diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp | 1848 |
1 files changed, 1848 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp new file mode 100644 index 0000000..5d96259 --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp @@ -0,0 +1,1848 @@ +//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file contains the Hexagon implementation of the TargetInstrInfo class. +// +//===----------------------------------------------------------------------===// + +#include "HexagonInstrInfo.h" +#include "Hexagon.h" +#include "HexagonRegisterInfo.h" +#include "HexagonSubtarget.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/DFAPacketizer.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +#define DEBUG_TYPE "hexagon-instrinfo" + +#define GET_INSTRINFO_CTOR_DTOR +#define GET_INSTRMAP_INFO +#include "HexagonGenInstrInfo.inc" +#include "HexagonGenDFAPacketizer.inc" + +/// +/// Constants for Hexagon instructions. +/// +const int Hexagon_MEMW_OFFSET_MAX = 4095; +const int Hexagon_MEMW_OFFSET_MIN = -4096; +const int Hexagon_MEMD_OFFSET_MAX = 8191; +const int Hexagon_MEMD_OFFSET_MIN = -8192; +const int Hexagon_MEMH_OFFSET_MAX = 2047; +const int Hexagon_MEMH_OFFSET_MIN = -2048; +const int Hexagon_MEMB_OFFSET_MAX = 1023; +const int Hexagon_MEMB_OFFSET_MIN = -1024; +const int Hexagon_ADDI_OFFSET_MAX = 32767; +const int Hexagon_ADDI_OFFSET_MIN = -32768; +const int Hexagon_MEMD_AUTOINC_MAX = 56; +const int Hexagon_MEMD_AUTOINC_MIN = -64; +const int Hexagon_MEMW_AUTOINC_MAX = 28; +const int Hexagon_MEMW_AUTOINC_MIN = -32; +const int Hexagon_MEMH_AUTOINC_MAX = 14; +const int Hexagon_MEMH_AUTOINC_MIN = -16; +const int Hexagon_MEMB_AUTOINC_MAX = 7; +const int Hexagon_MEMB_AUTOINC_MIN = -8; + +// Pin the vtable to this file. +void HexagonInstrInfo::anchor() {} + +HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST) + : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP), + RI(ST), Subtarget(ST) { +} + + +/// isLoadFromStackSlot - If the specified machine instruction is a direct +/// load from a stack slot, return the virtual or physical register number of +/// the destination along with the FrameIndex of the loaded stack slot. If +/// not, return 0. This predicate must return 0 if the instruction has +/// any side effects other than loading from the stack slot. +unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, + int &FrameIndex) const { + + + switch (MI->getOpcode()) { + default: break; + case Hexagon::L2_loadri_io: + case Hexagon::L2_loadrd_io: + case Hexagon::L2_loadrh_io: + case Hexagon::L2_loadrb_io: + case Hexagon::L2_loadrub_io: + if (MI->getOperand(2).isFI() && + MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) { + FrameIndex = MI->getOperand(2).getIndex(); + return MI->getOperand(0).getReg(); + } + break; + } + return 0; +} + + +/// isStoreToStackSlot - If the specified machine instruction is a direct +/// store to a stack slot, return the virtual or physical register number of +/// the source reg along with the FrameIndex of the loaded stack slot. If +/// not, return 0. This predicate must return 0 if the instruction has +/// any side effects other than storing to the stack slot. +unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI, + int &FrameIndex) const { + switch (MI->getOpcode()) { + default: break; + case Hexagon::S2_storeri_io: + case Hexagon::S2_storerd_io: + case Hexagon::S2_storerh_io: + case Hexagon::S2_storerb_io: + if (MI->getOperand(2).isFI() && + MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) { + FrameIndex = MI->getOperand(0).getIndex(); + return MI->getOperand(2).getReg(); + } + break; + } + return 0; +} + + +unsigned +HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB, + MachineBasicBlock *FBB, + const SmallVectorImpl<MachineOperand> &Cond, + DebugLoc DL) const{ + + int BOpc = Hexagon::J2_jump; + int BccOpc = Hexagon::J2_jumpt; + + assert(TBB && "InsertBranch must not be told to insert a fallthrough"); + + int regPos = 0; + // Check if ReverseBranchCondition has asked to reverse this branch + // If we want to reverse the branch an odd number of times, we want + // JMP_f. + if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) { + BccOpc = Hexagon::J2_jumpf; + regPos = 1; + } + + if (!FBB) { + if (Cond.empty()) { + // Due to a bug in TailMerging/CFG Optimization, we need to add a + // special case handling of a predicated jump followed by an + // unconditional jump. If not, Tail Merging and CFG Optimization go + // into an infinite loop. + MachineBasicBlock *NewTBB, *NewFBB; + SmallVector<MachineOperand, 4> Cond; + MachineInstr *Term = MBB.getFirstTerminator(); + if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, + false)) { + MachineBasicBlock *NextBB = + std::next(MachineFunction::iterator(&MBB)); + if (NewTBB == NextBB) { + ReverseBranchCondition(Cond); + RemoveBranch(MBB); + return InsertBranch(MBB, TBB, nullptr, Cond, DL); + } + } + BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB); + } else { + BuildMI(&MBB, DL, + get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB); + } + return 1; + } + + BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB); + BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB); + + return 2; +} + + +bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB, + MachineBasicBlock *&TBB, + MachineBasicBlock *&FBB, + SmallVectorImpl<MachineOperand> &Cond, + bool AllowModify) const { + TBB = nullptr; + FBB = nullptr; + + // If the block has no terminators, it just falls into the block after it. + MachineBasicBlock::instr_iterator I = MBB.instr_end(); + if (I == MBB.instr_begin()) + return false; + + // A basic block may looks like this: + // + // [ insn + // EH_LABEL + // insn + // insn + // insn + // EH_LABEL + // insn ] + // + // It has two succs but does not have a terminator + // Don't know how to handle it. + do { + --I; + if (I->isEHLabel()) + return true; + } while (I != MBB.instr_begin()); + + I = MBB.instr_end(); + --I; + + while (I->isDebugValue()) { + if (I == MBB.instr_begin()) + return false; + --I; + } + + // Delete the JMP if it's equivalent to a fall-through. + if (AllowModify && I->getOpcode() == Hexagon::J2_jump && + MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { + DEBUG(dbgs()<< "\nErasing the jump to successor block\n";); + I->eraseFromParent(); + I = MBB.instr_end(); + if (I == MBB.instr_begin()) + return false; + --I; + } + if (!isUnpredicatedTerminator(I)) + return false; + + // Get the last instruction in the block. + MachineInstr *LastInst = I; + MachineInstr *SecondLastInst = nullptr; + // Find one more terminator if present. + do { + if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) { + if (!SecondLastInst) + SecondLastInst = I; + else + // This is a third branch. + return true; + } + if (I == MBB.instr_begin()) + break; + --I; + } while(I); + + int LastOpcode = LastInst->getOpcode(); + + bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode); + bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode); + + // If there is only one terminator instruction, process it. + if (LastInst && !SecondLastInst) { + if (LastOpcode == Hexagon::J2_jump) { + TBB = LastInst->getOperand(0).getMBB(); + return false; + } + if (LastOpcode == Hexagon::ENDLOOP0) { + TBB = LastInst->getOperand(0).getMBB(); + Cond.push_back(LastInst->getOperand(0)); + return false; + } + if (LastOpcodeHasJMP_c) { + TBB = LastInst->getOperand(1).getMBB(); + if (LastOpcodeHasNot) { + Cond.push_back(MachineOperand::CreateImm(0)); + } + Cond.push_back(LastInst->getOperand(0)); + return false; + } + // Otherwise, don't know what this is. + return true; + } + + int SecLastOpcode = SecondLastInst->getOpcode(); + + bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode); + bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode); + if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) { + TBB = SecondLastInst->getOperand(1).getMBB(); + if (SecLastOpcodeHasNot) + Cond.push_back(MachineOperand::CreateImm(0)); + Cond.push_back(SecondLastInst->getOperand(0)); + FBB = LastInst->getOperand(0).getMBB(); + return false; + } + + // If the block ends with two Hexagon:JMPs, handle it. The second one is not + // executed, so remove it. + if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) { + TBB = SecondLastInst->getOperand(0).getMBB(); + I = LastInst; + if (AllowModify) + I->eraseFromParent(); + return false; + } + + // If the block ends with an ENDLOOP, and JMP, handle it. + if (SecLastOpcode == Hexagon::ENDLOOP0 && + LastOpcode == Hexagon::J2_jump) { + TBB = SecondLastInst->getOperand(0).getMBB(); + Cond.push_back(SecondLastInst->getOperand(0)); + FBB = LastInst->getOperand(0).getMBB(); + return false; + } + + // Otherwise, can't handle this. + return true; +} + + +unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { + int BOpc = Hexagon::J2_jump; + int BccOpc = Hexagon::J2_jumpt; + int BccOpcNot = Hexagon::J2_jumpf; + + MachineBasicBlock::iterator I = MBB.end(); + if (I == MBB.begin()) return 0; + --I; + if (I->getOpcode() != BOpc && I->getOpcode() != BccOpc && + I->getOpcode() != BccOpcNot) + return 0; + + // Remove the branch. + I->eraseFromParent(); + + I = MBB.end(); + + if (I == MBB.begin()) return 1; + --I; + if (I->getOpcode() != BccOpc && I->getOpcode() != BccOpcNot) + return 1; + + // Remove the branch. + I->eraseFromParent(); + return 2; +} + + +/// \brief For a comparison instruction, return the source registers in +/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it +/// compares against in CmpValue. Return true if the comparison instruction +/// can be analyzed. +bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI, + unsigned &SrcReg, unsigned &SrcReg2, + int &Mask, int &Value) const { + unsigned Opc = MI->getOpcode(); + + // Set mask and the first source register. + switch (Opc) { + case Hexagon::C2_cmpeqp: + case Hexagon::C2_cmpeqi: + case Hexagon::C2_cmpeq: + case Hexagon::C2_cmpgtp: + case Hexagon::C2_cmpgtup: + case Hexagon::C2_cmpgtui: + case Hexagon::C2_cmpgtu: + case Hexagon::C2_cmpgti: + case Hexagon::C2_cmpgt: + SrcReg = MI->getOperand(1).getReg(); + Mask = ~0; + break; + case Hexagon::CMPbEQri_V4: + case Hexagon::CMPbEQrr_sbsb_V4: + case Hexagon::CMPbEQrr_ubub_V4: + case Hexagon::CMPbGTUri_V4: + case Hexagon::CMPbGTUrr_V4: + case Hexagon::CMPbGTrr_V4: + SrcReg = MI->getOperand(1).getReg(); + Mask = 0xFF; + break; + case Hexagon::CMPhEQri_V4: + case Hexagon::CMPhEQrr_shl_V4: + case Hexagon::CMPhEQrr_xor_V4: + case Hexagon::CMPhGTUri_V4: + case Hexagon::CMPhGTUrr_V4: + case Hexagon::CMPhGTrr_shl_V4: + SrcReg = MI->getOperand(1).getReg(); + Mask = 0xFFFF; + break; + } + + // Set the value/second source register. + switch (Opc) { + case Hexagon::C2_cmpeqp: + case Hexagon::C2_cmpeq: + case Hexagon::C2_cmpgtp: + case Hexagon::C2_cmpgtup: + case Hexagon::C2_cmpgtu: + case Hexagon::C2_cmpgt: + case Hexagon::CMPbEQrr_sbsb_V4: + case Hexagon::CMPbEQrr_ubub_V4: + case Hexagon::CMPbGTUrr_V4: + case Hexagon::CMPbGTrr_V4: + case Hexagon::CMPhEQrr_shl_V4: + case Hexagon::CMPhEQrr_xor_V4: + case Hexagon::CMPhGTUrr_V4: + case Hexagon::CMPhGTrr_shl_V4: + SrcReg2 = MI->getOperand(2).getReg(); + return true; + + case Hexagon::C2_cmpeqi: + case Hexagon::C2_cmpgtui: + case Hexagon::C2_cmpgti: + case Hexagon::CMPbEQri_V4: + case Hexagon::CMPbGTUri_V4: + case Hexagon::CMPhEQri_V4: + case Hexagon::CMPhGTUri_V4: + SrcReg2 = 0; + Value = MI->getOperand(2).getImm(); + return true; + } + + return false; +} + + +void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB, + MachineBasicBlock::iterator I, DebugLoc DL, + unsigned DestReg, unsigned SrcReg, + bool KillSrc) const { + if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) { + BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg); + return; + } + if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) { + BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg); + return; + } + if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) { + // Map Pd = Ps to Pd = or(Ps, Ps). + BuildMI(MBB, I, DL, get(Hexagon::C2_or), + DestReg).addReg(SrcReg).addReg(SrcReg); + return; + } + if (Hexagon::DoubleRegsRegClass.contains(DestReg) && + Hexagon::IntRegsRegClass.contains(SrcReg)) { + // We can have an overlap between single and double reg: r1:0 = r0. + if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) { + // r1:0 = r0 + BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg, + Hexagon::subreg_hireg))).addImm(0); + } else { + // r1:0 = r1 or no overlap. + BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg, + Hexagon::subreg_loreg))).addReg(SrcReg); + BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg, + Hexagon::subreg_hireg))).addImm(0); + } + return; + } + if (Hexagon::CtrRegsRegClass.contains(DestReg) && + Hexagon::IntRegsRegClass.contains(SrcReg)) { + BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg).addReg(SrcReg); + return; + } + if (Hexagon::PredRegsRegClass.contains(SrcReg) && + Hexagon::IntRegsRegClass.contains(DestReg)) { + BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg). + addReg(SrcReg, getKillRegState(KillSrc)); + return; + } + if (Hexagon::IntRegsRegClass.contains(SrcReg) && + Hexagon::PredRegsRegClass.contains(DestReg)) { + BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg). + addReg(SrcReg, getKillRegState(KillSrc)); + return; + } + + llvm_unreachable("Unimplemented"); +} + + +void HexagonInstrInfo:: +storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, + unsigned SrcReg, bool isKill, int FI, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const { + + DebugLoc DL = MBB.findDebugLoc(I); + MachineFunction &MF = *MBB.getParent(); + MachineFrameInfo &MFI = *MF.getFrameInfo(); + unsigned Align = MFI.getObjectAlignment(FI); + + MachineMemOperand *MMO = + MF.getMachineMemOperand( + MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)), + MachineMemOperand::MOStore, + MFI.getObjectSize(FI), + Align); + + if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) { + BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io)) + .addFrameIndex(FI).addImm(0) + .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); + } else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) { + BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io)) + .addFrameIndex(FI).addImm(0) + .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); + } else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) { + BuildMI(MBB, I, DL, get(Hexagon::STriw_pred)) + .addFrameIndex(FI).addImm(0) + .addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO); + } else { + llvm_unreachable("Unimplemented"); + } +} + + +void HexagonInstrInfo::storeRegToAddr( + MachineFunction &MF, unsigned SrcReg, + bool isKill, + SmallVectorImpl<MachineOperand> &Addr, + const TargetRegisterClass *RC, + SmallVectorImpl<MachineInstr*> &NewMIs) const +{ + llvm_unreachable("Unimplemented"); +} + + +void HexagonInstrInfo:: +loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, + unsigned DestReg, int FI, + const TargetRegisterClass *RC, + const TargetRegisterInfo *TRI) const { + DebugLoc DL = MBB.findDebugLoc(I); + MachineFunction &MF = *MBB.getParent(); + MachineFrameInfo &MFI = *MF.getFrameInfo(); + unsigned Align = MFI.getObjectAlignment(FI); + + MachineMemOperand *MMO = + MF.getMachineMemOperand( + MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)), + MachineMemOperand::MOLoad, + MFI.getObjectSize(FI), + Align); + if (RC == &Hexagon::IntRegsRegClass) { + BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg) + .addFrameIndex(FI).addImm(0).addMemOperand(MMO); + } else if (RC == &Hexagon::DoubleRegsRegClass) { + BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg) + .addFrameIndex(FI).addImm(0).addMemOperand(MMO); + } else if (RC == &Hexagon::PredRegsRegClass) { + BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg) + .addFrameIndex(FI).addImm(0).addMemOperand(MMO); + } else { + llvm_unreachable("Can't store this register to stack slot"); + } +} + + +void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg, + SmallVectorImpl<MachineOperand> &Addr, + const TargetRegisterClass *RC, + SmallVectorImpl<MachineInstr*> &NewMIs) const { + llvm_unreachable("Unimplemented"); +} + + +MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(MachineFunction &MF, + MachineInstr* MI, + const SmallVectorImpl<unsigned> &Ops, + int FI) const { + // Hexagon_TODO: Implement. + return nullptr; +} + +unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const { + + MachineRegisterInfo &RegInfo = MF->getRegInfo(); + const TargetRegisterClass *TRC; + if (VT == MVT::i1) { + TRC = &Hexagon::PredRegsRegClass; + } else if (VT == MVT::i32 || VT == MVT::f32) { + TRC = &Hexagon::IntRegsRegClass; + } else if (VT == MVT::i64 || VT == MVT::f64) { + TRC = &Hexagon::DoubleRegsRegClass; + } else { + llvm_unreachable("Cannot handle this register class"); + } + + unsigned NewReg = RegInfo.createVirtualRegister(TRC); + return NewReg; +} + +bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const { + // Constant extenders are allowed only for V4 and above. + if (!Subtarget.hasV4TOps()) + return false; + + const MCInstrDesc &MID = MI->getDesc(); + const uint64_t F = MID.TSFlags; + if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask) + return true; + + // TODO: This is largely obsolete now. Will need to be removed + // in consecutive patches. + switch(MI->getOpcode()) { + // TFR_FI Remains a special case. + case Hexagon::TFR_FI: + return true; + default: + return false; + } + return false; +} + +// This returns true in two cases: +// - The OP code itself indicates that this is an extended instruction. +// - One of MOs has been marked with HMOTF_ConstExtended flag. +bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const { + // First check if this is permanently extended op code. + const uint64_t F = MI->getDesc().TSFlags; + if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask) + return true; + // Use MO operand flags to determine if one of MI's operands + // has HMOTF_ConstExtended flag set. + for (MachineInstr::const_mop_iterator I = MI->operands_begin(), + E = MI->operands_end(); I != E; ++I) { + if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended) + return true; + } + return false; +} + +bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const { + return MI->getDesc().isBranch(); +} + +bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const { + if (isNewValueJump(MI)) + return true; + + if (isNewValueStore(MI)) + return true; + + return false; +} + +bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const { + return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4; +} + +bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const { + bool isPred = MI->getDesc().isPredicable(); + + if (!isPred) + return false; + + const int Opc = MI->getOpcode(); + + switch(Opc) { + case Hexagon::A2_tfrsi: + return isInt<12>(MI->getOperand(1).getImm()); + + case Hexagon::S2_storerd_io: + return isShiftedUInt<6,3>(MI->getOperand(1).getImm()); + + case Hexagon::S2_storeri_io: + case Hexagon::S2_storerinew_io: + return isShiftedUInt<6,2>(MI->getOperand(1).getImm()); + + case Hexagon::S2_storerh_io: + case Hexagon::S2_storerhnew_io: + return isShiftedUInt<6,1>(MI->getOperand(1).getImm()); + + case Hexagon::S2_storerb_io: + case Hexagon::S2_storerbnew_io: + return isUInt<6>(MI->getOperand(1).getImm()); + + case Hexagon::L2_loadrd_io: + return isShiftedUInt<6,3>(MI->getOperand(2).getImm()); + + case Hexagon::L2_loadri_io: + return isShiftedUInt<6,2>(MI->getOperand(2).getImm()); + + case Hexagon::L2_loadrh_io: + case Hexagon::L2_loadruh_io: + return isShiftedUInt<6,1>(MI->getOperand(2).getImm()); + + case Hexagon::L2_loadrb_io: + case Hexagon::L2_loadrub_io: + return isUInt<6>(MI->getOperand(2).getImm()); + + case Hexagon::L2_loadrd_pi: + return isShiftedInt<4,3>(MI->getOperand(3).getImm()); + + case Hexagon::L2_loadri_pi: + return isShiftedInt<4,2>(MI->getOperand(3).getImm()); + + case Hexagon::L2_loadrh_pi: + case Hexagon::L2_loadruh_pi: + return isShiftedInt<4,1>(MI->getOperand(3).getImm()); + + case Hexagon::L2_loadrb_pi: + case Hexagon::L2_loadrub_pi: + return isInt<4>(MI->getOperand(3).getImm()); + + case Hexagon::S4_storeirb_io: + case Hexagon::S4_storeirh_io: + case Hexagon::S4_storeiri_io: + return (isUInt<6>(MI->getOperand(1).getImm()) && + isInt<6>(MI->getOperand(2).getImm())); + + case Hexagon::ADD_ri: + return isInt<8>(MI->getOperand(2).getImm()); + + case Hexagon::A2_aslh: + case Hexagon::A2_asrh: + case Hexagon::A2_sxtb: + case Hexagon::A2_sxth: + case Hexagon::A2_zxtb: + case Hexagon::A2_zxth: + return Subtarget.hasV4TOps(); + } + + return true; +} + +// This function performs the following inversiones: +// +// cPt ---> cNotPt +// cNotPt ---> cPt +// +unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const { + int InvPredOpcode; + InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc) + : Hexagon::getTruePredOpcode(Opc); + if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate. + return InvPredOpcode; + + switch(Opc) { + default: llvm_unreachable("Unexpected predicated instruction"); + case Hexagon::C2_ccombinewt: + return Hexagon::C2_ccombinewf; + case Hexagon::C2_ccombinewf: + return Hexagon::C2_ccombinewt; + + // Dealloc_return. + case Hexagon::L4_return_t: + return Hexagon::L4_return_f; + case Hexagon::L4_return_f: + return Hexagon::L4_return_t; + } +} + +// New Value Store instructions. +bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const { + const uint64_t F = MI->getDesc().TSFlags; + + return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask); +} + +bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const { + const uint64_t F = get(Opcode).TSFlags; + + return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask); +} + +int HexagonInstrInfo:: +getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const { + enum Hexagon::PredSense inPredSense; + inPredSense = invertPredicate ? Hexagon::PredSense_false : + Hexagon::PredSense_true; + int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense); + if (CondOpcode >= 0) // Valid Conditional opcode/instruction + return CondOpcode; + + // This switch case will be removed once all the instructions have been + // modified to use relation maps. + switch(Opc) { + case Hexagon::TFRI_f: + return !invertPredicate ? Hexagon::TFRI_cPt_f : + Hexagon::TFRI_cNotPt_f; + case Hexagon::A2_combinew: + return !invertPredicate ? Hexagon::C2_ccombinewt : + Hexagon::C2_ccombinewf; + + // Word. + case Hexagon::STriw_f: + return !invertPredicate ? Hexagon::S2_pstorerit_io: + Hexagon::S2_pstorerif_io; + case Hexagon::STriw_indexed_f: + return !invertPredicate ? Hexagon::S2_pstorerit_io: + Hexagon::S2_pstorerif_io; + + // DEALLOC_RETURN. + case Hexagon::L4_return: + return !invertPredicate ? Hexagon::L4_return_t: + Hexagon::L4_return_f; + } + llvm_unreachable("Unexpected predicable instruction"); +} + + +bool HexagonInstrInfo:: +PredicateInstruction(MachineInstr *MI, + const SmallVectorImpl<MachineOperand> &Cond) const { + int Opc = MI->getOpcode(); + assert (isPredicable(MI) && "Expected predicable instruction"); + bool invertJump = (!Cond.empty() && Cond[0].isImm() && + (Cond[0].getImm() == 0)); + + // This will change MI's opcode to its predicate version. + // However, its operand list is still the old one, i.e. the + // non-predicate one. + MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump))); + + int oper = -1; + unsigned int GAIdx = 0; + + // Indicates whether the current MI has a GlobalAddress operand + bool hasGAOpnd = false; + std::vector<MachineOperand> tmpOpnds; + + // Indicates whether we need to shift operands to right. + bool needShift = true; + + // The predicate is ALWAYS the FIRST input operand !!! + if (MI->getNumOperands() == 0) { + // The non-predicate version of MI does not take any operands, + // i.e. no outs and no ins. In this condition, the predicate + // operand will be directly placed at Operands[0]. No operand + // shift is needed. + // Example: BARRIER + needShift = false; + oper = -1; + } + else if ( MI->getOperand(MI->getNumOperands()-1).isReg() + && MI->getOperand(MI->getNumOperands()-1).isDef() + && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) { + // The non-predicate version of MI does not have any input operands. + // In this condition, we extend the length of Operands[] by one and + // copy the original last operand to the newly allocated slot. + // At this moment, it is just a place holder. Later, we will put + // predicate operand directly into it. No operand shift is needed. + // Example: r0=BARRIER (this is a faked insn used here for illustration) + MI->addOperand(MI->getOperand(MI->getNumOperands()-1)); + needShift = false; + oper = MI->getNumOperands() - 2; + } + else { + // We need to right shift all input operands by one. Duplicate the + // last operand into the newly allocated slot. + MI->addOperand(MI->getOperand(MI->getNumOperands()-1)); + } + + if (needShift) + { + // Operands[ MI->getNumOperands() - 2 ] has been copied into + // Operands[ MI->getNumOperands() - 1 ], so we start from + // Operands[ MI->getNumOperands() - 3 ]. + // oper is a signed int. + // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1. + for (oper = MI->getNumOperands() - 3; oper >= 0; --oper) + { + MachineOperand &MO = MI->getOperand(oper); + + // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4] Opnd[5] Opnd[6] Opnd[7] + // <Def0> <Def1> <Use0> <Use1> <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1> + // /\~ + // /||\~ + // || + // Predicate Operand here + if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) { + break; + } + if (MO.isReg()) { + MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(), + MO.isImplicit(), MO.isKill(), + MO.isDead(), MO.isUndef(), + MO.isDebug()); + } + else if (MO.isImm()) { + MI->getOperand(oper+1).ChangeToImmediate(MO.getImm()); + } + else if (MO.isGlobal()) { + // MI can not have more than one GlobalAddress operand. + assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd"); + + // There is no member function called "ChangeToGlobalAddress" in the + // MachineOperand class (not like "ChangeToRegister" and + // "ChangeToImmediate"). So we have to remove them from Operands[] list + // first, and then add them back after we have inserted the predicate + // operand. tmpOpnds[] is to remember these operands before we remove + // them. + tmpOpnds.push_back(MO); + + // Operands[oper] is a GlobalAddress operand; + // Operands[oper+1] has been copied into Operands[oper+2]; + hasGAOpnd = true; + GAIdx = oper; + continue; + } + else { + llvm_unreachable("Unexpected operand type"); + } + } + } + + int regPos = invertJump ? 1 : 0; + MachineOperand PredMO = Cond[regPos]; + + // [oper] now points to the last explicit Def. Predicate operand must be + // located at [oper+1]. See diagram above. + // This assumes that the predicate is always the first operand, + // i.e. Operands[0+numResults], in the set of inputs + // It is better to have an assert here to check this. But I don't know how + // to write this assert because findFirstPredOperandIdx() would return -1 + if (oper < -1) oper = -1; + + MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(), + PredMO.isImplicit(), false, + PredMO.isDead(), PredMO.isUndef(), + PredMO.isDebug()); + + MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo(); + RegInfo.clearKillFlags(PredMO.getReg()); + + if (hasGAOpnd) + { + unsigned int i; + + // Operands[GAIdx] is the original GlobalAddress operand, which is + // already copied into tmpOpnds[0]. + // Operands[GAIdx] now stores a copy of Operands[GAIdx-1] + // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2], + // so we start from [GAIdx+2] + for (i = GAIdx + 2; i < MI->getNumOperands(); ++i) + tmpOpnds.push_back(MI->getOperand(i)); + + // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ] + // It is very important that we always remove from the end of Operands[] + // MI->getNumOperands() is at least 2 if program goes to here. + for (i = MI->getNumOperands() - 1; i > GAIdx; --i) + MI->RemoveOperand(i); + + for (i = 0; i < tmpOpnds.size(); ++i) + MI->addOperand(tmpOpnds[i]); + } + + return true; +} + + +bool +HexagonInstrInfo:: +isProfitableToIfCvt(MachineBasicBlock &MBB, + unsigned NumCycles, + unsigned ExtraPredCycles, + const BranchProbability &Probability) const { + return true; +} + + +bool +HexagonInstrInfo:: +isProfitableToIfCvt(MachineBasicBlock &TMBB, + unsigned NumTCycles, + unsigned ExtraTCycles, + MachineBasicBlock &FMBB, + unsigned NumFCycles, + unsigned ExtraFCycles, + const BranchProbability &Probability) const { + return true; +} + +// Returns true if an instruction is predicated irrespective of the predicate +// sense. For example, all of the following will return true. +// if (p0) R1 = add(R2, R3) +// if (!p0) R1 = add(R2, R3) +// if (p0.new) R1 = add(R2, R3) +// if (!p0.new) R1 = add(R2, R3) +bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const { + const uint64_t F = MI->getDesc().TSFlags; + + return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); +} + +bool HexagonInstrInfo::isPredicated(unsigned Opcode) const { + const uint64_t F = get(Opcode).TSFlags; + + return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); +} + +bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const { + const uint64_t F = MI->getDesc().TSFlags; + + assert(isPredicated(MI)); + return (!((F >> HexagonII::PredicatedFalsePos) & + HexagonII::PredicatedFalseMask)); +} + +bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const { + const uint64_t F = get(Opcode).TSFlags; + + // Make sure that the instruction is predicated. + assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); + return (!((F >> HexagonII::PredicatedFalsePos) & + HexagonII::PredicatedFalseMask)); +} + +bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const { + const uint64_t F = MI->getDesc().TSFlags; + + assert(isPredicated(MI)); + return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask); +} + +bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const { + const uint64_t F = get(Opcode).TSFlags; + + assert(isPredicated(Opcode)); + return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask); +} + +// Returns true, if a ST insn can be promoted to a new-value store. +bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const { + const HexagonRegisterInfo& QRI = getRegisterInfo(); + const uint64_t F = MI->getDesc().TSFlags; + + return ((F >> HexagonII::mayNVStorePos) & + HexagonII::mayNVStoreMask & + QRI.Subtarget.hasV4TOps()); +} + +bool +HexagonInstrInfo::DefinesPredicate(MachineInstr *MI, + std::vector<MachineOperand> &Pred) const { + for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) { + MachineOperand MO = MI->getOperand(oper); + if (MO.isReg() && MO.isDef()) { + const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg()); + if (RC == &Hexagon::PredRegsRegClass) { + Pred.push_back(MO); + return true; + } + } + } + return false; +} + + +bool +HexagonInstrInfo:: +SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1, + const SmallVectorImpl<MachineOperand> &Pred2) const { + // TODO: Fix this + return false; +} + + +// +// We indicate that we want to reverse the branch by +// inserting a 0 at the beginning of the Cond vector. +// +bool HexagonInstrInfo:: +ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { + if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) { + Cond.erase(Cond.begin()); + } else { + Cond.insert(Cond.begin(), MachineOperand::CreateImm(0)); + } + return false; +} + + +bool HexagonInstrInfo:: +isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs, + const BranchProbability &Probability) const { + return (NumInstrs <= 4); +} + +bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const { + switch (MI->getOpcode()) { + default: return false; + case Hexagon::L4_return: + case Hexagon::L4_return_t: + case Hexagon::L4_return_f: + case Hexagon::L4_return_tnew_pnt: + case Hexagon::L4_return_fnew_pnt: + case Hexagon::L4_return_tnew_pt: + case Hexagon::L4_return_fnew_pt: + return true; + } +} + + +bool HexagonInstrInfo:: +isValidOffset(const int Opcode, const int Offset) const { + // This function is to check whether the "Offset" is in the correct range of + // the given "Opcode". If "Offset" is not in the correct range, "ADD_ri" is + // inserted to calculate the final address. Due to this reason, the function + // assumes that the "Offset" has correct alignment. + // We used to assert if the offset was not properly aligned, however, + // there are cases where a misaligned pointer recast can cause this + // problem, and we need to allow for it. The front end warns of such + // misaligns with respect to load size. + + switch(Opcode) { + + case Hexagon::L2_loadri_io: + case Hexagon::LDriw_f: + case Hexagon::S2_storeri_io: + case Hexagon::STriw_f: + return (Offset >= Hexagon_MEMW_OFFSET_MIN) && + (Offset <= Hexagon_MEMW_OFFSET_MAX); + + case Hexagon::L2_loadrd_io: + case Hexagon::LDrid_f: + case Hexagon::S2_storerd_io: + case Hexagon::STrid_f: + return (Offset >= Hexagon_MEMD_OFFSET_MIN) && + (Offset <= Hexagon_MEMD_OFFSET_MAX); + + case Hexagon::L2_loadrh_io: + case Hexagon::L2_loadruh_io: + case Hexagon::S2_storerh_io: + return (Offset >= Hexagon_MEMH_OFFSET_MIN) && + (Offset <= Hexagon_MEMH_OFFSET_MAX); + + case Hexagon::L2_loadrb_io: + case Hexagon::S2_storerb_io: + case Hexagon::L2_loadrub_io: + return (Offset >= Hexagon_MEMB_OFFSET_MIN) && + (Offset <= Hexagon_MEMB_OFFSET_MAX); + + case Hexagon::ADD_ri: + case Hexagon::TFR_FI: + return (Offset >= Hexagon_ADDI_OFFSET_MIN) && + (Offset <= Hexagon_ADDI_OFFSET_MAX); + + case Hexagon::L4_iadd_memopw_io: + case Hexagon::L4_isub_memopw_io: + case Hexagon::L4_add_memopw_io: + case Hexagon::L4_sub_memopw_io: + case Hexagon::L4_and_memopw_io: + case Hexagon::L4_or_memopw_io: + return (0 <= Offset && Offset <= 255); + + case Hexagon::L4_iadd_memoph_io: + case Hexagon::L4_isub_memoph_io: + case Hexagon::L4_add_memoph_io: + case Hexagon::L4_sub_memoph_io: + case Hexagon::L4_and_memoph_io: + case Hexagon::L4_or_memoph_io: + return (0 <= Offset && Offset <= 127); + + case Hexagon::L4_iadd_memopb_io: + case Hexagon::L4_isub_memopb_io: + case Hexagon::L4_add_memopb_io: + case Hexagon::L4_sub_memopb_io: + case Hexagon::L4_and_memopb_io: + case Hexagon::L4_or_memopb_io: + return (0 <= Offset && Offset <= 63); + + // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of + // any size. Later pass knows how to handle it. + case Hexagon::STriw_pred: + case Hexagon::LDriw_pred: + return true; + + case Hexagon::J2_loop0i: + return isUInt<10>(Offset); + + // INLINEASM is very special. + case Hexagon::INLINEASM: + return true; + } + + llvm_unreachable("No offset range is defined for this opcode. " + "Please define it in the above switch statement!"); +} + + +// +// Check if the Offset is a valid auto-inc imm by Load/Store Type. +// +bool HexagonInstrInfo:: +isValidAutoIncImm(const EVT VT, const int Offset) const { + + if (VT == MVT::i64) { + return (Offset >= Hexagon_MEMD_AUTOINC_MIN && + Offset <= Hexagon_MEMD_AUTOINC_MAX && + (Offset & 0x7) == 0); + } + if (VT == MVT::i32) { + return (Offset >= Hexagon_MEMW_AUTOINC_MIN && + Offset <= Hexagon_MEMW_AUTOINC_MAX && + (Offset & 0x3) == 0); + } + if (VT == MVT::i16) { + return (Offset >= Hexagon_MEMH_AUTOINC_MIN && + Offset <= Hexagon_MEMH_AUTOINC_MAX && + (Offset & 0x1) == 0); + } + if (VT == MVT::i8) { + return (Offset >= Hexagon_MEMB_AUTOINC_MIN && + Offset <= Hexagon_MEMB_AUTOINC_MAX); + } + llvm_unreachable("Not an auto-inc opc!"); +} + + +bool HexagonInstrInfo:: +isMemOp(const MachineInstr *MI) const { +// return MI->getDesc().mayLoad() && MI->getDesc().mayStore(); + + switch (MI->getOpcode()) + { + default: return false; + case Hexagon::L4_iadd_memopw_io: + case Hexagon::L4_isub_memopw_io: + case Hexagon::L4_add_memopw_io: + case Hexagon::L4_sub_memopw_io: + case Hexagon::L4_and_memopw_io: + case Hexagon::L4_or_memopw_io: + case Hexagon::L4_iadd_memoph_io: + case Hexagon::L4_isub_memoph_io: + case Hexagon::L4_add_memoph_io: + case Hexagon::L4_sub_memoph_io: + case Hexagon::L4_and_memoph_io: + case Hexagon::L4_or_memoph_io: + case Hexagon::L4_iadd_memopb_io: + case Hexagon::L4_isub_memopb_io: + case Hexagon::L4_add_memopb_io: + case Hexagon::L4_sub_memopb_io: + case Hexagon::L4_and_memopb_io: + case Hexagon::L4_or_memopb_io: + case Hexagon::L4_ior_memopb_io: + case Hexagon::L4_ior_memoph_io: + case Hexagon::L4_ior_memopw_io: + case Hexagon::L4_iand_memopb_io: + case Hexagon::L4_iand_memoph_io: + case Hexagon::L4_iand_memopw_io: + return true; + } + return false; +} + + +bool HexagonInstrInfo:: +isSpillPredRegOp(const MachineInstr *MI) const { + switch (MI->getOpcode()) { + default: return false; + case Hexagon::STriw_pred : + case Hexagon::LDriw_pred : + return true; + } +} + +bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const { + switch (MI->getOpcode()) { + default: return false; + case Hexagon::C2_cmpeq: + case Hexagon::C2_cmpeqi: + case Hexagon::C2_cmpgt: + case Hexagon::C2_cmpgti: + case Hexagon::C2_cmpgtu: + case Hexagon::C2_cmpgtui: + return true; + } +} + +bool HexagonInstrInfo:: +isConditionalTransfer (const MachineInstr *MI) const { + switch (MI->getOpcode()) { + default: return false; + case Hexagon::A2_tfrt: + case Hexagon::A2_tfrf: + case Hexagon::C2_cmoveit: + case Hexagon::C2_cmoveif: + case Hexagon::A2_tfrtnew: + case Hexagon::A2_tfrfnew: + case Hexagon::C2_cmovenewit: + case Hexagon::C2_cmovenewif: + return true; + } +} + +bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const { + switch (MI->getOpcode()) + { + default: return false; + case Hexagon::A2_paddf: + case Hexagon::A2_paddfnew: + case Hexagon::A2_paddt: + case Hexagon::A2_paddtnew: + case Hexagon::A2_pandf: + case Hexagon::A2_pandfnew: + case Hexagon::A2_pandt: + case Hexagon::A2_pandtnew: + case Hexagon::A4_paslhf: + case Hexagon::A4_paslhfnew: + case Hexagon::A4_paslht: + case Hexagon::A4_paslhtnew: + case Hexagon::A4_pasrhf: + case Hexagon::A4_pasrhfnew: + case Hexagon::A4_pasrht: + case Hexagon::A4_pasrhtnew: + case Hexagon::A2_porf: + case Hexagon::A2_porfnew: + case Hexagon::A2_port: + case Hexagon::A2_portnew: + case Hexagon::A2_psubf: + case Hexagon::A2_psubfnew: + case Hexagon::A2_psubt: + case Hexagon::A2_psubtnew: + case Hexagon::A2_pxorf: + case Hexagon::A2_pxorfnew: + case Hexagon::A2_pxort: + case Hexagon::A2_pxortnew: + case Hexagon::A4_psxthf: + case Hexagon::A4_psxthfnew: + case Hexagon::A4_psxtht: + case Hexagon::A4_psxthtnew: + case Hexagon::A4_psxtbf: + case Hexagon::A4_psxtbfnew: + case Hexagon::A4_psxtbt: + case Hexagon::A4_psxtbtnew: + case Hexagon::A4_pzxtbf: + case Hexagon::A4_pzxtbfnew: + case Hexagon::A4_pzxtbt: + case Hexagon::A4_pzxtbtnew: + case Hexagon::A4_pzxthf: + case Hexagon::A4_pzxthfnew: + case Hexagon::A4_pzxtht: + case Hexagon::A4_pzxthtnew: + case Hexagon::ADD_ri_cPt: + case Hexagon::ADD_ri_cNotPt: + case Hexagon::C2_ccombinewt: + case Hexagon::C2_ccombinewf: + return true; + } +} + +bool HexagonInstrInfo:: +isConditionalLoad (const MachineInstr* MI) const { + const HexagonRegisterInfo& QRI = getRegisterInfo(); + switch (MI->getOpcode()) + { + default: return false; + case Hexagon::L2_ploadrdt_io : + case Hexagon::L2_ploadrdf_io: + case Hexagon::L2_ploadrit_io: + case Hexagon::L2_ploadrif_io: + case Hexagon::L2_ploadrht_io: + case Hexagon::L2_ploadrhf_io: + case Hexagon::L2_ploadrbt_io: + case Hexagon::L2_ploadrbf_io: + case Hexagon::L2_ploadruht_io: + case Hexagon::L2_ploadruhf_io: + case Hexagon::L2_ploadrubt_io: + case Hexagon::L2_ploadrubf_io: + return true; + case Hexagon::L2_ploadrdt_pi: + case Hexagon::L2_ploadrdf_pi: + case Hexagon::L2_ploadrit_pi: + case Hexagon::L2_ploadrif_pi: + case Hexagon::L2_ploadrht_pi: + case Hexagon::L2_ploadrhf_pi: + case Hexagon::L2_ploadrbt_pi: + case Hexagon::L2_ploadrbf_pi: + case Hexagon::L2_ploadruht_pi: + case Hexagon::L2_ploadruhf_pi: + case Hexagon::L2_ploadrubt_pi: + case Hexagon::L2_ploadrubf_pi: + return QRI.Subtarget.hasV4TOps(); + case Hexagon::L4_ploadrdt_rr: + case Hexagon::L4_ploadrdf_rr: + case Hexagon::L4_ploadrbt_rr: + case Hexagon::L4_ploadrbf_rr: + case Hexagon::L4_ploadrubt_rr: + case Hexagon::L4_ploadrubf_rr: + case Hexagon::L4_ploadrht_rr: + case Hexagon::L4_ploadrhf_rr: + case Hexagon::L4_ploadruht_rr: + case Hexagon::L4_ploadruhf_rr: + case Hexagon::L4_ploadrit_rr: + case Hexagon::L4_ploadrif_rr: + return QRI.Subtarget.hasV4TOps(); + } +} + +// Returns true if an instruction is a conditional store. +// +// Note: It doesn't include conditional new-value stores as they can't be +// converted to .new predicate. +// +// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ] +// ^ ^ +// / \ (not OK. it will cause new-value store to be +// / X conditional on p0.new while R2 producer is +// / \ on p0) +// / \. +// p.new store p.old NV store +// [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new] +// ^ ^ +// \ / +// \ / +// \ / +// p.old store +// [if (p0)memw(R0+#0)=R2] +// +// The above diagram shows the steps involoved in the conversion of a predicated +// store instruction to its .new predicated new-value form. +// +// The following set of instructions further explains the scenario where +// conditional new-value store becomes invalid when promoted to .new predicate +// form. +// +// { 1) if (p0) r0 = add(r1, r2) +// 2) p0 = cmp.eq(r3, #0) } +// +// 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with +// the first two instructions because in instr 1, r0 is conditional on old value +// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which +// is not valid for new-value stores. +bool HexagonInstrInfo:: +isConditionalStore (const MachineInstr* MI) const { + const HexagonRegisterInfo& QRI = getRegisterInfo(); + switch (MI->getOpcode()) + { + default: return false; + case Hexagon::S4_storeirbt_io: + case Hexagon::S4_storeirbf_io: + case Hexagon::S4_pstorerbt_rr: + case Hexagon::S4_pstorerbf_rr: + case Hexagon::S2_pstorerbt_io: + case Hexagon::S2_pstorerbf_io: + case Hexagon::S2_pstorerbt_pi: + case Hexagon::S2_pstorerbf_pi: + case Hexagon::S2_pstorerdt_io: + case Hexagon::S2_pstorerdf_io: + case Hexagon::S4_pstorerdt_rr: + case Hexagon::S4_pstorerdf_rr: + case Hexagon::S2_pstorerdt_pi: + case Hexagon::S2_pstorerdf_pi: + case Hexagon::S2_pstorerht_io: + case Hexagon::S2_pstorerhf_io: + case Hexagon::S4_storeirht_io: + case Hexagon::S4_storeirhf_io: + case Hexagon::S4_pstorerht_rr: + case Hexagon::S4_pstorerhf_rr: + case Hexagon::S2_pstorerht_pi: + case Hexagon::S2_pstorerhf_pi: + case Hexagon::S2_pstorerit_io: + case Hexagon::S2_pstorerif_io: + case Hexagon::S4_storeirit_io: + case Hexagon::S4_storeirif_io: + case Hexagon::S4_pstorerit_rr: + case Hexagon::S4_pstorerif_rr: + case Hexagon::S2_pstorerit_pi: + case Hexagon::S2_pstorerif_pi: + return QRI.Subtarget.hasV4TOps(); + + // V4 global address store before promoting to dot new. + case Hexagon::S4_pstorerdt_abs: + case Hexagon::S4_pstorerdf_abs: + case Hexagon::S4_pstorerbt_abs: + case Hexagon::S4_pstorerbf_abs: + case Hexagon::S4_pstorerht_abs: + case Hexagon::S4_pstorerhf_abs: + case Hexagon::S4_pstorerit_abs: + case Hexagon::S4_pstorerif_abs: + return QRI.Subtarget.hasV4TOps(); + + // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded + // from the "Conditional Store" list. Because a predicated new value store + // would NOT be promoted to a double dot new store. See diagram below: + // This function returns yes for those stores that are predicated but not + // yet promoted to predicate dot new instructions. + // + // +---------------------+ + // /-----| if (p0) memw(..)=r0 |---------\~ + // || +---------------------+ || + // promote || /\ /\ || promote + // || /||\ /||\ || + // \||/ demote || \||/ + // \/ || || \/ + // +-------------------------+ || +-------------------------+ + // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new | + // +-------------------------+ || +-------------------------+ + // || || || + // || demote \||/ + // promote || \/ NOT possible + // || || /\~ + // \||/ || /||\~ + // \/ || || + // +-----------------------------+ + // | if (p0.new) memw(..)=r0.new | + // +-----------------------------+ + // Double Dot New Store + // + } +} + + +bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const { + if (isNewValue(MI) && isBranch(MI)) + return true; + return false; +} + +bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const { + return (getAddrMode(MI) == HexagonII::PostInc); +} + +bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const { + const uint64_t F = MI->getDesc().TSFlags; + return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask); +} + +// Returns true, if any one of the operands is a dot new +// insn, whether it is predicated dot new or register dot new. +bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const { + return (isNewValueInst(MI) || + (isPredicated(MI) && isPredicatedNew(MI))); +} + +// Returns the most basic instruction for the .new predicated instructions and +// new-value stores. +// For example, all of the following instructions will be converted back to the +// same instruction: +// 1) if (p0.new) memw(R0+#0) = R1.new ---> +// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1 +// 3) if (p0.new) memw(R0+#0) = R1 ---> +// + +int HexagonInstrInfo::GetDotOldOp(const int opc) const { + int NewOp = opc; + if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form + NewOp = Hexagon::getPredOldOpcode(NewOp); + assert(NewOp >= 0 && + "Couldn't change predicate new instruction to its old form."); + } + + if (isNewValueStore(NewOp)) { // Convert into non-new-value format + NewOp = Hexagon::getNonNVStore(NewOp); + assert(NewOp >= 0 && "Couldn't change new-value store to its old form."); + } + return NewOp; +} + +// Return the new value instruction for a given store. +int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const { + int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode()); + if (NVOpcode >= 0) // Valid new-value store instruction. + return NVOpcode; + + switch (MI->getOpcode()) { + default: llvm_unreachable("Unknown .new type"); + // store new value byte + case Hexagon::STrib_shl_V4: + return Hexagon::STrib_shl_nv_V4; + + case Hexagon::STrih_shl_V4: + return Hexagon::STrih_shl_nv_V4; + + case Hexagon::STriw_f: + return Hexagon::S2_storerinew_io; + + case Hexagon::STriw_indexed_f: + return Hexagon::S4_storerinew_rr; + + case Hexagon::STriw_shl_V4: + return Hexagon::STriw_shl_nv_V4; + + } + return 0; +} + +// Return .new predicate version for an instruction. +int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI, + const MachineBranchProbabilityInfo + *MBPI) const { + + int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode()); + if (NewOpcode >= 0) // Valid predicate new instruction + return NewOpcode; + + switch (MI->getOpcode()) { + default: llvm_unreachable("Unknown .new type"); + // Condtional Jumps + case Hexagon::J2_jumpt: + case Hexagon::J2_jumpf: + return getDotNewPredJumpOp(MI, MBPI); + + case Hexagon::J2_jumprt: + return Hexagon::J2_jumptnewpt; + + case Hexagon::J2_jumprf: + return Hexagon::J2_jumprfnewpt; + + case Hexagon::JMPrett: + return Hexagon::J2_jumprtnewpt; + + case Hexagon::JMPretf: + return Hexagon::J2_jumprfnewpt; + + + // Conditional combine + case Hexagon::C2_ccombinewt: + return Hexagon::C2_ccombinewnewt; + case Hexagon::C2_ccombinewf: + return Hexagon::C2_ccombinewnewf; + } +} + + +unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const { + const uint64_t F = MI->getDesc().TSFlags; + + return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask); +} + +/// immediateExtend - Changes the instruction in place to one using an immediate +/// extender. +void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const { + assert((isExtendable(MI)||isConstExtended(MI)) && + "Instruction must be extendable"); + // Find which operand is extendable. + short ExtOpNum = getCExtOpNum(MI); + MachineOperand &MO = MI->getOperand(ExtOpNum); + // This needs to be something we understand. + assert((MO.isMBB() || MO.isImm()) && + "Branch with unknown extendable field type"); + // Mark given operand as extended. + MO.addTargetFlag(HexagonII::HMOTF_ConstExtended); +} + +DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState( + const TargetSubtargetInfo &STI) const { + const InstrItineraryData *II = STI.getInstrItineraryData(); + return static_cast<const HexagonSubtarget &>(STI).createDFAPacketizer(II); +} + +bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI, + const MachineBasicBlock *MBB, + const MachineFunction &MF) const { + // Debug info is never a scheduling boundary. It's necessary to be explicit + // due to the special treatment of IT instructions below, otherwise a + // dbg_value followed by an IT will result in the IT instruction being + // considered a scheduling hazard, which is wrong. It should be the actual + // instruction preceding the dbg_value instruction(s), just like it is + // when debug info is not present. + if (MI->isDebugValue()) + return false; + + // Terminators and labels can't be scheduled around. + if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm()) + return true; + + return false; +} + +bool HexagonInstrInfo::isConstExtended(MachineInstr *MI) const { + + // Constant extenders are allowed only for V4 and above. + if (!Subtarget.hasV4TOps()) + return false; + + const uint64_t F = MI->getDesc().TSFlags; + unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; + if (isExtended) // Instruction must be extended. + return true; + + unsigned isExtendable = (F >> HexagonII::ExtendablePos) + & HexagonII::ExtendableMask; + if (!isExtendable) + return false; + + short ExtOpNum = getCExtOpNum(MI); + const MachineOperand &MO = MI->getOperand(ExtOpNum); + // Use MO operand flags to determine if MO + // has the HMOTF_ConstExtended flag set. + if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended) + return true; + // If this is a Machine BB address we are talking about, and it is + // not marked as extended, say so. + if (MO.isMBB()) + return false; + + // We could be using an instruction with an extendable immediate and shoehorn + // a global address into it. If it is a global address it will be constant + // extended. We do this for COMBINE. + // We currently only handle isGlobal() because it is the only kind of + // object we are going to end up with here for now. + // In the future we probably should add isSymbol(), etc. + if (MO.isGlobal() || MO.isSymbol()) + return true; + + // If the extendable operand is not 'Immediate' type, the instruction should + // have 'isExtended' flag set. + assert(MO.isImm() && "Extendable operand must be Immediate type"); + + int MinValue = getMinValue(MI); + int MaxValue = getMaxValue(MI); + int ImmValue = MO.getImm(); + + return (ImmValue < MinValue || ImmValue > MaxValue); +} + +// Returns the opcode to use when converting MI, which is a conditional jump, +// into a conditional instruction which uses the .new value of the predicate. +// We also use branch probabilities to add a hint to the jump. +int +HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI, + const + MachineBranchProbabilityInfo *MBPI) const { + + // We assume that block can have at most two successors. + bool taken = false; + MachineBasicBlock *Src = MI->getParent(); + MachineOperand *BrTarget = &MI->getOperand(1); + MachineBasicBlock *Dst = BrTarget->getMBB(); + + const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst); + if (Prediction >= BranchProbability(1,2)) + taken = true; + + switch (MI->getOpcode()) { + case Hexagon::J2_jumpt: + return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew; + case Hexagon::J2_jumpf: + return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew; + + default: + llvm_unreachable("Unexpected jump instruction."); + } +} +// Returns true if a particular operand is extendable for an instruction. +bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI, + unsigned short OperandNum) const { + // Constant extenders are allowed only for V4 and above. + if (!Subtarget.hasV4TOps()) + return false; + + const uint64_t F = MI->getDesc().TSFlags; + + return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) + == OperandNum; +} + +// Returns Operand Index for the constant extended instruction. +unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const { + const uint64_t F = MI->getDesc().TSFlags; + return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask); +} + +// Returns the min value that doesn't need to be extended. +int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const { + const uint64_t F = MI->getDesc().TSFlags; + unsigned isSigned = (F >> HexagonII::ExtentSignedPos) + & HexagonII::ExtentSignedMask; + unsigned bits = (F >> HexagonII::ExtentBitsPos) + & HexagonII::ExtentBitsMask; + + if (isSigned) // if value is signed + return -1U << (bits - 1); + else + return 0; +} + +// Returns the max value that doesn't need to be extended. +int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const { + const uint64_t F = MI->getDesc().TSFlags; + unsigned isSigned = (F >> HexagonII::ExtentSignedPos) + & HexagonII::ExtentSignedMask; + unsigned bits = (F >> HexagonII::ExtentBitsPos) + & HexagonII::ExtentBitsMask; + + if (isSigned) // if value is signed + return ~(-1U << (bits - 1)); + else + return ~(-1U << bits); +} + +// Returns true if an instruction can be converted into a non-extended +// equivalent instruction. +bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const { + + short NonExtOpcode; + // Check if the instruction has a register form that uses register in place + // of the extended operand, if so return that as the non-extended form. + if (Hexagon::getRegForm(MI->getOpcode()) >= 0) + return true; + + if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) { + // Check addressing mode and retrieve non-ext equivalent instruction. + + switch (getAddrMode(MI)) { + case HexagonII::Absolute : + // Load/store with absolute addressing mode can be converted into + // base+offset mode. + NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode()); + break; + case HexagonII::BaseImmOffset : + // Load/store with base+offset addressing mode can be converted into + // base+register offset addressing mode. However left shift operand should + // be set to 0. + NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode()); + break; + default: + return false; + } + if (NonExtOpcode < 0) + return false; + return true; + } + return false; +} + +// Returns opcode of the non-extended equivalent instruction. +short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const { + + // Check if the instruction has a register form that uses register in place + // of the extended operand, if so return that as the non-extended form. + short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode()); + if (NonExtOpcode >= 0) + return NonExtOpcode; + + if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) { + // Check addressing mode and retrieve non-ext equivalent instruction. + switch (getAddrMode(MI)) { + case HexagonII::Absolute : + return Hexagon::getBasedWithImmOffset(MI->getOpcode()); + case HexagonII::BaseImmOffset : + return Hexagon::getBaseWithRegOffset(MI->getOpcode()); + default: + return -1; + } + } + return -1; +} + +bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const { + return (Opcode == Hexagon::J2_jumpt) || + (Opcode == Hexagon::J2_jumpf) || + (Opcode == Hexagon::J2_jumptnewpt) || + (Opcode == Hexagon::J2_jumpfnewpt) || + (Opcode == Hexagon::J2_jumpt) || + (Opcode == Hexagon::J2_jumpf); +} + +bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const { + return (Opcode == Hexagon::J2_jumpf) || + (Opcode == Hexagon::J2_jumpfnewpt) || + (Opcode == Hexagon::J2_jumpfnew); +} |