diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td | 3549 |
1 files changed, 3549 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td new file mode 100644 index 0000000..c0c0df6 --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td @@ -0,0 +1,3549 @@ +//==- HexagonInstrInfo.td - Target Description for Hexagon -*- tablegen -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file describes the Hexagon instructions in TableGen format. +// +//===----------------------------------------------------------------------===// + +include "HexagonInstrFormats.td" +include "HexagonImmediates.td" + +//===----------------------------------------------------------------------===// +// Hexagon Instruction Predicate Definitions. +//===----------------------------------------------------------------------===// +def HasV2T : Predicate<"Subtarget.hasV2TOps()">; +def HasV2TOnly : Predicate<"Subtarget.hasV2TOpsOnly()">; +def NoV2T : Predicate<"!Subtarget.hasV2TOps()">; +def HasV3T : Predicate<"Subtarget.hasV3TOps()">; +def HasV3TOnly : Predicate<"Subtarget.hasV3TOpsOnly()">; +def NoV3T : Predicate<"!Subtarget.hasV3TOps()">; +def HasV4T : Predicate<"Subtarget.hasV4TOps()">; +def NoV4T : Predicate<"!Subtarget.hasV4TOps()">; +def HasV5T : Predicate<"Subtarget.hasV5TOps()">; +def NoV5T : Predicate<"!Subtarget.hasV5TOps()">; +def UseMEMOP : Predicate<"Subtarget.useMemOps()">; +def IEEERndNearV5T : Predicate<"Subtarget.modeIEEERndNear()">; + +// Addressing modes. +def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>; +def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>; +def ADDRriS11_0 : ComplexPattern<i32, 2, "SelectADDRriS11_0", [frameindex], []>; +def ADDRriS11_1 : ComplexPattern<i32, 2, "SelectADDRriS11_1", [frameindex], []>; +def ADDRriS11_2 : ComplexPattern<i32, 2, "SelectADDRriS11_2", [frameindex], []>; +def ADDRriS11_3 : ComplexPattern<i32, 2, "SelectADDRriS11_3", [frameindex], []>; +def ADDRriU6_0 : ComplexPattern<i32, 2, "SelectADDRriU6_0", [frameindex], []>; +def ADDRriU6_1 : ComplexPattern<i32, 2, "SelectADDRriU6_1", [frameindex], []>; +def ADDRriU6_2 : ComplexPattern<i32, 2, "SelectADDRriU6_2", [frameindex], []>; + +// Address operands. +def MEMrr : Operand<i32> { + let PrintMethod = "printMEMrrOperand"; + let MIOperandInfo = (ops IntRegs, IntRegs); +} + +// Address operands +def MEMri : Operand<i32> { + let PrintMethod = "printMEMriOperand"; + let MIOperandInfo = (ops IntRegs, IntRegs); +} + +def MEMri_s11_2 : Operand<i32>, + ComplexPattern<i32, 2, "SelectMEMriS11_2", []> { + let PrintMethod = "printMEMriOperand"; + let MIOperandInfo = (ops IntRegs, s11Imm); +} + +def FrameIndex : Operand<i32> { + let PrintMethod = "printFrameIndexOperand"; + let MIOperandInfo = (ops IntRegs, s11Imm); +} + +let PrintMethod = "printGlobalOperand" in + def globaladdress : Operand<i32>; + +let PrintMethod = "printJumpTable" in + def jumptablebase : Operand<i32>; + +def brtarget : Operand<OtherVT>; +def calltarget : Operand<i32>; + +def bblabel : Operand<i32>; +def bbl : SDNode<"ISD::BasicBlock", SDTPtrLeaf , [], "BasicBlockSDNode">; + +def symbolHi32 : Operand<i32> { + let PrintMethod = "printSymbolHi"; +} +def symbolLo32 : Operand<i32> { + let PrintMethod = "printSymbolLo"; +} + +// Multi-class for logical operators. +multiclass ALU32_rr_ri<string OpcStr, SDNode OpNode> { + def rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), + [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$b), + (i32 IntRegs:$c)))]>; + def ri : ALU32_ri<(outs IntRegs:$dst), (ins s10Imm:$b, IntRegs:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "(#$b, $c)")), + [(set (i32 IntRegs:$dst), (OpNode s10Imm:$b, + (i32 IntRegs:$c)))]>; +} + +// Multi-class for compare ops. +let isCompare = 1 in { +multiclass CMP64_rr<string OpcStr, PatFrag OpNode> { + def rr : ALU64_rr<(outs PredRegs:$dst), (ins DoubleRegs:$b, DoubleRegs:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), + [(set (i1 PredRegs:$dst), + (OpNode (i64 DoubleRegs:$b), (i64 DoubleRegs:$c)))]>; +} +multiclass CMP32_rr<string OpcStr, PatFrag OpNode> { + def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), + [(set (i1 PredRegs:$dst), + (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>; +} + +multiclass CMP32_rr_ri_s10<string OpcStr, PatFrag OpNode> { + def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), + [(set (i1 PredRegs:$dst), + (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>; + def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s10Imm:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), + [(set (i1 PredRegs:$dst), + (OpNode (i32 IntRegs:$b), s10ImmPred:$c))]>; +} + +multiclass CMP32_rr_ri_u9<string OpcStr, PatFrag OpNode> { + def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")), + [(set (i1 PredRegs:$dst), + (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>; + def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, u9Imm:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), + [(set (i1 PredRegs:$dst), + (OpNode (i32 IntRegs:$b), u9ImmPred:$c))]>; +} + +multiclass CMP32_ri_u8<string OpcStr, PatFrag OpNode> { + def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, u8Imm:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), + [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), + u8ImmPred:$c))]>; +} + +multiclass CMP32_ri_s8<string OpcStr, PatFrag OpNode> { + def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s8Imm:$c), + !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")), + [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b), + s8ImmPred:$c))]>; +} +} + +//===----------------------------------------------------------------------===// +// ALU32/ALU + +//===----------------------------------------------------------------------===// +// Add. +let isCommutable = 1, isPredicable = 1 in +def ADD_rr : ALU32_rr<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2), + "$dst = add($src1, $src2)", + [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +let isPredicable = 1 in +def ADD_ri : ALU32_ri<(outs IntRegs:$dst), + (ins IntRegs:$src1, s16Imm:$src2), + "$dst = add($src1, #$src2)", + [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1), + s16ImmPred:$src2))]>; + +// Logical operations. +let isPredicable = 1 in +def XOR_rr : ALU32_rr<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2), + "$dst = xor($src1, $src2)", + [(set (i32 IntRegs:$dst), (xor (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +let isCommutable = 1, isPredicable = 1 in +def AND_rr : ALU32_rr<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2), + "$dst = and($src1, $src2)", + [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +def OR_ri : ALU32_ri<(outs IntRegs:$dst), + (ins IntRegs:$src1, s10Imm:$src2), + "$dst = or($src1, #$src2)", + [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1), + s10ImmPred:$src2))]>; + +def NOT_rr : ALU32_rr<(outs IntRegs:$dst), + (ins IntRegs:$src1), + "$dst = not($src1)", + [(set (i32 IntRegs:$dst), (not (i32 IntRegs:$src1)))]>; + +def AND_ri : ALU32_ri<(outs IntRegs:$dst), + (ins IntRegs:$src1, s10Imm:$src2), + "$dst = and($src1, #$src2)", + [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1), + s10ImmPred:$src2))]>; + +let isCommutable = 1, isPredicable = 1 in +def OR_rr : ALU32_rr<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2), + "$dst = or($src1, $src2)", + [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +// Negate. +def NEG : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), + "$dst = neg($src1)", + [(set (i32 IntRegs:$dst), (ineg (i32 IntRegs:$src1)))]>; +// Nop. +let neverHasSideEffects = 1 in +def NOP : ALU32_rr<(outs), (ins), + "nop", + []>; + +// Subtract. +let isPredicable = 1 in +def SUB_rr : ALU32_rr<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2), + "$dst = sub($src1, $src2)", + [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +// Rd32=sub(#s10,Rs32) +def SUB_ri : ALU32_ri<(outs IntRegs:$dst), + (ins s10Imm:$src1, IntRegs:$src2), + "$dst = sub(#$src1, $src2)", + [(set IntRegs:$dst, (sub s10ImmPred:$src1, IntRegs:$src2))]>; + +// Transfer immediate. +let isMoveImm = 1, isReMaterializable = 1, isPredicable = 1 in +def TFRI : ALU32_ri<(outs IntRegs:$dst), (ins s16Imm:$src1), + "$dst = #$src1", + [(set (i32 IntRegs:$dst), s16ImmPred:$src1)]>; + +// Transfer register. +let neverHasSideEffects = 1, isPredicable = 1 in +def TFR : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1), + "$dst = $src1", + []>; + +let neverHasSideEffects = 1, isPredicable = 1 in +def TFR64 : ALU32_ri<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1), + "$dst = $src1", + []>; + +// Transfer control register. +let neverHasSideEffects = 1 in +def TFCR : CRInst<(outs CRRegs:$dst), (ins IntRegs:$src1), + "$dst = $src1", + []>; +//===----------------------------------------------------------------------===// +// ALU32/ALU - +//===----------------------------------------------------------------------===// + + +//===----------------------------------------------------------------------===// +// ALU32/PERM + +//===----------------------------------------------------------------------===// + +// Combine. +let isPredicable = 1, neverHasSideEffects = 1 in +def COMBINE_rr : ALU32_rr<(outs DoubleRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2), + "$dst = combine($src1, $src2)", + []>; + +let neverHasSideEffects = 1 in +def COMBINE_ii : ALU32_ii<(outs DoubleRegs:$dst), + (ins s8Imm:$src1, s8Imm:$src2), + "$dst = combine(#$src1, #$src2)", + []>; + +// Mux. +def VMUX_prr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1, + DoubleRegs:$src2, + DoubleRegs:$src3), + "$dst = vmux($src1, $src2, $src3)", + []>; + +def MUX_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, + IntRegs:$src2, IntRegs:$src3), + "$dst = mux($src1, $src2, $src3)", + [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), + (i32 IntRegs:$src2), + (i32 IntRegs:$src3))))]>; + +def MUX_ir : ALU32_ir<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Imm:$src2, + IntRegs:$src3), + "$dst = mux($src1, #$src2, $src3)", + [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), + s8ImmPred:$src2, + (i32 IntRegs:$src3))))]>; + +def MUX_ri : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2, + s8Imm:$src3), + "$dst = mux($src1, $src2, #$src3)", + [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), + (i32 IntRegs:$src2), + s8ImmPred:$src3)))]>; + +def MUX_ii : ALU32_ii<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Imm:$src2, + s8Imm:$src3), + "$dst = mux($src1, #$src2, #$src3)", + [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1), + s8ImmPred:$src2, + s8ImmPred:$src3)))]>; + +// Shift halfword. +let isPredicable = 1 in +def ASLH : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), + "$dst = aslh($src1)", + [(set (i32 IntRegs:$dst), (shl 16, (i32 IntRegs:$src1)))]>; + +let isPredicable = 1 in +def ASRH : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), + "$dst = asrh($src1)", + [(set (i32 IntRegs:$dst), (sra 16, (i32 IntRegs:$src1)))]>; + +// Sign extend. +let isPredicable = 1 in +def SXTB : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), + "$dst = sxtb($src1)", + [(set (i32 IntRegs:$dst), (sext_inreg (i32 IntRegs:$src1), i8))]>; + +let isPredicable = 1 in +def SXTH : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), + "$dst = sxth($src1)", + [(set (i32 IntRegs:$dst), (sext_inreg (i32 IntRegs:$src1), i16))]>; + +// Zero extend. +let isPredicable = 1, neverHasSideEffects = 1 in +def ZXTB : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), + "$dst = zxtb($src1)", + []>; + +let isPredicable = 1, neverHasSideEffects = 1 in +def ZXTH : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1), + "$dst = zxth($src1)", + []>; +//===----------------------------------------------------------------------===// +// ALU32/PERM - +//===----------------------------------------------------------------------===// + + +//===----------------------------------------------------------------------===// +// ALU32/PRED + +//===----------------------------------------------------------------------===// + +// Conditional add. +let neverHasSideEffects = 1, isPredicated = 1 in +def ADD_ri_cPt : ALU32_ri<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, s8Imm:$src3), + "if ($src1) $dst = add($src2, #$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def ADD_ri_cNotPt : ALU32_ri<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, s8Imm:$src3), + "if (!$src1) $dst = add($src2, #$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def ADD_ri_cdnPt : ALU32_ri<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, s8Imm:$src3), + "if ($src1.new) $dst = add($src2, #$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def ADD_ri_cdnNotPt : ALU32_ri<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, s8Imm:$src3), + "if (!$src1.new) $dst = add($src2, #$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def ADD_rr_cPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if ($src1) $dst = add($src2, $src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def ADD_rr_cNotPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if (!$src1) $dst = add($src2, $src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def ADD_rr_cdnPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if ($src1.new) $dst = add($src2, $src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def ADD_rr_cdnNotPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if (!$src1.new) $dst = add($src2, $src3)", + []>; + + +// Conditional combine. + +let neverHasSideEffects = 1, isPredicated = 1 in +def COMBINE_rr_cPt : ALU32_rr<(outs DoubleRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if ($src1) $dst = combine($src2, $src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def COMBINE_rr_cNotPt : ALU32_rr<(outs DoubleRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if (!$src1) $dst = combine($src2, $src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def COMBINE_rr_cdnPt : ALU32_rr<(outs DoubleRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if ($src1.new) $dst = combine($src2, $src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def COMBINE_rr_cdnNotPt : ALU32_rr<(outs DoubleRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if (!$src1.new) $dst = combine($src2, $src3)", + []>; + +// Conditional logical operations. + +let isPredicated = 1 in +def XOR_rr_cPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if ($src1) $dst = xor($src2, $src3)", + []>; + +let isPredicated = 1 in +def XOR_rr_cNotPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if (!$src1) $dst = xor($src2, $src3)", + []>; + +let isPredicated = 1 in +def XOR_rr_cdnPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if ($src1.new) $dst = xor($src2, $src3)", + []>; + +let isPredicated = 1 in +def XOR_rr_cdnNotPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if (!$src1.new) $dst = xor($src2, $src3)", + []>; + +let isPredicated = 1 in +def AND_rr_cPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if ($src1) $dst = and($src2, $src3)", + []>; + +let isPredicated = 1 in +def AND_rr_cNotPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if (!$src1) $dst = and($src2, $src3)", + []>; + +let isPredicated = 1 in +def AND_rr_cdnPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if ($src1.new) $dst = and($src2, $src3)", + []>; + +let isPredicated = 1 in +def AND_rr_cdnNotPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if (!$src1.new) $dst = and($src2, $src3)", + []>; + +let isPredicated = 1 in +def OR_rr_cPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if ($src1) $dst = or($src2, $src3)", + []>; + +let isPredicated = 1 in +def OR_rr_cNotPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if (!$src1) $dst = or($src2, $src3)", + []>; + +let isPredicated = 1 in +def OR_rr_cdnPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if ($src1.new) $dst = or($src2, $src3)", + []>; + +let isPredicated = 1 in +def OR_rr_cdnNotPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if (!$src1.new) $dst = or($src2, $src3)", + []>; + + +// Conditional subtract. + +let isPredicated = 1 in +def SUB_rr_cPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if ($src1) $dst = sub($src2, $src3)", + []>; + +let isPredicated = 1 in +def SUB_rr_cNotPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if (!$src1) $dst = sub($src2, $src3)", + []>; + +let isPredicated = 1 in +def SUB_rr_cdnPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if ($src1.new) $dst = sub($src2, $src3)", + []>; + +let isPredicated = 1 in +def SUB_rr_cdnNotPt : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "if (!$src1.new) $dst = sub($src2, $src3)", + []>; + + +// Conditional transfer. +let neverHasSideEffects = 1, isPredicated = 1 in +def TFR_cPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2), + "if ($src1) $dst = $src2", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def TFR_cNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, + IntRegs:$src2), + "if (!$src1) $dst = $src2", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def TFR64_cPt : ALU32_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1, + DoubleRegs:$src2), + "if ($src1) $dst = $src2", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def TFR64_cNotPt : ALU32_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1, + DoubleRegs:$src2), + "if (!$src1) $dst = $src2", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def TFRI_cPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Imm:$src2), + "if ($src1) $dst = #$src2", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def TFRI_cNotPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, + s12Imm:$src2), + "if (!$src1) $dst = #$src2", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def TFR_cdnPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, + IntRegs:$src2), + "if ($src1.new) $dst = $src2", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def TFR_cdnNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, + IntRegs:$src2), + "if (!$src1.new) $dst = $src2", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def TFRI_cdnPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, + s12Imm:$src2), + "if ($src1.new) $dst = #$src2", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def TFRI_cdnNotPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, + s12Imm:$src2), + "if (!$src1.new) $dst = #$src2", + []>; + +// Compare. +defm CMPGTU : CMP32_rr_ri_u9<"cmp.gtu", setugt>; +defm CMPGT : CMP32_rr_ri_s10<"cmp.gt", setgt>; +defm CMPLT : CMP32_rr<"cmp.lt", setlt>; +defm CMPLTU : CMP32_rr<"cmp.ltu", setult>; +defm CMPEQ : CMP32_rr_ri_s10<"cmp.eq", seteq>; +defm CMPGE : CMP32_ri_s8<"cmp.ge", setge>; +defm CMPGEU : CMP32_ri_u8<"cmp.geu", setuge>; +//===----------------------------------------------------------------------===// +// ALU32/PRED - +//===----------------------------------------------------------------------===// + + +//===----------------------------------------------------------------------===// +// ALU64/ALU + +//===----------------------------------------------------------------------===// +// Add. +def ADD64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = add($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (add (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2)))]>; + +// Add halfword. + +// Compare. +defm CMPEHexagon4 : CMP64_rr<"cmp.eq", seteq>; +defm CMPGT64 : CMP64_rr<"cmp.gt", setgt>; +defm CMPGTU64 : CMP64_rr<"cmp.gtu", setugt>; + +// Logical operations. +def AND_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = and($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (and (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2)))]>; + +def OR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = or($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (or (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2)))]>; + +def XOR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = xor($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (xor (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2)))]>; + +// Maximum. +def MAXw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = max($src2, $src1)", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 (setlt (i32 IntRegs:$src2), + (i32 IntRegs:$src1))), + (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; + +def MAXUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = maxu($src2, $src1)", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 (setult (i32 IntRegs:$src2), + (i32 IntRegs:$src1))), + (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; + +def MAXd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = max($src2, $src1)", + [(set (i64 DoubleRegs:$dst), + (i64 (select (i1 (setlt (i64 DoubleRegs:$src2), + (i64 DoubleRegs:$src1))), + (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2))))]>; + +def MAXUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = maxu($src2, $src1)", + [(set (i64 DoubleRegs:$dst), + (i64 (select (i1 (setult (i64 DoubleRegs:$src2), + (i64 DoubleRegs:$src1))), + (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2))))]>; + +// Minimum. +def MINw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = min($src2, $src1)", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 (setgt (i32 IntRegs:$src2), + (i32 IntRegs:$src1))), + (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; + +def MINUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = minu($src2, $src1)", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 (setugt (i32 IntRegs:$src2), + (i32 IntRegs:$src1))), + (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>; + +def MINd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = min($src2, $src1)", + [(set (i64 DoubleRegs:$dst), + (i64 (select (i1 (setgt (i64 DoubleRegs:$src2), + (i64 DoubleRegs:$src1))), + (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2))))]>; + +def MINUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = minu($src2, $src1)", + [(set (i64 DoubleRegs:$dst), + (i64 (select (i1 (setugt (i64 DoubleRegs:$src2), + (i64 DoubleRegs:$src1))), + (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2))))]>; + +// Subtract. +def SUB64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2), + "$dst = sub($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (sub (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2)))]>; + +// Subtract halfword. + +// Transfer register. +let neverHasSideEffects = 1 in +def TFR_64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1), + "$dst = $src1", + []>; +//===----------------------------------------------------------------------===// +// ALU64/ALU - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// ALU64/BIT + +//===----------------------------------------------------------------------===// +// +//===----------------------------------------------------------------------===// +// ALU64/BIT - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// ALU64/PERM + +//===----------------------------------------------------------------------===// +// +//===----------------------------------------------------------------------===// +// ALU64/PERM - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// CR + +//===----------------------------------------------------------------------===// +// Logical reductions on predicates. + +// Looping instructions. + +// Pipelined looping instructions. + +// Logical operations on predicates. +def AND_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), + "$dst = and($src1, $src2)", + [(set (i1 PredRegs:$dst), (and (i1 PredRegs:$src1), + (i1 PredRegs:$src2)))]>; + +let neverHasSideEffects = 1 in +def AND_pnotp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, + PredRegs:$src2), + "$dst = and($src1, !$src2)", + []>; + +def ANY_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1), + "$dst = any8($src1)", + []>; + +def ALL_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1), + "$dst = all8($src1)", + []>; + +def VITPACK_pp : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1, + PredRegs:$src2), + "$dst = vitpack($src1, $src2)", + []>; + +def VALIGN_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2, + PredRegs:$src3), + "$dst = valignb($src1, $src2, $src3)", + []>; + +def VSPLICE_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + DoubleRegs:$src2, + PredRegs:$src3), + "$dst = vspliceb($src1, $src2, $src3)", + []>; + +def MASK_p : SInst<(outs DoubleRegs:$dst), (ins PredRegs:$src1), + "$dst = mask($src1)", + []>; + +def NOT_p : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1), + "$dst = not($src1)", + [(set (i1 PredRegs:$dst), (not (i1 PredRegs:$src1)))]>; + +def OR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), + "$dst = or($src1, $src2)", + [(set (i1 PredRegs:$dst), (or (i1 PredRegs:$src1), + (i1 PredRegs:$src2)))]>; + +def XOR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2), + "$dst = xor($src1, $src2)", + [(set (i1 PredRegs:$dst), (xor (i1 PredRegs:$src1), + (i1 PredRegs:$src2)))]>; + + +// User control register transfer. +//===----------------------------------------------------------------------===// +// CR - +//===----------------------------------------------------------------------===// + + +//===----------------------------------------------------------------------===// +// J + +//===----------------------------------------------------------------------===// +// Jump to address. +let isBranch = 1, isTerminator=1, isBarrier = 1, isPredicable = 1 in { + def JMP : JInst< (outs), + (ins brtarget:$offset), + "jump $offset", + [(br bb:$offset)]>; +} + +// if (p0) jump +let isBranch = 1, isTerminator=1, Defs = [PC], + isPredicated = 1 in { + def JMP_c : JInst< (outs), + (ins PredRegs:$src, brtarget:$offset), + "if ($src) jump $offset", + [(brcond (i1 PredRegs:$src), bb:$offset)]>; +} + +// if (!p0) jump +let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC], + isPredicated = 1 in { + def JMP_cNot : JInst< (outs), + (ins PredRegs:$src, brtarget:$offset), + "if (!$src) jump $offset", + []>; +} + +let isTerminator = 1, isBranch = 1, neverHasSideEffects = 1, Defs = [PC], + isPredicated = 1 in { + def BRCOND : JInst < (outs), (ins PredRegs:$pred, brtarget:$dst), + "if ($pred) jump $dst", + []>; +} + +// Jump to address conditioned on new predicate. +// if (p0) jump:t +let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC], + isPredicated = 1 in { + def JMP_cdnPt : JInst< (outs), + (ins PredRegs:$src, brtarget:$offset), + "if ($src.new) jump:t $offset", + []>; +} + +// if (!p0) jump:t +let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC], + isPredicated = 1 in { + def JMP_cdnNotPt : JInst< (outs), + (ins PredRegs:$src, brtarget:$offset), + "if (!$src.new) jump:t $offset", + []>; +} + +// Not taken. +let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC], + isPredicated = 1 in { + def JMP_cdnPnt : JInst< (outs), + (ins PredRegs:$src, brtarget:$offset), + "if ($src.new) jump:nt $offset", + []>; +} + +// Not taken. +let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC], + isPredicated = 1 in { + def JMP_cdnNotPnt : JInst< (outs), + (ins PredRegs:$src, brtarget:$offset), + "if (!$src.new) jump:nt $offset", + []>; +} +//===----------------------------------------------------------------------===// +// J - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// JR + +//===----------------------------------------------------------------------===// +def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone, + [SDNPHasChain, SDNPOptInGlue]>; + +// Jump to address from register. +let isPredicable =1, isReturn = 1, isTerminator = 1, isBarrier = 1, + Defs = [PC], Uses = [R31] in { + def JMPR: JRInst<(outs), (ins), + "jumpr r31", + [(retflag)]>; +} + +// Jump to address from register. +let isReturn = 1, isTerminator = 1, isBarrier = 1, isPredicated = 1, + Defs = [PC], Uses = [R31] in { + def JMPR_cPt: JRInst<(outs), (ins PredRegs:$src1), + "if ($src1) jumpr r31", + []>; +} + +// Jump to address from register. +let isReturn = 1, isTerminator = 1, isBarrier = 1, isPredicated = 1, + Defs = [PC], Uses = [R31] in { + def JMPR_cNotPt: JRInst<(outs), (ins PredRegs:$src1), + "if (!$src1) jumpr r31", + []>; +} + +//===----------------------------------------------------------------------===// +// JR - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// LD + +//===----------------------------------------------------------------------===// +/// +/// Make sure that in post increment load, the first operand is always the post +/// increment operand. +/// +// Load doubleword. +let isPredicable = 1 in +def LDrid : LDInst<(outs DoubleRegs:$dst), + (ins MEMri:$addr), + "$dst = memd($addr)", + [(set (i64 DoubleRegs:$dst), (i64 (load ADDRriS11_3:$addr)))]>; + +let isPredicable = 1, AddedComplexity = 20 in +def LDrid_indexed : LDInst<(outs DoubleRegs:$dst), + (ins IntRegs:$src1, s11_3Imm:$offset), + "$dst = memd($src1+#$offset)", + [(set (i64 DoubleRegs:$dst), + (i64 (load (add (i32 IntRegs:$src1), + s11_3ImmPred:$offset))))]>; + +let neverHasSideEffects = 1 in +def LDrid_GP : LDInst2<(outs DoubleRegs:$dst), + (ins globaladdress:$global, u16Imm:$offset), + "$dst = memd(#$global+$offset)", + []>, + Requires<[NoV4T]>; + +let neverHasSideEffects = 1 in +def LDd_GP : LDInst2<(outs DoubleRegs:$dst), + (ins globaladdress:$global), + "$dst = memd(#$global)", + []>, + Requires<[NoV4T]>; + +let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in +def POST_LDrid : LDInst2PI<(outs DoubleRegs:$dst, IntRegs:$dst2), + (ins IntRegs:$src1, s4Imm:$offset), + "$dst = memd($src1++#$offset)", + [], + "$src1 = $dst2">; + +// Load doubleword conditionally. +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrid_cPt : LDInst2<(outs DoubleRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if ($src1) $dst = memd($addr)", + []>; + + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrid_cNotPt : LDInst2<(outs DoubleRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if (!$src1) $dst = memd($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrid_indexed_cPt : LDInst2<(outs DoubleRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3), + "if ($src1) $dst = memd($src2+#$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrid_indexed_cNotPt : LDInst2<(outs DoubleRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3), + "if (!$src1) $dst = memd($src2+#$src3)", + []>; + +let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in +def POST_LDrid_cPt : LDInst2PI<(outs DoubleRegs:$dst1, IntRegs:$dst2), + (ins PredRegs:$src1, IntRegs:$src2, s4_3Imm:$src3), + "if ($src1) $dst1 = memd($src2++#$src3)", + [], + "$src2 = $dst2">; + +let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in +def POST_LDrid_cNotPt : LDInst2PI<(outs DoubleRegs:$dst1, IntRegs:$dst2), + (ins PredRegs:$src1, IntRegs:$src2, s4_3Imm:$src3), + "if (!$src1) $dst1 = memd($src2++#$src3)", + [], + "$src2 = $dst2">; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrid_cdnPt : LDInst2<(outs DoubleRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if ($src1.new) $dst = memd($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrid_cdnNotPt : LDInst2<(outs DoubleRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if (!$src1.new) $dst = memd($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrid_indexed_cdnPt : LDInst2<(outs DoubleRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3), + "if ($src1.new) $dst = memd($src2+#$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrid_indexed_cdnNotPt : LDInst2<(outs DoubleRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3), + "if (!$src1.new) $dst = memd($src2+#$src3)", + []>; + + +// Load byte. +let isPredicable = 1 in +def LDrib : LDInst<(outs IntRegs:$dst), + (ins MEMri:$addr), + "$dst = memb($addr)", + [(set (i32 IntRegs:$dst), (i32 (sextloadi8 ADDRriS11_0:$addr)))]>; + +// Load byte any-extend. +def : Pat < (i32 (extloadi8 ADDRriS11_0:$addr)), + (i32 (LDrib ADDRriS11_0:$addr)) >; + +// Indexed load byte. +let isPredicable = 1, AddedComplexity = 20 in +def LDrib_indexed : LDInst<(outs IntRegs:$dst), + (ins IntRegs:$src1, s11_0Imm:$offset), + "$dst = memb($src1+#$offset)", + [(set (i32 IntRegs:$dst), + (i32 (sextloadi8 (add (i32 IntRegs:$src1), + s11_0ImmPred:$offset))))]>; + +// Indexed load byte any-extend. +let AddedComplexity = 20 in +def : Pat < (i32 (extloadi8 (add IntRegs:$src1, s11_0ImmPred:$offset))), + (i32 (LDrib_indexed IntRegs:$src1, s11_0ImmPred:$offset)) >; + +let neverHasSideEffects = 1 in +def LDrib_GP : LDInst2<(outs IntRegs:$dst), + (ins globaladdress:$global, u16Imm:$offset), + "$dst = memb(#$global+$offset)", + []>, + Requires<[NoV4T]>; + +let neverHasSideEffects = 1 in +def LDb_GP : LDInst2<(outs IntRegs:$dst), + (ins globaladdress:$global), + "$dst = memb(#$global)", + []>, + Requires<[NoV4T]>; + +let neverHasSideEffects = 1 in +def LDub_GP : LDInst2<(outs IntRegs:$dst), + (ins globaladdress:$global), + "$dst = memub(#$global)", + []>, + Requires<[NoV4T]>; + +let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in +def POST_LDrib : LDInst2PI<(outs IntRegs:$dst, IntRegs:$dst2), + (ins IntRegs:$src1, s4Imm:$offset), + "$dst = memb($src1++#$offset)", + [], + "$src1 = $dst2">; + +// Load byte conditionally. +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrib_cPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if ($src1) $dst = memb($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrib_cNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if (!$src1) $dst = memb($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrib_indexed_cPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), + "if ($src1) $dst = memb($src2+#$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrib_indexed_cNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), + "if (!$src1) $dst = memb($src2+#$src3)", + []>; + +let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in +def POST_LDrib_cPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), + (ins PredRegs:$src1, IntRegs:$src2, s4_0Imm:$src3), + "if ($src1) $dst1 = memb($src2++#$src3)", + [], + "$src2 = $dst2">; + +let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in +def POST_LDrib_cNotPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), + (ins PredRegs:$src1, IntRegs:$src2, s4_0Imm:$src3), + "if (!$src1) $dst1 = memb($src2++#$src3)", + [], + "$src2 = $dst2">; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrib_cdnPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if ($src1.new) $dst = memb($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrib_cdnNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if (!$src1.new) $dst = memb($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrib_indexed_cdnPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), + "if ($src1.new) $dst = memb($src2+#$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrib_indexed_cdnNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), + "if (!$src1.new) $dst = memb($src2+#$src3)", + []>; + + +// Load halfword. +let isPredicable = 1 in +def LDrih : LDInst<(outs IntRegs:$dst), + (ins MEMri:$addr), + "$dst = memh($addr)", + [(set (i32 IntRegs:$dst), (i32 (sextloadi16 ADDRriS11_1:$addr)))]>; + +let isPredicable = 1, AddedComplexity = 20 in +def LDrih_indexed : LDInst<(outs IntRegs:$dst), + (ins IntRegs:$src1, s11_1Imm:$offset), + "$dst = memh($src1+#$offset)", + [(set (i32 IntRegs:$dst), + (i32 (sextloadi16 (add (i32 IntRegs:$src1), + s11_1ImmPred:$offset))))]>; + +def : Pat < (i32 (extloadi16 ADDRriS11_1:$addr)), + (i32 (LDrih ADDRriS11_1:$addr))>; + +let AddedComplexity = 20 in +def : Pat < (i32 (extloadi16 (add IntRegs:$src1, s11_1ImmPred:$offset))), + (i32 (LDrih_indexed IntRegs:$src1, s11_1ImmPred:$offset)) >; + +let neverHasSideEffects = 1 in +def LDrih_GP : LDInst2<(outs IntRegs:$dst), + (ins globaladdress:$global, u16Imm:$offset), + "$dst = memh(#$global+$offset)", + []>, + Requires<[NoV4T]>; + +let neverHasSideEffects = 1 in +def LDh_GP : LDInst2<(outs IntRegs:$dst), + (ins globaladdress:$global), + "$dst = memh(#$global)", + []>, + Requires<[NoV4T]>; + +let neverHasSideEffects = 1 in +def LDuh_GP : LDInst2<(outs IntRegs:$dst), + (ins globaladdress:$global), + "$dst = memuh(#$global)", + []>, + Requires<[NoV4T]>; + +let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in +def POST_LDrih : LDInst2PI<(outs IntRegs:$dst, IntRegs:$dst2), + (ins IntRegs:$src1, s4Imm:$offset), + "$dst = memh($src1++#$offset)", + [], + "$src1 = $dst2">; + +// Load halfword conditionally. +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrih_cPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if ($src1) $dst = memh($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrih_cNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if (!$src1) $dst = memh($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrih_indexed_cPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), + "if ($src1) $dst = memh($src2+#$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrih_indexed_cNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), + "if (!$src1) $dst = memh($src2+#$src3)", + []>; + +let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in +def POST_LDrih_cPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), + (ins PredRegs:$src1, IntRegs:$src2, s4_1Imm:$src3), + "if ($src1) $dst1 = memh($src2++#$src3)", + [], + "$src2 = $dst2">; + +let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in +def POST_LDrih_cNotPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), + (ins PredRegs:$src1, IntRegs:$src2, s4_1Imm:$src3), + "if (!$src1) $dst1 = memh($src2++#$src3)", + [], + "$src2 = $dst2">; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrih_cdnPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if ($src1.new) $dst = memh($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrih_cdnNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if (!$src1.new) $dst = memh($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrih_indexed_cdnPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), + "if ($src1.new) $dst = memh($src2+#$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDrih_indexed_cdnNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), + "if (!$src1.new) $dst = memh($src2+#$src3)", + []>; + +// Load unsigned byte. +let isPredicable = 1 in +def LDriub : LDInst<(outs IntRegs:$dst), + (ins MEMri:$addr), + "$dst = memub($addr)", + [(set (i32 IntRegs:$dst), (i32 (zextloadi8 ADDRriS11_0:$addr)))]>; + +def : Pat < (i32 (zextloadi1 ADDRriS11_0:$addr)), + (i32 (LDriub ADDRriS11_0:$addr))>; + +let isPredicable = 1, AddedComplexity = 20 in +def LDriub_indexed : LDInst<(outs IntRegs:$dst), + (ins IntRegs:$src1, s11_0Imm:$offset), + "$dst = memub($src1+#$offset)", + [(set (i32 IntRegs:$dst), + (i32 (zextloadi8 (add (i32 IntRegs:$src1), + s11_0ImmPred:$offset))))]>; + +let AddedComplexity = 20 in +def : Pat < (i32 (zextloadi1 (add IntRegs:$src1, s11_0ImmPred:$offset))), + (i32 (LDriub_indexed IntRegs:$src1, s11_0ImmPred:$offset))>; + +let neverHasSideEffects = 1 in +def LDriub_GP : LDInst2<(outs IntRegs:$dst), + (ins globaladdress:$global, u16Imm:$offset), + "$dst = memub(#$global+$offset)", + []>, + Requires<[NoV4T]>; + +let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in +def POST_LDriub : LDInst2PI<(outs IntRegs:$dst, IntRegs:$dst2), + (ins IntRegs:$src1, s4Imm:$offset), + "$dst = memub($src1++#$offset)", + [], + "$src1 = $dst2">; + +// Load unsigned byte conditionally. +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriub_cPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if ($src1) $dst = memub($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriub_cNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if (!$src1) $dst = memub($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriub_indexed_cPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), + "if ($src1) $dst = memub($src2+#$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriub_indexed_cNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), + "if (!$src1) $dst = memub($src2+#$src3)", + []>; + +let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in +def POST_LDriub_cPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), + (ins PredRegs:$src1, IntRegs:$src2, s4_0Imm:$src3), + "if ($src1) $dst1 = memub($src2++#$src3)", + [], + "$src2 = $dst2">; + +let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in +def POST_LDriub_cNotPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), + (ins PredRegs:$src1, IntRegs:$src2, s4_0Imm:$src3), + "if (!$src1) $dst1 = memub($src2++#$src3)", + [], + "$src2 = $dst2">; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriub_cdnPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if ($src1.new) $dst = memub($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriub_cdnNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if (!$src1.new) $dst = memub($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriub_indexed_cdnPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), + "if ($src1.new) $dst = memub($src2+#$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriub_indexed_cdnNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3), + "if (!$src1.new) $dst = memub($src2+#$src3)", + []>; + +// Load unsigned halfword. +let isPredicable = 1 in +def LDriuh : LDInst<(outs IntRegs:$dst), + (ins MEMri:$addr), + "$dst = memuh($addr)", + [(set (i32 IntRegs:$dst), (i32 (zextloadi16 ADDRriS11_1:$addr)))]>; + +// Indexed load unsigned halfword. +let isPredicable = 1, AddedComplexity = 20 in +def LDriuh_indexed : LDInst<(outs IntRegs:$dst), + (ins IntRegs:$src1, s11_1Imm:$offset), + "$dst = memuh($src1+#$offset)", + [(set (i32 IntRegs:$dst), + (i32 (zextloadi16 (add (i32 IntRegs:$src1), + s11_1ImmPred:$offset))))]>; + +let neverHasSideEffects = 1 in +def LDriuh_GP : LDInst2<(outs IntRegs:$dst), + (ins globaladdress:$global, u16Imm:$offset), + "$dst = memuh(#$global+$offset)", + []>, + Requires<[NoV4T]>; + +let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in +def POST_LDriuh : LDInst2PI<(outs IntRegs:$dst, IntRegs:$dst2), + (ins IntRegs:$src1, s4Imm:$offset), + "$dst = memuh($src1++#$offset)", + [], + "$src1 = $dst2">; + +// Load unsigned halfword conditionally. +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriuh_cPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if ($src1) $dst = memuh($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriuh_cNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if (!$src1) $dst = memuh($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriuh_indexed_cPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), + "if ($src1) $dst = memuh($src2+#$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriuh_indexed_cNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), + "if (!$src1) $dst = memuh($src2+#$src3)", + []>; + +let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in +def POST_LDriuh_cPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), + (ins PredRegs:$src1, IntRegs:$src2, s4_1Imm:$src3), + "if ($src1) $dst1 = memuh($src2++#$src3)", + [], + "$src2 = $dst2">; + +let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in +def POST_LDriuh_cNotPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), + (ins PredRegs:$src1, IntRegs:$src2, s4_1Imm:$src3), + "if (!$src1) $dst1 = memuh($src2++#$src3)", + [], + "$src2 = $dst2">; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriuh_cdnPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if ($src1.new) $dst = memuh($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriuh_cdnNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if (!$src1.new) $dst = memuh($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriuh_indexed_cdnPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), + "if ($src1.new) $dst = memuh($src2+#$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriuh_indexed_cdnNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3), + "if (!$src1.new) $dst = memuh($src2+#$src3)", + []>; + + +// Load word. +let isPredicable = 1 in +def LDriw : LDInst<(outs IntRegs:$dst), + (ins MEMri:$addr), "$dst = memw($addr)", + [(set IntRegs:$dst, (i32 (load ADDRriS11_2:$addr)))]>; + +// Load predicate. +let Defs = [R10,R11,D5], neverHasSideEffects = 1 in +def LDriw_pred : LDInst<(outs PredRegs:$dst), + (ins MEMri:$addr), + "Error; should not emit", + []>; + +// Indexed load. +let isPredicable = 1, AddedComplexity = 20 in +def LDriw_indexed : LDInst<(outs IntRegs:$dst), + (ins IntRegs:$src1, s11_2Imm:$offset), + "$dst = memw($src1+#$offset)", + [(set IntRegs:$dst, (i32 (load (add IntRegs:$src1, + s11_2ImmPred:$offset))))]>; + +let neverHasSideEffects = 1 in +def LDriw_GP : LDInst2<(outs IntRegs:$dst), + (ins globaladdress:$global, u16Imm:$offset), + "$dst = memw(#$global+$offset)", + []>, + Requires<[NoV4T]>; + +let neverHasSideEffects = 1 in +def LDw_GP : LDInst2<(outs IntRegs:$dst), + (ins globaladdress:$global), + "$dst = memw(#$global)", + []>, + Requires<[NoV4T]>; + +let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in +def POST_LDriw : LDInst2PI<(outs IntRegs:$dst, IntRegs:$dst2), + (ins IntRegs:$src1, s4Imm:$offset), + "$dst = memw($src1++#$offset)", + [], + "$src1 = $dst2">; + +// Load word conditionally. + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriw_cPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if ($src1) $dst = memw($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriw_cNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if (!$src1) $dst = memw($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriw_indexed_cPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3), + "if ($src1) $dst = memw($src2+#$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriw_indexed_cNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3), + "if (!$src1) $dst = memw($src2+#$src3)", + []>; + +let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in +def POST_LDriw_cPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), + (ins PredRegs:$src1, IntRegs:$src2, s4_2Imm:$src3), + "if ($src1) $dst1 = memw($src2++#$src3)", + [], + "$src2 = $dst2">; + +let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in +def POST_LDriw_cNotPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2), + (ins PredRegs:$src1, IntRegs:$src2, s4_2Imm:$src3), + "if (!$src1) $dst1 = memw($src2++#$src3)", + [], + "$src2 = $dst2">; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriw_cdnPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if ($src1.new) $dst = memw($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriw_cdnNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, MEMri:$addr), + "if (!$src1.new) $dst = memw($addr)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriw_indexed_cdnPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3), + "if ($src1.new) $dst = memw($src2+#$src3)", + []>; + +let neverHasSideEffects = 1, isPredicated = 1 in +def LDriw_indexed_cdnNotPt : LDInst2<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3), + "if (!$src1.new) $dst = memw($src2+#$src3)", + []>; + +// Deallocate stack frame. +let Defs = [R29, R30, R31], Uses = [R29], neverHasSideEffects = 1 in { + def DEALLOCFRAME : LDInst2<(outs), (ins i32imm:$amt1), + "deallocframe", + []>; +} + +// Load and unpack bytes to halfwords. +//===----------------------------------------------------------------------===// +// LD - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// MTYPE/ALU + +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// MTYPE/ALU - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// MTYPE/COMPLEX + +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// MTYPE/COMPLEX - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// MTYPE/MPYH + +//===----------------------------------------------------------------------===// +// Multiply and use lower result. +// Rd=+mpyi(Rs,#u8) +def MPYI_riu : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Imm:$src2), + "$dst =+ mpyi($src1, #$src2)", + [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), + u8ImmPred:$src2))]>; + +// Rd=-mpyi(Rs,#u8) +def MPYI_rin : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, n8Imm:$src2), + "$dst =- mpyi($src1, #$src2)", + [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), + n8ImmPred:$src2))]>; + +// Rd=mpyi(Rs,#m9) +// s9 is NOT the same as m9 - but it works.. so far. +// Assembler maps to either Rd=+mpyi(Rs,#u8 or Rd=-mpyi(Rs,#u8) +// depending on the value of m9. See Arch Spec. +def MPYI_ri : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Imm:$src2), + "$dst = mpyi($src1, #$src2)", + [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), + s9ImmPred:$src2))]>; + +// Rd=mpyi(Rs,Rt) +def MPYI : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = mpyi($src1, $src2)", + [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +// Rx+=mpyi(Rs,#u8) +def MPYI_acc_ri : MInst_acc<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2, u8Imm:$src3), + "$dst += mpyi($src2, #$src3)", + [(set (i32 IntRegs:$dst), + (add (mul (i32 IntRegs:$src2), u8ImmPred:$src3), + (i32 IntRegs:$src1)))], + "$src1 = $dst">; + +// Rx+=mpyi(Rs,Rt) +def MPYI_acc_rr : MInst_acc<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "$dst += mpyi($src2, $src3)", + [(set (i32 IntRegs:$dst), + (add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)), + (i32 IntRegs:$src1)))], + "$src1 = $dst">; + +// Rx-=mpyi(Rs,#u8) +def MPYI_sub_ri : MInst_acc<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2, u8Imm:$src3), + "$dst -= mpyi($src2, #$src3)", + [(set (i32 IntRegs:$dst), + (sub (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2), + u8ImmPred:$src3)))], + "$src1 = $dst">; + +// Multiply and use upper result. +// Rd=mpy(Rs,Rt.H):<<1:rnd:sat +// Rd=mpy(Rs,Rt.L):<<1:rnd:sat +// Rd=mpy(Rs,Rt) +def MPY : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = mpy($src1, $src2)", + [(set (i32 IntRegs:$dst), (mulhs (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +// Rd=mpy(Rs,Rt):rnd +// Rd=mpyu(Rs,Rt) +def MPYU : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = mpyu($src1, $src2)", + [(set (i32 IntRegs:$dst), (mulhu (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +// Multiply and use full result. +// Rdd=mpyu(Rs,Rt) +def MPYU64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = mpyu($src1, $src2)", + [(set (i64 DoubleRegs:$dst), + (mul (i64 (anyext (i32 IntRegs:$src1))), + (i64 (anyext (i32 IntRegs:$src2)))))]>; + +// Rdd=mpy(Rs,Rt) +def MPY64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = mpy($src1, $src2)", + [(set (i64 DoubleRegs:$dst), + (mul (i64 (sext (i32 IntRegs:$src1))), + (i64 (sext (i32 IntRegs:$src2)))))]>; + +// Multiply and accumulate, use full result. +// Rxx[+-]=mpy(Rs,Rt) +// Rxx+=mpy(Rs,Rt) +def MPY64_acc : MInst_acc<(outs DoubleRegs:$dst), + (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "$dst += mpy($src2, $src3)", + [(set (i64 DoubleRegs:$dst), + (add (mul (i64 (sext (i32 IntRegs:$src2))), + (i64 (sext (i32 IntRegs:$src3)))), + (i64 DoubleRegs:$src1)))], + "$src1 = $dst">; + +// Rxx-=mpy(Rs,Rt) +def MPY64_sub : MInst_acc<(outs DoubleRegs:$dst), + (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "$dst -= mpy($src2, $src3)", + [(set (i64 DoubleRegs:$dst), + (sub (i64 DoubleRegs:$src1), + (mul (i64 (sext (i32 IntRegs:$src2))), + (i64 (sext (i32 IntRegs:$src3))))))], + "$src1 = $dst">; + +// Rxx[+-]=mpyu(Rs,Rt) +// Rxx+=mpyu(Rs,Rt) +def MPYU64_acc : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + IntRegs:$src2, IntRegs:$src3), + "$dst += mpyu($src2, $src3)", + [(set (i64 DoubleRegs:$dst), + (add (mul (i64 (anyext (i32 IntRegs:$src2))), + (i64 (anyext (i32 IntRegs:$src3)))), + (i64 DoubleRegs:$src1)))], "$src1 = $dst">; + +// Rxx-=mpyu(Rs,Rt) +def MPYU64_sub : MInst_acc<(outs DoubleRegs:$dst), + (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3), + "$dst += mpyu($src2, $src3)", + [(set (i64 DoubleRegs:$dst), + (sub (i64 DoubleRegs:$src1), + (mul (i64 (anyext (i32 IntRegs:$src2))), + (i64 (anyext (i32 IntRegs:$src3))))))], + "$src1 = $dst">; + + +def ADDrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, + IntRegs:$src2, IntRegs:$src3), + "$dst += add($src2, $src3)", + [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2), + (i32 IntRegs:$src3)), + (i32 IntRegs:$src1)))], + "$src1 = $dst">; + +def ADDri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, + IntRegs:$src2, s8Imm:$src3), + "$dst += add($src2, #$src3)", + [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2), + s8ImmPred:$src3), + (i32 IntRegs:$src1)))], + "$src1 = $dst">; + +def SUBrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, + IntRegs:$src2, IntRegs:$src3), + "$dst -= add($src2, $src3)", + [(set (i32 IntRegs:$dst), + (sub (i32 IntRegs:$src1), (add (i32 IntRegs:$src2), + (i32 IntRegs:$src3))))], + "$src1 = $dst">; + +def SUBri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1, + IntRegs:$src2, s8Imm:$src3), + "$dst -= add($src2, #$src3)", + [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1), + (add (i32 IntRegs:$src2), + s8ImmPred:$src3)))], + "$src1 = $dst">; + +//===----------------------------------------------------------------------===// +// MTYPE/MPYH - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// MTYPE/MPYS + +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// MTYPE/MPYS - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// MTYPE/VB + +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// MTYPE/VB - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// MTYPE/VH + +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// MTYPE/VH - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// ST + +//===----------------------------------------------------------------------===// +/// +/// Assumptions::: ****** DO NOT IGNORE ******** +/// 1. Make sure that in post increment store, the zero'th operand is always the +/// post increment operand. +/// 2. Make sure that the store value operand(Rt/Rtt) in a store is always the +/// last operand. +/// +// Store doubleword. +let isPredicable = 1 in +def STrid : STInst<(outs), + (ins MEMri:$addr, DoubleRegs:$src1), + "memd($addr) = $src1", + [(store (i64 DoubleRegs:$src1), ADDRriS11_3:$addr)]>; + +// Indexed store double word. +let AddedComplexity = 10, isPredicable = 1 in +def STrid_indexed : STInst<(outs), + (ins IntRegs:$src1, s11_3Imm:$src2, DoubleRegs:$src3), + "memd($src1+#$src2) = $src3", + [(store (i64 DoubleRegs:$src3), + (add (i32 IntRegs:$src1), s11_3ImmPred:$src2))]>; + +let neverHasSideEffects = 1 in +def STrid_GP : STInst2<(outs), + (ins globaladdress:$global, u16Imm:$offset, DoubleRegs:$src), + "memd(#$global+$offset) = $src", + []>, + Requires<[NoV4T]>; + +let neverHasSideEffects = 1 in +def STd_GP : STInst2<(outs), + (ins globaladdress:$global, DoubleRegs:$src), + "memd(#$global) = $src", + []>, + Requires<[NoV4T]>; + +let hasCtrlDep = 1, isPredicable = 1 in +def POST_STdri : STInstPI<(outs IntRegs:$dst), + (ins DoubleRegs:$src1, IntRegs:$src2, s4Imm:$offset), + "memd($src2++#$offset) = $src1", + [(set IntRegs:$dst, + (post_store (i64 DoubleRegs:$src1), (i32 IntRegs:$src2), + s4_3ImmPred:$offset))], + "$src2 = $dst">; + +// Store doubleword conditionally. +// if ([!]Pv) memd(Rs+#u6:3)=Rtt +// if (Pv) memd(Rs+#u6:3)=Rtt +let AddedComplexity = 10, neverHasSideEffects = 1, + isPredicated = 1 in +def STrid_cPt : STInst2<(outs), + (ins PredRegs:$src1, MEMri:$addr, DoubleRegs:$src2), + "if ($src1) memd($addr) = $src2", + []>; + +// if (!Pv) memd(Rs+#u6:3)=Rtt +let AddedComplexity = 10, neverHasSideEffects = 1, + isPredicated = 1 in +def STrid_cNotPt : STInst2<(outs), + (ins PredRegs:$src1, MEMri:$addr, DoubleRegs:$src2), + "if (!$src1) memd($addr) = $src2", + []>; + +// if (Pv) memd(Rs+#u6:3)=Rtt +let AddedComplexity = 10, neverHasSideEffects = 1, + isPredicated = 1 in +def STrid_indexed_cPt : STInst2<(outs), + (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3, + DoubleRegs:$src4), + "if ($src1) memd($src2+#$src3) = $src4", + []>; + +// if (!Pv) memd(Rs+#u6:3)=Rtt +let AddedComplexity = 10, neverHasSideEffects = 1, + isPredicated = 1 in +def STrid_indexed_cNotPt : STInst2<(outs), + (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3, + DoubleRegs:$src4), + "if (!$src1) memd($src2+#$src3) = $src4", + []>; + +// if ([!]Pv) memd(Rx++#s4:3)=Rtt +// if (Pv) memd(Rx++#s4:3)=Rtt +let AddedComplexity = 10, neverHasSideEffects = 1, + isPredicated = 1 in +def POST_STdri_cPt : STInst2PI<(outs IntRegs:$dst), + (ins PredRegs:$src1, DoubleRegs:$src2, IntRegs:$src3, + s4_3Imm:$offset), + "if ($src1) memd($src3++#$offset) = $src2", + [], + "$src3 = $dst">; + +// if (!Pv) memd(Rx++#s4:3)=Rtt +let AddedComplexity = 10, neverHasSideEffects = 1, isPredicated = 1, + isPredicated = 1 in +def POST_STdri_cNotPt : STInst2PI<(outs IntRegs:$dst), + (ins PredRegs:$src1, DoubleRegs:$src2, IntRegs:$src3, + s4_3Imm:$offset), + "if (!$src1) memd($src3++#$offset) = $src2", + [], + "$src3 = $dst">; + + +// Store byte. +// memb(Rs+#s11:0)=Rt +let isPredicable = 1 in +def STrib : STInst<(outs), + (ins MEMri:$addr, IntRegs:$src1), + "memb($addr) = $src1", + [(truncstorei8 (i32 IntRegs:$src1), ADDRriS11_0:$addr)]>; + +let AddedComplexity = 10, isPredicable = 1 in +def STrib_indexed : STInst<(outs), + (ins IntRegs:$src1, s11_0Imm:$src2, IntRegs:$src3), + "memb($src1+#$src2) = $src3", + [(truncstorei8 (i32 IntRegs:$src3), (add (i32 IntRegs:$src1), + s11_0ImmPred:$src2))]>; + +// memb(gp+#u16:0)=Rt +let neverHasSideEffects = 1 in +def STrib_GP : STInst2<(outs), + (ins globaladdress:$global, u16Imm:$offset, IntRegs:$src), + "memb(#$global+$offset) = $src", + []>, + Requires<[NoV4T]>; + +// memb(#global)=Rt +let neverHasSideEffects = 1 in +def STb_GP : STInst2<(outs), + (ins globaladdress:$global, IntRegs:$src), + "memb(#$global) = $src", + []>, + Requires<[NoV4T]>; + +// memb(Rx++#s4:0)=Rt +let hasCtrlDep = 1, isPredicable = 1 in +def POST_STbri : STInstPI<(outs IntRegs:$dst), (ins IntRegs:$src1, + IntRegs:$src2, + s4Imm:$offset), + "memb($src2++#$offset) = $src1", + [(set IntRegs:$dst, + (post_truncsti8 (i32 IntRegs:$src1), (i32 IntRegs:$src2), + s4_0ImmPred:$offset))], + "$src2 = $dst">; + +// Store byte conditionally. +// if ([!]Pv) memb(Rs+#u6:0)=Rt +// if (Pv) memb(Rs+#u6:0)=Rt +let neverHasSideEffects = 1, isPredicated = 1 in +def STrib_cPt : STInst2<(outs), + (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2), + "if ($src1) memb($addr) = $src2", + []>; + +// if (!Pv) memb(Rs+#u6:0)=Rt +let neverHasSideEffects = 1, isPredicated = 1 in +def STrib_cNotPt : STInst2<(outs), + (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2), + "if (!$src1) memb($addr) = $src2", + []>; + +// if (Pv) memb(Rs+#u6:0)=Rt +let neverHasSideEffects = 1, isPredicated = 1 in +def STrib_indexed_cPt : STInst2<(outs), + (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3, IntRegs:$src4), + "if ($src1) memb($src2+#$src3) = $src4", + []>; + +// if (!Pv) memb(Rs+#u6:0)=Rt +let neverHasSideEffects = 1, isPredicated = 1 in +def STrib_indexed_cNotPt : STInst2<(outs), + (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3, IntRegs:$src4), + "if (!$src1) memb($src2+#$src3) = $src4", + []>; + +// if ([!]Pv) memb(Rx++#s4:0)=Rt +// if (Pv) memb(Rx++#s4:0)=Rt +let hasCtrlDep = 1, isPredicated = 1 in +def POST_STbri_cPt : STInst2PI<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_0Imm:$offset), + "if ($src1) memb($src3++#$offset) = $src2", + [],"$src3 = $dst">; + +// if (!Pv) memb(Rx++#s4:0)=Rt +let hasCtrlDep = 1, isPredicated = 1 in +def POST_STbri_cNotPt : STInst2PI<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_0Imm:$offset), + "if (!$src1) memb($src3++#$offset) = $src2", + [],"$src3 = $dst">; + + +// Store halfword. +// memh(Rs+#s11:1)=Rt +let isPredicable = 1 in +def STrih : STInst<(outs), + (ins MEMri:$addr, IntRegs:$src1), + "memh($addr) = $src1", + [(truncstorei16 (i32 IntRegs:$src1), ADDRriS11_1:$addr)]>; + + +let AddedComplexity = 10, isPredicable = 1 in +def STrih_indexed : STInst<(outs), + (ins IntRegs:$src1, s11_1Imm:$src2, IntRegs:$src3), + "memh($src1+#$src2) = $src3", + [(truncstorei16 (i32 IntRegs:$src3), (add (i32 IntRegs:$src1), + s11_1ImmPred:$src2))]>; + +let neverHasSideEffects = 1 in +def STrih_GP : STInst2<(outs), + (ins globaladdress:$global, u16Imm:$offset, IntRegs:$src), + "memh(#$global+$offset) = $src", + []>, + Requires<[NoV4T]>; + +let neverHasSideEffects = 1 in +def STh_GP : STInst2<(outs), + (ins globaladdress:$global, IntRegs:$src), + "memh(#$global) = $src", + []>, + Requires<[NoV4T]>; + +// memh(Rx++#s4:1)=Rt.H +// memh(Rx++#s4:1)=Rt +let hasCtrlDep = 1, isPredicable = 1 in +def POST_SThri : STInstPI<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2, s4Imm:$offset), + "memh($src2++#$offset) = $src1", + [(set IntRegs:$dst, + (post_truncsti16 (i32 IntRegs:$src1), (i32 IntRegs:$src2), + s4_1ImmPred:$offset))], + "$src2 = $dst">; + +// Store halfword conditionally. +// if ([!]Pv) memh(Rs+#u6:1)=Rt +// if (Pv) memh(Rs+#u6:1)=Rt +let neverHasSideEffects = 1, isPredicated = 1 in +def STrih_cPt : STInst2<(outs), + (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2), + "if ($src1) memh($addr) = $src2", + []>; + +// if (!Pv) memh(Rs+#u6:1)=Rt +let neverHasSideEffects = 1, isPredicated = 1 in +def STrih_cNotPt : STInst2<(outs), + (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2), + "if (!$src1) memh($addr) = $src2", + []>; + +// if (Pv) memh(Rs+#u6:1)=Rt +let neverHasSideEffects = 1, isPredicated = 1 in +def STrih_indexed_cPt : STInst2<(outs), + (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3, IntRegs:$src4), + "if ($src1) memh($src2+#$src3) = $src4", + []>; + +// if (!Pv) memh(Rs+#u6:1)=Rt +let neverHasSideEffects = 1, isPredicated = 1 in +def STrih_indexed_cNotPt : STInst2<(outs), + (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3, IntRegs:$src4), + "if (!$src1) memh($src2+#$src3) = $src4", + []>; + +// if ([!]Pv) memh(Rx++#s4:1)=Rt +// if (Pv) memh(Rx++#s4:1)=Rt +let hasCtrlDep = 1, isPredicated = 1 in +def POST_SThri_cPt : STInst2PI<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_1Imm:$offset), + "if ($src1) memh($src3++#$offset) = $src2", + [],"$src3 = $dst">; + +// if (!Pv) memh(Rx++#s4:1)=Rt +let hasCtrlDep = 1, isPredicated = 1 in +def POST_SThri_cNotPt : STInst2PI<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_1Imm:$offset), + "if (!$src1) memh($src3++#$offset) = $src2", + [],"$src3 = $dst">; + + +// Store word. +// Store predicate. +let Defs = [R10,R11,D5], neverHasSideEffects = 1 in +def STriw_pred : STInst2<(outs), + (ins MEMri:$addr, PredRegs:$src1), + "Error; should not emit", + []>; + +// memw(Rs+#s11:2)=Rt +let isPredicable = 1 in +def STriw : STInst<(outs), + (ins MEMri:$addr, IntRegs:$src1), + "memw($addr) = $src1", + [(store (i32 IntRegs:$src1), ADDRriS11_2:$addr)]>; + +let AddedComplexity = 10, isPredicable = 1 in +def STriw_indexed : STInst<(outs), + (ins IntRegs:$src1, s11_2Imm:$src2, IntRegs:$src3), + "memw($src1+#$src2) = $src3", + [(store (i32 IntRegs:$src3), + (add (i32 IntRegs:$src1), s11_2ImmPred:$src2))]>; + +let neverHasSideEffects = 1 in +def STriw_GP : STInst2<(outs), + (ins globaladdress:$global, u16Imm:$offset, IntRegs:$src), + "memw(#$global+$offset) = $src", + []>, + Requires<[NoV4T]>; + +let neverHasSideEffects = 1 in +def STw_GP : STInst2<(outs), + (ins globaladdress:$global, IntRegs:$src), + "memw(#$global) = $src", + []>, + Requires<[NoV4T]>; + +let hasCtrlDep = 1, isPredicable = 1 in +def POST_STwri : STInstPI<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2, s4Imm:$offset), + "memw($src2++#$offset) = $src1", + [(set IntRegs:$dst, + (post_store (i32 IntRegs:$src1), (i32 IntRegs:$src2), + s4_2ImmPred:$offset))], + "$src2 = $dst">; + +// Store word conditionally. +// if ([!]Pv) memw(Rs+#u6:2)=Rt +// if (Pv) memw(Rs+#u6:2)=Rt +let neverHasSideEffects = 1, isPredicated = 1 in +def STriw_cPt : STInst2<(outs), + (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2), + "if ($src1) memw($addr) = $src2", + []>; + +// if (!Pv) memw(Rs+#u6:2)=Rt +let neverHasSideEffects = 1, isPredicated = 1 in +def STriw_cNotPt : STInst2<(outs), + (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2), + "if (!$src1) memw($addr) = $src2", + []>; + +// if (Pv) memw(Rs+#u6:2)=Rt +let neverHasSideEffects = 1, isPredicated = 1 in +def STriw_indexed_cPt : STInst2<(outs), + (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3, IntRegs:$src4), + "if ($src1) memw($src2+#$src3) = $src4", + []>; + +// if (!Pv) memw(Rs+#u6:2)=Rt +let neverHasSideEffects = 1, isPredicated = 1 in +def STriw_indexed_cNotPt : STInst2<(outs), + (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3, IntRegs:$src4), + "if (!$src1) memw($src2+#$src3) = $src4", + []>; + +// if ([!]Pv) memw(Rx++#s4:2)=Rt +// if (Pv) memw(Rx++#s4:2)=Rt +let hasCtrlDep = 1, isPredicated = 1 in +def POST_STwri_cPt : STInst2PI<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_2Imm:$offset), + "if ($src1) memw($src3++#$offset) = $src2", + [],"$src3 = $dst">; + +// if (!Pv) memw(Rx++#s4:2)=Rt +let hasCtrlDep = 1, isPredicated = 1 in +def POST_STwri_cNotPt : STInst2PI<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_2Imm:$offset), + "if (!$src1) memw($src3++#$offset) = $src2", + [],"$src3 = $dst">; + + + +// Allocate stack frame. +let Defs = [R29, R30], Uses = [R31, R30], neverHasSideEffects = 1 in { + def ALLOCFRAME : STInst2<(outs), + (ins i32imm:$amt), + "allocframe(#$amt)", + []>; +} +//===----------------------------------------------------------------------===// +// ST - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// STYPE/ALU + +//===----------------------------------------------------------------------===// +// Logical NOT. +def NOT_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1), + "$dst = not($src1)", + [(set (i64 DoubleRegs:$dst), (not (i64 DoubleRegs:$src1)))]>; + + +// Sign extend word to doubleword. +def SXTW : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1), + "$dst = sxtw($src1)", + [(set (i64 DoubleRegs:$dst), (sext (i32 IntRegs:$src1)))]>; +//===----------------------------------------------------------------------===// +// STYPE/ALU - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// STYPE/BIT + +//===----------------------------------------------------------------------===// +// clrbit. +def CLRBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = clrbit($src1, #$src2)", + [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1), + (not + (shl 1, u5ImmPred:$src2))))]>; + +def CLRBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = clrbit($src1, #$src2)", + []>; + +// Map from r0 = and(r1, 2147483647) to r0 = clrbit(r1, #31). +def : Pat <(and (i32 IntRegs:$src1), 2147483647), + (CLRBIT_31 (i32 IntRegs:$src1), 31)>; + +// setbit. +def SETBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = setbit($src1, #$src2)", + [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1), + (shl 1, u5ImmPred:$src2)))]>; + +// Map from r0 = or(r1, -2147483648) to r0 = setbit(r1, #31). +def SETBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = setbit($src1, #$src2)", + []>; + +def : Pat <(or (i32 IntRegs:$src1), -2147483648), + (SETBIT_31 (i32 IntRegs:$src1), 31)>; + +// togglebit. +def TOGBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = setbit($src1, #$src2)", + [(set (i32 IntRegs:$dst), (xor (i32 IntRegs:$src1), + (shl 1, u5ImmPred:$src2)))]>; + +// Map from r0 = xor(r1, -2147483648) to r0 = togglebit(r1, #31). +def TOGBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = togglebit($src1, #$src2)", + []>; + +def : Pat <(xor (i32 IntRegs:$src1), -2147483648), + (TOGBIT_31 (i32 IntRegs:$src1), 31)>; + +// Predicate transfer. +let neverHasSideEffects = 1 in +def TFR_RsPd : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1), + "$dst = $src1 /* Should almost never emit this. */", + []>; + +def TFR_PdRs : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1), + "$dst = $src1 /* Should almost never emit this. */", + [(set (i1 PredRegs:$dst), (trunc (i32 IntRegs:$src1)))]>; +//===----------------------------------------------------------------------===// +// STYPE/PRED - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// STYPE/SHIFT + +//===----------------------------------------------------------------------===// +// Shift by immediate. +def ASR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = asr($src1, #$src2)", + [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1), + u5ImmPred:$src2))]>; + +def ASRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), + "$dst = asr($src1, #$src2)", + [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1), + u6ImmPred:$src2))]>; + +def ASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = asl($src1, #$src2)", + [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1), + u5ImmPred:$src2))]>; + +def ASLd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), + "$dst = asl($src1, #$src2)", + [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1), + u6ImmPred:$src2))]>; + +def LSR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2), + "$dst = lsr($src1, #$src2)", + [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1), + u5ImmPred:$src2))]>; + +def LSRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2), + "$dst = lsr($src1, #$src2)", + [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1), + u6ImmPred:$src2))]>; + +// Shift by immediate and add. +let AddedComplexity = 100 in +def ADDASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2, + u3Imm:$src3), + "$dst = addasl($src1, $src2, #$src3)", + [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1), + (shl (i32 IntRegs:$src2), + u3ImmPred:$src3)))]>; + +// Shift by register. +def ASL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = asl($src1, $src2)", + [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +def ASR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = asr($src1, $src2)", + [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +def LSL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = lsl($src1, $src2)", + [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +def LSR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = lsr($src1, $src2)", + [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1), + (i32 IntRegs:$src2)))]>; + +def ASLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2), + "$dst = asl($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1), + (i32 IntRegs:$src2)))]>; + +def LSLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2), + "$dst = lsl($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1), + (i32 IntRegs:$src2)))]>; + +def ASRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + IntRegs:$src2), + "$dst = asr($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1), + (i32 IntRegs:$src2)))]>; + +def LSRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, + IntRegs:$src2), + "$dst = lsr($src1, $src2)", + [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1), + (i32 IntRegs:$src2)))]>; + +//===----------------------------------------------------------------------===// +// STYPE/SHIFT - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// STYPE/VH + +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// STYPE/VH - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// STYPE/VW + +//===----------------------------------------------------------------------===// +//===----------------------------------------------------------------------===// +// STYPE/VW - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// SYSTEM/SUPER + +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// SYSTEM/USER + +//===----------------------------------------------------------------------===// +def SDHexagonBARRIER: SDTypeProfile<0, 0, []>; +def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDHexagonBARRIER, + [SDNPHasChain]>; + +let hasSideEffects = 1, isHexagonSolo = 1 in +def BARRIER : SYSInst<(outs), (ins), + "barrier", + [(HexagonBARRIER)]>; + +//===----------------------------------------------------------------------===// +// SYSTEM/SUPER - +//===----------------------------------------------------------------------===// + +// TFRI64 - assembly mapped. +let isReMaterializable = 1 in +def TFRI64 : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1), + "$dst = #$src1", + [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>; + +// Pseudo instruction to encode a set of conditional transfers. +// This instruction is used instead of a mux and trades-off codesize +// for performance. We conduct this transformation optimistically in +// the hope that these instructions get promoted to dot-new transfers. +let AddedComplexity = 100, isPredicated = 1 in +def TFR_condset_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, + IntRegs:$src2, + IntRegs:$src3), + "Error; should not emit", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 PredRegs:$src1), + (i32 IntRegs:$src2), + (i32 IntRegs:$src3))))]>; +let AddedComplexity = 100, isPredicated = 1 in +def TFR_condset_ri : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, IntRegs:$src2, s12Imm:$src3), + "Error; should not emit", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2), + s12ImmPred:$src3)))]>; + +let AddedComplexity = 100, isPredicated = 1 in +def TFR_condset_ir : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, s12Imm:$src2, IntRegs:$src3), + "Error; should not emit", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2, + (i32 IntRegs:$src3))))]>; + +let AddedComplexity = 100, isPredicated = 1 in +def TFR_condset_ii : ALU32_rr<(outs IntRegs:$dst), + (ins PredRegs:$src1, s12Imm:$src2, s12Imm:$src3), + "Error; should not emit", + [(set (i32 IntRegs:$dst), + (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2, + s12ImmPred:$src3)))]>; + +// Generate frameindex addresses. +let isReMaterializable = 1 in +def TFR_FI : ALU32_ri<(outs IntRegs:$dst), (ins FrameIndex:$src1), + "$dst = add($src1)", + [(set (i32 IntRegs:$dst), ADDRri:$src1)]>; + +// +// CR - Type. +// +let neverHasSideEffects = 1, Defs = [SA0, LC0] in { +def LOOP0_i : CRInst<(outs), (ins brtarget:$offset, u10Imm:$src2), + "loop0($offset, #$src2)", + []>; +} + +let neverHasSideEffects = 1, Defs = [SA0, LC0] in { +def LOOP0_r : CRInst<(outs), (ins brtarget:$offset, IntRegs:$src2), + "loop0($offset, $src2)", + []>; +} + +let isBranch = 1, isTerminator = 1, neverHasSideEffects = 1, + Defs = [PC, LC0], Uses = [SA0, LC0] in { +def ENDLOOP0 : Marker<(outs), (ins brtarget:$offset), + ":endloop0", + []>; +} + +// Support for generating global address. +// Taken from X86InstrInfo.td. +def SDTHexagonCONST32 : SDTypeProfile<1, 1, [ + SDTCisVT<0, i32>, + SDTCisVT<1, i32>, + SDTCisPtrTy<0>]>; +def HexagonCONST32 : SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>; +def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>; + +// HI/LO Instructions +let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +def LO : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), + "$dst.l = #LO($global)", + []>; + +let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +def HI : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global), + "$dst.h = #HI($global)", + []>; + +let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +def LOi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value), + "$dst.l = #LO($imm_value)", + []>; + + +let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +def HIi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value), + "$dst.h = #HI($imm_value)", + []>; + +let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +def LO_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt), + "$dst.l = #LO($jt)", + []>; + +let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +def HI_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt), + "$dst.h = #HI($jt)", + []>; + + +let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in +def LO_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), + "$dst.l = #LO($label)", + []>; + +let isReMaterializable = 1, isMoveImm = 1 , neverHasSideEffects = 1 in +def HI_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label), + "$dst.h = #HI($label)", + []>; + +// This pattern is incorrect. When we add small data, we should change +// this pattern to use memw(#foo). +// This is for sdata. +let isMoveImm = 1 in +def CONST32 : LDInst<(outs IntRegs:$dst), (ins globaladdress:$global), + "$dst = CONST32(#$global)", + [(set (i32 IntRegs:$dst), + (load (HexagonCONST32 tglobaltlsaddr:$global)))]>; + +// This is for non-sdata. +let isReMaterializable = 1, isMoveImm = 1 in +def CONST32_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), + "$dst = CONST32(#$global)", + [(set (i32 IntRegs:$dst), + (HexagonCONST32 tglobaladdr:$global))]>; + +let isReMaterializable = 1, isMoveImm = 1 in +def CONST32_set_jt : LDInst2<(outs IntRegs:$dst), (ins jumptablebase:$jt), + "$dst = CONST32(#$jt)", + [(set (i32 IntRegs:$dst), + (HexagonCONST32 tjumptable:$jt))]>; + +let isReMaterializable = 1, isMoveImm = 1 in +def CONST32GP_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global), + "$dst = CONST32(#$global)", + [(set (i32 IntRegs:$dst), + (HexagonCONST32_GP tglobaladdr:$global))]>; + +let isReMaterializable = 1, isMoveImm = 1 in +def CONST32_Int_Real : LDInst2<(outs IntRegs:$dst), (ins i32imm:$global), + "$dst = CONST32(#$global)", + [(set (i32 IntRegs:$dst), imm:$global) ]>; + +let isReMaterializable = 1, isMoveImm = 1 in +def CONST32_Label : LDInst2<(outs IntRegs:$dst), (ins bblabel:$label), + "$dst = CONST32($label)", + [(set (i32 IntRegs:$dst), (HexagonCONST32 bbl:$label))]>; + +let isReMaterializable = 1, isMoveImm = 1 in +def CONST64_Int_Real : LDInst2<(outs DoubleRegs:$dst), (ins i64imm:$global), + "$dst = CONST64(#$global)", + [(set (i64 DoubleRegs:$dst), imm:$global) ]>; + +def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins), + "$dst = xor($dst, $dst)", + [(set (i1 PredRegs:$dst), 0)]>; + +def MPY_trsext : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2), + "$dst = mpy($src1, $src2)", + [(set (i32 IntRegs:$dst), + (trunc (i64 (srl (i64 (mul (i64 (sext (i32 IntRegs:$src1))), + (i64 (sext (i32 IntRegs:$src2))))), + (i32 32)))))]>; + +// Pseudo instructions. +def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; + +def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>, + SDTCisVT<1, i32> ]>; + +def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd, + [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; + +def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, + [SDNPHasChain, SDNPOutGlue]>; + +def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; + +def call : SDNode<"HexagonISD::CALL", SDT_SPCall, + [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>; + +// For tailcalls a HexagonTCRet SDNode has 3 SDNode Properties - a chain, +// Optional Flag and Variable Arguments. +// Its 1 Operand has pointer type. +def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall, + [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; + +let Defs = [R29, R30], Uses = [R31, R30, R29] in { + def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), + "Should never be emitted", + [(callseq_start timm:$amt)]>; +} + +let Defs = [R29, R30, R31], Uses = [R29] in { + def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), + "Should never be emitted", + [(callseq_end timm:$amt1, timm:$amt2)]>; +} +// Call subroutine. +let isCall = 1, neverHasSideEffects = 1, + Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, + R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in { + def CALL : JInst<(outs), (ins calltarget:$dst), + "call $dst", []>; +} + +// Call subroutine from register. +let isCall = 1, neverHasSideEffects = 1, + Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, + R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in { + def CALLR : JRInst<(outs), (ins IntRegs:$dst), + "callr $dst", + []>; + } + +// Tail Calls. +let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1 in { + def TCRETURNtg : JInst<(outs), (ins calltarget:$dst), + "jump $dst // TAILCALL", []>; +} +let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1 in { + def TCRETURNtext : JInst<(outs), (ins calltarget:$dst), + "jump $dst // TAILCALL", []>; +} + +let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1 in { + def TCRETURNR : JInst<(outs), (ins IntRegs:$dst), + "jumpr $dst // TAILCALL", []>; +} +// Map call instruction. +def : Pat<(call (i32 IntRegs:$dst)), + (CALLR (i32 IntRegs:$dst))>, Requires<[HasV2TOnly]>; +def : Pat<(call tglobaladdr:$dst), + (CALL tglobaladdr:$dst)>, Requires<[HasV2TOnly]>; +def : Pat<(call texternalsym:$dst), + (CALL texternalsym:$dst)>, Requires<[HasV2TOnly]>; +//Tail calls. +def : Pat<(HexagonTCRet tglobaladdr:$dst), + (TCRETURNtg tglobaladdr:$dst)>; +def : Pat<(HexagonTCRet texternalsym:$dst), + (TCRETURNtext texternalsym:$dst)>; +def : Pat<(HexagonTCRet (i32 IntRegs:$dst)), + (TCRETURNR (i32 IntRegs:$dst))>; + +// Atomic load and store support +// 8 bit atomic load +def : Pat<(atomic_load_8 (HexagonCONST32_GP tglobaladdr:$global)), + (i32 (LDub_GP tglobaladdr:$global))>, + Requires<[NoV4T]>; + +def : Pat<(atomic_load_8 (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset)), + (i32 (LDriub_GP tglobaladdr:$global, u16ImmPred:$offset))>, + Requires<[NoV4T]>; + +def : Pat<(atomic_load_8 ADDRriS11_0:$src1), + (i32 (LDriub ADDRriS11_0:$src1))>; + +def : Pat<(atomic_load_8 (add (i32 IntRegs:$src1), s11_0ImmPred:$offset)), + (i32 (LDriub_indexed (i32 IntRegs:$src1), s11_0ImmPred:$offset))>; + + + +// 16 bit atomic load +def : Pat<(atomic_load_16 (HexagonCONST32_GP tglobaladdr:$global)), + (i32 (LDuh_GP tglobaladdr:$global))>, + Requires<[NoV4T]>; + +def : Pat<(atomic_load_16 (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset)), + (i32 (LDriuh_GP tglobaladdr:$global, u16ImmPred:$offset))>, + Requires<[NoV4T]>; + +def : Pat<(atomic_load_16 ADDRriS11_1:$src1), + (i32 (LDriuh ADDRriS11_1:$src1))>; + +def : Pat<(atomic_load_16 (add (i32 IntRegs:$src1), s11_1ImmPred:$offset)), + (i32 (LDriuh_indexed (i32 IntRegs:$src1), s11_1ImmPred:$offset))>; + + + +// 32 bit atomic load +def : Pat<(atomic_load_32 (HexagonCONST32_GP tglobaladdr:$global)), + (i32 (LDw_GP tglobaladdr:$global))>, + Requires<[NoV4T]>; + +def : Pat<(atomic_load_32 (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset)), + (i32 (LDriw_GP tglobaladdr:$global, u16ImmPred:$offset))>, + Requires<[NoV4T]>; + +def : Pat<(atomic_load_32 ADDRriS11_2:$src1), + (i32 (LDriw ADDRriS11_2:$src1))>; + +def : Pat<(atomic_load_32 (add (i32 IntRegs:$src1), s11_2ImmPred:$offset)), + (i32 (LDriw_indexed (i32 IntRegs:$src1), s11_2ImmPred:$offset))>; + + +// 64 bit atomic load +def : Pat<(atomic_load_64 (HexagonCONST32_GP tglobaladdr:$global)), + (i64 (LDd_GP tglobaladdr:$global))>, + Requires<[NoV4T]>; + +def : Pat<(atomic_load_64 (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset)), + (i64 (LDrid_GP tglobaladdr:$global, u16ImmPred:$offset))>, + Requires<[NoV4T]>; + +def : Pat<(atomic_load_64 ADDRriS11_3:$src1), + (i64 (LDrid ADDRriS11_3:$src1))>; + +def : Pat<(atomic_load_64 (add (i32 IntRegs:$src1), s11_3ImmPred:$offset)), + (i64 (LDrid_indexed (i32 IntRegs:$src1), s11_3ImmPred:$offset))>; + + +// 64 bit atomic store +def : Pat<(atomic_store_64 (HexagonCONST32_GP tglobaladdr:$global), + (i64 DoubleRegs:$src1)), + (STd_GP tglobaladdr:$global, (i64 DoubleRegs:$src1))>, + Requires<[NoV4T]>; + +def : Pat<(atomic_store_64 (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset), + (i64 DoubleRegs:$src1)), + (STrid_GP tglobaladdr:$global, u16ImmPred:$offset, + (i64 DoubleRegs:$src1))>, Requires<[NoV4T]>; + +// 8 bit atomic store +def : Pat<(atomic_store_8 (HexagonCONST32_GP tglobaladdr:$global), + (i32 IntRegs:$src1)), + (STb_GP tglobaladdr:$global, (i32 IntRegs:$src1))>, + Requires<[NoV4T]>; + +def : Pat<(atomic_store_8 (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset), + (i32 IntRegs:$src1)), + (STrib_GP tglobaladdr:$global, u16ImmPred:$offset, + (i32 IntRegs:$src1))>, Requires<[NoV4T]>; + +def : Pat<(atomic_store_8 ADDRriS11_0:$src2, (i32 IntRegs:$src1)), + (STrib ADDRriS11_0:$src2, (i32 IntRegs:$src1))>; + +def : Pat<(atomic_store_8 (add (i32 IntRegs:$src2), s11_0ImmPred:$offset), + (i32 IntRegs:$src1)), + (STrib_indexed (i32 IntRegs:$src2), s11_0ImmPred:$offset, + (i32 IntRegs:$src1))>; + + +// 16 bit atomic store +def : Pat<(atomic_store_16 (HexagonCONST32_GP tglobaladdr:$global), + (i32 IntRegs:$src1)), + (STh_GP tglobaladdr:$global, (i32 IntRegs:$src1))>, + Requires<[NoV4T]>; + +def : Pat<(atomic_store_16 (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset), + (i32 IntRegs:$src1)), + (STrih_GP tglobaladdr:$global, u16ImmPred:$offset, + (i32 IntRegs:$src1))>, Requires<[NoV4T]>; + +def : Pat<(atomic_store_16 ADDRriS11_1:$src2, (i32 IntRegs:$src1)), + (STrih ADDRriS11_1:$src2, (i32 IntRegs:$src1))>; + +def : Pat<(atomic_store_16 (i32 IntRegs:$src1), + (add (i32 IntRegs:$src2), s11_1ImmPred:$offset)), + (STrih_indexed (i32 IntRegs:$src2), s11_1ImmPred:$offset, + (i32 IntRegs:$src1))>; + + +// 32 bit atomic store +def : Pat<(atomic_store_32 (HexagonCONST32_GP tglobaladdr:$global), + (i32 IntRegs:$src1)), + (STw_GP tglobaladdr:$global, (i32 IntRegs:$src1))>, + Requires<[NoV4T]>; + +def : Pat<(atomic_store_32 (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset), + (i32 IntRegs:$src1)), + (STriw_GP tglobaladdr:$global, u16ImmPred:$offset, + (i32 IntRegs:$src1))>, + Requires<[NoV4T]>; + +def : Pat<(atomic_store_32 ADDRriS11_2:$src2, (i32 IntRegs:$src1)), + (STriw ADDRriS11_2:$src2, (i32 IntRegs:$src1))>; + +def : Pat<(atomic_store_32 (add (i32 IntRegs:$src2), s11_2ImmPred:$offset), + (i32 IntRegs:$src1)), + (STriw_indexed (i32 IntRegs:$src2), s11_2ImmPred:$offset, + (i32 IntRegs:$src1))>; + + + + +def : Pat<(atomic_store_64 ADDRriS11_3:$src2, (i64 DoubleRegs:$src1)), + (STrid ADDRriS11_3:$src2, (i64 DoubleRegs:$src1))>; + +def : Pat<(atomic_store_64 (add (i32 IntRegs:$src2), s11_3ImmPred:$offset), + (i64 DoubleRegs:$src1)), + (STrid_indexed (i32 IntRegs:$src2), s11_3ImmPred:$offset, + (i64 DoubleRegs:$src1))>; + +// Map from r0 = and(r1, 65535) to r0 = zxth(r1) +def : Pat <(and (i32 IntRegs:$src1), 65535), + (ZXTH (i32 IntRegs:$src1))>; + +// Map from r0 = and(r1, 255) to r0 = zxtb(r1). +def : Pat <(and (i32 IntRegs:$src1), 255), + (ZXTB (i32 IntRegs:$src1))>; + +// Map Add(p1, true) to p1 = not(p1). +// Add(p1, false) should never be produced, +// if it does, it got to be mapped to NOOP. +def : Pat <(add (i1 PredRegs:$src1), -1), + (NOT_p (i1 PredRegs:$src1))>; + +// Map from p0 = setlt(r0, r1) r2 = mux(p0, r3, r4) => +// p0 = cmp.lt(r0, r1), r0 = mux(p0, r2, r1). +def : Pat <(select (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i32 IntRegs:$src3), + (i32 IntRegs:$src4)), + (i32 (TFR_condset_rr (CMPLTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)), + (i32 IntRegs:$src4), (i32 IntRegs:$src3)))>, + Requires<[HasV2TOnly]>; + +// Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i). +def : Pat <(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s8ImmPred:$src3), + (i32 (TFR_condset_ii (i1 PredRegs:$src1), s8ImmPred:$src3, + s8ImmPred:$src2))>; + +// Map from p0 = pnot(p0); r0 = select(p0, #i, r1) +// => r0 = TFR_condset_ri(p0, r1, #i) +def : Pat <(select (not (i1 PredRegs:$src1)), s12ImmPred:$src2, + (i32 IntRegs:$src3)), + (i32 (TFR_condset_ri (i1 PredRegs:$src1), (i32 IntRegs:$src3), + s12ImmPred:$src2))>; + +// Map from p0 = pnot(p0); r0 = mux(p0, r1, #i) +// => r0 = TFR_condset_ir(p0, #i, r1) +def : Pat <(select (not PredRegs:$src1), IntRegs:$src2, s12ImmPred:$src3), + (i32 (TFR_condset_ir (i1 PredRegs:$src1), s12ImmPred:$src3, + (i32 IntRegs:$src2)))>; + +// Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump. +def : Pat <(brcond (not PredRegs:$src1), bb:$offset), + (JMP_cNot (i1 PredRegs:$src1), bb:$offset)>; + +// Map from p2 = pnot(p2); p1 = and(p0, p2) => p1 = and(p0, !p2). +def : Pat <(and PredRegs:$src1, (not PredRegs:$src2)), + (i1 (AND_pnotp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>; + +// Map from store(globaladdress + x) -> memd(#foo + x). +let AddedComplexity = 100 in +def : Pat <(store (i64 DoubleRegs:$src1), + (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset)), + (STrid_GP tglobaladdr:$global, u16ImmPred:$offset, + (i64 DoubleRegs:$src1))>, Requires<[NoV4T]>; + +// Map from store(globaladdress) -> memd(#foo). +let AddedComplexity = 100 in +def : Pat <(store (i64 DoubleRegs:$src1), + (HexagonCONST32_GP tglobaladdr:$global)), + (STd_GP tglobaladdr:$global, (i64 DoubleRegs:$src1))>, + Requires<[NoV4T]>; + +// Map from store(globaladdress + x) -> memw(#foo + x). +let AddedComplexity = 100 in +def : Pat <(store (i32 IntRegs:$src1), + (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset)), + (STriw_GP tglobaladdr:$global, u16ImmPred:$offset, (i32 IntRegs:$src1))>, + Requires<[NoV4T]>; + +// Map from store(globaladdress) -> memw(#foo + 0). +let AddedComplexity = 100 in +def : Pat <(store (i32 IntRegs:$src1), (HexagonCONST32_GP tglobaladdr:$global)), + (STriw_GP tglobaladdr:$global, 0, (i32 IntRegs:$src1))>; + +// Map from store(globaladdress) -> memw(#foo). +let AddedComplexity = 100 in +def : Pat <(store (i32 IntRegs:$src1), (HexagonCONST32_GP tglobaladdr:$global)), + (STriw_GP tglobaladdr:$global, 0, (i32 IntRegs:$src1))>, + Requires<[NoV4T]>; + +// Map from store(globaladdress + x) -> memh(#foo + x). +let AddedComplexity = 100 in +def : Pat <(truncstorei16 (i32 IntRegs:$src1), + (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset)), + (STrih_GP tglobaladdr:$global, u16ImmPred:$offset, (i32 IntRegs:$src1))>, + Requires<[NoV4T]>; + +// Map from store(globaladdress) -> memh(#foo). +let AddedComplexity = 100 in +def : Pat <(truncstorei16 (i32 IntRegs:$src1), + (HexagonCONST32_GP tglobaladdr:$global)), + (STh_GP tglobaladdr:$global, (i32 IntRegs:$src1))>, + Requires<[NoV4T]>; + +// Map from store(globaladdress + x) -> memb(#foo + x). +let AddedComplexity = 100 in +def : Pat <(truncstorei8 (i32 IntRegs:$src1), + (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset)), + (STrib_GP tglobaladdr:$global, u16ImmPred:$offset, (i32 IntRegs:$src1))>, + Requires<[NoV4T]>; + +// Map from store(globaladdress) -> memb(#foo). +let AddedComplexity = 100 in +def : Pat <(truncstorei8 (i32 IntRegs:$src1), + (HexagonCONST32_GP tglobaladdr:$global)), + (STb_GP tglobaladdr:$global, (i32 IntRegs:$src1))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress + x) -> memw(#foo + x). +let AddedComplexity = 100 in +def : Pat <(i32 (load (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset))), + (i32 (LDriw_GP tglobaladdr:$global, u16ImmPred:$offset))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress) -> memw(#foo). +let AddedComplexity = 100 in +def : Pat <(i32 (load (HexagonCONST32_GP tglobaladdr:$global))), + (i32 (LDw_GP tglobaladdr:$global))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress + x) -> memd(#foo + x). +let AddedComplexity = 100 in +def : Pat <(i64 (load (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset))), + (i64 (LDrid_GP tglobaladdr:$global, u16ImmPred:$offset))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress) -> memw(#foo + 0). +let AddedComplexity = 100 in +def : Pat <(i64 (load (HexagonCONST32_GP tglobaladdr:$global))), + (i64 (LDd_GP tglobaladdr:$global))>, + Requires<[NoV4T]>; + +// Map from Pd = load(globaladdress) -> Rd = memb(globaladdress), Pd = Rd. +let AddedComplexity = 100 in +def : Pat <(i1 (load (HexagonCONST32_GP tglobaladdr:$global))), + (i1 (TFR_PdRs (i32 (LDb_GP tglobaladdr:$global))))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress + x) -> memh(#foo + x). +let AddedComplexity = 100 in +def : Pat <(i32 (extloadi16 (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset))), + (i32 (LDrih_GP tglobaladdr:$global, u16ImmPred:$offset))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress + x) -> memh(#foo + x). +let AddedComplexity = 100 in +def : Pat <(i32 (sextloadi16 (HexagonCONST32_GP tglobaladdr:$global))), + (i32 (LDrih_GP tglobaladdr:$global, 0))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress + x) -> memuh(#foo + x). +let AddedComplexity = 100 in +def : Pat <(i32 (zextloadi16 (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset))), + (i32 (LDriuh_GP tglobaladdr:$global, u16ImmPred:$offset))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress) -> memuh(#foo). +let AddedComplexity = 100 in +def : Pat <(i32 (zextloadi16 (HexagonCONST32_GP tglobaladdr:$global))), + (i32 (LDriuh_GP tglobaladdr:$global, 0))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress) -> memh(#foo). +let AddedComplexity = 100 in +def : Pat <(i32 (sextloadi16 (HexagonCONST32_GP tglobaladdr:$global))), + (i32 (LDh_GP tglobaladdr:$global))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress) -> memuh(#foo). +let AddedComplexity = 100 in +def : Pat <(i32 (zextloadi16 (HexagonCONST32_GP tglobaladdr:$global))), + (i32 (LDuh_GP tglobaladdr:$global))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress + x) -> memb(#foo + x). +let AddedComplexity = 100 in +def : Pat <(i32 (extloadi8 (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset))), + (i32 (LDrib_GP tglobaladdr:$global, u16ImmPred:$offset))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress + x) -> memb(#foo + x). +let AddedComplexity = 100 in +def : Pat <(i32 (sextloadi8 (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset))), + (i32 (LDrib_GP tglobaladdr:$global, u16ImmPred:$offset))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress + x) -> memub(#foo + x). +let AddedComplexity = 100 in +def : Pat <(i32 (zextloadi8 (add (HexagonCONST32_GP tglobaladdr:$global), + u16ImmPred:$offset))), + (i32 (LDriub_GP tglobaladdr:$global, u16ImmPred:$offset))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress) -> memb(#foo). +let AddedComplexity = 100 in +def : Pat <(i32 (extloadi8 (HexagonCONST32_GP tglobaladdr:$global))), + (i32 (LDb_GP tglobaladdr:$global))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress) -> memb(#foo). +let AddedComplexity = 100 in +def : Pat <(i32 (sextloadi8 (HexagonCONST32_GP tglobaladdr:$global))), + (i32 (LDb_GP tglobaladdr:$global))>, + Requires<[NoV4T]>; + +// Map from load(globaladdress) -> memub(#foo). +let AddedComplexity = 100 in +def : Pat <(i32 (zextloadi8 (HexagonCONST32_GP tglobaladdr:$global))), + (i32 (LDub_GP tglobaladdr:$global))>, + Requires<[NoV4T]>; + +// When the Interprocedural Global Variable optimizer realizes that a +// certain global variable takes only two constant values, it shrinks the +// global to a boolean. Catch those loads here in the following 3 patterns. +let AddedComplexity = 100 in +def : Pat <(i32 (extloadi1 (HexagonCONST32_GP tglobaladdr:$global))), + (i32 (LDb_GP tglobaladdr:$global))>, + Requires<[NoV4T]>; + +let AddedComplexity = 100 in +def : Pat <(i32 (sextloadi1 (HexagonCONST32_GP tglobaladdr:$global))), + (i32 (LDb_GP tglobaladdr:$global))>, + Requires<[NoV4T]>; + +let AddedComplexity = 100 in +def : Pat <(i32 (zextloadi1 (HexagonCONST32_GP tglobaladdr:$global))), + (i32 (LDub_GP tglobaladdr:$global))>, + Requires<[NoV4T]>; + +// Map from i1 loads to 32 bits. This assumes that the i1* is byte aligned. +def : Pat <(i32 (zextloadi1 ADDRriS11_0:$addr)), + (i32 (AND_rr (i32 (LDrib ADDRriS11_0:$addr)), (TFRI 0x1)))>; + +// Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = SXTW(Rss.lo). +def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)), + (i64 (SXTW (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))>; + +// Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = SXTW(SXTH(Rss.lo)). +def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)), + (i64 (SXTW (i32 (SXTH (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), + subreg_loreg))))))>; + +// Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = SXTW(SXTB(Rss.lo)). +def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)), + (i64 (SXTW (i32 (SXTB (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), + subreg_loreg))))))>; + +// We want to prevent emitting pnot's as much as possible. +// Map brcond with an unsupported setcc to a JMP_cNot. +def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + bb:$offset), + (JMP_cNot (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)), + bb:$offset)>; + +def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)), + bb:$offset), + (JMP_cNot (CMPEQri (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>; + +def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset), + (JMP_cNot (i1 PredRegs:$src1), bb:$offset)>; + +def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset), + (JMP_c (i1 PredRegs:$src1), bb:$offset)>; + +def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)), + bb:$offset), + (JMP_cNot (CMPGEri (i32 IntRegs:$src1), s8ImmPred:$src2), bb:$offset)>; + +def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + bb:$offset), + (JMP_c (CMPLTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)), bb:$offset)>; + +def : Pat <(brcond (i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + bb:$offset), + (JMP_cNot (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)), + bb:$offset)>; + +def : Pat <(brcond (i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + bb:$offset), + (JMP_cNot (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)), + bb:$offset)>; + +def : Pat <(brcond (i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + bb:$offset), + (JMP_cNot (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), + bb:$offset)>; + +// Map from a 64-bit select to an emulated 64-bit mux. +// Hexagon does not support 64-bit MUXes; so emulate with combines. +def : Pat <(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2), + (i64 DoubleRegs:$src3)), + (i64 (COMBINE_rr (i32 (MUX_rr (i1 PredRegs:$src1), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), + subreg_hireg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3), + subreg_hireg)))), + (i32 (MUX_rr (i1 PredRegs:$src1), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), + subreg_loreg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3), + subreg_loreg))))))>; + +// Map from a 1-bit select to logical ops. +// From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3). +def : Pat <(select (i1 PredRegs:$src1), (i1 PredRegs:$src2), + (i1 PredRegs:$src3)), + (OR_pp (AND_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)), + (AND_pp (NOT_p (i1 PredRegs:$src1)), (i1 PredRegs:$src3)))>; + +// Map Pd = load(addr) -> Rs = load(addr); Pd = Rs. +def : Pat<(i1 (load ADDRriS11_2:$addr)), + (i1 (TFR_PdRs (i32 (LDrib ADDRriS11_2:$addr))))>; + +// Map for truncating from 64 immediates to 32 bit immediates. +def : Pat<(i32 (trunc (i64 DoubleRegs:$src))), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg))>; + +// Map for truncating from i64 immediates to i1 bit immediates. +def : Pat<(i1 (trunc (i64 DoubleRegs:$src))), + (i1 (TFR_PdRs (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), + subreg_loreg))))>; + +// Map memb(Rs) = Rdd -> memb(Rs) = Rt. +def : Pat<(truncstorei8 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), + (STrib ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), + subreg_loreg)))>; + +// Map memh(Rs) = Rdd -> memh(Rs) = Rt. +def : Pat<(truncstorei16 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), + (STrih ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), + subreg_loreg)))>; +// Map memw(Rs) = Rdd -> memw(Rs) = Rt +def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), + (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), + subreg_loreg)))>; + +// Map memw(Rs) = Rdd -> memw(Rs) = Rt. +def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr), + (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), + subreg_loreg)))>; + +// Map from i1 = constant<-1>; memw(addr) = i1 -> r0 = 1; memw(addr) = r0. +def : Pat<(store (i1 -1), ADDRriS11_2:$addr), + (STrib ADDRriS11_2:$addr, (TFRI 1))>; + +let AddedComplexity = 100 in +// Map from i1 = constant<-1>; memw(CONST32(#foo)) = i1 -> r0 = 1; +// memw(#foo) = r0 +def : Pat<(store (i1 -1), (HexagonCONST32_GP tglobaladdr:$global)), + (STb_GP tglobaladdr:$global, (TFRI 1))>, + Requires<[NoV4T]>; + +// Map from i1 = constant<-1>; store i1 -> r0 = 1; store r0. +def : Pat<(store (i1 -1), ADDRriS11_2:$addr), + (STrib ADDRriS11_2:$addr, (TFRI 1))>; + +// Map from memb(Rs) = Pd -> Rt = mux(Pd, #0, #1); store Rt. +def : Pat<(store (i1 PredRegs:$src1), ADDRriS11_2:$addr), + (STrib ADDRriS11_2:$addr, (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0)) )>; + +// Map Rdd = anyext(Rs) -> Rdd = sxtw(Rs). +// Hexagon_TODO: We can probably use combine but that will cost 2 instructions. +// Better way to do this? +def : Pat<(i64 (anyext (i32 IntRegs:$src1))), + (i64 (SXTW (i32 IntRegs:$src1)))>; + +// Map cmple -> cmpgt. +// rs <= rt -> !(rs > rt). +def : Pat<(i1 (setle (i32 IntRegs:$src1), s10ImmPred:$src2)), + (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), s10ImmPred:$src2)))>; + +// rs <= rt -> !(rs > rt). +def : Pat<(i1 (setle (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i1 (NOT_p (CMPGTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>; + +// Rss <= Rtt -> !(Rss > Rtt). +def : Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (i1 (NOT_p (CMPGT64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>; + +// Map cmpne -> cmpeq. +// Hexagon_TODO: We should improve on this. +// rs != rt -> !(rs == rt). +def : Pat <(i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)), + (i1 (NOT_p(i1 (CMPEQri (i32 IntRegs:$src1), s10ImmPred:$src2))))>; + +// Map cmpne(Rs) -> !cmpeqe(Rs). +// rs != rt -> !(rs == rt). +def : Pat <(i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i1 (NOT_p (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)))))>; + +// Convert setne back to xor for hexagon since we compute w/ pred registers. +def : Pat <(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))), + (i1 (XOR_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>; + +// Map cmpne(Rss) -> !cmpew(Rss). +// rs != rt -> !(rs == rt). +def : Pat <(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (i1 (NOT_p (i1 (CMPEHexagon4rr (i64 DoubleRegs:$src1), + (i64 DoubleRegs:$src2)))))>; + +// Map cmpge(Rs, Rt) -> !(cmpgt(Rs, Rt). +// rs >= rt -> !(rt > rs). +def : Pat <(i1 (setge (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i1 (NOT_p (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>; + +def : Pat <(i1 (setge (i32 IntRegs:$src1), s8ImmPred:$src2)), + (i1 (CMPGEri (i32 IntRegs:$src1), s8ImmPred:$src2))>; + +// Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss). +// rss >= rtt -> !(rtt > rss). +def : Pat <(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (i1 (NOT_p (i1 (CMPGT64rr (i64 DoubleRegs:$src2), + (i64 DoubleRegs:$src1)))))>; + +// Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm). +// rs < rt -> !(rs >= rt). +def : Pat <(i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)), + (i1 (NOT_p (CMPGEri (i32 IntRegs:$src1), s8ImmPred:$src2)))>; + +// Map cmplt(Rs, Rt) -> cmpgt(Rt, Rs). +// rs < rt -> rt > rs. +// We can let assembler map it, or we can do in the compiler itself. +def : Pat <(i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>; + +// Map cmplt(Rss, Rtt) -> cmpgt(Rtt, Rss). +// rss < rtt -> (rtt > rss). +def : Pat <(i1 (setlt (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (i1 (CMPGT64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>; + +// Map from cmpltu(Rs, Rd) -> cmpgtu(Rd, Rs) +// rs < rt -> rt > rs. +// We can let assembler map it, or we can do in the compiler itself. +def : Pat <(i1 (setult (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i1 (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>; + +// Map from cmpltu(Rss, Rdd) -> cmpgtu(Rdd, Rss). +// rs < rt -> rt > rs. +def : Pat <(i1 (setult (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (i1 (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>; + +// Generate cmpgeu(Rs, #u8) +def : Pat <(i1 (setuge (i32 IntRegs:$src1), u8ImmPred:$src2)), + (i1 (CMPGEUri (i32 IntRegs:$src1), u8ImmPred:$src2))>; + +// Generate cmpgtu(Rs, #u9) +def : Pat <(i1 (setugt (i32 IntRegs:$src1), u9ImmPred:$src2)), + (i1 (CMPGTUri (i32 IntRegs:$src1), u9ImmPred:$src2))>; + +// Map from Rs >= Rt -> !(Rt > Rs). +// rs >= rt -> !(rt > rs). +def : Pat <(i1 (setuge (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1))))>; + +// Map from Rs >= Rt -> !(Rt > Rs). +// rs >= rt -> !(rt > rs). +def : Pat <(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))))>; + +// Map from cmpleu(Rs, Rs) -> !cmpgtu(Rs, Rs). +// Map from (Rs <= Rt) -> !(Rs > Rt). +def : Pat <(i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))), + (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>; + +// Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1). +// Map from (Rs <= Rt) -> !(Rs > Rt). +def : Pat <(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))), + (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>; + +// Sign extends. +// i1 -> i32 +def : Pat <(i32 (sext (i1 PredRegs:$src1))), + (i32 (MUX_ii (i1 PredRegs:$src1), -1, 0))>; + +// i1 -> i64 +def : Pat <(i64 (sext (i1 PredRegs:$src1))), + (i64 (COMBINE_rr (TFRI -1), (MUX_ii (i1 PredRegs:$src1), -1, 0)))>; + +// Convert sign-extended load back to load and sign extend. +// i8 -> i64 +def: Pat <(i64 (sextloadi8 ADDRriS11_0:$src1)), + (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>; + +// Convert any-extended load back to load and sign extend. +// i8 -> i64 +def: Pat <(i64 (extloadi8 ADDRriS11_0:$src1)), + (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>; + +// Convert sign-extended load back to load and sign extend. +// i16 -> i64 +def: Pat <(i64 (sextloadi16 ADDRriS11_1:$src1)), + (i64 (SXTW (LDrih ADDRriS11_1:$src1)))>; + +// Convert sign-extended load back to load and sign extend. +// i32 -> i64 +def: Pat <(i64 (sextloadi32 ADDRriS11_2:$src1)), + (i64 (SXTW (LDriw ADDRriS11_2:$src1)))>; + + +// Zero extends. +// i1 -> i32 +def : Pat <(i32 (zext (i1 PredRegs:$src1))), + (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>; + +// i1 -> i64 +def : Pat <(i64 (zext (i1 PredRegs:$src1))), + (i64 (COMBINE_rr (TFRI 0), (MUX_ii (i1 PredRegs:$src1), 1, 0)))>; + +// i32 -> i64 +def : Pat <(i64 (zext (i32 IntRegs:$src1))), + (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>; + +// i8 -> i64 +def: Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)), + (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>; + +// i16 -> i64 +def: Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)), + (i64 (COMBINE_rr (TFRI 0), (LDriuh ADDRriS11_1:$src1)))>; + +// i32 -> i64 +def: Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)), + (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>; + +def: Pat <(i32 (zextloadi1 ADDRriS11_0:$src1)), + (i32 (LDriw ADDRriS11_0:$src1))>; + +// Map from Rs = Pd to Pd = mux(Pd, #1, #0) +def : Pat <(i32 (zext (i1 PredRegs:$src1))), + (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>; + +// Map from Rs = Pd to Pd = mux(Pd, #1, #0) +def : Pat <(i32 (anyext (i1 PredRegs:$src1))), + (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>; + +// Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0)) +def : Pat <(i64 (anyext (i1 PredRegs:$src1))), + (i64 (SXTW (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))))>; + + +// Any extended 64-bit load. +// anyext i32 -> i64 +def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)), + (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>; + +// anyext i16 -> i64. +def: Pat <(i64 (extloadi16 ADDRriS11_2:$src1)), + (i64 (COMBINE_rr (TFRI 0), (LDrih ADDRriS11_2:$src1)))>; + +// Map from Rdd = zxtw(Rs) -> Rdd = combine(0, Rs). +def : Pat<(i64 (zext (i32 IntRegs:$src1))), + (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>; + +// Multiply 64-bit unsigned and use upper result. +def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), + (i64 + (MPYU64_acc + (i64 + (COMBINE_rr + (TFRI 0), + (i32 + (EXTRACT_SUBREG + (i64 + (LSRd_ri + (i64 + (MPYU64_acc + (i64 + (MPYU64_acc + (i64 + (COMBINE_rr (TFRI 0), + (i32 + (EXTRACT_SUBREG + (i64 + (LSRd_ri + (i64 + (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), + subreg_loreg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), + subreg_loreg)))), 32)), + subreg_loreg)))), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))), + 32)), subreg_loreg)))), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>; + +// Multiply 64-bit signed and use upper result. +def : Pat <(mulhs (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)), + (i64 + (MPY64_acc + (i64 + (COMBINE_rr (TFRI 0), + (i32 + (EXTRACT_SUBREG + (i64 + (LSRd_ri + (i64 + (MPY64_acc + (i64 + (MPY64_acc + (i64 + (COMBINE_rr (TFRI 0), + (i32 + (EXTRACT_SUBREG + (i64 + (LSRd_ri + (i64 + (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), + subreg_loreg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), + subreg_loreg)))), 32)), + subreg_loreg)))), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))), + 32)), subreg_loreg)))), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)), + (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>; + +// Hexagon specific ISD nodes. +//def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>]>; +def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, + [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; +def Hexagon_ADJDYNALLOC : SDNode<"HexagonISD::ADJDYNALLOC", + SDTHexagonADJDYNALLOC>; +// Needed to tag these instructions for stack layout. +let usesCustomInserter = 1 in +def ADJDYNALLOC : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1, + s16Imm:$src2), + "$dst = add($src1, #$src2)", + [(set (i32 IntRegs:$dst), + (Hexagon_ADJDYNALLOC (i32 IntRegs:$src1), + s16ImmPred:$src2))]>; + +def SDTHexagonARGEXTEND : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>; +def Hexagon_ARGEXTEND : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>; +def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1), + "$dst = $src1", + [(set (i32 IntRegs:$dst), + (Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>; + +let AddedComplexity = 100 in +def : Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)), + (COPY (i32 IntRegs:$src1))>; + +def SDHexagonBR_JT: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; +def HexagonBR_JT: SDNode<"HexagonISD::BR_JT", SDHexagonBR_JT, [SDNPHasChain]>; + +let isBranch=1, isIndirectBranch=1, isTerminator=1, isBarrier = 1 in +def BR_JT : JRInst<(outs), (ins IntRegs:$src), + "jumpr $src", + [(HexagonBR_JT (i32 IntRegs:$src))]>; + +def HexagonWrapperJT: SDNode<"HexagonISD::WrapperJT", SDTIntUnaryOp>; + +def : Pat<(HexagonWrapperJT tjumptable:$dst), + (i32 (CONST32_set_jt tjumptable:$dst))>; + +// XTYPE/SHIFT + +// Multi-class for logical operators : +// Shift by immediate/register and accumulate/logical +multiclass xtype_imm<string OpcStr, SDNode OpNode1, SDNode OpNode2> { + def _ri : SInst_acc<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2, u5Imm:$src3), + !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")), + [(set (i32 IntRegs:$dst), + (OpNode2 (i32 IntRegs:$src1), + (OpNode1 (i32 IntRegs:$src2), + u5ImmPred:$src3)))], + "$src1 = $dst">; + + def d_ri : SInst_acc<(outs DoubleRegs:$dst), + (ins DoubleRegs:$src1, DoubleRegs:$src2, u6Imm:$src3), + !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")), + [(set (i64 DoubleRegs:$dst), (OpNode2 (i64 DoubleRegs:$src1), + (OpNode1 (i64 DoubleRegs:$src2), u6ImmPred:$src3)))], + "$src1 = $dst">; +} + +// Multi-class for logical operators : +// Shift by register and accumulate/logical (32/64 bits) +multiclass xtype_reg<string OpcStr, SDNode OpNode1, SDNode OpNode2> { + def _rr : SInst_acc<(outs IntRegs:$dst), + (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3), + !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")), + [(set (i32 IntRegs:$dst), + (OpNode2 (i32 IntRegs:$src1), + (OpNode1 (i32 IntRegs:$src2), + (i32 IntRegs:$src3))))], + "$src1 = $dst">; + + def d_rr : SInst_acc<(outs DoubleRegs:$dst), + (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3), + !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")), + [(set (i64 DoubleRegs:$dst), + (OpNode2 (i64 DoubleRegs:$src1), + (OpNode1 (i64 DoubleRegs:$src2), + (i32 IntRegs:$src3))))], + "$src1 = $dst">; + +} + +multiclass basic_xtype_imm<string OpcStr, SDNode OpNode> { +let AddedComplexity = 100 in + defm _ADD : xtype_imm< !strconcat("+= ", OpcStr), OpNode, add>; + defm _SUB : xtype_imm< !strconcat("-= ", OpcStr), OpNode, sub>; + defm _AND : xtype_imm< !strconcat("&= ", OpcStr), OpNode, and>; + defm _OR : xtype_imm< !strconcat("|= ", OpcStr), OpNode, or>; +} + +multiclass basic_xtype_reg<string OpcStr, SDNode OpNode> { +let AddedComplexity = 100 in + defm _ADD : xtype_reg< !strconcat("+= ", OpcStr), OpNode, add>; + defm _SUB : xtype_reg< !strconcat("-= ", OpcStr), OpNode, sub>; + defm _AND : xtype_reg< !strconcat("&= ", OpcStr), OpNode, and>; + defm _OR : xtype_reg< !strconcat("|= ", OpcStr), OpNode, or>; +} + +multiclass xtype_xor_imm<string OpcStr, SDNode OpNode> { +let AddedComplexity = 100 in + defm _XOR : xtype_imm< !strconcat("^= ", OpcStr), OpNode, xor>; +} + +defm ASL : basic_xtype_imm<"asl", shl>, basic_xtype_reg<"asl", shl>, + xtype_xor_imm<"asl", shl>; + +defm LSR : basic_xtype_imm<"lsr", srl>, basic_xtype_reg<"lsr", srl>, + xtype_xor_imm<"lsr", srl>; + +defm ASR : basic_xtype_imm<"asr", sra>, basic_xtype_reg<"asr", sra>; +defm LSL : basic_xtype_reg<"lsl", shl>; + +// Change the sign of the immediate for Rd=-mpyi(Rs,#u8) +def : Pat <(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)), + (i32 (MPYI_rin (i32 IntRegs:$src1), u8ImmPred:$src2))>; + +//===----------------------------------------------------------------------===// +// V3 Instructions + +//===----------------------------------------------------------------------===// + +include "HexagonInstrInfoV3.td" + +//===----------------------------------------------------------------------===// +// V3 Instructions - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// V4 Instructions + +//===----------------------------------------------------------------------===// + +include "HexagonInstrInfoV4.td" + +//===----------------------------------------------------------------------===// +// V4 Instructions - +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// V5 Instructions + +//===----------------------------------------------------------------------===// + +include "HexagonInstrInfoV5.td" + +//===----------------------------------------------------------------------===// +// V5 Instructions - +//===----------------------------------------------------------------------===// + + |