summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/Hexagon/RDFGraph.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/RDFGraph.h')
-rw-r--r--contrib/llvm/lib/Target/Hexagon/RDFGraph.h841
1 files changed, 841 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/RDFGraph.h b/contrib/llvm/lib/Target/Hexagon/RDFGraph.h
new file mode 100644
index 0000000..7da7bb5
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/RDFGraph.h
@@ -0,0 +1,841 @@
+//===--- RDFGraph.h -------------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Target-independent, SSA-based data flow graph for register data flow (RDF)
+// for a non-SSA program representation (e.g. post-RA machine code).
+//
+//
+// *** Introduction
+//
+// The RDF graph is a collection of nodes, each of which denotes some element
+// of the program. There are two main types of such elements: code and refe-
+// rences. Conceptually, "code" is something that represents the structure
+// of the program, e.g. basic block or a statement, while "reference" is an
+// instance of accessing a register, e.g. a definition or a use. Nodes are
+// connected with each other based on the structure of the program (such as
+// blocks, instructions, etc.), and based on the data flow (e.g. reaching
+// definitions, reached uses, etc.). The single-reaching-definition principle
+// of SSA is generally observed, although, due to the non-SSA representation
+// of the program, there are some differences between the graph and a "pure"
+// SSA representation.
+//
+//
+// *** Implementation remarks
+//
+// Since the graph can contain a large number of nodes, memory consumption
+// was one of the major design considerations. As a result, there is a single
+// base class NodeBase which defines all members used by all possible derived
+// classes. The members are arranged in a union, and a derived class cannot
+// add any data members of its own. Each derived class only defines the
+// functional interface, i.e. member functions. NodeBase must be a POD,
+// which implies that all of its members must also be PODs.
+// Since nodes need to be connected with other nodes, pointers have been
+// replaced with 32-bit identifiers: each node has an id of type NodeId.
+// There are mapping functions in the graph that translate between actual
+// memory addresses and the corresponding identifiers.
+// A node id of 0 is equivalent to nullptr.
+//
+//
+// *** Structure of the graph
+//
+// A code node is always a collection of other nodes. For example, a code
+// node corresponding to a basic block will contain code nodes corresponding
+// to instructions. In turn, a code node corresponding to an instruction will
+// contain a list of reference nodes that correspond to the definitions and
+// uses of registers in that instruction. The members are arranged into a
+// circular list, which is yet another consequence of the effort to save
+// memory: for each member node it should be possible to obtain its owner,
+// and it should be possible to access all other members. There are other
+// ways to accomplish that, but the circular list seemed the most natural.
+//
+// +- CodeNode -+
+// | | <---------------------------------------------------+
+// +-+--------+-+ |
+// |FirstM |LastM |
+// | +-------------------------------------+ |
+// | | |
+// V V |
+// +----------+ Next +----------+ Next Next +----------+ Next |
+// | |----->| |-----> ... ----->| |----->-+
+// +- Member -+ +- Member -+ +- Member -+
+//
+// The order of members is such that related reference nodes (see below)
+// should be contiguous on the member list.
+//
+// A reference node is a node that encapsulates an access to a register,
+// in other words, data flowing into or out of a register. There are two
+// major kinds of reference nodes: defs and uses. A def node will contain
+// the id of the first reached use, and the id of the first reached def.
+// Each def and use will contain the id of the reaching def, and also the
+// id of the next reached def (for def nodes) or use (for use nodes).
+// The "next node sharing the same reaching def" is denoted as "sibling".
+// In summary:
+// - Def node contains: reaching def, sibling, first reached def, and first
+// reached use.
+// - Use node contains: reaching def and sibling.
+//
+// +-- DefNode --+
+// | R2 = ... | <---+--------------------+
+// ++---------+--+ | |
+// |Reached |Reached | |
+// |Def |Use | |
+// | | |Reaching |Reaching
+// | V |Def |Def
+// | +-- UseNode --+ Sib +-- UseNode --+ Sib Sib
+// | | ... = R2 |----->| ... = R2 |----> ... ----> 0
+// | +-------------+ +-------------+
+// V
+// +-- DefNode --+ Sib
+// | R2 = ... |----> ...
+// ++---------+--+
+// | |
+// | |
+// ... ...
+//
+// To get a full picture, the circular lists connecting blocks within a
+// function, instructions within a block, etc. should be superimposed with
+// the def-def, def-use links shown above.
+// To illustrate this, consider a small example in a pseudo-assembly:
+// foo:
+// add r2, r0, r1 ; r2 = r0+r1
+// addi r0, r2, 1 ; r0 = r2+1
+// ret r0 ; return value in r0
+//
+// The graph (in a format used by the debugging functions) would look like:
+//
+// DFG dump:[
+// f1: Function foo
+// b2: === BB#0 === preds(0), succs(0):
+// p3: phi [d4<r0>(,d12,u9):]
+// p5: phi [d6<r1>(,,u10):]
+// s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
+// s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
+// s14: ret [u15<r0>(d12):]
+// ]
+//
+// The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
+// kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
+// ment, d - def, u - use).
+// The format of a def node is:
+// dN<R>(rd,d,u):sib,
+// where
+// N - numeric node id,
+// R - register being defined
+// rd - reaching def,
+// d - reached def,
+// u - reached use,
+// sib - sibling.
+// The format of a use node is:
+// uN<R>[!](rd):sib,
+// where
+// N - numeric node id,
+// R - register being used,
+// rd - reaching def,
+// sib - sibling.
+// Possible annotations (usually preceding the node id):
+// + - preserving def,
+// ~ - clobbering def,
+// " - shadow ref (follows the node id),
+// ! - fixed register (appears after register name).
+//
+// The circular lists are not explicit in the dump.
+//
+//
+// *** Node attributes
+//
+// NodeBase has a member "Attrs", which is the primary way of determining
+// the node's characteristics. The fields in this member decide whether
+// the node is a code node or a reference node (i.e. node's "type"), then
+// within each type, the "kind" determines what specifically this node
+// represents. The remaining bits, "flags", contain additional information
+// that is even more detailed than the "kind".
+// CodeNode's kinds are:
+// - Phi: Phi node, members are reference nodes.
+// - Stmt: Statement, members are reference nodes.
+// - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
+// - Func: The whole function. The members are basic block nodes.
+// RefNode's kinds are:
+// - Use.
+// - Def.
+//
+// Meaning of flags:
+// - Preserving: applies only to defs. A preserving def is one that can
+// preserve some of the original bits among those that are included in
+// the register associated with that def. For example, if R0 is a 32-bit
+// register, but a def can only change the lower 16 bits, then it will
+// be marked as preserving.
+// - Shadow: a reference that has duplicates holding additional reaching
+// defs (see more below).
+// - Clobbering: applied only to defs, indicates that the value generated
+// by this def is unspecified. A typical example would be volatile registers
+// after function calls.
+//
+//
+// *** Shadow references
+//
+// It may happen that a super-register can have two (or more) non-overlapping
+// sub-registers. When both of these sub-registers are defined and followed
+// by a use of the super-register, the use of the super-register will not
+// have a unique reaching def: both defs of the sub-registers need to be
+// accounted for. In such cases, a duplicate use of the super-register is
+// added and it points to the extra reaching def. Both uses are marked with
+// a flag "shadow". Example:
+// Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
+// set r0, 1 ; r0 = 1
+// set r1, 1 ; r1 = 1
+// addi t1, t0, 1 ; t1 = t0+1
+//
+// The DFG:
+// s1: set [d2<r0>(,,u9):]
+// s3: set [d4<r1>(,,u10):]
+// s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
+//
+// The statement s5 has two use nodes for t0: u7" and u9". The quotation
+// mark " indicates that the node is a shadow.
+//
+#ifndef RDF_GRAPH_H
+#define RDF_GRAPH_H
+
+#include "llvm/ADT/BitVector.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/Timer.h"
+
+#include <functional>
+#include <map>
+#include <set>
+#include <vector>
+
+using namespace llvm;
+
+namespace llvm {
+ class MachineBasicBlock;
+ class MachineFunction;
+ class MachineInstr;
+ class MachineOperand;
+ class MachineDominanceFrontier;
+ class MachineDominatorTree;
+ class TargetInstrInfo;
+ class TargetRegisterInfo;
+}
+
+namespace rdf {
+ typedef uint32_t NodeId;
+
+ struct NodeAttrs {
+ enum : uint16_t {
+ None = 0x0000, // Nothing
+
+ // Types: 2 bits
+ TypeMask = 0x0003,
+ Code = 0x0001, // 01, Container
+ Ref = 0x0002, // 10, Reference
+
+ // Kind: 3 bits
+ KindMask = 0x0007 << 2,
+ Def = 0x0001 << 2, // 001
+ Use = 0x0002 << 2, // 010
+ Phi = 0x0003 << 2, // 011
+ Stmt = 0x0004 << 2, // 100
+ Block = 0x0005 << 2, // 101
+ Func = 0x0006 << 2, // 110
+
+ // Flags: 5 bits for now
+ FlagMask = 0x001F << 5,
+ Shadow = 0x0001 << 5, // 00001, Has extra reaching defs.
+ Clobbering = 0x0002 << 5, // 00010, Produces unspecified values.
+ PhiRef = 0x0004 << 5, // 00100, Member of PhiNode.
+ Preserving = 0x0008 << 5, // 01000, Def can keep original bits.
+ Fixed = 0x0010 << 5, // 10000, Fixed register.
+ };
+
+ static uint16_t type(uint16_t T) { return T & TypeMask; }
+ static uint16_t kind(uint16_t T) { return T & KindMask; }
+ static uint16_t flags(uint16_t T) { return T & FlagMask; }
+
+ static uint16_t set_type(uint16_t A, uint16_t T) {
+ return (A & ~TypeMask) | T;
+ }
+ static uint16_t set_kind(uint16_t A, uint16_t K) {
+ return (A & ~KindMask) | K;
+ }
+ static uint16_t set_flags(uint16_t A, uint16_t F) {
+ return (A & ~FlagMask) | F;
+ }
+
+ // Test if A contains B.
+ static bool contains(uint16_t A, uint16_t B) {
+ if (type(A) != Code)
+ return false;
+ uint16_t KB = kind(B);
+ switch (kind(A)) {
+ case Func:
+ return KB == Block;
+ case Block:
+ return KB == Phi || KB == Stmt;
+ case Phi:
+ case Stmt:
+ return type(B) == Ref;
+ }
+ return false;
+ }
+ };
+
+ template <typename T> struct NodeAddr {
+ NodeAddr() : Addr(nullptr), Id(0) {}
+ NodeAddr(T A, NodeId I) : Addr(A), Id(I) {}
+ NodeAddr(const NodeAddr&) = default;
+ NodeAddr &operator= (const NodeAddr&) = default;
+
+ bool operator== (const NodeAddr<T> &NA) const {
+ assert((Addr == NA.Addr) == (Id == NA.Id));
+ return Addr == NA.Addr;
+ }
+ bool operator!= (const NodeAddr<T> &NA) const {
+ return !operator==(NA);
+ }
+ // Type cast (casting constructor). The reason for having this class
+ // instead of std::pair.
+ template <typename S> NodeAddr(const NodeAddr<S> &NA)
+ : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}
+
+ T Addr;
+ NodeId Id;
+ };
+
+ struct NodeBase;
+
+ // Fast memory allocation and translation between node id and node address.
+ // This is really the same idea as the one underlying the "bump pointer
+ // allocator", the difference being in the translation. A node id is
+ // composed of two components: the index of the block in which it was
+ // allocated, and the index within the block. With the default settings,
+ // where the number of nodes per block is 4096, the node id (minus 1) is:
+ //
+ // bit position: 11 0
+ // +----------------------------+--------------+
+ // | Index of the block |Index in block|
+ // +----------------------------+--------------+
+ //
+ // The actual node id is the above plus 1, to avoid creating a node id of 0.
+ //
+ // This method significantly improved the build time, compared to using maps
+ // (std::unordered_map or DenseMap) to translate between pointers and ids.
+ struct NodeAllocator {
+ // Amount of storage for a single node.
+ enum { NodeMemSize = 32 };
+ NodeAllocator(uint32_t NPB = 4096)
+ : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)),
+ IndexMask((1 << BitsPerIndex)-1), ActiveEnd(nullptr) {
+ assert(isPowerOf2_32(NPB));
+ }
+ NodeBase *ptr(NodeId N) const {
+ uint32_t N1 = N-1;
+ uint32_t BlockN = N1 >> BitsPerIndex;
+ uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
+ return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset);
+ }
+ NodeId id(const NodeBase *P) const;
+ NodeAddr<NodeBase*> New();
+ void clear();
+
+ private:
+ void startNewBlock();
+ bool needNewBlock();
+ uint32_t makeId(uint32_t Block, uint32_t Index) const {
+ // Add 1 to the id, to avoid the id of 0, which is treated as "null".
+ return ((Block << BitsPerIndex) | Index) + 1;
+ }
+
+ const uint32_t NodesPerBlock;
+ const uint32_t BitsPerIndex;
+ const uint32_t IndexMask;
+ char *ActiveEnd;
+ std::vector<char*> Blocks;
+ typedef BumpPtrAllocatorImpl<MallocAllocator, 65536> AllocatorTy;
+ AllocatorTy MemPool;
+ };
+
+ struct RegisterRef {
+ unsigned Reg, Sub;
+
+ // No non-trivial constructors, since this will be a member of a union.
+ RegisterRef() = default;
+ RegisterRef(const RegisterRef &RR) = default;
+ RegisterRef &operator= (const RegisterRef &RR) = default;
+ bool operator== (const RegisterRef &RR) const {
+ return Reg == RR.Reg && Sub == RR.Sub;
+ }
+ bool operator!= (const RegisterRef &RR) const {
+ return !operator==(RR);
+ }
+ bool operator< (const RegisterRef &RR) const {
+ return Reg < RR.Reg || (Reg == RR.Reg && Sub < RR.Sub);
+ }
+ };
+ typedef std::set<RegisterRef> RegisterSet;
+
+ struct RegisterAliasInfo {
+ RegisterAliasInfo(const TargetRegisterInfo &tri) : TRI(tri) {}
+ virtual ~RegisterAliasInfo() {}
+
+ virtual std::vector<RegisterRef> getAliasSet(RegisterRef RR) const;
+ virtual bool alias(RegisterRef RA, RegisterRef RB) const;
+ virtual bool covers(RegisterRef RA, RegisterRef RB) const;
+ virtual bool covers(const RegisterSet &RRs, RegisterRef RR) const;
+
+ const TargetRegisterInfo &TRI;
+ };
+
+ struct TargetOperandInfo {
+ TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
+ virtual ~TargetOperandInfo() {}
+ virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
+ virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
+ virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;
+
+ const TargetInstrInfo &TII;
+ };
+
+
+ struct DataFlowGraph;
+
+ struct NodeBase {
+ public:
+ // Make sure this is a POD.
+ NodeBase() = default;
+ uint16_t getType() const { return NodeAttrs::type(Attrs); }
+ uint16_t getKind() const { return NodeAttrs::kind(Attrs); }
+ uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
+ NodeId getNext() const { return Next; }
+
+ uint16_t getAttrs() const { return Attrs; }
+ void setAttrs(uint16_t A) { Attrs = A; }
+ void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }
+
+ // Insert node NA after "this" in the circular chain.
+ void append(NodeAddr<NodeBase*> NA);
+ // Initialize all members to 0.
+ void init() { memset(this, 0, sizeof *this); }
+ void setNext(NodeId N) { Next = N; }
+
+ protected:
+ uint16_t Attrs;
+ uint16_t Reserved;
+ NodeId Next; // Id of the next node in the circular chain.
+ // Definitions of nested types. Using anonymous nested structs would make
+ // this class definition clearer, but unnamed structs are not a part of
+ // the standard.
+ struct Def_struct {
+ NodeId DD, DU; // Ids of the first reached def and use.
+ };
+ struct PhiU_struct {
+ NodeId PredB; // Id of the predecessor block for a phi use.
+ };
+ struct Code_struct {
+ void *CP; // Pointer to the actual code.
+ NodeId FirstM, LastM; // Id of the first member and last.
+ };
+ struct Ref_struct {
+ NodeId RD, Sib; // Ids of the reaching def and the sibling.
+ union {
+ Def_struct Def;
+ PhiU_struct PhiU;
+ };
+ union {
+ MachineOperand *Op; // Non-phi refs point to a machine operand.
+ RegisterRef RR; // Phi refs store register info directly.
+ };
+ };
+
+ // The actual payload.
+ union {
+ Ref_struct Ref;
+ Code_struct Code;
+ };
+ };
+ // The allocator allocates chunks of 32 bytes for each node. The fact that
+ // each node takes 32 bytes in memory is used for fast translation between
+ // the node id and the node address.
+ static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize,
+ "NodeBase must be at most NodeAllocator::NodeMemSize bytes");
+
+ typedef std::vector<NodeAddr<NodeBase*>> NodeList;
+ typedef std::set<NodeId> NodeSet;
+
+ struct RefNode : public NodeBase {
+ RefNode() = default;
+ RegisterRef getRegRef() const;
+ MachineOperand &getOp() {
+ assert(!(getFlags() & NodeAttrs::PhiRef));
+ return *Ref.Op;
+ }
+ void setRegRef(RegisterRef RR);
+ void setRegRef(MachineOperand *Op);
+ NodeId getReachingDef() const {
+ return Ref.RD;
+ }
+ void setReachingDef(NodeId RD) {
+ Ref.RD = RD;
+ }
+ NodeId getSibling() const {
+ return Ref.Sib;
+ }
+ void setSibling(NodeId Sib) {
+ Ref.Sib = Sib;
+ }
+ bool isUse() const {
+ assert(getType() == NodeAttrs::Ref);
+ return getKind() == NodeAttrs::Use;
+ }
+ bool isDef() const {
+ assert(getType() == NodeAttrs::Ref);
+ return getKind() == NodeAttrs::Def;
+ }
+
+ template <typename Predicate>
+ NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
+ const DataFlowGraph &G);
+ NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
+ };
+
+ struct DefNode : public RefNode {
+ NodeId getReachedDef() const {
+ return Ref.Def.DD;
+ }
+ void setReachedDef(NodeId D) {
+ Ref.Def.DD = D;
+ }
+ NodeId getReachedUse() const {
+ return Ref.Def.DU;
+ }
+ void setReachedUse(NodeId U) {
+ Ref.Def.DU = U;
+ }
+
+ void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
+ };
+
+ struct UseNode : public RefNode {
+ void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
+ };
+
+ struct PhiUseNode : public UseNode {
+ NodeId getPredecessor() const {
+ assert(getFlags() & NodeAttrs::PhiRef);
+ return Ref.PhiU.PredB;
+ }
+ void setPredecessor(NodeId B) {
+ assert(getFlags() & NodeAttrs::PhiRef);
+ Ref.PhiU.PredB = B;
+ }
+ };
+
+ struct CodeNode : public NodeBase {
+ template <typename T> T getCode() const {
+ return static_cast<T>(Code.CP);
+ }
+ void setCode(void *C) {
+ Code.CP = C;
+ }
+
+ NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const;
+ NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const;
+ void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
+ void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
+ const DataFlowGraph &G);
+ void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
+
+ NodeList members(const DataFlowGraph &G) const;
+ template <typename Predicate>
+ NodeList members_if(Predicate P, const DataFlowGraph &G) const;
+ };
+
+ struct InstrNode : public CodeNode {
+ NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
+ };
+
+ struct PhiNode : public InstrNode {
+ MachineInstr *getCode() const {
+ return nullptr;
+ }
+ };
+
+ struct StmtNode : public InstrNode {
+ MachineInstr *getCode() const {
+ return CodeNode::getCode<MachineInstr*>();
+ }
+ };
+
+ struct BlockNode : public CodeNode {
+ MachineBasicBlock *getCode() const {
+ return CodeNode::getCode<MachineBasicBlock*>();
+ }
+ void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G);
+ };
+
+ struct FuncNode : public CodeNode {
+ MachineFunction *getCode() const {
+ return CodeNode::getCode<MachineFunction*>();
+ }
+ NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB,
+ const DataFlowGraph &G) const;
+ NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G);
+ };
+
+ struct DataFlowGraph {
+ DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
+ const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
+ const MachineDominanceFrontier &mdf, const RegisterAliasInfo &rai,
+ const TargetOperandInfo &toi);
+
+ NodeBase *ptr(NodeId N) const;
+ template <typename T> T ptr(NodeId N) const {
+ return static_cast<T>(ptr(N));
+ }
+ NodeId id(const NodeBase *P) const;
+
+ template <typename T> NodeAddr<T> addr(NodeId N) const {
+ return { ptr<T>(N), N };
+ }
+
+ NodeAddr<FuncNode*> getFunc() const {
+ return Func;
+ }
+ MachineFunction &getMF() const {
+ return MF;
+ }
+ const TargetInstrInfo &getTII() const {
+ return TII;
+ }
+ const TargetRegisterInfo &getTRI() const {
+ return TRI;
+ }
+ const MachineDominatorTree &getDT() const {
+ return MDT;
+ }
+ const MachineDominanceFrontier &getDF() const {
+ return MDF;
+ }
+ const RegisterAliasInfo &getRAI() const {
+ return RAI;
+ }
+
+ struct DefStack {
+ DefStack() = default;
+ bool empty() const { return Stack.empty() || top() == bottom(); }
+ private:
+ typedef NodeAddr<DefNode*> value_type;
+ struct Iterator {
+ typedef DefStack::value_type value_type;
+ Iterator &up() { Pos = DS.nextUp(Pos); return *this; }
+ Iterator &down() { Pos = DS.nextDown(Pos); return *this; }
+ value_type operator*() const {
+ assert(Pos >= 1);
+ return DS.Stack[Pos-1];
+ }
+ const value_type *operator->() const {
+ assert(Pos >= 1);
+ return &DS.Stack[Pos-1];
+ }
+ bool operator==(const Iterator &It) const { return Pos == It.Pos; }
+ bool operator!=(const Iterator &It) const { return Pos != It.Pos; }
+ private:
+ Iterator(const DefStack &S, bool Top);
+ // Pos-1 is the index in the StorageType object that corresponds to
+ // the top of the DefStack.
+ const DefStack &DS;
+ unsigned Pos;
+ friend struct DefStack;
+ };
+ public:
+ typedef Iterator iterator;
+ iterator top() const { return Iterator(*this, true); }
+ iterator bottom() const { return Iterator(*this, false); }
+ unsigned size() const;
+
+ void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); }
+ void pop();
+ void start_block(NodeId N);
+ void clear_block(NodeId N);
+ private:
+ friend struct Iterator;
+ typedef std::vector<value_type> StorageType;
+ bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
+ return (P.Addr == nullptr) && (N == 0 || P.Id == N);
+ }
+ unsigned nextUp(unsigned P) const;
+ unsigned nextDown(unsigned P) const;
+ StorageType Stack;
+ };
+
+ typedef std::map<RegisterRef,DefStack> DefStackMap;
+
+ void build();
+ void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
+ void markBlock(NodeId B, DefStackMap &DefM);
+ void releaseBlock(NodeId B, DefStackMap &DefM);
+
+ NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA,
+ NodeAddr<RefNode*> RA) const;
+ NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
+ NodeAddr<RefNode*> RA, bool Create);
+ NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
+ NodeAddr<RefNode*> RA) const;
+ NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
+ NodeAddr<RefNode*> RA, bool Create);
+ NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
+ NodeAddr<RefNode*> RA) const;
+
+ NodeList getRelatedRefs(NodeAddr<InstrNode*> IA,
+ NodeAddr<RefNode*> RA) const;
+
+ void unlinkUse(NodeAddr<UseNode*> UA);
+ void unlinkDef(NodeAddr<DefNode*> DA);
+
+ // Some useful filters.
+ template <uint16_t Kind>
+ static bool IsRef(const NodeAddr<NodeBase*> BA) {
+ return BA.Addr->getType() == NodeAttrs::Ref &&
+ BA.Addr->getKind() == Kind;
+ }
+ template <uint16_t Kind>
+ static bool IsCode(const NodeAddr<NodeBase*> BA) {
+ return BA.Addr->getType() == NodeAttrs::Code &&
+ BA.Addr->getKind() == Kind;
+ }
+ static bool IsDef(const NodeAddr<NodeBase*> BA) {
+ return BA.Addr->getType() == NodeAttrs::Ref &&
+ BA.Addr->getKind() == NodeAttrs::Def;
+ }
+ static bool IsUse(const NodeAddr<NodeBase*> BA) {
+ return BA.Addr->getType() == NodeAttrs::Ref &&
+ BA.Addr->getKind() == NodeAttrs::Use;
+ }
+ static bool IsPhi(const NodeAddr<NodeBase*> BA) {
+ return BA.Addr->getType() == NodeAttrs::Code &&
+ BA.Addr->getKind() == NodeAttrs::Phi;
+ }
+
+ private:
+ void reset();
+
+ NodeAddr<NodeBase*> newNode(uint16_t Attrs);
+ NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B);
+ NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner,
+ MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
+ NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner,
+ RegisterRef RR, NodeAddr<BlockNode*> PredB,
+ uint16_t Flags = NodeAttrs::PhiRef);
+ NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
+ MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
+ NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
+ RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
+ NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner);
+ NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner,
+ MachineInstr *MI);
+ NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner,
+ MachineBasicBlock *BB);
+ NodeAddr<FuncNode*> newFunc(MachineFunction *MF);
+
+ template <typename Predicate>
+ std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
+ locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
+ Predicate P) const;
+
+ typedef std::map<NodeId,RegisterSet> BlockRefsMap;
+
+ void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In);
+ void buildBlockRefs(NodeAddr<BlockNode*> BA, BlockRefsMap &RefM);
+ void recordDefsForDF(BlockRefsMap &PhiM, BlockRefsMap &RefM,
+ NodeAddr<BlockNode*> BA);
+ void buildPhis(BlockRefsMap &PhiM, BlockRefsMap &RefM,
+ NodeAddr<BlockNode*> BA);
+ void removeUnusedPhis();
+
+ template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA,
+ NodeAddr<T> TA, DefStack &DS);
+ void linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode*> SA);
+ void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA);
+
+ TimerGroup TimeG;
+ NodeAddr<FuncNode*> Func;
+ NodeAllocator Memory;
+
+ MachineFunction &MF;
+ const TargetInstrInfo &TII;
+ const TargetRegisterInfo &TRI;
+ const MachineDominatorTree &MDT;
+ const MachineDominanceFrontier &MDF;
+ const RegisterAliasInfo &RAI;
+ const TargetOperandInfo &TOI;
+ }; // struct DataFlowGraph
+
+ template <typename Predicate>
+ NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P,
+ bool NextOnly, const DataFlowGraph &G) {
+ // Get the "Next" reference in the circular list that references RR and
+ // satisfies predicate "Pred".
+ auto NA = G.addr<NodeBase*>(getNext());
+
+ while (NA.Addr != this) {
+ if (NA.Addr->getType() == NodeAttrs::Ref) {
+ NodeAddr<RefNode*> RA = NA;
+ if (RA.Addr->getRegRef() == RR && P(NA))
+ return NA;
+ if (NextOnly)
+ break;
+ NA = G.addr<NodeBase*>(NA.Addr->getNext());
+ } else {
+ // We've hit the beginning of the chain.
+ assert(NA.Addr->getType() == NodeAttrs::Code);
+ NodeAddr<CodeNode*> CA = NA;
+ NA = CA.Addr->getFirstMember(G);
+ }
+ }
+ // Return the equivalent of "nullptr" if such a node was not found.
+ return NodeAddr<RefNode*>();
+ }
+
+ template <typename Predicate>
+ NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const {
+ NodeList MM;
+ auto M = getFirstMember(G);
+ if (M.Id == 0)
+ return MM;
+
+ while (M.Addr != this) {
+ if (P(M))
+ MM.push_back(M);
+ M = G.addr<NodeBase*>(M.Addr->getNext());
+ }
+ return MM;
+ }
+
+
+ template <typename T> struct Print;
+ template <typename T>
+ raw_ostream &operator<< (raw_ostream &OS, const Print<T> &P);
+
+ template <typename T>
+ struct Print {
+ Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {}
+ const T &Obj;
+ const DataFlowGraph &G;
+ };
+
+ template <typename T>
+ struct PrintNode : Print<NodeAddr<T>> {
+ PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g)
+ : Print<NodeAddr<T>>(x, g) {}
+ };
+} // namespace rdf
+
+#endif // RDF_GRAPH_H
OpenPOWER on IntegriCloud