PhiUseNode*> UA = U; + if (UA.Addr->getReachingDef() == 0) + continue; + + // Mark all reached "real" uses of P as live on exit in the + // predecessor. + // Remap all the RUs so that they have a correct reaching def. + auto PrA = DFG.addr<BlockNode*>(UA.Addr->getPredecessor()); + auto &LOX = PhiLOX[PrA.Addr->getCode()]; + for (auto R : RUs) { + RegisterRef RR = R.first; + if (!isRestricted(PA, UA, RR)) + RR = getRestrictedRegRef(UA); + // The restricted ref may be different from the ref that was + // accessed in the "real use". This means that this phi use + // is not the one that carries this reference, so skip it. + if (!RAI.alias(R.first, RR)) + continue; + for (auto D : getAllReachingDefs(RR, UA)) + LOX[RR].insert(D.Id); + } + } // for U : phi uses + } // for P : Phis + } // for B : Blocks + + if (Trace) { + dbgs() << "Phi live-on-exit map:\n"; + for (auto I : PhiLOX) + dbgs() << "block #" << I.first->getNumber() << " -> " + << Print<RefMap>(I.second, DFG) << '\n'; + } + + RefMap LiveIn; + traverse(&MF.front(), LiveIn); + + // Add function live-ins to the live-in set of the function entry block. + auto &EntryIn = LiveMap[&MF.front()]; + for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) + EntryIn.insert({I->first,0}); + + if (Trace) { + // Dump the liveness map + for (auto &B : MF) { + BitVector LV(TRI.getNumRegs()); + for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I) + LV.set(I->PhysReg); + dbgs() << "BB#" << B.getNumber() << "\t rec = {"; + for (int x = LV.find_first(); x >= 0; x = LV.find_next(x)) + dbgs() << ' ' << Print<RegisterRef>({unsigned(x),0}, DFG); + dbgs() << " }\n"; + dbgs() << "\tcomp = " << Print<RegisterSet>(LiveMap[&B], DFG) << '\n'; + } + } +} + + +void Liveness::resetLiveIns() { + for (auto &B : DFG.getMF()) { + // Remove all live-ins. + std::vector<unsigned> T; + for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I) + T.push_back(I->PhysReg); + for (auto I : T) + B.removeLiveIn(I); + // Add the newly computed live-ins. + auto &LiveIns = LiveMap[&B]; + for (auto I : LiveIns) { + assert(I.Sub == 0); + B.addLiveIn(I.Reg); + } + } +} + + +void Liveness::resetKills() { + for (auto &B : DFG.getMF()) + resetKills(&B); +} + + +void Liveness::resetKills(MachineBasicBlock *B) { + auto CopyLiveIns = [] (MachineBasicBlock *B, BitVector &LV) -> void { + for (auto I = B->livein_begin(), E = B->livein_end(); I != E; ++I) + LV.set(I->PhysReg); + }; + + BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs()); + CopyLiveIns(B, LiveIn); + for (auto SI : B->successors()) + CopyLiveIns(SI, Live); + + for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) { + MachineInstr *MI = &*I; + if (MI->isDebugValue()) + continue; + + MI->clearKillInfo(); + for (auto &Op : MI->operands()) { + if (!Op.isReg() || !Op.isDef()) + continue; + unsigned R = Op.getReg(); + if (!TargetRegisterInfo::isPhysicalRegister(R)) + continue; + for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) + Live.reset(*SR); + } + for (auto &Op : MI->operands()) { + if (!Op.isReg() || !Op.isUse()) + continue; + unsigned R = Op.getReg(); + if (!TargetRegisterInfo::isPhysicalRegister(R)) + continue; + bool IsLive = false; + for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) { + if (!Live[*SR]) + continue; + IsLive = true; + break; + } + if (IsLive) + continue; + Op.setIsKill(true); + for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) + Live.set(*SR); + } + } +} + + +// For shadows, determine if RR is aliased to a reaching def of any other +// shadow associated with RA. If it is not, then RR is "restricted" to RA, +// and so it can be considered a value specific to RA. This is important +// for accurately determining values associated with phi uses. +// For non-shadows, this function returns "true". +bool Liveness::isRestricted(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA, + RegisterRef RR) const { + NodeId Start = RA.Id; + for (NodeAddr<RefNode*> TA = DFG.getNextShadow(IA, RA); + TA.Id != 0 && TA.Id != Start; TA = DFG.getNextShadow(IA, TA)) { + NodeId RD = TA.Addr->getReachingDef(); + if (RD == 0) + continue; + if (RAI.alias(RR, DFG.addr<DefNode*>(RD).Addr->getRegRef())) + return false; + } + return true; +} + + +RegisterRef Liveness::getRestrictedRegRef(NodeAddr<RefNode*> RA) const { + assert(DFG.IsRef<NodeAttrs::Use>(RA)); + if (RA.Addr->getFlags() & NodeAttrs::Shadow) { + NodeId RD = RA.Addr->getReachingDef(); + assert(RD); + RA = DFG.addr<DefNode*>(RD); + } + return RA.Addr->getRegRef(); +} + + +unsigned Liveness::getPhysReg(RegisterRef RR) const { + if (!TargetRegisterInfo::isPhysicalRegister(RR.Reg)) + return 0; + return RR.Sub ? TRI.getSubReg(RR.Reg, RR.Sub) : RR.Reg; +} + + +// Helper function to obtain the basic block containing the reaching def +// of the given use. +MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const { + auto F = NBMap.find(RN); + if (F != NBMap.end()) + return F->second; + llvm_unreachable("Node id not in map"); +} + + +void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) { + // The LiveIn map, for each (physical) register, contains the set of live + // reaching defs of that register that are live on entry to the associated + // block. + + // The summary of the traversal algorithm: + // + // R is live-in in B, if there exists a U(R), such that rdef(R) dom B + // and (U \in IDF(B) or B dom U). + // + // for (C : children) { + // LU = {} + // traverse(C, LU) + // LiveUses += LU + // } + // + // LiveUses -= Defs(B); + // LiveUses += UpwardExposedUses(B); + // for (C : IIDF[B]) + // for (U : LiveUses) + // if (Rdef(U) dom C) + // C.addLiveIn(U) + // + + // Go up the dominator tree (depth-first). + MachineDomTreeNode *N = MDT.getNode(B); + for (auto I : *N) { + RefMap L; + MachineBasicBlock *SB = I->getBlock(); + traverse(SB, L); + + for (auto S : L) + LiveIn[S.first].insert(S.second.begin(), S.second.end()); + } + + if (Trace) { + dbgs() << LLVM_FUNCTION_NAME << " in BB#" << B->getNumber() + << " after recursion into"; + for (auto I : *N) + dbgs() << ' ' << I->getBlock()->getNumber(); + dbgs() << "\n LiveIn: " << Print<RefMap>(LiveIn, DFG); + dbgs() << "\n Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; + } + + // Add phi uses that are live on exit from this block. + RefMap &PUs = PhiLOX[B]; + for (auto S : PUs) + LiveIn[S.first].insert(S.second.begin(), S.second.end()); + + if (Trace) { + dbgs() << "after LOX\n"; + dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; + dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; + } + + // Stop tracking all uses defined in this block: erase those records + // where the reaching def is located in B and which cover all reached + // uses. + auto Copy = LiveIn; + LiveIn.clear(); + + for (auto I : Copy) { + auto &Defs = LiveIn[I.first]; + NodeSet Rest; + for (auto R : I.second) { + auto DA = DFG.addr<DefNode*>(R); + RegisterRef DDR = DA.Addr->getRegRef(); + NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG); + NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); + // Defs from a different block need to be preserved. Defs from this + // block will need to be processed further, except for phi defs, the + // liveness of which is handled through the PhiLON/PhiLOX maps. + if (B != BA.Addr->getCode()) + Defs.insert(R); + else { + bool IsPreserving = DA.Addr->getFlags() & NodeAttrs::Preserving; + if (IA.Addr->getKind() != NodeAttrs::Phi && !IsPreserving) { + bool Covering = RAI.covers(DDR, I.first); + NodeId U = DA.Addr->getReachedUse(); + while (U && Covering) { + auto DUA = DFG.addr<UseNode*>(U); + RegisterRef Q = DUA.Addr->getRegRef(); + Covering = RAI.covers(DA.Addr->getRegRef(), Q); + U = DUA.Addr->getSibling(); + } + if (!Covering) + Rest.insert(R); + } + } + } + + // Non-covering defs from B. + for (auto R : Rest) { + auto DA = DFG.addr<DefNode*>(R); + RegisterRef DRR = DA.Addr->getRegRef(); + RegisterSet RRs; + for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) { + NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG); + NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG); + // Preserving defs do not count towards covering. + if (!(TA.Addr->getFlags() & NodeAttrs::Preserving)) + RRs.insert(TA.Addr->getRegRef()); + if (BA.Addr->getCode() == B) + continue; + if (RAI.covers(RRs, DRR)) + break; + Defs.insert(TA.Id); + } + } + } + + emptify(LiveIn); + + if (Trace) { + dbgs() << "after defs in block\n"; + dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; + dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; + } + + // Scan the block for upward-exposed uses and add them to the tracking set. + for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) { + NodeAddr<InstrNode*> IA = I; + if (IA.Addr->getKind() != NodeAttrs::Stmt) + continue; + for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) { + RegisterRef RR = UA.Addr->getRegRef(); + for (auto D : getAllReachingDefs(UA)) + if (getBlockWithRef(D.Id) != B) + LiveIn[RR].insert(D.Id); + } + } + + if (Trace) { + dbgs() << "after uses in block\n"; + dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; + dbgs() << " Local: " << Print<RegisterSet>(LiveMap[B], DFG) << '\n'; + } + + // Phi uses should not be propagated up the dominator tree, since they + // are not dominated by their corresponding reaching defs. + auto &Local = LiveMap[B]; + auto &LON = PhiLON[B]; + for (auto R : LON) + Local.insert(R.first); + + if (Trace) { + dbgs() << "after phi uses in block\n"; + dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n'; + dbgs() << " Local: " << Print<RegisterSet>(Local, DFG) << '\n'; + } + + for (auto C : IIDF[B]) { + auto &LiveC = LiveMap[C]; + for (auto S : LiveIn) + for (auto R : S.second) + if (MDT.properlyDominates(getBlockWithRef(R), C)) + LiveC.insert(S.first); + } +} + + +void Liveness::emptify(RefMap &M) { + for (auto I = M.begin(), E = M.end(); I != E; ) + I = I->second.empty() ? M.erase(I) : std::next(I); +} + |