summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp2894
1 files changed, 2894 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp
new file mode 100644
index 0000000..0167090
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonISelLowering.cpp
@@ -0,0 +1,2894 @@
+//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the interfaces that Hexagon uses to lower LLVM code
+// into a selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "HexagonISelLowering.h"
+#include "HexagonMachineFunctionInfo.h"
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+#include "HexagonTargetObjectFile.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "hexagon-lowering"
+
+static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables",
+ cl::init(true), cl::Hidden,
+ cl::desc("Control jump table emission on Hexagon target"));
+
+static cl::opt<bool> EnableHexSDNodeSched("enable-hexagon-sdnode-sched",
+ cl::Hidden, cl::ZeroOrMore, cl::init(false),
+ cl::desc("Enable Hexagon SDNode scheduling"));
+
+static cl::opt<bool> EnableFastMath("ffast-math",
+ cl::Hidden, cl::ZeroOrMore, cl::init(false),
+ cl::desc("Enable Fast Math processing"));
+
+static cl::opt<int> MinimumJumpTables("minimum-jump-tables",
+ cl::Hidden, cl::ZeroOrMore, cl::init(5),
+ cl::desc("Set minimum jump tables"));
+
+static cl::opt<int> MaxStoresPerMemcpyCL("max-store-memcpy",
+ cl::Hidden, cl::ZeroOrMore, cl::init(6),
+ cl::desc("Max #stores to inline memcpy"));
+
+static cl::opt<int> MaxStoresPerMemcpyOptSizeCL("max-store-memcpy-Os",
+ cl::Hidden, cl::ZeroOrMore, cl::init(4),
+ cl::desc("Max #stores to inline memcpy"));
+
+static cl::opt<int> MaxStoresPerMemmoveCL("max-store-memmove",
+ cl::Hidden, cl::ZeroOrMore, cl::init(6),
+ cl::desc("Max #stores to inline memmove"));
+
+static cl::opt<int> MaxStoresPerMemmoveOptSizeCL("max-store-memmove-Os",
+ cl::Hidden, cl::ZeroOrMore, cl::init(4),
+ cl::desc("Max #stores to inline memmove"));
+
+static cl::opt<int> MaxStoresPerMemsetCL("max-store-memset",
+ cl::Hidden, cl::ZeroOrMore, cl::init(8),
+ cl::desc("Max #stores to inline memset"));
+
+static cl::opt<int> MaxStoresPerMemsetOptSizeCL("max-store-memset-Os",
+ cl::Hidden, cl::ZeroOrMore, cl::init(4),
+ cl::desc("Max #stores to inline memset"));
+
+
+namespace {
+class HexagonCCState : public CCState {
+ unsigned NumNamedVarArgParams;
+
+public:
+ HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
+ SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
+ int NumNamedVarArgParams)
+ : CCState(CC, isVarArg, MF, locs, C),
+ NumNamedVarArgParams(NumNamedVarArgParams) {}
+
+ unsigned getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
+};
+}
+
+// Implement calling convention for Hexagon.
+
+static bool IsHvxVectorType(MVT ty);
+
+static bool
+CC_Hexagon(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State);
+
+static bool
+CC_Hexagon32(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State);
+
+static bool
+CC_Hexagon64(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State);
+
+static bool
+CC_HexagonVector(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State);
+
+static bool
+RetCC_Hexagon(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State);
+
+static bool
+RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State);
+
+static bool
+RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State);
+
+static bool
+RetCC_HexagonVector(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State);
+
+static bool
+CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ HexagonCCState &HState = static_cast<HexagonCCState &>(State);
+
+ if (ValNo < HState.getNumNamedVarArgParams()) {
+ // Deal with named arguments.
+ return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
+ }
+
+ // Deal with un-named arguments.
+ unsigned ofst;
+ if (ArgFlags.isByVal()) {
+ // If pass-by-value, the size allocated on stack is decided
+ // by ArgFlags.getByValSize(), not by the size of LocVT.
+ ofst = State.AllocateStack(ArgFlags.getByValSize(),
+ ArgFlags.getByValAlign());
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
+ return false;
+ }
+ if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
+ LocVT = MVT::i32;
+ ValVT = MVT::i32;
+ if (ArgFlags.isSExt())
+ LocInfo = CCValAssign::SExt;
+ else if (ArgFlags.isZExt())
+ LocInfo = CCValAssign::ZExt;
+ else
+ LocInfo = CCValAssign::AExt;
+ }
+ if (LocVT == MVT::i32 || LocVT == MVT::f32) {
+ ofst = State.AllocateStack(4, 4);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
+ return false;
+ }
+ if (LocVT == MVT::i64 || LocVT == MVT::f64) {
+ ofst = State.AllocateStack(8, 8);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
+ return false;
+ }
+ if (LocVT == MVT::v2i64 || LocVT == MVT::v4i32 || LocVT == MVT::v8i16 ||
+ LocVT == MVT::v16i8) {
+ ofst = State.AllocateStack(16, 16);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
+ return false;
+ }
+ if (LocVT == MVT::v4i64 || LocVT == MVT::v8i32 || LocVT == MVT::v16i16 ||
+ LocVT == MVT::v32i8) {
+ ofst = State.AllocateStack(32, 32);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
+ return false;
+ }
+ if (LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 ||
+ LocVT == MVT::v64i8 || LocVT == MVT::v512i1) {
+ ofst = State.AllocateStack(64, 64);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
+ return false;
+ }
+ if (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 ||
+ LocVT == MVT::v128i8 || LocVT == MVT::v1024i1) {
+ ofst = State.AllocateStack(128, 128);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
+ return false;
+ }
+ if (LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 ||
+ LocVT == MVT::v256i8) {
+ ofst = State.AllocateStack(256, 256);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
+ return false;
+ }
+
+ llvm_unreachable(nullptr);
+}
+
+
+static bool CC_Hexagon (unsigned ValNo, MVT ValVT, MVT LocVT,
+ CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ if (ArgFlags.isByVal()) {
+ // Passed on stack.
+ unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(),
+ ArgFlags.getByValAlign());
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+ }
+
+ if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
+ LocVT = MVT::i32;
+ ValVT = MVT::i32;
+ if (ArgFlags.isSExt())
+ LocInfo = CCValAssign::SExt;
+ else if (ArgFlags.isZExt())
+ LocInfo = CCValAssign::ZExt;
+ else
+ LocInfo = CCValAssign::AExt;
+ } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) {
+ LocVT = MVT::i32;
+ LocInfo = CCValAssign::BCvt;
+ } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) {
+ LocVT = MVT::i64;
+ LocInfo = CCValAssign::BCvt;
+ }
+
+ if (LocVT == MVT::i32 || LocVT == MVT::f32) {
+ if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
+ return false;
+ }
+
+ if (LocVT == MVT::i64 || LocVT == MVT::f64) {
+ if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
+ return false;
+ }
+
+ if (LocVT == MVT::v8i32 || LocVT == MVT::v16i16 || LocVT == MVT::v32i8) {
+ unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 32);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+ }
+
+ if (IsHvxVectorType(LocVT)) {
+ if (!CC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
+ return false;
+ }
+
+ return true; // CC didn't match.
+}
+
+
+static bool CC_Hexagon32(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+
+ static const MCPhysReg RegList[] = {
+ Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
+ Hexagon::R5
+ };
+ if (unsigned Reg = State.AllocateReg(RegList)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+
+ unsigned Offset = State.AllocateStack(4, 4);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+}
+
+static bool CC_Hexagon64(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+
+ if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+
+ static const MCPhysReg RegList1[] = {
+ Hexagon::D1, Hexagon::D2
+ };
+ static const MCPhysReg RegList2[] = {
+ Hexagon::R1, Hexagon::R3
+ };
+ if (unsigned Reg = State.AllocateReg(RegList1, RegList2)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+
+ unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+}
+
+static bool CC_HexagonVector(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+
+ static const MCPhysReg VecLstS[] = { Hexagon::V0, Hexagon::V1,
+ Hexagon::V2, Hexagon::V3,
+ Hexagon::V4, Hexagon::V5,
+ Hexagon::V6, Hexagon::V7,
+ Hexagon::V8, Hexagon::V9,
+ Hexagon::V10, Hexagon::V11,
+ Hexagon::V12, Hexagon::V13,
+ Hexagon::V14, Hexagon::V15};
+ static const MCPhysReg VecLstD[] = { Hexagon::W0, Hexagon::W1,
+ Hexagon::W2, Hexagon::W3,
+ Hexagon::W4, Hexagon::W5,
+ Hexagon::W6, Hexagon::W7};
+ auto &MF = State.getMachineFunction();
+ auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ bool UseHVX = HST.useHVXOps();
+ bool UseHVXDbl = HST.useHVXDblOps();
+
+ if ((UseHVX && !UseHVXDbl) &&
+ (LocVT == MVT::v8i64 || LocVT == MVT::v16i32 || LocVT == MVT::v32i16 ||
+ LocVT == MVT::v64i8 || LocVT == MVT::v512i1)) {
+ if (unsigned Reg = State.AllocateReg(VecLstS)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ unsigned Offset = State.AllocateStack(64, 64);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+ }
+ if ((UseHVX && !UseHVXDbl) &&
+ (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 ||
+ LocVT == MVT::v128i8)) {
+ if (unsigned Reg = State.AllocateReg(VecLstD)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ unsigned Offset = State.AllocateStack(128, 128);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+ }
+ // 128B Mode
+ if ((UseHVX && UseHVXDbl) &&
+ (LocVT == MVT::v32i64 || LocVT == MVT::v64i32 || LocVT == MVT::v128i16 ||
+ LocVT == MVT::v256i8)) {
+ if (unsigned Reg = State.AllocateReg(VecLstD)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ unsigned Offset = State.AllocateStack(256, 256);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+ }
+ if ((UseHVX && UseHVXDbl) &&
+ (LocVT == MVT::v16i64 || LocVT == MVT::v32i32 || LocVT == MVT::v64i16 ||
+ LocVT == MVT::v128i8 || LocVT == MVT::v1024i1)) {
+ if (unsigned Reg = State.AllocateReg(VecLstS)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ unsigned Offset = State.AllocateStack(128, 128);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+ }
+ return true;
+}
+
+static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ auto &MF = State.getMachineFunction();
+ auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ bool UseHVX = HST.useHVXOps();
+ bool UseHVXDbl = HST.useHVXDblOps();
+
+ if (LocVT == MVT::i1 ||
+ LocVT == MVT::i8 ||
+ LocVT == MVT::i16) {
+ LocVT = MVT::i32;
+ ValVT = MVT::i32;
+ if (ArgFlags.isSExt())
+ LocInfo = CCValAssign::SExt;
+ else if (ArgFlags.isZExt())
+ LocInfo = CCValAssign::ZExt;
+ else
+ LocInfo = CCValAssign::AExt;
+ } else if (LocVT == MVT::v4i8 || LocVT == MVT::v2i16) {
+ LocVT = MVT::i32;
+ LocInfo = CCValAssign::BCvt;
+ } else if (LocVT == MVT::v8i8 || LocVT == MVT::v4i16 || LocVT == MVT::v2i32) {
+ LocVT = MVT::i64;
+ LocInfo = CCValAssign::BCvt;
+ } else if (LocVT == MVT::v64i8 || LocVT == MVT::v32i16 ||
+ LocVT == MVT::v16i32 || LocVT == MVT::v8i64 ||
+ LocVT == MVT::v512i1) {
+ LocVT = MVT::v16i32;
+ ValVT = MVT::v16i32;
+ LocInfo = CCValAssign::Full;
+ } else if (LocVT == MVT::v128i8 || LocVT == MVT::v64i16 ||
+ LocVT == MVT::v32i32 || LocVT == MVT::v16i64 ||
+ (LocVT == MVT::v1024i1 && UseHVX && UseHVXDbl)) {
+ LocVT = MVT::v32i32;
+ ValVT = MVT::v32i32;
+ LocInfo = CCValAssign::Full;
+ } else if (LocVT == MVT::v256i8 || LocVT == MVT::v128i16 ||
+ LocVT == MVT::v64i32 || LocVT == MVT::v32i64) {
+ LocVT = MVT::v64i32;
+ ValVT = MVT::v64i32;
+ LocInfo = CCValAssign::Full;
+ }
+ if (LocVT == MVT::i32 || LocVT == MVT::f32) {
+ if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
+ return false;
+ }
+
+ if (LocVT == MVT::i64 || LocVT == MVT::f64) {
+ if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
+ return false;
+ }
+ if (LocVT == MVT::v16i32 || LocVT == MVT::v32i32 || LocVT == MVT::v64i32) {
+ if (!RetCC_HexagonVector(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
+ return false;
+ }
+ return true; // CC didn't match.
+}
+
+static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+
+ if (LocVT == MVT::i32 || LocVT == MVT::f32) {
+ if (unsigned Reg = State.AllocateReg(Hexagon::R0)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ }
+
+ unsigned Offset = State.AllocateStack(4, 4);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+}
+
+static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ if (LocVT == MVT::i64 || LocVT == MVT::f64) {
+ if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ }
+
+ unsigned Offset = State.AllocateStack(8, 8);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+}
+
+static bool RetCC_HexagonVector(unsigned ValNo, MVT ValVT,
+ MVT LocVT, CCValAssign::LocInfo LocInfo,
+ ISD::ArgFlagsTy ArgFlags, CCState &State) {
+ auto &MF = State.getMachineFunction();
+ auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ bool UseHVX = HST.useHVXOps();
+ bool UseHVXDbl = HST.useHVXDblOps();
+
+ unsigned OffSiz = 64;
+ if (LocVT == MVT::v16i32) {
+ if (unsigned Reg = State.AllocateReg(Hexagon::V0)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ } else if (LocVT == MVT::v32i32) {
+ unsigned Req = (UseHVX && UseHVXDbl) ? Hexagon::V0 : Hexagon::W0;
+ if (unsigned Reg = State.AllocateReg(Req)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ OffSiz = 128;
+ } else if (LocVT == MVT::v64i32) {
+ if (unsigned Reg = State.AllocateReg(Hexagon::W0)) {
+ State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
+ return false;
+ }
+ OffSiz = 256;
+ }
+
+ unsigned Offset = State.AllocateStack(OffSiz, OffSiz);
+ State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
+ return false;
+}
+
+void HexagonTargetLowering::promoteLdStType(EVT VT, EVT PromotedLdStVT) {
+ if (VT != PromotedLdStVT) {
+ setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote);
+ AddPromotedToType(ISD::LOAD, VT.getSimpleVT(),
+ PromotedLdStVT.getSimpleVT());
+
+ setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote);
+ AddPromotedToType(ISD::STORE, VT.getSimpleVT(),
+ PromotedLdStVT.getSimpleVT());
+ }
+}
+
+SDValue
+HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
+const {
+ return SDValue();
+}
+
+/// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
+/// by "Src" to address "Dst" of size "Size". Alignment information is
+/// specified by the specific parameter attribute. The copy will be passed as
+/// a byval function parameter. Sometimes what we are copying is the end of a
+/// larger object, the part that does not fit in registers.
+static SDValue
+CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
+ ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
+ SDLoc dl) {
+
+ SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
+ return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
+ /*isVolatile=*/false, /*AlwaysInline=*/false,
+ /*isTailCall=*/false,
+ MachinePointerInfo(), MachinePointerInfo());
+}
+
+static bool IsHvxVectorType(MVT ty) {
+ return (ty == MVT::v8i64 || ty == MVT::v16i32 || ty == MVT::v32i16 ||
+ ty == MVT::v64i8 ||
+ ty == MVT::v16i64 || ty == MVT::v32i32 || ty == MVT::v64i16 ||
+ ty == MVT::v128i8 ||
+ ty == MVT::v32i64 || ty == MVT::v64i32 || ty == MVT::v128i16 ||
+ ty == MVT::v256i8 ||
+ ty == MVT::v512i1 || ty == MVT::v1024i1);
+}
+
+// LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
+// passed by value, the function prototype is modified to return void and
+// the value is stored in memory pointed by a pointer passed by caller.
+SDValue
+HexagonTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const {
+
+ // CCValAssign - represent the assignment of the return value to locations.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slot.
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+
+ // Analyze return values of ISD::RET
+ CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps(1, Chain);
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign &VA = RVLocs[i];
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
+
+ // Guarantee that all emitted copies are stuck together with flags.
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ RetOps[0] = Chain; // Update chain.
+
+ // Add the flag if we have it.
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
+}
+
+bool HexagonTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
+ // If either no tail call or told not to tail call at all, don't.
+ auto Attr =
+ CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
+ if (!CI->isTailCall() || Attr.getValueAsString() == "true")
+ return false;
+
+ return true;
+}
+
+/// LowerCallResult - Lower the result values of an ISD::CALL into the
+/// appropriate copies out of appropriate physical registers. This assumes that
+/// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
+/// being lowered. Returns a SDNode with the same number of values as the
+/// ISD::CALL.
+SDValue
+HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const
+ SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDValue Callee) const {
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext());
+
+ CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ Chain = DAG.getCopyFromReg(Chain, dl,
+ RVLocs[i].getLocReg(),
+ RVLocs[i].getValVT(), InFlag).getValue(1);
+ InFlag = Chain.getValue(2);
+ InVals.push_back(Chain.getValue(0));
+ }
+
+ return Chain;
+}
+
+/// LowerCall - Functions arguments are copied from virtual regs to
+/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
+SDValue
+HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &isTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool isVarArg = CLI.IsVarArg;
+ bool doesNotReturn = CLI.DoesNotReturn;
+
+ bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
+ MachineFunction &MF = DAG.getMachineFunction();
+ auto PtrVT = getPointerTy(MF.getDataLayout());
+
+ // Check for varargs.
+ int NumNamedVarArgParams = -1;
+ if (GlobalAddressSDNode *GAN = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = GAN->getGlobal();
+ Callee = DAG.getTargetGlobalAddress(GV, dl, MVT::i32);
+ if (const Function* F = dyn_cast<Function>(GV)) {
+ // If a function has zero args and is a vararg function, that's
+ // disallowed so it must be an undeclared function. Do not assume
+ // varargs if the callee is undefined.
+ if (F->isVarArg() && F->getFunctionType()->getNumParams() != 0)
+ NumNamedVarArgParams = F->getFunctionType()->getNumParams();
+ }
+ }
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ HexagonCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext(), NumNamedVarArgParams);
+
+ if (isVarArg)
+ CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg);
+ else
+ CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
+
+ auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
+ if (Attr.getValueAsString() == "true")
+ isTailCall = false;
+
+ if (isTailCall) {
+ bool StructAttrFlag = MF.getFunction()->hasStructRetAttr();
+ isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
+ isVarArg, IsStructRet,
+ StructAttrFlag,
+ Outs, OutVals, Ins, DAG);
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ if (VA.isMemLoc()) {
+ isTailCall = false;
+ break;
+ }
+ }
+ DEBUG(dbgs() << (isTailCall ? "Eligible for Tail Call\n"
+ : "Argument must be passed on stack. "
+ "Not eligible for Tail Call\n"));
+ }
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+ SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+
+ auto &HRI = *Subtarget.getRegisterInfo();
+ SDValue StackPtr =
+ DAG.getCopyFromReg(Chain, dl, HRI.getStackRegister(), PtrVT);
+
+ bool NeedsArgAlign = false;
+ unsigned LargestAlignSeen = 0;
+ // Walk the register/memloc assignments, inserting copies/loads.
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[i];
+ ISD::ArgFlagsTy Flags = Outs[i].Flags;
+ // Record if we need > 8 byte alignment on an argument.
+ bool ArgAlign = IsHvxVectorType(VA.getValVT());
+ NeedsArgAlign |= ArgAlign;
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default:
+ // Loc info must be one of Full, SExt, ZExt, or AExt.
+ llvm_unreachable("Unknown loc info!");
+ case CCValAssign::BCvt:
+ case CCValAssign::Full:
+ break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ if (VA.isMemLoc()) {
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ SDValue MemAddr = DAG.getConstant(LocMemOffset, dl,
+ StackPtr.getValueType());
+ MemAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, MemAddr);
+ if (ArgAlign)
+ LargestAlignSeen = std::max(LargestAlignSeen,
+ VA.getLocVT().getStoreSizeInBits() >> 3);
+ if (Flags.isByVal()) {
+ // The argument is a struct passed by value. According to LLVM, "Arg"
+ // is is pointer.
+ MemOpChains.push_back(CreateCopyOfByValArgument(Arg, MemAddr, Chain,
+ Flags, DAG, dl));
+ } else {
+ MachinePointerInfo LocPI = MachinePointerInfo::getStack(
+ DAG.getMachineFunction(), LocMemOffset);
+ SDValue S = DAG.getStore(Chain, dl, Arg, MemAddr, LocPI, false,
+ false, 0);
+ MemOpChains.push_back(S);
+ }
+ continue;
+ }
+
+ // Arguments that can be passed on register must be kept at RegsToPass
+ // vector.
+ if (VA.isRegLoc())
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ }
+
+ if (NeedsArgAlign && Subtarget.hasV60TOps()) {
+ DEBUG(dbgs() << "Function needs byte stack align due to call args\n");
+ MachineFrameInfo* MFI = DAG.getMachineFunction().getFrameInfo();
+ // V6 vectors passed by value have 64 or 128 byte alignment depending
+ // on whether we are 64 byte vector mode or 128 byte.
+ bool UseHVXDbl = Subtarget.useHVXDblOps();
+ assert(Subtarget.useHVXOps());
+ const unsigned ObjAlign = UseHVXDbl ? 128 : 64;
+ LargestAlignSeen = std::max(LargestAlignSeen, ObjAlign);
+ MFI->ensureMaxAlignment(LargestAlignSeen);
+ }
+ // Transform all store nodes into one single node because all store
+ // nodes are independent of each other.
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ if (!isTailCall) {
+ SDValue C = DAG.getConstant(NumBytes, dl, PtrVT, true);
+ Chain = DAG.getCALLSEQ_START(Chain, C, dl);
+ }
+
+ // Build a sequence of copy-to-reg nodes chained together with token
+ // chain and flag operands which copy the outgoing args into registers.
+ // The InFlag in necessary since all emitted instructions must be
+ // stuck together.
+ SDValue InFlag;
+ if (!isTailCall) {
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+ } else {
+ // For tail calls lower the arguments to the 'real' stack slot.
+ //
+ // Force all the incoming stack arguments to be loaded from the stack
+ // before any new outgoing arguments are stored to the stack, because the
+ // outgoing stack slots may alias the incoming argument stack slots, and
+ // the alias isn't otherwise explicit. This is slightly more conservative
+ // than necessary, because it means that each store effectively depends
+ // on every argument instead of just those arguments it would clobber.
+ //
+ // Do not flag preceding copytoreg stuff together with the following stuff.
+ InFlag = SDValue();
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+ InFlag = SDValue();
+ }
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
+ // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
+ // node so that legalize doesn't hack it.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, PtrVT);
+ } else if (ExternalSymbolSDNode *S =
+ dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ Callee = DAG.getTargetExternalSymbol(S->getSymbol(), PtrVT);
+ }
+
+ // Returns a chain & a flag for retval copy to use.
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are
+ // known live into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+ }
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ if (isTailCall) {
+ MF.getFrameInfo()->setHasTailCall();
+ return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
+ }
+
+ int OpCode = doesNotReturn ? HexagonISD::CALLv3nr : HexagonISD::CALLv3;
+ Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ // Create the CALLSEQ_END node.
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
+ DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
+ InVals, OutVals, Callee);
+}
+
+static bool getIndexedAddressParts(SDNode *Ptr, EVT VT,
+ bool isSEXTLoad, SDValue &Base,
+ SDValue &Offset, bool &isInc,
+ SelectionDAG &DAG) {
+ if (Ptr->getOpcode() != ISD::ADD)
+ return false;
+
+ auto &HST = static_cast<const HexagonSubtarget&>(DAG.getSubtarget());
+ bool UseHVX = HST.useHVXOps();
+ bool UseHVXDbl = HST.useHVXDblOps();
+
+ bool ValidHVXDblType =
+ (UseHVX && UseHVXDbl) && (VT == MVT::v32i32 || VT == MVT::v16i64 ||
+ VT == MVT::v64i16 || VT == MVT::v128i8);
+ bool ValidHVXType =
+ UseHVX && !UseHVXDbl && (VT == MVT::v16i32 || VT == MVT::v8i64 ||
+ VT == MVT::v32i16 || VT == MVT::v64i8);
+
+ if (ValidHVXDblType || ValidHVXType ||
+ VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
+ isInc = (Ptr->getOpcode() == ISD::ADD);
+ Base = Ptr->getOperand(0);
+ Offset = Ptr->getOperand(1);
+ // Ensure that Offset is a constant.
+ return (isa<ConstantSDNode>(Offset));
+ }
+
+ return false;
+}
+
+/// getPostIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if this node can be
+/// combined with a load / store to form a post-indexed load / store.
+bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
+ SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const
+{
+ EVT VT;
+ SDValue Ptr;
+ bool isSEXTLoad = false;
+
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ VT = LD->getMemoryVT();
+ isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ VT = ST->getMemoryVT();
+ if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) {
+ return false;
+ }
+ } else {
+ return false;
+ }
+
+ bool isInc = false;
+ bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
+ isInc, DAG);
+ if (isLegal) {
+ auto &HII = *Subtarget.getInstrInfo();
+ int32_t OffsetVal = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
+ if (HII.isValidAutoIncImm(VT, OffsetVal)) {
+ AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+SDValue
+HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
+ SDNode *Node = Op.getNode();
+ MachineFunction &MF = DAG.getMachineFunction();
+ auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
+ switch (Node->getOpcode()) {
+ case ISD::INLINEASM: {
+ unsigned NumOps = Node->getNumOperands();
+ if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
+ --NumOps; // Ignore the flag operand.
+
+ for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
+ if (FuncInfo.hasClobberLR())
+ break;
+ unsigned Flags =
+ cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
+ unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
+ ++i; // Skip the ID value.
+
+ switch (InlineAsm::getKind(Flags)) {
+ default: llvm_unreachable("Bad flags!");
+ case InlineAsm::Kind_RegDef:
+ case InlineAsm::Kind_RegUse:
+ case InlineAsm::Kind_Imm:
+ case InlineAsm::Kind_Clobber:
+ case InlineAsm::Kind_Mem: {
+ for (; NumVals; --NumVals, ++i) {}
+ break;
+ }
+ case InlineAsm::Kind_RegDefEarlyClobber: {
+ for (; NumVals; --NumVals, ++i) {
+ unsigned Reg =
+ cast<RegisterSDNode>(Node->getOperand(i))->getReg();
+
+ // Check it to be lr
+ const HexagonRegisterInfo *QRI = Subtarget.getRegisterInfo();
+ if (Reg == QRI->getRARegister()) {
+ FuncInfo.setHasClobberLR(true);
+ break;
+ }
+ }
+ break;
+ }
+ }
+ }
+ }
+ } // Node->getOpcode
+ return Op;
+}
+
+SDValue
+HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+ SDValue Align = Op.getOperand(2);
+ SDLoc dl(Op);
+
+ ConstantSDNode *AlignConst = dyn_cast<ConstantSDNode>(Align);
+ assert(AlignConst && "Non-constant Align in LowerDYNAMIC_STACKALLOC");
+
+ unsigned A = AlignConst->getSExtValue();
+ auto &HFI = *Subtarget.getFrameLowering();
+ // "Zero" means natural stack alignment.
+ if (A == 0)
+ A = HFI.getStackAlignment();
+
+ DEBUG({
+ dbgs () << LLVM_FUNCTION_NAME << " Align: " << A << " Size: ";
+ Size.getNode()->dump(&DAG);
+ dbgs() << "\n";
+ });
+
+ SDValue AC = DAG.getConstant(A, dl, MVT::i32);
+ SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other);
+ SDValue AA = DAG.getNode(HexagonISD::ALLOCA, dl, VTs, Chain, Size, AC);
+ if (Op.getNode()->getHasDebugValue())
+ DAG.TransferDbgValues(Op, AA);
+ return AA;
+}
+
+SDValue
+HexagonTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv,
+ bool isVarArg,
+ const
+ SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+const {
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineRegisterInfo &RegInfo = MF.getRegInfo();
+ auto &FuncInfo = *MF.getInfo<HexagonMachineFunctionInfo>();
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext());
+
+ CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
+
+ // For LLVM, in the case when returning a struct by value (>8byte),
+ // the first argument is a pointer that points to the location on caller's
+ // stack where the return value will be stored. For Hexagon, the location on
+ // caller's stack is passed only when the struct size is smaller than (and
+ // equal to) 8 bytes. If not, no address will be passed into callee and
+ // callee return the result direclty through R0/R1.
+
+ SmallVector<SDValue, 8> MemOps;
+ bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps();
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ ISD::ArgFlagsTy Flags = Ins[i].Flags;
+ unsigned ObjSize;
+ unsigned StackLocation;
+ int FI;
+
+ if ( (VA.isRegLoc() && !Flags.isByVal())
+ || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) {
+ // Arguments passed in registers
+ // 1. int, long long, ptr args that get allocated in register.
+ // 2. Large struct that gets an register to put its address in.
+ EVT RegVT = VA.getLocVT();
+ if (RegVT == MVT::i8 || RegVT == MVT::i16 ||
+ RegVT == MVT::i32 || RegVT == MVT::f32) {
+ unsigned VReg =
+ RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass);
+ RegInfo.addLiveIn(VA.getLocReg(), VReg);
+ InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
+ } else if (RegVT == MVT::i64 || RegVT == MVT::f64) {
+ unsigned VReg =
+ RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
+ RegInfo.addLiveIn(VA.getLocReg(), VReg);
+ InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
+
+ // Single Vector
+ } else if ((RegVT == MVT::v8i64 || RegVT == MVT::v16i32 ||
+ RegVT == MVT::v32i16 || RegVT == MVT::v64i8)) {
+ unsigned VReg =
+ RegInfo.createVirtualRegister(&Hexagon::VectorRegsRegClass);
+ RegInfo.addLiveIn(VA.getLocReg(), VReg);
+ InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
+ } else if (UseHVX && UseHVXDbl &&
+ ((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 ||
+ RegVT == MVT::v64i16 || RegVT == MVT::v128i8))) {
+ unsigned VReg =
+ RegInfo.createVirtualRegister(&Hexagon::VectorRegs128BRegClass);
+ RegInfo.addLiveIn(VA.getLocReg(), VReg);
+ InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
+
+ // Double Vector
+ } else if ((RegVT == MVT::v16i64 || RegVT == MVT::v32i32 ||
+ RegVT == MVT::v64i16 || RegVT == MVT::v128i8)) {
+ unsigned VReg =
+ RegInfo.createVirtualRegister(&Hexagon::VecDblRegsRegClass);
+ RegInfo.addLiveIn(VA.getLocReg(), VReg);
+ InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
+ } else if (UseHVX && UseHVXDbl &&
+ ((RegVT == MVT::v32i64 || RegVT == MVT::v64i32 ||
+ RegVT == MVT::v128i16 || RegVT == MVT::v256i8))) {
+ unsigned VReg =
+ RegInfo.createVirtualRegister(&Hexagon::VecDblRegs128BRegClass);
+ RegInfo.addLiveIn(VA.getLocReg(), VReg);
+ InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
+ } else if (RegVT == MVT::v512i1 || RegVT == MVT::v1024i1) {
+ assert(0 && "need to support VecPred regs");
+ unsigned VReg =
+ RegInfo.createVirtualRegister(&Hexagon::VecPredRegsRegClass);
+ RegInfo.addLiveIn(VA.getLocReg(), VReg);
+ InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
+ } else {
+ assert (0);
+ }
+ } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) {
+ assert (0 && "ByValSize must be bigger than 8 bytes");
+ } else {
+ // Sanity check.
+ assert(VA.isMemLoc());
+
+ if (Flags.isByVal()) {
+ // If it's a byval parameter, then we need to compute the
+ // "real" size, not the size of the pointer.
+ ObjSize = Flags.getByValSize();
+ } else {
+ ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3;
+ }
+
+ StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
+ // Create the frame index object for this incoming parameter...
+ FI = MFI->CreateFixedObject(ObjSize, StackLocation, true);
+
+ // Create the SelectionDAG nodes cordl, responding to a load
+ // from this parameter.
+ SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
+
+ if (Flags.isByVal()) {
+ // If it's a pass-by-value aggregate, then do not dereference the stack
+ // location. Instead, we should generate a reference to the stack
+ // location.
+ InVals.push_back(FIN);
+ } else {
+ InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
+ MachinePointerInfo(), false, false,
+ false, 0));
+ }
+ }
+ }
+
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
+
+ if (isVarArg) {
+ // This will point to the next argument passed via stack.
+ int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize,
+ HEXAGON_LRFP_SIZE +
+ CCInfo.getNextStackOffset(),
+ true);
+ FuncInfo.setVarArgsFrameIndex(FrameIndex);
+ }
+
+ return Chain;
+}
+
+SDValue
+HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
+ // VASTART stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ MachineFunction &MF = DAG.getMachineFunction();
+ HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
+ SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr,
+ Op.getOperand(1), MachinePointerInfo(SV), false,
+ false, 0);
+}
+
+// Creates a SPLAT instruction for a constant value VAL.
+static SDValue createSplat(SelectionDAG &DAG, SDLoc dl, EVT VT, SDValue Val) {
+ if (VT.getSimpleVT() == MVT::v4i8)
+ return DAG.getNode(HexagonISD::VSPLATB, dl, VT, Val);
+
+ if (VT.getSimpleVT() == MVT::v4i16)
+ return DAG.getNode(HexagonISD::VSPLATH, dl, VT, Val);
+
+ return SDValue();
+}
+
+static bool isSExtFree(SDValue N) {
+ // A sign-extend of a truncate of a sign-extend is free.
+ if (N.getOpcode() == ISD::TRUNCATE &&
+ N.getOperand(0).getOpcode() == ISD::AssertSext)
+ return true;
+ // We have sign-extended loads.
+ if (N.getOpcode() == ISD::LOAD)
+ return true;
+ return false;
+}
+
+SDValue HexagonTargetLowering::LowerCTPOP(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ SDValue InpVal = Op.getOperand(0);
+ if (isa<ConstantSDNode>(InpVal)) {
+ uint64_t V = cast<ConstantSDNode>(InpVal)->getZExtValue();
+ return DAG.getTargetConstant(countPopulation(V), dl, MVT::i64);
+ }
+ SDValue PopOut = DAG.getNode(HexagonISD::POPCOUNT, dl, MVT::i32, InpVal);
+ return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, PopOut);
+}
+
+SDValue HexagonTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDValue Cmp = Op.getOperand(2);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Cmp)->get();
+
+ EVT VT = Op.getValueType();
+ EVT LHSVT = LHS.getValueType();
+ EVT RHSVT = RHS.getValueType();
+
+ if (LHSVT == MVT::v2i16) {
+ assert(ISD::isSignedIntSetCC(CC) || ISD::isUnsignedIntSetCC(CC));
+ unsigned ExtOpc = ISD::isSignedIntSetCC(CC) ? ISD::SIGN_EXTEND
+ : ISD::ZERO_EXTEND;
+ SDValue LX = DAG.getNode(ExtOpc, dl, MVT::v2i32, LHS);
+ SDValue RX = DAG.getNode(ExtOpc, dl, MVT::v2i32, RHS);
+ SDValue SC = DAG.getNode(ISD::SETCC, dl, MVT::v2i1, LX, RX, Cmp);
+ return SC;
+ }
+
+ // Treat all other vector types as legal.
+ if (VT.isVector())
+ return Op;
+
+ // Equals and not equals should use sign-extend, not zero-extend, since
+ // we can represent small negative values in the compare instructions.
+ // The LLVM default is to use zero-extend arbitrarily in these cases.
+ if ((CC == ISD::SETEQ || CC == ISD::SETNE) &&
+ (RHSVT == MVT::i8 || RHSVT == MVT::i16) &&
+ (LHSVT == MVT::i8 || LHSVT == MVT::i16)) {
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
+ if (C && C->getAPIntValue().isNegative()) {
+ LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS);
+ RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS);
+ return DAG.getNode(ISD::SETCC, dl, Op.getValueType(),
+ LHS, RHS, Op.getOperand(2));
+ }
+ if (isSExtFree(LHS) || isSExtFree(RHS)) {
+ LHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, LHS);
+ RHS = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, RHS);
+ return DAG.getNode(ISD::SETCC, dl, Op.getValueType(),
+ LHS, RHS, Op.getOperand(2));
+ }
+ }
+ return SDValue();
+}
+
+SDValue
+HexagonTargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
+ SDValue PredOp = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1), Op2 = Op.getOperand(2);
+ EVT OpVT = Op1.getValueType();
+ SDLoc DL(Op);
+
+ if (OpVT == MVT::v2i16) {
+ SDValue X1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op1);
+ SDValue X2 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v2i32, Op2);
+ SDValue SL = DAG.getNode(ISD::VSELECT, DL, MVT::v2i32, PredOp, X1, X2);
+ SDValue TR = DAG.getNode(ISD::TRUNCATE, DL, MVT::v2i16, SL);
+ return TR;
+ }
+
+ return SDValue();
+}
+
+// Handle only specific vector loads.
+SDValue HexagonTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ SDLoc DL(Op);
+ LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
+ SDValue Chain = LoadNode->getChain();
+ SDValue Ptr = Op.getOperand(1);
+ SDValue LoweredLoad;
+ SDValue Result;
+ SDValue Base = LoadNode->getBasePtr();
+ ISD::LoadExtType Ext = LoadNode->getExtensionType();
+ unsigned Alignment = LoadNode->getAlignment();
+ SDValue LoadChain;
+
+ if(Ext == ISD::NON_EXTLOAD)
+ Ext = ISD::ZEXTLOAD;
+
+ if (VT == MVT::v4i16) {
+ if (Alignment == 2) {
+ SDValue Loads[4];
+ // Base load.
+ Loads[0] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Base,
+ LoadNode->getPointerInfo(), MVT::i16,
+ LoadNode->isVolatile(),
+ LoadNode->isNonTemporal(),
+ LoadNode->isInvariant(),
+ Alignment);
+ // Base+2 load.
+ SDValue Increment = DAG.getConstant(2, DL, MVT::i32);
+ Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment);
+ Loads[1] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr,
+ LoadNode->getPointerInfo(), MVT::i16,
+ LoadNode->isVolatile(),
+ LoadNode->isNonTemporal(),
+ LoadNode->isInvariant(),
+ Alignment);
+ // SHL 16, then OR base and base+2.
+ SDValue ShiftAmount = DAG.getConstant(16, DL, MVT::i32);
+ SDValue Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[1], ShiftAmount);
+ SDValue Tmp2 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[0]);
+ // Base + 4.
+ Increment = DAG.getConstant(4, DL, MVT::i32);
+ Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment);
+ Loads[2] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr,
+ LoadNode->getPointerInfo(), MVT::i16,
+ LoadNode->isVolatile(),
+ LoadNode->isNonTemporal(),
+ LoadNode->isInvariant(),
+ Alignment);
+ // Base + 6.
+ Increment = DAG.getConstant(6, DL, MVT::i32);
+ Ptr = DAG.getNode(ISD::ADD, DL, Base.getValueType(), Base, Increment);
+ Loads[3] = DAG.getExtLoad(Ext, DL, MVT::i32, Chain, Ptr,
+ LoadNode->getPointerInfo(), MVT::i16,
+ LoadNode->isVolatile(),
+ LoadNode->isNonTemporal(),
+ LoadNode->isInvariant(),
+ Alignment);
+ // SHL 16, then OR base+4 and base+6.
+ Tmp1 = DAG.getNode(ISD::SHL, DL, MVT::i32, Loads[3], ShiftAmount);
+ SDValue Tmp4 = DAG.getNode(ISD::OR, DL, MVT::i32, Tmp1, Loads[2]);
+ // Combine to i64. This could be optimised out later if we can
+ // affect reg allocation of this code.
+ Result = DAG.getNode(HexagonISD::COMBINE, DL, MVT::i64, Tmp4, Tmp2);
+ LoadChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
+ Loads[0].getValue(1), Loads[1].getValue(1),
+ Loads[2].getValue(1), Loads[3].getValue(1));
+ } else {
+ // Perform default type expansion.
+ Result = DAG.getLoad(MVT::i64, DL, Chain, Ptr, LoadNode->getPointerInfo(),
+ LoadNode->isVolatile(), LoadNode->isNonTemporal(),
+ LoadNode->isInvariant(), LoadNode->getAlignment());
+ LoadChain = Result.getValue(1);
+ }
+ } else
+ llvm_unreachable("Custom lowering unsupported load");
+
+ Result = DAG.getNode(ISD::BITCAST, DL, VT, Result);
+ // Since we pretend to lower a load, we need the original chain
+ // info attached to the result.
+ SDValue Ops[] = { Result, LoadChain };
+
+ return DAG.getMergeValues(Ops, DL);
+}
+
+
+SDValue
+HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
+ EVT ValTy = Op.getValueType();
+ ConstantPoolSDNode *CPN = cast<ConstantPoolSDNode>(Op);
+ unsigned Align = CPN->getAlignment();
+ Reloc::Model RM = HTM.getRelocationModel();
+ unsigned char TF = (RM == Reloc::PIC_) ? HexagonII::MO_PCREL : 0;
+
+ SDValue T;
+ if (CPN->isMachineConstantPoolEntry())
+ T = DAG.getTargetConstantPool(CPN->getMachineCPVal(), ValTy, Align, TF);
+ else
+ T = DAG.getTargetConstantPool(CPN->getConstVal(), ValTy, Align, TF);
+ if (RM == Reloc::PIC_)
+ return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), ValTy, T);
+ return DAG.getNode(HexagonISD::CP, SDLoc(Op), ValTy, T);
+}
+
+SDValue
+HexagonTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ int Idx = cast<JumpTableSDNode>(Op)->getIndex();
+ Reloc::Model RM = HTM.getRelocationModel();
+ if (RM == Reloc::PIC_) {
+ SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
+ return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), VT, T);
+ }
+
+ SDValue T = DAG.getTargetJumpTable(Idx, VT);
+ return DAG.getNode(HexagonISD::JT, SDLoc(Op), VT, T);
+}
+
+SDValue
+HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
+ const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo &MFI = *MF.getFrameInfo();
+ MFI.setReturnAddressIsTaken(true);
+
+ if (verifyReturnAddressArgumentIsConstant(Op, DAG))
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ if (Depth) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
+ return DAG.getLoad(VT, dl, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
+ MachinePointerInfo(), false, false, false, 0);
+ }
+
+ // Return LR, which contains the return address. Mark it an implicit live-in.
+ unsigned Reg = MF.addLiveIn(HRI.getRARegister(), getRegClassFor(MVT::i32));
+ return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
+}
+
+SDValue
+HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
+ const HexagonRegisterInfo &HRI = *Subtarget.getRegisterInfo();
+ MachineFrameInfo &MFI = *DAG.getMachineFunction().getFrameInfo();
+ MFI.setFrameAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
+ HRI.getFrameRegister(), VT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ return FrameAddr;
+}
+
+SDValue
+HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const {
+ SDLoc dl(Op);
+ return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
+}
+
+
+SDValue
+HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ auto *GAN = cast<GlobalAddressSDNode>(Op);
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ auto *GV = GAN->getGlobal();
+ int64_t Offset = GAN->getOffset();
+
+ auto &HLOF = *HTM.getObjFileLowering();
+ Reloc::Model RM = HTM.getRelocationModel();
+
+ if (RM == Reloc::Static) {
+ SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
+ if (HLOF.IsGlobalInSmallSection(GV, HTM))
+ return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, GA);
+ return DAG.getNode(HexagonISD::CONST32, dl, PtrVT, GA);
+ }
+
+ bool UsePCRel = GV->hasInternalLinkage() || GV->hasHiddenVisibility() ||
+ (GV->hasLocalLinkage() && !isa<Function>(GV));
+ if (UsePCRel) {
+ SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset,
+ HexagonII::MO_PCREL);
+ return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, GA);
+ }
+
+ // Use GOT index.
+ SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
+ SDValue GA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, HexagonII::MO_GOT);
+ SDValue Off = DAG.getConstant(Offset, dl, MVT::i32);
+ return DAG.getNode(HexagonISD::AT_GOT, dl, PtrVT, GOT, GA, Off);
+}
+
+// Specifies that for loads and stores VT can be promoted to PromotedLdStVT.
+SDValue
+HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+ SDLoc dl(Op);
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+
+ Reloc::Model RM = HTM.getRelocationModel();
+ if (RM == Reloc::Static) {
+ SDValue A = DAG.getTargetBlockAddress(BA, PtrVT);
+ return DAG.getNode(HexagonISD::CONST32_GP, dl, PtrVT, A);
+ }
+
+ SDValue A = DAG.getTargetBlockAddress(BA, PtrVT, 0, HexagonII::MO_PCREL);
+ return DAG.getNode(HexagonISD::AT_PCREL, dl, PtrVT, A);
+}
+
+SDValue
+HexagonTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG)
+ const {
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue GOTSym = DAG.getTargetExternalSymbol(HEXAGON_GOT_SYM_NAME, PtrVT,
+ HexagonII::MO_PCREL);
+ return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Op), PtrVT, GOTSym);
+}
+
+//===----------------------------------------------------------------------===//
+// TargetLowering Implementation
+//===----------------------------------------------------------------------===//
+
+HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
+ const HexagonSubtarget &ST)
+ : TargetLowering(TM), HTM(static_cast<const HexagonTargetMachine&>(TM)),
+ Subtarget(ST) {
+ bool IsV4 = !Subtarget.hasV5TOps();
+ auto &HRI = *Subtarget.getRegisterInfo();
+ bool UseHVX = Subtarget.useHVXOps();
+ bool UseHVXSgl = Subtarget.useHVXSglOps();
+ bool UseHVXDbl = Subtarget.useHVXDblOps();
+
+ setPrefLoopAlignment(4);
+ setPrefFunctionAlignment(4);
+ setMinFunctionAlignment(2);
+ setInsertFencesForAtomic(false);
+ setStackPointerRegisterToSaveRestore(HRI.getStackRegister());
+
+ if (EnableHexSDNodeSched)
+ setSchedulingPreference(Sched::VLIW);
+ else
+ setSchedulingPreference(Sched::Source);
+
+ // Limits for inline expansion of memcpy/memmove
+ MaxStoresPerMemcpy = MaxStoresPerMemcpyCL;
+ MaxStoresPerMemcpyOptSize = MaxStoresPerMemcpyOptSizeCL;
+ MaxStoresPerMemmove = MaxStoresPerMemmoveCL;
+ MaxStoresPerMemmoveOptSize = MaxStoresPerMemmoveOptSizeCL;
+ MaxStoresPerMemset = MaxStoresPerMemsetCL;
+ MaxStoresPerMemsetOptSize = MaxStoresPerMemsetOptSizeCL;
+
+ //
+ // Set up register classes.
+ //
+
+ addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
+ addRegisterClass(MVT::v2i1, &Hexagon::PredRegsRegClass); // bbbbaaaa
+ addRegisterClass(MVT::v4i1, &Hexagon::PredRegsRegClass); // ddccbbaa
+ addRegisterClass(MVT::v8i1, &Hexagon::PredRegsRegClass); // hgfedcba
+ addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
+ addRegisterClass(MVT::v4i8, &Hexagon::IntRegsRegClass);
+ addRegisterClass(MVT::v2i16, &Hexagon::IntRegsRegClass);
+ addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
+ addRegisterClass(MVT::v8i8, &Hexagon::DoubleRegsRegClass);
+ addRegisterClass(MVT::v4i16, &Hexagon::DoubleRegsRegClass);
+ addRegisterClass(MVT::v2i32, &Hexagon::DoubleRegsRegClass);
+
+ if (Subtarget.hasV5TOps()) {
+ addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
+ addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
+ }
+
+ if (Subtarget.hasV60TOps()) {
+ if (Subtarget.useHVXSglOps()) {
+ addRegisterClass(MVT::v64i8, &Hexagon::VectorRegsRegClass);
+ addRegisterClass(MVT::v32i16, &Hexagon::VectorRegsRegClass);
+ addRegisterClass(MVT::v16i32, &Hexagon::VectorRegsRegClass);
+ addRegisterClass(MVT::v8i64, &Hexagon::VectorRegsRegClass);
+ addRegisterClass(MVT::v128i8, &Hexagon::VecDblRegsRegClass);
+ addRegisterClass(MVT::v64i16, &Hexagon::VecDblRegsRegClass);
+ addRegisterClass(MVT::v32i32, &Hexagon::VecDblRegsRegClass);
+ addRegisterClass(MVT::v16i64, &Hexagon::VecDblRegsRegClass);
+ addRegisterClass(MVT::v512i1, &Hexagon::VecPredRegsRegClass);
+ } else if (Subtarget.useHVXDblOps()) {
+ addRegisterClass(MVT::v128i8, &Hexagon::VectorRegs128BRegClass);
+ addRegisterClass(MVT::v64i16, &Hexagon::VectorRegs128BRegClass);
+ addRegisterClass(MVT::v32i32, &Hexagon::VectorRegs128BRegClass);
+ addRegisterClass(MVT::v16i64, &Hexagon::VectorRegs128BRegClass);
+ addRegisterClass(MVT::v256i8, &Hexagon::VecDblRegs128BRegClass);
+ addRegisterClass(MVT::v128i16, &Hexagon::VecDblRegs128BRegClass);
+ addRegisterClass(MVT::v64i32, &Hexagon::VecDblRegs128BRegClass);
+ addRegisterClass(MVT::v32i64, &Hexagon::VecDblRegs128BRegClass);
+ addRegisterClass(MVT::v1024i1, &Hexagon::VecPredRegs128BRegClass);
+ }
+
+ }
+
+ //
+ // Handling of scalar operations.
+ //
+ // All operations default to "legal", except:
+ // - indexed loads and stores (pre-/post-incremented),
+ // - ANY_EXTEND_VECTOR_INREG, ATOMIC_CMP_SWAP_WITH_SUCCESS, CONCAT_VECTORS,
+ // ConstantFP, DEBUGTRAP, FCEIL, FCOPYSIGN, FEXP, FEXP2, FFLOOR, FGETSIGN,
+ // FLOG, FLOG2, FLOG10, FMAXNUM, FMINNUM, FNEARBYINT, FRINT, FROUND, TRAP,
+ // FTRUNC, PREFETCH, SIGN_EXTEND_VECTOR_INREG, ZERO_EXTEND_VECTOR_INREG,
+ // which default to "expand" for at least one type.
+
+ // Misc operations.
+ setOperationAction(ISD::ConstantFP, MVT::f32, Legal); // Default: expand
+ setOperationAction(ISD::ConstantFP, MVT::f64, Legal); // Default: expand
+
+ setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
+ setOperationAction(ISD::JumpTable, MVT::i32, Custom);
+ setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+ setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
+ setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
+ setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
+
+ // Custom legalize GlobalAddress nodes into CONST32.
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
+
+ // Hexagon needs to optimize cases with negative constants.
+ setOperationAction(ISD::SETCC, MVT::i8, Custom);
+ setOperationAction(ISD::SETCC, MVT::i16, Custom);
+
+ // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+ setOperationAction(ISD::VAARG, MVT::Other, Expand);
+
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
+
+ if (EmitJumpTables)
+ setMinimumJumpTableEntries(2);
+ else
+ setMinimumJumpTableEntries(MinimumJumpTables);
+ setOperationAction(ISD::BR_JT, MVT::Other, Expand);
+
+ // Hexagon has instructions for add/sub with carry. The problem with
+ // modeling these instructions is that they produce 2 results: Rdd and Px.
+ // To model the update of Px, we will have to use Defs[p0..p3] which will
+ // cause any predicate live range to spill. So, we pretend we dont't have
+ // these instructions.
+ setOperationAction(ISD::ADDE, MVT::i8, Expand);
+ setOperationAction(ISD::ADDE, MVT::i16, Expand);
+ setOperationAction(ISD::ADDE, MVT::i32, Expand);
+ setOperationAction(ISD::ADDE, MVT::i64, Expand);
+ setOperationAction(ISD::SUBE, MVT::i8, Expand);
+ setOperationAction(ISD::SUBE, MVT::i16, Expand);
+ setOperationAction(ISD::SUBE, MVT::i32, Expand);
+ setOperationAction(ISD::SUBE, MVT::i64, Expand);
+ setOperationAction(ISD::ADDC, MVT::i8, Expand);
+ setOperationAction(ISD::ADDC, MVT::i16, Expand);
+ setOperationAction(ISD::ADDC, MVT::i32, Expand);
+ setOperationAction(ISD::ADDC, MVT::i64, Expand);
+ setOperationAction(ISD::SUBC, MVT::i8, Expand);
+ setOperationAction(ISD::SUBC, MVT::i16, Expand);
+ setOperationAction(ISD::SUBC, MVT::i32, Expand);
+ setOperationAction(ISD::SUBC, MVT::i64, Expand);
+
+ // Only add and sub that detect overflow are the saturating ones.
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setOperationAction(ISD::UADDO, VT, Expand);
+ setOperationAction(ISD::SADDO, VT, Expand);
+ setOperationAction(ISD::USUBO, VT, Expand);
+ setOperationAction(ISD::SSUBO, VT, Expand);
+ }
+
+ setOperationAction(ISD::CTLZ, MVT::i8, Promote);
+ setOperationAction(ISD::CTLZ, MVT::i16, Promote);
+ setOperationAction(ISD::CTTZ, MVT::i8, Promote);
+ setOperationAction(ISD::CTTZ, MVT::i16, Promote);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8, Promote);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i8, Promote);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
+
+ // In V5, popcount can count # of 1s in i64 but returns i32.
+ // On V4 it will be expanded (set later).
+ setOperationAction(ISD::CTPOP, MVT::i8, Promote);
+ setOperationAction(ISD::CTPOP, MVT::i16, Promote);
+ setOperationAction(ISD::CTPOP, MVT::i32, Promote);
+ setOperationAction(ISD::CTPOP, MVT::i64, Custom);
+
+ // We custom lower i64 to i64 mul, so that it is not considered as a legal
+ // operation. There is a pattern that will match i64 mul and transform it
+ // to a series of instructions.
+ setOperationAction(ISD::MUL, MVT::i64, Expand);
+ setOperationAction(ISD::MULHS, MVT::i64, Expand);
+
+ for (unsigned IntExpOp :
+ { ISD::SDIV, ISD::UDIV, ISD::SREM, ISD::UREM,
+ ISD::SDIVREM, ISD::UDIVREM, ISD::ROTL, ISD::ROTR,
+ ISD::BSWAP, ISD::SHL_PARTS, ISD::SRA_PARTS, ISD::SRL_PARTS,
+ ISD::SMUL_LOHI, ISD::UMUL_LOHI }) {
+ setOperationAction(IntExpOp, MVT::i32, Expand);
+ setOperationAction(IntExpOp, MVT::i64, Expand);
+ }
+
+ for (unsigned FPExpOp :
+ {ISD::FDIV, ISD::FREM, ISD::FSQRT, ISD::FSIN, ISD::FCOS, ISD::FSINCOS,
+ ISD::FPOW, ISD::FCOPYSIGN}) {
+ setOperationAction(FPExpOp, MVT::f32, Expand);
+ setOperationAction(FPExpOp, MVT::f64, Expand);
+ }
+
+ // No extending loads from i32.
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
+ }
+ // Turn FP truncstore into trunc + store.
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+ // Turn FP extload into load/fextend.
+ for (MVT VT : MVT::fp_valuetypes())
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
+
+ // Expand BR_CC and SELECT_CC for all integer and fp types.
+ for (MVT VT : MVT::integer_valuetypes()) {
+ setOperationAction(ISD::BR_CC, VT, Expand);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+ }
+ for (MVT VT : MVT::fp_valuetypes()) {
+ setOperationAction(ISD::BR_CC, VT, Expand);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+ }
+ setOperationAction(ISD::BR_CC, MVT::Other, Expand);
+
+ //
+ // Handling of vector operations.
+ //
+
+ // Custom lower v4i16 load only. Let v4i16 store to be
+ // promoted for now.
+ promoteLdStType(MVT::v4i8, MVT::i32);
+ promoteLdStType(MVT::v2i16, MVT::i32);
+ promoteLdStType(MVT::v8i8, MVT::i64);
+ promoteLdStType(MVT::v2i32, MVT::i64);
+
+ setOperationAction(ISD::LOAD, MVT::v4i16, Custom);
+ setOperationAction(ISD::STORE, MVT::v4i16, Promote);
+ AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::i64);
+ AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::i64);
+
+ // Set the action for vector operations to "expand", then override it with
+ // either "custom" or "legal" for specific cases.
+ static const unsigned VectExpOps[] = {
+ // Integer arithmetic:
+ ISD::ADD, ISD::SUB, ISD::MUL, ISD::SDIV, ISD::UDIV,
+ ISD::SREM, ISD::UREM, ISD::SDIVREM, ISD::UDIVREM, ISD::ADDC,
+ ISD::SUBC, ISD::SADDO, ISD::UADDO, ISD::SSUBO, ISD::USUBO,
+ ISD::SMUL_LOHI, ISD::UMUL_LOHI,
+ // Logical/bit:
+ ISD::AND, ISD::OR, ISD::XOR, ISD::ROTL, ISD::ROTR,
+ ISD::CTPOP, ISD::CTLZ, ISD::CTTZ, ISD::CTLZ_ZERO_UNDEF,
+ ISD::CTTZ_ZERO_UNDEF,
+ // Floating point arithmetic/math functions:
+ ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FMA, ISD::FDIV,
+ ISD::FREM, ISD::FNEG, ISD::FABS, ISD::FSQRT, ISD::FSIN,
+ ISD::FCOS, ISD::FPOWI, ISD::FPOW, ISD::FLOG, ISD::FLOG2,
+ ISD::FLOG10, ISD::FEXP, ISD::FEXP2, ISD::FCEIL, ISD::FTRUNC,
+ ISD::FRINT, ISD::FNEARBYINT, ISD::FROUND, ISD::FFLOOR,
+ ISD::FMINNUM, ISD::FMAXNUM, ISD::FSINCOS,
+ // Misc:
+ ISD::SELECT, ISD::ConstantPool,
+ // Vector:
+ ISD::BUILD_VECTOR, ISD::SCALAR_TO_VECTOR,
+ ISD::EXTRACT_VECTOR_ELT, ISD::INSERT_VECTOR_ELT,
+ ISD::EXTRACT_SUBVECTOR, ISD::INSERT_SUBVECTOR,
+ ISD::CONCAT_VECTORS, ISD::VECTOR_SHUFFLE
+ };
+
+ for (MVT VT : MVT::vector_valuetypes()) {
+ for (unsigned VectExpOp : VectExpOps)
+ setOperationAction(VectExpOp, VT, Expand);
+
+ // Expand all extended loads and truncating stores:
+ for (MVT TargetVT : MVT::vector_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, TargetVT, VT, Expand);
+ setTruncStoreAction(VT, TargetVT, Expand);
+ }
+
+ setOperationAction(ISD::SRA, VT, Custom);
+ setOperationAction(ISD::SHL, VT, Custom);
+ setOperationAction(ISD::SRL, VT, Custom);
+ }
+
+ // Types natively supported:
+ for (MVT NativeVT : {MVT::v2i1, MVT::v4i1, MVT::v8i1, MVT::v32i1, MVT::v64i1,
+ MVT::v4i8, MVT::v8i8, MVT::v2i16, MVT::v4i16, MVT::v1i32,
+ MVT::v2i32, MVT::v1i64}) {
+ setOperationAction(ISD::BUILD_VECTOR, NativeVT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, NativeVT, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, NativeVT, Custom);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, NativeVT, Custom);
+ setOperationAction(ISD::INSERT_SUBVECTOR, NativeVT, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, NativeVT, Custom);
+
+ setOperationAction(ISD::ADD, NativeVT, Legal);
+ setOperationAction(ISD::SUB, NativeVT, Legal);
+ setOperationAction(ISD::MUL, NativeVT, Legal);
+ setOperationAction(ISD::AND, NativeVT, Legal);
+ setOperationAction(ISD::OR, NativeVT, Legal);
+ setOperationAction(ISD::XOR, NativeVT, Legal);
+ }
+
+ setOperationAction(ISD::SETCC, MVT::v2i16, Custom);
+ setOperationAction(ISD::VSELECT, MVT::v2i16, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i8, Custom);
+ if (UseHVX) {
+ if (UseHVXSgl) {
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i8, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i16, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i64, Custom);
+ } else if (UseHVXDbl) {
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v256i8, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v128i16, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i32, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i64, Custom);
+ } else {
+ llvm_unreachable("Unrecognized HVX mode");
+ }
+ }
+ // Subtarget-specific operation actions.
+ //
+ if (Subtarget.hasV5TOps()) {
+ setOperationAction(ISD::FMA, MVT::f64, Expand);
+ setOperationAction(ISD::FADD, MVT::f64, Expand);
+ setOperationAction(ISD::FSUB, MVT::f64, Expand);
+ setOperationAction(ISD::FMUL, MVT::f64, Expand);
+
+ setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
+
+ } else { // V4
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i64, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
+ setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);
+ setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);
+ setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand);
+ setOperationAction(ISD::FP_ROUND, MVT::f64, Expand);
+ setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
+
+ setOperationAction(ISD::CTPOP, MVT::i8, Expand);
+ setOperationAction(ISD::CTPOP, MVT::i16, Expand);
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+ setOperationAction(ISD::CTPOP, MVT::i64, Expand);
+
+ // Expand these operations for both f32 and f64:
+ for (unsigned FPExpOpV4 :
+ {ISD::FADD, ISD::FSUB, ISD::FMUL, ISD::FABS, ISD::FNEG, ISD::FMA}) {
+ setOperationAction(FPExpOpV4, MVT::f32, Expand);
+ setOperationAction(FPExpOpV4, MVT::f64, Expand);
+ }
+
+ for (ISD::CondCode FPExpCCV4 :
+ {ISD::SETOEQ, ISD::SETOGT, ISD::SETOLT, ISD::SETOGE, ISD::SETOLE,
+ ISD::SETUO, ISD::SETO}) {
+ setCondCodeAction(FPExpCCV4, MVT::f32, Expand);
+ setCondCodeAction(FPExpCCV4, MVT::f64, Expand);
+ }
+ }
+
+ // Handling of indexed loads/stores: default is "expand".
+ //
+ for (MVT LSXTy : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
+ setIndexedLoadAction(ISD::POST_INC, LSXTy, Legal);
+ setIndexedStoreAction(ISD::POST_INC, LSXTy, Legal);
+ }
+
+ if (UseHVXDbl) {
+ for (MVT VT : {MVT::v128i8, MVT::v64i16, MVT::v32i32, MVT::v16i64}) {
+ setIndexedLoadAction(ISD::POST_INC, VT, Legal);
+ setIndexedStoreAction(ISD::POST_INC, VT, Legal);
+ }
+ }
+
+ computeRegisterProperties(&HRI);
+
+ //
+ // Library calls for unsupported operations
+ //
+ bool FastMath = EnableFastMath;
+
+ setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
+ setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
+ setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
+ setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
+ setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
+ setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
+ setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
+ setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
+
+ setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
+ setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
+ setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
+ setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
+ setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
+ setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
+
+ if (IsV4) {
+ // Handle single-precision floating point operations on V4.
+ if (FastMath) {
+ setLibcallName(RTLIB::ADD_F32, "__hexagon_fast_addsf3");
+ setLibcallName(RTLIB::SUB_F32, "__hexagon_fast_subsf3");
+ setLibcallName(RTLIB::MUL_F32, "__hexagon_fast_mulsf3");
+ setLibcallName(RTLIB::OGT_F32, "__hexagon_fast_gtsf2");
+ setLibcallName(RTLIB::OLT_F32, "__hexagon_fast_ltsf2");
+ // Double-precision compares.
+ setLibcallName(RTLIB::OGT_F64, "__hexagon_fast_gtdf2");
+ setLibcallName(RTLIB::OLT_F64, "__hexagon_fast_ltdf2");
+ } else {
+ setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
+ setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
+ setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
+ setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
+ setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
+ // Double-precision compares.
+ setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");
+ setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
+ }
+ }
+
+ // This is the only fast library function for sqrtd.
+ if (FastMath)
+ setLibcallName(RTLIB::SQRT_F64, "__hexagon_fast2_sqrtdf2");
+
+ // Prefix is: nothing for "slow-math",
+ // "fast2_" for V4 fast-math and V5+ fast-math double-precision
+ // (actually, keep fast-math and fast-math2 separate for now)
+ if (FastMath) {
+ setLibcallName(RTLIB::ADD_F64, "__hexagon_fast_adddf3");
+ setLibcallName(RTLIB::SUB_F64, "__hexagon_fast_subdf3");
+ setLibcallName(RTLIB::MUL_F64, "__hexagon_fast_muldf3");
+ setLibcallName(RTLIB::DIV_F64, "__hexagon_fast_divdf3");
+ // Calling __hexagon_fast2_divsf3 with fast-math on V5 (ok).
+ setLibcallName(RTLIB::DIV_F32, "__hexagon_fast_divsf3");
+ } else {
+ setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
+ setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
+ setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
+ setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
+ setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
+ }
+
+ if (Subtarget.hasV5TOps()) {
+ if (FastMath)
+ setLibcallName(RTLIB::SQRT_F32, "__hexagon_fast2_sqrtf");
+ else
+ setLibcallName(RTLIB::SQRT_F32, "__hexagon_sqrtf");
+ } else {
+ // V4
+ setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
+ setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
+ setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
+ setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
+ setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
+ setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
+ setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
+ setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");
+ setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
+ setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
+ setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
+ setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
+ setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
+ setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
+ setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
+ setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
+ setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2");
+ setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2");
+ setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
+ setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
+ setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
+ setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
+ setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
+ setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
+ setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");
+ setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
+ setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2");
+ setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2");
+ setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2");
+ setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2");
+ }
+
+ // These cause problems when the shift amount is non-constant.
+ setLibcallName(RTLIB::SHL_I128, nullptr);
+ setLibcallName(RTLIB::SRL_I128, nullptr);
+ setLibcallName(RTLIB::SRA_I128, nullptr);
+}
+
+
+const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch ((HexagonISD::NodeType)Opcode) {
+ case HexagonISD::ALLOCA: return "HexagonISD::ALLOCA";
+ case HexagonISD::ARGEXTEND: return "HexagonISD::ARGEXTEND";
+ case HexagonISD::AT_GOT: return "HexagonISD::AT_GOT";
+ case HexagonISD::AT_PCREL: return "HexagonISD::AT_PCREL";
+ case HexagonISD::BARRIER: return "HexagonISD::BARRIER";
+ case HexagonISD::CALLR: return "HexagonISD::CALLR";
+ case HexagonISD::CALLv3nr: return "HexagonISD::CALLv3nr";
+ case HexagonISD::CALLv3: return "HexagonISD::CALLv3";
+ case HexagonISD::COMBINE: return "HexagonISD::COMBINE";
+ case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
+ case HexagonISD::CONST32: return "HexagonISD::CONST32";
+ case HexagonISD::CP: return "HexagonISD::CP";
+ case HexagonISD::DCFETCH: return "HexagonISD::DCFETCH";
+ case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
+ case HexagonISD::EXTRACTU: return "HexagonISD::EXTRACTU";
+ case HexagonISD::EXTRACTURP: return "HexagonISD::EXTRACTURP";
+ case HexagonISD::FCONST32: return "HexagonISD::FCONST32";
+ case HexagonISD::INSERT: return "HexagonISD::INSERT";
+ case HexagonISD::INSERTRP: return "HexagonISD::INSERTRP";
+ case HexagonISD::JT: return "HexagonISD::JT";
+ case HexagonISD::PACKHL: return "HexagonISD::PACKHL";
+ case HexagonISD::POPCOUNT: return "HexagonISD::POPCOUNT";
+ case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG";
+ case HexagonISD::SHUFFEB: return "HexagonISD::SHUFFEB";
+ case HexagonISD::SHUFFEH: return "HexagonISD::SHUFFEH";
+ case HexagonISD::SHUFFOB: return "HexagonISD::SHUFFOB";
+ case HexagonISD::SHUFFOH: return "HexagonISD::SHUFFOH";
+ case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN";
+ case HexagonISD::VCMPBEQ: return "HexagonISD::VCMPBEQ";
+ case HexagonISD::VCMPBGT: return "HexagonISD::VCMPBGT";
+ case HexagonISD::VCMPBGTU: return "HexagonISD::VCMPBGTU";
+ case HexagonISD::VCMPHEQ: return "HexagonISD::VCMPHEQ";
+ case HexagonISD::VCMPHGT: return "HexagonISD::VCMPHGT";
+ case HexagonISD::VCMPHGTU: return "HexagonISD::VCMPHGTU";
+ case HexagonISD::VCMPWEQ: return "HexagonISD::VCMPWEQ";
+ case HexagonISD::VCMPWGT: return "HexagonISD::VCMPWGT";
+ case HexagonISD::VCMPWGTU: return "HexagonISD::VCMPWGTU";
+ case HexagonISD::VCOMBINE: return "HexagonISD::VCOMBINE";
+ case HexagonISD::VSHLH: return "HexagonISD::VSHLH";
+ case HexagonISD::VSHLW: return "HexagonISD::VSHLW";
+ case HexagonISD::VSPLATB: return "HexagonISD::VSPLTB";
+ case HexagonISD::VSPLATH: return "HexagonISD::VSPLATH";
+ case HexagonISD::VSRAH: return "HexagonISD::VSRAH";
+ case HexagonISD::VSRAW: return "HexagonISD::VSRAW";
+ case HexagonISD::VSRLH: return "HexagonISD::VSRLH";
+ case HexagonISD::VSRLW: return "HexagonISD::VSRLW";
+ case HexagonISD::VSXTBH: return "HexagonISD::VSXTBH";
+ case HexagonISD::VSXTBW: return "HexagonISD::VSXTBW";
+ case HexagonISD::OP_END: break;
+ }
+ return nullptr;
+}
+
+bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
+ EVT MTy1 = EVT::getEVT(Ty1);
+ EVT MTy2 = EVT::getEVT(Ty2);
+ if (!MTy1.isSimple() || !MTy2.isSimple())
+ return false;
+ return (MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32);
+}
+
+bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
+ if (!VT1.isSimple() || !VT2.isSimple())
+ return false;
+ return (VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32);
+}
+
+// shouldExpandBuildVectorWithShuffles
+// Should we expand the build vector with shuffles?
+bool
+HexagonTargetLowering::shouldExpandBuildVectorWithShuffles(EVT VT,
+ unsigned DefinedValues) const {
+
+ // Hexagon vector shuffle operates on element sizes of bytes or halfwords
+ EVT EltVT = VT.getVectorElementType();
+ int EltBits = EltVT.getSizeInBits();
+ if ((EltBits != 8) && (EltBits != 16))
+ return false;
+
+ return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
+}
+
+// LowerVECTOR_SHUFFLE - Lower a vector shuffle (V1, V2, V3). V1 and
+// V2 are the two vectors to select data from, V3 is the permutation.
+static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
+ const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+
+ if (V2.getOpcode() == ISD::UNDEF)
+ V2 = V1;
+
+ if (SVN->isSplat()) {
+ int Lane = SVN->getSplatIndex();
+ if (Lane == -1) Lane = 0;
+
+ // Test if V1 is a SCALAR_TO_VECTOR.
+ if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR)
+ return createSplat(DAG, dl, VT, V1.getOperand(0));
+
+ // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
+ // (and probably will turn into a SCALAR_TO_VECTOR once legalization
+ // reaches it).
+ if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
+ !isa<ConstantSDNode>(V1.getOperand(0))) {
+ bool IsScalarToVector = true;
+ for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
+ if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
+ IsScalarToVector = false;
+ break;
+ }
+ if (IsScalarToVector)
+ return createSplat(DAG, dl, VT, V1.getOperand(0));
+ }
+ return createSplat(DAG, dl, VT, DAG.getConstant(Lane, dl, MVT::i32));
+ }
+
+ // FIXME: We need to support more general vector shuffles. See
+ // below the comment from the ARM backend that deals in the general
+ // case with the vector shuffles. For now, let expand handle these.
+ return SDValue();
+
+ // If the shuffle is not directly supported and it has 4 elements, use
+ // the PerfectShuffle-generated table to synthesize it from other shuffles.
+}
+
+// If BUILD_VECTOR has same base element repeated several times,
+// report true.
+static bool isCommonSplatElement(BuildVectorSDNode *BVN) {
+ unsigned NElts = BVN->getNumOperands();
+ SDValue V0 = BVN->getOperand(0);
+
+ for (unsigned i = 1, e = NElts; i != e; ++i) {
+ if (BVN->getOperand(i) != V0)
+ return false;
+ }
+ return true;
+}
+
+// LowerVECTOR_SHIFT - Lower a vector shift. Try to convert
+// <VT> = SHL/SRA/SRL <VT> by <VT> to Hexagon specific
+// <VT> = SHL/SRA/SRL <VT> by <IT/i32>.
+static SDValue LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) {
+ BuildVectorSDNode *BVN = 0;
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ SDValue V3;
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+
+ if ((BVN = dyn_cast<BuildVectorSDNode>(V1.getNode())) &&
+ isCommonSplatElement(BVN))
+ V3 = V2;
+ else if ((BVN = dyn_cast<BuildVectorSDNode>(V2.getNode())) &&
+ isCommonSplatElement(BVN))
+ V3 = V1;
+ else
+ return SDValue();
+
+ SDValue CommonSplat = BVN->getOperand(0);
+ SDValue Result;
+
+ if (VT.getSimpleVT() == MVT::v4i16) {
+ switch (Op.getOpcode()) {
+ case ISD::SRA:
+ Result = DAG.getNode(HexagonISD::VSRAH, dl, VT, V3, CommonSplat);
+ break;
+ case ISD::SHL:
+ Result = DAG.getNode(HexagonISD::VSHLH, dl, VT, V3, CommonSplat);
+ break;
+ case ISD::SRL:
+ Result = DAG.getNode(HexagonISD::VSRLH, dl, VT, V3, CommonSplat);
+ break;
+ default:
+ return SDValue();
+ }
+ } else if (VT.getSimpleVT() == MVT::v2i32) {
+ switch (Op.getOpcode()) {
+ case ISD::SRA:
+ Result = DAG.getNode(HexagonISD::VSRAW, dl, VT, V3, CommonSplat);
+ break;
+ case ISD::SHL:
+ Result = DAG.getNode(HexagonISD::VSHLW, dl, VT, V3, CommonSplat);
+ break;
+ case ISD::SRL:
+ Result = DAG.getNode(HexagonISD::VSRLW, dl, VT, V3, CommonSplat);
+ break;
+ default:
+ return SDValue();
+ }
+ } else {
+ return SDValue();
+ }
+
+ return DAG.getNode(ISD::BITCAST, dl, VT, Result);
+}
+
+SDValue
+HexagonTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
+ BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+
+ unsigned Size = VT.getSizeInBits();
+
+ // Only handle vectors of 64 bits or shorter.
+ if (Size > 64)
+ return SDValue();
+
+ APInt APSplatBits, APSplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ unsigned NElts = BVN->getNumOperands();
+
+ // Try to generate a SPLAT instruction.
+ if ((VT.getSimpleVT() == MVT::v4i8 || VT.getSimpleVT() == MVT::v4i16) &&
+ (BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
+ HasAnyUndefs, 0, true) && SplatBitSize <= 16)) {
+ unsigned SplatBits = APSplatBits.getZExtValue();
+ int32_t SextVal = ((int32_t) (SplatBits << (32 - SplatBitSize)) >>
+ (32 - SplatBitSize));
+ return createSplat(DAG, dl, VT, DAG.getConstant(SextVal, dl, MVT::i32));
+ }
+
+ // Try to generate COMBINE to build v2i32 vectors.
+ if (VT.getSimpleVT() == MVT::v2i32) {
+ SDValue V0 = BVN->getOperand(0);
+ SDValue V1 = BVN->getOperand(1);
+
+ if (V0.getOpcode() == ISD::UNDEF)
+ V0 = DAG.getConstant(0, dl, MVT::i32);
+ if (V1.getOpcode() == ISD::UNDEF)
+ V1 = DAG.getConstant(0, dl, MVT::i32);
+
+ ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(V0);
+ ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(V1);
+ // If the element isn't a constant, it is in a register:
+ // generate a COMBINE Register Register instruction.
+ if (!C0 || !C1)
+ return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0);
+
+ // If one of the operands is an 8 bit integer constant, generate
+ // a COMBINE Immediate Immediate instruction.
+ if (isInt<8>(C0->getSExtValue()) ||
+ isInt<8>(C1->getSExtValue()))
+ return DAG.getNode(HexagonISD::COMBINE, dl, VT, V1, V0);
+ }
+
+ // Try to generate a S2_packhl to build v2i16 vectors.
+ if (VT.getSimpleVT() == MVT::v2i16) {
+ for (unsigned i = 0, e = NElts; i != e; ++i) {
+ if (BVN->getOperand(i).getOpcode() == ISD::UNDEF)
+ continue;
+ ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(BVN->getOperand(i));
+ // If the element isn't a constant, it is in a register:
+ // generate a S2_packhl instruction.
+ if (!Cst) {
+ SDValue pack = DAG.getNode(HexagonISD::PACKHL, dl, MVT::v4i16,
+ BVN->getOperand(1), BVN->getOperand(0));
+
+ return DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::v2i16,
+ pack);
+ }
+ }
+ }
+
+ // In the general case, generate a CONST32 or a CONST64 for constant vectors,
+ // and insert_vector_elt for all the other cases.
+ uint64_t Res = 0;
+ unsigned EltSize = Size / NElts;
+ SDValue ConstVal;
+ uint64_t Mask = ~uint64_t(0ULL) >> (64 - EltSize);
+ bool HasNonConstantElements = false;
+
+ for (unsigned i = 0, e = NElts; i != e; ++i) {
+ // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon's
+ // combine, const64, etc. are Big Endian.
+ unsigned OpIdx = NElts - i - 1;
+ SDValue Operand = BVN->getOperand(OpIdx);
+ if (Operand.getOpcode() == ISD::UNDEF)
+ continue;
+
+ int64_t Val = 0;
+ if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Operand))
+ Val = Cst->getSExtValue();
+ else
+ HasNonConstantElements = true;
+
+ Val &= Mask;
+ Res = (Res << EltSize) | Val;
+ }
+
+ if (Size == 64)
+ ConstVal = DAG.getConstant(Res, dl, MVT::i64);
+ else
+ ConstVal = DAG.getConstant(Res, dl, MVT::i32);
+
+ // When there are non constant operands, add them with INSERT_VECTOR_ELT to
+ // ConstVal, the constant part of the vector.
+ if (HasNonConstantElements) {
+ EVT EltVT = VT.getVectorElementType();
+ SDValue Width = DAG.getConstant(EltVT.getSizeInBits(), dl, MVT::i64);
+ SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
+ DAG.getConstant(32, dl, MVT::i64));
+
+ for (unsigned i = 0, e = NElts; i != e; ++i) {
+ // LLVM's BUILD_VECTOR operands are in Little Endian mode, whereas Hexagon
+ // is Big Endian.
+ unsigned OpIdx = NElts - i - 1;
+ SDValue Operand = BVN->getOperand(OpIdx);
+ if (isa<ConstantSDNode>(Operand))
+ // This operand is already in ConstVal.
+ continue;
+
+ if (VT.getSizeInBits() == 64 &&
+ Operand.getValueType().getSizeInBits() == 32) {
+ SDValue C = DAG.getConstant(0, dl, MVT::i32);
+ Operand = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Operand);
+ }
+
+ SDValue Idx = DAG.getConstant(OpIdx, dl, MVT::i64);
+ SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, Width);
+ SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
+ const SDValue Ops[] = {ConstVal, Operand, Combined};
+
+ if (VT.getSizeInBits() == 32)
+ ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops);
+ else
+ ConstVal = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops);
+ }
+ }
+
+ return DAG.getNode(ISD::BITCAST, dl, VT, ConstVal);
+}
+
+SDValue
+HexagonTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ bool UseHVX = Subtarget.useHVXOps();
+ EVT VT = Op.getValueType();
+ unsigned NElts = Op.getNumOperands();
+ SDValue Vec0 = Op.getOperand(0);
+ EVT VecVT = Vec0.getValueType();
+ unsigned Width = VecVT.getSizeInBits();
+
+ if (NElts == 2) {
+ MVT ST = VecVT.getSimpleVT();
+ // We are trying to concat two v2i16 to a single v4i16, or two v4i8
+ // into a single v8i8.
+ if (ST == MVT::v2i16 || ST == MVT::v4i8)
+ return DAG.getNode(HexagonISD::COMBINE, dl, VT, Op.getOperand(1), Vec0);
+
+ if (UseHVX) {
+ assert((Width == 64*8 && Subtarget.useHVXSglOps()) ||
+ (Width == 128*8 && Subtarget.useHVXDblOps()));
+ SDValue Vec1 = Op.getOperand(1);
+ MVT OpTy = Subtarget.useHVXSglOps() ? MVT::v16i32 : MVT::v32i32;
+ MVT ReTy = Subtarget.useHVXSglOps() ? MVT::v32i32 : MVT::v64i32;
+ SDValue B0 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec0);
+ SDValue B1 = DAG.getNode(ISD::BITCAST, dl, OpTy, Vec1);
+ SDValue VC = DAG.getNode(HexagonISD::VCOMBINE, dl, ReTy, B1, B0);
+ return DAG.getNode(ISD::BITCAST, dl, VT, VC);
+ }
+ }
+
+ if (VT.getSizeInBits() != 32 && VT.getSizeInBits() != 64)
+ return SDValue();
+
+ SDValue C0 = DAG.getConstant(0, dl, MVT::i64);
+ SDValue C32 = DAG.getConstant(32, dl, MVT::i64);
+ SDValue W = DAG.getConstant(Width, dl, MVT::i64);
+ // Create the "width" part of the argument to insert_rp/insertp_rp.
+ SDValue S = DAG.getNode(ISD::SHL, dl, MVT::i64, W, C32);
+ SDValue V = C0;
+
+ for (unsigned i = 0, e = NElts; i != e; ++i) {
+ unsigned N = NElts-i-1;
+ SDValue OpN = Op.getOperand(N);
+
+ if (VT.getSizeInBits() == 64 && OpN.getValueType().getSizeInBits() == 32) {
+ SDValue C = DAG.getConstant(0, dl, MVT::i32);
+ OpN = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, OpN);
+ }
+ SDValue Idx = DAG.getConstant(N, dl, MVT::i64);
+ SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i64, Idx, W);
+ SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, S, Offset);
+ if (VT.getSizeInBits() == 32)
+ V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, {V, OpN, Or});
+ else
+ V = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, {V, OpN, Or});
+ }
+
+ return DAG.getNode(ISD::BITCAST, dl, VT, V);
+}
+
+SDValue
+HexagonTargetLowering::LowerEXTRACT_VECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ int VTN = VT.isVector() ? VT.getVectorNumElements() : 1;
+ SDLoc dl(Op);
+ SDValue Idx = Op.getOperand(1);
+ SDValue Vec = Op.getOperand(0);
+ EVT VecVT = Vec.getValueType();
+ EVT EltVT = VecVT.getVectorElementType();
+ int EltSize = EltVT.getSizeInBits();
+ SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT ?
+ EltSize : VTN * EltSize, dl, MVT::i64);
+
+ // Constant element number.
+ if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Idx)) {
+ uint64_t X = CI->getZExtValue();
+ SDValue Offset = DAG.getConstant(X * EltSize, dl, MVT::i32);
+ const SDValue Ops[] = {Vec, Width, Offset};
+
+ ConstantSDNode *CW = dyn_cast<ConstantSDNode>(Width);
+ assert(CW && "Non constant width in LowerEXTRACT_VECTOR");
+
+ SDValue N;
+ MVT SVT = VecVT.getSimpleVT();
+ uint64_t W = CW->getZExtValue();
+
+ if (W == 32) {
+ // Translate this node into EXTRACT_SUBREG.
+ unsigned Subreg = (X == 0) ? Hexagon::subreg_loreg : 0;
+
+ if (X == 0)
+ Subreg = Hexagon::subreg_loreg;
+ else if (SVT == MVT::v2i32 && X == 1)
+ Subreg = Hexagon::subreg_hireg;
+ else if (SVT == MVT::v4i16 && X == 2)
+ Subreg = Hexagon::subreg_hireg;
+ else if (SVT == MVT::v8i8 && X == 4)
+ Subreg = Hexagon::subreg_hireg;
+ else
+ llvm_unreachable("Bad offset");
+ N = DAG.getTargetExtractSubreg(Subreg, dl, MVT::i32, Vec);
+
+ } else if (VecVT.getSizeInBits() == 32) {
+ N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i32, Ops);
+ } else {
+ N = DAG.getNode(HexagonISD::EXTRACTU, dl, MVT::i64, Ops);
+ if (VT.getSizeInBits() == 32)
+ N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N);
+ }
+
+ return DAG.getNode(ISD::BITCAST, dl, VT, N);
+ }
+
+ // Variable element number.
+ SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx,
+ DAG.getConstant(EltSize, dl, MVT::i32));
+ SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
+ DAG.getConstant(32, dl, MVT::i64));
+ SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
+
+ const SDValue Ops[] = {Vec, Combined};
+
+ SDValue N;
+ if (VecVT.getSizeInBits() == 32) {
+ N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i32, Ops);
+ } else {
+ N = DAG.getNode(HexagonISD::EXTRACTURP, dl, MVT::i64, Ops);
+ if (VT.getSizeInBits() == 32)
+ N = DAG.getTargetExtractSubreg(Hexagon::subreg_loreg, dl, MVT::i32, N);
+ }
+ return DAG.getNode(ISD::BITCAST, dl, VT, N);
+}
+
+SDValue
+HexagonTargetLowering::LowerINSERT_VECTOR(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ int VTN = VT.isVector() ? VT.getVectorNumElements() : 1;
+ SDLoc dl(Op);
+ SDValue Vec = Op.getOperand(0);
+ SDValue Val = Op.getOperand(1);
+ SDValue Idx = Op.getOperand(2);
+ EVT VecVT = Vec.getValueType();
+ EVT EltVT = VecVT.getVectorElementType();
+ int EltSize = EltVT.getSizeInBits();
+ SDValue Width = DAG.getConstant(Op.getOpcode() == ISD::INSERT_VECTOR_ELT ?
+ EltSize : VTN * EltSize, dl, MVT::i64);
+
+ if (ConstantSDNode *C = cast<ConstantSDNode>(Idx)) {
+ SDValue Offset = DAG.getConstant(C->getSExtValue() * EltSize, dl, MVT::i32);
+ const SDValue Ops[] = {Vec, Val, Width, Offset};
+
+ SDValue N;
+ if (VT.getSizeInBits() == 32)
+ N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i32, Ops);
+ else
+ N = DAG.getNode(HexagonISD::INSERT, dl, MVT::i64, Ops);
+
+ return DAG.getNode(ISD::BITCAST, dl, VT, N);
+ }
+
+ // Variable element number.
+ SDValue Offset = DAG.getNode(ISD::MUL, dl, MVT::i32, Idx,
+ DAG.getConstant(EltSize, dl, MVT::i32));
+ SDValue Shifted = DAG.getNode(ISD::SHL, dl, MVT::i64, Width,
+ DAG.getConstant(32, dl, MVT::i64));
+ SDValue Combined = DAG.getNode(ISD::OR, dl, MVT::i64, Shifted, Offset);
+
+ if (VT.getSizeInBits() == 64 &&
+ Val.getValueType().getSizeInBits() == 32) {
+ SDValue C = DAG.getConstant(0, dl, MVT::i32);
+ Val = DAG.getNode(HexagonISD::COMBINE, dl, VT, C, Val);
+ }
+
+ const SDValue Ops[] = {Vec, Val, Combined};
+
+ SDValue N;
+ if (VT.getSizeInBits() == 32)
+ N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i32, Ops);
+ else
+ N = DAG.getNode(HexagonISD::INSERTRP, dl, MVT::i64, Ops);
+
+ return DAG.getNode(ISD::BITCAST, dl, VT, N);
+}
+
+bool
+HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
+ // Assuming the caller does not have either a signext or zeroext modifier, and
+ // only one value is accepted, any reasonable truncation is allowed.
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+
+ // FIXME: in principle up to 64-bit could be made safe, but it would be very
+ // fragile at the moment: any support for multiple value returns would be
+ // liable to disallow tail calls involving i64 -> iN truncation in many cases.
+ return Ty1->getPrimitiveSizeInBits() <= 32;
+}
+
+SDValue
+HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Offset = Op.getOperand(1);
+ SDValue Handler = Op.getOperand(2);
+ SDLoc dl(Op);
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+
+ // Mark function as containing a call to EH_RETURN.
+ HexagonMachineFunctionInfo *FuncInfo =
+ DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
+ FuncInfo->setHasEHReturn();
+
+ unsigned OffsetReg = Hexagon::R28;
+
+ SDValue StoreAddr =
+ DAG.getNode(ISD::ADD, dl, PtrVT, DAG.getRegister(Hexagon::R30, PtrVT),
+ DAG.getIntPtrConstant(4, dl));
+ Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
+ false, false, 0);
+ Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
+
+ // Not needed we already use it as explict input to EH_RETURN.
+ // MF.getRegInfo().addLiveOut(OffsetReg);
+
+ return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
+}
+
+SDValue
+HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ unsigned Opc = Op.getOpcode();
+ switch (Opc) {
+ default:
+#ifndef NDEBUG
+ Op.getNode()->dumpr(&DAG);
+ if (Opc > HexagonISD::OP_BEGIN && Opc < HexagonISD::OP_END)
+ errs() << "Check for a non-legal type in this operation\n";
+#endif
+ llvm_unreachable("Should not custom lower this!");
+ case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
+ case ISD::INSERT_SUBVECTOR: return LowerINSERT_VECTOR(Op, DAG);
+ case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR(Op, DAG);
+ case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_VECTOR(Op, DAG);
+ case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR(Op, DAG);
+ case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
+ case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
+ case ISD::SRA:
+ case ISD::SHL:
+ case ISD::SRL: return LowerVECTOR_SHIFT(Op, DAG);
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::JumpTable: return LowerJumpTable(Op, DAG);
+ case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
+ // Frame & Return address. Currently unimplemented.
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
+ case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG);
+ // Custom lower some vector loads.
+ case ISD::LOAD: return LowerLOAD(Op, DAG);
+ case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
+ case ISD::SETCC: return LowerSETCC(Op, DAG);
+ case ISD::VSELECT: return LowerVSELECT(Op, DAG);
+ case ISD::CTPOP: return LowerCTPOP(Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
+ case ISD::INLINEASM: return LowerINLINEASM(Op, DAG);
+ }
+}
+
+/// Returns relocation base for the given PIC jumptable.
+SDValue
+HexagonTargetLowering::getPICJumpTableRelocBase(SDValue Table,
+ SelectionDAG &DAG) const {
+ int Idx = cast<JumpTableSDNode>(Table)->getIndex();
+ EVT VT = Table.getValueType();
+ SDValue T = DAG.getTargetJumpTable(Idx, VT, HexagonII::MO_PCREL);
+ return DAG.getNode(HexagonISD::AT_PCREL, SDLoc(Table), VT, T);
+}
+
+MachineBasicBlock *
+HexagonTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB)
+ const {
+ switch (MI->getOpcode()) {
+ case Hexagon::ALLOCA: {
+ MachineFunction *MF = BB->getParent();
+ auto *FuncInfo = MF->getInfo<HexagonMachineFunctionInfo>();
+ FuncInfo->addAllocaAdjustInst(MI);
+ return BB;
+ }
+ default: llvm_unreachable("Unexpected instr type to insert");
+ } // switch
+}
+
+//===----------------------------------------------------------------------===//
+// Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+std::pair<unsigned, const TargetRegisterClass *>
+HexagonTargetLowering::getRegForInlineAsmConstraint(
+ const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
+ bool UseHVX = Subtarget.useHVXOps(), UseHVXDbl = Subtarget.useHVXDblOps();
+
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ case 'r': // R0-R31
+ switch (VT.SimpleTy) {
+ default:
+ llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
+ case MVT::i32:
+ case MVT::i16:
+ case MVT::i8:
+ case MVT::f32:
+ return std::make_pair(0U, &Hexagon::IntRegsRegClass);
+ case MVT::i64:
+ case MVT::f64:
+ return std::make_pair(0U, &Hexagon::DoubleRegsRegClass);
+ }
+ case 'q': // q0-q3
+ switch (VT.SimpleTy) {
+ default:
+ llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
+ case MVT::v1024i1:
+ case MVT::v512i1:
+ case MVT::v32i16:
+ case MVT::v16i32:
+ case MVT::v64i8:
+ case MVT::v8i64:
+ return std::make_pair(0U, &Hexagon::VecPredRegsRegClass);
+ }
+ case 'v': // V0-V31
+ switch (VT.SimpleTy) {
+ default:
+ llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
+ case MVT::v16i32:
+ case MVT::v32i16:
+ case MVT::v64i8:
+ case MVT::v8i64:
+ return std::make_pair(0U, &Hexagon::VectorRegsRegClass);
+ case MVT::v32i32:
+ case MVT::v64i16:
+ case MVT::v16i64:
+ case MVT::v128i8:
+ if (Subtarget.hasV60TOps() && UseHVX && UseHVXDbl)
+ return std::make_pair(0U, &Hexagon::VectorRegs128BRegClass);
+ else
+ return std::make_pair(0U, &Hexagon::VecDblRegsRegClass);
+ case MVT::v256i8:
+ case MVT::v128i16:
+ case MVT::v64i32:
+ case MVT::v32i64:
+ return std::make_pair(0U, &Hexagon::VecDblRegs128BRegClass);
+ }
+
+ default:
+ llvm_unreachable("Unknown asm register class");
+ }
+ }
+
+ return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
+}
+
+/// isFPImmLegal - Returns true if the target can instruction select the
+/// specified FP immediate natively. If false, the legalizer will
+/// materialize the FP immediate as a load from a constant pool.
+bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ return Subtarget.hasV5TOps();
+}
+
+/// isLegalAddressingMode - Return true if the addressing mode represented by
+/// AM is legal for this target, for a load/store of the specified type.
+bool HexagonTargetLowering::isLegalAddressingMode(const DataLayout &DL,
+ const AddrMode &AM, Type *Ty,
+ unsigned AS) const {
+ // Allows a signed-extended 11-bit immediate field.
+ if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1)
+ return false;
+
+ // No global is ever allowed as a base.
+ if (AM.BaseGV)
+ return false;
+
+ int Scale = AM.Scale;
+ if (Scale < 0) Scale = -Scale;
+ switch (Scale) {
+ case 0: // No scale reg, "r+i", "r", or just "i".
+ break;
+ default: // No scaled addressing mode.
+ return false;
+ }
+ return true;
+}
+
+/// Return true if folding a constant offset with the given GlobalAddress is
+/// legal. It is frequently not legal in PIC relocation models.
+bool HexagonTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA)
+ const {
+ return HTM.getRelocationModel() == Reloc::Static;
+}
+
+
+/// isLegalICmpImmediate - Return true if the specified immediate is legal
+/// icmp immediate, that is the target has icmp instructions which can compare
+/// a register against the immediate without having to materialize the
+/// immediate into a register.
+bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
+ return Imm >= -512 && Imm <= 511;
+}
+
+/// IsEligibleForTailCallOptimization - Check whether the call is eligible
+/// for tail call optimization. Targets which want to do tail call
+/// optimization should implement this function.
+bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
+ SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ bool isCalleeStructRet,
+ bool isCallerStructRet,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const {
+ const Function *CallerF = DAG.getMachineFunction().getFunction();
+ CallingConv::ID CallerCC = CallerF->getCallingConv();
+ bool CCMatch = CallerCC == CalleeCC;
+
+ // ***************************************************************************
+ // Look for obvious safe cases to perform tail call optimization that do not
+ // require ABI changes.
+ // ***************************************************************************
+
+ // If this is a tail call via a function pointer, then don't do it!
+ if (!(isa<GlobalAddressSDNode>(Callee)) &&
+ !(isa<ExternalSymbolSDNode>(Callee))) {
+ return false;
+ }
+
+ // Do not optimize if the calling conventions do not match.
+ if (!CCMatch)
+ return false;
+
+ // Do not tail call optimize vararg calls.
+ if (isVarArg)
+ return false;
+
+ // Also avoid tail call optimization if either caller or callee uses struct
+ // return semantics.
+ if (isCalleeStructRet || isCallerStructRet)
+ return false;
+
+ // In addition to the cases above, we also disable Tail Call Optimization if
+ // the calling convention code that at least one outgoing argument needs to
+ // go on the stack. We cannot check that here because at this point that
+ // information is not available.
+ return true;
+}
+
+// Return true when the given node fits in a positive half word.
+bool llvm::isPositiveHalfWord(SDNode *N) {
+ ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
+ if (CN && CN->getSExtValue() > 0 && isInt<16>(CN->getSExtValue()))
+ return true;
+
+ switch (N->getOpcode()) {
+ default:
+ return false;
+ case ISD::SIGN_EXTEND_INREG:
+ return true;
+ }
+}
+
+std::pair<const TargetRegisterClass*, uint8_t>
+HexagonTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
+ MVT VT) const {
+ const TargetRegisterClass *RRC = nullptr;
+
+ uint8_t Cost = 1;
+ switch (VT.SimpleTy) {
+ default:
+ return TargetLowering::findRepresentativeClass(TRI, VT);
+ case MVT::v64i8:
+ case MVT::v32i16:
+ case MVT::v16i32:
+ case MVT::v8i64:
+ RRC = &Hexagon::VectorRegsRegClass;
+ break;
+ case MVT::v128i8:
+ case MVT::v64i16:
+ case MVT::v32i32:
+ case MVT::v16i64:
+ if (Subtarget.hasV60TOps() && Subtarget.useHVXOps() &&
+ Subtarget.useHVXDblOps())
+ RRC = &Hexagon::VectorRegs128BRegClass;
+ else
+ RRC = &Hexagon::VecDblRegsRegClass;
+ break;
+ case MVT::v256i8:
+ case MVT::v128i16:
+ case MVT::v64i32:
+ case MVT::v32i64:
+ RRC = &Hexagon::VecDblRegs128BRegClass;
+ break;
+ }
+ return std::make_pair(RRC, Cost);
+}
+
+Value *HexagonTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
+ AtomicOrdering Ord) const {
+ BasicBlock *BB = Builder.GetInsertBlock();
+ Module *M = BB->getParent()->getParent();
+ Type *Ty = cast<PointerType>(Addr->getType())->getElementType();
+ unsigned SZ = Ty->getPrimitiveSizeInBits();
+ assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic loads supported");
+ Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_L2_loadw_locked
+ : Intrinsic::hexagon_L4_loadd_locked;
+ Value *Fn = Intrinsic::getDeclaration(M, IntID);
+ return Builder.CreateCall(Fn, Addr, "larx");
+}
+
+/// Perform a store-conditional operation to Addr. Return the status of the
+/// store. This should be 0 if the store succeeded, non-zero otherwise.
+Value *HexagonTargetLowering::emitStoreConditional(IRBuilder<> &Builder,
+ Value *Val, Value *Addr, AtomicOrdering Ord) const {
+ BasicBlock *BB = Builder.GetInsertBlock();
+ Module *M = BB->getParent()->getParent();
+ Type *Ty = Val->getType();
+ unsigned SZ = Ty->getPrimitiveSizeInBits();
+ assert((SZ == 32 || SZ == 64) && "Only 32/64-bit atomic stores supported");
+ Intrinsic::ID IntID = (SZ == 32) ? Intrinsic::hexagon_S2_storew_locked
+ : Intrinsic::hexagon_S4_stored_locked;
+ Value *Fn = Intrinsic::getDeclaration(M, IntID);
+ Value *Call = Builder.CreateCall(Fn, {Addr, Val}, "stcx");
+ Value *Cmp = Builder.CreateICmpEQ(Call, Builder.getInt32(0), "");
+ Value *Ext = Builder.CreateZExt(Cmp, Type::getInt32Ty(M->getContext()));
+ return Ext;
+}
+
+TargetLowering::AtomicExpansionKind
+HexagonTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
+ // Do not expand loads and stores that don't exceed 64 bits.
+ return LI->getType()->getPrimitiveSizeInBits() > 64
+ ? AtomicExpansionKind::LLOnly
+ : AtomicExpansionKind::None;
+}
+
+bool HexagonTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
+ // Do not expand loads and stores that don't exceed 64 bits.
+ return SI->getValueOperand()->getType()->getPrimitiveSizeInBits() > 64;
+}
OpenPOWER on IntegriCloud