diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp | 1428 |
1 files changed, 1428 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp new file mode 100644 index 0000000..87ce960 --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp @@ -0,0 +1,1428 @@ +//===----- HexagonPacketizer.cpp - vliw packetizer ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements a simple VLIW packetizer using DFA. The packetizer works on +// machine basic blocks. For each instruction I in BB, the packetizer consults +// the DFA to see if machine resources are available to execute I. If so, the +// packetizer checks if I depends on any instruction J in the current packet. +// If no dependency is found, I is added to current packet and machine resource +// is marked as taken. If any dependency is found, a target API call is made to +// prune the dependence. +// +//===----------------------------------------------------------------------===// +#include "llvm/CodeGen/DFAPacketizer.h" +#include "Hexagon.h" +#include "HexagonMachineFunctionInfo.h" +#include "HexagonRegisterInfo.h" +#include "HexagonSubtarget.h" +#include "HexagonTargetMachine.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/LatencyPriorityQueue.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunctionAnalysis.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/CodeGen/ScheduleDAG.h" +#include "llvm/CodeGen/ScheduleDAGInstrs.h" +#include "llvm/CodeGen/ScheduleHazardRecognizer.h" +#include "llvm/CodeGen/SchedulerRegistry.h" +#include "llvm/MC/MCInstrItineraries.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetRegisterInfo.h" +#include <map> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "packets" + +static cl::opt<bool> PacketizeVolatiles("hexagon-packetize-volatiles", + cl::ZeroOrMore, cl::Hidden, cl::init(true), + cl::desc("Allow non-solo packetization of volatile memory references")); + +namespace llvm { + void initializeHexagonPacketizerPass(PassRegistry&); +} + + +namespace { + class HexagonPacketizer : public MachineFunctionPass { + + public: + static char ID; + HexagonPacketizer() : MachineFunctionPass(ID) { + initializeHexagonPacketizerPass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + AU.addRequired<MachineDominatorTree>(); + AU.addRequired<MachineBranchProbabilityInfo>(); + AU.addPreserved<MachineDominatorTree>(); + AU.addRequired<MachineLoopInfo>(); + AU.addPreserved<MachineLoopInfo>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + + const char *getPassName() const override { + return "Hexagon Packetizer"; + } + + bool runOnMachineFunction(MachineFunction &Fn) override; + }; + char HexagonPacketizer::ID = 0; + + class HexagonPacketizerList : public VLIWPacketizerList { + + private: + + // Has the instruction been promoted to a dot-new instruction. + bool PromotedToDotNew; + + // Has the instruction been glued to allocframe. + bool GlueAllocframeStore; + + // Has the feeder instruction been glued to new value jump. + bool GlueToNewValueJump; + + // Check if there is a dependence between some instruction already in this + // packet and this instruction. + bool Dependence; + + // Only check for dependence if there are resources available to + // schedule this instruction. + bool FoundSequentialDependence; + + /// \brief A handle to the branch probability pass. + const MachineBranchProbabilityInfo *MBPI; + + // Track MIs with ignored dependece. + std::vector<MachineInstr*> IgnoreDepMIs; + + public: + // Ctor. + HexagonPacketizerList(MachineFunction &MF, MachineLoopInfo &MLI, + MachineDominatorTree &MDT, + const MachineBranchProbabilityInfo *MBPI); + + // initPacketizerState - initialize some internal flags. + void initPacketizerState() override; + + // ignorePseudoInstruction - Ignore bundling of pseudo instructions. + bool ignorePseudoInstruction(MachineInstr *MI, + MachineBasicBlock *MBB) override; + + // isSoloInstruction - return true if instruction MI can not be packetized + // with any other instruction, which means that MI itself is a packet. + bool isSoloInstruction(MachineInstr *MI) override; + + // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ + // together. + bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override; + + // isLegalToPruneDependencies - Is it legal to prune dependece between SUI + // and SUJ. + bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override; + + MachineBasicBlock::iterator addToPacket(MachineInstr *MI) override; + private: + bool IsCallDependent(MachineInstr* MI, SDep::Kind DepType, unsigned DepReg); + bool PromoteToDotNew(MachineInstr* MI, SDep::Kind DepType, + MachineBasicBlock::iterator &MII, + const TargetRegisterClass* RC); + bool CanPromoteToDotNew(MachineInstr* MI, SUnit* PacketSU, + unsigned DepReg, + std::map <MachineInstr*, SUnit*> MIToSUnit, + MachineBasicBlock::iterator &MII, + const TargetRegisterClass* RC); + bool CanPromoteToNewValue(MachineInstr* MI, SUnit* PacketSU, + unsigned DepReg, + std::map <MachineInstr*, SUnit*> MIToSUnit, + MachineBasicBlock::iterator &MII); + bool CanPromoteToNewValueStore(MachineInstr* MI, MachineInstr* PacketMI, + unsigned DepReg, + std::map <MachineInstr*, SUnit*> MIToSUnit); + bool DemoteToDotOld(MachineInstr* MI); + bool ArePredicatesComplements(MachineInstr* MI1, MachineInstr* MI2, + std::map <MachineInstr*, SUnit*> MIToSUnit); + bool RestrictingDepExistInPacket(MachineInstr*, + unsigned, std::map <MachineInstr*, SUnit*>); + bool isNewifiable(MachineInstr* MI); + bool isCondInst(MachineInstr* MI); + bool tryAllocateResourcesForConstExt(MachineInstr* MI); + bool canReserveResourcesForConstExt(MachineInstr *MI); + void reserveResourcesForConstExt(MachineInstr* MI); + bool isNewValueInst(MachineInstr* MI); + }; +} + +INITIALIZE_PASS_BEGIN(HexagonPacketizer, "packets", "Hexagon Packetizer", + false, false) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_AG_DEPENDENCY(AliasAnalysis) +INITIALIZE_PASS_END(HexagonPacketizer, "packets", "Hexagon Packetizer", + false, false) + + +// HexagonPacketizerList Ctor. +HexagonPacketizerList::HexagonPacketizerList( + MachineFunction &MF, MachineLoopInfo &MLI,MachineDominatorTree &MDT, + const MachineBranchProbabilityInfo *MBPI) + : VLIWPacketizerList(MF, MLI, MDT, true){ + this->MBPI = MBPI; +} + +bool HexagonPacketizer::runOnMachineFunction(MachineFunction &Fn) { + const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo(); + MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); + MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); + const MachineBranchProbabilityInfo *MBPI = + &getAnalysis<MachineBranchProbabilityInfo>(); + // Instantiate the packetizer. + HexagonPacketizerList Packetizer(Fn, MLI, MDT, MBPI); + + // DFA state table should not be empty. + assert(Packetizer.getResourceTracker() && "Empty DFA table!"); + + // + // Loop over all basic blocks and remove KILL pseudo-instructions + // These instructions confuse the dependence analysis. Consider: + // D0 = ... (Insn 0) + // R0 = KILL R0, D0 (Insn 1) + // R0 = ... (Insn 2) + // Here, Insn 1 will result in the dependence graph not emitting an output + // dependence between Insn 0 and Insn 2. This can lead to incorrect + // packetization + // + for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); + MBB != MBBe; ++MBB) { + MachineBasicBlock::iterator End = MBB->end(); + MachineBasicBlock::iterator MI = MBB->begin(); + while (MI != End) { + if (MI->isKill()) { + MachineBasicBlock::iterator DeleteMI = MI; + ++MI; + MBB->erase(DeleteMI); + End = MBB->end(); + continue; + } + ++MI; + } + } + + // Loop over all of the basic blocks. + for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); + MBB != MBBe; ++MBB) { + // Find scheduling regions and schedule / packetize each region. + unsigned RemainingCount = MBB->size(); + for(MachineBasicBlock::iterator RegionEnd = MBB->end(); + RegionEnd != MBB->begin();) { + // The next region starts above the previous region. Look backward in the + // instruction stream until we find the nearest boundary. + MachineBasicBlock::iterator I = RegionEnd; + for(;I != MBB->begin(); --I, --RemainingCount) { + if (TII->isSchedulingBoundary(std::prev(I), MBB, Fn)) + break; + } + I = MBB->begin(); + + // Skip empty scheduling regions. + if (I == RegionEnd) { + RegionEnd = std::prev(RegionEnd); + --RemainingCount; + continue; + } + // Skip regions with one instruction. + if (I == std::prev(RegionEnd)) { + RegionEnd = std::prev(RegionEnd); + continue; + } + + Packetizer.PacketizeMIs(MBB, I, RegionEnd); + RegionEnd = I; + } + } + + return true; +} + + +static bool IsIndirectCall(MachineInstr* MI) { + return ((MI->getOpcode() == Hexagon::CALLR) || + (MI->getOpcode() == Hexagon::CALLRv3)); +} + +// Reserve resources for constant extender. Trigure an assertion if +// reservation fail. +void HexagonPacketizerList::reserveResourcesForConstExt(MachineInstr* MI) { + const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; + MachineFunction *MF = MI->getParent()->getParent(); + MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i), + MI->getDebugLoc()); + + if (ResourceTracker->canReserveResources(PseudoMI)) { + ResourceTracker->reserveResources(PseudoMI); + MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI); + } else { + MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI); + llvm_unreachable("can not reserve resources for constant extender."); + } + return; +} + +bool HexagonPacketizerList::canReserveResourcesForConstExt(MachineInstr *MI) { + const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; + assert((QII->isExtended(MI) || QII->isConstExtended(MI)) && + "Should only be called for constant extended instructions"); + MachineFunction *MF = MI->getParent()->getParent(); + MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i), + MI->getDebugLoc()); + bool CanReserve = ResourceTracker->canReserveResources(PseudoMI); + MF->DeleteMachineInstr(PseudoMI); + return CanReserve; +} + +// Allocate resources (i.e. 4 bytes) for constant extender. If succeed, return +// true, otherwise, return false. +bool HexagonPacketizerList::tryAllocateResourcesForConstExt(MachineInstr* MI) { + const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; + MachineFunction *MF = MI->getParent()->getParent(); + MachineInstr *PseudoMI = MF->CreateMachineInstr(QII->get(Hexagon::IMMEXT_i), + MI->getDebugLoc()); + + if (ResourceTracker->canReserveResources(PseudoMI)) { + ResourceTracker->reserveResources(PseudoMI); + MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI); + return true; + } else { + MI->getParent()->getParent()->DeleteMachineInstr(PseudoMI); + return false; + } +} + + +bool HexagonPacketizerList::IsCallDependent(MachineInstr* MI, + SDep::Kind DepType, + unsigned DepReg) { + + const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; + const HexagonRegisterInfo* QRI = + (const HexagonRegisterInfo *) TM.getRegisterInfo(); + + // Check for lr dependence + if (DepReg == QRI->getRARegister()) { + return true; + } + + if (QII->isDeallocRet(MI)) { + if (DepReg == QRI->getFrameRegister() || + DepReg == QRI->getStackRegister()) + return true; + } + + // Check if this is a predicate dependence + const TargetRegisterClass* RC = QRI->getMinimalPhysRegClass(DepReg); + if (RC == &Hexagon::PredRegsRegClass) { + return true; + } + + // + // Lastly check for an operand used in an indirect call + // If we had an attribute for checking if an instruction is an indirect call, + // then we could have avoided this relatively brittle implementation of + // IsIndirectCall() + // + // Assumes that the first operand of the CALLr is the function address + // + if (IsIndirectCall(MI) && (DepType == SDep::Data)) { + MachineOperand MO = MI->getOperand(0); + if (MO.isReg() && MO.isUse() && (MO.getReg() == DepReg)) { + return true; + } + } + + return false; +} + +static bool IsRegDependence(const SDep::Kind DepType) { + return (DepType == SDep::Data || DepType == SDep::Anti || + DepType == SDep::Output); +} + +static bool IsDirectJump(MachineInstr* MI) { + return (MI->getOpcode() == Hexagon::JMP); +} + +static bool IsSchedBarrier(MachineInstr* MI) { + switch (MI->getOpcode()) { + case Hexagon::BARRIER: + return true; + } + return false; +} + +static bool IsControlFlow(MachineInstr* MI) { + return (MI->getDesc().isTerminator() || MI->getDesc().isCall()); +} + +static bool IsLoopN(MachineInstr *MI) { + return (MI->getOpcode() == Hexagon::LOOP0_i || + MI->getOpcode() == Hexagon::LOOP0_r); +} + +/// DoesModifyCalleeSavedReg - Returns true if the instruction modifies a +/// callee-saved register. +static bool DoesModifyCalleeSavedReg(MachineInstr *MI, + const TargetRegisterInfo *TRI) { + for (const MCPhysReg *CSR = TRI->getCalleeSavedRegs(); *CSR; ++CSR) { + unsigned CalleeSavedReg = *CSR; + if (MI->modifiesRegister(CalleeSavedReg, TRI)) + return true; + } + return false; +} + +// Returns true if an instruction can be promoted to .new predicate +// or new-value store. +bool HexagonPacketizerList::isNewifiable(MachineInstr* MI) { + const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; + if ( isCondInst(MI) || QII->mayBeNewStore(MI)) + return true; + else + return false; +} + +bool HexagonPacketizerList::isCondInst (MachineInstr* MI) { + const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; + const MCInstrDesc& TID = MI->getDesc(); + // bug 5670: until that is fixed, + // this portion is disabled. + if ( TID.isConditionalBranch() // && !IsRegisterJump(MI)) || + || QII->isConditionalTransfer(MI) + || QII->isConditionalALU32(MI) + || QII->isConditionalLoad(MI) + || QII->isConditionalStore(MI)) { + return true; + } + return false; +} + + +// Promote an instructiont to its .new form. +// At this time, we have already made a call to CanPromoteToDotNew +// and made sure that it can *indeed* be promoted. +bool HexagonPacketizerList::PromoteToDotNew(MachineInstr* MI, + SDep::Kind DepType, MachineBasicBlock::iterator &MII, + const TargetRegisterClass* RC) { + + assert (DepType == SDep::Data); + const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; + + int NewOpcode; + if (RC == &Hexagon::PredRegsRegClass) + NewOpcode = QII->GetDotNewPredOp(MI, MBPI); + else + NewOpcode = QII->GetDotNewOp(MI); + MI->setDesc(QII->get(NewOpcode)); + + return true; +} + +bool HexagonPacketizerList::DemoteToDotOld(MachineInstr* MI) { + const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; + int NewOpcode = QII->GetDotOldOp(MI->getOpcode()); + MI->setDesc(QII->get(NewOpcode)); + return true; +} + +enum PredicateKind { + PK_False, + PK_True, + PK_Unknown +}; + +/// Returns true if an instruction is predicated on p0 and false if it's +/// predicated on !p0. +static PredicateKind getPredicateSense(MachineInstr* MI, + const HexagonInstrInfo *QII) { + if (!QII->isPredicated(MI)) + return PK_Unknown; + + if (QII->isPredicatedTrue(MI)) + return PK_True; + + return PK_False; +} + +static MachineOperand& GetPostIncrementOperand(MachineInstr *MI, + const HexagonInstrInfo *QII) { + assert(QII->isPostIncrement(MI) && "Not a post increment operation."); +#ifndef NDEBUG + // Post Increment means duplicates. Use dense map to find duplicates in the + // list. Caution: Densemap initializes with the minimum of 64 buckets, + // whereas there are at most 5 operands in the post increment. + DenseMap<unsigned, unsigned> DefRegsSet; + for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) + if (MI->getOperand(opNum).isReg() && + MI->getOperand(opNum).isDef()) { + DefRegsSet[MI->getOperand(opNum).getReg()] = 1; + } + + for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) + if (MI->getOperand(opNum).isReg() && + MI->getOperand(opNum).isUse()) { + if (DefRegsSet[MI->getOperand(opNum).getReg()]) { + return MI->getOperand(opNum); + } + } +#else + if (MI->getDesc().mayLoad()) { + // The 2nd operand is always the post increment operand in load. + assert(MI->getOperand(1).isReg() && + "Post increment operand has be to a register."); + return (MI->getOperand(1)); + } + if (MI->getDesc().mayStore()) { + // The 1st operand is always the post increment operand in store. + assert(MI->getOperand(0).isReg() && + "Post increment operand has be to a register."); + return (MI->getOperand(0)); + } +#endif + // we should never come here. + llvm_unreachable("mayLoad or mayStore not set for Post Increment operation"); +} + +// get the value being stored +static MachineOperand& GetStoreValueOperand(MachineInstr *MI) { + // value being stored is always the last operand. + return (MI->getOperand(MI->getNumOperands()-1)); +} + +// can be new value store? +// Following restrictions are to be respected in convert a store into +// a new value store. +// 1. If an instruction uses auto-increment, its address register cannot +// be a new-value register. Arch Spec 5.4.2.1 +// 2. If an instruction uses absolute-set addressing mode, +// its address register cannot be a new-value register. +// Arch Spec 5.4.2.1.TODO: This is not enabled as +// as absolute-set address mode patters are not implemented. +// 3. If an instruction produces a 64-bit result, its registers cannot be used +// as new-value registers. Arch Spec 5.4.2.2. +// 4. If the instruction that sets a new-value register is conditional, then +// the instruction that uses the new-value register must also be conditional, +// and both must always have their predicates evaluate identically. +// Arch Spec 5.4.2.3. +// 5. There is an implied restriction of a packet can not have another store, +// if there is a new value store in the packet. Corollary, if there is +// already a store in a packet, there can not be a new value store. +// Arch Spec: 3.4.4.2 +bool HexagonPacketizerList::CanPromoteToNewValueStore( MachineInstr *MI, + MachineInstr *PacketMI, unsigned DepReg, + std::map <MachineInstr*, SUnit*> MIToSUnit) { + const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; + // Make sure we are looking at the store, that can be promoted. + if (!QII->mayBeNewStore(MI)) + return false; + + // Make sure there is dependency and can be new value'ed + if (GetStoreValueOperand(MI).isReg() && + GetStoreValueOperand(MI).getReg() != DepReg) + return false; + + const HexagonRegisterInfo* QRI = + (const HexagonRegisterInfo *) TM.getRegisterInfo(); + const MCInstrDesc& MCID = PacketMI->getDesc(); + // first operand is always the result + + const TargetRegisterClass* PacketRC = QII->getRegClass(MCID, 0, QRI, MF); + + // if there is already an store in the packet, no can do new value store + // Arch Spec 3.4.4.2. + for (std::vector<MachineInstr*>::iterator VI = CurrentPacketMIs.begin(), + VE = CurrentPacketMIs.end(); + (VI != VE); ++VI) { + SUnit* PacketSU = MIToSUnit[*VI]; + if (PacketSU->getInstr()->getDesc().mayStore() || + // if we have mayStore = 1 set on ALLOCFRAME and DEALLOCFRAME, + // then we don't need this + PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME || + PacketSU->getInstr()->getOpcode() == Hexagon::DEALLOCFRAME) + return false; + } + + if (PacketRC == &Hexagon::DoubleRegsRegClass) { + // new value store constraint: double regs can not feed into new value store + // arch spec section: 5.4.2.2 + return false; + } + + // Make sure it's NOT the post increment register that we are going to + // new value. + if (QII->isPostIncrement(MI) && + MI->getDesc().mayStore() && + GetPostIncrementOperand(MI, QII).getReg() == DepReg) { + return false; + } + + if (QII->isPostIncrement(PacketMI) && + PacketMI->getDesc().mayLoad() && + GetPostIncrementOperand(PacketMI, QII).getReg() == DepReg) { + // if source is post_inc, or absolute-set addressing, + // it can not feed into new value store + // r3 = memw(r2++#4) + // memw(r30 + #-1404) = r2.new -> can not be new value store + // arch spec section: 5.4.2.1 + return false; + } + + // If the source that feeds the store is predicated, new value store must + // also be predicated. + if (QII->isPredicated(PacketMI)) { + if (!QII->isPredicated(MI)) + return false; + + // Check to make sure that they both will have their predicates + // evaluate identically + unsigned predRegNumSrc = 0; + unsigned predRegNumDst = 0; + const TargetRegisterClass* predRegClass = nullptr; + + // Get predicate register used in the source instruction + for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) { + if ( PacketMI->getOperand(opNum).isReg()) + predRegNumSrc = PacketMI->getOperand(opNum).getReg(); + predRegClass = QRI->getMinimalPhysRegClass(predRegNumSrc); + if (predRegClass == &Hexagon::PredRegsRegClass) { + break; + } + } + assert ((predRegClass == &Hexagon::PredRegsRegClass ) && + ("predicate register not found in a predicated PacketMI instruction")); + + // Get predicate register used in new-value store instruction + for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) { + if ( MI->getOperand(opNum).isReg()) + predRegNumDst = MI->getOperand(opNum).getReg(); + predRegClass = QRI->getMinimalPhysRegClass(predRegNumDst); + if (predRegClass == &Hexagon::PredRegsRegClass) { + break; + } + } + assert ((predRegClass == &Hexagon::PredRegsRegClass ) && + ("predicate register not found in a predicated MI instruction")); + + // New-value register producer and user (store) need to satisfy these + // constraints: + // 1) Both instructions should be predicated on the same register. + // 2) If producer of the new-value register is .new predicated then store + // should also be .new predicated and if producer is not .new predicated + // then store should not be .new predicated. + // 3) Both new-value register producer and user should have same predicate + // sense, i.e, either both should be negated or both should be none negated. + + if (( predRegNumDst != predRegNumSrc) || + QII->isDotNewInst(PacketMI) != QII->isDotNewInst(MI) || + getPredicateSense(MI, QII) != getPredicateSense(PacketMI, QII)) { + return false; + } + } + + // Make sure that other than the new-value register no other store instruction + // register has been modified in the same packet. Predicate registers can be + // modified by they should not be modified between the producer and the store + // instruction as it will make them both conditional on different values. + // We already know this to be true for all the instructions before and + // including PacketMI. Howerver, we need to perform the check for the + // remaining instructions in the packet. + + std::vector<MachineInstr*>::iterator VI; + std::vector<MachineInstr*>::iterator VE; + unsigned StartCheck = 0; + + for (VI=CurrentPacketMIs.begin(), VE = CurrentPacketMIs.end(); + (VI != VE); ++VI) { + SUnit* TempSU = MIToSUnit[*VI]; + MachineInstr* TempMI = TempSU->getInstr(); + + // Following condition is true for all the instructions until PacketMI is + // reached (StartCheck is set to 0 before the for loop). + // StartCheck flag is 1 for all the instructions after PacketMI. + if (TempMI != PacketMI && !StartCheck) // start processing only after + continue; // encountering PacketMI + + StartCheck = 1; + if (TempMI == PacketMI) // We don't want to check PacketMI for dependence + continue; + + for(unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) { + if (MI->getOperand(opNum).isReg() && + TempSU->getInstr()->modifiesRegister(MI->getOperand(opNum).getReg(), + QRI)) + return false; + } + } + + // Make sure that for non-POST_INC stores: + // 1. The only use of reg is DepReg and no other registers. + // This handles V4 base+index registers. + // The following store can not be dot new. + // Eg. r0 = add(r0, #3)a + // memw(r1+r0<<#2) = r0 + if (!QII->isPostIncrement(MI) && + GetStoreValueOperand(MI).isReg() && + GetStoreValueOperand(MI).getReg() == DepReg) { + for(unsigned opNum = 0; opNum < MI->getNumOperands()-1; opNum++) { + if (MI->getOperand(opNum).isReg() && + MI->getOperand(opNum).getReg() == DepReg) { + return false; + } + } + // 2. If data definition is because of implicit definition of the register, + // do not newify the store. Eg. + // %R9<def> = ZXTH %R12, %D6<imp-use>, %R12<imp-def> + // STrih_indexed %R8, 2, %R12<kill>; mem:ST2[%scevgep343] + for(unsigned opNum = 0; opNum < PacketMI->getNumOperands(); opNum++) { + if (PacketMI->getOperand(opNum).isReg() && + PacketMI->getOperand(opNum).getReg() == DepReg && + PacketMI->getOperand(opNum).isDef() && + PacketMI->getOperand(opNum).isImplicit()) { + return false; + } + } + } + + // Can be dot new store. + return true; +} + +// can this MI to promoted to either +// new value store or new value jump +bool HexagonPacketizerList::CanPromoteToNewValue( MachineInstr *MI, + SUnit *PacketSU, unsigned DepReg, + std::map <MachineInstr*, SUnit*> MIToSUnit, + MachineBasicBlock::iterator &MII) +{ + + const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; + const HexagonRegisterInfo* QRI = + (const HexagonRegisterInfo *) TM.getRegisterInfo(); + if (!QRI->Subtarget.hasV4TOps() || + !QII->mayBeNewStore(MI)) + return false; + + MachineInstr *PacketMI = PacketSU->getInstr(); + + // Check to see the store can be new value'ed. + if (CanPromoteToNewValueStore(MI, PacketMI, DepReg, MIToSUnit)) + return true; + + // Check to see the compare/jump can be new value'ed. + // This is done as a pass on its own. Don't need to check it here. + return false; +} + +// Check to see if an instruction can be dot new +// There are three kinds. +// 1. dot new on predicate - V2/V3/V4 +// 2. dot new on stores NV/ST - V4 +// 3. dot new on jump NV/J - V4 -- This is generated in a pass. +bool HexagonPacketizerList::CanPromoteToDotNew( MachineInstr *MI, + SUnit *PacketSU, unsigned DepReg, + std::map <MachineInstr*, SUnit*> MIToSUnit, + MachineBasicBlock::iterator &MII, + const TargetRegisterClass* RC ) +{ + const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; + // Already a dot new instruction. + if (QII->isDotNewInst(MI) && !QII->mayBeNewStore(MI)) + return false; + + if (!isNewifiable(MI)) + return false; + + // predicate .new + if (RC == &Hexagon::PredRegsRegClass && isCondInst(MI)) + return true; + else if (RC != &Hexagon::PredRegsRegClass && + !QII->mayBeNewStore(MI)) // MI is not a new-value store + return false; + else { + // Create a dot new machine instruction to see if resources can be + // allocated. If not, bail out now. + int NewOpcode = QII->GetDotNewOp(MI); + const MCInstrDesc &desc = QII->get(NewOpcode); + DebugLoc dl; + MachineInstr *NewMI = + MI->getParent()->getParent()->CreateMachineInstr(desc, dl); + bool ResourcesAvailable = ResourceTracker->canReserveResources(NewMI); + MI->getParent()->getParent()->DeleteMachineInstr(NewMI); + + if (!ResourcesAvailable) + return false; + + // new value store only + // new new value jump generated as a passes + if (!CanPromoteToNewValue(MI, PacketSU, DepReg, MIToSUnit, MII)) { + return false; + } + } + return true; +} + +// Go through the packet instructions and search for anti dependency +// between them and DepReg from MI +// Consider this case: +// Trying to add +// a) %R1<def> = TFRI_cdNotPt %P3, 2 +// to this packet: +// { +// b) %P0<def> = OR_pp %P3<kill>, %P0<kill> +// c) %P3<def> = TFR_PdRs %R23 +// d) %R1<def> = TFRI_cdnPt %P3, 4 +// } +// The P3 from a) and d) will be complements after +// a)'s P3 is converted to .new form +// Anti Dep between c) and b) is irrelevant for this case +bool HexagonPacketizerList::RestrictingDepExistInPacket (MachineInstr* MI, + unsigned DepReg, + std::map <MachineInstr*, SUnit*> MIToSUnit) { + + const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; + SUnit* PacketSUDep = MIToSUnit[MI]; + + for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(), + VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) { + + // We only care for dependencies to predicated instructions + if(!QII->isPredicated(*VIN)) continue; + + // Scheduling Unit for current insn in the packet + SUnit* PacketSU = MIToSUnit[*VIN]; + + // Look at dependencies between current members of the packet + // and predicate defining instruction MI. + // Make sure that dependency is on the exact register + // we care about. + if (PacketSU->isSucc(PacketSUDep)) { + for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { + if ((PacketSU->Succs[i].getSUnit() == PacketSUDep) && + (PacketSU->Succs[i].getKind() == SDep::Anti) && + (PacketSU->Succs[i].getReg() == DepReg)) { + return true; + } + } + } + } + + return false; +} + + +/// Gets the predicate register of a predicated instruction. +static unsigned getPredicatedRegister(MachineInstr *MI, + const HexagonInstrInfo *QII) { + /// We use the following rule: The first predicate register that is a use is + /// the predicate register of a predicated instruction. + + assert(QII->isPredicated(MI) && "Must be predicated instruction"); + + for (MachineInstr::mop_iterator OI = MI->operands_begin(), + OE = MI->operands_end(); OI != OE; ++OI) { + MachineOperand &Op = *OI; + if (Op.isReg() && Op.getReg() && Op.isUse() && + Hexagon::PredRegsRegClass.contains(Op.getReg())) + return Op.getReg(); + } + + llvm_unreachable("Unknown instruction operand layout"); + + return 0; +} + +// Given two predicated instructions, this function detects whether +// the predicates are complements +bool HexagonPacketizerList::ArePredicatesComplements (MachineInstr* MI1, + MachineInstr* MI2, std::map <MachineInstr*, SUnit*> MIToSUnit) { + + const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; + + // If we don't know the predicate sense of the instructions bail out early, we + // need it later. + if (getPredicateSense(MI1, QII) == PK_Unknown || + getPredicateSense(MI2, QII) == PK_Unknown) + return false; + + // Scheduling unit for candidate + SUnit* SU = MIToSUnit[MI1]; + + // One corner case deals with the following scenario: + // Trying to add + // a) %R24<def> = TFR_cPt %P0, %R25 + // to this packet: + // + // { + // b) %R25<def> = TFR_cNotPt %P0, %R24 + // c) %P0<def> = CMPEQri %R26, 1 + // } + // + // On general check a) and b) are complements, but + // presence of c) will convert a) to .new form, and + // then it is not a complement + // We attempt to detect it by analyzing existing + // dependencies in the packet + + // Analyze relationships between all existing members of the packet. + // Look for Anti dependecy on the same predicate reg + // as used in the candidate + for (std::vector<MachineInstr*>::iterator VIN = CurrentPacketMIs.begin(), + VEN = CurrentPacketMIs.end(); (VIN != VEN); ++VIN) { + + // Scheduling Unit for current insn in the packet + SUnit* PacketSU = MIToSUnit[*VIN]; + + // If this instruction in the packet is succeeded by the candidate... + if (PacketSU->isSucc(SU)) { + for (unsigned i = 0; i < PacketSU->Succs.size(); ++i) { + // The corner case exist when there is true data + // dependency between candidate and one of current + // packet members, this dep is on predicate reg, and + // there already exist anti dep on the same pred in + // the packet. + if (PacketSU->Succs[i].getSUnit() == SU && + PacketSU->Succs[i].getKind() == SDep::Data && + Hexagon::PredRegsRegClass.contains( + PacketSU->Succs[i].getReg()) && + // Here I know that *VIN is predicate setting instruction + // with true data dep to candidate on the register + // we care about - c) in the above example. + // Now I need to see if there is an anti dependency + // from c) to any other instruction in the + // same packet on the pred reg of interest + RestrictingDepExistInPacket(*VIN,PacketSU->Succs[i].getReg(), + MIToSUnit)) { + return false; + } + } + } + } + + // If the above case does not apply, check regular + // complement condition. + // Check that the predicate register is the same and + // that the predicate sense is different + // We also need to differentiate .old vs. .new: + // !p0 is not complimentary to p0.new + unsigned PReg1 = getPredicatedRegister(MI1, QII); + unsigned PReg2 = getPredicatedRegister(MI2, QII); + return ((PReg1 == PReg2) && + Hexagon::PredRegsRegClass.contains(PReg1) && + Hexagon::PredRegsRegClass.contains(PReg2) && + (getPredicateSense(MI1, QII) != getPredicateSense(MI2, QII)) && + (QII->isDotNewInst(MI1) == QII->isDotNewInst(MI2))); +} + +// initPacketizerState - Initialize packetizer flags +void HexagonPacketizerList::initPacketizerState() { + + Dependence = false; + PromotedToDotNew = false; + GlueToNewValueJump = false; + GlueAllocframeStore = false; + FoundSequentialDependence = false; + + return; +} + +// ignorePseudoInstruction - Ignore bundling of pseudo instructions. +bool HexagonPacketizerList::ignorePseudoInstruction(MachineInstr *MI, + MachineBasicBlock *MBB) { + if (MI->isDebugValue()) + return true; + + // We must print out inline assembly + if (MI->isInlineAsm()) + return false; + + // We check if MI has any functional units mapped to it. + // If it doesn't, we ignore the instruction. + const MCInstrDesc& TID = MI->getDesc(); + unsigned SchedClass = TID.getSchedClass(); + const InstrStage* IS = + ResourceTracker->getInstrItins()->beginStage(SchedClass); + unsigned FuncUnits = IS->getUnits(); + return !FuncUnits; +} + +// isSoloInstruction: - Returns true for instructions that must be +// scheduled in their own packet. +bool HexagonPacketizerList::isSoloInstruction(MachineInstr *MI) { + + if (MI->isInlineAsm()) + return true; + + if (MI->isEHLabel()) + return true; + + // From Hexagon V4 Programmer's Reference Manual 3.4.4 Grouping constraints: + // trap, pause, barrier, icinva, isync, and syncht are solo instructions. + // They must not be grouped with other instructions in a packet. + if (IsSchedBarrier(MI)) + return true; + + return false; +} + +// isLegalToPacketizeTogether: +// SUI is the current instruction that is out side of the current packet. +// SUJ is the current instruction inside the current packet against which that +// SUI will be packetized. +bool HexagonPacketizerList::isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) { + MachineInstr *I = SUI->getInstr(); + MachineInstr *J = SUJ->getInstr(); + assert(I && J && "Unable to packetize null instruction!"); + + const MCInstrDesc &MCIDI = I->getDesc(); + const MCInstrDesc &MCIDJ = J->getDesc(); + + MachineBasicBlock::iterator II = I; + + const unsigned FrameSize = MF.getFrameInfo()->getStackSize(); + const HexagonRegisterInfo* QRI = + (const HexagonRegisterInfo *) TM.getRegisterInfo(); + const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; + + // Inline asm cannot go in the packet. + if (I->getOpcode() == Hexagon::INLINEASM) + llvm_unreachable("Should not meet inline asm here!"); + + if (isSoloInstruction(I)) + llvm_unreachable("Should not meet solo instr here!"); + + // A save callee-save register function call can only be in a packet + // with instructions that don't write to the callee-save registers. + if ((QII->isSaveCalleeSavedRegsCall(I) && + DoesModifyCalleeSavedReg(J, QRI)) || + (QII->isSaveCalleeSavedRegsCall(J) && + DoesModifyCalleeSavedReg(I, QRI))) { + Dependence = true; + return false; + } + + // Two control flow instructions cannot go in the same packet. + if (IsControlFlow(I) && IsControlFlow(J)) { + Dependence = true; + return false; + } + + // A LoopN instruction cannot appear in the same packet as a jump or call. + if (IsLoopN(I) && + (IsDirectJump(J) || MCIDJ.isCall() || QII->isDeallocRet(J))) { + Dependence = true; + return false; + } + if (IsLoopN(J) && + (IsDirectJump(I) || MCIDI.isCall() || QII->isDeallocRet(I))) { + Dependence = true; + return false; + } + + // dealloc_return cannot appear in the same packet as a conditional or + // unconditional jump. + if (QII->isDeallocRet(I) && + (MCIDJ.isBranch() || MCIDJ.isCall() || MCIDJ.isBarrier())) { + Dependence = true; + return false; + } + + + // V4 allows dual store. But does not allow second store, if the + // first store is not in SLOT0. New value store, new value jump, + // dealloc_return and memop always take SLOT0. + // Arch spec 3.4.4.2 + if (QRI->Subtarget.hasV4TOps()) { + if (MCIDI.mayStore() && MCIDJ.mayStore() && + (QII->isNewValueInst(J) || QII->isMemOp(J) || QII->isMemOp(I))) { + Dependence = true; + return false; + } + + if ((QII->isMemOp(J) && MCIDI.mayStore()) + || (MCIDJ.mayStore() && QII->isMemOp(I)) + || (QII->isMemOp(J) && QII->isMemOp(I))) { + Dependence = true; + return false; + } + + //if dealloc_return + if (MCIDJ.mayStore() && QII->isDeallocRet(I)) { + Dependence = true; + return false; + } + + // If an instruction feeds new value jump, glue it. + MachineBasicBlock::iterator NextMII = I; + ++NextMII; + if (NextMII != I->getParent()->end() && QII->isNewValueJump(NextMII)) { + MachineInstr *NextMI = NextMII; + + bool secondRegMatch = false; + bool maintainNewValueJump = false; + + if (NextMI->getOperand(1).isReg() && + I->getOperand(0).getReg() == NextMI->getOperand(1).getReg()) { + secondRegMatch = true; + maintainNewValueJump = true; + } + + if (!secondRegMatch && + I->getOperand(0).getReg() == NextMI->getOperand(0).getReg()) { + maintainNewValueJump = true; + } + + for (std::vector<MachineInstr*>::iterator + VI = CurrentPacketMIs.begin(), + VE = CurrentPacketMIs.end(); + (VI != VE && maintainNewValueJump); ++VI) { + SUnit* PacketSU = MIToSUnit[*VI]; + + // NVJ can not be part of the dual jump - Arch Spec: section 7.8 + if (PacketSU->getInstr()->getDesc().isCall()) { + Dependence = true; + break; + } + // Validate + // 1. Packet does not have a store in it. + // 2. If the first operand of the nvj is newified, and the second + // operand is also a reg, it (second reg) is not defined in + // the same packet. + // 3. If the second operand of the nvj is newified, (which means + // first operand is also a reg), first reg is not defined in + // the same packet. + if (PacketSU->getInstr()->getDesc().mayStore() || + PacketSU->getInstr()->getOpcode() == Hexagon::ALLOCFRAME || + // Check #2. + (!secondRegMatch && NextMI->getOperand(1).isReg() && + PacketSU->getInstr()->modifiesRegister( + NextMI->getOperand(1).getReg(), QRI)) || + // Check #3. + (secondRegMatch && + PacketSU->getInstr()->modifiesRegister( + NextMI->getOperand(0).getReg(), QRI))) { + Dependence = true; + break; + } + } + if (!Dependence) + GlueToNewValueJump = true; + else + return false; + } + } + + if (SUJ->isSucc(SUI)) { + for (unsigned i = 0; + (i < SUJ->Succs.size()) && !FoundSequentialDependence; + ++i) { + + if (SUJ->Succs[i].getSUnit() != SUI) { + continue; + } + + SDep::Kind DepType = SUJ->Succs[i].getKind(); + + // For direct calls: + // Ignore register dependences for call instructions for + // packetization purposes except for those due to r31 and + // predicate registers. + // + // For indirect calls: + // Same as direct calls + check for true dependences to the register + // used in the indirect call. + // + // We completely ignore Order dependences for call instructions + // + // For returns: + // Ignore register dependences for return instructions like jumpr, + // dealloc return unless we have dependencies on the explicit uses + // of the registers used by jumpr (like r31) or dealloc return + // (like r29 or r30). + // + // TODO: Currently, jumpr is handling only return of r31. So, the + // following logic (specificaly IsCallDependent) is working fine. + // We need to enable jumpr for register other than r31 and then, + // we need to rework the last part, where it handles indirect call + // of that (IsCallDependent) function. Bug 6216 is opened for this. + // + unsigned DepReg = 0; + const TargetRegisterClass* RC = nullptr; + if (DepType == SDep::Data) { + DepReg = SUJ->Succs[i].getReg(); + RC = QRI->getMinimalPhysRegClass(DepReg); + } + if ((MCIDI.isCall() || MCIDI.isReturn()) && + (!IsRegDependence(DepType) || + !IsCallDependent(I, DepType, SUJ->Succs[i].getReg()))) { + /* do nothing */ + } + + // For instructions that can be promoted to dot-new, try to promote. + else if ((DepType == SDep::Data) && + CanPromoteToDotNew(I, SUJ, DepReg, MIToSUnit, II, RC) && + PromoteToDotNew(I, DepType, II, RC)) { + PromotedToDotNew = true; + /* do nothing */ + } + + else if ((DepType == SDep::Data) && + (QII->isNewValueJump(I))) { + /* do nothing */ + } + + // For predicated instructions, if the predicates are complements + // then there can be no dependence. + else if (QII->isPredicated(I) && + QII->isPredicated(J) && + ArePredicatesComplements(I, J, MIToSUnit)) { + /* do nothing */ + + } + else if (IsDirectJump(I) && + !MCIDJ.isBranch() && + !MCIDJ.isCall() && + (DepType == SDep::Order)) { + // Ignore Order dependences between unconditional direct branches + // and non-control-flow instructions + /* do nothing */ + } + else if (MCIDI.isConditionalBranch() && (DepType != SDep::Data) && + (DepType != SDep::Output)) { + // Ignore all dependences for jumps except for true and output + // dependences + /* do nothing */ + } + + // Ignore output dependences due to superregs. We can + // write to two different subregisters of R1:0 for instance + // in the same cycle + // + + // + // Let the + // If neither I nor J defines DepReg, then this is a + // superfluous output dependence. The dependence must be of the + // form: + // R0 = ... + // R1 = ... + // and there is an output dependence between the two instructions + // with + // DepReg = D0 + // We want to ignore these dependences. + // Ideally, the dependence constructor should annotate such + // dependences. We can then avoid this relatively expensive check. + // + else if (DepType == SDep::Output) { + // DepReg is the register that's responsible for the dependence. + unsigned DepReg = SUJ->Succs[i].getReg(); + + // Check if I and J really defines DepReg. + if (I->definesRegister(DepReg) || + J->definesRegister(DepReg)) { + FoundSequentialDependence = true; + break; + } + } + + // We ignore Order dependences for + // 1. Two loads unless they are volatile. + // 2. Two stores in V4 unless they are volatile. + else if ((DepType == SDep::Order) && + !I->hasOrderedMemoryRef() && + !J->hasOrderedMemoryRef()) { + if (QRI->Subtarget.hasV4TOps() && + // hexagonv4 allows dual store. + MCIDI.mayStore() && MCIDJ.mayStore()) { + /* do nothing */ + } + // store followed by store-- not OK on V2 + // store followed by load -- not OK on all (OK if addresses + // are not aliased) + // load followed by store -- OK on all + // load followed by load -- OK on all + else if ( !MCIDJ.mayStore()) { + /* do nothing */ + } + else { + FoundSequentialDependence = true; + break; + } + } + + // For V4, special case ALLOCFRAME. Even though there is dependency + // between ALLOCAFRAME and subsequent store, allow it to be + // packetized in a same packet. This implies that the store is using + // caller's SP. Hense, offset needs to be updated accordingly. + else if (DepType == SDep::Data + && QRI->Subtarget.hasV4TOps() + && J->getOpcode() == Hexagon::ALLOCFRAME + && (I->getOpcode() == Hexagon::STrid + || I->getOpcode() == Hexagon::STriw + || I->getOpcode() == Hexagon::STrib) + && I->getOperand(0).getReg() == QRI->getStackRegister() + && QII->isValidOffset(I->getOpcode(), + I->getOperand(1).getImm() - + (FrameSize + HEXAGON_LRFP_SIZE))) + { + GlueAllocframeStore = true; + // Since this store is to be glued with allocframe in the same + // packet, it will use SP of the previous stack frame, i.e + // caller's SP. Therefore, we need to recalculate offset according + // to this change. + I->getOperand(1).setImm(I->getOperand(1).getImm() - + (FrameSize + HEXAGON_LRFP_SIZE)); + } + + // + // Skip over anti-dependences. Two instructions that are + // anti-dependent can share a packet + // + else if (DepType != SDep::Anti) { + FoundSequentialDependence = true; + break; + } + } + + if (FoundSequentialDependence) { + Dependence = true; + return false; + } + } + + return true; +} + +// isLegalToPruneDependencies +bool HexagonPacketizerList::isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) { + MachineInstr *I = SUI->getInstr(); + assert(I && SUJ->getInstr() && "Unable to packetize null instruction!"); + + const unsigned FrameSize = MF.getFrameInfo()->getStackSize(); + + if (Dependence) { + + // Check if the instruction was promoted to a dot-new. If so, demote it + // back into a dot-old. + if (PromotedToDotNew) { + DemoteToDotOld(I); + } + + // Check if the instruction (must be a store) was glued with an Allocframe + // instruction. If so, restore its offset to its original value, i.e. use + // curent SP instead of caller's SP. + if (GlueAllocframeStore) { + I->getOperand(1).setImm(I->getOperand(1).getImm() + + FrameSize + HEXAGON_LRFP_SIZE); + } + + return false; + } + return true; +} + +MachineBasicBlock::iterator +HexagonPacketizerList::addToPacket(MachineInstr *MI) { + + MachineBasicBlock::iterator MII = MI; + MachineBasicBlock *MBB = MI->getParent(); + + const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII; + + if (GlueToNewValueJump) { + + ++MII; + MachineInstr *nvjMI = MII; + assert(ResourceTracker->canReserveResources(MI)); + ResourceTracker->reserveResources(MI); + if ((QII->isExtended(MI) || QII->isConstExtended(MI)) && + !tryAllocateResourcesForConstExt(MI)) { + endPacket(MBB, MI); + ResourceTracker->reserveResources(MI); + assert(canReserveResourcesForConstExt(MI) && + "Ensure that there is a slot"); + reserveResourcesForConstExt(MI); + // Reserve resources for new value jump constant extender. + assert(canReserveResourcesForConstExt(MI) && + "Ensure that there is a slot"); + reserveResourcesForConstExt(nvjMI); + assert(ResourceTracker->canReserveResources(nvjMI) && + "Ensure that there is a slot"); + + } else if ( // Extended instruction takes two slots in the packet. + // Try reserve and allocate 4-byte in the current packet first. + (QII->isExtended(nvjMI) + && (!tryAllocateResourcesForConstExt(nvjMI) + || !ResourceTracker->canReserveResources(nvjMI))) + || // For non-extended instruction, no need to allocate extra 4 bytes. + (!QII->isExtended(nvjMI) && + !ResourceTracker->canReserveResources(nvjMI))) + { + endPacket(MBB, MI); + // A new and empty packet starts. + // We are sure that the resources requirements can be satisfied. + // Therefore, do not need to call "canReserveResources" anymore. + ResourceTracker->reserveResources(MI); + if (QII->isExtended(nvjMI)) + reserveResourcesForConstExt(nvjMI); + } + // Here, we are sure that "reserveResources" would succeed. + ResourceTracker->reserveResources(nvjMI); + CurrentPacketMIs.push_back(MI); + CurrentPacketMIs.push_back(nvjMI); + } else { + if ( (QII->isExtended(MI) || QII->isConstExtended(MI)) + && ( !tryAllocateResourcesForConstExt(MI) + || !ResourceTracker->canReserveResources(MI))) + { + endPacket(MBB, MI); + // Check if the instruction was promoted to a dot-new. If so, demote it + // back into a dot-old + if (PromotedToDotNew) { + DemoteToDotOld(MI); + } + reserveResourcesForConstExt(MI); + } + // In case that "MI" is not an extended insn, + // the resource availability has already been checked. + ResourceTracker->reserveResources(MI); + CurrentPacketMIs.push_back(MI); + } + return MII; +} + +//===----------------------------------------------------------------------===// +// Public Constructor Functions +//===----------------------------------------------------------------------===// + +FunctionPass *llvm::createHexagonPacketizer() { + return new HexagonPacketizer(); +} + |