diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonSplitDouble.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/HexagonSplitDouble.cpp | 1209 |
1 files changed, 1209 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonSplitDouble.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonSplitDouble.cpp new file mode 100644 index 0000000..d4e95b0d --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/HexagonSplitDouble.cpp @@ -0,0 +1,1209 @@ +//===--- HexagonSplitDouble.cpp -------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "hsdr" + +#include "HexagonRegisterInfo.h" +#include "HexagonTargetMachine.h" + +#include "llvm/Pass.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetRegisterInfo.h" + +#include <map> +#include <set> +#include <vector> + +using namespace llvm; + +namespace llvm { + FunctionPass *createHexagonSplitDoubleRegs(); + void initializeHexagonSplitDoubleRegsPass(PassRegistry&); +} + +namespace { + static cl::opt<int> MaxHSDR("max-hsdr", cl::Hidden, cl::init(-1), + cl::desc("Maximum number of split partitions")); + static cl::opt<bool> MemRefsFixed("hsdr-no-mem", cl::Hidden, cl::init(true), + cl::desc("Do not split loads or stores")); + + class HexagonSplitDoubleRegs : public MachineFunctionPass { + public: + static char ID; + HexagonSplitDoubleRegs() : MachineFunctionPass(ID), TRI(nullptr), + TII(nullptr) { + initializeHexagonSplitDoubleRegsPass(*PassRegistry::getPassRegistry()); + } + const char *getPassName() const override { + return "Hexagon Split Double Registers"; + } + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<MachineLoopInfo>(); + AU.addPreserved<MachineLoopInfo>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + bool runOnMachineFunction(MachineFunction &MF) override; + + private: + static const TargetRegisterClass *const DoubleRC; + + const HexagonRegisterInfo *TRI; + const HexagonInstrInfo *TII; + const MachineLoopInfo *MLI; + MachineRegisterInfo *MRI; + + typedef std::set<unsigned> USet; + typedef std::map<unsigned,USet> UUSetMap; + typedef std::pair<unsigned,unsigned> UUPair; + typedef std::map<unsigned,UUPair> UUPairMap; + typedef std::map<const MachineLoop*,USet> LoopRegMap; + + bool isInduction(unsigned Reg, LoopRegMap &IRM) const; + bool isVolatileInstr(const MachineInstr *MI) const; + bool isFixedInstr(const MachineInstr *MI) const; + void partitionRegisters(UUSetMap &P2Rs); + int32_t profit(const MachineInstr *MI) const; + bool isProfitable(const USet &Part, LoopRegMap &IRM) const; + + void collectIndRegsForLoop(const MachineLoop *L, USet &Rs); + void collectIndRegs(LoopRegMap &IRM); + + void createHalfInstr(unsigned Opc, MachineInstr *MI, + const UUPairMap &PairMap, unsigned SubR); + void splitMemRef(MachineInstr *MI, const UUPairMap &PairMap); + void splitImmediate(MachineInstr *MI, const UUPairMap &PairMap); + void splitCombine(MachineInstr *MI, const UUPairMap &PairMap); + void splitExt(MachineInstr *MI, const UUPairMap &PairMap); + void splitShift(MachineInstr *MI, const UUPairMap &PairMap); + void splitAslOr(MachineInstr *MI, const UUPairMap &PairMap); + bool splitInstr(MachineInstr *MI, const UUPairMap &PairMap); + void replaceSubregUses(MachineInstr *MI, const UUPairMap &PairMap); + void collapseRegPairs(MachineInstr *MI, const UUPairMap &PairMap); + bool splitPartition(const USet &Part); + + static int Counter; + static void dump_partition(raw_ostream&, const USet&, + const TargetRegisterInfo&); + }; + char HexagonSplitDoubleRegs::ID; + int HexagonSplitDoubleRegs::Counter = 0; + const TargetRegisterClass *const HexagonSplitDoubleRegs::DoubleRC + = &Hexagon::DoubleRegsRegClass; +} + +INITIALIZE_PASS(HexagonSplitDoubleRegs, "hexagon-split-double", + "Hexagon Split Double Registers", false, false) + + +static inline uint32_t getRegState(const MachineOperand &R) { + assert(R.isReg()); + return getDefRegState(R.isDef()) | + getImplRegState(R.isImplicit()) | + getKillRegState(R.isKill()) | + getDeadRegState(R.isDead()) | + getUndefRegState(R.isUndef()) | + getInternalReadRegState(R.isInternalRead()) | + (R.isDebug() ? RegState::Debug : 0); +} + + +void HexagonSplitDoubleRegs::dump_partition(raw_ostream &os, + const USet &Part, const TargetRegisterInfo &TRI) { + dbgs() << '{'; + for (auto I : Part) + dbgs() << ' ' << PrintReg(I, &TRI); + dbgs() << " }"; +} + + +bool HexagonSplitDoubleRegs::isInduction(unsigned Reg, LoopRegMap &IRM) const { + for (auto I : IRM) { + const USet &Rs = I.second; + if (Rs.find(Reg) != Rs.end()) + return true; + } + return false; +} + + +bool HexagonSplitDoubleRegs::isVolatileInstr(const MachineInstr *MI) const { + for (auto &I : MI->memoperands()) + if (I->isVolatile()) + return true; + return false; +} + + +bool HexagonSplitDoubleRegs::isFixedInstr(const MachineInstr *MI) const { + if (MI->mayLoad() || MI->mayStore()) + if (MemRefsFixed || isVolatileInstr(MI)) + return true; + if (MI->isDebugValue()) + return false; + + unsigned Opc = MI->getOpcode(); + switch (Opc) { + default: + return true; + + case TargetOpcode::PHI: + case TargetOpcode::COPY: + break; + + case Hexagon::L2_loadrd_io: + // Not handling stack stores (only reg-based addresses). + if (MI->getOperand(1).isReg()) + break; + return true; + case Hexagon::S2_storerd_io: + // Not handling stack stores (only reg-based addresses). + if (MI->getOperand(0).isReg()) + break; + return true; + case Hexagon::L2_loadrd_pi: + case Hexagon::S2_storerd_pi: + + case Hexagon::A2_tfrpi: + case Hexagon::A2_combineii: + case Hexagon::A4_combineir: + case Hexagon::A4_combineii: + case Hexagon::A4_combineri: + case Hexagon::A2_combinew: + case Hexagon::CONST64_Int_Real: + + case Hexagon::A2_sxtw: + + case Hexagon::A2_andp: + case Hexagon::A2_orp: + case Hexagon::A2_xorp: + case Hexagon::S2_asl_i_p_or: + case Hexagon::S2_asl_i_p: + case Hexagon::S2_asr_i_p: + case Hexagon::S2_lsr_i_p: + break; + } + + for (auto &Op : MI->operands()) { + if (!Op.isReg()) + continue; + unsigned R = Op.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(R)) + return true; + } + return false; +} + + +void HexagonSplitDoubleRegs::partitionRegisters(UUSetMap &P2Rs) { + typedef std::map<unsigned,unsigned> UUMap; + typedef std::vector<unsigned> UVect; + + unsigned NumRegs = MRI->getNumVirtRegs(); + BitVector DoubleRegs(NumRegs); + for (unsigned i = 0; i < NumRegs; ++i) { + unsigned R = TargetRegisterInfo::index2VirtReg(i); + if (MRI->getRegClass(R) == DoubleRC) + DoubleRegs.set(i); + } + + BitVector FixedRegs(NumRegs); + for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { + unsigned R = TargetRegisterInfo::index2VirtReg(x); + MachineInstr *DefI = MRI->getVRegDef(R); + // In some cases a register may exist, but never be defined or used. + // It should never appear anywhere, but mark it as "fixed", just to be + // safe. + if (!DefI || isFixedInstr(DefI)) + FixedRegs.set(x); + } + + UUSetMap AssocMap; + for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { + if (FixedRegs[x]) + continue; + unsigned R = TargetRegisterInfo::index2VirtReg(x); + DEBUG(dbgs() << PrintReg(R, TRI) << " ~~"); + USet &Asc = AssocMap[R]; + for (auto U = MRI->use_nodbg_begin(R), Z = MRI->use_nodbg_end(); + U != Z; ++U) { + MachineOperand &Op = *U; + MachineInstr *UseI = Op.getParent(); + if (isFixedInstr(UseI)) + continue; + for (unsigned i = 0, n = UseI->getNumOperands(); i < n; ++i) { + MachineOperand &MO = UseI->getOperand(i); + // Skip non-registers or registers with subregisters. + if (&MO == &Op || !MO.isReg() || MO.getSubReg()) + continue; + unsigned T = MO.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(T)) { + FixedRegs.set(x); + continue; + } + if (MRI->getRegClass(T) != DoubleRC) + continue; + unsigned u = TargetRegisterInfo::virtReg2Index(T); + if (FixedRegs[u]) + continue; + DEBUG(dbgs() << ' ' << PrintReg(T, TRI)); + Asc.insert(T); + // Make it symmetric. + AssocMap[T].insert(R); + } + } + DEBUG(dbgs() << '\n'); + } + + UUMap R2P; + unsigned NextP = 1; + USet Visited; + for (int x = DoubleRegs.find_first(); x >= 0; x = DoubleRegs.find_next(x)) { + unsigned R = TargetRegisterInfo::index2VirtReg(x); + if (Visited.count(R)) + continue; + // Create a new partition for R. + unsigned ThisP = FixedRegs[x] ? 0 : NextP++; + UVect WorkQ; + WorkQ.push_back(R); + for (unsigned i = 0; i < WorkQ.size(); ++i) { + unsigned T = WorkQ[i]; + if (Visited.count(T)) + continue; + R2P[T] = ThisP; + Visited.insert(T); + // Add all registers associated with T. + USet &Asc = AssocMap[T]; + for (USet::iterator J = Asc.begin(), F = Asc.end(); J != F; ++J) + WorkQ.push_back(*J); + } + } + + for (auto I : R2P) + P2Rs[I.second].insert(I.first); +} + + +static inline int32_t profitImm(unsigned Lo, unsigned Hi) { + int32_t P = 0; + bool LoZ1 = false, HiZ1 = false; + if (Lo == 0 || Lo == 0xFFFFFFFF) + P += 10, LoZ1 = true; + if (Hi == 0 || Hi == 0xFFFFFFFF) + P += 10, HiZ1 = true; + if (!LoZ1 && !HiZ1 && Lo == Hi) + P += 3; + return P; +} + + +int32_t HexagonSplitDoubleRegs::profit(const MachineInstr *MI) const { + unsigned ImmX = 0; + unsigned Opc = MI->getOpcode(); + switch (Opc) { + case TargetOpcode::PHI: + for (const auto &Op : MI->operands()) + if (!Op.getSubReg()) + return 0; + return 10; + case TargetOpcode::COPY: + if (MI->getOperand(1).getSubReg() != 0) + return 10; + return 0; + + case Hexagon::L2_loadrd_io: + case Hexagon::S2_storerd_io: + return -1; + case Hexagon::L2_loadrd_pi: + case Hexagon::S2_storerd_pi: + return 2; + + case Hexagon::A2_tfrpi: + case Hexagon::CONST64_Int_Real: { + uint64_t D = MI->getOperand(1).getImm(); + unsigned Lo = D & 0xFFFFFFFFULL; + unsigned Hi = D >> 32; + return profitImm(Lo, Hi); + } + case Hexagon::A2_combineii: + case Hexagon::A4_combineii: + return profitImm(MI->getOperand(1).getImm(), + MI->getOperand(2).getImm()); + case Hexagon::A4_combineri: + ImmX++; + case Hexagon::A4_combineir: { + ImmX++; + int64_t V = MI->getOperand(ImmX).getImm(); + if (V == 0 || V == -1) + return 10; + // Fall through into A2_combinew. + } + case Hexagon::A2_combinew: + return 2; + + case Hexagon::A2_sxtw: + return 3; + + case Hexagon::A2_andp: + case Hexagon::A2_orp: + case Hexagon::A2_xorp: + return 1; + + case Hexagon::S2_asl_i_p_or: { + unsigned S = MI->getOperand(3).getImm(); + if (S == 0 || S == 32) + return 10; + return -1; + } + case Hexagon::S2_asl_i_p: + case Hexagon::S2_asr_i_p: + case Hexagon::S2_lsr_i_p: + unsigned S = MI->getOperand(2).getImm(); + if (S == 0 || S == 32) + return 10; + if (S == 16) + return 5; + if (S == 48) + return 7; + return -10; + } + + return 0; +} + + +bool HexagonSplitDoubleRegs::isProfitable(const USet &Part, LoopRegMap &IRM) + const { + unsigned FixedNum = 0, SplitNum = 0, LoopPhiNum = 0; + int32_t TotalP = 0; + + for (unsigned DR : Part) { + MachineInstr *DefI = MRI->getVRegDef(DR); + int32_t P = profit(DefI); + if (P == INT_MIN) + return false; + TotalP += P; + // Reduce the profitability of splitting induction registers. + if (isInduction(DR, IRM)) + TotalP -= 30; + + for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); + U != W; ++U) { + MachineInstr *UseI = U->getParent(); + if (isFixedInstr(UseI)) { + FixedNum++; + // Calculate the cost of generating REG_SEQUENCE instructions. + for (auto &Op : UseI->operands()) { + if (Op.isReg() && Part.count(Op.getReg())) + if (Op.getSubReg()) + TotalP -= 2; + } + continue; + } + // If a register from this partition is used in a fixed instruction, + // and there is also a register in this partition that is used in + // a loop phi node, then decrease the splitting profit as this can + // confuse the modulo scheduler. + if (UseI->isPHI()) { + const MachineBasicBlock *PB = UseI->getParent(); + const MachineLoop *L = MLI->getLoopFor(PB); + if (L && L->getHeader() == PB) + LoopPhiNum++; + } + // Splittable instruction. + SplitNum++; + int32_t P = profit(UseI); + if (P == INT_MIN) + return false; + TotalP += P; + } + } + + if (FixedNum > 0 && LoopPhiNum > 0) + TotalP -= 20*LoopPhiNum; + + DEBUG(dbgs() << "Partition profit: " << TotalP << '\n'); + return TotalP > 0; +} + + +void HexagonSplitDoubleRegs::collectIndRegsForLoop(const MachineLoop *L, + USet &Rs) { + const MachineBasicBlock *HB = L->getHeader(); + const MachineBasicBlock *LB = L->getLoopLatch(); + if (!HB || !LB) + return; + + // Examine the latch branch. Expect it to be a conditional branch to + // the header (either "br-cond header" or "br-cond exit; br header"). + MachineBasicBlock *TB = 0, *FB = 0; + MachineBasicBlock *TmpLB = const_cast<MachineBasicBlock*>(LB); + SmallVector<MachineOperand,2> Cond; + bool BadLB = TII->AnalyzeBranch(*TmpLB, TB, FB, Cond, false); + // Only analyzable conditional branches. HII::AnalyzeBranch will put + // the branch opcode as the first element of Cond, and the predicate + // operand as the second. + if (BadLB || Cond.size() != 2) + return; + // Only simple jump-conditional (with or without negation). + if (!TII->PredOpcodeHasJMP_c(Cond[0].getImm())) + return; + // Must go to the header. + if (TB != HB && FB != HB) + return; + assert(Cond[1].isReg() && "Unexpected Cond vector from AnalyzeBranch"); + // Expect a predicate register. + unsigned PR = Cond[1].getReg(); + assert(MRI->getRegClass(PR) == &Hexagon::PredRegsRegClass); + + // Get the registers on which the loop controlling compare instruction + // depends. + unsigned CmpR1 = 0, CmpR2 = 0; + const MachineInstr *CmpI = MRI->getVRegDef(PR); + while (CmpI->getOpcode() == Hexagon::C2_not) + CmpI = MRI->getVRegDef(CmpI->getOperand(1).getReg()); + + int Mask = 0, Val = 0; + bool OkCI = TII->analyzeCompare(CmpI, CmpR1, CmpR2, Mask, Val); + if (!OkCI) + return; + // Eliminate non-double input registers. + if (CmpR1 && MRI->getRegClass(CmpR1) != DoubleRC) + CmpR1 = 0; + if (CmpR2 && MRI->getRegClass(CmpR2) != DoubleRC) + CmpR2 = 0; + if (!CmpR1 && !CmpR2) + return; + + // Now examine the top of the loop: the phi nodes that could poten- + // tially define loop induction registers. The registers defined by + // such a phi node would be used in a 64-bit add, which then would + // be used in the loop compare instruction. + + // Get the set of all double registers defined by phi nodes in the + // loop header. + typedef std::vector<unsigned> UVect; + UVect DP; + for (auto &MI : *HB) { + if (!MI.isPHI()) + break; + const MachineOperand &MD = MI.getOperand(0); + unsigned R = MD.getReg(); + if (MRI->getRegClass(R) == DoubleRC) + DP.push_back(R); + } + if (DP.empty()) + return; + + auto NoIndOp = [this, CmpR1, CmpR2] (unsigned R) -> bool { + for (auto I = MRI->use_nodbg_begin(R), E = MRI->use_nodbg_end(); + I != E; ++I) { + const MachineInstr *UseI = I->getParent(); + if (UseI->getOpcode() != Hexagon::A2_addp) + continue; + // Get the output from the add. If it is one of the inputs to the + // loop-controlling compare instruction, then R is likely an induc- + // tion register. + unsigned T = UseI->getOperand(0).getReg(); + if (T == CmpR1 || T == CmpR2) + return false; + } + return true; + }; + UVect::iterator End = std::remove_if(DP.begin(), DP.end(), NoIndOp); + Rs.insert(DP.begin(), End); + Rs.insert(CmpR1); + Rs.insert(CmpR2); + + DEBUG({ + dbgs() << "For loop at BB#" << HB->getNumber() << " ind regs: "; + dump_partition(dbgs(), Rs, *TRI); + dbgs() << '\n'; + }); +} + + +void HexagonSplitDoubleRegs::collectIndRegs(LoopRegMap &IRM) { + typedef std::vector<MachineLoop*> LoopVector; + LoopVector WorkQ; + + for (auto I : *MLI) + WorkQ.push_back(I); + for (unsigned i = 0; i < WorkQ.size(); ++i) { + for (auto I : *WorkQ[i]) + WorkQ.push_back(I); + } + + USet Rs; + for (unsigned i = 0, n = WorkQ.size(); i < n; ++i) { + MachineLoop *L = WorkQ[i]; + Rs.clear(); + collectIndRegsForLoop(L, Rs); + if (!Rs.empty()) + IRM.insert(std::make_pair(L, Rs)); + } +} + + +void HexagonSplitDoubleRegs::createHalfInstr(unsigned Opc, MachineInstr *MI, + const UUPairMap &PairMap, unsigned SubR) { + MachineBasicBlock &B = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + MachineInstr *NewI = BuildMI(B, MI, DL, TII->get(Opc)); + + for (auto &Op : MI->operands()) { + if (!Op.isReg()) { + NewI->addOperand(Op); + continue; + } + // For register operands, set the subregister. + unsigned R = Op.getReg(); + unsigned SR = Op.getSubReg(); + bool isVirtReg = TargetRegisterInfo::isVirtualRegister(R); + bool isKill = Op.isKill(); + if (isVirtReg && MRI->getRegClass(R) == DoubleRC) { + isKill = false; + UUPairMap::const_iterator F = PairMap.find(R); + if (F == PairMap.end()) { + SR = SubR; + } else { + const UUPair &P = F->second; + R = (SubR == Hexagon::subreg_loreg) ? P.first : P.second; + SR = 0; + } + } + auto CO = MachineOperand::CreateReg(R, Op.isDef(), Op.isImplicit(), isKill, + Op.isDead(), Op.isUndef(), Op.isEarlyClobber(), SR, Op.isDebug(), + Op.isInternalRead()); + NewI->addOperand(CO); + } +} + + +void HexagonSplitDoubleRegs::splitMemRef(MachineInstr *MI, + const UUPairMap &PairMap) { + bool Load = MI->mayLoad(); + unsigned OrigOpc = MI->getOpcode(); + bool PostInc = (OrigOpc == Hexagon::L2_loadrd_pi || + OrigOpc == Hexagon::S2_storerd_pi); + MachineInstr *LowI, *HighI; + MachineBasicBlock &B = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + + // Index of the base-address-register operand. + unsigned AdrX = PostInc ? (Load ? 2 : 1) + : (Load ? 1 : 0); + MachineOperand &AdrOp = MI->getOperand(AdrX); + unsigned RSA = getRegState(AdrOp); + MachineOperand &ValOp = Load ? MI->getOperand(0) + : (PostInc ? MI->getOperand(3) + : MI->getOperand(2)); + UUPairMap::const_iterator F = PairMap.find(ValOp.getReg()); + assert(F != PairMap.end()); + + if (Load) { + const UUPair &P = F->second; + int64_t Off = PostInc ? 0 : MI->getOperand(2).getImm(); + LowI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.first) + .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) + .addImm(Off); + HighI = BuildMI(B, MI, DL, TII->get(Hexagon::L2_loadri_io), P.second) + .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) + .addImm(Off+4); + } else { + const UUPair &P = F->second; + int64_t Off = PostInc ? 0 : MI->getOperand(1).getImm(); + LowI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io)) + .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) + .addImm(Off) + .addReg(P.first); + HighI = BuildMI(B, MI, DL, TII->get(Hexagon::S2_storeri_io)) + .addReg(AdrOp.getReg(), RSA & ~RegState::Kill, AdrOp.getSubReg()) + .addImm(Off+4) + .addReg(P.second); + } + + if (PostInc) { + // Create the increment of the address register. + int64_t Inc = Load ? MI->getOperand(3).getImm() + : MI->getOperand(2).getImm(); + MachineOperand &UpdOp = Load ? MI->getOperand(1) : MI->getOperand(0); + const TargetRegisterClass *RC = MRI->getRegClass(UpdOp.getReg()); + unsigned NewR = MRI->createVirtualRegister(RC); + assert(!UpdOp.getSubReg() && "Def operand with subreg"); + BuildMI(B, MI, DL, TII->get(Hexagon::A2_addi), NewR) + .addReg(AdrOp.getReg(), RSA) + .addImm(Inc); + MRI->replaceRegWith(UpdOp.getReg(), NewR); + // The original instruction will be deleted later. + } + + // Generate a new pair of memory-operands. + MachineFunction &MF = *B.getParent(); + for (auto &MO : MI->memoperands()) { + const MachinePointerInfo &Ptr = MO->getPointerInfo(); + unsigned F = MO->getFlags(); + int A = MO->getAlignment(); + + auto *Tmp1 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, A); + LowI->addMemOperand(MF, Tmp1); + auto *Tmp2 = MF.getMachineMemOperand(Ptr, F, 4/*size*/, std::min(A, 4)); + HighI->addMemOperand(MF, Tmp2); + } +} + + +void HexagonSplitDoubleRegs::splitImmediate(MachineInstr *MI, + const UUPairMap &PairMap) { + MachineOperand &Op0 = MI->getOperand(0); + MachineOperand &Op1 = MI->getOperand(1); + assert(Op0.isReg() && Op1.isImm()); + uint64_t V = Op1.getImm(); + + MachineBasicBlock &B = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); + assert(F != PairMap.end()); + const UUPair &P = F->second; + + // The operand to A2_tfrsi can only have 32 significant bits. Immediate + // values in MachineOperand are stored as 64-bit integers, and so the + // value -1 may be represented either as 64-bit -1, or 4294967295. Both + // will have the 32 higher bits truncated in the end, but -1 will remain + // as -1, while the latter may appear to be a large unsigned value + // requiring a constant extender. The casting to int32_t will select the + // former representation. (The same reasoning applies to all 32-bit + // values.) + BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first) + .addImm(int32_t(V & 0xFFFFFFFFULL)); + BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second) + .addImm(int32_t(V >> 32)); +} + + +void HexagonSplitDoubleRegs::splitCombine(MachineInstr *MI, + const UUPairMap &PairMap) { + MachineOperand &Op0 = MI->getOperand(0); + MachineOperand &Op1 = MI->getOperand(1); + MachineOperand &Op2 = MI->getOperand(2); + assert(Op0.isReg()); + + MachineBasicBlock &B = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); + assert(F != PairMap.end()); + const UUPair &P = F->second; + + if (Op1.isImm()) { + BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.second) + .addImm(Op1.getImm()); + } else if (Op1.isReg()) { + BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.second) + .addReg(Op1.getReg(), getRegState(Op1), Op1.getSubReg()); + } else + llvm_unreachable("Unexpected operand"); + + if (Op2.isImm()) { + BuildMI(B, MI, DL, TII->get(Hexagon::A2_tfrsi), P.first) + .addImm(Op2.getImm()); + } else if (Op2.isReg()) { + BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first) + .addReg(Op2.getReg(), getRegState(Op2), Op2.getSubReg()); + } else + llvm_unreachable("Unexpected operand"); +} + + +void HexagonSplitDoubleRegs::splitExt(MachineInstr *MI, + const UUPairMap &PairMap) { + MachineOperand &Op0 = MI->getOperand(0); + MachineOperand &Op1 = MI->getOperand(1); + assert(Op0.isReg() && Op1.isReg()); + + MachineBasicBlock &B = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); + assert(F != PairMap.end()); + const UUPair &P = F->second; + unsigned RS = getRegState(Op1); + + BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), P.first) + .addReg(Op1.getReg(), RS & ~RegState::Kill, Op1.getSubReg()); + BuildMI(B, MI, DL, TII->get(Hexagon::S2_asr_i_r), P.second) + .addReg(Op1.getReg(), RS, Op1.getSubReg()) + .addImm(31); +} + + +void HexagonSplitDoubleRegs::splitShift(MachineInstr *MI, + const UUPairMap &PairMap) { + MachineOperand &Op0 = MI->getOperand(0); + MachineOperand &Op1 = MI->getOperand(1); + MachineOperand &Op2 = MI->getOperand(2); + assert(Op0.isReg() && Op1.isReg() && Op2.isImm()); + int64_t Sh64 = Op2.getImm(); + assert(Sh64 >= 0 && Sh64 < 64); + unsigned S = Sh64; + + UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); + assert(F != PairMap.end()); + const UUPair &P = F->second; + unsigned LoR = P.first; + unsigned HiR = P.second; + using namespace Hexagon; + + unsigned Opc = MI->getOpcode(); + bool Right = (Opc == S2_lsr_i_p || Opc == S2_asr_i_p); + bool Left = !Right; + bool Signed = (Opc == S2_asr_i_p); + + MachineBasicBlock &B = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + unsigned RS = getRegState(Op1); + unsigned ShiftOpc = Left ? S2_asl_i_r + : (Signed ? S2_asr_i_r : S2_lsr_i_r); + unsigned LoSR = subreg_loreg; + unsigned HiSR = subreg_hireg; + + if (S == 0) { + // No shift, subregister copy. + BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) + .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); + BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), HiR) + .addReg(Op1.getReg(), RS, HiSR); + } else if (S < 32) { + const TargetRegisterClass *IntRC = &IntRegsRegClass; + unsigned TmpR = MRI->createVirtualRegister(IntRC); + // Expansion: + // Shift left: DR = shl R, #s + // LoR = shl R.lo, #s + // TmpR = extractu R.lo, #s, #32-s + // HiR = or (TmpR, asl(R.hi, #s)) + // Shift right: DR = shr R, #s + // HiR = shr R.hi, #s + // TmpR = shr R.lo, #s + // LoR = insert TmpR, R.hi, #s, #32-s + + // Shift left: + // LoR = shl R.lo, #s + // Shift right: + // TmpR = shr R.lo, #s + + // Make a special case for A2_aslh and A2_asrh (they are predicable as + // opposed to S2_asl_i_r/S2_asr_i_r). + if (S == 16 && Left) + BuildMI(B, MI, DL, TII->get(A2_aslh), LoR) + .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); + else if (S == 16 && Signed) + BuildMI(B, MI, DL, TII->get(A2_asrh), TmpR) + .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); + else + BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? LoR : TmpR)) + .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR) + .addImm(S); + + if (Left) { + // TmpR = extractu R.lo, #s, #32-s + BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR) + .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR) + .addImm(S) + .addImm(32-S); + // HiR = or (TmpR, asl(R.hi, #s)) + BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) + .addReg(TmpR) + .addReg(Op1.getReg(), RS, HiSR) + .addImm(S); + } else { + // HiR = shr R.hi, #s + BuildMI(B, MI, DL, TII->get(ShiftOpc), HiR) + .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR) + .addImm(S); + // LoR = insert TmpR, R.hi, #s, #32-s + BuildMI(B, MI, DL, TII->get(S2_insert), LoR) + .addReg(TmpR) + .addReg(Op1.getReg(), RS, HiSR) + .addImm(S) + .addImm(32-S); + } + } else if (S == 32) { + BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), (Left ? HiR : LoR)) + .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR)); + if (!Signed) + BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR)) + .addImm(0); + else // Must be right shift. + BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR) + .addReg(Op1.getReg(), RS, HiSR) + .addImm(31); + } else if (S < 64) { + S -= 32; + if (S == 16 && Left) + BuildMI(B, MI, DL, TII->get(A2_aslh), HiR) + .addReg(Op1.getReg(), RS & ~RegState::Kill, LoSR); + else if (S == 16 && Signed) + BuildMI(B, MI, DL, TII->get(A2_asrh), LoR) + .addReg(Op1.getReg(), RS & ~RegState::Kill, HiSR); + else + BuildMI(B, MI, DL, TII->get(ShiftOpc), (Left ? HiR : LoR)) + .addReg(Op1.getReg(), RS & ~RegState::Kill, (Left ? LoSR : HiSR)) + .addImm(S); + + if (Signed) + BuildMI(B, MI, DL, TII->get(S2_asr_i_r), HiR) + .addReg(Op1.getReg(), RS, HiSR) + .addImm(31); + else + BuildMI(B, MI, DL, TII->get(A2_tfrsi), (Left ? LoR : HiR)) + .addImm(0); + } +} + + +void HexagonSplitDoubleRegs::splitAslOr(MachineInstr *MI, + const UUPairMap &PairMap) { + MachineOperand &Op0 = MI->getOperand(0); + MachineOperand &Op1 = MI->getOperand(1); + MachineOperand &Op2 = MI->getOperand(2); + MachineOperand &Op3 = MI->getOperand(3); + assert(Op0.isReg() && Op1.isReg() && Op2.isReg() && Op3.isImm()); + int64_t Sh64 = Op3.getImm(); + assert(Sh64 >= 0 && Sh64 < 64); + unsigned S = Sh64; + + UUPairMap::const_iterator F = PairMap.find(Op0.getReg()); + assert(F != PairMap.end()); + const UUPair &P = F->second; + unsigned LoR = P.first; + unsigned HiR = P.second; + using namespace Hexagon; + + MachineBasicBlock &B = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + unsigned RS1 = getRegState(Op1); + unsigned RS2 = getRegState(Op2); + const TargetRegisterClass *IntRC = &IntRegsRegClass; + + unsigned LoSR = subreg_loreg; + unsigned HiSR = subreg_hireg; + + // Op0 = S2_asl_i_p_or Op1, Op2, Op3 + // means: Op0 = or (Op1, asl(Op2, Op3)) + + // Expansion of + // DR = or (R1, asl(R2, #s)) + // + // LoR = or (R1.lo, asl(R2.lo, #s)) + // Tmp1 = extractu R2.lo, #s, #32-s + // Tmp2 = or R1.hi, Tmp1 + // HiR = or (Tmp2, asl(R2.hi, #s)) + + if (S == 0) { + // DR = or (R1, asl(R2, #0)) + // -> or (R1, R2) + // i.e. LoR = or R1.lo, R2.lo + // HiR = or R1.hi, R2.hi + BuildMI(B, MI, DL, TII->get(A2_or), LoR) + .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR) + .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR); + BuildMI(B, MI, DL, TII->get(A2_or), HiR) + .addReg(Op1.getReg(), RS1, HiSR) + .addReg(Op2.getReg(), RS2, HiSR); + } else if (S < 32) { + BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), LoR) + .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR) + .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR) + .addImm(S); + unsigned TmpR1 = MRI->createVirtualRegister(IntRC); + BuildMI(B, MI, DL, TII->get(S2_extractu), TmpR1) + .addReg(Op2.getReg(), RS2 & ~RegState::Kill, LoSR) + .addImm(S) + .addImm(32-S); + unsigned TmpR2 = MRI->createVirtualRegister(IntRC); + BuildMI(B, MI, DL, TII->get(A2_or), TmpR2) + .addReg(Op1.getReg(), RS1, HiSR) + .addReg(TmpR1); + BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) + .addReg(TmpR2) + .addReg(Op2.getReg(), RS2, HiSR) + .addImm(S); + } else if (S == 32) { + // DR = or (R1, asl(R2, #32)) + // -> or R1, R2.lo + // LoR = R1.lo + // HiR = or R1.hi, R2.lo + BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) + .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR); + BuildMI(B, MI, DL, TII->get(A2_or), HiR) + .addReg(Op1.getReg(), RS1, HiSR) + .addReg(Op2.getReg(), RS2, LoSR); + } else if (S < 64) { + // DR = or (R1, asl(R2, #s)) + // + // LoR = R1:lo + // HiR = or (R1:hi, asl(R2:lo, #s-32)) + S -= 32; + BuildMI(B, MI, DL, TII->get(TargetOpcode::COPY), LoR) + .addReg(Op1.getReg(), RS1 & ~RegState::Kill, LoSR); + BuildMI(B, MI, DL, TII->get(S2_asl_i_r_or), HiR) + .addReg(Op1.getReg(), RS1, HiSR) + .addReg(Op2.getReg(), RS2, LoSR) + .addImm(S); + } +} + + +bool HexagonSplitDoubleRegs::splitInstr(MachineInstr *MI, + const UUPairMap &PairMap) { + DEBUG(dbgs() << "Splitting: " << *MI); + bool Split = false; + unsigned Opc = MI->getOpcode(); + using namespace Hexagon; + + switch (Opc) { + case TargetOpcode::PHI: + case TargetOpcode::COPY: { + unsigned DstR = MI->getOperand(0).getReg(); + if (MRI->getRegClass(DstR) == DoubleRC) { + createHalfInstr(Opc, MI, PairMap, subreg_loreg); + createHalfInstr(Opc, MI, PairMap, subreg_hireg); + Split = true; + } + break; + } + case A2_andp: + createHalfInstr(A2_and, MI, PairMap, subreg_loreg); + createHalfInstr(A2_and, MI, PairMap, subreg_hireg); + Split = true; + break; + case A2_orp: + createHalfInstr(A2_or, MI, PairMap, subreg_loreg); + createHalfInstr(A2_or, MI, PairMap, subreg_hireg); + Split = true; + break; + case A2_xorp: + createHalfInstr(A2_xor, MI, PairMap, subreg_loreg); + createHalfInstr(A2_xor, MI, PairMap, subreg_hireg); + Split = true; + break; + + case L2_loadrd_io: + case L2_loadrd_pi: + case S2_storerd_io: + case S2_storerd_pi: + splitMemRef(MI, PairMap); + Split = true; + break; + + case A2_tfrpi: + case CONST64_Int_Real: + splitImmediate(MI, PairMap); + Split = true; + break; + + case A2_combineii: + case A4_combineir: + case A4_combineii: + case A4_combineri: + case A2_combinew: + splitCombine(MI, PairMap); + Split = true; + break; + + case A2_sxtw: + splitExt(MI, PairMap); + Split = true; + break; + + case S2_asl_i_p: + case S2_asr_i_p: + case S2_lsr_i_p: + splitShift(MI, PairMap); + Split = true; + break; + + case S2_asl_i_p_or: + splitAslOr(MI, PairMap); + Split = true; + break; + + default: + llvm_unreachable("Instruction not splitable"); + return false; + } + + return Split; +} + + +void HexagonSplitDoubleRegs::replaceSubregUses(MachineInstr *MI, + const UUPairMap &PairMap) { + for (auto &Op : MI->operands()) { + if (!Op.isReg() || !Op.isUse() || !Op.getSubReg()) + continue; + unsigned R = Op.getReg(); + UUPairMap::const_iterator F = PairMap.find(R); + if (F == PairMap.end()) + continue; + const UUPair &P = F->second; + switch (Op.getSubReg()) { + case Hexagon::subreg_loreg: + Op.setReg(P.first); + break; + case Hexagon::subreg_hireg: + Op.setReg(P.second); + break; + } + Op.setSubReg(0); + } +} + + +void HexagonSplitDoubleRegs::collapseRegPairs(MachineInstr *MI, + const UUPairMap &PairMap) { + MachineBasicBlock &B = *MI->getParent(); + DebugLoc DL = MI->getDebugLoc(); + + for (auto &Op : MI->operands()) { + if (!Op.isReg() || !Op.isUse()) + continue; + unsigned R = Op.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(R)) + continue; + if (MRI->getRegClass(R) != DoubleRC || Op.getSubReg()) + continue; + UUPairMap::const_iterator F = PairMap.find(R); + if (F == PairMap.end()) + continue; + const UUPair &Pr = F->second; + unsigned NewDR = MRI->createVirtualRegister(DoubleRC); + BuildMI(B, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), NewDR) + .addReg(Pr.first) + .addImm(Hexagon::subreg_loreg) + .addReg(Pr.second) + .addImm(Hexagon::subreg_hireg); + Op.setReg(NewDR); + } +} + + +bool HexagonSplitDoubleRegs::splitPartition(const USet &Part) { + const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; + typedef std::set<MachineInstr*> MISet; + bool Changed = false; + + DEBUG(dbgs() << "Splitting partition: "; dump_partition(dbgs(), Part, *TRI); + dbgs() << '\n'); + + UUPairMap PairMap; + + MISet SplitIns; + for (unsigned DR : Part) { + MachineInstr *DefI = MRI->getVRegDef(DR); + SplitIns.insert(DefI); + + // Collect all instructions, including fixed ones. We won't split them, + // but we need to visit them again to insert the REG_SEQUENCE instructions. + for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); + U != W; ++U) + SplitIns.insert(U->getParent()); + + unsigned LoR = MRI->createVirtualRegister(IntRC); + unsigned HiR = MRI->createVirtualRegister(IntRC); + DEBUG(dbgs() << "Created mapping: " << PrintReg(DR, TRI) << " -> " + << PrintReg(HiR, TRI) << ':' << PrintReg(LoR, TRI) << '\n'); + PairMap.insert(std::make_pair(DR, UUPair(LoR, HiR))); + } + + MISet Erase; + for (auto MI : SplitIns) { + if (isFixedInstr(MI)) { + collapseRegPairs(MI, PairMap); + } else { + bool Done = splitInstr(MI, PairMap); + if (Done) + Erase.insert(MI); + Changed |= Done; + } + } + + for (unsigned DR : Part) { + // Before erasing "double" instructions, revisit all uses of the double + // registers in this partition, and replace all uses of them with subre- + // gisters, with the corresponding single registers. + MISet Uses; + for (auto U = MRI->use_nodbg_begin(DR), W = MRI->use_nodbg_end(); + U != W; ++U) + Uses.insert(U->getParent()); + for (auto M : Uses) + replaceSubregUses(M, PairMap); + } + + for (auto MI : Erase) { + MachineBasicBlock *B = MI->getParent(); + B->erase(MI); + } + + return Changed; +} + + +bool HexagonSplitDoubleRegs::runOnMachineFunction(MachineFunction &MF) { + DEBUG(dbgs() << "Splitting double registers in function: " + << MF.getName() << '\n'); + + auto &ST = MF.getSubtarget<HexagonSubtarget>(); + TRI = ST.getRegisterInfo(); + TII = ST.getInstrInfo(); + MRI = &MF.getRegInfo(); + MLI = &getAnalysis<MachineLoopInfo>(); + + UUSetMap P2Rs; + LoopRegMap IRM; + + collectIndRegs(IRM); + partitionRegisters(P2Rs); + + DEBUG({ + dbgs() << "Register partitioning: (partition #0 is fixed)\n"; + for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) { + dbgs() << '#' << I->first << " -> "; + dump_partition(dbgs(), I->second, *TRI); + dbgs() << '\n'; + } + }); + + bool Changed = false; + int Limit = MaxHSDR; + + for (UUSetMap::iterator I = P2Rs.begin(), E = P2Rs.end(); I != E; ++I) { + if (I->first == 0) + continue; + if (Limit >= 0 && Counter >= Limit) + break; + USet &Part = I->second; + DEBUG(dbgs() << "Calculating profit for partition #" << I->first << '\n'); + if (!isProfitable(Part, IRM)) + continue; + Counter++; + Changed |= splitPartition(Part); + } + + return Changed; +} + +FunctionPass *llvm::createHexagonSplitDoubleRegs() { + return new HexagonSplitDoubleRegs(); +} |