diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp | 1601 |
1 files changed, 1601 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp new file mode 100644 index 0000000..8185054 --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp @@ -0,0 +1,1601 @@ +//===----- HexagonPacketizer.cpp - vliw packetizer ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements a simple VLIW packetizer using DFA. The packetizer works on +// machine basic blocks. For each instruction I in BB, the packetizer consults +// the DFA to see if machine resources are available to execute I. If so, the +// packetizer checks if I depends on any instruction J in the current packet. +// If no dependency is found, I is added to current packet and machine resource +// is marked as taken. If any dependency is found, a target API call is made to +// prune the dependence. +// +//===----------------------------------------------------------------------===// +#include "HexagonRegisterInfo.h" +#include "HexagonSubtarget.h" +#include "HexagonTargetMachine.h" +#include "HexagonVLIWPacketizer.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunctionAnalysis.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include <map> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "packets" + +static cl::opt<bool> DisablePacketizer("disable-packetizer", cl::Hidden, + cl::ZeroOrMore, cl::init(false), + cl::desc("Disable Hexagon packetizer pass")); + +static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles", + cl::ZeroOrMore, cl::Hidden, cl::init(true), + cl::desc("Allow non-solo packetization of volatile memory references")); + +static cl::opt<bool> EnableGenAllInsnClass("enable-gen-insn", cl::init(false), + cl::Hidden, cl::ZeroOrMore, cl::desc("Generate all instruction with TC")); + +static cl::opt<bool> DisableVecDblNVStores("disable-vecdbl-nv-stores", + cl::init(false), cl::Hidden, cl::ZeroOrMore, + cl::desc("Disable vector double new-value-stores")); + +extern cl::opt<bool> ScheduleInlineAsm; + +namespace llvm { + FunctionPass *createHexagonPacketizer(); + void initializeHexagonPacketizerPass(PassRegistry&); +} + + +namespace { + class HexagonPacketizer : public MachineFunctionPass { + public: + static char ID; + HexagonPacketizer() : MachineFunctionPass(ID) { + initializeHexagonPacketizerPass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<MachineBranchProbabilityInfo>(); + AU.addRequired<MachineDominatorTree>(); + AU.addRequired<MachineLoopInfo>(); + AU.addPreserved<MachineDominatorTree>(); + AU.addPreserved<MachineLoopInfo>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + const char *getPassName() const override { + return "Hexagon Packetizer"; + } + bool runOnMachineFunction(MachineFunction &Fn) override; + + private: + const HexagonInstrInfo *HII; + const HexagonRegisterInfo *HRI; + }; + + char HexagonPacketizer::ID = 0; +} + +INITIALIZE_PASS_BEGIN(HexagonPacketizer, "packets", "Hexagon Packetizer", + false, false) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_END(HexagonPacketizer, "packets", "Hexagon Packetizer", + false, false) + + +HexagonPacketizerList::HexagonPacketizerList(MachineFunction &MF, + MachineLoopInfo &MLI, AliasAnalysis *AA, + const MachineBranchProbabilityInfo *MBPI) + : VLIWPacketizerList(MF, MLI, AA), MBPI(MBPI), MLI(&MLI) { + HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); + HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); +} + +// Check if FirstI modifies a register that SecondI reads. +static bool hasWriteToReadDep(const MachineInstr *FirstI, + const MachineInstr *SecondI, const TargetRegisterInfo *TRI) { + for (auto &MO : FirstI->operands()) { + if (!MO.isReg() || !MO.isDef()) + continue; + unsigned R = MO.getReg(); + if (SecondI->readsRegister(R, TRI)) + return true; + } + return false; +} + + +static MachineBasicBlock::iterator moveInstrOut(MachineInstr *MI, + MachineBasicBlock::iterator BundleIt, bool Before) { + MachineBasicBlock::instr_iterator InsertPt; + if (Before) + InsertPt = BundleIt.getInstrIterator(); + else + InsertPt = std::next(BundleIt).getInstrIterator(); + + MachineBasicBlock &B = *MI->getParent(); + // The instruction should at least be bundled with the preceding instruction + // (there will always be one, i.e. BUNDLE, if nothing else). + assert(MI->isBundledWithPred()); + if (MI->isBundledWithSucc()) { + MI->clearFlag(MachineInstr::BundledSucc); + MI->clearFlag(MachineInstr::BundledPred); + } else { + // If it's not bundled with the successor (i.e. it is the last one + // in the bundle), then we can simply unbundle it from the predecessor, + // which will take care of updating the predecessor's flag. + MI->unbundleFromPred(); + } + B.splice(InsertPt, &B, MI); + + // Get the size of the bundle without asserting. + MachineBasicBlock::const_instr_iterator I(BundleIt); + MachineBasicBlock::const_instr_iterator E = B.instr_end(); + unsigned Size = 0; + for (++I; I != E && I->isBundledWithPred(); ++I) + ++Size; + + // If there are still two or more instructions, then there is nothing + // else to be done. + if (Size > 1) + return BundleIt; + + // Otherwise, extract the single instruction out and delete the bundle. + MachineBasicBlock::iterator NextIt = std::next(BundleIt); + MachineInstr *SingleI = BundleIt->getNextNode(); + SingleI->unbundleFromPred(); + assert(!SingleI->isBundledWithSucc()); + BundleIt->eraseFromParent(); + return NextIt; +} + + +bool HexagonPacketizer::runOnMachineFunction(MachineFunction &MF) { + if (DisablePacketizer) + return false; + + HII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); + HRI = MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + auto &MLI = getAnalysis<MachineLoopInfo>(); + auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); + auto *MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); + + if (EnableGenAllInsnClass) + HII->genAllInsnTimingClasses(MF); + + // Instantiate the packetizer. + HexagonPacketizerList Packetizer(MF, MLI, AA, MBPI); + + // DFA state table should not be empty. + assert(Packetizer.getResourceTracker() && "Empty DFA table!"); + + // + // Loop over all basic blocks and remove KILL pseudo-instructions + // These instructions confuse the dependence analysis. Consider: + // D0 = ... (Insn 0) + // R0 = KILL R0, D0 (Insn 1) + // R0 = ... (Insn 2) + // Here, Insn 1 will result in the dependence graph not emitting an output + // dependence between Insn 0 and Insn 2. This can lead to incorrect + // packetization + // + for (auto &MB : MF) { + auto End = MB.end(); + auto MI = MB.begin(); + while (MI != End) { + auto NextI = std::next(MI); + if (MI->isKill()) { + MB.erase(MI); + End = MB.end(); + } + MI = NextI; + } + } + + // Loop over all of the basic blocks. + for (auto &MB : MF) { + auto Begin = MB.begin(), End = MB.end(); + while (Begin != End) { + // First the first non-boundary starting from the end of the last + // scheduling region. + MachineBasicBlock::iterator RB = Begin; + while (RB != End && HII->isSchedulingBoundary(RB, &MB, MF)) + ++RB; + // First the first boundary starting from the beginning of the new + // region. + MachineBasicBlock::iterator RE = RB; + while (RE != End && !HII->isSchedulingBoundary(RE, &MB, MF)) + ++RE; + // Add the scheduling boundary if it's not block end. + if (RE != End) + ++RE; + // If RB == End, then RE == End. + if (RB != End) + Packetizer.PacketizeMIs(&MB, RB, RE); + + Begin = RE; + } + } + + Packetizer.unpacketizeSoloInstrs(MF); + return true; +} + + +// Reserve resources for a constant extender. Trigger an assertion if the +// reservation fails. +void HexagonPacketizerList::reserveResourcesForConstExt() { + if (!tryAllocateResourcesForConstExt(true)) + llvm_unreachable("Resources not available"); +} + +bool HexagonPacketizerList::canReserveResourcesForConstExt() { + return tryAllocateResourcesForConstExt(false); +} + +// Allocate resources (i.e. 4 bytes) for constant extender. If succeeded, +// return true, otherwise, return false. +bool HexagonPacketizerList::tryAllocateResourcesForConstExt(bool Reserve) { + auto *ExtMI = MF.CreateMachineInstr(HII->get(Hexagon::A4_ext), DebugLoc()); + bool Avail = ResourceTracker->canReserveResources(ExtMI); + if (Reserve && Avail) + ResourceTracker->reserveResources(ExtMI); + MF.DeleteMachineInstr(ExtMI); + return Avail; +} + + +bool HexagonPacketizerList::isCallDependent(const MachineInstr* MI, + SDep::Kind DepType, unsigned DepReg) { + // Check for LR dependence. + if (DepReg == HRI->getRARegister()) + return true; + + if (HII->isDeallocRet(MI)) + if (DepReg == HRI->getFrameRegister() || DepReg == HRI->getStackRegister()) + return true; + + // Check if this is a predicate dependence. + const TargetRegisterClass* RC = HRI->getMinimalPhysRegClass(DepReg); + if (RC == &Hexagon::PredRegsRegClass) + return true; + + // Assumes that the first operand of the CALLr is the function address. + if (HII->isIndirectCall(MI) && (DepType == SDep::Data)) { + MachineOperand MO = MI->getOperand(0); + if (MO.isReg() && MO.isUse() && (MO.getReg() == DepReg)) + return true; + } + + return false; +} + +static bool isRegDependence(const SDep::Kind DepType) { + return DepType == SDep::Data || DepType == SDep::Anti || + DepType == SDep::Output; +} + +static bool isDirectJump(const MachineInstr* MI) { + return MI->getOpcode() == Hexagon::J2_jump; +} + +static bool isSchedBarrier(const MachineInstr* MI) { + switch (MI->getOpcode()) { + case Hexagon::Y2_barrier: + return true; + } + return false; +} + +static bool isControlFlow(const MachineInstr* MI) { + return (MI->getDesc().isTerminator() || MI->getDesc().isCall()); +} + + +/// Returns true if the instruction modifies a callee-saved register. +static bool doesModifyCalleeSavedReg(const MachineInstr *MI, + const TargetRegisterInfo *TRI) { + const MachineFunction &MF = *MI->getParent()->getParent(); + for (auto *CSR = TRI->getCalleeSavedRegs(&MF); CSR && *CSR; ++CSR) + if (MI->modifiesRegister(*CSR, TRI)) + return true; + return false; +} + +// TODO: MI->isIndirectBranch() and IsRegisterJump(MI) +// Returns true if an instruction can be promoted to .new predicate or +// new-value store. +bool HexagonPacketizerList::isNewifiable(const MachineInstr* MI) { + return HII->isCondInst(MI) || MI->isReturn() || HII->mayBeNewStore(MI); +} + +// Promote an instructiont to its .cur form. +// At this time, we have already made a call to canPromoteToDotCur and made +// sure that it can *indeed* be promoted. +bool HexagonPacketizerList::promoteToDotCur(MachineInstr* MI, + SDep::Kind DepType, MachineBasicBlock::iterator &MII, + const TargetRegisterClass* RC) { + assert(DepType == SDep::Data); + int CurOpcode = HII->getDotCurOp(MI); + MI->setDesc(HII->get(CurOpcode)); + return true; +} + +void HexagonPacketizerList::cleanUpDotCur() { + MachineInstr *MI = NULL; + for (auto BI : CurrentPacketMIs) { + DEBUG(dbgs() << "Cleanup packet has "; BI->dump();); + if (BI->getOpcode() == Hexagon::V6_vL32b_cur_ai) { + MI = BI; + continue; + } + if (MI) { + for (auto &MO : BI->operands()) + if (MO.isReg() && MO.getReg() == MI->getOperand(0).getReg()) + return; + } + } + if (!MI) + return; + // We did not find a use of the CUR, so de-cur it. + MI->setDesc(HII->get(Hexagon::V6_vL32b_ai)); + DEBUG(dbgs() << "Demoted CUR "; MI->dump();); +} + +// Check to see if an instruction can be dot cur. +bool HexagonPacketizerList::canPromoteToDotCur(const MachineInstr *MI, + const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII, + const TargetRegisterClass *RC) { + if (!HII->isV60VectorInstruction(MI)) + return false; + if (!HII->isV60VectorInstruction(MII)) + return false; + + // Already a dot new instruction. + if (HII->isDotCurInst(MI) && !HII->mayBeCurLoad(MI)) + return false; + + if (!HII->mayBeCurLoad(MI)) + return false; + + // The "cur value" cannot come from inline asm. + if (PacketSU->getInstr()->isInlineAsm()) + return false; + + // Make sure candidate instruction uses cur. + DEBUG(dbgs() << "Can we DOT Cur Vector MI\n"; + MI->dump(); + dbgs() << "in packet\n";); + MachineInstr *MJ = MII; + DEBUG(dbgs() << "Checking CUR against "; MJ->dump();); + unsigned DestReg = MI->getOperand(0).getReg(); + bool FoundMatch = false; + for (auto &MO : MJ->operands()) + if (MO.isReg() && MO.getReg() == DestReg) + FoundMatch = true; + if (!FoundMatch) + return false; + + // Check for existing uses of a vector register within the packet which + // would be affected by converting a vector load into .cur formt. + for (auto BI : CurrentPacketMIs) { + DEBUG(dbgs() << "packet has "; BI->dump();); + if (BI->readsRegister(DepReg, MF.getSubtarget().getRegisterInfo())) + return false; + } + + DEBUG(dbgs() << "Can Dot CUR MI\n"; MI->dump();); + // We can convert the opcode into a .cur. + return true; +} + +// Promote an instruction to its .new form. At this time, we have already +// made a call to canPromoteToDotNew and made sure that it can *indeed* be +// promoted. +bool HexagonPacketizerList::promoteToDotNew(MachineInstr* MI, + SDep::Kind DepType, MachineBasicBlock::iterator &MII, + const TargetRegisterClass* RC) { + assert (DepType == SDep::Data); + int NewOpcode; + if (RC == &Hexagon::PredRegsRegClass) + NewOpcode = HII->getDotNewPredOp(MI, MBPI); + else + NewOpcode = HII->getDotNewOp(MI); + MI->setDesc(HII->get(NewOpcode)); + return true; +} + +bool HexagonPacketizerList::demoteToDotOld(MachineInstr* MI) { + int NewOpcode = HII->getDotOldOp(MI->getOpcode()); + MI->setDesc(HII->get(NewOpcode)); + return true; +} + +enum PredicateKind { + PK_False, + PK_True, + PK_Unknown +}; + +/// Returns true if an instruction is predicated on p0 and false if it's +/// predicated on !p0. +static PredicateKind getPredicateSense(const MachineInstr *MI, + const HexagonInstrInfo *HII) { + if (!HII->isPredicated(MI)) + return PK_Unknown; + if (HII->isPredicatedTrue(MI)) + return PK_True; + return PK_False; +} + +static const MachineOperand &getPostIncrementOperand(const MachineInstr *MI, + const HexagonInstrInfo *HII) { + assert(HII->isPostIncrement(MI) && "Not a post increment operation."); +#ifndef NDEBUG + // Post Increment means duplicates. Use dense map to find duplicates in the + // list. Caution: Densemap initializes with the minimum of 64 buckets, + // whereas there are at most 5 operands in the post increment. + DenseSet<unsigned> DefRegsSet; + for (auto &MO : MI->operands()) + if (MO.isReg() && MO.isDef()) + DefRegsSet.insert(MO.getReg()); + + for (auto &MO : MI->operands()) + if (MO.isReg() && MO.isUse() && DefRegsSet.count(MO.getReg())) + return MO; +#else + if (MI->mayLoad()) { + const MachineOperand &Op1 = MI->getOperand(1); + // The 2nd operand is always the post increment operand in load. + assert(Op1.isReg() && "Post increment operand has be to a register."); + return Op1; + } + if (MI->getDesc().mayStore()) { + const MachineOperand &Op0 = MI->getOperand(0); + // The 1st operand is always the post increment operand in store. + assert(Op0.isReg() && "Post increment operand has be to a register."); + return Op0; + } +#endif + // we should never come here. + llvm_unreachable("mayLoad or mayStore not set for Post Increment operation"); +} + +// Get the value being stored. +static const MachineOperand& getStoreValueOperand(const MachineInstr *MI) { + // value being stored is always the last operand. + return MI->getOperand(MI->getNumOperands()-1); +} + +static bool isLoadAbsSet(const MachineInstr *MI) { + unsigned Opc = MI->getOpcode(); + switch (Opc) { + case Hexagon::L4_loadrd_ap: + case Hexagon::L4_loadrb_ap: + case Hexagon::L4_loadrh_ap: + case Hexagon::L4_loadrub_ap: + case Hexagon::L4_loadruh_ap: + case Hexagon::L4_loadri_ap: + return true; + } + return false; +} + +static const MachineOperand &getAbsSetOperand(const MachineInstr *MI) { + assert(isLoadAbsSet(MI)); + return MI->getOperand(1); +} + + +// Can be new value store? +// Following restrictions are to be respected in convert a store into +// a new value store. +// 1. If an instruction uses auto-increment, its address register cannot +// be a new-value register. Arch Spec 5.4.2.1 +// 2. If an instruction uses absolute-set addressing mode, its address +// register cannot be a new-value register. Arch Spec 5.4.2.1. +// 3. If an instruction produces a 64-bit result, its registers cannot be used +// as new-value registers. Arch Spec 5.4.2.2. +// 4. If the instruction that sets the new-value register is conditional, then +// the instruction that uses the new-value register must also be conditional, +// and both must always have their predicates evaluate identically. +// Arch Spec 5.4.2.3. +// 5. There is an implied restriction that a packet cannot have another store, +// if there is a new value store in the packet. Corollary: if there is +// already a store in a packet, there can not be a new value store. +// Arch Spec: 3.4.4.2 +bool HexagonPacketizerList::canPromoteToNewValueStore(const MachineInstr *MI, + const MachineInstr *PacketMI, unsigned DepReg) { + // Make sure we are looking at the store, that can be promoted. + if (!HII->mayBeNewStore(MI)) + return false; + + // Make sure there is dependency and can be new value'd. + const MachineOperand &Val = getStoreValueOperand(MI); + if (Val.isReg() && Val.getReg() != DepReg) + return false; + + const MCInstrDesc& MCID = PacketMI->getDesc(); + + // First operand is always the result. + const TargetRegisterClass *PacketRC = HII->getRegClass(MCID, 0, HRI, MF); + // Double regs can not feed into new value store: PRM section: 5.4.2.2. + if (PacketRC == &Hexagon::DoubleRegsRegClass) + return false; + + // New-value stores are of class NV (slot 0), dual stores require class ST + // in slot 0 (PRM 5.5). + for (auto I : CurrentPacketMIs) { + SUnit *PacketSU = MIToSUnit.find(I)->second; + if (PacketSU->getInstr()->mayStore()) + return false; + } + + // Make sure it's NOT the post increment register that we are going to + // new value. + if (HII->isPostIncrement(MI) && + getPostIncrementOperand(MI, HII).getReg() == DepReg) { + return false; + } + + if (HII->isPostIncrement(PacketMI) && PacketMI->mayLoad() && + getPostIncrementOperand(PacketMI, HII).getReg() == DepReg) { + // If source is post_inc, or absolute-set addressing, it can not feed + // into new value store + // r3 = memw(r2++#4) + // memw(r30 + #-1404) = r2.new -> can not be new value store + // arch spec section: 5.4.2.1. + return false; + } + + if (isLoadAbsSet(PacketMI) && getAbsSetOperand(PacketMI).getReg() == DepReg) + return false; + + // If the source that feeds the store is predicated, new value store must + // also be predicated. + if (HII->isPredicated(PacketMI)) { + if (!HII->isPredicated(MI)) + return false; + + // Check to make sure that they both will have their predicates + // evaluate identically. + unsigned predRegNumSrc = 0; + unsigned predRegNumDst = 0; + const TargetRegisterClass* predRegClass = nullptr; + + // Get predicate register used in the source instruction. + for (auto &MO : PacketMI->operands()) { + if (!MO.isReg()) + continue; + predRegNumSrc = MO.getReg(); + predRegClass = HRI->getMinimalPhysRegClass(predRegNumSrc); + if (predRegClass == &Hexagon::PredRegsRegClass) + break; + } + assert((predRegClass == &Hexagon::PredRegsRegClass) && + "predicate register not found in a predicated PacketMI instruction"); + + // Get predicate register used in new-value store instruction. + for (auto &MO : MI->operands()) { + if (!MO.isReg()) + continue; + predRegNumDst = MO.getReg(); + predRegClass = HRI->getMinimalPhysRegClass(predRegNumDst); + if (predRegClass == &Hexagon::PredRegsRegClass) + break; + } + assert((predRegClass == &Hexagon::PredRegsRegClass) && + "predicate register not found in a predicated MI instruction"); + + // New-value register producer and user (store) need to satisfy these + // constraints: + // 1) Both instructions should be predicated on the same register. + // 2) If producer of the new-value register is .new predicated then store + // should also be .new predicated and if producer is not .new predicated + // then store should not be .new predicated. + // 3) Both new-value register producer and user should have same predicate + // sense, i.e, either both should be negated or both should be non-negated. + if (predRegNumDst != predRegNumSrc || + HII->isDotNewInst(PacketMI) != HII->isDotNewInst(MI) || + getPredicateSense(MI, HII) != getPredicateSense(PacketMI, HII)) + return false; + } + + // Make sure that other than the new-value register no other store instruction + // register has been modified in the same packet. Predicate registers can be + // modified by they should not be modified between the producer and the store + // instruction as it will make them both conditional on different values. + // We already know this to be true for all the instructions before and + // including PacketMI. Howerver, we need to perform the check for the + // remaining instructions in the packet. + + unsigned StartCheck = 0; + + for (auto I : CurrentPacketMIs) { + SUnit *TempSU = MIToSUnit.find(I)->second; + MachineInstr* TempMI = TempSU->getInstr(); + + // Following condition is true for all the instructions until PacketMI is + // reached (StartCheck is set to 0 before the for loop). + // StartCheck flag is 1 for all the instructions after PacketMI. + if (TempMI != PacketMI && !StartCheck) // Start processing only after + continue; // encountering PacketMI. + + StartCheck = 1; + if (TempMI == PacketMI) // We don't want to check PacketMI for dependence. + continue; + + for (auto &MO : MI->operands()) + if (MO.isReg() && TempSU->getInstr()->modifiesRegister(MO.getReg(), HRI)) + return false; + } + + // Make sure that for non-POST_INC stores: + // 1. The only use of reg is DepReg and no other registers. + // This handles V4 base+index registers. + // The following store can not be dot new. + // Eg. r0 = add(r0, #3) + // memw(r1+r0<<#2) = r0 + if (!HII->isPostIncrement(MI)) { + for (unsigned opNum = 0; opNum < MI->getNumOperands()-1; opNum++) { + const MachineOperand &MO = MI->getOperand(opNum); + if (MO.isReg() && MO.getReg() == DepReg) + return false; + } + } + + // If data definition is because of implicit definition of the register, + // do not newify the store. Eg. + // %R9<def> = ZXTH %R12, %D6<imp-use>, %R12<imp-def> + // S2_storerh_io %R8, 2, %R12<kill>; mem:ST2[%scevgep343] + for (auto &MO : PacketMI->operands()) { + if (!MO.isReg() || !MO.isDef() || !MO.isImplicit()) + continue; + unsigned R = MO.getReg(); + if (R == DepReg || HRI->isSuperRegister(DepReg, R)) + return false; + } + + // Handle imp-use of super reg case. There is a target independent side + // change that should prevent this situation but I am handling it for + // just-in-case. For example, we cannot newify R2 in the following case: + // %R3<def> = A2_tfrsi 0; + // S2_storeri_io %R0<kill>, 0, %R2<kill>, %D1<imp-use,kill>; + for (auto &MO : MI->operands()) { + if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.getReg() == DepReg) + return false; + } + + // Can be dot new store. + return true; +} + +// Can this MI to promoted to either new value store or new value jump. +bool HexagonPacketizerList::canPromoteToNewValue(const MachineInstr *MI, + const SUnit *PacketSU, unsigned DepReg, + MachineBasicBlock::iterator &MII) { + if (!HII->mayBeNewStore(MI)) + return false; + + // Check to see the store can be new value'ed. + MachineInstr *PacketMI = PacketSU->getInstr(); + if (canPromoteToNewValueStore(MI, PacketMI, DepReg)) + return true; + + // Check to see the compare/jump can be new value'ed. + // This is done as a pass on its own. Don't need to check it here. + return false; +} + +static bool isImplicitDependency(const MachineInstr *I, unsigned DepReg) { + for (auto &MO : I->operands()) + if (MO.isReg() && MO.isDef() && (MO.getReg() == DepReg) && MO.isImplicit()) + return true; + return false; +} + +// Check to see if an instruction can be dot new +// There are three kinds. +// 1. dot new on predicate - V2/V3/V4 +// 2. dot new on stores NV/ST - V4 +// 3. dot new on jump NV/J - V4 -- This is generated in a pass. +bool HexagonPacketizerList::canPromoteToDotNew(const MachineInstr *MI, + const SUnit *PacketSU, unsigned DepReg, MachineBasicBlock::iterator &MII, + const TargetRegisterClass* RC) { + // Already a dot new instruction. + if (HII->isDotNewInst(MI) && !HII->mayBeNewStore(MI)) + return false; + + if (!isNewifiable(MI)) + return false; + + const MachineInstr *PI = PacketSU->getInstr(); + + // The "new value" cannot come from inline asm. + if (PI->isInlineAsm()) + return false; + + // IMPLICIT_DEFs won't materialize as real instructions, so .new makes no + // sense. + if (PI->isImplicitDef()) + return false; + + // If dependency is trough an implicitly defined register, we should not + // newify the use. + if (isImplicitDependency(PI, DepReg)) + return false; + + const MCInstrDesc& MCID = PI->getDesc(); + const TargetRegisterClass *VecRC = HII->getRegClass(MCID, 0, HRI, MF); + if (DisableVecDblNVStores && VecRC == &Hexagon::VecDblRegsRegClass) + return false; + + // predicate .new + // bug 5670: until that is fixed + // TODO: MI->isIndirectBranch() and IsRegisterJump(MI) + if (RC == &Hexagon::PredRegsRegClass) + if (HII->isCondInst(MI) || MI->isReturn()) + return HII->predCanBeUsedAsDotNew(PI, DepReg); + + if (RC != &Hexagon::PredRegsRegClass && !HII->mayBeNewStore(MI)) + return false; + + // Create a dot new machine instruction to see if resources can be + // allocated. If not, bail out now. + int NewOpcode = HII->getDotNewOp(MI); + const MCInstrDesc &D = HII->get(NewOpcode); + MachineInstr *NewMI = MF.CreateMachineInstr(D, DebugLoc()); + bool ResourcesAvailable = ResourceTracker->canReserveResources(NewMI); + MF.DeleteMachineInstr(NewMI); + if (!ResourcesAvailable) + return false; + + // New Value Store only. New Value Jump generated as a separate pass. + if (!canPromoteToNewValue(MI, PacketSU, DepReg, MII)) + return false; + + return true; +} + +// Go through the packet instructions and search for an anti dependency between +// them and DepReg from MI. Consider this case: +// Trying to add +// a) %R1<def> = TFRI_cdNotPt %P3, 2 +// to this packet: +// { +// b) %P0<def> = C2_or %P3<kill>, %P0<kill> +// c) %P3<def> = C2_tfrrp %R23 +// d) %R1<def> = C2_cmovenewit %P3, 4 +// } +// The P3 from a) and d) will be complements after +// a)'s P3 is converted to .new form +// Anti-dep between c) and b) is irrelevant for this case +bool HexagonPacketizerList::restrictingDepExistInPacket(MachineInstr* MI, + unsigned DepReg) { + SUnit *PacketSUDep = MIToSUnit.find(MI)->second; + + for (auto I : CurrentPacketMIs) { + // We only care for dependencies to predicated instructions + if (!HII->isPredicated(I)) + continue; + + // Scheduling Unit for current insn in the packet + SUnit *PacketSU = MIToSUnit.find(I)->second; + + // Look at dependencies between current members of the packet and + // predicate defining instruction MI. Make sure that dependency is + // on the exact register we care about. + if (PacketSU->isSucc(PacketSUDep)) { + for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { + auto &Dep = PacketSU->Succs[i]; + if (Dep.getSUnit() == PacketSUDep && Dep.getKind() == SDep::Anti && + Dep.getReg() == DepReg) + return true; + } + } + } + + return false; +} + + +/// Gets the predicate register of a predicated instruction. +static unsigned getPredicatedRegister(MachineInstr *MI, + const HexagonInstrInfo *QII) { + /// We use the following rule: The first predicate register that is a use is + /// the predicate register of a predicated instruction. + assert(QII->isPredicated(MI) && "Must be predicated instruction"); + + for (auto &Op : MI->operands()) { + if (Op.isReg() && Op.getReg() && Op.isUse() && + Hexagon::PredRegsRegClass.contains(Op.getReg())) + return Op.getReg(); + } + + llvm_unreachable("Unknown instruction operand layout"); + return 0; +} + +// Given two predicated instructions, this function detects whether +// the predicates are complements. +bool HexagonPacketizerList::arePredicatesComplements(MachineInstr *MI1, + MachineInstr *MI2) { + // If we don't know the predicate sense of the instructions bail out early, we + // need it later. + if (getPredicateSense(MI1, HII) == PK_Unknown || + getPredicateSense(MI2, HII) == PK_Unknown) + return false; + + // Scheduling unit for candidate. + SUnit *SU = MIToSUnit[MI1]; + + // One corner case deals with the following scenario: + // Trying to add + // a) %R24<def> = A2_tfrt %P0, %R25 + // to this packet: + // { + // b) %R25<def> = A2_tfrf %P0, %R24 + // c) %P0<def> = C2_cmpeqi %R26, 1 + // } + // + // On general check a) and b) are complements, but presence of c) will + // convert a) to .new form, and then it is not a complement. + // We attempt to detect it by analyzing existing dependencies in the packet. + + // Analyze relationships between all existing members of the packet. + // Look for Anti dependecy on the same predicate reg as used in the + // candidate. + for (auto I : CurrentPacketMIs) { + // Scheduling Unit for current insn in the packet. + SUnit *PacketSU = MIToSUnit.find(I)->second; + + // If this instruction in the packet is succeeded by the candidate... + if (PacketSU->isSucc(SU)) { + for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { + auto Dep = PacketSU->Succs[i]; + // The corner case exist when there is true data dependency between + // candidate and one of current packet members, this dep is on + // predicate reg, and there already exist anti dep on the same pred in + // the packet. + if (Dep.getSUnit() == SU && Dep.getKind() == SDep::Data && + Hexagon::PredRegsRegClass.contains(Dep.getReg())) { + // Here I know that I is predicate setting instruction with true + // data dep to candidate on the register we care about - c) in the + // above example. Now I need to see if there is an anti dependency + // from c) to any other instruction in the same packet on the pred + // reg of interest. + if (restrictingDepExistInPacket(I, Dep.getReg())) + return false; + } + } + } + } + + // If the above case does not apply, check regular complement condition. + // Check that the predicate register is the same and that the predicate + // sense is different We also need to differentiate .old vs. .new: !p0 + // is not complementary to p0.new. + unsigned PReg1 = getPredicatedRegister(MI1, HII); + unsigned PReg2 = getPredicatedRegister(MI2, HII); + return PReg1 == PReg2 && + Hexagon::PredRegsRegClass.contains(PReg1) && + Hexagon::PredRegsRegClass.contains(PReg2) && + getPredicateSense(MI1, HII) != getPredicateSense(MI2, HII) && + HII->isDotNewInst(MI1) == HII->isDotNewInst(MI2); +} + +// Initialize packetizer flags. +void HexagonPacketizerList::initPacketizerState() { + Dependence = false; + PromotedToDotNew = false; + GlueToNewValueJump = false; + GlueAllocframeStore = false; + FoundSequentialDependence = false; +} + +// Ignore bundling of pseudo instructions. +bool HexagonPacketizerList::ignorePseudoInstruction(const MachineInstr *MI, + const MachineBasicBlock*) { + if (MI->isDebugValue()) + return true; + + if (MI->isCFIInstruction()) + return false; + + // We must print out inline assembly. + if (MI->isInlineAsm()) + return false; + + if (MI->isImplicitDef()) + return false; + + // We check if MI has any functional units mapped to it. If it doesn't, + // we ignore the instruction. + const MCInstrDesc& TID = MI->getDesc(); + auto *IS = ResourceTracker->getInstrItins()->beginStage(TID.getSchedClass()); + unsigned FuncUnits = IS->getUnits(); + return !FuncUnits; +} + +bool HexagonPacketizerList::isSoloInstruction(const MachineInstr *MI) { + if (MI->isEHLabel() || MI->isCFIInstruction()) + return true; + + // Consider inline asm to not be a solo instruction by default. + // Inline asm will be put in a packet temporarily, but then it will be + // removed, and placed outside of the packet (before or after, depending + // on dependencies). This is to reduce the impact of inline asm as a + // "packet splitting" instruction. + if (MI->isInlineAsm() && !ScheduleInlineAsm) + return true; + + // From Hexagon V4 Programmer's Reference Manual 3.4.4 Grouping constraints: + // trap, pause, barrier, icinva, isync, and syncht are solo instructions. + // They must not be grouped with other instructions in a packet. + if (isSchedBarrier(MI)) + return true; + + if (HII->isSolo(MI)) + return true; + + if (MI->getOpcode() == Hexagon::A2_nop) + return true; + + return false; +} + + +// Quick check if instructions MI and MJ cannot coexist in the same packet. +// Limit the tests to be "one-way", e.g. "if MI->isBranch and MJ->isInlineAsm", +// but not the symmetric case: "if MJ->isBranch and MI->isInlineAsm". +// For full test call this function twice: +// cannotCoexistAsymm(MI, MJ) || cannotCoexistAsymm(MJ, MI) +// Doing the test only one way saves the amount of code in this function, +// since every test would need to be repeated with the MI and MJ reversed. +static bool cannotCoexistAsymm(const MachineInstr *MI, const MachineInstr *MJ, + const HexagonInstrInfo &HII) { + const MachineFunction *MF = MI->getParent()->getParent(); + if (MF->getSubtarget<HexagonSubtarget>().hasV60TOpsOnly() && + HII.isHVXMemWithAIndirect(MI, MJ)) + return true; + + // An inline asm cannot be together with a branch, because we may not be + // able to remove the asm out after packetizing (i.e. if the asm must be + // moved past the bundle). Similarly, two asms cannot be together to avoid + // complications when determining their relative order outside of a bundle. + if (MI->isInlineAsm()) + return MJ->isInlineAsm() || MJ->isBranch() || MJ->isBarrier() || + MJ->isCall() || MJ->isTerminator(); + + // "False" really means that the quick check failed to determine if + // I and J cannot coexist. + return false; +} + + +// Full, symmetric check. +bool HexagonPacketizerList::cannotCoexist(const MachineInstr *MI, + const MachineInstr *MJ) { + return cannotCoexistAsymm(MI, MJ, *HII) || cannotCoexistAsymm(MJ, MI, *HII); +} + +void HexagonPacketizerList::unpacketizeSoloInstrs(MachineFunction &MF) { + for (auto &B : MF) { + MachineBasicBlock::iterator BundleIt; + MachineBasicBlock::instr_iterator NextI; + for (auto I = B.instr_begin(), E = B.instr_end(); I != E; I = NextI) { + NextI = std::next(I); + MachineInstr *MI = &*I; + if (MI->isBundle()) + BundleIt = I; + if (!MI->isInsideBundle()) + continue; + + // Decide on where to insert the instruction that we are pulling out. + // Debug instructions always go before the bundle, but the placement of + // INLINE_ASM depends on potential dependencies. By default, try to + // put it before the bundle, but if the asm writes to a register that + // other instructions in the bundle read, then we need to place it + // after the bundle (to preserve the bundle semantics). + bool InsertBeforeBundle; + if (MI->isInlineAsm()) + InsertBeforeBundle = !hasWriteToReadDep(MI, BundleIt, HRI); + else if (MI->isDebugValue()) + InsertBeforeBundle = true; + else + continue; + + BundleIt = moveInstrOut(MI, BundleIt, InsertBeforeBundle); + } + } +} + +// Check if a given instruction is of class "system". +static bool isSystemInstr(const MachineInstr *MI) { + unsigned Opc = MI->getOpcode(); + switch (Opc) { + case Hexagon::Y2_barrier: + case Hexagon::Y2_dcfetchbo: + return true; + } + return false; +} + +bool HexagonPacketizerList::hasDeadDependence(const MachineInstr *I, + const MachineInstr *J) { + // The dependence graph may not include edges between dead definitions, + // so without extra checks, we could end up packetizing two instruction + // defining the same (dead) register. + if (I->isCall() || J->isCall()) + return false; + if (HII->isPredicated(I) || HII->isPredicated(J)) + return false; + + BitVector DeadDefs(Hexagon::NUM_TARGET_REGS); + for (auto &MO : I->operands()) { + if (!MO.isReg() || !MO.isDef() || !MO.isDead()) + continue; + DeadDefs[MO.getReg()] = true; + } + + for (auto &MO : J->operands()) { + if (!MO.isReg() || !MO.isDef() || !MO.isDead()) + continue; + unsigned R = MO.getReg(); + if (R != Hexagon::USR_OVF && DeadDefs[R]) + return true; + } + return false; +} + +bool HexagonPacketizerList::hasControlDependence(const MachineInstr *I, + const MachineInstr *J) { + // A save callee-save register function call can only be in a packet + // with instructions that don't write to the callee-save registers. + if ((HII->isSaveCalleeSavedRegsCall(I) && + doesModifyCalleeSavedReg(J, HRI)) || + (HII->isSaveCalleeSavedRegsCall(J) && + doesModifyCalleeSavedReg(I, HRI))) + return true; + + // Two control flow instructions cannot go in the same packet. + if (isControlFlow(I) && isControlFlow(J)) + return true; + + // \ref-manual (7.3.4) A loop setup packet in loopN or spNloop0 cannot + // contain a speculative indirect jump, + // a new-value compare jump or a dealloc_return. + auto isBadForLoopN = [this] (const MachineInstr *MI) -> bool { + if (MI->isCall() || HII->isDeallocRet(MI) || HII->isNewValueJump(MI)) + return true; + if (HII->isPredicated(MI) && HII->isPredicatedNew(MI) && HII->isJumpR(MI)) + return true; + return false; + }; + + if (HII->isLoopN(I) && isBadForLoopN(J)) + return true; + if (HII->isLoopN(J) && isBadForLoopN(I)) + return true; + + // dealloc_return cannot appear in the same packet as a conditional or + // unconditional jump. + return HII->isDeallocRet(I) && + (J->isBranch() || J->isCall() || J->isBarrier()); +} + +bool HexagonPacketizerList::hasV4SpecificDependence(const MachineInstr *I, + const MachineInstr *J) { + bool SysI = isSystemInstr(I), SysJ = isSystemInstr(J); + bool StoreI = I->mayStore(), StoreJ = J->mayStore(); + if ((SysI && StoreJ) || (SysJ && StoreI)) + return true; + + if (StoreI && StoreJ) { + if (HII->isNewValueInst(J) || HII->isMemOp(J) || HII->isMemOp(I)) + return true; + } else { + // A memop cannot be in the same packet with another memop or a store. + // Two stores can be together, but here I and J cannot both be stores. + bool MopStI = HII->isMemOp(I) || StoreI; + bool MopStJ = HII->isMemOp(J) || StoreJ; + if (MopStI && MopStJ) + return true; + } + + return (StoreJ && HII->isDeallocRet(I)) || (StoreI && HII->isDeallocRet(J)); +} + +// SUI is the current instruction that is out side of the current packet. +// SUJ is the current instruction inside the current packet against which that +// SUI will be packetized. +bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) { + MachineInstr *I = SUI->getInstr(); + MachineInstr *J = SUJ->getInstr(); + assert(I && J && "Unable to packetize null instruction!"); + + // Clear IgnoreDepMIs when Packet starts. + if (CurrentPacketMIs.size() == 1) + IgnoreDepMIs.clear(); + + MachineBasicBlock::iterator II = I; + const unsigned FrameSize = MF.getFrameInfo()->getStackSize(); + + // Solo instructions cannot go in the packet. + assert(!isSoloInstruction(I) && "Unexpected solo instr!"); + + if (cannotCoexist(I, J)) + return false; + + Dependence = hasDeadDependence(I, J) || hasControlDependence(I, J); + if (Dependence) + return false; + + // V4 allows dual stores. It does not allow second store, if the first + // store is not in SLOT0. New value store, new value jump, dealloc_return + // and memop always take SLOT0. Arch spec 3.4.4.2. + Dependence = hasV4SpecificDependence(I, J); + if (Dependence) + return false; + + // If an instruction feeds new value jump, glue it. + MachineBasicBlock::iterator NextMII = I; + ++NextMII; + if (NextMII != I->getParent()->end() && HII->isNewValueJump(NextMII)) { + MachineInstr *NextMI = NextMII; + + bool secondRegMatch = false; + const MachineOperand &NOp0 = NextMI->getOperand(0); + const MachineOperand &NOp1 = NextMI->getOperand(1); + + if (NOp1.isReg() && I->getOperand(0).getReg() == NOp1.getReg()) + secondRegMatch = true; + + for (auto I : CurrentPacketMIs) { + SUnit *PacketSU = MIToSUnit.find(I)->second; + MachineInstr *PI = PacketSU->getInstr(); + // NVJ can not be part of the dual jump - Arch Spec: section 7.8. + if (PI->isCall()) { + Dependence = true; + break; + } + // Validate: + // 1. Packet does not have a store in it. + // 2. If the first operand of the nvj is newified, and the second + // operand is also a reg, it (second reg) is not defined in + // the same packet. + // 3. If the second operand of the nvj is newified, (which means + // first operand is also a reg), first reg is not defined in + // the same packet. + if (PI->getOpcode() == Hexagon::S2_allocframe || PI->mayStore() || + HII->isLoopN(PI)) { + Dependence = true; + break; + } + // Check #2/#3. + const MachineOperand &OpR = secondRegMatch ? NOp0 : NOp1; + if (OpR.isReg() && PI->modifiesRegister(OpR.getReg(), HRI)) { + Dependence = true; + break; + } + } + + if (Dependence) + return false; + GlueToNewValueJump = true; + } + + // There no dependency between a prolog instruction and its successor. + if (!SUJ->isSucc(SUI)) + return true; + + for (unsigned i = 0; i < SUJ->Succs.size(); ++i) { + if (FoundSequentialDependence) + break; + + if (SUJ->Succs[i].getSUnit() != SUI) + continue; + + SDep::Kind DepType = SUJ->Succs[i].getKind(); + // For direct calls: + // Ignore register dependences for call instructions for packetization + // purposes except for those due to r31 and predicate registers. + // + // For indirect calls: + // Same as direct calls + check for true dependences to the register + // used in the indirect call. + // + // We completely ignore Order dependences for call instructions. + // + // For returns: + // Ignore register dependences for return instructions like jumpr, + // dealloc return unless we have dependencies on the explicit uses + // of the registers used by jumpr (like r31) or dealloc return + // (like r29 or r30). + // + // TODO: Currently, jumpr is handling only return of r31. So, the + // following logic (specificaly isCallDependent) is working fine. + // We need to enable jumpr for register other than r31 and then, + // we need to rework the last part, where it handles indirect call + // of that (isCallDependent) function. Bug 6216 is opened for this. + unsigned DepReg = 0; + const TargetRegisterClass *RC = nullptr; + if (DepType == SDep::Data) { + DepReg = SUJ->Succs[i].getReg(); + RC = HRI->getMinimalPhysRegClass(DepReg); + } + + if (I->isCall() || I->isReturn()) { + if (!isRegDependence(DepType)) + continue; + if (!isCallDependent(I, DepType, SUJ->Succs[i].getReg())) + continue; + } + + if (DepType == SDep::Data) { + if (canPromoteToDotCur(J, SUJ, DepReg, II, RC)) + if (promoteToDotCur(J, DepType, II, RC)) + continue; + } + + // Data dpendence ok if we have load.cur. + if (DepType == SDep::Data && HII->isDotCurInst(J)) { + if (HII->isV60VectorInstruction(I)) + continue; + } + + // For instructions that can be promoted to dot-new, try to promote. + if (DepType == SDep::Data) { + if (canPromoteToDotNew(I, SUJ, DepReg, II, RC)) { + if (promoteToDotNew(I, DepType, II, RC)) { + PromotedToDotNew = true; + continue; + } + } + if (HII->isNewValueJump(I)) + continue; + } + + // For predicated instructions, if the predicates are complements then + // there can be no dependence. + if (HII->isPredicated(I) && HII->isPredicated(J) && + arePredicatesComplements(I, J)) { + // Not always safe to do this translation. + // DAG Builder attempts to reduce dependence edges using transitive + // nature of dependencies. Here is an example: + // + // r0 = tfr_pt ... (1) + // r0 = tfr_pf ... (2) + // r0 = tfr_pt ... (3) + // + // There will be an output dependence between (1)->(2) and (2)->(3). + // However, there is no dependence edge between (1)->(3). This results + // in all 3 instructions going in the same packet. We ignore dependce + // only once to avoid this situation. + auto Itr = std::find(IgnoreDepMIs.begin(), IgnoreDepMIs.end(), J); + if (Itr != IgnoreDepMIs.end()) { + Dependence = true; + return false; + } + IgnoreDepMIs.push_back(I); + continue; + } + + // Ignore Order dependences between unconditional direct branches + // and non-control-flow instructions. + if (isDirectJump(I) && !J->isBranch() && !J->isCall() && + DepType == SDep::Order) + continue; + + // Ignore all dependences for jumps except for true and output + // dependences. + if (I->isConditionalBranch() && DepType != SDep::Data && + DepType != SDep::Output) + continue; + + // Ignore output dependences due to superregs. We can write to two + // different subregisters of R1:0 for instance in the same cycle. + + // If neither I nor J defines DepReg, then this is a superfluous output + // dependence. The dependence must be of the form: + // R0 = ... + // R1 = ... + // and there is an output dependence between the two instructions with + // DepReg = D0. + // We want to ignore these dependences. Ideally, the dependence + // constructor should annotate such dependences. We can then avoid this + // relatively expensive check. + // + if (DepType == SDep::Output) { + // DepReg is the register that's responsible for the dependence. + unsigned DepReg = SUJ->Succs[i].getReg(); + + // Check if I and J really defines DepReg. + if (!I->definesRegister(DepReg) && !J->definesRegister(DepReg)) + continue; + FoundSequentialDependence = true; + break; + } + + // For Order dependences: + // 1. On V4 or later, volatile loads/stores can be packetized together, + // unless other rules prevent is. + // 2. Store followed by a load is not allowed. + // 3. Store followed by a store is only valid on V4 or later. + // 4. Load followed by any memory operation is allowed. + if (DepType == SDep::Order) { + if (!PacketizeVolatiles) { + bool OrdRefs = I->hasOrderedMemoryRef() || J->hasOrderedMemoryRef(); + if (OrdRefs) { + FoundSequentialDependence = true; + break; + } + } + // J is first, I is second. + bool LoadJ = J->mayLoad(), StoreJ = J->mayStore(); + bool LoadI = I->mayLoad(), StoreI = I->mayStore(); + if (StoreJ) { + // Two stores are only allowed on V4+. Load following store is never + // allowed. + if (LoadI) { + FoundSequentialDependence = true; + break; + } + } else if (!LoadJ || (!LoadI && !StoreI)) { + // If J is neither load nor store, assume a dependency. + // If J is a load, but I is neither, also assume a dependency. + FoundSequentialDependence = true; + break; + } + // Store followed by store: not OK on V2. + // Store followed by load: not OK on all. + // Load followed by store: OK on all. + // Load followed by load: OK on all. + continue; + } + + // For V4, special case ALLOCFRAME. Even though there is dependency + // between ALLOCFRAME and subsequent store, allow it to be packetized + // in a same packet. This implies that the store is using the caller's + // SP. Hence, offset needs to be updated accordingly. + if (DepType == SDep::Data && J->getOpcode() == Hexagon::S2_allocframe) { + unsigned Opc = I->getOpcode(); + switch (Opc) { + case Hexagon::S2_storerd_io: + case Hexagon::S2_storeri_io: + case Hexagon::S2_storerh_io: + case Hexagon::S2_storerb_io: + if (I->getOperand(0).getReg() == HRI->getStackRegister()) { + int64_t Imm = I->getOperand(1).getImm(); + int64_t NewOff = Imm - (FrameSize + HEXAGON_LRFP_SIZE); + if (HII->isValidOffset(Opc, NewOff)) { + GlueAllocframeStore = true; + // Since this store is to be glued with allocframe in the same + // packet, it will use SP of the previous stack frame, i.e. + // caller's SP. Therefore, we need to recalculate offset + // according to this change. + I->getOperand(1).setImm(NewOff); + continue; + } + } + default: + break; + } + } + + // Skip over anti-dependences. Two instructions that are anti-dependent + // can share a packet. + if (DepType != SDep::Anti) { + FoundSequentialDependence = true; + break; + } + } + + if (FoundSequentialDependence) { + Dependence = true; + return false; + } + + return true; +} + +bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) { + MachineInstr *I = SUI->getInstr(); + MachineInstr *J = SUJ->getInstr(); + assert(I && J && "Unable to packetize null instruction!"); + + if (cannotCoexist(I, J)) + return false; + + if (!Dependence) + return true; + + // Check if the instruction was promoted to a dot-new. If so, demote it + // back into a dot-old. + if (PromotedToDotNew) + demoteToDotOld(I); + + cleanUpDotCur(); + // Check if the instruction (must be a store) was glued with an allocframe + // instruction. If so, restore its offset to its original value, i.e. use + // current SP instead of caller's SP. + if (GlueAllocframeStore) { + unsigned FrameSize = MF.getFrameInfo()->getStackSize(); + MachineOperand &MOff = I->getOperand(1); + MOff.setImm(MOff.getImm() + FrameSize + HEXAGON_LRFP_SIZE); + } + return false; +} + + +MachineBasicBlock::iterator +HexagonPacketizerList::addToPacket(MachineInstr *MI) { + MachineBasicBlock::iterator MII = MI; + MachineBasicBlock *MBB = MI->getParent(); + if (MI->isImplicitDef()) { + unsigned R = MI->getOperand(0).getReg(); + if (Hexagon::IntRegsRegClass.contains(R)) { + MCSuperRegIterator S(R, HRI, false); + MI->addOperand(MachineOperand::CreateReg(*S, true, true)); + } + return MII; + } + assert(ResourceTracker->canReserveResources(MI)); + + bool ExtMI = HII->isExtended(MI) || HII->isConstExtended(MI); + bool Good = true; + + if (GlueToNewValueJump) { + MachineInstr *NvjMI = ++MII; + // We need to put both instructions in the same packet: MI and NvjMI. + // Either of them can require a constant extender. Try to add both to + // the current packet, and if that fails, end the packet and start a + // new one. + ResourceTracker->reserveResources(MI); + if (ExtMI) + Good = tryAllocateResourcesForConstExt(true); + + bool ExtNvjMI = HII->isExtended(NvjMI) || HII->isConstExtended(NvjMI); + if (Good) { + if (ResourceTracker->canReserveResources(NvjMI)) + ResourceTracker->reserveResources(NvjMI); + else + Good = false; + } + if (Good && ExtNvjMI) + Good = tryAllocateResourcesForConstExt(true); + + if (!Good) { + endPacket(MBB, MI); + assert(ResourceTracker->canReserveResources(MI)); + ResourceTracker->reserveResources(MI); + if (ExtMI) { + assert(canReserveResourcesForConstExt()); + tryAllocateResourcesForConstExt(true); + } + assert(ResourceTracker->canReserveResources(NvjMI)); + ResourceTracker->reserveResources(NvjMI); + if (ExtNvjMI) { + assert(canReserveResourcesForConstExt()); + reserveResourcesForConstExt(); + } + } + CurrentPacketMIs.push_back(MI); + CurrentPacketMIs.push_back(NvjMI); + return MII; + } + + ResourceTracker->reserveResources(MI); + if (ExtMI && !tryAllocateResourcesForConstExt(true)) { + endPacket(MBB, MI); + if (PromotedToDotNew) + demoteToDotOld(MI); + ResourceTracker->reserveResources(MI); + reserveResourcesForConstExt(); + } + + CurrentPacketMIs.push_back(MI); + return MII; +} + +void HexagonPacketizerList::endPacket(MachineBasicBlock *MBB, + MachineInstr *MI) { + OldPacketMIs = CurrentPacketMIs; + VLIWPacketizerList::endPacket(MBB, MI); +} + +bool HexagonPacketizerList::shouldAddToPacket(const MachineInstr *MI) { + return !producesStall(MI); +} + + +// Return true when ConsMI uses a register defined by ProdMI. +static bool isDependent(const MachineInstr *ProdMI, + const MachineInstr *ConsMI) { + if (!ProdMI->getOperand(0).isReg()) + return false; + unsigned DstReg = ProdMI->getOperand(0).getReg(); + + for (auto &Op : ConsMI->operands()) + if (Op.isReg() && Op.isUse() && Op.getReg() == DstReg) + // The MIs depend on each other. + return true; + + return false; +} + +// V60 forward scheduling. +bool HexagonPacketizerList::producesStall(const MachineInstr *I) { + // Check whether the previous packet is in a different loop. If this is the + // case, there is little point in trying to avoid a stall because that would + // favor the rare case (loop entry) over the common case (loop iteration). + // + // TODO: We should really be able to check all the incoming edges if this is + // the first packet in a basic block, so we can avoid stalls from the loop + // backedge. + if (!OldPacketMIs.empty()) { + auto *OldBB = OldPacketMIs.front()->getParent(); + auto *ThisBB = I->getParent(); + if (MLI->getLoopFor(OldBB) != MLI->getLoopFor(ThisBB)) + return false; + } + + // Check for stall between two vector instructions. + if (HII->isV60VectorInstruction(I)) { + for (auto J : OldPacketMIs) { + if (!HII->isV60VectorInstruction(J)) + continue; + if (isDependent(J, I) && !HII->isVecUsableNextPacket(J, I)) + return true; + } + return false; + } + + // Check for stall between two scalar instructions. First, check that + // there is no definition of a use in the current packet, because it + // may be a candidate for .new. + for (auto J : CurrentPacketMIs) + if (!HII->isV60VectorInstruction(J) && isDependent(J, I)) + return false; + + // Check for stall between I and instructions in the previous packet. + if (MF.getSubtarget<HexagonSubtarget>().useBSBScheduling()) { + for (auto J : OldPacketMIs) { + if (HII->isV60VectorInstruction(J)) + continue; + if (!HII->isLateInstrFeedsEarlyInstr(J, I)) + continue; + if (isDependent(J, I) && !HII->canExecuteInBundle(J, I)) + return true; + } + } + + return false; +} + + +//===----------------------------------------------------------------------===// +// Public Constructor Functions +//===----------------------------------------------------------------------===// + +FunctionPass *llvm::createHexagonPacketizer() { + return new HexagonPacketizer(); +} + |