diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp | 2894 |
1 files changed, 2894 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp new file mode 100644 index 0000000..0167090 --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp @@ -0,0 +1,2894 @@ +//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the interfaces that Hexagon uses to lower LLVM code +// into a selection DAG. +// +//===----------------------------------------------------------------------===// + +#include "HexagonISelLowering.h" +#include "HexagonMachineFunctionInfo.h" +#include "HexagonSubtarget.h" +#include "HexagonTargetMachine.h" +#include "HexagonTargetObjectFile.h" +#include "llvm/CodeGen/CallingConvLower.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineJumpTableInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAGISel.h" +#include "llvm/CodeGen/ValueTypes.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" + +using namespace llvm; + +#define DEBUG_TYPE "hexagon-lowering" + +static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables", + cl::init(true), cl::Hidden, + cl::desc("Control jump table emission on Hexagon target")); + +static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched", + cl::Hidden, cl::ZeroOrMore, cl::init(false), + cl::desc("Enable Hexagon SDNode scheduling")); + +static cl::opt<bool> EnableFastMath("ffast-math", + cl::Hidden, cl::ZeroOrMore, cl::init(false), + cl::desc("Enable Fast Math processing")); + +static cl::opt<int> MinimumJumpTables("minimum-jump-tables", + cl::Hidden, cl::ZeroOrMore, cl::init(5), + cl::desc("Set minimum jump tables")); + +static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy", + cl::Hidden, cl::ZeroOrMore, cl::init(6), + cl::desc("Max #stores to inline memcpy")); + +static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os", + cl::Hidden, cl::ZeroOrMore, cl::init(4), + cl::desc("Max #stores to inline memcpy")); + +static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove", + cl::Hidden, cl::ZeroOrMore, cl::init(6), + cl::desc("Max #stores to inline memmove")); + +static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os", + cl::Hidden, cl::ZeroOrMore, cl::init(4), + cl::desc("Max #stores to inline memmove")); + +static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset", + cl::Hidden, cl::ZeroOrMore, cl::init(8), + cl::desc("Max #stores to inline memset")); + +static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os", + cl::Hidden, cl::ZeroOrMore, cl::init(4), + cl::desc("Max #stores to inline memset")); + + +namespace { +class HexagonCCState : public CCState { + unsigned NumNamedVarArgParams; + +public: + HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF, + SmallVectorImpl<CCValAssign> &locs, LLVMContext &C, + int NumNamedVarArgParams) + : CCState(CC, isVarArg, MF, locs, C), + NumNamedVarArgParams(NumNamedVarArgParams) {} + + unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; } +}; +} + +// Implement calling convention for Hexagon. + +static bool IsHvxVectorType(MVT ty); + +static bool +CC_Hexagon(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State); + +static bool +CC_Hexagon32(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State); + +static bool +CC_Hexagon64(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State); + +static bool +CC_HexagonVector(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State); + +static bool +RetCC_Hexagon(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State); + +static bool +RetCC_Hexagon32(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State); + +static bool +RetCC_Hexagon64(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State); + +static bool +RetCC_HexagonVector(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State); + +static bool +CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + HexagonCCState &HState = static_cast<HexagonCCState &>(State); + + if (ValNo < HState.getNumNamedVarArgParams()) { + // Deal with named arguments. + return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); + } + + // Deal with un-named arguments. + unsigned ofst; + if (ArgFlags.isByVal()) { + // If pass-by-value, the size allocated on stack is decided + // by ArgFlags.getByValSize(), not by the size of LocVT. + ofst = State.AllocateStack(ArgFlags.getByValSize(), + ArgFlags.getByValAlign()); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); + return false; + } + if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) { + LocVT = MVT::i32; + ValVT = MVT::i32; + if (ArgFlags.isSExt()) + LocInfo = CCValAssign::SExt; + else if (ArgFlags.isZExt()) + LocInfo = CCValAssign::ZExt; + else + LocInfo = CCValAssign::AExt; + } + if (LocVT == MVT::i32 || LocVT == MVT::f32) { + ofst = State.AllocateStack(4, 4); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); + return false; + } + if (LocVT == MVT::i64 || LocVT == MVT::f64) { + ofst = State.AllocateStack(8, 8); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); + return false; + } + if (LocVT == MVT::v2i64 || LocVT == MVT::v4i32 || LocVT == MVT::v8i16 || + LocVT == MVT::v16i8) { + ofst = State.AllocateStack(16, 16); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); + return false; + } + if (LocVT == MVT::v4i64 || LocVT == MVT::v8i32 || LocVT == MVT::v16i16 || + LocVT == MVT::v32i8) { + ofst = State.AllocateStack(32, 32); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); + return false; + } + if (LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 || + LocVT == MVT::v64i8 || LocVT == MVT::v512i1) { + ofst = State.AllocateStack(64, 64); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); + return false; + } + if (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 || + LocVT == MVT::v128i8 || LocVT == MVT::v1024i1) { + ofst = State.AllocateStack(128, 128); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); + return false; + } + if (LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 || + LocVT == MVT::v256i8) { + ofst = State.AllocateStack(256, 256); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); + return false; + } + + llvm_unreachable(nullptr); +} + + +static bool CC_Hexagon (unsigned ValNo, MVT ValVT, MVT LocVT, + CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { + if (ArgFlags.isByVal()) { + // Passed on stack. + unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), + ArgFlags.getByValAlign()); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return false; + } + + if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) { + LocVT = MVT::i32; + ValVT = MVT::i32; + if (ArgFlags.isSExt()) + LocInfo = CCValAssign::SExt; + else if (ArgFlags.isZExt()) + LocInfo = CCValAssign::ZExt; + else + LocInfo = CCValAssign::AExt; + } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) { + LocVT = MVT::i32; + LocInfo = CCValAssign::BCvt; + } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) { + LocVT = MVT::i64; + LocInfo = CCValAssign::BCvt; + } + + if (LocVT == MVT::i32 || LocVT == MVT::f32) { + if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) + return false; + } + + if (LocVT == MVT::i64 || LocVT == MVT::f64) { + if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) + return false; + } + + if (LocVT == MVT::v8i32 || LocVT == MVT::v16i16 || LocVT == MVT::v32i8) { + unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 32); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return false; + } + + if (IsHvxVectorType(LocVT)) { + if (!CC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) + return false; + } + + return true; // CC didn't match. +} + + +static bool CC_Hexagon32(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + + static const MCPhysReg RegList[] = { + Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4, + Hexagon::R5 + }; + if (unsigned Reg = State.AllocateReg(RegList)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + + unsigned Offset = State.AllocateStack(4, 4); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return false; +} + +static bool CC_Hexagon64(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + + if (unsigned Reg = State.AllocateReg(Hexagon::D0)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + + static const MCPhysReg RegList1[] = { + Hexagon::D1, Hexagon::D2 + }; + static const MCPhysReg RegList2[] = { + Hexagon::R1, Hexagon::R3 + }; + if (unsigned Reg = State.AllocateReg(RegList1, RegList2)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + + unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return false; +} + +static bool CC_HexagonVector(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + + static const MCPhysReg VecLstS[] = { Hexagon::V0, Hexagon::V1, + Hexagon::V2, Hexagon::V3, + Hexagon::V4, Hexagon::V5, + Hexagon::V6, Hexagon::V7, + Hexagon::V8, Hexagon::V9, + Hexagon::V10, Hexagon::V11, + Hexagon::V12, Hexagon::V13, + Hexagon::V14, Hexagon::V15}; + static const MCPhysReg VecLstD[] = { Hexagon::W0, Hexagon::W1, + Hexagon::W2, Hexagon::W3, + Hexagon::W4, Hexagon::W5, + Hexagon::W6, Hexagon::W7}; + auto &MF = State.getMachineFunction(); + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + bool UseHVX = HST.useHVXOps(); + bool UseHVXDbl = HST.useHVXDblOps(); + + if ((UseHVX && !UseHVXDbl) && + (LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 || + LocVT == MVT::v64i8 || LocVT == MVT::v512i1)) { + if (unsigned Reg = State.AllocateReg(VecLstS)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + unsigned Offset = State.AllocateStack(64, 64); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return false; + } + if ((UseHVX && !UseHVXDbl) && + (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 || + LocVT == MVT::v128i8)) { + if (unsigned Reg = State.AllocateReg(VecLstD)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + unsigned Offset = State.AllocateStack(128, 128); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return false; + } + // 128B Mode + if ((UseHVX && UseHVXDbl) && + (LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 || + LocVT == MVT::v256i8)) { + if (unsigned Reg = State.AllocateReg(VecLstD)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + unsigned Offset = State.AllocateStack(256, 256); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return false; + } + if ((UseHVX && UseHVXDbl) && + (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 || + LocVT == MVT::v128i8 || LocVT == MVT::v1024i1)) { + if (unsigned Reg = State.AllocateReg(VecLstS)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + unsigned Offset = State.AllocateStack(128, 128); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return false; + } + return true; +} + +static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + auto &MF = State.getMachineFunction(); + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + bool UseHVX = HST.useHVXOps(); + bool UseHVXDbl = HST.useHVXDblOps(); + + if (LocVT == MVT::i1 || + LocVT == MVT::i8 || + LocVT == MVT::i16) { + LocVT = MVT::i32; + ValVT = MVT::i32; + if (ArgFlags.isSExt()) + LocInfo = CCValAssign::SExt; + else if (ArgFlags.isZExt()) + LocInfo = CCValAssign::ZExt; + else + LocInfo = CCValAssign::AExt; + } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) { + LocVT = MVT::i32; + LocInfo = CCValAssign::BCvt; + } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) { + LocVT = MVT::i64; + LocInfo = CCValAssign::BCvt; + } else if (LocVT == MVT::v64i8 || LocVT == MVT::v32i16 || + LocVT == MVT::v16i32 || LocVT == MVT::v8i64 || + LocVT == MVT::v512i1) { + LocVT = MVT::v16i32; + ValVT = MVT::v16i32; + LocInfo = CCValAssign::Full; + } else if (LocVT == MVT::v128i8 || LocVT == MVT::v64i16 || + LocVT == MVT::v32i32 || LocVT == MVT::v16i64 || + (LocVT == MVT::v1024i1 && UseHVX && UseHVXDbl)) { + LocVT = MVT::v32i32; + ValVT = MVT::v32i32; + LocInfo = CCValAssign::Full; + } else if (LocVT == MVT::v256i8 || LocVT == MVT::v128i16 || + LocVT == MVT::v64i32 || LocVT == MVT::v32i64) { + LocVT = MVT::v64i32; + ValVT = MVT::v64i32; + LocInfo = CCValAssign::Full; + } + if (LocVT == MVT::i32 || LocVT == MVT::f32) { + if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) + return false; + } + + if (LocVT == MVT::i64 || LocVT == MVT::f64) { + if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) + return false; + } + if (LocVT == MVT::v16i32 || LocVT == MVT::v32i32 || LocVT == MVT::v64i32) { + if (!RetCC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) + return false; + } + return true; // CC didn't match. +} + +static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + + if (LocVT == MVT::i32 || LocVT == MVT::f32) { + if (unsigned Reg = State.AllocateReg(Hexagon::R0)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + } + + unsigned Offset = State.AllocateStack(4, 4); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return false; +} + +static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + if (LocVT == MVT::i64 || LocVT == MVT::f64) { + if (unsigned Reg = State.AllocateReg(Hexagon::D0)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + } + + unsigned Offset = State.AllocateStack(8, 8); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return false; +} + +static bool RetCC_HexagonVector(unsigned ValNo, MVT ValVT, + MVT LocVT, CCValAssign::LocInfo LocInfo, + ISD::ArgFlagsTy ArgFlags, CCState &State) { + auto &MF = State.getMachineFunction(); + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + bool UseHVX = HST.useHVXOps(); + bool UseHVXDbl = HST.useHVXDblOps(); + + unsigned OffSiz = 64; + if (LocVT == MVT::v16i32) { + if (unsigned Reg = State.AllocateReg(Hexagon::V0)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + } else if (LocVT == MVT::v32i32) { + unsigned Req = (UseHVX && UseHVXDbl) ? Hexagon::V0 : Hexagon::W0; + if (unsigned Reg = State.AllocateReg(Req)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + OffSiz = 128; + } else if (LocVT == MVT::v64i32) { + if (unsigned Reg = State.AllocateReg(Hexagon::W0)) { + State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); + return false; + } + OffSiz = 256; + } + + unsigned Offset = State.AllocateStack(OffSiz, OffSiz); + State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); + return false; +} + +void HexagonTargetLowering::promoteLdStType(EVT VT, EVT PromotedLdStVT) { + if (VT != PromotedLdStVT) { + setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote); + AddPromotedToType(ISD::LOAD, VT.getSimpleVT(), + PromotedLdStVT.getSimpleVT()); + + setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote); + AddPromotedToType(ISD::STORE, VT.getSimpleVT(), + PromotedLdStVT.getSimpleVT()); + } +} + +SDValue +HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) +const { + return SDValue(); +} + +/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified +/// by "Src" to address "Dst" of size "Size". Alignment information is +/// specified by the specific parameter attribute. The copy will be passed as +/// a byval function parameter. Sometimes what we are copying is the end of a +/// larger object, the part that does not fit in registers. +static SDValue +CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, + ISD::ArgFlagsTy Flags, SelectionDAG &DAG, + SDLoc dl) { + + SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); + return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), + /*isVolatile=*/false, /*AlwaysInline=*/false, + /*isTailCall=*/false, + MachinePointerInfo(), MachinePointerInfo()); +} + +static bool IsHvxVectorType(MVT ty) { + return (ty == MVT::v8i64 || ty == MVT::v16i32 || ty == MVT::v32i16 || + ty == MVT::v64i8 || + ty == MVT::v16i64 || ty == MVT::v32i32 || ty == MVT::v64i16 || + ty == MVT::v128i8 || + ty == MVT::v32i64 || ty == MVT::v64i32 || ty == MVT::v128i16 || + ty == MVT::v256i8 || + ty == MVT::v512i1 || ty == MVT::v1024i1); +} + +// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is +// passed by value, the function prototype is modified to return void and +// the value is stored in memory pointed by a pointer passed by caller. +SDValue +HexagonTargetLowering::LowerReturn(SDValue Chain, + CallingConv::ID CallConv, bool isVarArg, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + SDLoc dl, SelectionDAG &DAG) const { + + // CCValAssign - represent the assignment of the return value to locations. + SmallVector<CCValAssign, 16> RVLocs; + + // CCState - Info about the registers and stack slot. + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + + // Analyze return values of ISD::RET + CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon); + + SDValue Flag; + SmallVector<SDValue, 4> RetOps(1, Chain); + + // Copy the result values into the output registers. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + CCValAssign &VA = RVLocs[i]; + + Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); + + // Guarantee that all emitted copies are stuck together with flags. + Flag = Chain.getValue(1); + RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); + } + + RetOps[0] = Chain; // Update chain. + + // Add the flag if we have it. + if (Flag.getNode()) + RetOps.push_back(Flag); + + return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps); +} + +bool HexagonTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { + // If either no tail call or told not to tail call at all, don't. + auto Attr = + CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); + if (!CI->isTailCall() || Attr.getValueAsString() == "true") + return false; + + return true; +} + +/// LowerCallResult - Lower the result values of an ISD::CALL into the +/// appropriate copies out of appropriate physical registers. This assumes that +/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call +/// being lowered. Returns a SDNode with the same number of values as the +/// ISD::CALL. +SDValue +HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, + CallingConv::ID CallConv, bool isVarArg, + const + SmallVectorImpl<ISD::InputArg> &Ins, + SDLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals, + const SmallVectorImpl<SDValue> &OutVals, + SDValue Callee) const { + + // Assign locations to each value returned by this call. + SmallVector<CCValAssign, 16> RVLocs; + + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, + *DAG.getContext()); + + CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon); + + // Copy all of the result registers out of their specified physreg. + for (unsigned i = 0; i != RVLocs.size(); ++i) { + Chain = DAG.getCopyFromReg(Chain, dl, + RVLocs[i].getLocReg(), + RVLocs[i].getValVT(), InFlag).getValue(1); + InFlag = Chain.getValue(2); + InVals.push_back(Chain.getValue(0)); + } + + return Chain; +} + +/// LowerCall - Functions arguments are copied from virtual regs to +/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. +SDValue +HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, + SmallVectorImpl<SDValue> &InVals) const { + SelectionDAG &DAG = CLI.DAG; + SDLoc &dl = CLI.DL; + SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; + SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; + SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; + SDValue Chain = CLI.Chain; + SDValue Callee = CLI.Callee; + bool &isTailCall = CLI.IsTailCall; + CallingConv::ID CallConv = CLI.CallConv; + bool isVarArg = CLI.IsVarArg; + bool doesNotReturn = CLI.DoesNotReturn; + + bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); + MachineFunction &MF = DAG.getMachineFunction(); + auto PtrVT = getPointerTy(MF.getDataLayout()); + + // Check for varargs. + int NumNamedVarArgParams = -1; + if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee)) { + const GlobalValue *GV = GAN->getGlobal(); + Callee = DAG.getTargetGlobalAddress(GV, dl, MVT::i32); + if (const Function* F = dyn_cast<Function>(GV)) { + // If a function has zero args and is a vararg function, that's + // disallowed so it must be an undeclared function. Do not assume + // varargs if the callee is undefined. + if (F->isVarArg() && F->getFunctionType()->getNumParams() != 0) + NumNamedVarArgParams = F->getFunctionType()->getNumParams(); + } + } + + // Analyze operands of the call, assigning locations to each operand. + SmallVector<CCValAssign, 16> ArgLocs; + HexagonCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext(), NumNamedVarArgParams); + + if (isVarArg) + CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg); + else + CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon); + + auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls"); + if (Attr.getValueAsString() == "true") + isTailCall = false; + + if (isTailCall) { + bool StructAttrFlag = MF.getFunction()->hasStructRetAttr(); + isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, + isVarArg, IsStructRet, + StructAttrFlag, + Outs, OutVals, Ins, DAG); + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + if (VA.isMemLoc()) { + isTailCall = false; + break; + } + } + DEBUG(dbgs() << (isTailCall ? "Eligible for Tail Call\n" + : "Argument must be passed on stack. " + "Not eligible for Tail Call\n")); + } + // Get a count of how many bytes are to be pushed on the stack. + unsigned NumBytes = CCInfo.getNextStackOffset(); + SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass; + SmallVector<SDValue, 8> MemOpChains; + + auto &HRI = *Subtarget.getRegisterInfo(); + SDValue StackPtr = + DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT); + + bool NeedsArgAlign = false; + unsigned LargestAlignSeen = 0; + // Walk the register/memloc assignments, inserting copies/loads. + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + SDValue Arg = OutVals[i]; + ISD::ArgFlagsTy Flags = Outs[i].Flags; + // Record if we need > 8 byte alignment on an argument. + bool ArgAlign = IsHvxVectorType(VA.getValVT()); + NeedsArgAlign |= ArgAlign; + + // Promote the value if needed. + switch (VA.getLocInfo()) { + default: + // Loc info must be one of Full, SExt, ZExt, or AExt. + llvm_unreachable("Unknown loc info!"); + case CCValAssign::BCvt: + case CCValAssign::Full: + break; + case CCValAssign::SExt: + Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); + break; + case CCValAssign::ZExt: + Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); + break; + case CCValAssign::AExt: + Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); + break; + } + + if (VA.isMemLoc()) { + unsigned LocMemOffset = VA.getLocMemOffset(); + SDValue MemAddr = DAG.getConstant(LocMemOffset, dl, + StackPtr.getValueType()); + MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr); + if (ArgAlign) + LargestAlignSeen = std::max(LargestAlignSeen, + VA.getLocVT().getStoreSizeInBits() >> 3); + if (Flags.isByVal()) { + // The argument is a struct passed by value. According to LLVM, "Arg" + // is is pointer. + MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain, + Flags, DAG, dl)); + } else { + MachinePointerInfo LocPI = MachinePointerInfo::getStack( + DAG.getMachineFunction(), LocMemOffset); + SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI, false, + false, 0); + MemOpChains.push_back(S); + } + continue; + } + + // Arguments that can be passed on register must be kept at RegsToPass + // vector. + if (VA.isRegLoc()) + RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); + } + + if (NeedsArgAlign && Subtarget.hasV60TOps()) { + DEBUG(dbgs() << "Function needs byte stack align due to call args\n"); + MachineFrameInfo* MFI = DAG.getMachineFunction().getFrameInfo(); + // V6 vectors passed by value have 64 or 128 byte alignment depending + // on whether we are 64 byte vector mode or 128 byte. + bool UseHVXDbl = Subtarget.useHVXDblOps(); + assert(Subtarget.useHVXOps()); + const unsigned ObjAlign = UseHVXDbl ? 128 : 64; + LargestAlignSeen = std::max(LargestAlignSeen, ObjAlign); + MFI->ensureMaxAlignment(LargestAlignSeen); + } + // Transform all store nodes into one single node because all store + // nodes are independent of each other. + if (!MemOpChains.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); + + if (!isTailCall) { + SDValue C = DAG.getConstant(NumBytes, dl, PtrVT, true); + Chain = DAG.getCALLSEQ_START(Chain, C, dl); + } + + // Build a sequence of copy-to-reg nodes chained together with token + // chain and flag operands which copy the outgoing args into registers. + // The InFlag in necessary since all emitted instructions must be + // stuck together. + SDValue InFlag; + if (!isTailCall) { + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, + RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + } else { + // For tail calls lower the arguments to the 'real' stack slot. + // + // Force all the incoming stack arguments to be loaded from the stack + // before any new outgoing arguments are stored to the stack, because the + // outgoing stack slots may alias the incoming argument stack slots, and + // the alias isn't otherwise explicit. This is slightly more conservative + // than necessary, because it means that each store effectively depends + // on every argument instead of just those arguments it would clobber. + // + // Do not flag preceding copytoreg stuff together with the following stuff. + InFlag = SDValue(); + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, + RegsToPass[i].second, InFlag); + InFlag = Chain.getValue(1); + } + InFlag = SDValue(); + } + + // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every + // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol + // node so that legalize doesn't hack it. + if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { + Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT); + } else if (ExternalSymbolSDNode *S = + dyn_cast<ExternalSymbolSDNode>(Callee)) { + Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT); + } + + // Returns a chain & a flag for retval copy to use. + SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); + SmallVector<SDValue, 8> Ops; + Ops.push_back(Chain); + Ops.push_back(Callee); + + // Add argument registers to the end of the list so that they are + // known live into the call. + for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { + Ops.push_back(DAG.getRegister(RegsToPass[i].first, + RegsToPass[i].second.getValueType())); + } + + if (InFlag.getNode()) + Ops.push_back(InFlag); + + if (isTailCall) { + MF.getFrameInfo()->setHasTailCall(); + return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops); + } + + int OpCode = doesNotReturn ? HexagonISD::CALLv3nr : HexagonISD::CALLv3; + Chain = DAG.getNode(OpCode, dl, NodeTys, Ops); + InFlag = Chain.getValue(1); + + // Create the CALLSEQ_END node. + Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), + DAG.getIntPtrConstant(0, dl, true), InFlag, dl); + InFlag = Chain.getValue(1); + + // Handle result values, copying them out of physregs into vregs that we + // return. + return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, + InVals, OutVals, Callee); +} + +static bool getIndexedAddressParts(SDNode *Ptr, EVT VT, + bool isSEXTLoad, SDValue &Base, + SDValue &Offset, bool &isInc, + SelectionDAG &DAG) { + if (Ptr->getOpcode() != ISD::ADD) + return false; + + auto &HST = static_cast<const HexagonSubtarget&>(DAG.getSubtarget()); + bool UseHVX = HST.useHVXOps(); + bool UseHVXDbl = HST.useHVXDblOps(); + + bool ValidHVXDblType = + (UseHVX && UseHVXDbl) && (VT == MVT::v32i32 || VT == MVT::v16i64 || + VT == MVT::v64i16 || VT == MVT::v128i8); + bool ValidHVXType = + UseHVX && !UseHVXDbl && (VT == MVT::v16i32 || VT == MVT::v8i64 || + VT == MVT::v32i16 || VT == MVT::v64i8); + + if (ValidHVXDblType || ValidHVXType || + VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) { + isInc = (Ptr->getOpcode() == ISD::ADD); + Base = Ptr->getOperand(0); + Offset = Ptr->getOperand(1); + // Ensure that Offset is a constant. + return (isa<ConstantSDNode>(Offset)); + } + + return false; +} + +/// getPostIndexedAddressParts - returns true by value, base pointer and +/// offset pointer and addressing mode by reference if this node can be +/// combined with a load / store to form a post-indexed load / store. +bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, + SDValue &Base, + SDValue &Offset, + ISD::MemIndexedMode &AM, + SelectionDAG &DAG) const +{ + EVT VT; + SDValue Ptr; + bool isSEXTLoad = false; + + if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { + VT = LD->getMemoryVT(); + isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; + } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { + VT = ST->getMemoryVT(); + if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) { + return false; + } + } else { + return false; + } + + bool isInc = false; + bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, + isInc, DAG); + if (isLegal) { + auto &HII = *Subtarget.getInstrInfo(); + int32_t OffsetVal = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); + if (HII.isValidAutoIncImm(VT, OffsetVal)) { + AM = isInc ? ISD::POST_INC : ISD::POST_DEC; + return true; + } + } + + return false; +} + +SDValue +HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { + SDNode *Node = Op.getNode(); + MachineFunction &MF = DAG.getMachineFunction(); + auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>(); + switch (Node->getOpcode()) { + case ISD::INLINEASM: { + unsigned NumOps = Node->getNumOperands(); + if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) + --NumOps; // Ignore the flag operand. + + for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { + if (FuncInfo.hasClobberLR()) + break; + unsigned Flags = + cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); + unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); + ++i; // Skip the ID value. + + switch (InlineAsm::getKind(Flags)) { + default: llvm_unreachable("Bad flags!"); + case InlineAsm::Kind_RegDef: + case InlineAsm::Kind_RegUse: + case InlineAsm::Kind_Imm: + case InlineAsm::Kind_Clobber: + case InlineAsm::Kind_Mem: { + for (; NumVals; --NumVals, ++i) {} + break; + } + case InlineAsm::Kind_RegDefEarlyClobber: { + for (; NumVals; --NumVals, ++i) { + unsigned Reg = + cast<RegisterSDNode>(Node->getOperand(i))->getReg(); + + // Check it to be lr + const HexagonRegisterInfo *QRI = Subtarget.getRegisterInfo(); + if (Reg == QRI->getRARegister()) { + FuncInfo.setHasClobberLR(true); + break; + } + } + break; + } + } + } + } + } // Node->getOpcode + return Op; +} + +SDValue +HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, + SelectionDAG &DAG) const { + SDValue Chain = Op.getOperand(0); + SDValue Size = Op.getOperand(1); + SDValue Align = Op.getOperand(2); + SDLoc dl(Op); + + ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align); + assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC"); + + unsigned A = AlignConst->getSExtValue(); + auto &HFI = *Subtarget.getFrameLowering(); + // "Zero" means natural stack alignment. + if (A == 0) + A = HFI.getStackAlignment(); + + DEBUG({ + dbgs () << LLVM_FUNCTION_NAME << " Align: " << A << " Size: "; + Size.getNode()->dump(&DAG); + dbgs() << "\n"; + }); + + SDValue AC = DAG.getConstant(A, dl, MVT::i32); + SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); + SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC); + if (Op.getNode()->getHasDebugValue()) + DAG.TransferDbgValues(Op, AA); + return AA; +} + +SDValue +HexagonTargetLowering::LowerFormalArguments(SDValue Chain, + CallingConv::ID CallConv, + bool isVarArg, + const + SmallVectorImpl<ISD::InputArg> &Ins, + SDLoc dl, SelectionDAG &DAG, + SmallVectorImpl<SDValue> &InVals) +const { + + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + MachineRegisterInfo &RegInfo = MF.getRegInfo(); + auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>(); + + // Assign locations to all of the incoming arguments. + SmallVector<CCValAssign, 16> ArgLocs; + CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, + *DAG.getContext()); + + CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon); + + // For LLVM, in the case when returning a struct by value (>8byte), + // the first argument is a pointer that points to the location on caller's + // stack where the return value will be stored. For Hexagon, the location on + // caller's stack is passed only when the struct size is smaller than (and + // equal to) 8 bytes. If not, no address will be passed into callee and + // callee return the result direclty through R0/R1. + + SmallVector<SDValue, 8> MemOps; + bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps(); + + for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { + CCValAssign &VA = ArgLocs[i]; + ISD::ArgFlagsTy Flags = Ins[i].Flags; + unsigned ObjSize; + unsigned StackLocation; + int FI; + + if ( (VA.isRegLoc() && !Flags.isByVal()) + || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) { + // Arguments passed in registers + // 1. int, long long, ptr args that get allocated in register. + // 2. Large struct that gets an register to put its address in. + EVT RegVT = VA.getLocVT(); + if (RegVT == MVT::i8 || RegVT == MVT::i16 || + RegVT == MVT::i32 || RegVT == MVT::f32) { + unsigned VReg = + RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass); + RegInfo.addLiveIn(VA.getLocReg(), VReg); + InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); + } else if (RegVT == MVT::i64 || RegVT == MVT::f64) { + unsigned VReg = + RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass); + RegInfo.addLiveIn(VA.getLocReg(), VReg); + InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); + + // Single Vector + } else if ((RegVT == MVT::v8i64 || RegVT == MVT::v16i32 || + RegVT == MVT::v32i16 || RegVT == MVT::v64i8)) { + unsigned VReg = + RegInfo.createVirtualRegister(&Hexagon::VectorRegsRegClass); + RegInfo.addLiveIn(VA.getLocReg(), VReg); + InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); + } else if (UseHVX && UseHVXDbl && + ((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 || + RegVT == MVT::v64i16 || RegVT == MVT::v128i8))) { + unsigned VReg = + RegInfo.createVirtualRegister(&Hexagon::VectorRegs128BRegClass); + RegInfo.addLiveIn(VA.getLocReg(), VReg); + InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); + + // Double Vector + } else if ((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 || + RegVT == MVT::v64i16 || RegVT == MVT::v128i8)) { + unsigned VReg = + RegInfo.createVirtualRegister(&Hexagon::VecDblRegsRegClass); + RegInfo.addLiveIn(VA.getLocReg(), VReg); + InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); + } else if (UseHVX && UseHVXDbl && + ((RegVT == MVT::v32i64 || RegVT == MVT::v64i32 || + RegVT == MVT::v128i16 || RegVT == MVT::v256i8))) { + unsigned VReg = + RegInfo.createVirtualRegister(&Hexagon::VecDblRegs128BRegClass); + RegInfo.addLiveIn(VA.getLocReg(), VReg); + InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); + } else if (RegVT == MVT::v512i1 || RegVT == MVT::v1024i1) { + assert(0 && "need to support VecPred regs"); + unsigned VReg = + RegInfo.createVirtualRegister(&Hexagon::VecPredRegsRegClass); + RegInfo.addLiveIn(VA.getLocReg(), VReg); + InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); + } else { + assert (0); + } + } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) { + assert (0 && "ByValSize must be bigger than 8 bytes"); + } else { + // Sanity check. + assert(VA.isMemLoc()); + + if (Flags.isByVal()) { + // If it's a byval parameter, then we need to compute the + // "real" size, not the size of the pointer. + ObjSize = Flags.getByValSize(); + } else { + ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3; + } + + StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset(); + // Create the frame index object for this incoming parameter... + FI = MFI->CreateFixedObject(ObjSize, StackLocation, true); + + // Create the SelectionDAG nodes cordl, responding to a load + // from this parameter. + SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); + + if (Flags.isByVal()) { + // If it's a pass-by-value aggregate, then do not dereference the stack + // location. Instead, we should generate a reference to the stack + // location. + InVals.push_back(FIN); + } else { + InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, + MachinePointerInfo(), false, false, + false, 0)); + } + } + } + + if (!MemOps.empty()) + Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); + + if (isVarArg) { + // This will point to the next argument passed via stack. + int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize, + HEXAGON_LRFP_SIZE + + CCInfo.getNextStackOffset(), + true); + FuncInfo.setVarArgsFrameIndex(FrameIndex); + } + + return Chain; +} + +SDValue +HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { + // VASTART stores the address of the VarArgsFrameIndex slot into the + // memory location argument. + MachineFunction &MF = DAG.getMachineFunction(); + HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>(); + SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32); + const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); + return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr, + Op.getOperand(1), MachinePointerInfo(SV), false, + false, 0); +} + +// Creates a SPLAT instruction for a constant value VAL. +static SDValue createSplat(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue Val) { + if (VT.getSimpleVT() == MVT::v4i8) + return DAG.getNode(HexagonISD::VSPLATB, dl, VT, Val); + + if (VT.getSimpleVT() == MVT::v4i16) + return DAG.getNode(HexagonISD::VSPLATH, dl, VT, Val); + + return SDValue(); +} + +static bool isSExtFree(SDValue N) { + // A sign-extend of a truncate of a sign-extend is free. + if (N.getOpcode() == ISD::TRUNCATE && + N.getOperand(0).getOpcode() == ISD::AssertSext) + return true; + // We have sign-extended loads. + if (N.getOpcode() == ISD::LOAD) + return true; + return false; +} + +SDValue HexagonTargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const { + SDLoc dl(Op); + SDValue InpVal = Op.getOperand(0); + if (isa<ConstantSDNode>(InpVal)) { + uint64_t V = cast<ConstantSDNode>(InpVal)->getZExtValue(); + return DAG.getTargetConstant(countPopulation(V), dl, MVT::i64); + } + SDValue PopOut = DAG.getNode(HexagonISD::POPCOUNT, dl, MVT::i32, InpVal); + return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, PopOut); +} + +SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { + SDLoc dl(Op); + + SDValue LHS = Op.getOperand(0); + SDValue RHS = Op.getOperand(1); + SDValue Cmp = Op.getOperand(2); + ISD::CondCode CC = cast<CondCodeSDNode>(Cmp)->get(); + + EVT VT = Op.getValueType(); + EVT LHSVT = LHS.getValueType(); + EVT RHSVT = RHS.getValueType(); + + if (LHSVT == MVT::v2i16) { + assert(ISD::isSignedIntSetCC(CC) || ISD::isUnsignedIntSetCC(CC)); + unsigned ExtOpc = ISD::isSignedIntSetCC(CC) ? ISD::SIGN_EXTEND + : ISD::ZERO_EXTEND; + SDValue LX = DAG.getNode(ExtOpc, dl, MVT::v2i32, LHS); + SDValue RX = DAG.getNode(ExtOpc, dl, MVT::v2i32, RHS); + SDValue SC = DAG.getNode(ISD::SETCC, dl, MVT::v2i1, LX, RX, Cmp); + return SC; + } + + // Treat all other vector types as legal. + if (VT.isVector()) + return Op; + + // Equals and not equals should use sign-extend, not zero-extend, since + // we can represent small negative values in the compare instructions. + // The LLVM default is to use zero-extend arbitrarily in these cases. + if ((CC == ISD::SETEQ || CC == ISD::SETNE) && + (RHSVT == MVT::i8 || RHSVT == MVT::i16) && + (LHSVT == MVT::i8 || LHSVT == MVT::i16)) { + ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS); + if (C && C->getAPIntValue().isNegative()) { + LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS); + RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS); + return DAG.getNode(ISD::SETCC, dl, Op.getValueType(), + LHS, RHS, Op.getOperand(2)); + } + if (isSExtFree(LHS) || isSExtFree(RHS)) { + LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS); + RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS); + return DAG.getNode(ISD::SETCC, dl, Op.getValueType(), + LHS, RHS, Op.getOperand(2)); + } + } + return SDValue(); +} + +SDValue +HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const { + SDValue PredOp = Op.getOperand(0); + SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2); + EVT OpVT = Op1.getValueType(); + SDLoc DL(Op); + + if (OpVT == MVT::v2i16) { + SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1); + SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2); + SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2); + SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL); + return TR; + } + + return SDValue(); +} + +// Handle only specific vector loads. +SDValue HexagonTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + SDLoc DL(Op); + LoadSDNode *LoadNode = cast<LoadSDNode>(Op); + SDValue Chain = LoadNode->getChain(); + SDValue Ptr = Op.getOperand(1); + SDValue LoweredLoad; + SDValue Result; + SDValue Base = LoadNode->getBasePtr(); + ISD::LoadExtType Ext = LoadNode->getExtensionType(); + unsigned Alignment = LoadNode->getAlignment(); + SDValue LoadChain; + + if(Ext == ISD::NON_EXTLOAD) + Ext = ISD::ZEXTLOAD; + + if (VT == MVT::v4i16) { + if (Alignment == 2) { + SDValue Loads[4]; + // Base load. + Loads[0] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Base, + LoadNode->getPointerInfo(), MVT::i16, + LoadNode->isVolatile(), + LoadNode->isNonTemporal(), + LoadNode->isInvariant(), + Alignment); + // Base+2 load. + SDValue Increment = DAG.getConstant(2, DL, MVT::i32); + Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment); + Loads[1] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr, + LoadNode->getPointerInfo(), MVT::i16, + LoadNode->isVolatile(), + LoadNode->isNonTemporal(), + LoadNode->isInvariant(), + Alignment); + // SHL 16, then OR base and base+2. + SDValue ShiftAmount = DAG.getConstant(16, DL, MVT::i32); + SDValue Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[1], ShiftAmount); + SDValue Tmp2 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[0]); + // Base + 4. + Increment = DAG.getConstant(4, DL, MVT::i32); + Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment); + Loads[2] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr, + LoadNode->getPointerInfo(), MVT::i16, + LoadNode->isVolatile(), + LoadNode->isNonTemporal(), + LoadNode->isInvariant(), + Alignment); + // Base + 6. + Increment = DAG.getConstant(6, DL, MVT::i32); + Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment); + Loads[3] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr, + LoadNode->getPointerInfo(), MVT::i16, + LoadNode->isVolatile(), + LoadNode->isNonTemporal(), + LoadNode->isInvariant(), + Alignment); + // SHL 16, then OR base+4 and base+6. + Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[3], ShiftAmount); + SDValue Tmp4 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[2]); + // Combine to i64. This could be optimised out later if we can + // affect reg allocation of this code. + Result = DAG.getNode(HexagonISD::COMBINE, DL, MVT::i64, Tmp4, Tmp2); + LoadChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, + Loads[0].getValue(1), Loads[1].getValue(1), + Loads[2].getValue(1), Loads[3].getValue(1)); + } else { + // Perform default type expansion. + Result = DAG.getLoad(MVT::i64, DL, Chain, Ptr, LoadNode->getPointerInfo(), + LoadNode->isVolatile(), LoadNode->isNonTemporal(), + LoadNode->isInvariant(), LoadNode->getAlignment()); + LoadChain = Result.getValue(1); + } + } else + llvm_unreachable("Custom lowering unsupported load"); + + Result = DAG.getNode(ISD::BITCAST, DL, VT, Result); + // Since we pretend to lower a load, we need the original chain + // info attached to the result. + SDValue Ops[] = { Result, LoadChain }; + + return DAG.getMergeValues(Ops, DL); +} + + +SDValue +HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { + EVT ValTy = Op.getValueType(); + ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op); + unsigned Align = CPN->getAlignment(); + Reloc::Model RM = HTM.getRelocationModel(); + unsigned char TF = (RM == Reloc::PIC_) ? HexagonII::MO_PCREL : 0; + + SDValue T; + if (CPN->isMachineConstantPoolEntry()) + T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, TF); + else + T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, TF); + if (RM == Reloc::PIC_) + return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T); + return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T); +} + +SDValue +HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + int Idx = cast<JumpTableSDNode>(Op)->getIndex(); + Reloc::Model RM = HTM.getRelocationModel(); + if (RM == Reloc::PIC_) { + SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); + return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T); + } + + SDValue T = DAG.getTargetJumpTable(Idx, VT); + return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T); +} + +SDValue +HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { + const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); + MachineFunction &MF = DAG.getMachineFunction(); + MachineFrameInfo &MFI = *MF.getFrameInfo(); + MFI.setReturnAddressIsTaken(true); + + if (verifyReturnAddressArgumentIsConstant(Op, DAG)) + return SDValue(); + + EVT VT = Op.getValueType(); + SDLoc dl(Op); + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + if (Depth) { + SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); + SDValue Offset = DAG.getConstant(4, dl, MVT::i32); + return DAG.getLoad(VT, dl, DAG.getEntryNode(), + DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), + MachinePointerInfo(), false, false, false, 0); + } + + // Return LR, which contains the return address. Mark it an implicit live-in. + unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32)); + return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); +} + +SDValue +HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { + const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo(); + MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo(); + MFI.setFrameAddressIsTaken(true); + + EVT VT = Op.getValueType(); + SDLoc dl(Op); + unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); + SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, + HRI.getFrameRegister(), VT); + while (Depth--) + FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, + MachinePointerInfo(), + false, false, false, 0); + return FrameAddr; +} + +SDValue +HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const { + SDLoc dl(Op); + return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0)); +} + + +SDValue +HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const { + SDLoc dl(Op); + auto *GAN = cast<GlobalAddressSDNode>(Op); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + auto *GV = GAN->getGlobal(); + int64_t Offset = GAN->getOffset(); + + auto &HLOF = *HTM.getObjFileLowering(); + Reloc::Model RM = HTM.getRelocationModel(); + + if (RM == Reloc::Static) { + SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset); + if (HLOF.IsGlobalInSmallSection(GV, HTM)) + return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA); + return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA); + } + + bool UsePCRel = GV->hasInternalLinkage() || GV->hasHiddenVisibility() || + (GV->hasLocalLinkage() && !isa<Function>(GV)); + if (UsePCRel) { + SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset, + HexagonII::MO_PCREL); + return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA); + } + + // Use GOT index. + SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); + SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT); + SDValue Off = DAG.getConstant(Offset, dl, MVT::i32); + return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off); +} + +// Specifies that for loads and stores VT can be promoted to PromotedLdStVT. +SDValue +HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { + const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); + SDLoc dl(Op); + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + + Reloc::Model RM = HTM.getRelocationModel(); + if (RM == Reloc::Static) { + SDValue A = DAG.getTargetBlockAddress(BA, PtrVT); + return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A); + } + + SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL); + return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A); +} + +SDValue +HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) + const { + EVT PtrVT = getPointerTy(DAG.getDataLayout()); + SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT, + HexagonII::MO_PCREL); + return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym); +} + +//===----------------------------------------------------------------------===// +// TargetLowering Implementation +//===----------------------------------------------------------------------===// + +HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM, + const HexagonSubtarget &ST) + : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)), + Subtarget(ST) { + bool IsV4 = !Subtarget.hasV5TOps(); + auto &HRI = *Subtarget.getRegisterInfo(); + bool UseHVX = Subtarget.useHVXOps(); + bool UseHVXSgl = Subtarget.useHVXSglOps(); + bool UseHVXDbl = Subtarget.useHVXDblOps(); + + setPrefLoopAlignment(4); + setPrefFunctionAlignment(4); + setMinFunctionAlignment(2); + setInsertFencesForAtomic(false); + setStackPointerRegisterToSaveRestore(HRI.getStackRegister()); + + if (EnableHexSDNodeSched) + setSchedulingPreference(Sched::VLIW); + else + setSchedulingPreference(Sched::Source); + + // Limits for inline expansion of memcpy/memmove + MaxStoresPerMemcpy = MaxStoresPerMemcpyCL; + MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL; + MaxStoresPerMemmove = MaxStoresPerMemmoveCL; + MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL; + MaxStoresPerMemset = MaxStoresPerMemsetCL; + MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL; + + // + // Set up register classes. + // + + addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass); + addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa + addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa + addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba + addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass); + addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass); + addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass); + addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass); + addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass); + addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass); + addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass); + + if (Subtarget.hasV5TOps()) { + addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass); + addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass); + } + + if (Subtarget.hasV60TOps()) { + if (Subtarget.useHVXSglOps()) { + addRegisterClass(MVT::v64i8, &Hexagon::VectorRegsRegClass); + addRegisterClass(MVT::v32i16, &Hexagon::VectorRegsRegClass); + addRegisterClass(MVT::v16i32, &Hexagon::VectorRegsRegClass); + addRegisterClass(MVT::v8i64, &Hexagon::VectorRegsRegClass); + addRegisterClass(MVT::v128i8, &Hexagon::VecDblRegsRegClass); + addRegisterClass(MVT::v64i16, &Hexagon::VecDblRegsRegClass); + addRegisterClass(MVT::v32i32, &Hexagon::VecDblRegsRegClass); + addRegisterClass(MVT::v16i64, &Hexagon::VecDblRegsRegClass); + addRegisterClass(MVT::v512i1, &Hexagon::VecPredRegsRegClass); + } else if (Subtarget.useHVXDblOps()) { + addRegisterClass(MVT::v128i8, &Hexagon::VectorRegs128BRegClass); + addRegisterClass(MVT::v64i16, &Hexagon::VectorRegs128BRegClass); + addRegisterClass(MVT::v32i32, &Hexagon::VectorRegs128BRegClass); + addRegisterClass(MVT::v16i64, &Hexagon::VectorRegs128BRegClass); + addRegisterClass(MVT::v256i8, &Hexagon::VecDblRegs128BRegClass); + addRegisterClass(MVT::v128i16, &Hexagon::VecDblRegs128BRegClass); + addRegisterClass(MVT::v64i32, &Hexagon::VecDblRegs128BRegClass); + addRegisterClass(MVT::v32i64, &Hexagon::VecDblRegs128BRegClass); + addRegisterClass(MVT::v1024i1, &Hexagon::VecPredRegs128BRegClass); + } + + } + + // + // Handling of scalar operations. + // + // All operations default to "legal", except: + // - indexed loads and stores (pre-/post-incremented), + // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS, + // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN, + // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP, + // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG, + // which default to "expand" for at least one type. + + // Misc operations. + setOperationAction(ISD::ConstantFP, MVT::f32, Legal); // Default: expand + setOperationAction(ISD::ConstantFP, MVT::f64, Legal); // Default: expand + + setOperationAction(ISD::ConstantPool, MVT::i32, Custom); + setOperationAction(ISD::JumpTable, MVT::i32, Custom); + setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); + setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); + setOperationAction(ISD::INLINEASM, MVT::Other, Custom); + setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); + setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); + setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); + + // Custom legalize GlobalAddress nodes into CONST32. + setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); + setOperationAction(ISD::GlobalAddress, MVT::i8, Custom); + setOperationAction(ISD::BlockAddress, MVT::i32, Custom); + + // Hexagon needs to optimize cases with negative constants. + setOperationAction(ISD::SETCC, MVT::i8, Custom); + setOperationAction(ISD::SETCC, MVT::i16, Custom); + + // VASTART needs to be custom lowered to use the VarArgsFrameIndex. + setOperationAction(ISD::VASTART, MVT::Other, Custom); + setOperationAction(ISD::VAEND, MVT::Other, Expand); + setOperationAction(ISD::VAARG, MVT::Other, Expand); + + setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); + setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); + setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); + + if (EmitJumpTables) + setMinimumJumpTableEntries(2); + else + setMinimumJumpTableEntries(MinimumJumpTables); + setOperationAction(ISD::BR_JT, MVT::Other, Expand); + + // Hexagon has instructions for add/sub with carry. The problem with + // modeling these instructions is that they produce 2 results: Rdd and Px. + // To model the update of Px, we will have to use Defs[p0..p3] which will + // cause any predicate live range to spill. So, we pretend we dont't have + // these instructions. + setOperationAction(ISD::ADDE, MVT::i8, Expand); + setOperationAction(ISD::ADDE, MVT::i16, Expand); + setOperationAction(ISD::ADDE, MVT::i32, Expand); + setOperationAction(ISD::ADDE, MVT::i64, Expand); + setOperationAction(ISD::SUBE, MVT::i8, Expand); + setOperationAction(ISD::SUBE, MVT::i16, Expand); + setOperationAction(ISD::SUBE, MVT::i32, Expand); + setOperationAction(ISD::SUBE, MVT::i64, Expand); + setOperationAction(ISD::ADDC, MVT::i8, Expand); + setOperationAction(ISD::ADDC, MVT::i16, Expand); + setOperationAction(ISD::ADDC, MVT::i32, Expand); + setOperationAction(ISD::ADDC, MVT::i64, Expand); + setOperationAction(ISD::SUBC, MVT::i8, Expand); + setOperationAction(ISD::SUBC, MVT::i16, Expand); + setOperationAction(ISD::SUBC, MVT::i32, Expand); + setOperationAction(ISD::SUBC, MVT::i64, Expand); + + // Only add and sub that detect overflow are the saturating ones. + for (MVT VT : MVT::integer_valuetypes()) { + setOperationAction(ISD::UADDO, VT, Expand); + setOperationAction(ISD::SADDO, VT, Expand); + setOperationAction(ISD::USUBO, VT, Expand); + setOperationAction(ISD::SSUBO, VT, Expand); + } + + setOperationAction(ISD::CTLZ, MVT::i8, Promote); + setOperationAction(ISD::CTLZ, MVT::i16, Promote); + setOperationAction(ISD::CTTZ, MVT::i8, Promote); + setOperationAction(ISD::CTTZ, MVT::i16, Promote); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8, Promote); + setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i8, Promote); + setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote); + + // In V5, popcount can count # of 1s in i64 but returns i32. + // On V4 it will be expanded (set later). + setOperationAction(ISD::CTPOP, MVT::i8, Promote); + setOperationAction(ISD::CTPOP, MVT::i16, Promote); + setOperationAction(ISD::CTPOP, MVT::i32, Promote); + setOperationAction(ISD::CTPOP, MVT::i64, Custom); + + // We custom lower i64 to i64 mul, so that it is not considered as a legal + // operation. There is a pattern that will match i64 mul and transform it + // to a series of instructions. + setOperationAction(ISD::MUL, MVT::i64, Expand); + setOperationAction(ISD::MULHS, MVT::i64, Expand); + + for (unsigned IntExpOp : + { ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM, + ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR, + ISD::BSWAP, ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS, + ISD::SMUL_LOHI, ISD::UMUL_LOHI }) { + setOperationAction(IntExpOp, MVT::i32, Expand); + setOperationAction(IntExpOp, MVT::i64, Expand); + } + + for (unsigned FPExpOp : + {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS, + ISD::FPOW, ISD::FCOPYSIGN}) { + setOperationAction(FPExpOp, MVT::f32, Expand); + setOperationAction(FPExpOp, MVT::f64, Expand); + } + + // No extending loads from i32. + for (MVT VT : MVT::integer_valuetypes()) { + setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); + setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); + setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); + } + // Turn FP truncstore into trunc + store. + setTruncStoreAction(MVT::f64, MVT::f32, Expand); + // Turn FP extload into load/fextend. + for (MVT VT : MVT::fp_valuetypes()) + setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); + + // Expand BR_CC and SELECT_CC for all integer and fp types. + for (MVT VT : MVT::integer_valuetypes()) { + setOperationAction(ISD::BR_CC, VT, Expand); + setOperationAction(ISD::SELECT_CC, VT, Expand); + } + for (MVT VT : MVT::fp_valuetypes()) { + setOperationAction(ISD::BR_CC, VT, Expand); + setOperationAction(ISD::SELECT_CC, VT, Expand); + } + setOperationAction(ISD::BR_CC, MVT::Other, Expand); + + // + // Handling of vector operations. + // + + // Custom lower v4i16 load only. Let v4i16 store to be + // promoted for now. + promoteLdStType(MVT::v4i8, MVT::i32); + promoteLdStType(MVT::v2i16, MVT::i32); + promoteLdStType(MVT::v8i8, MVT::i64); + promoteLdStType(MVT::v2i32, MVT::i64); + + setOperationAction(ISD::LOAD, MVT::v4i16, Custom); + setOperationAction(ISD::STORE, MVT::v4i16, Promote); + AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::i64); + AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::i64); + + // Set the action for vector operations to "expand", then override it with + // either "custom" or "legal" for specific cases. + static const unsigned VectExpOps[] = { + // Integer arithmetic: + ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV, + ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::ADDC, + ISD::SUBC, ISD::SADDO, ISD::UADDO, ISD::SSUBO, ISD::USUBO, + ISD::SMUL_LOHI, ISD::UMUL_LOHI, + // Logical/bit: + ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR, + ISD::CTPOP, ISD::CTLZ, ISD::CTTZ, ISD::CTLZ_ZERO_UNDEF, + ISD::CTTZ_ZERO_UNDEF, + // Floating point arithmetic/math functions: + ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV, + ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN, + ISD::FCOS, ISD::FPOWI, ISD::FPOW, ISD::FLOG, ISD::FLOG2, + ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC, + ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR, + ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS, + // Misc: + ISD::SELECT, ISD::ConstantPool, + // Vector: + ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR, + ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT, + ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR, + ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE + }; + + for (MVT VT : MVT::vector_valuetypes()) { + for (unsigned VectExpOp : VectExpOps) + setOperationAction(VectExpOp, VT, Expand); + + // Expand all extended loads and truncating stores: + for (MVT TargetVT : MVT::vector_valuetypes()) { + setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand); + setTruncStoreAction(VT, TargetVT, Expand); + } + + setOperationAction(ISD::SRA, VT, Custom); + setOperationAction(ISD::SHL, VT, Custom); + setOperationAction(ISD::SRL, VT, Custom); + } + + // Types natively supported: + for (MVT NativeVT : {MVT::v2i1, MVT::v4i1, MVT::v8i1, MVT::v32i1, MVT::v64i1, + MVT::v4i8, MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v1i32, + MVT::v2i32, MVT::v1i64}) { + setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom); + setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom); + setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom); + setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom); + setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom); + setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom); + + setOperationAction(ISD::ADD, NativeVT, Legal); + setOperationAction(ISD::SUB, NativeVT, Legal); + setOperationAction(ISD::MUL, NativeVT, Legal); + setOperationAction(ISD::AND, NativeVT, Legal); + setOperationAction(ISD::OR, NativeVT, Legal); + setOperationAction(ISD::XOR, NativeVT, Legal); + } + + setOperationAction(ISD::SETCC, MVT::v2i16, Custom); + setOperationAction(ISD::VSELECT, MVT::v2i16, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom); + setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom); + if (UseHVX) { + if (UseHVXSgl) { + setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i8, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i16, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i32, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i64, Custom); + } else if (UseHVXDbl) { + setOperationAction(ISD::CONCAT_VECTORS, MVT::v256i8, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i16, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i32, Custom); + setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i64, Custom); + } else { + llvm_unreachable("Unrecognized HVX mode"); + } + } + // Subtarget-specific operation actions. + // + if (Subtarget.hasV5TOps()) { + setOperationAction(ISD::FMA, MVT::f64, Expand); + setOperationAction(ISD::FADD, MVT::f64, Expand); + setOperationAction(ISD::FSUB, MVT::f64, Expand); + setOperationAction(ISD::FMUL, MVT::f64, Expand); + + setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); + setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote); + setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); + setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); + setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote); + setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); + setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); + setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote); + setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); + setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); + setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote); + setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); + + } else { // V4 + setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); + setOperationAction(ISD::SINT_TO_FP, MVT::i64, Expand); + setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); + setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); + setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand); + setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand); + setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand); + setOperationAction(ISD::FP_ROUND, MVT::f64, Expand); + setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); + + setOperationAction(ISD::CTPOP, MVT::i8, Expand); + setOperationAction(ISD::CTPOP, MVT::i16, Expand); + setOperationAction(ISD::CTPOP, MVT::i32, Expand); + setOperationAction(ISD::CTPOP, MVT::i64, Expand); + + // Expand these operations for both f32 and f64: + for (unsigned FPExpOpV4 : + {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FABS, ISD::FNEG, ISD::FMA}) { + setOperationAction(FPExpOpV4, MVT::f32, Expand); + setOperationAction(FPExpOpV4, MVT::f64, Expand); + } + + for (ISD::CondCode FPExpCCV4 : + {ISD::SETOEQ, ISD::SETOGT, ISD::SETOLT, ISD::SETOGE, ISD::SETOLE, + ISD::SETUO, ISD::SETO}) { + setCondCodeAction(FPExpCCV4, MVT::f32, Expand); + setCondCodeAction(FPExpCCV4, MVT::f64, Expand); + } + } + + // Handling of indexed loads/stores: default is "expand". + // + for (MVT LSXTy : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) { + setIndexedLoadAction(ISD::POST_INC, LSXTy, Legal); + setIndexedStoreAction(ISD::POST_INC, LSXTy, Legal); + } + + if (UseHVXDbl) { + for (MVT VT : {MVT::v128i8, MVT::v64i16, MVT::v32i32, MVT::v16i64}) { + setIndexedLoadAction(ISD::POST_INC, VT, Legal); + setIndexedStoreAction(ISD::POST_INC, VT, Legal); + } + } + + computeRegisterProperties(&HRI); + + // + // Library calls for unsupported operations + // + bool FastMath = EnableFastMath; + + setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3"); + setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3"); + setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3"); + setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3"); + setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3"); + setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3"); + setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3"); + setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3"); + + setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf"); + setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf"); + setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti"); + setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti"); + setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti"); + setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti"); + + if (IsV4) { + // Handle single-precision floating point operations on V4. + if (FastMath) { + setLibcallName(RTLIB::ADD_F32, "__hexagon_fast_addsf3"); + setLibcallName(RTLIB::SUB_F32, "__hexagon_fast_subsf3"); + setLibcallName(RTLIB::MUL_F32, "__hexagon_fast_mulsf3"); + setLibcallName(RTLIB::OGT_F32, "__hexagon_fast_gtsf2"); + setLibcallName(RTLIB::OLT_F32, "__hexagon_fast_ltsf2"); + // Double-precision compares. + setLibcallName(RTLIB::OGT_F64, "__hexagon_fast_gtdf2"); + setLibcallName(RTLIB::OLT_F64, "__hexagon_fast_ltdf2"); + } else { + setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3"); + setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3"); + setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3"); + setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2"); + setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2"); + // Double-precision compares. + setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2"); + setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2"); + } + } + + // This is the only fast library function for sqrtd. + if (FastMath) + setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2"); + + // Prefix is: nothing for "slow-math", + // "fast2_" for V4 fast-math and V5+ fast-math double-precision + // (actually, keep fast-math and fast-math2 separate for now) + if (FastMath) { + setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3"); + setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3"); + setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3"); + setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3"); + // Calling __hexagon_fast2_divsf3 with fast-math on V5 (ok). + setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3"); + } else { + setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3"); + setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3"); + setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3"); + setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3"); + setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3"); + } + + if (Subtarget.hasV5TOps()) { + if (FastMath) + setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf"); + else + setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf"); + } else { + // V4 + setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf"); + setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf"); + setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf"); + setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf"); + setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf"); + setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf"); + setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf"); + setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf"); + setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi"); + setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi"); + setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi"); + setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi"); + setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi"); + setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi"); + setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi"); + setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi"); + setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2"); + setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2"); + setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2"); + setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2"); + setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2"); + setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2"); + setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2"); + setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2"); + setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2"); + setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2"); + setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2"); + setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2"); + setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2"); + setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2"); + } + + // These cause problems when the shift amount is non-constant. + setLibcallName(RTLIB::SHL_I128, nullptr); + setLibcallName(RTLIB::SRL_I128, nullptr); + setLibcallName(RTLIB::SRA_I128, nullptr); +} + + +const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const { + switch ((HexagonISD::NodeType)Opcode) { + case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA"; + case HexagonISD::ARGEXTEND: return "HexagonISD::ARGEXTEND"; + case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT"; + case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL"; + case HexagonISD::BARRIER: return "HexagonISD::BARRIER"; + case HexagonISD::CALLR: return "HexagonISD::CALLR"; + case HexagonISD::CALLv3nr: return "HexagonISD::CALLv3nr"; + case HexagonISD::CALLv3: return "HexagonISD::CALLv3"; + case HexagonISD::COMBINE: return "HexagonISD::COMBINE"; + case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP"; + case HexagonISD::CONST32: return "HexagonISD::CONST32"; + case HexagonISD::CP: return "HexagonISD::CP"; + case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH"; + case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN"; + case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU"; + case HexagonISD::EXTRACTURP: return "HexagonISD::EXTRACTURP"; + case HexagonISD::FCONST32: return "HexagonISD::FCONST32"; + case HexagonISD::INSERT: return "HexagonISD::INSERT"; + case HexagonISD::INSERTRP: return "HexagonISD::INSERTRP"; + case HexagonISD::JT: return "HexagonISD::JT"; + case HexagonISD::PACKHL: return "HexagonISD::PACKHL"; + case HexagonISD::POPCOUNT: return "HexagonISD::POPCOUNT"; + case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG"; + case HexagonISD::SHUFFEB: return "HexagonISD::SHUFFEB"; + case HexagonISD::SHUFFEH: return "HexagonISD::SHUFFEH"; + case HexagonISD::SHUFFOB: return "HexagonISD::SHUFFOB"; + case HexagonISD::SHUFFOH: return "HexagonISD::SHUFFOH"; + case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN"; + case HexagonISD::VCMPBEQ: return "HexagonISD::VCMPBEQ"; + case HexagonISD::VCMPBGT: return "HexagonISD::VCMPBGT"; + case HexagonISD::VCMPBGTU: return "HexagonISD::VCMPBGTU"; + case HexagonISD::VCMPHEQ: return "HexagonISD::VCMPHEQ"; + case HexagonISD::VCMPHGT: return "HexagonISD::VCMPHGT"; + case HexagonISD::VCMPHGTU: return "HexagonISD::VCMPHGTU"; + case HexagonISD::VCMPWEQ: return "HexagonISD::VCMPWEQ"; + case HexagonISD::VCMPWGT: return "HexagonISD::VCMPWGT"; + case HexagonISD::VCMPWGTU: return "HexagonISD::VCMPWGTU"; + case HexagonISD::VCOMBINE: return "HexagonISD::VCOMBINE"; + case HexagonISD::VSHLH: return "HexagonISD::VSHLH"; + case HexagonISD::VSHLW: return "HexagonISD::VSHLW"; + case HexagonISD::VSPLATB: return "HexagonISD::VSPLTB"; + case HexagonISD::VSPLATH: return "HexagonISD::VSPLATH"; + case HexagonISD::VSRAH: return "HexagonISD::VSRAH"; + case HexagonISD::VSRAW: return "HexagonISD::VSRAW"; + case HexagonISD::VSRLH: return "HexagonISD::VSRLH"; + case HexagonISD::VSRLW: return "HexagonISD::VSRLW"; + case HexagonISD::VSXTBH: return "HexagonISD::VSXTBH"; + case HexagonISD::VSXTBW: return "HexagonISD::VSXTBW"; + case HexagonISD::OP_END: break; + } + return nullptr; +} + +bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { + EVT MTy1 = EVT::getEVT(Ty1); + EVT MTy2 = EVT::getEVT(Ty2); + if (!MTy1.isSimple() || !MTy2.isSimple()) + return false; + return (MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32); +} + +bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { + if (!VT1.isSimple() || !VT2.isSimple()) + return false; + return (VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32); +} + +// shouldExpandBuildVectorWithShuffles +// Should we expand the build vector with shuffles? +bool +HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT, + unsigned DefinedValues) const { + + // Hexagon vector shuffle operates on element sizes of bytes or halfwords + EVT EltVT = VT.getVectorElementType(); + int EltBits = EltVT.getSizeInBits(); + if ((EltBits != 8) && (EltBits != 16)) + return false; + + return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); +} + +// LowerVECTOR_SHUFFLE - Lower a vector shuffle (V1, V2, V3). V1 and +// V2 are the two vectors to select data from, V3 is the permutation. +static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { + const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op); + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + SDLoc dl(Op); + EVT VT = Op.getValueType(); + + if (V2.getOpcode() == ISD::UNDEF) + V2 = V1; + + if (SVN->isSplat()) { + int Lane = SVN->getSplatIndex(); + if (Lane == -1) Lane = 0; + + // Test if V1 is a SCALAR_TO_VECTOR. + if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) + return createSplat(DAG, dl, VT, V1.getOperand(0)); + + // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR + // (and probably will turn into a SCALAR_TO_VECTOR once legalization + // reaches it). + if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR && + !isa<ConstantSDNode>(V1.getOperand(0))) { + bool IsScalarToVector = true; + for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i) + if (V1.getOperand(i).getOpcode() != ISD::UNDEF) { + IsScalarToVector = false; + break; + } + if (IsScalarToVector) + return createSplat(DAG, dl, VT, V1.getOperand(0)); + } + return createSplat(DAG, dl, VT, DAG.getConstant(Lane, dl, MVT::i32)); + } + + // FIXME: We need to support more general vector shuffles. See + // below the comment from the ARM backend that deals in the general + // case with the vector shuffles. For now, let expand handle these. + return SDValue(); + + // If the shuffle is not directly supported and it has 4 elements, use + // the PerfectShuffle-generated table to synthesize it from other shuffles. +} + +// If BUILD_VECTOR has same base element repeated several times, +// report true. +static bool isCommonSplatElement(BuildVectorSDNode *BVN) { + unsigned NElts = BVN->getNumOperands(); + SDValue V0 = BVN->getOperand(0); + + for (unsigned i = 1, e = NElts; i != e; ++i) { + if (BVN->getOperand(i) != V0) + return false; + } + return true; +} + +// LowerVECTOR_SHIFT - Lower a vector shift. Try to convert +// <VT> = SHL/SRA/SRL <VT> by <VT> to Hexagon specific +// <VT> = SHL/SRA/SRL <VT> by <IT/i32>. +static SDValue LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) { + BuildVectorSDNode *BVN = 0; + SDValue V1 = Op.getOperand(0); + SDValue V2 = Op.getOperand(1); + SDValue V3; + SDLoc dl(Op); + EVT VT = Op.getValueType(); + + if ((BVN = dyn_cast<BuildVectorSDNode>(V1.getNode())) && + isCommonSplatElement(BVN)) + V3 = V2; + else if ((BVN = dyn_cast<BuildVectorSDNode>(V2.getNode())) && + isCommonSplatElement(BVN)) + V3 = V1; + else + return SDValue(); + + SDValue CommonSplat = BVN->getOperand(0); + SDValue Result; + + if (VT.getSimpleVT() == MVT::v4i16) { + switch (Op.getOpcode()) { + case ISD::SRA: + Result = DAG.getNode(HexagonISD::VSRAH, dl, VT, V3, CommonSplat); + break; + case ISD::SHL: + Result = DAG.getNode(HexagonISD::VSHLH, dl, VT, V3, CommonSplat); + break; + case ISD::SRL: + Result = DAG.getNode(HexagonISD::VSRLH, dl, VT, V3, CommonSplat); + break; + default: + return SDValue(); + } + } else if (VT.getSimpleVT() == MVT::v2i32) { + switch (Op.getOpcode()) { + case ISD::SRA: + Result = DAG.getNode(HexagonISD::VSRAW, dl, VT, V3, CommonSplat); + break; + case ISD::SHL: + Result = DAG.getNode(HexagonISD::VSHLW, dl, VT, V3, CommonSplat); + break; + case ISD::SRL: + Result = DAG.getNode(HexagonISD::VSRLW, dl, VT, V3, CommonSplat); + break; + default: + return SDValue(); + } + } else { + return SDValue(); + } + + return DAG.getNode(ISD::BITCAST, dl, VT, Result); +} + +SDValue +HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { + BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); + SDLoc dl(Op); + EVT VT = Op.getValueType(); + + unsigned Size = VT.getSizeInBits(); + + // Only handle vectors of 64 bits or shorter. + if (Size > 64) + return SDValue(); + + APInt APSplatBits, APSplatUndef; + unsigned SplatBitSize; + bool HasAnyUndefs; + unsigned NElts = BVN->getNumOperands(); + + // Try to generate a SPLAT instruction. + if ((VT.getSimpleVT() == MVT::v4i8 || VT.getSimpleVT() == MVT::v4i16) && + (BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, + HasAnyUndefs, 0, true) && SplatBitSize <= 16)) { + unsigned SplatBits = APSplatBits.getZExtValue(); + int32_t SextVal = ((int32_t) (SplatBits << (32 - SplatBitSize)) >> + (32 - SplatBitSize)); + return createSplat(DAG, dl, VT, DAG.getConstant(SextVal, dl, MVT::i32)); + } + + // Try to generate COMBINE to build v2i32 vectors. + if (VT.getSimpleVT() == MVT::v2i32) { + SDValue V0 = BVN->getOperand(0); + SDValue V1 = BVN->getOperand(1); + + if (V0.getOpcode() == ISD::UNDEF) + V0 = DAG.getConstant(0, dl, MVT::i32); + if (V1.getOpcode() == ISD::UNDEF) + V1 = DAG.getConstant(0, dl, MVT::i32); + + ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(V0); + ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(V1); + // If the element isn't a constant, it is in a register: + // generate a COMBINE Register Register instruction. + if (!C0 || !C1) + return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0); + + // If one of the operands is an 8 bit integer constant, generate + // a COMBINE Immediate Immediate instruction. + if (isInt<8>(C0->getSExtValue()) || + isInt<8>(C1->getSExtValue())) + return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0); + } + + // Try to generate a S2_packhl to build v2i16 vectors. + if (VT.getSimpleVT() == MVT::v2i16) { + for (unsigned i = 0, e = NElts; i != e; ++i) { + if (BVN->getOperand(i).getOpcode() == ISD::UNDEF) + continue; + ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(BVN->getOperand(i)); + // If the element isn't a constant, it is in a register: + // generate a S2_packhl instruction. + if (!Cst) { + SDValue pack = DAG.getNode(HexagonISD::PACKHL, dl, MVT::v4i16, + BVN->getOperand(1), BVN->getOperand(0)); + + return DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::v2i16, + pack); + } + } + } + + // In the general case, generate a CONST32 or a CONST64 for constant vectors, + // and insert_vector_elt for all the other cases. + uint64_t Res = 0; + unsigned EltSize = Size / NElts; + SDValue ConstVal; + uint64_t Mask = ~uint64_t(0ULL) >> (64 - EltSize); + bool HasNonConstantElements = false; + + for (unsigned i = 0, e = NElts; i != e; ++i) { + // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon's + // combine, const64, etc. are Big Endian. + unsigned OpIdx = NElts - i - 1; + SDValue Operand = BVN->getOperand(OpIdx); + if (Operand.getOpcode() == ISD::UNDEF) + continue; + + int64_t Val = 0; + if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Operand)) + Val = Cst->getSExtValue(); + else + HasNonConstantElements = true; + + Val &= Mask; + Res = (Res << EltSize) | Val; + } + + if (Size == 64) + ConstVal = DAG.getConstant(Res, dl, MVT::i64); + else + ConstVal = DAG.getConstant(Res, dl, MVT::i32); + + // When there are non constant operands, add them with INSERT_VECTOR_ELT to + // ConstVal, the constant part of the vector. + if (HasNonConstantElements) { + EVT EltVT = VT.getVectorElementType(); + SDValue Width = DAG.getConstant(EltVT.getSizeInBits(), dl, MVT::i64); + SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width, + DAG.getConstant(32, dl, MVT::i64)); + + for (unsigned i = 0, e = NElts; i != e; ++i) { + // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon + // is Big Endian. + unsigned OpIdx = NElts - i - 1; + SDValue Operand = BVN->getOperand(OpIdx); + if (isa<ConstantSDNode>(Operand)) + // This operand is already in ConstVal. + continue; + + if (VT.getSizeInBits() == 64 && + Operand.getValueType().getSizeInBits() == 32) { + SDValue C = DAG.getConstant(0, dl, MVT::i32); + Operand = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Operand); + } + + SDValue Idx = DAG.getConstant(OpIdx, dl, MVT::i64); + SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, Width); + SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset); + const SDValue Ops[] = {ConstVal, Operand, Combined}; + + if (VT.getSizeInBits() == 32) + ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops); + else + ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops); + } + } + + return DAG.getNode(ISD::BITCAST, dl, VT, ConstVal); +} + +SDValue +HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op, + SelectionDAG &DAG) const { + SDLoc dl(Op); + bool UseHVX = Subtarget.useHVXOps(); + EVT VT = Op.getValueType(); + unsigned NElts = Op.getNumOperands(); + SDValue Vec0 = Op.getOperand(0); + EVT VecVT = Vec0.getValueType(); + unsigned Width = VecVT.getSizeInBits(); + + if (NElts == 2) { + MVT ST = VecVT.getSimpleVT(); + // We are trying to concat two v2i16 to a single v4i16, or two v4i8 + // into a single v8i8. + if (ST == MVT::v2i16 || ST == MVT::v4i8) + return DAG.getNode(HexagonISD::COMBINE, dl, VT, Op.getOperand(1), Vec0); + + if (UseHVX) { + assert((Width == 64*8 && Subtarget.useHVXSglOps()) || + (Width == 128*8 && Subtarget.useHVXDblOps())); + SDValue Vec1 = Op.getOperand(1); + MVT OpTy = Subtarget.useHVXSglOps() ? MVT::v16i32 : MVT::v32i32; + MVT ReTy = Subtarget.useHVXSglOps() ? MVT::v32i32 : MVT::v64i32; + SDValue B0 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec0); + SDValue B1 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec1); + SDValue VC = DAG.getNode(HexagonISD::VCOMBINE, dl, ReTy, B1, B0); + return DAG.getNode(ISD::BITCAST, dl, VT, VC); + } + } + + if (VT.getSizeInBits() != 32 && VT.getSizeInBits() != 64) + return SDValue(); + + SDValue C0 = DAG.getConstant(0, dl, MVT::i64); + SDValue C32 = DAG.getConstant(32, dl, MVT::i64); + SDValue W = DAG.getConstant(Width, dl, MVT::i64); + // Create the "width" part of the argument to insert_rp/insertp_rp. + SDValue S = DAG.getNode(ISD::SHL, dl, MVT::i64, W, C32); + SDValue V = C0; + + for (unsigned i = 0, e = NElts; i != e; ++i) { + unsigned N = NElts-i-1; + SDValue OpN = Op.getOperand(N); + + if (VT.getSizeInBits() == 64 && OpN.getValueType().getSizeInBits() == 32) { + SDValue C = DAG.getConstant(0, dl, MVT::i32); + OpN = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, OpN); + } + SDValue Idx = DAG.getConstant(N, dl, MVT::i64); + SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, W); + SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, S, Offset); + if (VT.getSizeInBits() == 32) + V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, {V, OpN, Or}); + else + V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, {V, OpN, Or}); + } + + return DAG.getNode(ISD::BITCAST, dl, VT, V); +} + +SDValue +HexagonTargetLowering::LowerEXTRACT_VECTOR(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + int VTN = VT.isVector() ? VT.getVectorNumElements() : 1; + SDLoc dl(Op); + SDValue Idx = Op.getOperand(1); + SDValue Vec = Op.getOperand(0); + EVT VecVT = Vec.getValueType(); + EVT EltVT = VecVT.getVectorElementType(); + int EltSize = EltVT.getSizeInBits(); + SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT ? + EltSize : VTN * EltSize, dl, MVT::i64); + + // Constant element number. + if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Idx)) { + uint64_t X = CI->getZExtValue(); + SDValue Offset = DAG.getConstant(X * EltSize, dl, MVT::i32); + const SDValue Ops[] = {Vec, Width, Offset}; + + ConstantSDNode *CW = dyn_cast<ConstantSDNode>(Width); + assert(CW && "Non constant width in LowerEXTRACT_VECTOR"); + + SDValue N; + MVT SVT = VecVT.getSimpleVT(); + uint64_t W = CW->getZExtValue(); + + if (W == 32) { + // Translate this node into EXTRACT_SUBREG. + unsigned Subreg = (X == 0) ? Hexagon::subreg_loreg : 0; + + if (X == 0) + Subreg = Hexagon::subreg_loreg; + else if (SVT == MVT::v2i32 && X == 1) + Subreg = Hexagon::subreg_hireg; + else if (SVT == MVT::v4i16 && X == 2) + Subreg = Hexagon::subreg_hireg; + else if (SVT == MVT::v8i8 && X == 4) + Subreg = Hexagon::subreg_hireg; + else + llvm_unreachable("Bad offset"); + N = DAG.getTargetExtractSubreg(Subreg, dl, MVT::i32, Vec); + + } else if (VecVT.getSizeInBits() == 32) { + N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i32, Ops); + } else { + N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i64, Ops); + if (VT.getSizeInBits() == 32) + N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N); + } + + return DAG.getNode(ISD::BITCAST, dl, VT, N); + } + + // Variable element number. + SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx, + DAG.getConstant(EltSize, dl, MVT::i32)); + SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width, + DAG.getConstant(32, dl, MVT::i64)); + SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset); + + const SDValue Ops[] = {Vec, Combined}; + + SDValue N; + if (VecVT.getSizeInBits() == 32) { + N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i32, Ops); + } else { + N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i64, Ops); + if (VT.getSizeInBits() == 32) + N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N); + } + return DAG.getNode(ISD::BITCAST, dl, VT, N); +} + +SDValue +HexagonTargetLowering::LowerINSERT_VECTOR(SDValue Op, + SelectionDAG &DAG) const { + EVT VT = Op.getValueType(); + int VTN = VT.isVector() ? VT.getVectorNumElements() : 1; + SDLoc dl(Op); + SDValue Vec = Op.getOperand(0); + SDValue Val = Op.getOperand(1); + SDValue Idx = Op.getOperand(2); + EVT VecVT = Vec.getValueType(); + EVT EltVT = VecVT.getVectorElementType(); + int EltSize = EltVT.getSizeInBits(); + SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::INSERT_VECTOR_ELT ? + EltSize : VTN * EltSize, dl, MVT::i64); + + if (ConstantSDNode *C = cast<ConstantSDNode>(Idx)) { + SDValue Offset = DAG.getConstant(C->getSExtValue() * EltSize, dl, MVT::i32); + const SDValue Ops[] = {Vec, Val, Width, Offset}; + + SDValue N; + if (VT.getSizeInBits() == 32) + N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, Ops); + else + N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, Ops); + + return DAG.getNode(ISD::BITCAST, dl, VT, N); + } + + // Variable element number. + SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx, + DAG.getConstant(EltSize, dl, MVT::i32)); + SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width, + DAG.getConstant(32, dl, MVT::i64)); + SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset); + + if (VT.getSizeInBits() == 64 && + Val.getValueType().getSizeInBits() == 32) { + SDValue C = DAG.getConstant(0, dl, MVT::i32); + Val = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Val); + } + + const SDValue Ops[] = {Vec, Val, Combined}; + + SDValue N; + if (VT.getSizeInBits() == 32) + N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops); + else + N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops); + + return DAG.getNode(ISD::BITCAST, dl, VT, N); +} + +bool +HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { + // Assuming the caller does not have either a signext or zeroext modifier, and + // only one value is accepted, any reasonable truncation is allowed. + if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) + return false; + + // FIXME: in principle up to 64-bit could be made safe, but it would be very + // fragile at the moment: any support for multiple value returns would be + // liable to disallow tail calls involving i64 -> iN truncation in many cases. + return Ty1->getPrimitiveSizeInBits() <= 32; +} + +SDValue +HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { + SDValue Chain = Op.getOperand(0); + SDValue Offset = Op.getOperand(1); + SDValue Handler = Op.getOperand(2); + SDLoc dl(Op); + auto PtrVT = getPointerTy(DAG.getDataLayout()); + + // Mark function as containing a call to EH_RETURN. + HexagonMachineFunctionInfo *FuncInfo = + DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>(); + FuncInfo->setHasEHReturn(); + + unsigned OffsetReg = Hexagon::R28; + + SDValue StoreAddr = + DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT), + DAG.getIntPtrConstant(4, dl)); + Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(), + false, false, 0); + Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset); + + // Not needed we already use it as explict input to EH_RETURN. + // MF.getRegInfo().addLiveOut(OffsetReg); + + return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain); +} + +SDValue +HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { + unsigned Opc = Op.getOpcode(); + switch (Opc) { + default: +#ifndef NDEBUG + Op.getNode()->dumpr(&DAG); + if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END) + errs() << "Check for a non-legal type in this operation\n"; +#endif + llvm_unreachable("Should not custom lower this!"); + case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); + case ISD::INSERT_SUBVECTOR: return LowerINSERT_VECTOR(Op, DAG); + case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR(Op, DAG); + case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_VECTOR(Op, DAG); + case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR(Op, DAG); + case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); + case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); + case ISD::SRA: + case ISD::SHL: + case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG); + case ISD::ConstantPool: return LowerConstantPool(Op, DAG); + case ISD::JumpTable: return LowerJumpTable(Op, DAG); + case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); + // Frame & Return address. Currently unimplemented. + case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); + case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); + case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); + case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG); + case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); + case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); + case ISD::VASTART: return LowerVASTART(Op, DAG); + // Custom lower some vector loads. + case ISD::LOAD: return LowerLOAD(Op, DAG); + case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); + case ISD::SETCC: return LowerSETCC(Op, DAG); + case ISD::VSELECT: return LowerVSELECT(Op, DAG); + case ISD::CTPOP: return LowerCTPOP(Op, DAG); + case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); + case ISD::INLINEASM: return LowerINLINEASM(Op, DAG); + } +} + +/// Returns relocation base for the given PIC jumptable. +SDValue +HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table, + SelectionDAG &DAG) const { + int Idx = cast<JumpTableSDNode>(Table)->getIndex(); + EVT VT = Table.getValueType(); + SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL); + return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T); +} + +MachineBasicBlock * +HexagonTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, + MachineBasicBlock *BB) + const { + switch (MI->getOpcode()) { + case Hexagon::ALLOCA: { + MachineFunction *MF = BB->getParent(); + auto *FuncInfo = MF->getInfo<HexagonMachineFunctionInfo>(); + FuncInfo->addAllocaAdjustInst(MI); + return BB; + } + default: llvm_unreachable("Unexpected instr type to insert"); + } // switch +} + +//===----------------------------------------------------------------------===// +// Inline Assembly Support +//===----------------------------------------------------------------------===// + +std::pair<unsigned, const TargetRegisterClass *> +HexagonTargetLowering::getRegForInlineAsmConstraint( + const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { + bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps(); + + if (Constraint.size() == 1) { + switch (Constraint[0]) { + case 'r': // R0-R31 + switch (VT.SimpleTy) { + default: + llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type"); + case MVT::i32: + case MVT::i16: + case MVT::i8: + case MVT::f32: + return std::make_pair(0U, &Hexagon::IntRegsRegClass); + case MVT::i64: + case MVT::f64: + return std::make_pair(0U, &Hexagon::DoubleRegsRegClass); + } + case 'q': // q0-q3 + switch (VT.SimpleTy) { + default: + llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type"); + case MVT::v1024i1: + case MVT::v512i1: + case MVT::v32i16: + case MVT::v16i32: + case MVT::v64i8: + case MVT::v8i64: + return std::make_pair(0U, &Hexagon::VecPredRegsRegClass); + } + case 'v': // V0-V31 + switch (VT.SimpleTy) { + default: + llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type"); + case MVT::v16i32: + case MVT::v32i16: + case MVT::v64i8: + case MVT::v8i64: + return std::make_pair(0U, &Hexagon::VectorRegsRegClass); + case MVT::v32i32: + case MVT::v64i16: + case MVT::v16i64: + case MVT::v128i8: + if (Subtarget.hasV60TOps() && UseHVX && UseHVXDbl) + return std::make_pair(0U, &Hexagon::VectorRegs128BRegClass); + else + return std::make_pair(0U, &Hexagon::VecDblRegsRegClass); + case MVT::v256i8: + case MVT::v128i16: + case MVT::v64i32: + case MVT::v32i64: + return std::make_pair(0U, &Hexagon::VecDblRegs128BRegClass); + } + + default: + llvm_unreachable("Unknown asm register class"); + } + } + + return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); +} + +/// isFPImmLegal - Returns true if the target can instruction select the +/// specified FP immediate natively. If false, the legalizer will +/// materialize the FP immediate as a load from a constant pool. +bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { + return Subtarget.hasV5TOps(); +} + +/// isLegalAddressingMode - Return true if the addressing mode represented by +/// AM is legal for this target, for a load/store of the specified type. +bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL, + const AddrMode &AM, Type *Ty, + unsigned AS) const { + // Allows a signed-extended 11-bit immediate field. + if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1) + return false; + + // No global is ever allowed as a base. + if (AM.BaseGV) + return false; + + int Scale = AM.Scale; + if (Scale < 0) Scale = -Scale; + switch (Scale) { + case 0: // No scale reg, "r+i", "r", or just "i". + break; + default: // No scaled addressing mode. + return false; + } + return true; +} + +/// Return true if folding a constant offset with the given GlobalAddress is +/// legal. It is frequently not legal in PIC relocation models. +bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) + const { + return HTM.getRelocationModel() == Reloc::Static; +} + + +/// isLegalICmpImmediate - Return true if the specified immediate is legal +/// icmp immediate, that is the target has icmp instructions which can compare +/// a register against the immediate without having to materialize the +/// immediate into a register. +bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const { + return Imm >= -512 && Imm <= 511; +} + +/// IsEligibleForTailCallOptimization - Check whether the call is eligible +/// for tail call optimization. Targets which want to do tail call +/// optimization should implement this function. +bool HexagonTargetLowering::IsEligibleForTailCallOptimization( + SDValue Callee, + CallingConv::ID CalleeCC, + bool isVarArg, + bool isCalleeStructRet, + bool isCallerStructRet, + const SmallVectorImpl<ISD::OutputArg> &Outs, + const SmallVectorImpl<SDValue> &OutVals, + const SmallVectorImpl<ISD::InputArg> &Ins, + SelectionDAG& DAG) const { + const Function *CallerF = DAG.getMachineFunction().getFunction(); + CallingConv::ID CallerCC = CallerF->getCallingConv(); + bool CCMatch = CallerCC == CalleeCC; + + // *************************************************************************** + // Look for obvious safe cases to perform tail call optimization that do not + // require ABI changes. + // *************************************************************************** + + // If this is a tail call via a function pointer, then don't do it! + if (!(isa<GlobalAddressSDNode>(Callee)) && + !(isa<ExternalSymbolSDNode>(Callee))) { + return false; + } + + // Do not optimize if the calling conventions do not match. + if (!CCMatch) + return false; + + // Do not tail call optimize vararg calls. + if (isVarArg) + return false; + + // Also avoid tail call optimization if either caller or callee uses struct + // return semantics. + if (isCalleeStructRet || isCallerStructRet) + return false; + + // In addition to the cases above, we also disable Tail Call Optimization if + // the calling convention code that at least one outgoing argument needs to + // go on the stack. We cannot check that here because at this point that + // information is not available. + return true; +} + +// Return true when the given node fits in a positive half word. +bool llvm::isPositiveHalfWord(SDNode *N) { + ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); + if (CN && CN->getSExtValue() > 0 && isInt<16>(CN->getSExtValue())) + return true; + + switch (N->getOpcode()) { + default: + return false; + case ISD::SIGN_EXTEND_INREG: + return true; + } +} + +std::pair<const TargetRegisterClass*, uint8_t> +HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, + MVT VT) const { + const TargetRegisterClass *RRC = nullptr; + + uint8_t Cost = 1; + switch (VT.SimpleTy) { + default: + return TargetLowering::findRepresentativeClass(TRI, VT); + case MVT::v64i8: + case MVT::v32i16: + case MVT::v16i32: + case MVT::v8i64: + RRC = &Hexagon::VectorRegsRegClass; + break; + case MVT::v128i8: + case MVT::v64i16: + case MVT::v32i32: + case MVT::v16i64: + if (Subtarget.hasV60TOps() && Subtarget.useHVXOps() && + Subtarget.useHVXDblOps()) + RRC = &Hexagon::VectorRegs128BRegClass; + else + RRC = &Hexagon::VecDblRegsRegClass; + break; + case MVT::v256i8: + case MVT::v128i16: + case MVT::v64i32: + case MVT::v32i64: + RRC = &Hexagon::VecDblRegs128BRegClass; + break; + } + return std::make_pair(RRC, Cost); +} + +Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, + AtomicOrdering Ord) const { + BasicBlock *BB = Builder.GetInsertBlock(); + Module *M = BB->getParent()->getParent(); + Type *Ty = cast<PointerType>(Addr->getType())->getElementType(); + unsigned SZ = Ty->getPrimitiveSizeInBits(); + assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported"); + Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked + : Intrinsic::hexagon_L4_loadd_locked; + Value *Fn = Intrinsic::getDeclaration(M, IntID); + return Builder.CreateCall(Fn, Addr, "larx"); +} + +/// Perform a store-conditional operation to Addr. Return the status of the +/// store. This should be 0 if the store succeeded, non-zero otherwise. +Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder, + Value *Val, Value *Addr, AtomicOrdering Ord) const { + BasicBlock *BB = Builder.GetInsertBlock(); + Module *M = BB->getParent()->getParent(); + Type *Ty = Val->getType(); + unsigned SZ = Ty->getPrimitiveSizeInBits(); + assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported"); + Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked + : Intrinsic::hexagon_S4_stored_locked; + Value *Fn = Intrinsic::getDeclaration(M, IntID); + Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx"); + Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), ""); + Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext())); + return Ext; +} + +TargetLowering::AtomicExpansionKind +HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { + // Do not expand loads and stores that don't exceed 64 bits. + return LI->getType()->getPrimitiveSizeInBits() > 64 + ? AtomicExpansionKind::LLOnly + : AtomicExpansionKind::None; +} + +bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { + // Do not expand loads and stores that don't exceed 64 bits. + return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64; +} |