diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.cpp | 449 |
1 files changed, 449 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.cpp b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.cpp new file mode 100644 index 0000000..2731278 --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/MCTargetDesc/HexagonMCInstrInfo.cpp @@ -0,0 +1,449 @@ +//===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This class extends MCInstrInfo to allow Hexagon specific MCInstr queries +// +//===----------------------------------------------------------------------===// + +#include "HexagonMCInstrInfo.h" + +#include "Hexagon.h" +#include "HexagonBaseInfo.h" + +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCInstrInfo.h" +#include "llvm/MC/MCSubtargetInfo.h" + +namespace llvm { +iterator_range<MCInst::const_iterator> +HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) { + assert(isBundle(MCI)); + return iterator_range<MCInst::const_iterator>( + MCI.begin() + bundleInstructionsOffset, MCI.end()); +} + +size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) { + if (HexagonMCInstrInfo::isBundle(MCI)) + return (MCI.size() - bundleInstructionsOffset); + else + return (1); +} + +MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass, + MCInst const &inst0, + MCInst const &inst1) { + assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf"); + MCInst *duplexInst = new (Context) MCInst; + duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass); + + MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0)); + MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1)); + duplexInst->addOperand(MCOperand::createInst(SubInst0)); + duplexInst->addOperand(MCOperand::createInst(SubInst1)); + return duplexInst; +} + +MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB, + size_t Index) { + assert(Index <= bundleSize(MCB)); + if (Index == 0) + return nullptr; + MCInst const *Inst = + MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst(); + if (isImmext(*Inst)) + return Inst; + return nullptr; +} + +HexagonII::MemAccessSize +HexagonMCInstrInfo::getAccessSize(MCInstrInfo const &MCII, MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + + return (HexagonII::MemAccessSize((F >> HexagonII::MemAccessSizePos) & + HexagonII::MemAccesSizeMask)); +} + +unsigned HexagonMCInstrInfo::getBitCount(MCInstrInfo const &MCII, + MCInst const &MCI) { + uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask); +} + +// Return constant extended operand number. +unsigned short HexagonMCInstrInfo::getCExtOpNum(MCInstrInfo const &MCII, + MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask); +} + +MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII, + MCInst const &MCI) { + return (MCII.get(MCI.getOpcode())); +} + +unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII, + MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask); +} + +MCOperand const & +HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII, + MCInst const &MCI) { + unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI); + MCOperand const &MO = MCI.getOperand(O); + + assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) || + HexagonMCInstrInfo::isExtended(MCII, MCI)) && + (MO.isImm() || MO.isExpr())); + return (MO); +} + +unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII, + MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask); +} + +unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII, + MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask); +} + +// Return the max value that a constant extendable operand can have +// without being extended. +int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII, + MCInst const &MCI) { + uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + unsigned isSigned = + (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask; + unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask; + + if (isSigned) // if value is signed + return ~(-1U << (bits - 1)); + else + return ~(-1U << bits); +} + +// Return the min value that a constant extendable operand can have +// without being extended. +int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII, + MCInst const &MCI) { + uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + unsigned isSigned = + (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask; + unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask; + + if (isSigned) // if value is signed + return -1U << (bits - 1); + else + return 0; +} + +char const *HexagonMCInstrInfo::getName(MCInstrInfo const &MCII, + MCInst const &MCI) { + return MCII.getName(MCI.getOpcode()); +} + +unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII, + MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask); +} + +MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII, + MCInst const &MCI) { + uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + unsigned const O = + (F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask; + MCOperand const &MCO = MCI.getOperand(O); + + assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) || + HexagonMCInstrInfo::hasNewValue(MCII, MCI)) && + MCO.isReg()); + return (MCO); +} + +int HexagonMCInstrInfo::getSubTarget(MCInstrInfo const &MCII, + MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + + HexagonII::SubTarget Target = static_cast<HexagonII::SubTarget>( + (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask); + + switch (Target) { + default: + return Hexagon::ArchV4; + case HexagonII::HasV5SubT: + return Hexagon::ArchV5; + } +} + +// Return the Hexagon ISA class for the insn. +unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII, + MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + + return ((F >> HexagonII::TypePos) & HexagonII::TypeMask); +} + +unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII, + MCSubtargetInfo const &STI, + MCInst const &MCI) { + + const InstrItinerary *II = STI.getSchedModel().InstrItineraries; + int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass(); + return ((II[SchedClass].FirstStage + HexagonStages)->getUnits()); +} + +bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) { + if (!HexagonMCInstrInfo::isBundle(MCI)) + return false; + + for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) { + auto MI = I.getInst(); + if (isImmext(*MI)) + return true; + } + + return false; +} + +bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) { + return extenderForIndex(MCB, Index) != nullptr; +} + +// Return whether the instruction is a legal new-value producer. +bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII, + MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask); +} + +MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) { + assert(isBundle(MCB)); + assert(Index < HEXAGON_PACKET_SIZE); + return *MCB.getOperand(bundleInstructionsOffset + Index).getInst(); +} + +bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) { + auto Result = Hexagon::BUNDLE == MCI.getOpcode(); + assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm())); + return Result; +} + +// Return whether the insn is an actual insn. +bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) { + return (!HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() && + !HexagonMCInstrInfo::isPrefix(MCII, MCI) && + HexagonMCInstrInfo::getType(MCII, MCI) != HexagonII::TypeENDLOOP); +} + +bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) { + return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) || + (Reg >= Hexagon::D8 && Reg <= Hexagon::D11)); +} + +bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) { + return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI); +} + +// Return whether the instruction needs to be constant extended. +// 1) Always return true if the instruction has 'isExtended' flag set. +// +// isExtendable: +// 2) For immediate extended operands, return true only if the value is +// out-of-range. +// 3) For global address, always return true. + +bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII, + MCInst const &MCI) { + if (HexagonMCInstrInfo::isExtended(MCII, MCI)) + return true; + + if (!HexagonMCInstrInfo::isExtendable(MCII, MCI)) + return false; + + short ExtOpNum = HexagonMCInstrInfo::getCExtOpNum(MCII, MCI); + int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI); + int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI); + MCOperand const &MO = MCI.getOperand(ExtOpNum); + + // We could be using an instruction with an extendable immediate and shoehorn + // a global address into it. If it is a global address it will be constant + // extended. We do this for COMBINE. + // We currently only handle isGlobal() because it is the only kind of + // object we are going to end up with here for now. + // In the future we probably should add isSymbol(), etc. + if (MO.isExpr()) + return true; + + // If the extendable operand is not 'Immediate' type, the instruction should + // have 'isExtended' flag set. + assert(MO.isImm() && "Extendable operand must be Immediate type"); + + int ImmValue = MO.getImm(); + return (ImmValue < MinValue || ImmValue > MaxValue); +} + +bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII, + MCInst const &MCI) { + uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask; +} + +bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII, + MCInst const &MCI) { + uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; +} + +bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return ((F >> HexagonII::FPPos) & HexagonII::FPMask); +} + +bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) { + auto Op = MCI.getOpcode(); + return (Op == Hexagon::A4_ext_b || Op == Hexagon::A4_ext_c || + Op == Hexagon::A4_ext_g || Op == Hexagon::A4_ext); +} + +bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) { + assert(isBundle(MCI)); + int64_t Flags = MCI.getOperand(0).getImm(); + return (Flags & innerLoopMask) != 0; +} + +bool HexagonMCInstrInfo::isIntReg(unsigned Reg) { + return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31); +} + +bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) { + return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) || + (Reg >= Hexagon::R16 && Reg <= Hexagon::R23)); +} + +// Return whether the insn is a new-value consumer. +bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII, + MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask); +} + +// Return whether the operand can be constant extended. +bool HexagonMCInstrInfo::isOperandExtended(MCInstrInfo const &MCII, + MCInst const &MCI, + unsigned short OperandNum) { + uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) == + OperandNum; +} + +bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) { + assert(isBundle(MCI)); + int64_t Flags = MCI.getOperand(0).getImm(); + return (Flags & outerLoopMask) != 0; +} + +bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII, + MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); +} + +bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII, + MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return ( + !((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask)); +} + +bool HexagonMCInstrInfo::isPredReg(unsigned Reg) { + return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0); +} + +bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) { + return (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypePREFIX); +} + +bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask); +} + +bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask); +} + +bool HexagonMCInstrInfo::isSoloAin1(MCInstrInfo const &MCII, + MCInst const &MCI) { + const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; + return ((F >> HexagonII::SoloAin1Pos) & HexagonII::SoloAin1Mask); +} + +void HexagonMCInstrInfo::padEndloop(MCInst &MCB) { + MCInst Nop; + Nop.setOpcode(Hexagon::A2_nop); + assert(isBundle(MCB)); + while ((HexagonMCInstrInfo::isInnerLoop(MCB) && + (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) || + ((HexagonMCInstrInfo::isOuterLoop(MCB) && + (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE)))) + MCB.addOperand(MCOperand::createInst(new MCInst(Nop))); +} + +bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII, + MCInst const &MCI) { + if (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) + return false; + + unsigned SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass(); + switch (SchedClass) { + case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123: + case Hexagon::Sched::ALU64_tc_2_SLOT23: + case Hexagon::Sched::ALU64_tc_3x_SLOT23: + case Hexagon::Sched::M_tc_2_SLOT23: + case Hexagon::Sched::M_tc_3x_SLOT23: + case Hexagon::Sched::S_2op_tc_2_SLOT23: + case Hexagon::Sched::S_3op_tc_2_SLOT23: + case Hexagon::Sched::S_3op_tc_3x_SLOT23: + return true; + } + return false; +} + +void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB, + DuplexCandidate Candidate) { + assert(Candidate.packetIndexI < MCB.size()); + assert(Candidate.packetIndexJ < MCB.size()); + assert(isBundle(MCB)); + MCInst *Duplex = + deriveDuplex(Context, Candidate.iClass, + *MCB.getOperand(Candidate.packetIndexJ).getInst(), + *MCB.getOperand(Candidate.packetIndexI).getInst()); + assert(Duplex != nullptr); + MCB.getOperand(Candidate.packetIndexI).setInst(Duplex); + MCB.erase(MCB.begin() + Candidate.packetIndexJ); +} + +void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) { + assert(isBundle(MCI)); + MCOperand &Operand = MCI.getOperand(0); + Operand.setImm(Operand.getImm() | innerLoopMask); +} + +void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) { + assert(isBundle(MCI)); + MCOperand &Operand = MCI.getOperand(0); + Operand.setImm(Operand.getImm() | outerLoopMask); +} +} |