summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td')
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td3549
1 files changed, 3549 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td
new file mode 100644
index 0000000..c0c0df6
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.td
@@ -0,0 +1,3549 @@
+//==- HexagonInstrInfo.td - Target Description for Hexagon -*- tablegen -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the Hexagon instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+include "HexagonInstrFormats.td"
+include "HexagonImmediates.td"
+
+//===----------------------------------------------------------------------===//
+// Hexagon Instruction Predicate Definitions.
+//===----------------------------------------------------------------------===//
+def HasV2T : Predicate<"Subtarget.hasV2TOps()">;
+def HasV2TOnly : Predicate<"Subtarget.hasV2TOpsOnly()">;
+def NoV2T : Predicate<"!Subtarget.hasV2TOps()">;
+def HasV3T : Predicate<"Subtarget.hasV3TOps()">;
+def HasV3TOnly : Predicate<"Subtarget.hasV3TOpsOnly()">;
+def NoV3T : Predicate<"!Subtarget.hasV3TOps()">;
+def HasV4T : Predicate<"Subtarget.hasV4TOps()">;
+def NoV4T : Predicate<"!Subtarget.hasV4TOps()">;
+def HasV5T : Predicate<"Subtarget.hasV5TOps()">;
+def NoV5T : Predicate<"!Subtarget.hasV5TOps()">;
+def UseMEMOP : Predicate<"Subtarget.useMemOps()">;
+def IEEERndNearV5T : Predicate<"Subtarget.modeIEEERndNear()">;
+
+// Addressing modes.
+def ADDRrr : ComplexPattern<i32, 2, "SelectADDRrr", [], []>;
+def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], []>;
+def ADDRriS11_0 : ComplexPattern<i32, 2, "SelectADDRriS11_0", [frameindex], []>;
+def ADDRriS11_1 : ComplexPattern<i32, 2, "SelectADDRriS11_1", [frameindex], []>;
+def ADDRriS11_2 : ComplexPattern<i32, 2, "SelectADDRriS11_2", [frameindex], []>;
+def ADDRriS11_3 : ComplexPattern<i32, 2, "SelectADDRriS11_3", [frameindex], []>;
+def ADDRriU6_0 : ComplexPattern<i32, 2, "SelectADDRriU6_0", [frameindex], []>;
+def ADDRriU6_1 : ComplexPattern<i32, 2, "SelectADDRriU6_1", [frameindex], []>;
+def ADDRriU6_2 : ComplexPattern<i32, 2, "SelectADDRriU6_2", [frameindex], []>;
+
+// Address operands.
+def MEMrr : Operand<i32> {
+ let PrintMethod = "printMEMrrOperand";
+ let MIOperandInfo = (ops IntRegs, IntRegs);
+}
+
+// Address operands
+def MEMri : Operand<i32> {
+ let PrintMethod = "printMEMriOperand";
+ let MIOperandInfo = (ops IntRegs, IntRegs);
+}
+
+def MEMri_s11_2 : Operand<i32>,
+ ComplexPattern<i32, 2, "SelectMEMriS11_2", []> {
+ let PrintMethod = "printMEMriOperand";
+ let MIOperandInfo = (ops IntRegs, s11Imm);
+}
+
+def FrameIndex : Operand<i32> {
+ let PrintMethod = "printFrameIndexOperand";
+ let MIOperandInfo = (ops IntRegs, s11Imm);
+}
+
+let PrintMethod = "printGlobalOperand" in
+ def globaladdress : Operand<i32>;
+
+let PrintMethod = "printJumpTable" in
+ def jumptablebase : Operand<i32>;
+
+def brtarget : Operand<OtherVT>;
+def calltarget : Operand<i32>;
+
+def bblabel : Operand<i32>;
+def bbl : SDNode<"ISD::BasicBlock", SDTPtrLeaf , [], "BasicBlockSDNode">;
+
+def symbolHi32 : Operand<i32> {
+ let PrintMethod = "printSymbolHi";
+}
+def symbolLo32 : Operand<i32> {
+ let PrintMethod = "printSymbolLo";
+}
+
+// Multi-class for logical operators.
+multiclass ALU32_rr_ri<string OpcStr, SDNode OpNode> {
+ def rr : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
+ [(set (i32 IntRegs:$dst), (OpNode (i32 IntRegs:$b),
+ (i32 IntRegs:$c)))]>;
+ def ri : ALU32_ri<(outs IntRegs:$dst), (ins s10Imm:$b, IntRegs:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "(#$b, $c)")),
+ [(set (i32 IntRegs:$dst), (OpNode s10Imm:$b,
+ (i32 IntRegs:$c)))]>;
+}
+
+// Multi-class for compare ops.
+let isCompare = 1 in {
+multiclass CMP64_rr<string OpcStr, PatFrag OpNode> {
+ def rr : ALU64_rr<(outs PredRegs:$dst), (ins DoubleRegs:$b, DoubleRegs:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
+ [(set (i1 PredRegs:$dst),
+ (OpNode (i64 DoubleRegs:$b), (i64 DoubleRegs:$c)))]>;
+}
+multiclass CMP32_rr<string OpcStr, PatFrag OpNode> {
+ def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
+ [(set (i1 PredRegs:$dst),
+ (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>;
+}
+
+multiclass CMP32_rr_ri_s10<string OpcStr, PatFrag OpNode> {
+ def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
+ [(set (i1 PredRegs:$dst),
+ (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>;
+ def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s10Imm:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
+ [(set (i1 PredRegs:$dst),
+ (OpNode (i32 IntRegs:$b), s10ImmPred:$c))]>;
+}
+
+multiclass CMP32_rr_ri_u9<string OpcStr, PatFrag OpNode> {
+ def rr : ALU32_rr<(outs PredRegs:$dst), (ins IntRegs:$b, IntRegs:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, $c)")),
+ [(set (i1 PredRegs:$dst),
+ (OpNode (i32 IntRegs:$b), (i32 IntRegs:$c)))]>;
+ def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, u9Imm:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
+ [(set (i1 PredRegs:$dst),
+ (OpNode (i32 IntRegs:$b), u9ImmPred:$c))]>;
+}
+
+multiclass CMP32_ri_u8<string OpcStr, PatFrag OpNode> {
+ def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, u8Imm:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
+ [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b),
+ u8ImmPred:$c))]>;
+}
+
+multiclass CMP32_ri_s8<string OpcStr, PatFrag OpNode> {
+ def ri : ALU32_ri<(outs PredRegs:$dst), (ins IntRegs:$b, s8Imm:$c),
+ !strconcat("$dst = ", !strconcat(OpcStr, "($b, #$c)")),
+ [(set (i1 PredRegs:$dst), (OpNode (i32 IntRegs:$b),
+ s8ImmPred:$c))]>;
+}
+}
+
+//===----------------------------------------------------------------------===//
+// ALU32/ALU +
+//===----------------------------------------------------------------------===//
+// Add.
+let isCommutable = 1, isPredicable = 1 in
+def ADD_rr : ALU32_rr<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = add($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+let isPredicable = 1 in
+def ADD_ri : ALU32_ri<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, s16Imm:$src2),
+ "$dst = add($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1),
+ s16ImmPred:$src2))]>;
+
+// Logical operations.
+let isPredicable = 1 in
+def XOR_rr : ALU32_rr<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = xor($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (xor (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+let isCommutable = 1, isPredicable = 1 in
+def AND_rr : ALU32_rr<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = and($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+def OR_ri : ALU32_ri<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, s10Imm:$src2),
+ "$dst = or($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1),
+ s10ImmPred:$src2))]>;
+
+def NOT_rr : ALU32_rr<(outs IntRegs:$dst),
+ (ins IntRegs:$src1),
+ "$dst = not($src1)",
+ [(set (i32 IntRegs:$dst), (not (i32 IntRegs:$src1)))]>;
+
+def AND_ri : ALU32_ri<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, s10Imm:$src2),
+ "$dst = and($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1),
+ s10ImmPred:$src2))]>;
+
+let isCommutable = 1, isPredicable = 1 in
+def OR_rr : ALU32_rr<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = or($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+// Negate.
+def NEG : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1),
+ "$dst = neg($src1)",
+ [(set (i32 IntRegs:$dst), (ineg (i32 IntRegs:$src1)))]>;
+// Nop.
+let neverHasSideEffects = 1 in
+def NOP : ALU32_rr<(outs), (ins),
+ "nop",
+ []>;
+
+// Subtract.
+let isPredicable = 1 in
+def SUB_rr : ALU32_rr<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = sub($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+// Rd32=sub(#s10,Rs32)
+def SUB_ri : ALU32_ri<(outs IntRegs:$dst),
+ (ins s10Imm:$src1, IntRegs:$src2),
+ "$dst = sub(#$src1, $src2)",
+ [(set IntRegs:$dst, (sub s10ImmPred:$src1, IntRegs:$src2))]>;
+
+// Transfer immediate.
+let isMoveImm = 1, isReMaterializable = 1, isPredicable = 1 in
+def TFRI : ALU32_ri<(outs IntRegs:$dst), (ins s16Imm:$src1),
+ "$dst = #$src1",
+ [(set (i32 IntRegs:$dst), s16ImmPred:$src1)]>;
+
+// Transfer register.
+let neverHasSideEffects = 1, isPredicable = 1 in
+def TFR : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1),
+ "$dst = $src1",
+ []>;
+
+let neverHasSideEffects = 1, isPredicable = 1 in
+def TFR64 : ALU32_ri<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1),
+ "$dst = $src1",
+ []>;
+
+// Transfer control register.
+let neverHasSideEffects = 1 in
+def TFCR : CRInst<(outs CRRegs:$dst), (ins IntRegs:$src1),
+ "$dst = $src1",
+ []>;
+//===----------------------------------------------------------------------===//
+// ALU32/ALU -
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// ALU32/PERM +
+//===----------------------------------------------------------------------===//
+
+// Combine.
+let isPredicable = 1, neverHasSideEffects = 1 in
+def COMBINE_rr : ALU32_rr<(outs DoubleRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = combine($src1, $src2)",
+ []>;
+
+let neverHasSideEffects = 1 in
+def COMBINE_ii : ALU32_ii<(outs DoubleRegs:$dst),
+ (ins s8Imm:$src1, s8Imm:$src2),
+ "$dst = combine(#$src1, #$src2)",
+ []>;
+
+// Mux.
+def VMUX_prr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1,
+ DoubleRegs:$src2,
+ DoubleRegs:$src3),
+ "$dst = vmux($src1, $src2, $src3)",
+ []>;
+
+def MUX_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
+ IntRegs:$src2, IntRegs:$src3),
+ "$dst = mux($src1, $src2, $src3)",
+ [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1),
+ (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))]>;
+
+def MUX_ir : ALU32_ir<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Imm:$src2,
+ IntRegs:$src3),
+ "$dst = mux($src1, #$src2, $src3)",
+ [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1),
+ s8ImmPred:$src2,
+ (i32 IntRegs:$src3))))]>;
+
+def MUX_ri : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2,
+ s8Imm:$src3),
+ "$dst = mux($src1, $src2, #$src3)",
+ [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1),
+ (i32 IntRegs:$src2),
+ s8ImmPred:$src3)))]>;
+
+def MUX_ii : ALU32_ii<(outs IntRegs:$dst), (ins PredRegs:$src1, s8Imm:$src2,
+ s8Imm:$src3),
+ "$dst = mux($src1, #$src2, #$src3)",
+ [(set (i32 IntRegs:$dst), (i32 (select (i1 PredRegs:$src1),
+ s8ImmPred:$src2,
+ s8ImmPred:$src3)))]>;
+
+// Shift halfword.
+let isPredicable = 1 in
+def ASLH : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1),
+ "$dst = aslh($src1)",
+ [(set (i32 IntRegs:$dst), (shl 16, (i32 IntRegs:$src1)))]>;
+
+let isPredicable = 1 in
+def ASRH : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1),
+ "$dst = asrh($src1)",
+ [(set (i32 IntRegs:$dst), (sra 16, (i32 IntRegs:$src1)))]>;
+
+// Sign extend.
+let isPredicable = 1 in
+def SXTB : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1),
+ "$dst = sxtb($src1)",
+ [(set (i32 IntRegs:$dst), (sext_inreg (i32 IntRegs:$src1), i8))]>;
+
+let isPredicable = 1 in
+def SXTH : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1),
+ "$dst = sxth($src1)",
+ [(set (i32 IntRegs:$dst), (sext_inreg (i32 IntRegs:$src1), i16))]>;
+
+// Zero extend.
+let isPredicable = 1, neverHasSideEffects = 1 in
+def ZXTB : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1),
+ "$dst = zxtb($src1)",
+ []>;
+
+let isPredicable = 1, neverHasSideEffects = 1 in
+def ZXTH : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$src1),
+ "$dst = zxth($src1)",
+ []>;
+//===----------------------------------------------------------------------===//
+// ALU32/PERM -
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// ALU32/PRED +
+//===----------------------------------------------------------------------===//
+
+// Conditional add.
+let neverHasSideEffects = 1, isPredicated = 1 in
+def ADD_ri_cPt : ALU32_ri<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, s8Imm:$src3),
+ "if ($src1) $dst = add($src2, #$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def ADD_ri_cNotPt : ALU32_ri<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, s8Imm:$src3),
+ "if (!$src1) $dst = add($src2, #$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def ADD_ri_cdnPt : ALU32_ri<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, s8Imm:$src3),
+ "if ($src1.new) $dst = add($src2, #$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def ADD_ri_cdnNotPt : ALU32_ri<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, s8Imm:$src3),
+ "if (!$src1.new) $dst = add($src2, #$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def ADD_rr_cPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if ($src1) $dst = add($src2, $src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def ADD_rr_cNotPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if (!$src1) $dst = add($src2, $src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def ADD_rr_cdnPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if ($src1.new) $dst = add($src2, $src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def ADD_rr_cdnNotPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if (!$src1.new) $dst = add($src2, $src3)",
+ []>;
+
+
+// Conditional combine.
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def COMBINE_rr_cPt : ALU32_rr<(outs DoubleRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if ($src1) $dst = combine($src2, $src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def COMBINE_rr_cNotPt : ALU32_rr<(outs DoubleRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if (!$src1) $dst = combine($src2, $src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def COMBINE_rr_cdnPt : ALU32_rr<(outs DoubleRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if ($src1.new) $dst = combine($src2, $src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def COMBINE_rr_cdnNotPt : ALU32_rr<(outs DoubleRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if (!$src1.new) $dst = combine($src2, $src3)",
+ []>;
+
+// Conditional logical operations.
+
+let isPredicated = 1 in
+def XOR_rr_cPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if ($src1) $dst = xor($src2, $src3)",
+ []>;
+
+let isPredicated = 1 in
+def XOR_rr_cNotPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if (!$src1) $dst = xor($src2, $src3)",
+ []>;
+
+let isPredicated = 1 in
+def XOR_rr_cdnPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if ($src1.new) $dst = xor($src2, $src3)",
+ []>;
+
+let isPredicated = 1 in
+def XOR_rr_cdnNotPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if (!$src1.new) $dst = xor($src2, $src3)",
+ []>;
+
+let isPredicated = 1 in
+def AND_rr_cPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if ($src1) $dst = and($src2, $src3)",
+ []>;
+
+let isPredicated = 1 in
+def AND_rr_cNotPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if (!$src1) $dst = and($src2, $src3)",
+ []>;
+
+let isPredicated = 1 in
+def AND_rr_cdnPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if ($src1.new) $dst = and($src2, $src3)",
+ []>;
+
+let isPredicated = 1 in
+def AND_rr_cdnNotPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if (!$src1.new) $dst = and($src2, $src3)",
+ []>;
+
+let isPredicated = 1 in
+def OR_rr_cPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if ($src1) $dst = or($src2, $src3)",
+ []>;
+
+let isPredicated = 1 in
+def OR_rr_cNotPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if (!$src1) $dst = or($src2, $src3)",
+ []>;
+
+let isPredicated = 1 in
+def OR_rr_cdnPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if ($src1.new) $dst = or($src2, $src3)",
+ []>;
+
+let isPredicated = 1 in
+def OR_rr_cdnNotPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if (!$src1.new) $dst = or($src2, $src3)",
+ []>;
+
+
+// Conditional subtract.
+
+let isPredicated = 1 in
+def SUB_rr_cPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if ($src1) $dst = sub($src2, $src3)",
+ []>;
+
+let isPredicated = 1 in
+def SUB_rr_cNotPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if (!$src1) $dst = sub($src2, $src3)",
+ []>;
+
+let isPredicated = 1 in
+def SUB_rr_cdnPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if ($src1.new) $dst = sub($src2, $src3)",
+ []>;
+
+let isPredicated = 1 in
+def SUB_rr_cdnNotPt : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "if (!$src1.new) $dst = sub($src2, $src3)",
+ []>;
+
+
+// Conditional transfer.
+let neverHasSideEffects = 1, isPredicated = 1 in
+def TFR_cPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1, IntRegs:$src2),
+ "if ($src1) $dst = $src2",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def TFR_cNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
+ IntRegs:$src2),
+ "if (!$src1) $dst = $src2",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def TFR64_cPt : ALU32_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1,
+ DoubleRegs:$src2),
+ "if ($src1) $dst = $src2",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def TFR64_cNotPt : ALU32_rr<(outs DoubleRegs:$dst), (ins PredRegs:$src1,
+ DoubleRegs:$src2),
+ "if (!$src1) $dst = $src2",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def TFRI_cPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1, s12Imm:$src2),
+ "if ($src1) $dst = #$src2",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def TFRI_cNotPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1,
+ s12Imm:$src2),
+ "if (!$src1) $dst = #$src2",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def TFR_cdnPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
+ IntRegs:$src2),
+ "if ($src1.new) $dst = $src2",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def TFR_cdnNotPt : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
+ IntRegs:$src2),
+ "if (!$src1.new) $dst = $src2",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def TFRI_cdnPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1,
+ s12Imm:$src2),
+ "if ($src1.new) $dst = #$src2",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def TFRI_cdnNotPt : ALU32_ri<(outs IntRegs:$dst), (ins PredRegs:$src1,
+ s12Imm:$src2),
+ "if (!$src1.new) $dst = #$src2",
+ []>;
+
+// Compare.
+defm CMPGTU : CMP32_rr_ri_u9<"cmp.gtu", setugt>;
+defm CMPGT : CMP32_rr_ri_s10<"cmp.gt", setgt>;
+defm CMPLT : CMP32_rr<"cmp.lt", setlt>;
+defm CMPLTU : CMP32_rr<"cmp.ltu", setult>;
+defm CMPEQ : CMP32_rr_ri_s10<"cmp.eq", seteq>;
+defm CMPGE : CMP32_ri_s8<"cmp.ge", setge>;
+defm CMPGEU : CMP32_ri_u8<"cmp.geu", setuge>;
+//===----------------------------------------------------------------------===//
+// ALU32/PRED -
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// ALU64/ALU +
+//===----------------------------------------------------------------------===//
+// Add.
+def ADD64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = add($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (add (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2)))]>;
+
+// Add halfword.
+
+// Compare.
+defm CMPEHexagon4 : CMP64_rr<"cmp.eq", seteq>;
+defm CMPGT64 : CMP64_rr<"cmp.gt", setgt>;
+defm CMPGTU64 : CMP64_rr<"cmp.gtu", setugt>;
+
+// Logical operations.
+def AND_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = and($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (and (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2)))]>;
+
+def OR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = or($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (or (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2)))]>;
+
+def XOR_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = xor($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (xor (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2)))]>;
+
+// Maximum.
+def MAXw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = max($src2, $src1)",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 (setlt (i32 IntRegs:$src2),
+ (i32 IntRegs:$src1))),
+ (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
+
+def MAXUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = maxu($src2, $src1)",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 (setult (i32 IntRegs:$src2),
+ (i32 IntRegs:$src1))),
+ (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
+
+def MAXd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = max($src2, $src1)",
+ [(set (i64 DoubleRegs:$dst),
+ (i64 (select (i1 (setlt (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src1))),
+ (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2))))]>;
+
+def MAXUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = maxu($src2, $src1)",
+ [(set (i64 DoubleRegs:$dst),
+ (i64 (select (i1 (setult (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src1))),
+ (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2))))]>;
+
+// Minimum.
+def MINw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = min($src2, $src1)",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 (setgt (i32 IntRegs:$src2),
+ (i32 IntRegs:$src1))),
+ (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
+
+def MINUw_rr : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = minu($src2, $src1)",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 (setugt (i32 IntRegs:$src2),
+ (i32 IntRegs:$src1))),
+ (i32 IntRegs:$src1), (i32 IntRegs:$src2))))]>;
+
+def MINd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = min($src2, $src1)",
+ [(set (i64 DoubleRegs:$dst),
+ (i64 (select (i1 (setgt (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src1))),
+ (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2))))]>;
+
+def MINUd_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = minu($src2, $src1)",
+ [(set (i64 DoubleRegs:$dst),
+ (i64 (select (i1 (setugt (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src1))),
+ (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2))))]>;
+
+// Subtract.
+def SUB64_rr : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2),
+ "$dst = sub($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (sub (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2)))]>;
+
+// Subtract halfword.
+
+// Transfer register.
+let neverHasSideEffects = 1 in
+def TFR_64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1),
+ "$dst = $src1",
+ []>;
+//===----------------------------------------------------------------------===//
+// ALU64/ALU -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// ALU64/BIT +
+//===----------------------------------------------------------------------===//
+//
+//===----------------------------------------------------------------------===//
+// ALU64/BIT -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// ALU64/PERM +
+//===----------------------------------------------------------------------===//
+//
+//===----------------------------------------------------------------------===//
+// ALU64/PERM -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// CR +
+//===----------------------------------------------------------------------===//
+// Logical reductions on predicates.
+
+// Looping instructions.
+
+// Pipelined looping instructions.
+
+// Logical operations on predicates.
+def AND_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
+ "$dst = and($src1, $src2)",
+ [(set (i1 PredRegs:$dst), (and (i1 PredRegs:$src1),
+ (i1 PredRegs:$src2)))]>;
+
+let neverHasSideEffects = 1 in
+def AND_pnotp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1,
+ PredRegs:$src2),
+ "$dst = and($src1, !$src2)",
+ []>;
+
+def ANY_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
+ "$dst = any8($src1)",
+ []>;
+
+def ALL_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
+ "$dst = all8($src1)",
+ []>;
+
+def VITPACK_pp : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1,
+ PredRegs:$src2),
+ "$dst = vitpack($src1, $src2)",
+ []>;
+
+def VALIGN_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2,
+ PredRegs:$src3),
+ "$dst = valignb($src1, $src2, $src3)",
+ []>;
+
+def VSPLICE_rrp : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ DoubleRegs:$src2,
+ PredRegs:$src3),
+ "$dst = vspliceb($src1, $src2, $src3)",
+ []>;
+
+def MASK_p : SInst<(outs DoubleRegs:$dst), (ins PredRegs:$src1),
+ "$dst = mask($src1)",
+ []>;
+
+def NOT_p : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1),
+ "$dst = not($src1)",
+ [(set (i1 PredRegs:$dst), (not (i1 PredRegs:$src1)))]>;
+
+def OR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
+ "$dst = or($src1, $src2)",
+ [(set (i1 PredRegs:$dst), (or (i1 PredRegs:$src1),
+ (i1 PredRegs:$src2)))]>;
+
+def XOR_pp : SInst<(outs PredRegs:$dst), (ins PredRegs:$src1, PredRegs:$src2),
+ "$dst = xor($src1, $src2)",
+ [(set (i1 PredRegs:$dst), (xor (i1 PredRegs:$src1),
+ (i1 PredRegs:$src2)))]>;
+
+
+// User control register transfer.
+//===----------------------------------------------------------------------===//
+// CR -
+//===----------------------------------------------------------------------===//
+
+
+//===----------------------------------------------------------------------===//
+// J +
+//===----------------------------------------------------------------------===//
+// Jump to address.
+let isBranch = 1, isTerminator=1, isBarrier = 1, isPredicable = 1 in {
+ def JMP : JInst< (outs),
+ (ins brtarget:$offset),
+ "jump $offset",
+ [(br bb:$offset)]>;
+}
+
+// if (p0) jump
+let isBranch = 1, isTerminator=1, Defs = [PC],
+ isPredicated = 1 in {
+ def JMP_c : JInst< (outs),
+ (ins PredRegs:$src, brtarget:$offset),
+ "if ($src) jump $offset",
+ [(brcond (i1 PredRegs:$src), bb:$offset)]>;
+}
+
+// if (!p0) jump
+let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC],
+ isPredicated = 1 in {
+ def JMP_cNot : JInst< (outs),
+ (ins PredRegs:$src, brtarget:$offset),
+ "if (!$src) jump $offset",
+ []>;
+}
+
+let isTerminator = 1, isBranch = 1, neverHasSideEffects = 1, Defs = [PC],
+ isPredicated = 1 in {
+ def BRCOND : JInst < (outs), (ins PredRegs:$pred, brtarget:$dst),
+ "if ($pred) jump $dst",
+ []>;
+}
+
+// Jump to address conditioned on new predicate.
+// if (p0) jump:t
+let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC],
+ isPredicated = 1 in {
+ def JMP_cdnPt : JInst< (outs),
+ (ins PredRegs:$src, brtarget:$offset),
+ "if ($src.new) jump:t $offset",
+ []>;
+}
+
+// if (!p0) jump:t
+let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC],
+ isPredicated = 1 in {
+ def JMP_cdnNotPt : JInst< (outs),
+ (ins PredRegs:$src, brtarget:$offset),
+ "if (!$src.new) jump:t $offset",
+ []>;
+}
+
+// Not taken.
+let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC],
+ isPredicated = 1 in {
+ def JMP_cdnPnt : JInst< (outs),
+ (ins PredRegs:$src, brtarget:$offset),
+ "if ($src.new) jump:nt $offset",
+ []>;
+}
+
+// Not taken.
+let isBranch = 1, isTerminator=1, neverHasSideEffects = 1, Defs = [PC],
+ isPredicated = 1 in {
+ def JMP_cdnNotPnt : JInst< (outs),
+ (ins PredRegs:$src, brtarget:$offset),
+ "if (!$src.new) jump:nt $offset",
+ []>;
+}
+//===----------------------------------------------------------------------===//
+// J -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// JR +
+//===----------------------------------------------------------------------===//
+def retflag : SDNode<"HexagonISD::RET_FLAG", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue]>;
+
+// Jump to address from register.
+let isPredicable =1, isReturn = 1, isTerminator = 1, isBarrier = 1,
+ Defs = [PC], Uses = [R31] in {
+ def JMPR: JRInst<(outs), (ins),
+ "jumpr r31",
+ [(retflag)]>;
+}
+
+// Jump to address from register.
+let isReturn = 1, isTerminator = 1, isBarrier = 1, isPredicated = 1,
+ Defs = [PC], Uses = [R31] in {
+ def JMPR_cPt: JRInst<(outs), (ins PredRegs:$src1),
+ "if ($src1) jumpr r31",
+ []>;
+}
+
+// Jump to address from register.
+let isReturn = 1, isTerminator = 1, isBarrier = 1, isPredicated = 1,
+ Defs = [PC], Uses = [R31] in {
+ def JMPR_cNotPt: JRInst<(outs), (ins PredRegs:$src1),
+ "if (!$src1) jumpr r31",
+ []>;
+}
+
+//===----------------------------------------------------------------------===//
+// JR -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// LD +
+//===----------------------------------------------------------------------===//
+///
+/// Make sure that in post increment load, the first operand is always the post
+/// increment operand.
+///
+// Load doubleword.
+let isPredicable = 1 in
+def LDrid : LDInst<(outs DoubleRegs:$dst),
+ (ins MEMri:$addr),
+ "$dst = memd($addr)",
+ [(set (i64 DoubleRegs:$dst), (i64 (load ADDRriS11_3:$addr)))]>;
+
+let isPredicable = 1, AddedComplexity = 20 in
+def LDrid_indexed : LDInst<(outs DoubleRegs:$dst),
+ (ins IntRegs:$src1, s11_3Imm:$offset),
+ "$dst = memd($src1+#$offset)",
+ [(set (i64 DoubleRegs:$dst),
+ (i64 (load (add (i32 IntRegs:$src1),
+ s11_3ImmPred:$offset))))]>;
+
+let neverHasSideEffects = 1 in
+def LDrid_GP : LDInst2<(outs DoubleRegs:$dst),
+ (ins globaladdress:$global, u16Imm:$offset),
+ "$dst = memd(#$global+$offset)",
+ []>,
+ Requires<[NoV4T]>;
+
+let neverHasSideEffects = 1 in
+def LDd_GP : LDInst2<(outs DoubleRegs:$dst),
+ (ins globaladdress:$global),
+ "$dst = memd(#$global)",
+ []>,
+ Requires<[NoV4T]>;
+
+let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in
+def POST_LDrid : LDInst2PI<(outs DoubleRegs:$dst, IntRegs:$dst2),
+ (ins IntRegs:$src1, s4Imm:$offset),
+ "$dst = memd($src1++#$offset)",
+ [],
+ "$src1 = $dst2">;
+
+// Load doubleword conditionally.
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrid_cPt : LDInst2<(outs DoubleRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if ($src1) $dst = memd($addr)",
+ []>;
+
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrid_cNotPt : LDInst2<(outs DoubleRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if (!$src1) $dst = memd($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrid_indexed_cPt : LDInst2<(outs DoubleRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3),
+ "if ($src1) $dst = memd($src2+#$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrid_indexed_cNotPt : LDInst2<(outs DoubleRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3),
+ "if (!$src1) $dst = memd($src2+#$src3)",
+ []>;
+
+let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in
+def POST_LDrid_cPt : LDInst2PI<(outs DoubleRegs:$dst1, IntRegs:$dst2),
+ (ins PredRegs:$src1, IntRegs:$src2, s4_3Imm:$src3),
+ "if ($src1) $dst1 = memd($src2++#$src3)",
+ [],
+ "$src2 = $dst2">;
+
+let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in
+def POST_LDrid_cNotPt : LDInst2PI<(outs DoubleRegs:$dst1, IntRegs:$dst2),
+ (ins PredRegs:$src1, IntRegs:$src2, s4_3Imm:$src3),
+ "if (!$src1) $dst1 = memd($src2++#$src3)",
+ [],
+ "$src2 = $dst2">;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrid_cdnPt : LDInst2<(outs DoubleRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if ($src1.new) $dst = memd($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrid_cdnNotPt : LDInst2<(outs DoubleRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if (!$src1.new) $dst = memd($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrid_indexed_cdnPt : LDInst2<(outs DoubleRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3),
+ "if ($src1.new) $dst = memd($src2+#$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrid_indexed_cdnNotPt : LDInst2<(outs DoubleRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3),
+ "if (!$src1.new) $dst = memd($src2+#$src3)",
+ []>;
+
+
+// Load byte.
+let isPredicable = 1 in
+def LDrib : LDInst<(outs IntRegs:$dst),
+ (ins MEMri:$addr),
+ "$dst = memb($addr)",
+ [(set (i32 IntRegs:$dst), (i32 (sextloadi8 ADDRriS11_0:$addr)))]>;
+
+// Load byte any-extend.
+def : Pat < (i32 (extloadi8 ADDRriS11_0:$addr)),
+ (i32 (LDrib ADDRriS11_0:$addr)) >;
+
+// Indexed load byte.
+let isPredicable = 1, AddedComplexity = 20 in
+def LDrib_indexed : LDInst<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, s11_0Imm:$offset),
+ "$dst = memb($src1+#$offset)",
+ [(set (i32 IntRegs:$dst),
+ (i32 (sextloadi8 (add (i32 IntRegs:$src1),
+ s11_0ImmPred:$offset))))]>;
+
+// Indexed load byte any-extend.
+let AddedComplexity = 20 in
+def : Pat < (i32 (extloadi8 (add IntRegs:$src1, s11_0ImmPred:$offset))),
+ (i32 (LDrib_indexed IntRegs:$src1, s11_0ImmPred:$offset)) >;
+
+let neverHasSideEffects = 1 in
+def LDrib_GP : LDInst2<(outs IntRegs:$dst),
+ (ins globaladdress:$global, u16Imm:$offset),
+ "$dst = memb(#$global+$offset)",
+ []>,
+ Requires<[NoV4T]>;
+
+let neverHasSideEffects = 1 in
+def LDb_GP : LDInst2<(outs IntRegs:$dst),
+ (ins globaladdress:$global),
+ "$dst = memb(#$global)",
+ []>,
+ Requires<[NoV4T]>;
+
+let neverHasSideEffects = 1 in
+def LDub_GP : LDInst2<(outs IntRegs:$dst),
+ (ins globaladdress:$global),
+ "$dst = memub(#$global)",
+ []>,
+ Requires<[NoV4T]>;
+
+let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in
+def POST_LDrib : LDInst2PI<(outs IntRegs:$dst, IntRegs:$dst2),
+ (ins IntRegs:$src1, s4Imm:$offset),
+ "$dst = memb($src1++#$offset)",
+ [],
+ "$src1 = $dst2">;
+
+// Load byte conditionally.
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrib_cPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if ($src1) $dst = memb($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrib_cNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if (!$src1) $dst = memb($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrib_indexed_cPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3),
+ "if ($src1) $dst = memb($src2+#$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrib_indexed_cNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3),
+ "if (!$src1) $dst = memb($src2+#$src3)",
+ []>;
+
+let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in
+def POST_LDrib_cPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2),
+ (ins PredRegs:$src1, IntRegs:$src2, s4_0Imm:$src3),
+ "if ($src1) $dst1 = memb($src2++#$src3)",
+ [],
+ "$src2 = $dst2">;
+
+let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in
+def POST_LDrib_cNotPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2),
+ (ins PredRegs:$src1, IntRegs:$src2, s4_0Imm:$src3),
+ "if (!$src1) $dst1 = memb($src2++#$src3)",
+ [],
+ "$src2 = $dst2">;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrib_cdnPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if ($src1.new) $dst = memb($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrib_cdnNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if (!$src1.new) $dst = memb($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrib_indexed_cdnPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3),
+ "if ($src1.new) $dst = memb($src2+#$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrib_indexed_cdnNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3),
+ "if (!$src1.new) $dst = memb($src2+#$src3)",
+ []>;
+
+
+// Load halfword.
+let isPredicable = 1 in
+def LDrih : LDInst<(outs IntRegs:$dst),
+ (ins MEMri:$addr),
+ "$dst = memh($addr)",
+ [(set (i32 IntRegs:$dst), (i32 (sextloadi16 ADDRriS11_1:$addr)))]>;
+
+let isPredicable = 1, AddedComplexity = 20 in
+def LDrih_indexed : LDInst<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, s11_1Imm:$offset),
+ "$dst = memh($src1+#$offset)",
+ [(set (i32 IntRegs:$dst),
+ (i32 (sextloadi16 (add (i32 IntRegs:$src1),
+ s11_1ImmPred:$offset))))]>;
+
+def : Pat < (i32 (extloadi16 ADDRriS11_1:$addr)),
+ (i32 (LDrih ADDRriS11_1:$addr))>;
+
+let AddedComplexity = 20 in
+def : Pat < (i32 (extloadi16 (add IntRegs:$src1, s11_1ImmPred:$offset))),
+ (i32 (LDrih_indexed IntRegs:$src1, s11_1ImmPred:$offset)) >;
+
+let neverHasSideEffects = 1 in
+def LDrih_GP : LDInst2<(outs IntRegs:$dst),
+ (ins globaladdress:$global, u16Imm:$offset),
+ "$dst = memh(#$global+$offset)",
+ []>,
+ Requires<[NoV4T]>;
+
+let neverHasSideEffects = 1 in
+def LDh_GP : LDInst2<(outs IntRegs:$dst),
+ (ins globaladdress:$global),
+ "$dst = memh(#$global)",
+ []>,
+ Requires<[NoV4T]>;
+
+let neverHasSideEffects = 1 in
+def LDuh_GP : LDInst2<(outs IntRegs:$dst),
+ (ins globaladdress:$global),
+ "$dst = memuh(#$global)",
+ []>,
+ Requires<[NoV4T]>;
+
+let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in
+def POST_LDrih : LDInst2PI<(outs IntRegs:$dst, IntRegs:$dst2),
+ (ins IntRegs:$src1, s4Imm:$offset),
+ "$dst = memh($src1++#$offset)",
+ [],
+ "$src1 = $dst2">;
+
+// Load halfword conditionally.
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrih_cPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if ($src1) $dst = memh($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrih_cNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if (!$src1) $dst = memh($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrih_indexed_cPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3),
+ "if ($src1) $dst = memh($src2+#$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrih_indexed_cNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3),
+ "if (!$src1) $dst = memh($src2+#$src3)",
+ []>;
+
+let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in
+def POST_LDrih_cPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2),
+ (ins PredRegs:$src1, IntRegs:$src2, s4_1Imm:$src3),
+ "if ($src1) $dst1 = memh($src2++#$src3)",
+ [],
+ "$src2 = $dst2">;
+
+let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in
+def POST_LDrih_cNotPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2),
+ (ins PredRegs:$src1, IntRegs:$src2, s4_1Imm:$src3),
+ "if (!$src1) $dst1 = memh($src2++#$src3)",
+ [],
+ "$src2 = $dst2">;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrih_cdnPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if ($src1.new) $dst = memh($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrih_cdnNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if (!$src1.new) $dst = memh($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrih_indexed_cdnPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3),
+ "if ($src1.new) $dst = memh($src2+#$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDrih_indexed_cdnNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3),
+ "if (!$src1.new) $dst = memh($src2+#$src3)",
+ []>;
+
+// Load unsigned byte.
+let isPredicable = 1 in
+def LDriub : LDInst<(outs IntRegs:$dst),
+ (ins MEMri:$addr),
+ "$dst = memub($addr)",
+ [(set (i32 IntRegs:$dst), (i32 (zextloadi8 ADDRriS11_0:$addr)))]>;
+
+def : Pat < (i32 (zextloadi1 ADDRriS11_0:$addr)),
+ (i32 (LDriub ADDRriS11_0:$addr))>;
+
+let isPredicable = 1, AddedComplexity = 20 in
+def LDriub_indexed : LDInst<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, s11_0Imm:$offset),
+ "$dst = memub($src1+#$offset)",
+ [(set (i32 IntRegs:$dst),
+ (i32 (zextloadi8 (add (i32 IntRegs:$src1),
+ s11_0ImmPred:$offset))))]>;
+
+let AddedComplexity = 20 in
+def : Pat < (i32 (zextloadi1 (add IntRegs:$src1, s11_0ImmPred:$offset))),
+ (i32 (LDriub_indexed IntRegs:$src1, s11_0ImmPred:$offset))>;
+
+let neverHasSideEffects = 1 in
+def LDriub_GP : LDInst2<(outs IntRegs:$dst),
+ (ins globaladdress:$global, u16Imm:$offset),
+ "$dst = memub(#$global+$offset)",
+ []>,
+ Requires<[NoV4T]>;
+
+let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in
+def POST_LDriub : LDInst2PI<(outs IntRegs:$dst, IntRegs:$dst2),
+ (ins IntRegs:$src1, s4Imm:$offset),
+ "$dst = memub($src1++#$offset)",
+ [],
+ "$src1 = $dst2">;
+
+// Load unsigned byte conditionally.
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriub_cPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if ($src1) $dst = memub($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriub_cNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if (!$src1) $dst = memub($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriub_indexed_cPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3),
+ "if ($src1) $dst = memub($src2+#$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriub_indexed_cNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3),
+ "if (!$src1) $dst = memub($src2+#$src3)",
+ []>;
+
+let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in
+def POST_LDriub_cPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2),
+ (ins PredRegs:$src1, IntRegs:$src2, s4_0Imm:$src3),
+ "if ($src1) $dst1 = memub($src2++#$src3)",
+ [],
+ "$src2 = $dst2">;
+
+let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in
+def POST_LDriub_cNotPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2),
+ (ins PredRegs:$src1, IntRegs:$src2, s4_0Imm:$src3),
+ "if (!$src1) $dst1 = memub($src2++#$src3)",
+ [],
+ "$src2 = $dst2">;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriub_cdnPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if ($src1.new) $dst = memub($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriub_cdnNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if (!$src1.new) $dst = memub($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriub_indexed_cdnPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3),
+ "if ($src1.new) $dst = memub($src2+#$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriub_indexed_cdnNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3),
+ "if (!$src1.new) $dst = memub($src2+#$src3)",
+ []>;
+
+// Load unsigned halfword.
+let isPredicable = 1 in
+def LDriuh : LDInst<(outs IntRegs:$dst),
+ (ins MEMri:$addr),
+ "$dst = memuh($addr)",
+ [(set (i32 IntRegs:$dst), (i32 (zextloadi16 ADDRriS11_1:$addr)))]>;
+
+// Indexed load unsigned halfword.
+let isPredicable = 1, AddedComplexity = 20 in
+def LDriuh_indexed : LDInst<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, s11_1Imm:$offset),
+ "$dst = memuh($src1+#$offset)",
+ [(set (i32 IntRegs:$dst),
+ (i32 (zextloadi16 (add (i32 IntRegs:$src1),
+ s11_1ImmPred:$offset))))]>;
+
+let neverHasSideEffects = 1 in
+def LDriuh_GP : LDInst2<(outs IntRegs:$dst),
+ (ins globaladdress:$global, u16Imm:$offset),
+ "$dst = memuh(#$global+$offset)",
+ []>,
+ Requires<[NoV4T]>;
+
+let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in
+def POST_LDriuh : LDInst2PI<(outs IntRegs:$dst, IntRegs:$dst2),
+ (ins IntRegs:$src1, s4Imm:$offset),
+ "$dst = memuh($src1++#$offset)",
+ [],
+ "$src1 = $dst2">;
+
+// Load unsigned halfword conditionally.
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriuh_cPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if ($src1) $dst = memuh($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriuh_cNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if (!$src1) $dst = memuh($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriuh_indexed_cPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3),
+ "if ($src1) $dst = memuh($src2+#$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriuh_indexed_cNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3),
+ "if (!$src1) $dst = memuh($src2+#$src3)",
+ []>;
+
+let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in
+def POST_LDriuh_cPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2),
+ (ins PredRegs:$src1, IntRegs:$src2, s4_1Imm:$src3),
+ "if ($src1) $dst1 = memuh($src2++#$src3)",
+ [],
+ "$src2 = $dst2">;
+
+let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in
+def POST_LDriuh_cNotPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2),
+ (ins PredRegs:$src1, IntRegs:$src2, s4_1Imm:$src3),
+ "if (!$src1) $dst1 = memuh($src2++#$src3)",
+ [],
+ "$src2 = $dst2">;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriuh_cdnPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if ($src1.new) $dst = memuh($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriuh_cdnNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if (!$src1.new) $dst = memuh($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriuh_indexed_cdnPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3),
+ "if ($src1.new) $dst = memuh($src2+#$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriuh_indexed_cdnNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3),
+ "if (!$src1.new) $dst = memuh($src2+#$src3)",
+ []>;
+
+
+// Load word.
+let isPredicable = 1 in
+def LDriw : LDInst<(outs IntRegs:$dst),
+ (ins MEMri:$addr), "$dst = memw($addr)",
+ [(set IntRegs:$dst, (i32 (load ADDRriS11_2:$addr)))]>;
+
+// Load predicate.
+let Defs = [R10,R11,D5], neverHasSideEffects = 1 in
+def LDriw_pred : LDInst<(outs PredRegs:$dst),
+ (ins MEMri:$addr),
+ "Error; should not emit",
+ []>;
+
+// Indexed load.
+let isPredicable = 1, AddedComplexity = 20 in
+def LDriw_indexed : LDInst<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, s11_2Imm:$offset),
+ "$dst = memw($src1+#$offset)",
+ [(set IntRegs:$dst, (i32 (load (add IntRegs:$src1,
+ s11_2ImmPred:$offset))))]>;
+
+let neverHasSideEffects = 1 in
+def LDriw_GP : LDInst2<(outs IntRegs:$dst),
+ (ins globaladdress:$global, u16Imm:$offset),
+ "$dst = memw(#$global+$offset)",
+ []>,
+ Requires<[NoV4T]>;
+
+let neverHasSideEffects = 1 in
+def LDw_GP : LDInst2<(outs IntRegs:$dst),
+ (ins globaladdress:$global),
+ "$dst = memw(#$global)",
+ []>,
+ Requires<[NoV4T]>;
+
+let isPredicable = 1, hasCtrlDep = 1, neverHasSideEffects = 1 in
+def POST_LDriw : LDInst2PI<(outs IntRegs:$dst, IntRegs:$dst2),
+ (ins IntRegs:$src1, s4Imm:$offset),
+ "$dst = memw($src1++#$offset)",
+ [],
+ "$src1 = $dst2">;
+
+// Load word conditionally.
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriw_cPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if ($src1) $dst = memw($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriw_cNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if (!$src1) $dst = memw($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriw_indexed_cPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3),
+ "if ($src1) $dst = memw($src2+#$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriw_indexed_cNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3),
+ "if (!$src1) $dst = memw($src2+#$src3)",
+ []>;
+
+let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in
+def POST_LDriw_cPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2),
+ (ins PredRegs:$src1, IntRegs:$src2, s4_2Imm:$src3),
+ "if ($src1) $dst1 = memw($src2++#$src3)",
+ [],
+ "$src2 = $dst2">;
+
+let hasCtrlDep = 1, neverHasSideEffects = 1, isPredicated = 1 in
+def POST_LDriw_cNotPt : LDInst2PI<(outs IntRegs:$dst1, IntRegs:$dst2),
+ (ins PredRegs:$src1, IntRegs:$src2, s4_2Imm:$src3),
+ "if (!$src1) $dst1 = memw($src2++#$src3)",
+ [],
+ "$src2 = $dst2">;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriw_cdnPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if ($src1.new) $dst = memw($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriw_cdnNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, MEMri:$addr),
+ "if (!$src1.new) $dst = memw($addr)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriw_indexed_cdnPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3),
+ "if ($src1.new) $dst = memw($src2+#$src3)",
+ []>;
+
+let neverHasSideEffects = 1, isPredicated = 1 in
+def LDriw_indexed_cdnNotPt : LDInst2<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3),
+ "if (!$src1.new) $dst = memw($src2+#$src3)",
+ []>;
+
+// Deallocate stack frame.
+let Defs = [R29, R30, R31], Uses = [R29], neverHasSideEffects = 1 in {
+ def DEALLOCFRAME : LDInst2<(outs), (ins i32imm:$amt1),
+ "deallocframe",
+ []>;
+}
+
+// Load and unpack bytes to halfwords.
+//===----------------------------------------------------------------------===//
+// LD -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MTYPE/ALU +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// MTYPE/ALU -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MTYPE/COMPLEX +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// MTYPE/COMPLEX -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MTYPE/MPYH +
+//===----------------------------------------------------------------------===//
+// Multiply and use lower result.
+// Rd=+mpyi(Rs,#u8)
+def MPYI_riu : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u8Imm:$src2),
+ "$dst =+ mpyi($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
+ u8ImmPred:$src2))]>;
+
+// Rd=-mpyi(Rs,#u8)
+def MPYI_rin : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, n8Imm:$src2),
+ "$dst =- mpyi($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
+ n8ImmPred:$src2))]>;
+
+// Rd=mpyi(Rs,#m9)
+// s9 is NOT the same as m9 - but it works.. so far.
+// Assembler maps to either Rd=+mpyi(Rs,#u8 or Rd=-mpyi(Rs,#u8)
+// depending on the value of m9. See Arch Spec.
+def MPYI_ri : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, s9Imm:$src2),
+ "$dst = mpyi($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
+ s9ImmPred:$src2))]>;
+
+// Rd=mpyi(Rs,Rt)
+def MPYI : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = mpyi($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (mul (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+// Rx+=mpyi(Rs,#u8)
+def MPYI_acc_ri : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, u8Imm:$src3),
+ "$dst += mpyi($src2, #$src3)",
+ [(set (i32 IntRegs:$dst),
+ (add (mul (i32 IntRegs:$src2), u8ImmPred:$src3),
+ (i32 IntRegs:$src1)))],
+ "$src1 = $dst">;
+
+// Rx+=mpyi(Rs,Rt)
+def MPYI_acc_rr : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "$dst += mpyi($src2, $src3)",
+ [(set (i32 IntRegs:$dst),
+ (add (mul (i32 IntRegs:$src2), (i32 IntRegs:$src3)),
+ (i32 IntRegs:$src1)))],
+ "$src1 = $dst">;
+
+// Rx-=mpyi(Rs,#u8)
+def MPYI_sub_ri : MInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, u8Imm:$src3),
+ "$dst -= mpyi($src2, #$src3)",
+ [(set (i32 IntRegs:$dst),
+ (sub (i32 IntRegs:$src1), (mul (i32 IntRegs:$src2),
+ u8ImmPred:$src3)))],
+ "$src1 = $dst">;
+
+// Multiply and use upper result.
+// Rd=mpy(Rs,Rt.H):<<1:rnd:sat
+// Rd=mpy(Rs,Rt.L):<<1:rnd:sat
+// Rd=mpy(Rs,Rt)
+def MPY : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = mpy($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (mulhs (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+// Rd=mpy(Rs,Rt):rnd
+// Rd=mpyu(Rs,Rt)
+def MPYU : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = mpyu($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (mulhu (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+// Multiply and use full result.
+// Rdd=mpyu(Rs,Rt)
+def MPYU64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = mpyu($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst),
+ (mul (i64 (anyext (i32 IntRegs:$src1))),
+ (i64 (anyext (i32 IntRegs:$src2)))))]>;
+
+// Rdd=mpy(Rs,Rt)
+def MPY64 : MInst<(outs DoubleRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = mpy($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst),
+ (mul (i64 (sext (i32 IntRegs:$src1))),
+ (i64 (sext (i32 IntRegs:$src2)))))]>;
+
+// Multiply and accumulate, use full result.
+// Rxx[+-]=mpy(Rs,Rt)
+// Rxx+=mpy(Rs,Rt)
+def MPY64_acc : MInst_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "$dst += mpy($src2, $src3)",
+ [(set (i64 DoubleRegs:$dst),
+ (add (mul (i64 (sext (i32 IntRegs:$src2))),
+ (i64 (sext (i32 IntRegs:$src3)))),
+ (i64 DoubleRegs:$src1)))],
+ "$src1 = $dst">;
+
+// Rxx-=mpy(Rs,Rt)
+def MPY64_sub : MInst_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "$dst -= mpy($src2, $src3)",
+ [(set (i64 DoubleRegs:$dst),
+ (sub (i64 DoubleRegs:$src1),
+ (mul (i64 (sext (i32 IntRegs:$src2))),
+ (i64 (sext (i32 IntRegs:$src3))))))],
+ "$src1 = $dst">;
+
+// Rxx[+-]=mpyu(Rs,Rt)
+// Rxx+=mpyu(Rs,Rt)
+def MPYU64_acc : MInst_acc<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ IntRegs:$src2, IntRegs:$src3),
+ "$dst += mpyu($src2, $src3)",
+ [(set (i64 DoubleRegs:$dst),
+ (add (mul (i64 (anyext (i32 IntRegs:$src2))),
+ (i64 (anyext (i32 IntRegs:$src3)))),
+ (i64 DoubleRegs:$src1)))], "$src1 = $dst">;
+
+// Rxx-=mpyu(Rs,Rt)
+def MPYU64_sub : MInst_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ "$dst += mpyu($src2, $src3)",
+ [(set (i64 DoubleRegs:$dst),
+ (sub (i64 DoubleRegs:$src1),
+ (mul (i64 (anyext (i32 IntRegs:$src2))),
+ (i64 (anyext (i32 IntRegs:$src3))))))],
+ "$src1 = $dst">;
+
+
+def ADDrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
+ IntRegs:$src2, IntRegs:$src3),
+ "$dst += add($src2, $src3)",
+ [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3)),
+ (i32 IntRegs:$src1)))],
+ "$src1 = $dst">;
+
+def ADDri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
+ IntRegs:$src2, s8Imm:$src3),
+ "$dst += add($src2, #$src3)",
+ [(set (i32 IntRegs:$dst), (add (add (i32 IntRegs:$src2),
+ s8ImmPred:$src3),
+ (i32 IntRegs:$src1)))],
+ "$src1 = $dst">;
+
+def SUBrr_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
+ IntRegs:$src2, IntRegs:$src3),
+ "$dst -= add($src2, $src3)",
+ [(set (i32 IntRegs:$dst),
+ (sub (i32 IntRegs:$src1), (add (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">;
+
+def SUBri_acc : MInst_acc<(outs IntRegs: $dst), (ins IntRegs:$src1,
+ IntRegs:$src2, s8Imm:$src3),
+ "$dst -= add($src2, #$src3)",
+ [(set (i32 IntRegs:$dst), (sub (i32 IntRegs:$src1),
+ (add (i32 IntRegs:$src2),
+ s8ImmPred:$src3)))],
+ "$src1 = $dst">;
+
+//===----------------------------------------------------------------------===//
+// MTYPE/MPYH -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MTYPE/MPYS +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// MTYPE/MPYS -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MTYPE/VB +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// MTYPE/VB -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// MTYPE/VH +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// MTYPE/VH -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// ST +
+//===----------------------------------------------------------------------===//
+///
+/// Assumptions::: ****** DO NOT IGNORE ********
+/// 1. Make sure that in post increment store, the zero'th operand is always the
+/// post increment operand.
+/// 2. Make sure that the store value operand(Rt/Rtt) in a store is always the
+/// last operand.
+///
+// Store doubleword.
+let isPredicable = 1 in
+def STrid : STInst<(outs),
+ (ins MEMri:$addr, DoubleRegs:$src1),
+ "memd($addr) = $src1",
+ [(store (i64 DoubleRegs:$src1), ADDRriS11_3:$addr)]>;
+
+// Indexed store double word.
+let AddedComplexity = 10, isPredicable = 1 in
+def STrid_indexed : STInst<(outs),
+ (ins IntRegs:$src1, s11_3Imm:$src2, DoubleRegs:$src3),
+ "memd($src1+#$src2) = $src3",
+ [(store (i64 DoubleRegs:$src3),
+ (add (i32 IntRegs:$src1), s11_3ImmPred:$src2))]>;
+
+let neverHasSideEffects = 1 in
+def STrid_GP : STInst2<(outs),
+ (ins globaladdress:$global, u16Imm:$offset, DoubleRegs:$src),
+ "memd(#$global+$offset) = $src",
+ []>,
+ Requires<[NoV4T]>;
+
+let neverHasSideEffects = 1 in
+def STd_GP : STInst2<(outs),
+ (ins globaladdress:$global, DoubleRegs:$src),
+ "memd(#$global) = $src",
+ []>,
+ Requires<[NoV4T]>;
+
+let hasCtrlDep = 1, isPredicable = 1 in
+def POST_STdri : STInstPI<(outs IntRegs:$dst),
+ (ins DoubleRegs:$src1, IntRegs:$src2, s4Imm:$offset),
+ "memd($src2++#$offset) = $src1",
+ [(set IntRegs:$dst,
+ (post_store (i64 DoubleRegs:$src1), (i32 IntRegs:$src2),
+ s4_3ImmPred:$offset))],
+ "$src2 = $dst">;
+
+// Store doubleword conditionally.
+// if ([!]Pv) memd(Rs+#u6:3)=Rtt
+// if (Pv) memd(Rs+#u6:3)=Rtt
+let AddedComplexity = 10, neverHasSideEffects = 1,
+ isPredicated = 1 in
+def STrid_cPt : STInst2<(outs),
+ (ins PredRegs:$src1, MEMri:$addr, DoubleRegs:$src2),
+ "if ($src1) memd($addr) = $src2",
+ []>;
+
+// if (!Pv) memd(Rs+#u6:3)=Rtt
+let AddedComplexity = 10, neverHasSideEffects = 1,
+ isPredicated = 1 in
+def STrid_cNotPt : STInst2<(outs),
+ (ins PredRegs:$src1, MEMri:$addr, DoubleRegs:$src2),
+ "if (!$src1) memd($addr) = $src2",
+ []>;
+
+// if (Pv) memd(Rs+#u6:3)=Rtt
+let AddedComplexity = 10, neverHasSideEffects = 1,
+ isPredicated = 1 in
+def STrid_indexed_cPt : STInst2<(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3,
+ DoubleRegs:$src4),
+ "if ($src1) memd($src2+#$src3) = $src4",
+ []>;
+
+// if (!Pv) memd(Rs+#u6:3)=Rtt
+let AddedComplexity = 10, neverHasSideEffects = 1,
+ isPredicated = 1 in
+def STrid_indexed_cNotPt : STInst2<(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_3Imm:$src3,
+ DoubleRegs:$src4),
+ "if (!$src1) memd($src2+#$src3) = $src4",
+ []>;
+
+// if ([!]Pv) memd(Rx++#s4:3)=Rtt
+// if (Pv) memd(Rx++#s4:3)=Rtt
+let AddedComplexity = 10, neverHasSideEffects = 1,
+ isPredicated = 1 in
+def POST_STdri_cPt : STInst2PI<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, DoubleRegs:$src2, IntRegs:$src3,
+ s4_3Imm:$offset),
+ "if ($src1) memd($src3++#$offset) = $src2",
+ [],
+ "$src3 = $dst">;
+
+// if (!Pv) memd(Rx++#s4:3)=Rtt
+let AddedComplexity = 10, neverHasSideEffects = 1, isPredicated = 1,
+ isPredicated = 1 in
+def POST_STdri_cNotPt : STInst2PI<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, DoubleRegs:$src2, IntRegs:$src3,
+ s4_3Imm:$offset),
+ "if (!$src1) memd($src3++#$offset) = $src2",
+ [],
+ "$src3 = $dst">;
+
+
+// Store byte.
+// memb(Rs+#s11:0)=Rt
+let isPredicable = 1 in
+def STrib : STInst<(outs),
+ (ins MEMri:$addr, IntRegs:$src1),
+ "memb($addr) = $src1",
+ [(truncstorei8 (i32 IntRegs:$src1), ADDRriS11_0:$addr)]>;
+
+let AddedComplexity = 10, isPredicable = 1 in
+def STrib_indexed : STInst<(outs),
+ (ins IntRegs:$src1, s11_0Imm:$src2, IntRegs:$src3),
+ "memb($src1+#$src2) = $src3",
+ [(truncstorei8 (i32 IntRegs:$src3), (add (i32 IntRegs:$src1),
+ s11_0ImmPred:$src2))]>;
+
+// memb(gp+#u16:0)=Rt
+let neverHasSideEffects = 1 in
+def STrib_GP : STInst2<(outs),
+ (ins globaladdress:$global, u16Imm:$offset, IntRegs:$src),
+ "memb(#$global+$offset) = $src",
+ []>,
+ Requires<[NoV4T]>;
+
+// memb(#global)=Rt
+let neverHasSideEffects = 1 in
+def STb_GP : STInst2<(outs),
+ (ins globaladdress:$global, IntRegs:$src),
+ "memb(#$global) = $src",
+ []>,
+ Requires<[NoV4T]>;
+
+// memb(Rx++#s4:0)=Rt
+let hasCtrlDep = 1, isPredicable = 1 in
+def POST_STbri : STInstPI<(outs IntRegs:$dst), (ins IntRegs:$src1,
+ IntRegs:$src2,
+ s4Imm:$offset),
+ "memb($src2++#$offset) = $src1",
+ [(set IntRegs:$dst,
+ (post_truncsti8 (i32 IntRegs:$src1), (i32 IntRegs:$src2),
+ s4_0ImmPred:$offset))],
+ "$src2 = $dst">;
+
+// Store byte conditionally.
+// if ([!]Pv) memb(Rs+#u6:0)=Rt
+// if (Pv) memb(Rs+#u6:0)=Rt
+let neverHasSideEffects = 1, isPredicated = 1 in
+def STrib_cPt : STInst2<(outs),
+ (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2),
+ "if ($src1) memb($addr) = $src2",
+ []>;
+
+// if (!Pv) memb(Rs+#u6:0)=Rt
+let neverHasSideEffects = 1, isPredicated = 1 in
+def STrib_cNotPt : STInst2<(outs),
+ (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2),
+ "if (!$src1) memb($addr) = $src2",
+ []>;
+
+// if (Pv) memb(Rs+#u6:0)=Rt
+let neverHasSideEffects = 1, isPredicated = 1 in
+def STrib_indexed_cPt : STInst2<(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3, IntRegs:$src4),
+ "if ($src1) memb($src2+#$src3) = $src4",
+ []>;
+
+// if (!Pv) memb(Rs+#u6:0)=Rt
+let neverHasSideEffects = 1, isPredicated = 1 in
+def STrib_indexed_cNotPt : STInst2<(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_0Imm:$src3, IntRegs:$src4),
+ "if (!$src1) memb($src2+#$src3) = $src4",
+ []>;
+
+// if ([!]Pv) memb(Rx++#s4:0)=Rt
+// if (Pv) memb(Rx++#s4:0)=Rt
+let hasCtrlDep = 1, isPredicated = 1 in
+def POST_STbri_cPt : STInst2PI<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_0Imm:$offset),
+ "if ($src1) memb($src3++#$offset) = $src2",
+ [],"$src3 = $dst">;
+
+// if (!Pv) memb(Rx++#s4:0)=Rt
+let hasCtrlDep = 1, isPredicated = 1 in
+def POST_STbri_cNotPt : STInst2PI<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_0Imm:$offset),
+ "if (!$src1) memb($src3++#$offset) = $src2",
+ [],"$src3 = $dst">;
+
+
+// Store halfword.
+// memh(Rs+#s11:1)=Rt
+let isPredicable = 1 in
+def STrih : STInst<(outs),
+ (ins MEMri:$addr, IntRegs:$src1),
+ "memh($addr) = $src1",
+ [(truncstorei16 (i32 IntRegs:$src1), ADDRriS11_1:$addr)]>;
+
+
+let AddedComplexity = 10, isPredicable = 1 in
+def STrih_indexed : STInst<(outs),
+ (ins IntRegs:$src1, s11_1Imm:$src2, IntRegs:$src3),
+ "memh($src1+#$src2) = $src3",
+ [(truncstorei16 (i32 IntRegs:$src3), (add (i32 IntRegs:$src1),
+ s11_1ImmPred:$src2))]>;
+
+let neverHasSideEffects = 1 in
+def STrih_GP : STInst2<(outs),
+ (ins globaladdress:$global, u16Imm:$offset, IntRegs:$src),
+ "memh(#$global+$offset) = $src",
+ []>,
+ Requires<[NoV4T]>;
+
+let neverHasSideEffects = 1 in
+def STh_GP : STInst2<(outs),
+ (ins globaladdress:$global, IntRegs:$src),
+ "memh(#$global) = $src",
+ []>,
+ Requires<[NoV4T]>;
+
+// memh(Rx++#s4:1)=Rt.H
+// memh(Rx++#s4:1)=Rt
+let hasCtrlDep = 1, isPredicable = 1 in
+def POST_SThri : STInstPI<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, s4Imm:$offset),
+ "memh($src2++#$offset) = $src1",
+ [(set IntRegs:$dst,
+ (post_truncsti16 (i32 IntRegs:$src1), (i32 IntRegs:$src2),
+ s4_1ImmPred:$offset))],
+ "$src2 = $dst">;
+
+// Store halfword conditionally.
+// if ([!]Pv) memh(Rs+#u6:1)=Rt
+// if (Pv) memh(Rs+#u6:1)=Rt
+let neverHasSideEffects = 1, isPredicated = 1 in
+def STrih_cPt : STInst2<(outs),
+ (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2),
+ "if ($src1) memh($addr) = $src2",
+ []>;
+
+// if (!Pv) memh(Rs+#u6:1)=Rt
+let neverHasSideEffects = 1, isPredicated = 1 in
+def STrih_cNotPt : STInst2<(outs),
+ (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2),
+ "if (!$src1) memh($addr) = $src2",
+ []>;
+
+// if (Pv) memh(Rs+#u6:1)=Rt
+let neverHasSideEffects = 1, isPredicated = 1 in
+def STrih_indexed_cPt : STInst2<(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3, IntRegs:$src4),
+ "if ($src1) memh($src2+#$src3) = $src4",
+ []>;
+
+// if (!Pv) memh(Rs+#u6:1)=Rt
+let neverHasSideEffects = 1, isPredicated = 1 in
+def STrih_indexed_cNotPt : STInst2<(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_1Imm:$src3, IntRegs:$src4),
+ "if (!$src1) memh($src2+#$src3) = $src4",
+ []>;
+
+// if ([!]Pv) memh(Rx++#s4:1)=Rt
+// if (Pv) memh(Rx++#s4:1)=Rt
+let hasCtrlDep = 1, isPredicated = 1 in
+def POST_SThri_cPt : STInst2PI<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_1Imm:$offset),
+ "if ($src1) memh($src3++#$offset) = $src2",
+ [],"$src3 = $dst">;
+
+// if (!Pv) memh(Rx++#s4:1)=Rt
+let hasCtrlDep = 1, isPredicated = 1 in
+def POST_SThri_cNotPt : STInst2PI<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_1Imm:$offset),
+ "if (!$src1) memh($src3++#$offset) = $src2",
+ [],"$src3 = $dst">;
+
+
+// Store word.
+// Store predicate.
+let Defs = [R10,R11,D5], neverHasSideEffects = 1 in
+def STriw_pred : STInst2<(outs),
+ (ins MEMri:$addr, PredRegs:$src1),
+ "Error; should not emit",
+ []>;
+
+// memw(Rs+#s11:2)=Rt
+let isPredicable = 1 in
+def STriw : STInst<(outs),
+ (ins MEMri:$addr, IntRegs:$src1),
+ "memw($addr) = $src1",
+ [(store (i32 IntRegs:$src1), ADDRriS11_2:$addr)]>;
+
+let AddedComplexity = 10, isPredicable = 1 in
+def STriw_indexed : STInst<(outs),
+ (ins IntRegs:$src1, s11_2Imm:$src2, IntRegs:$src3),
+ "memw($src1+#$src2) = $src3",
+ [(store (i32 IntRegs:$src3),
+ (add (i32 IntRegs:$src1), s11_2ImmPred:$src2))]>;
+
+let neverHasSideEffects = 1 in
+def STriw_GP : STInst2<(outs),
+ (ins globaladdress:$global, u16Imm:$offset, IntRegs:$src),
+ "memw(#$global+$offset) = $src",
+ []>,
+ Requires<[NoV4T]>;
+
+let neverHasSideEffects = 1 in
+def STw_GP : STInst2<(outs),
+ (ins globaladdress:$global, IntRegs:$src),
+ "memw(#$global) = $src",
+ []>,
+ Requires<[NoV4T]>;
+
+let hasCtrlDep = 1, isPredicable = 1 in
+def POST_STwri : STInstPI<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, s4Imm:$offset),
+ "memw($src2++#$offset) = $src1",
+ [(set IntRegs:$dst,
+ (post_store (i32 IntRegs:$src1), (i32 IntRegs:$src2),
+ s4_2ImmPred:$offset))],
+ "$src2 = $dst">;
+
+// Store word conditionally.
+// if ([!]Pv) memw(Rs+#u6:2)=Rt
+// if (Pv) memw(Rs+#u6:2)=Rt
+let neverHasSideEffects = 1, isPredicated = 1 in
+def STriw_cPt : STInst2<(outs),
+ (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2),
+ "if ($src1) memw($addr) = $src2",
+ []>;
+
+// if (!Pv) memw(Rs+#u6:2)=Rt
+let neverHasSideEffects = 1, isPredicated = 1 in
+def STriw_cNotPt : STInst2<(outs),
+ (ins PredRegs:$src1, MEMri:$addr, IntRegs:$src2),
+ "if (!$src1) memw($addr) = $src2",
+ []>;
+
+// if (Pv) memw(Rs+#u6:2)=Rt
+let neverHasSideEffects = 1, isPredicated = 1 in
+def STriw_indexed_cPt : STInst2<(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3, IntRegs:$src4),
+ "if ($src1) memw($src2+#$src3) = $src4",
+ []>;
+
+// if (!Pv) memw(Rs+#u6:2)=Rt
+let neverHasSideEffects = 1, isPredicated = 1 in
+def STriw_indexed_cNotPt : STInst2<(outs),
+ (ins PredRegs:$src1, IntRegs:$src2, u6_2Imm:$src3, IntRegs:$src4),
+ "if (!$src1) memw($src2+#$src3) = $src4",
+ []>;
+
+// if ([!]Pv) memw(Rx++#s4:2)=Rt
+// if (Pv) memw(Rx++#s4:2)=Rt
+let hasCtrlDep = 1, isPredicated = 1 in
+def POST_STwri_cPt : STInst2PI<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_2Imm:$offset),
+ "if ($src1) memw($src3++#$offset) = $src2",
+ [],"$src3 = $dst">;
+
+// if (!Pv) memw(Rx++#s4:2)=Rt
+let hasCtrlDep = 1, isPredicated = 1 in
+def POST_STwri_cNotPt : STInst2PI<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, IntRegs:$src3, s4_2Imm:$offset),
+ "if (!$src1) memw($src3++#$offset) = $src2",
+ [],"$src3 = $dst">;
+
+
+
+// Allocate stack frame.
+let Defs = [R29, R30], Uses = [R31, R30], neverHasSideEffects = 1 in {
+ def ALLOCFRAME : STInst2<(outs),
+ (ins i32imm:$amt),
+ "allocframe(#$amt)",
+ []>;
+}
+//===----------------------------------------------------------------------===//
+// ST -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// STYPE/ALU +
+//===----------------------------------------------------------------------===//
+// Logical NOT.
+def NOT_rr64 : ALU64_rr<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1),
+ "$dst = not($src1)",
+ [(set (i64 DoubleRegs:$dst), (not (i64 DoubleRegs:$src1)))]>;
+
+
+// Sign extend word to doubleword.
+def SXTW : ALU64_rr<(outs DoubleRegs:$dst), (ins IntRegs:$src1),
+ "$dst = sxtw($src1)",
+ [(set (i64 DoubleRegs:$dst), (sext (i32 IntRegs:$src1)))]>;
+//===----------------------------------------------------------------------===//
+// STYPE/ALU -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// STYPE/BIT +
+//===----------------------------------------------------------------------===//
+// clrbit.
+def CLRBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = clrbit($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (and (i32 IntRegs:$src1),
+ (not
+ (shl 1, u5ImmPred:$src2))))]>;
+
+def CLRBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = clrbit($src1, #$src2)",
+ []>;
+
+// Map from r0 = and(r1, 2147483647) to r0 = clrbit(r1, #31).
+def : Pat <(and (i32 IntRegs:$src1), 2147483647),
+ (CLRBIT_31 (i32 IntRegs:$src1), 31)>;
+
+// setbit.
+def SETBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = setbit($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (or (i32 IntRegs:$src1),
+ (shl 1, u5ImmPred:$src2)))]>;
+
+// Map from r0 = or(r1, -2147483648) to r0 = setbit(r1, #31).
+def SETBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = setbit($src1, #$src2)",
+ []>;
+
+def : Pat <(or (i32 IntRegs:$src1), -2147483648),
+ (SETBIT_31 (i32 IntRegs:$src1), 31)>;
+
+// togglebit.
+def TOGBIT : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = setbit($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (xor (i32 IntRegs:$src1),
+ (shl 1, u5ImmPred:$src2)))]>;
+
+// Map from r0 = xor(r1, -2147483648) to r0 = togglebit(r1, #31).
+def TOGBIT_31 : ALU64_rr<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = togglebit($src1, #$src2)",
+ []>;
+
+def : Pat <(xor (i32 IntRegs:$src1), -2147483648),
+ (TOGBIT_31 (i32 IntRegs:$src1), 31)>;
+
+// Predicate transfer.
+let neverHasSideEffects = 1 in
+def TFR_RsPd : SInst<(outs IntRegs:$dst), (ins PredRegs:$src1),
+ "$dst = $src1 /* Should almost never emit this. */",
+ []>;
+
+def TFR_PdRs : SInst<(outs PredRegs:$dst), (ins IntRegs:$src1),
+ "$dst = $src1 /* Should almost never emit this. */",
+ [(set (i1 PredRegs:$dst), (trunc (i32 IntRegs:$src1)))]>;
+//===----------------------------------------------------------------------===//
+// STYPE/PRED -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// STYPE/SHIFT +
+//===----------------------------------------------------------------------===//
+// Shift by immediate.
+def ASR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = asr($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1),
+ u5ImmPred:$src2))]>;
+
+def ASRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
+ "$dst = asr($src1, #$src2)",
+ [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1),
+ u6ImmPred:$src2))]>;
+
+def ASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = asl($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
+ u5ImmPred:$src2))]>;
+
+def ASLd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
+ "$dst = asl($src1, #$src2)",
+ [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
+ u6ImmPred:$src2))]>;
+
+def LSR_ri : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, u5Imm:$src2),
+ "$dst = lsr($src1, #$src2)",
+ [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1),
+ u5ImmPred:$src2))]>;
+
+def LSRd_ri : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, u6Imm:$src2),
+ "$dst = lsr($src1, #$src2)",
+ [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1),
+ u6ImmPred:$src2))]>;
+
+// Shift by immediate and add.
+let AddedComplexity = 100 in
+def ADDASL : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2,
+ u3Imm:$src3),
+ "$dst = addasl($src1, $src2, #$src3)",
+ [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$src1),
+ (shl (i32 IntRegs:$src2),
+ u3ImmPred:$src3)))]>;
+
+// Shift by register.
+def ASL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = asl($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+def ASR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = asr($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (sra (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+def LSL_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = lsl($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (shl (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+def LSR_rr : SInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = lsr($src1, $src2)",
+ [(set (i32 IntRegs:$dst), (srl (i32 IntRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+def ASLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
+ "$dst = asl($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+def LSLd : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1, IntRegs:$src2),
+ "$dst = lsl($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (shl (i64 DoubleRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+def ASRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ IntRegs:$src2),
+ "$dst = asr($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (sra (i64 DoubleRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+def LSRd_rr : SInst<(outs DoubleRegs:$dst), (ins DoubleRegs:$src1,
+ IntRegs:$src2),
+ "$dst = lsr($src1, $src2)",
+ [(set (i64 DoubleRegs:$dst), (srl (i64 DoubleRegs:$src1),
+ (i32 IntRegs:$src2)))]>;
+
+//===----------------------------------------------------------------------===//
+// STYPE/SHIFT -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// STYPE/VH +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// STYPE/VH -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// STYPE/VW +
+//===----------------------------------------------------------------------===//
+//===----------------------------------------------------------------------===//
+// STYPE/VW -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// SYSTEM/SUPER +
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// SYSTEM/USER +
+//===----------------------------------------------------------------------===//
+def SDHexagonBARRIER: SDTypeProfile<0, 0, []>;
+def HexagonBARRIER: SDNode<"HexagonISD::BARRIER", SDHexagonBARRIER,
+ [SDNPHasChain]>;
+
+let hasSideEffects = 1, isHexagonSolo = 1 in
+def BARRIER : SYSInst<(outs), (ins),
+ "barrier",
+ [(HexagonBARRIER)]>;
+
+//===----------------------------------------------------------------------===//
+// SYSTEM/SUPER -
+//===----------------------------------------------------------------------===//
+
+// TFRI64 - assembly mapped.
+let isReMaterializable = 1 in
+def TFRI64 : ALU64_rr<(outs DoubleRegs:$dst), (ins s8Imm64:$src1),
+ "$dst = #$src1",
+ [(set (i64 DoubleRegs:$dst), s8Imm64Pred:$src1)]>;
+
+// Pseudo instruction to encode a set of conditional transfers.
+// This instruction is used instead of a mux and trades-off codesize
+// for performance. We conduct this transformation optimistically in
+// the hope that these instructions get promoted to dot-new transfers.
+let AddedComplexity = 100, isPredicated = 1 in
+def TFR_condset_rr : ALU32_rr<(outs IntRegs:$dst), (ins PredRegs:$src1,
+ IntRegs:$src2,
+ IntRegs:$src3),
+ "Error; should not emit",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 PredRegs:$src1),
+ (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))]>;
+let AddedComplexity = 100, isPredicated = 1 in
+def TFR_condset_ri : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, IntRegs:$src2, s12Imm:$src3),
+ "Error; should not emit",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 PredRegs:$src1), (i32 IntRegs:$src2),
+ s12ImmPred:$src3)))]>;
+
+let AddedComplexity = 100, isPredicated = 1 in
+def TFR_condset_ir : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, s12Imm:$src2, IntRegs:$src3),
+ "Error; should not emit",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2,
+ (i32 IntRegs:$src3))))]>;
+
+let AddedComplexity = 100, isPredicated = 1 in
+def TFR_condset_ii : ALU32_rr<(outs IntRegs:$dst),
+ (ins PredRegs:$src1, s12Imm:$src2, s12Imm:$src3),
+ "Error; should not emit",
+ [(set (i32 IntRegs:$dst),
+ (i32 (select (i1 PredRegs:$src1), s12ImmPred:$src2,
+ s12ImmPred:$src3)))]>;
+
+// Generate frameindex addresses.
+let isReMaterializable = 1 in
+def TFR_FI : ALU32_ri<(outs IntRegs:$dst), (ins FrameIndex:$src1),
+ "$dst = add($src1)",
+ [(set (i32 IntRegs:$dst), ADDRri:$src1)]>;
+
+//
+// CR - Type.
+//
+let neverHasSideEffects = 1, Defs = [SA0, LC0] in {
+def LOOP0_i : CRInst<(outs), (ins brtarget:$offset, u10Imm:$src2),
+ "loop0($offset, #$src2)",
+ []>;
+}
+
+let neverHasSideEffects = 1, Defs = [SA0, LC0] in {
+def LOOP0_r : CRInst<(outs), (ins brtarget:$offset, IntRegs:$src2),
+ "loop0($offset, $src2)",
+ []>;
+}
+
+let isBranch = 1, isTerminator = 1, neverHasSideEffects = 1,
+ Defs = [PC, LC0], Uses = [SA0, LC0] in {
+def ENDLOOP0 : Marker<(outs), (ins brtarget:$offset),
+ ":endloop0",
+ []>;
+}
+
+// Support for generating global address.
+// Taken from X86InstrInfo.td.
+def SDTHexagonCONST32 : SDTypeProfile<1, 1, [
+ SDTCisVT<0, i32>,
+ SDTCisVT<1, i32>,
+ SDTCisPtrTy<0>]>;
+def HexagonCONST32 : SDNode<"HexagonISD::CONST32", SDTHexagonCONST32>;
+def HexagonCONST32_GP : SDNode<"HexagonISD::CONST32_GP", SDTHexagonCONST32>;
+
+// HI/LO Instructions
+let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+def LO : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
+ "$dst.l = #LO($global)",
+ []>;
+
+let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+def HI : ALU32_ri<(outs IntRegs:$dst), (ins globaladdress:$global),
+ "$dst.h = #HI($global)",
+ []>;
+
+let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+def LOi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value),
+ "$dst.l = #LO($imm_value)",
+ []>;
+
+
+let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+def HIi : ALU32_ri<(outs IntRegs:$dst), (ins i32imm:$imm_value),
+ "$dst.h = #HI($imm_value)",
+ []>;
+
+let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+def LO_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt),
+ "$dst.l = #LO($jt)",
+ []>;
+
+let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+def HI_jt : ALU32_ri<(outs IntRegs:$dst), (ins jumptablebase:$jt),
+ "$dst.h = #HI($jt)",
+ []>;
+
+
+let isReMaterializable = 1, isMoveImm = 1, neverHasSideEffects = 1 in
+def LO_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
+ "$dst.l = #LO($label)",
+ []>;
+
+let isReMaterializable = 1, isMoveImm = 1 , neverHasSideEffects = 1 in
+def HI_label : ALU32_ri<(outs IntRegs:$dst), (ins bblabel:$label),
+ "$dst.h = #HI($label)",
+ []>;
+
+// This pattern is incorrect. When we add small data, we should change
+// this pattern to use memw(#foo).
+// This is for sdata.
+let isMoveImm = 1 in
+def CONST32 : LDInst<(outs IntRegs:$dst), (ins globaladdress:$global),
+ "$dst = CONST32(#$global)",
+ [(set (i32 IntRegs:$dst),
+ (load (HexagonCONST32 tglobaltlsaddr:$global)))]>;
+
+// This is for non-sdata.
+let isReMaterializable = 1, isMoveImm = 1 in
+def CONST32_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global),
+ "$dst = CONST32(#$global)",
+ [(set (i32 IntRegs:$dst),
+ (HexagonCONST32 tglobaladdr:$global))]>;
+
+let isReMaterializable = 1, isMoveImm = 1 in
+def CONST32_set_jt : LDInst2<(outs IntRegs:$dst), (ins jumptablebase:$jt),
+ "$dst = CONST32(#$jt)",
+ [(set (i32 IntRegs:$dst),
+ (HexagonCONST32 tjumptable:$jt))]>;
+
+let isReMaterializable = 1, isMoveImm = 1 in
+def CONST32GP_set : LDInst2<(outs IntRegs:$dst), (ins globaladdress:$global),
+ "$dst = CONST32(#$global)",
+ [(set (i32 IntRegs:$dst),
+ (HexagonCONST32_GP tglobaladdr:$global))]>;
+
+let isReMaterializable = 1, isMoveImm = 1 in
+def CONST32_Int_Real : LDInst2<(outs IntRegs:$dst), (ins i32imm:$global),
+ "$dst = CONST32(#$global)",
+ [(set (i32 IntRegs:$dst), imm:$global) ]>;
+
+let isReMaterializable = 1, isMoveImm = 1 in
+def CONST32_Label : LDInst2<(outs IntRegs:$dst), (ins bblabel:$label),
+ "$dst = CONST32($label)",
+ [(set (i32 IntRegs:$dst), (HexagonCONST32 bbl:$label))]>;
+
+let isReMaterializable = 1, isMoveImm = 1 in
+def CONST64_Int_Real : LDInst2<(outs DoubleRegs:$dst), (ins i64imm:$global),
+ "$dst = CONST64(#$global)",
+ [(set (i64 DoubleRegs:$dst), imm:$global) ]>;
+
+def TFR_PdFalse : SInst<(outs PredRegs:$dst), (ins),
+ "$dst = xor($dst, $dst)",
+ [(set (i1 PredRegs:$dst), 0)]>;
+
+def MPY_trsext : MInst<(outs IntRegs:$dst), (ins IntRegs:$src1, IntRegs:$src2),
+ "$dst = mpy($src1, $src2)",
+ [(set (i32 IntRegs:$dst),
+ (trunc (i64 (srl (i64 (mul (i64 (sext (i32 IntRegs:$src1))),
+ (i64 (sext (i32 IntRegs:$src2))))),
+ (i32 32)))))]>;
+
+// Pseudo instructions.
+def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>;
+
+def SDT_SPCallSeqEnd : SDCallSeqEnd<[ SDTCisVT<0, i32>,
+ SDTCisVT<1, i32> ]>;
+
+def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_SPCallSeqEnd,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+
+def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart,
+ [SDNPHasChain, SDNPOutGlue]>;
+
+def SDT_SPCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
+
+def call : SDNode<"HexagonISD::CALL", SDT_SPCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, SDNPVariadic]>;
+
+// For tailcalls a HexagonTCRet SDNode has 3 SDNode Properties - a chain,
+// Optional Flag and Variable Arguments.
+// Its 1 Operand has pointer type.
+def HexagonTCRet : SDNode<"HexagonISD::TC_RETURN", SDT_SPCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
+
+let Defs = [R29, R30], Uses = [R31, R30, R29] in {
+ def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
+ "Should never be emitted",
+ [(callseq_start timm:$amt)]>;
+}
+
+let Defs = [R29, R30, R31], Uses = [R29] in {
+ def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "Should never be emitted",
+ [(callseq_end timm:$amt1, timm:$amt2)]>;
+}
+// Call subroutine.
+let isCall = 1, neverHasSideEffects = 1,
+ Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10,
+ R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
+ def CALL : JInst<(outs), (ins calltarget:$dst),
+ "call $dst", []>;
+}
+
+// Call subroutine from register.
+let isCall = 1, neverHasSideEffects = 1,
+ Defs = [D0, D1, D2, D3, D4, D5, D6, D7, D8, D9, D10,
+ R22, R23, R28, R31, P0, P1, P2, P3, LC0, LC1, SA0, SA1] in {
+ def CALLR : JRInst<(outs), (ins IntRegs:$dst),
+ "callr $dst",
+ []>;
+ }
+
+// Tail Calls.
+let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1 in {
+ def TCRETURNtg : JInst<(outs), (ins calltarget:$dst),
+ "jump $dst // TAILCALL", []>;
+}
+let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1 in {
+ def TCRETURNtext : JInst<(outs), (ins calltarget:$dst),
+ "jump $dst // TAILCALL", []>;
+}
+
+let isCall = 1, isBarrier = 1, isReturn = 1, isTerminator = 1 in {
+ def TCRETURNR : JInst<(outs), (ins IntRegs:$dst),
+ "jumpr $dst // TAILCALL", []>;
+}
+// Map call instruction.
+def : Pat<(call (i32 IntRegs:$dst)),
+ (CALLR (i32 IntRegs:$dst))>, Requires<[HasV2TOnly]>;
+def : Pat<(call tglobaladdr:$dst),
+ (CALL tglobaladdr:$dst)>, Requires<[HasV2TOnly]>;
+def : Pat<(call texternalsym:$dst),
+ (CALL texternalsym:$dst)>, Requires<[HasV2TOnly]>;
+//Tail calls.
+def : Pat<(HexagonTCRet tglobaladdr:$dst),
+ (TCRETURNtg tglobaladdr:$dst)>;
+def : Pat<(HexagonTCRet texternalsym:$dst),
+ (TCRETURNtext texternalsym:$dst)>;
+def : Pat<(HexagonTCRet (i32 IntRegs:$dst)),
+ (TCRETURNR (i32 IntRegs:$dst))>;
+
+// Atomic load and store support
+// 8 bit atomic load
+def : Pat<(atomic_load_8 (HexagonCONST32_GP tglobaladdr:$global)),
+ (i32 (LDub_GP tglobaladdr:$global))>,
+ Requires<[NoV4T]>;
+
+def : Pat<(atomic_load_8 (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset)),
+ (i32 (LDriub_GP tglobaladdr:$global, u16ImmPred:$offset))>,
+ Requires<[NoV4T]>;
+
+def : Pat<(atomic_load_8 ADDRriS11_0:$src1),
+ (i32 (LDriub ADDRriS11_0:$src1))>;
+
+def : Pat<(atomic_load_8 (add (i32 IntRegs:$src1), s11_0ImmPred:$offset)),
+ (i32 (LDriub_indexed (i32 IntRegs:$src1), s11_0ImmPred:$offset))>;
+
+
+
+// 16 bit atomic load
+def : Pat<(atomic_load_16 (HexagonCONST32_GP tglobaladdr:$global)),
+ (i32 (LDuh_GP tglobaladdr:$global))>,
+ Requires<[NoV4T]>;
+
+def : Pat<(atomic_load_16 (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset)),
+ (i32 (LDriuh_GP tglobaladdr:$global, u16ImmPred:$offset))>,
+ Requires<[NoV4T]>;
+
+def : Pat<(atomic_load_16 ADDRriS11_1:$src1),
+ (i32 (LDriuh ADDRriS11_1:$src1))>;
+
+def : Pat<(atomic_load_16 (add (i32 IntRegs:$src1), s11_1ImmPred:$offset)),
+ (i32 (LDriuh_indexed (i32 IntRegs:$src1), s11_1ImmPred:$offset))>;
+
+
+
+// 32 bit atomic load
+def : Pat<(atomic_load_32 (HexagonCONST32_GP tglobaladdr:$global)),
+ (i32 (LDw_GP tglobaladdr:$global))>,
+ Requires<[NoV4T]>;
+
+def : Pat<(atomic_load_32 (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset)),
+ (i32 (LDriw_GP tglobaladdr:$global, u16ImmPred:$offset))>,
+ Requires<[NoV4T]>;
+
+def : Pat<(atomic_load_32 ADDRriS11_2:$src1),
+ (i32 (LDriw ADDRriS11_2:$src1))>;
+
+def : Pat<(atomic_load_32 (add (i32 IntRegs:$src1), s11_2ImmPred:$offset)),
+ (i32 (LDriw_indexed (i32 IntRegs:$src1), s11_2ImmPred:$offset))>;
+
+
+// 64 bit atomic load
+def : Pat<(atomic_load_64 (HexagonCONST32_GP tglobaladdr:$global)),
+ (i64 (LDd_GP tglobaladdr:$global))>,
+ Requires<[NoV4T]>;
+
+def : Pat<(atomic_load_64 (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset)),
+ (i64 (LDrid_GP tglobaladdr:$global, u16ImmPred:$offset))>,
+ Requires<[NoV4T]>;
+
+def : Pat<(atomic_load_64 ADDRriS11_3:$src1),
+ (i64 (LDrid ADDRriS11_3:$src1))>;
+
+def : Pat<(atomic_load_64 (add (i32 IntRegs:$src1), s11_3ImmPred:$offset)),
+ (i64 (LDrid_indexed (i32 IntRegs:$src1), s11_3ImmPred:$offset))>;
+
+
+// 64 bit atomic store
+def : Pat<(atomic_store_64 (HexagonCONST32_GP tglobaladdr:$global),
+ (i64 DoubleRegs:$src1)),
+ (STd_GP tglobaladdr:$global, (i64 DoubleRegs:$src1))>,
+ Requires<[NoV4T]>;
+
+def : Pat<(atomic_store_64 (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset),
+ (i64 DoubleRegs:$src1)),
+ (STrid_GP tglobaladdr:$global, u16ImmPred:$offset,
+ (i64 DoubleRegs:$src1))>, Requires<[NoV4T]>;
+
+// 8 bit atomic store
+def : Pat<(atomic_store_8 (HexagonCONST32_GP tglobaladdr:$global),
+ (i32 IntRegs:$src1)),
+ (STb_GP tglobaladdr:$global, (i32 IntRegs:$src1))>,
+ Requires<[NoV4T]>;
+
+def : Pat<(atomic_store_8 (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset),
+ (i32 IntRegs:$src1)),
+ (STrib_GP tglobaladdr:$global, u16ImmPred:$offset,
+ (i32 IntRegs:$src1))>, Requires<[NoV4T]>;
+
+def : Pat<(atomic_store_8 ADDRriS11_0:$src2, (i32 IntRegs:$src1)),
+ (STrib ADDRriS11_0:$src2, (i32 IntRegs:$src1))>;
+
+def : Pat<(atomic_store_8 (add (i32 IntRegs:$src2), s11_0ImmPred:$offset),
+ (i32 IntRegs:$src1)),
+ (STrib_indexed (i32 IntRegs:$src2), s11_0ImmPred:$offset,
+ (i32 IntRegs:$src1))>;
+
+
+// 16 bit atomic store
+def : Pat<(atomic_store_16 (HexagonCONST32_GP tglobaladdr:$global),
+ (i32 IntRegs:$src1)),
+ (STh_GP tglobaladdr:$global, (i32 IntRegs:$src1))>,
+ Requires<[NoV4T]>;
+
+def : Pat<(atomic_store_16 (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset),
+ (i32 IntRegs:$src1)),
+ (STrih_GP tglobaladdr:$global, u16ImmPred:$offset,
+ (i32 IntRegs:$src1))>, Requires<[NoV4T]>;
+
+def : Pat<(atomic_store_16 ADDRriS11_1:$src2, (i32 IntRegs:$src1)),
+ (STrih ADDRriS11_1:$src2, (i32 IntRegs:$src1))>;
+
+def : Pat<(atomic_store_16 (i32 IntRegs:$src1),
+ (add (i32 IntRegs:$src2), s11_1ImmPred:$offset)),
+ (STrih_indexed (i32 IntRegs:$src2), s11_1ImmPred:$offset,
+ (i32 IntRegs:$src1))>;
+
+
+// 32 bit atomic store
+def : Pat<(atomic_store_32 (HexagonCONST32_GP tglobaladdr:$global),
+ (i32 IntRegs:$src1)),
+ (STw_GP tglobaladdr:$global, (i32 IntRegs:$src1))>,
+ Requires<[NoV4T]>;
+
+def : Pat<(atomic_store_32 (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset),
+ (i32 IntRegs:$src1)),
+ (STriw_GP tglobaladdr:$global, u16ImmPred:$offset,
+ (i32 IntRegs:$src1))>,
+ Requires<[NoV4T]>;
+
+def : Pat<(atomic_store_32 ADDRriS11_2:$src2, (i32 IntRegs:$src1)),
+ (STriw ADDRriS11_2:$src2, (i32 IntRegs:$src1))>;
+
+def : Pat<(atomic_store_32 (add (i32 IntRegs:$src2), s11_2ImmPred:$offset),
+ (i32 IntRegs:$src1)),
+ (STriw_indexed (i32 IntRegs:$src2), s11_2ImmPred:$offset,
+ (i32 IntRegs:$src1))>;
+
+
+
+
+def : Pat<(atomic_store_64 ADDRriS11_3:$src2, (i64 DoubleRegs:$src1)),
+ (STrid ADDRriS11_3:$src2, (i64 DoubleRegs:$src1))>;
+
+def : Pat<(atomic_store_64 (add (i32 IntRegs:$src2), s11_3ImmPred:$offset),
+ (i64 DoubleRegs:$src1)),
+ (STrid_indexed (i32 IntRegs:$src2), s11_3ImmPred:$offset,
+ (i64 DoubleRegs:$src1))>;
+
+// Map from r0 = and(r1, 65535) to r0 = zxth(r1)
+def : Pat <(and (i32 IntRegs:$src1), 65535),
+ (ZXTH (i32 IntRegs:$src1))>;
+
+// Map from r0 = and(r1, 255) to r0 = zxtb(r1).
+def : Pat <(and (i32 IntRegs:$src1), 255),
+ (ZXTB (i32 IntRegs:$src1))>;
+
+// Map Add(p1, true) to p1 = not(p1).
+// Add(p1, false) should never be produced,
+// if it does, it got to be mapped to NOOP.
+def : Pat <(add (i1 PredRegs:$src1), -1),
+ (NOT_p (i1 PredRegs:$src1))>;
+
+// Map from p0 = setlt(r0, r1) r2 = mux(p0, r3, r4) =>
+// p0 = cmp.lt(r0, r1), r0 = mux(p0, r2, r1).
+def : Pat <(select (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i32 IntRegs:$src3),
+ (i32 IntRegs:$src4)),
+ (i32 (TFR_condset_rr (CMPLTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
+ (i32 IntRegs:$src4), (i32 IntRegs:$src3)))>,
+ Requires<[HasV2TOnly]>;
+
+// Map from p0 = pnot(p0); r0 = mux(p0, #i, #j) => r0 = mux(p0, #j, #i).
+def : Pat <(select (not (i1 PredRegs:$src1)), s8ImmPred:$src2, s8ImmPred:$src3),
+ (i32 (TFR_condset_ii (i1 PredRegs:$src1), s8ImmPred:$src3,
+ s8ImmPred:$src2))>;
+
+// Map from p0 = pnot(p0); r0 = select(p0, #i, r1)
+// => r0 = TFR_condset_ri(p0, r1, #i)
+def : Pat <(select (not (i1 PredRegs:$src1)), s12ImmPred:$src2,
+ (i32 IntRegs:$src3)),
+ (i32 (TFR_condset_ri (i1 PredRegs:$src1), (i32 IntRegs:$src3),
+ s12ImmPred:$src2))>;
+
+// Map from p0 = pnot(p0); r0 = mux(p0, r1, #i)
+// => r0 = TFR_condset_ir(p0, #i, r1)
+def : Pat <(select (not PredRegs:$src1), IntRegs:$src2, s12ImmPred:$src3),
+ (i32 (TFR_condset_ir (i1 PredRegs:$src1), s12ImmPred:$src3,
+ (i32 IntRegs:$src2)))>;
+
+// Map from p0 = pnot(p0); if (p0) jump => if (!p0) jump.
+def : Pat <(brcond (not PredRegs:$src1), bb:$offset),
+ (JMP_cNot (i1 PredRegs:$src1), bb:$offset)>;
+
+// Map from p2 = pnot(p2); p1 = and(p0, p2) => p1 = and(p0, !p2).
+def : Pat <(and PredRegs:$src1, (not PredRegs:$src2)),
+ (i1 (AND_pnotp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>;
+
+// Map from store(globaladdress + x) -> memd(#foo + x).
+let AddedComplexity = 100 in
+def : Pat <(store (i64 DoubleRegs:$src1),
+ (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset)),
+ (STrid_GP tglobaladdr:$global, u16ImmPred:$offset,
+ (i64 DoubleRegs:$src1))>, Requires<[NoV4T]>;
+
+// Map from store(globaladdress) -> memd(#foo).
+let AddedComplexity = 100 in
+def : Pat <(store (i64 DoubleRegs:$src1),
+ (HexagonCONST32_GP tglobaladdr:$global)),
+ (STd_GP tglobaladdr:$global, (i64 DoubleRegs:$src1))>,
+ Requires<[NoV4T]>;
+
+// Map from store(globaladdress + x) -> memw(#foo + x).
+let AddedComplexity = 100 in
+def : Pat <(store (i32 IntRegs:$src1),
+ (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset)),
+ (STriw_GP tglobaladdr:$global, u16ImmPred:$offset, (i32 IntRegs:$src1))>,
+ Requires<[NoV4T]>;
+
+// Map from store(globaladdress) -> memw(#foo + 0).
+let AddedComplexity = 100 in
+def : Pat <(store (i32 IntRegs:$src1), (HexagonCONST32_GP tglobaladdr:$global)),
+ (STriw_GP tglobaladdr:$global, 0, (i32 IntRegs:$src1))>;
+
+// Map from store(globaladdress) -> memw(#foo).
+let AddedComplexity = 100 in
+def : Pat <(store (i32 IntRegs:$src1), (HexagonCONST32_GP tglobaladdr:$global)),
+ (STriw_GP tglobaladdr:$global, 0, (i32 IntRegs:$src1))>,
+ Requires<[NoV4T]>;
+
+// Map from store(globaladdress + x) -> memh(#foo + x).
+let AddedComplexity = 100 in
+def : Pat <(truncstorei16 (i32 IntRegs:$src1),
+ (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset)),
+ (STrih_GP tglobaladdr:$global, u16ImmPred:$offset, (i32 IntRegs:$src1))>,
+ Requires<[NoV4T]>;
+
+// Map from store(globaladdress) -> memh(#foo).
+let AddedComplexity = 100 in
+def : Pat <(truncstorei16 (i32 IntRegs:$src1),
+ (HexagonCONST32_GP tglobaladdr:$global)),
+ (STh_GP tglobaladdr:$global, (i32 IntRegs:$src1))>,
+ Requires<[NoV4T]>;
+
+// Map from store(globaladdress + x) -> memb(#foo + x).
+let AddedComplexity = 100 in
+def : Pat <(truncstorei8 (i32 IntRegs:$src1),
+ (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset)),
+ (STrib_GP tglobaladdr:$global, u16ImmPred:$offset, (i32 IntRegs:$src1))>,
+ Requires<[NoV4T]>;
+
+// Map from store(globaladdress) -> memb(#foo).
+let AddedComplexity = 100 in
+def : Pat <(truncstorei8 (i32 IntRegs:$src1),
+ (HexagonCONST32_GP tglobaladdr:$global)),
+ (STb_GP tglobaladdr:$global, (i32 IntRegs:$src1))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress + x) -> memw(#foo + x).
+let AddedComplexity = 100 in
+def : Pat <(i32 (load (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset))),
+ (i32 (LDriw_GP tglobaladdr:$global, u16ImmPred:$offset))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress) -> memw(#foo).
+let AddedComplexity = 100 in
+def : Pat <(i32 (load (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDw_GP tglobaladdr:$global))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress + x) -> memd(#foo + x).
+let AddedComplexity = 100 in
+def : Pat <(i64 (load (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset))),
+ (i64 (LDrid_GP tglobaladdr:$global, u16ImmPred:$offset))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress) -> memw(#foo + 0).
+let AddedComplexity = 100 in
+def : Pat <(i64 (load (HexagonCONST32_GP tglobaladdr:$global))),
+ (i64 (LDd_GP tglobaladdr:$global))>,
+ Requires<[NoV4T]>;
+
+// Map from Pd = load(globaladdress) -> Rd = memb(globaladdress), Pd = Rd.
+let AddedComplexity = 100 in
+def : Pat <(i1 (load (HexagonCONST32_GP tglobaladdr:$global))),
+ (i1 (TFR_PdRs (i32 (LDb_GP tglobaladdr:$global))))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress + x) -> memh(#foo + x).
+let AddedComplexity = 100 in
+def : Pat <(i32 (extloadi16 (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset))),
+ (i32 (LDrih_GP tglobaladdr:$global, u16ImmPred:$offset))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress + x) -> memh(#foo + x).
+let AddedComplexity = 100 in
+def : Pat <(i32 (sextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDrih_GP tglobaladdr:$global, 0))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress + x) -> memuh(#foo + x).
+let AddedComplexity = 100 in
+def : Pat <(i32 (zextloadi16 (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset))),
+ (i32 (LDriuh_GP tglobaladdr:$global, u16ImmPred:$offset))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress) -> memuh(#foo).
+let AddedComplexity = 100 in
+def : Pat <(i32 (zextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDriuh_GP tglobaladdr:$global, 0))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress) -> memh(#foo).
+let AddedComplexity = 100 in
+def : Pat <(i32 (sextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDh_GP tglobaladdr:$global))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress) -> memuh(#foo).
+let AddedComplexity = 100 in
+def : Pat <(i32 (zextloadi16 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDuh_GP tglobaladdr:$global))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress + x) -> memb(#foo + x).
+let AddedComplexity = 100 in
+def : Pat <(i32 (extloadi8 (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset))),
+ (i32 (LDrib_GP tglobaladdr:$global, u16ImmPred:$offset))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress + x) -> memb(#foo + x).
+let AddedComplexity = 100 in
+def : Pat <(i32 (sextloadi8 (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset))),
+ (i32 (LDrib_GP tglobaladdr:$global, u16ImmPred:$offset))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress + x) -> memub(#foo + x).
+let AddedComplexity = 100 in
+def : Pat <(i32 (zextloadi8 (add (HexagonCONST32_GP tglobaladdr:$global),
+ u16ImmPred:$offset))),
+ (i32 (LDriub_GP tglobaladdr:$global, u16ImmPred:$offset))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress) -> memb(#foo).
+let AddedComplexity = 100 in
+def : Pat <(i32 (extloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDb_GP tglobaladdr:$global))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress) -> memb(#foo).
+let AddedComplexity = 100 in
+def : Pat <(i32 (sextloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDb_GP tglobaladdr:$global))>,
+ Requires<[NoV4T]>;
+
+// Map from load(globaladdress) -> memub(#foo).
+let AddedComplexity = 100 in
+def : Pat <(i32 (zextloadi8 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDub_GP tglobaladdr:$global))>,
+ Requires<[NoV4T]>;
+
+// When the Interprocedural Global Variable optimizer realizes that a
+// certain global variable takes only two constant values, it shrinks the
+// global to a boolean. Catch those loads here in the following 3 patterns.
+let AddedComplexity = 100 in
+def : Pat <(i32 (extloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDb_GP tglobaladdr:$global))>,
+ Requires<[NoV4T]>;
+
+let AddedComplexity = 100 in
+def : Pat <(i32 (sextloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDb_GP tglobaladdr:$global))>,
+ Requires<[NoV4T]>;
+
+let AddedComplexity = 100 in
+def : Pat <(i32 (zextloadi1 (HexagonCONST32_GP tglobaladdr:$global))),
+ (i32 (LDub_GP tglobaladdr:$global))>,
+ Requires<[NoV4T]>;
+
+// Map from i1 loads to 32 bits. This assumes that the i1* is byte aligned.
+def : Pat <(i32 (zextloadi1 ADDRriS11_0:$addr)),
+ (i32 (AND_rr (i32 (LDrib ADDRriS11_0:$addr)), (TFRI 0x1)))>;
+
+// Map from Rdd = sign_extend_inreg(Rss, i32) -> Rdd = SXTW(Rss.lo).
+def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i32)),
+ (i64 (SXTW (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg))))>;
+
+// Map from Rdd = sign_extend_inreg(Rss, i16) -> Rdd = SXTW(SXTH(Rss.lo)).
+def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i16)),
+ (i64 (SXTW (i32 (SXTH (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
+ subreg_loreg))))))>;
+
+// Map from Rdd = sign_extend_inreg(Rss, i8) -> Rdd = SXTW(SXTB(Rss.lo)).
+def : Pat <(i64 (sext_inreg (i64 DoubleRegs:$src1), i8)),
+ (i64 (SXTW (i32 (SXTB (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
+ subreg_loreg))))))>;
+
+// We want to prevent emitting pnot's as much as possible.
+// Map brcond with an unsupported setcc to a JMP_cNot.
+def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ bb:$offset),
+ (JMP_cNot (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
+ bb:$offset)>;
+
+def : Pat <(brcond (i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)),
+ bb:$offset),
+ (JMP_cNot (CMPEQri (i32 IntRegs:$src1), s10ImmPred:$src2), bb:$offset)>;
+
+def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 -1))), bb:$offset),
+ (JMP_cNot (i1 PredRegs:$src1), bb:$offset)>;
+
+def : Pat <(brcond (i1 (setne (i1 PredRegs:$src1), (i1 0))), bb:$offset),
+ (JMP_c (i1 PredRegs:$src1), bb:$offset)>;
+
+def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)),
+ bb:$offset),
+ (JMP_cNot (CMPGEri (i32 IntRegs:$src1), s8ImmPred:$src2), bb:$offset)>;
+
+def : Pat <(brcond (i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ bb:$offset),
+ (JMP_c (CMPLTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)), bb:$offset)>;
+
+def : Pat <(brcond (i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ bb:$offset),
+ (JMP_cNot (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)),
+ bb:$offset)>;
+
+def : Pat <(brcond (i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ bb:$offset),
+ (JMP_cNot (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)),
+ bb:$offset)>;
+
+def : Pat <(brcond (i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ bb:$offset),
+ (JMP_cNot (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
+ bb:$offset)>;
+
+// Map from a 64-bit select to an emulated 64-bit mux.
+// Hexagon does not support 64-bit MUXes; so emulate with combines.
+def : Pat <(select (i1 PredRegs:$src1), (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src3)),
+ (i64 (COMBINE_rr (i32 (MUX_rr (i1 PredRegs:$src1),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
+ subreg_hireg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3),
+ subreg_hireg)))),
+ (i32 (MUX_rr (i1 PredRegs:$src1),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
+ subreg_loreg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src3),
+ subreg_loreg))))))>;
+
+// Map from a 1-bit select to logical ops.
+// From LegalizeDAG.cpp: (B1 ? B2 : B3) <=> (B1 & B2)|(!B1&B3).
+def : Pat <(select (i1 PredRegs:$src1), (i1 PredRegs:$src2),
+ (i1 PredRegs:$src3)),
+ (OR_pp (AND_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)),
+ (AND_pp (NOT_p (i1 PredRegs:$src1)), (i1 PredRegs:$src3)))>;
+
+// Map Pd = load(addr) -> Rs = load(addr); Pd = Rs.
+def : Pat<(i1 (load ADDRriS11_2:$addr)),
+ (i1 (TFR_PdRs (i32 (LDrib ADDRriS11_2:$addr))))>;
+
+// Map for truncating from 64 immediates to 32 bit immediates.
+def : Pat<(i32 (trunc (i64 DoubleRegs:$src))),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src), subreg_loreg))>;
+
+// Map for truncating from i64 immediates to i1 bit immediates.
+def : Pat<(i1 (trunc (i64 DoubleRegs:$src))),
+ (i1 (TFR_PdRs (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ subreg_loreg))))>;
+
+// Map memb(Rs) = Rdd -> memb(Rs) = Rt.
+def : Pat<(truncstorei8 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
+ (STrib ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ subreg_loreg)))>;
+
+// Map memh(Rs) = Rdd -> memh(Rs) = Rt.
+def : Pat<(truncstorei16 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
+ (STrih ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ subreg_loreg)))>;
+// Map memw(Rs) = Rdd -> memw(Rs) = Rt
+def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
+ (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ subreg_loreg)))>;
+
+// Map memw(Rs) = Rdd -> memw(Rs) = Rt.
+def : Pat<(truncstorei32 (i64 DoubleRegs:$src), ADDRriS11_0:$addr),
+ (STriw ADDRriS11_0:$addr, (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src),
+ subreg_loreg)))>;
+
+// Map from i1 = constant<-1>; memw(addr) = i1 -> r0 = 1; memw(addr) = r0.
+def : Pat<(store (i1 -1), ADDRriS11_2:$addr),
+ (STrib ADDRriS11_2:$addr, (TFRI 1))>;
+
+let AddedComplexity = 100 in
+// Map from i1 = constant<-1>; memw(CONST32(#foo)) = i1 -> r0 = 1;
+// memw(#foo) = r0
+def : Pat<(store (i1 -1), (HexagonCONST32_GP tglobaladdr:$global)),
+ (STb_GP tglobaladdr:$global, (TFRI 1))>,
+ Requires<[NoV4T]>;
+
+// Map from i1 = constant<-1>; store i1 -> r0 = 1; store r0.
+def : Pat<(store (i1 -1), ADDRriS11_2:$addr),
+ (STrib ADDRriS11_2:$addr, (TFRI 1))>;
+
+// Map from memb(Rs) = Pd -> Rt = mux(Pd, #0, #1); store Rt.
+def : Pat<(store (i1 PredRegs:$src1), ADDRriS11_2:$addr),
+ (STrib ADDRriS11_2:$addr, (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0)) )>;
+
+// Map Rdd = anyext(Rs) -> Rdd = sxtw(Rs).
+// Hexagon_TODO: We can probably use combine but that will cost 2 instructions.
+// Better way to do this?
+def : Pat<(i64 (anyext (i32 IntRegs:$src1))),
+ (i64 (SXTW (i32 IntRegs:$src1)))>;
+
+// Map cmple -> cmpgt.
+// rs <= rt -> !(rs > rt).
+def : Pat<(i1 (setle (i32 IntRegs:$src1), s10ImmPred:$src2)),
+ (i1 (NOT_p (CMPGTri (i32 IntRegs:$src1), s10ImmPred:$src2)))>;
+
+// rs <= rt -> !(rs > rt).
+def : Pat<(i1 (setle (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i1 (NOT_p (CMPGTrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
+
+// Rss <= Rtt -> !(Rss > Rtt).
+def : Pat<(i1 (setle (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (i1 (NOT_p (CMPGT64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>;
+
+// Map cmpne -> cmpeq.
+// Hexagon_TODO: We should improve on this.
+// rs != rt -> !(rs == rt).
+def : Pat <(i1 (setne (i32 IntRegs:$src1), s10ImmPred:$src2)),
+ (i1 (NOT_p(i1 (CMPEQri (i32 IntRegs:$src1), s10ImmPred:$src2))))>;
+
+// Map cmpne(Rs) -> !cmpeqe(Rs).
+// rs != rt -> !(rs == rt).
+def : Pat <(i1 (setne (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i1 (NOT_p (i1 (CMPEQrr (i32 IntRegs:$src1), (i32 IntRegs:$src2)))))>;
+
+// Convert setne back to xor for hexagon since we compute w/ pred registers.
+def : Pat <(i1 (setne (i1 PredRegs:$src1), (i1 PredRegs:$src2))),
+ (i1 (XOR_pp (i1 PredRegs:$src1), (i1 PredRegs:$src2)))>;
+
+// Map cmpne(Rss) -> !cmpew(Rss).
+// rs != rt -> !(rs == rt).
+def : Pat <(i1 (setne (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (i1 (NOT_p (i1 (CMPEHexagon4rr (i64 DoubleRegs:$src1),
+ (i64 DoubleRegs:$src2)))))>;
+
+// Map cmpge(Rs, Rt) -> !(cmpgt(Rs, Rt).
+// rs >= rt -> !(rt > rs).
+def : Pat <(i1 (setge (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i1 (NOT_p (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))))>;
+
+def : Pat <(i1 (setge (i32 IntRegs:$src1), s8ImmPred:$src2)),
+ (i1 (CMPGEri (i32 IntRegs:$src1), s8ImmPred:$src2))>;
+
+// Map cmpge(Rss, Rtt) -> !cmpgt(Rtt, Rss).
+// rss >= rtt -> !(rtt > rss).
+def : Pat <(i1 (setge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (i1 (NOT_p (i1 (CMPGT64rr (i64 DoubleRegs:$src2),
+ (i64 DoubleRegs:$src1)))))>;
+
+// Map cmplt(Rs, Imm) -> !cmpge(Rs, Imm).
+// rs < rt -> !(rs >= rt).
+def : Pat <(i1 (setlt (i32 IntRegs:$src1), s8ImmPred:$src2)),
+ (i1 (NOT_p (CMPGEri (i32 IntRegs:$src1), s8ImmPred:$src2)))>;
+
+// Map cmplt(Rs, Rt) -> cmpgt(Rt, Rs).
+// rs < rt -> rt > rs.
+// We can let assembler map it, or we can do in the compiler itself.
+def : Pat <(i1 (setlt (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i1 (CMPGTrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>;
+
+// Map cmplt(Rss, Rtt) -> cmpgt(Rtt, Rss).
+// rss < rtt -> (rtt > rss).
+def : Pat <(i1 (setlt (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (i1 (CMPGT64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>;
+
+// Map from cmpltu(Rs, Rd) -> cmpgtu(Rd, Rs)
+// rs < rt -> rt > rs.
+// We can let assembler map it, or we can do in the compiler itself.
+def : Pat <(i1 (setult (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i1 (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1)))>;
+
+// Map from cmpltu(Rss, Rdd) -> cmpgtu(Rdd, Rss).
+// rs < rt -> rt > rs.
+def : Pat <(i1 (setult (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (i1 (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1)))>;
+
+// Generate cmpgeu(Rs, #u8)
+def : Pat <(i1 (setuge (i32 IntRegs:$src1), u8ImmPred:$src2)),
+ (i1 (CMPGEUri (i32 IntRegs:$src1), u8ImmPred:$src2))>;
+
+// Generate cmpgtu(Rs, #u9)
+def : Pat <(i1 (setugt (i32 IntRegs:$src1), u9ImmPred:$src2)),
+ (i1 (CMPGTUri (i32 IntRegs:$src1), u9ImmPred:$src2))>;
+
+// Map from Rs >= Rt -> !(Rt > Rs).
+// rs >= rt -> !(rt > rs).
+def : Pat <(i1 (setuge (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src2), (i32 IntRegs:$src1))))>;
+
+// Map from Rs >= Rt -> !(Rt > Rs).
+// rs >= rt -> !(rt > rs).
+def : Pat <(i1 (setuge (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src2), (i64 DoubleRegs:$src1))))>;
+
+// Map from cmpleu(Rs, Rs) -> !cmpgtu(Rs, Rs).
+// Map from (Rs <= Rt) -> !(Rs > Rt).
+def : Pat <(i1 (setule (i32 IntRegs:$src1), (i32 IntRegs:$src2))),
+ (i1 (NOT_p (CMPGTUrr (i32 IntRegs:$src1), (i32 IntRegs:$src2))))>;
+
+// Map from cmpleu(Rss, Rtt) -> !cmpgtu(Rss, Rtt-1).
+// Map from (Rs <= Rt) -> !(Rs > Rt).
+def : Pat <(i1 (setule (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))),
+ (i1 (NOT_p (CMPGTU64rr (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2))))>;
+
+// Sign extends.
+// i1 -> i32
+def : Pat <(i32 (sext (i1 PredRegs:$src1))),
+ (i32 (MUX_ii (i1 PredRegs:$src1), -1, 0))>;
+
+// i1 -> i64
+def : Pat <(i64 (sext (i1 PredRegs:$src1))),
+ (i64 (COMBINE_rr (TFRI -1), (MUX_ii (i1 PredRegs:$src1), -1, 0)))>;
+
+// Convert sign-extended load back to load and sign extend.
+// i8 -> i64
+def: Pat <(i64 (sextloadi8 ADDRriS11_0:$src1)),
+ (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>;
+
+// Convert any-extended load back to load and sign extend.
+// i8 -> i64
+def: Pat <(i64 (extloadi8 ADDRriS11_0:$src1)),
+ (i64 (SXTW (LDrib ADDRriS11_0:$src1)))>;
+
+// Convert sign-extended load back to load and sign extend.
+// i16 -> i64
+def: Pat <(i64 (sextloadi16 ADDRriS11_1:$src1)),
+ (i64 (SXTW (LDrih ADDRriS11_1:$src1)))>;
+
+// Convert sign-extended load back to load and sign extend.
+// i32 -> i64
+def: Pat <(i64 (sextloadi32 ADDRriS11_2:$src1)),
+ (i64 (SXTW (LDriw ADDRriS11_2:$src1)))>;
+
+
+// Zero extends.
+// i1 -> i32
+def : Pat <(i32 (zext (i1 PredRegs:$src1))),
+ (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
+
+// i1 -> i64
+def : Pat <(i64 (zext (i1 PredRegs:$src1))),
+ (i64 (COMBINE_rr (TFRI 0), (MUX_ii (i1 PredRegs:$src1), 1, 0)))>;
+
+// i32 -> i64
+def : Pat <(i64 (zext (i32 IntRegs:$src1))),
+ (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>;
+
+// i8 -> i64
+def: Pat <(i64 (zextloadi8 ADDRriS11_0:$src1)),
+ (i64 (COMBINE_rr (TFRI 0), (LDriub ADDRriS11_0:$src1)))>;
+
+// i16 -> i64
+def: Pat <(i64 (zextloadi16 ADDRriS11_1:$src1)),
+ (i64 (COMBINE_rr (TFRI 0), (LDriuh ADDRriS11_1:$src1)))>;
+
+// i32 -> i64
+def: Pat <(i64 (zextloadi32 ADDRriS11_2:$src1)),
+ (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>;
+
+def: Pat <(i32 (zextloadi1 ADDRriS11_0:$src1)),
+ (i32 (LDriw ADDRriS11_0:$src1))>;
+
+// Map from Rs = Pd to Pd = mux(Pd, #1, #0)
+def : Pat <(i32 (zext (i1 PredRegs:$src1))),
+ (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
+
+// Map from Rs = Pd to Pd = mux(Pd, #1, #0)
+def : Pat <(i32 (anyext (i1 PredRegs:$src1))),
+ (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))>;
+
+// Map from Rss = Pd to Rdd = sxtw (mux(Pd, #1, #0))
+def : Pat <(i64 (anyext (i1 PredRegs:$src1))),
+ (i64 (SXTW (i32 (MUX_ii (i1 PredRegs:$src1), 1, 0))))>;
+
+
+// Any extended 64-bit load.
+// anyext i32 -> i64
+def: Pat <(i64 (extloadi32 ADDRriS11_2:$src1)),
+ (i64 (COMBINE_rr (TFRI 0), (LDriw ADDRriS11_2:$src1)))>;
+
+// anyext i16 -> i64.
+def: Pat <(i64 (extloadi16 ADDRriS11_2:$src1)),
+ (i64 (COMBINE_rr (TFRI 0), (LDrih ADDRriS11_2:$src1)))>;
+
+// Map from Rdd = zxtw(Rs) -> Rdd = combine(0, Rs).
+def : Pat<(i64 (zext (i32 IntRegs:$src1))),
+ (i64 (COMBINE_rr (TFRI 0), (i32 IntRegs:$src1)))>;
+
+// Multiply 64-bit unsigned and use upper result.
+def : Pat <(mulhu (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
+ (i64
+ (MPYU64_acc
+ (i64
+ (COMBINE_rr
+ (TFRI 0),
+ (i32
+ (EXTRACT_SUBREG
+ (i64
+ (LSRd_ri
+ (i64
+ (MPYU64_acc
+ (i64
+ (MPYU64_acc
+ (i64
+ (COMBINE_rr (TFRI 0),
+ (i32
+ (EXTRACT_SUBREG
+ (i64
+ (LSRd_ri
+ (i64
+ (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
+ subreg_loreg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
+ subreg_loreg)))), 32)),
+ subreg_loreg)))),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))),
+ 32)), subreg_loreg)))),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>;
+
+// Multiply 64-bit signed and use upper result.
+def : Pat <(mulhs (i64 DoubleRegs:$src1), (i64 DoubleRegs:$src2)),
+ (i64
+ (MPY64_acc
+ (i64
+ (COMBINE_rr (TFRI 0),
+ (i32
+ (EXTRACT_SUBREG
+ (i64
+ (LSRd_ri
+ (i64
+ (MPY64_acc
+ (i64
+ (MPY64_acc
+ (i64
+ (COMBINE_rr (TFRI 0),
+ (i32
+ (EXTRACT_SUBREG
+ (i64
+ (LSRd_ri
+ (i64
+ (MPYU64 (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1),
+ subreg_loreg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2),
+ subreg_loreg)))), 32)),
+ subreg_loreg)))),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_loreg)))),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_loreg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg)))),
+ 32)), subreg_loreg)))),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src1), subreg_hireg)),
+ (i32 (EXTRACT_SUBREG (i64 DoubleRegs:$src2), subreg_hireg))))>;
+
+// Hexagon specific ISD nodes.
+//def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2, [SDTCisSameAs<0, 1>]>;
+def SDTHexagonADJDYNALLOC : SDTypeProfile<1, 2,
+ [SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
+def Hexagon_ADJDYNALLOC : SDNode<"HexagonISD::ADJDYNALLOC",
+ SDTHexagonADJDYNALLOC>;
+// Needed to tag these instructions for stack layout.
+let usesCustomInserter = 1 in
+def ADJDYNALLOC : ALU32_ri<(outs IntRegs:$dst), (ins IntRegs:$src1,
+ s16Imm:$src2),
+ "$dst = add($src1, #$src2)",
+ [(set (i32 IntRegs:$dst),
+ (Hexagon_ADJDYNALLOC (i32 IntRegs:$src1),
+ s16ImmPred:$src2))]>;
+
+def SDTHexagonARGEXTEND : SDTypeProfile<1, 1, [SDTCisVT<0, i32>]>;
+def Hexagon_ARGEXTEND : SDNode<"HexagonISD::ARGEXTEND", SDTHexagonARGEXTEND>;
+def ARGEXTEND : ALU32_rr <(outs IntRegs:$dst), (ins IntRegs:$src1),
+ "$dst = $src1",
+ [(set (i32 IntRegs:$dst),
+ (Hexagon_ARGEXTEND (i32 IntRegs:$src1)))]>;
+
+let AddedComplexity = 100 in
+def : Pat<(i32 (sext_inreg (Hexagon_ARGEXTEND (i32 IntRegs:$src1)), i16)),
+ (COPY (i32 IntRegs:$src1))>;
+
+def SDHexagonBR_JT: SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
+def HexagonBR_JT: SDNode<"HexagonISD::BR_JT", SDHexagonBR_JT, [SDNPHasChain]>;
+
+let isBranch=1, isIndirectBranch=1, isTerminator=1, isBarrier = 1 in
+def BR_JT : JRInst<(outs), (ins IntRegs:$src),
+ "jumpr $src",
+ [(HexagonBR_JT (i32 IntRegs:$src))]>;
+
+def HexagonWrapperJT: SDNode<"HexagonISD::WrapperJT", SDTIntUnaryOp>;
+
+def : Pat<(HexagonWrapperJT tjumptable:$dst),
+ (i32 (CONST32_set_jt tjumptable:$dst))>;
+
+// XTYPE/SHIFT
+
+// Multi-class for logical operators :
+// Shift by immediate/register and accumulate/logical
+multiclass xtype_imm<string OpcStr, SDNode OpNode1, SDNode OpNode2> {
+ def _ri : SInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, u5Imm:$src3),
+ !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")),
+ [(set (i32 IntRegs:$dst),
+ (OpNode2 (i32 IntRegs:$src1),
+ (OpNode1 (i32 IntRegs:$src2),
+ u5ImmPred:$src3)))],
+ "$src1 = $dst">;
+
+ def d_ri : SInst_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2, u6Imm:$src3),
+ !strconcat("$dst ", !strconcat(OpcStr, "($src2, #$src3)")),
+ [(set (i64 DoubleRegs:$dst), (OpNode2 (i64 DoubleRegs:$src1),
+ (OpNode1 (i64 DoubleRegs:$src2), u6ImmPred:$src3)))],
+ "$src1 = $dst">;
+}
+
+// Multi-class for logical operators :
+// Shift by register and accumulate/logical (32/64 bits)
+multiclass xtype_reg<string OpcStr, SDNode OpNode1, SDNode OpNode2> {
+ def _rr : SInst_acc<(outs IntRegs:$dst),
+ (ins IntRegs:$src1, IntRegs:$src2, IntRegs:$src3),
+ !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")),
+ [(set (i32 IntRegs:$dst),
+ (OpNode2 (i32 IntRegs:$src1),
+ (OpNode1 (i32 IntRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">;
+
+ def d_rr : SInst_acc<(outs DoubleRegs:$dst),
+ (ins DoubleRegs:$src1, DoubleRegs:$src2, IntRegs:$src3),
+ !strconcat("$dst ", !strconcat(OpcStr, "($src2, $src3)")),
+ [(set (i64 DoubleRegs:$dst),
+ (OpNode2 (i64 DoubleRegs:$src1),
+ (OpNode1 (i64 DoubleRegs:$src2),
+ (i32 IntRegs:$src3))))],
+ "$src1 = $dst">;
+
+}
+
+multiclass basic_xtype_imm<string OpcStr, SDNode OpNode> {
+let AddedComplexity = 100 in
+ defm _ADD : xtype_imm< !strconcat("+= ", OpcStr), OpNode, add>;
+ defm _SUB : xtype_imm< !strconcat("-= ", OpcStr), OpNode, sub>;
+ defm _AND : xtype_imm< !strconcat("&= ", OpcStr), OpNode, and>;
+ defm _OR : xtype_imm< !strconcat("|= ", OpcStr), OpNode, or>;
+}
+
+multiclass basic_xtype_reg<string OpcStr, SDNode OpNode> {
+let AddedComplexity = 100 in
+ defm _ADD : xtype_reg< !strconcat("+= ", OpcStr), OpNode, add>;
+ defm _SUB : xtype_reg< !strconcat("-= ", OpcStr), OpNode, sub>;
+ defm _AND : xtype_reg< !strconcat("&= ", OpcStr), OpNode, and>;
+ defm _OR : xtype_reg< !strconcat("|= ", OpcStr), OpNode, or>;
+}
+
+multiclass xtype_xor_imm<string OpcStr, SDNode OpNode> {
+let AddedComplexity = 100 in
+ defm _XOR : xtype_imm< !strconcat("^= ", OpcStr), OpNode, xor>;
+}
+
+defm ASL : basic_xtype_imm<"asl", shl>, basic_xtype_reg<"asl", shl>,
+ xtype_xor_imm<"asl", shl>;
+
+defm LSR : basic_xtype_imm<"lsr", srl>, basic_xtype_reg<"lsr", srl>,
+ xtype_xor_imm<"lsr", srl>;
+
+defm ASR : basic_xtype_imm<"asr", sra>, basic_xtype_reg<"asr", sra>;
+defm LSL : basic_xtype_reg<"lsl", shl>;
+
+// Change the sign of the immediate for Rd=-mpyi(Rs,#u8)
+def : Pat <(mul (i32 IntRegs:$src1), (ineg n8ImmPred:$src2)),
+ (i32 (MPYI_rin (i32 IntRegs:$src1), u8ImmPred:$src2))>;
+
+//===----------------------------------------------------------------------===//
+// V3 Instructions +
+//===----------------------------------------------------------------------===//
+
+include "HexagonInstrInfoV3.td"
+
+//===----------------------------------------------------------------------===//
+// V3 Instructions -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// V4 Instructions +
+//===----------------------------------------------------------------------===//
+
+include "HexagonInstrInfoV4.td"
+
+//===----------------------------------------------------------------------===//
+// V4 Instructions -
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// V5 Instructions +
+//===----------------------------------------------------------------------===//
+
+include "HexagonInstrInfoV5.td"
+
+//===----------------------------------------------------------------------===//
+// V5 Instructions -
+//===----------------------------------------------------------------------===//
+
+
OpenPOWER on IntegriCloud