summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp')
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp1563
1 files changed, 1563 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp
new file mode 100644
index 0000000..a0da945
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonISelDAGToDAG.cpp
@@ -0,0 +1,1563 @@
+//===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines an instruction selector for the Hexagon target.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Hexagon.h"
+#include "HexagonISelLowering.h"
+#include "HexagonMachineFunctionInfo.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "hexagon-isel"
+
+static
+cl::opt<unsigned>
+MaxNumOfUsesForConstExtenders("ga-max-num-uses-for-constant-extenders",
+ cl::Hidden, cl::init(2),
+ cl::desc("Maximum number of uses of a global address such that we still us a"
+ "constant extended instruction"));
+
+//===----------------------------------------------------------------------===//
+// Instruction Selector Implementation
+//===----------------------------------------------------------------------===//
+
+namespace llvm {
+ void initializeHexagonDAGToDAGISelPass(PassRegistry&);
+}
+
+//===--------------------------------------------------------------------===//
+/// HexagonDAGToDAGISel - Hexagon specific code to select Hexagon machine
+/// instructions for SelectionDAG operations.
+///
+namespace {
+class HexagonDAGToDAGISel : public SelectionDAGISel {
+ const HexagonTargetMachine& HTM;
+ const HexagonSubtarget *HST;
+ const HexagonInstrInfo *HII;
+ const HexagonRegisterInfo *HRI;
+public:
+ explicit HexagonDAGToDAGISel(HexagonTargetMachine &tm,
+ CodeGenOpt::Level OptLevel)
+ : SelectionDAGISel(tm, OptLevel), HTM(tm), HST(nullptr), HII(nullptr),
+ HRI(nullptr) {
+ initializeHexagonDAGToDAGISelPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ // Reset the subtarget each time through.
+ HST = &MF.getSubtarget<HexagonSubtarget>();
+ HII = HST->getInstrInfo();
+ HRI = HST->getRegisterInfo();
+ SelectionDAGISel::runOnMachineFunction(MF);
+ return true;
+ }
+
+ virtual void PreprocessISelDAG() override;
+ virtual void EmitFunctionEntryCode() override;
+
+ SDNode *Select(SDNode *N) override;
+
+ // Complex Pattern Selectors.
+ inline bool SelectAddrGA(SDValue &N, SDValue &R);
+ inline bool SelectAddrGP(SDValue &N, SDValue &R);
+ bool SelectGlobalAddress(SDValue &N, SDValue &R, bool UseGP);
+ bool SelectAddrFI(SDValue &N, SDValue &R);
+
+ const char *getPassName() const override {
+ return "Hexagon DAG->DAG Pattern Instruction Selection";
+ }
+
+ SDNode *SelectFrameIndex(SDNode *N);
+ /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
+ /// inline asm expressions.
+ bool SelectInlineAsmMemoryOperand(const SDValue &Op,
+ unsigned ConstraintID,
+ std::vector<SDValue> &OutOps) override;
+ SDNode *SelectLoad(SDNode *N);
+ SDNode *SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl);
+ SDNode *SelectIndexedLoad(LoadSDNode *LD, SDLoc dl);
+ SDNode *SelectIndexedLoadZeroExtend64(LoadSDNode *LD, unsigned Opcode,
+ SDLoc dl);
+ SDNode *SelectIndexedLoadSignExtend64(LoadSDNode *LD, unsigned Opcode,
+ SDLoc dl);
+ SDNode *SelectBaseOffsetStore(StoreSDNode *ST, SDLoc dl);
+ SDNode *SelectIndexedStore(StoreSDNode *ST, SDLoc dl);
+ SDNode *SelectStore(SDNode *N);
+ SDNode *SelectSHL(SDNode *N);
+ SDNode *SelectMul(SDNode *N);
+ SDNode *SelectZeroExtend(SDNode *N);
+ SDNode *SelectIntrinsicWChain(SDNode *N);
+ SDNode *SelectIntrinsicWOChain(SDNode *N);
+ SDNode *SelectConstant(SDNode *N);
+ SDNode *SelectConstantFP(SDNode *N);
+ SDNode *SelectAdd(SDNode *N);
+ SDNode *SelectBitOp(SDNode *N);
+
+ // XformMskToBitPosU5Imm - Returns the bit position which
+ // the single bit 32 bit mask represents.
+ // Used in Clr and Set bit immediate memops.
+ SDValue XformMskToBitPosU5Imm(uint32_t Imm, SDLoc DL) {
+ int32_t bitPos;
+ bitPos = Log2_32(Imm);
+ assert(bitPos >= 0 && bitPos < 32 &&
+ "Constant out of range for 32 BitPos Memops");
+ return CurDAG->getTargetConstant(bitPos, DL, MVT::i32);
+ }
+
+ // XformMskToBitPosU4Imm - Returns the bit position which the single-bit
+ // 16 bit mask represents. Used in Clr and Set bit immediate memops.
+ SDValue XformMskToBitPosU4Imm(uint16_t Imm, SDLoc DL) {
+ return XformMskToBitPosU5Imm(Imm, DL);
+ }
+
+ // XformMskToBitPosU3Imm - Returns the bit position which the single-bit
+ // 8 bit mask represents. Used in Clr and Set bit immediate memops.
+ SDValue XformMskToBitPosU3Imm(uint8_t Imm, SDLoc DL) {
+ return XformMskToBitPosU5Imm(Imm, DL);
+ }
+
+ // Return true if there is exactly one bit set in V, i.e., if V is one of the
+ // following integers: 2^0, 2^1, ..., 2^31.
+ bool ImmIsSingleBit(uint32_t v) const {
+ return isPowerOf2_32(v);
+ }
+
+ // XformM5ToU5Imm - Return a target constant with the specified value, of
+ // type i32 where the negative literal is transformed into a positive literal
+ // for use in -= memops.
+ inline SDValue XformM5ToU5Imm(signed Imm, SDLoc DL) {
+ assert((Imm >= -31 && Imm <= -1) && "Constant out of range for Memops");
+ return CurDAG->getTargetConstant(-Imm, DL, MVT::i32);
+ }
+
+ // XformU7ToU7M1Imm - Return a target constant decremented by 1, in range
+ // [1..128], used in cmpb.gtu instructions.
+ inline SDValue XformU7ToU7M1Imm(signed Imm, SDLoc DL) {
+ assert((Imm >= 1 && Imm <= 128) && "Constant out of range for cmpb op");
+ return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i8);
+ }
+
+ // XformS8ToS8M1Imm - Return a target constant decremented by 1.
+ inline SDValue XformSToSM1Imm(signed Imm, SDLoc DL) {
+ return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i32);
+ }
+
+ // XformU8ToU8M1Imm - Return a target constant decremented by 1.
+ inline SDValue XformUToUM1Imm(unsigned Imm, SDLoc DL) {
+ assert((Imm >= 1) && "Cannot decrement unsigned int less than 1");
+ return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i32);
+ }
+
+ // XformSToSM2Imm - Return a target constant decremented by 2.
+ inline SDValue XformSToSM2Imm(unsigned Imm, SDLoc DL) {
+ return CurDAG->getTargetConstant(Imm - 2, DL, MVT::i32);
+ }
+
+ // XformSToSM3Imm - Return a target constant decremented by 3.
+ inline SDValue XformSToSM3Imm(unsigned Imm, SDLoc DL) {
+ return CurDAG->getTargetConstant(Imm - 3, DL, MVT::i32);
+ }
+
+ // Include the pieces autogenerated from the target description.
+ #include "HexagonGenDAGISel.inc"
+
+private:
+ bool isValueExtension(const SDValue &Val, unsigned FromBits, SDValue &Src);
+}; // end HexagonDAGToDAGISel
+} // end anonymous namespace
+
+
+/// createHexagonISelDag - This pass converts a legalized DAG into a
+/// Hexagon-specific DAG, ready for instruction scheduling.
+///
+namespace llvm {
+FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
+ CodeGenOpt::Level OptLevel) {
+ return new HexagonDAGToDAGISel(TM, OptLevel);
+}
+}
+
+static void initializePassOnce(PassRegistry &Registry) {
+ const char *Name = "Hexagon DAG->DAG Pattern Instruction Selection";
+ PassInfo *PI = new PassInfo(Name, "hexagon-isel",
+ &SelectionDAGISel::ID, nullptr, false, false);
+ Registry.registerPass(*PI, true);
+}
+
+void llvm::initializeHexagonDAGToDAGISelPass(PassRegistry &Registry) {
+ CALL_ONCE_INITIALIZATION(initializePassOnce)
+}
+
+
+// Intrinsics that return a a predicate.
+static bool doesIntrinsicReturnPredicate(unsigned ID) {
+ switch (ID) {
+ default:
+ return false;
+ case Intrinsic::hexagon_C2_cmpeq:
+ case Intrinsic::hexagon_C2_cmpgt:
+ case Intrinsic::hexagon_C2_cmpgtu:
+ case Intrinsic::hexagon_C2_cmpgtup:
+ case Intrinsic::hexagon_C2_cmpgtp:
+ case Intrinsic::hexagon_C2_cmpeqp:
+ case Intrinsic::hexagon_C2_bitsset:
+ case Intrinsic::hexagon_C2_bitsclr:
+ case Intrinsic::hexagon_C2_cmpeqi:
+ case Intrinsic::hexagon_C2_cmpgti:
+ case Intrinsic::hexagon_C2_cmpgtui:
+ case Intrinsic::hexagon_C2_cmpgei:
+ case Intrinsic::hexagon_C2_cmpgeui:
+ case Intrinsic::hexagon_C2_cmplt:
+ case Intrinsic::hexagon_C2_cmpltu:
+ case Intrinsic::hexagon_C2_bitsclri:
+ case Intrinsic::hexagon_C2_and:
+ case Intrinsic::hexagon_C2_or:
+ case Intrinsic::hexagon_C2_xor:
+ case Intrinsic::hexagon_C2_andn:
+ case Intrinsic::hexagon_C2_not:
+ case Intrinsic::hexagon_C2_orn:
+ case Intrinsic::hexagon_C2_pxfer_map:
+ case Intrinsic::hexagon_C2_any8:
+ case Intrinsic::hexagon_C2_all8:
+ case Intrinsic::hexagon_A2_vcmpbeq:
+ case Intrinsic::hexagon_A2_vcmpbgtu:
+ case Intrinsic::hexagon_A2_vcmpheq:
+ case Intrinsic::hexagon_A2_vcmphgt:
+ case Intrinsic::hexagon_A2_vcmphgtu:
+ case Intrinsic::hexagon_A2_vcmpweq:
+ case Intrinsic::hexagon_A2_vcmpwgt:
+ case Intrinsic::hexagon_A2_vcmpwgtu:
+ case Intrinsic::hexagon_C2_tfrrp:
+ case Intrinsic::hexagon_S2_tstbit_i:
+ case Intrinsic::hexagon_S2_tstbit_r:
+ return true;
+ }
+}
+
+SDNode *HexagonDAGToDAGISel::SelectIndexedLoadSignExtend64(LoadSDNode *LD,
+ unsigned Opcode,
+ SDLoc dl) {
+ SDValue Chain = LD->getChain();
+ EVT LoadedVT = LD->getMemoryVT();
+ SDValue Base = LD->getBasePtr();
+ SDValue Offset = LD->getOffset();
+ SDNode *OffsetNode = Offset.getNode();
+ int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
+
+ if (HII->isValidAutoIncImm(LoadedVT, Val)) {
+ SDValue TargetConst = CurDAG->getTargetConstant(Val, dl, MVT::i32);
+ SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::i32,
+ MVT::Other, Base, TargetConst,
+ Chain);
+ SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
+ SDValue(Result_1, 0));
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = LD->getMemOperand();
+ cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
+ const SDValue Froms[] = { SDValue(LD, 0),
+ SDValue(LD, 1),
+ SDValue(LD, 2) };
+ const SDValue Tos[] = { SDValue(Result_2, 0),
+ SDValue(Result_1, 1),
+ SDValue(Result_1, 2) };
+ ReplaceUses(Froms, Tos, 3);
+ return Result_2;
+ }
+
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
+ SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
+ SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
+ Base, TargetConst0, Chain);
+ SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
+ SDValue(Result_1, 0));
+ SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
+ Base, TargetConstVal,
+ SDValue(Result_1, 1));
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = LD->getMemOperand();
+ cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
+ const SDValue Froms[] = { SDValue(LD, 0),
+ SDValue(LD, 1),
+ SDValue(LD, 2) };
+ const SDValue Tos[] = { SDValue(Result_2, 0),
+ SDValue(Result_3, 0),
+ SDValue(Result_1, 1) };
+ ReplaceUses(Froms, Tos, 3);
+ return Result_2;
+}
+
+
+SDNode *HexagonDAGToDAGISel::SelectIndexedLoadZeroExtend64(LoadSDNode *LD,
+ unsigned Opcode,
+ SDLoc dl) {
+ SDValue Chain = LD->getChain();
+ EVT LoadedVT = LD->getMemoryVT();
+ SDValue Base = LD->getBasePtr();
+ SDValue Offset = LD->getOffset();
+ SDNode *OffsetNode = Offset.getNode();
+ int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
+
+ if (HII->isValidAutoIncImm(LoadedVT, Val)) {
+ SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
+ SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
+ MVT::i32, MVT::Other, Base,
+ TargetConstVal, Chain);
+ SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A4_combineir, dl,
+ MVT::i64, MVT::Other,
+ TargetConst0,
+ SDValue(Result_1,0));
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = LD->getMemOperand();
+ cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
+ const SDValue Froms[] = { SDValue(LD, 0),
+ SDValue(LD, 1),
+ SDValue(LD, 2) };
+ const SDValue Tos[] = { SDValue(Result_2, 0),
+ SDValue(Result_1, 1),
+ SDValue(Result_1, 2) };
+ ReplaceUses(Froms, Tos, 3);
+ return Result_2;
+ }
+
+ // Generate an indirect load.
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
+ SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
+ SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
+ MVT::Other, Base, TargetConst0,
+ Chain);
+ SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A4_combineir, dl,
+ MVT::i64, MVT::Other,
+ TargetConst0,
+ SDValue(Result_1,0));
+ // Add offset to base.
+ SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
+ Base, TargetConstVal,
+ SDValue(Result_1, 1));
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = LD->getMemOperand();
+ cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
+ const SDValue Froms[] = { SDValue(LD, 0),
+ SDValue(LD, 1),
+ SDValue(LD, 2) };
+ const SDValue Tos[] = { SDValue(Result_2, 0), // Load value.
+ SDValue(Result_3, 0), // New address.
+ SDValue(Result_1, 1) };
+ ReplaceUses(Froms, Tos, 3);
+ return Result_2;
+}
+
+
+SDNode *HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, SDLoc dl) {
+ SDValue Chain = LD->getChain();
+ SDValue Base = LD->getBasePtr();
+ SDValue Offset = LD->getOffset();
+ SDNode *OffsetNode = Offset.getNode();
+ // Get the constant value.
+ int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
+ EVT LoadedVT = LD->getMemoryVT();
+ unsigned Opcode = 0;
+
+ // Check for zero extended loads. Treat any-extend loads as zero extended
+ // loads.
+ ISD::LoadExtType ExtType = LD->getExtensionType();
+ bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
+ bool HasVecOffset = false;
+
+ // Figure out the opcode.
+ if (LoadedVT == MVT::i64) {
+ if (HII->isValidAutoIncImm(LoadedVT, Val))
+ Opcode = Hexagon::L2_loadrd_pi;
+ else
+ Opcode = Hexagon::L2_loadrd_io;
+ } else if (LoadedVT == MVT::i32) {
+ if (HII->isValidAutoIncImm(LoadedVT, Val))
+ Opcode = Hexagon::L2_loadri_pi;
+ else
+ Opcode = Hexagon::L2_loadri_io;
+ } else if (LoadedVT == MVT::i16) {
+ if (HII->isValidAutoIncImm(LoadedVT, Val))
+ Opcode = IsZeroExt ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadrh_pi;
+ else
+ Opcode = IsZeroExt ? Hexagon::L2_loadruh_io : Hexagon::L2_loadrh_io;
+ } else if (LoadedVT == MVT::i8) {
+ if (HII->isValidAutoIncImm(LoadedVT, Val))
+ Opcode = IsZeroExt ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrb_pi;
+ else
+ Opcode = IsZeroExt ? Hexagon::L2_loadrub_io : Hexagon::L2_loadrb_io;
+ } else if (LoadedVT == MVT::v16i32 || LoadedVT == MVT::v8i64 ||
+ LoadedVT == MVT::v32i16 || LoadedVT == MVT::v64i8) {
+ HasVecOffset = true;
+ if (HII->isValidAutoIncImm(LoadedVT, Val)) {
+ Opcode = Hexagon::V6_vL32b_pi;
+ }
+ else
+ Opcode = Hexagon::V6_vL32b_ai;
+ // 128B
+ } else if (LoadedVT == MVT::v32i32 || LoadedVT == MVT::v16i64 ||
+ LoadedVT == MVT::v64i16 || LoadedVT == MVT::v128i8) {
+ HasVecOffset = true;
+ if (HII->isValidAutoIncImm(LoadedVT, Val)) {
+ Opcode = Hexagon::V6_vL32b_pi_128B;
+ }
+ else
+ Opcode = Hexagon::V6_vL32b_ai_128B;
+ } else
+ llvm_unreachable("unknown memory type");
+
+ // For zero extended i64 loads, we need to add combine instructions.
+ if (LD->getValueType(0) == MVT::i64 && IsZeroExt)
+ return SelectIndexedLoadZeroExtend64(LD, Opcode, dl);
+ // Handle sign extended i64 loads.
+ if (LD->getValueType(0) == MVT::i64 && ExtType == ISD::SEXTLOAD)
+ return SelectIndexedLoadSignExtend64(LD, Opcode, dl);
+
+ if (HII->isValidAutoIncImm(LoadedVT, Val)) {
+ SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
+ SDNode* Result = CurDAG->getMachineNode(Opcode, dl,
+ LD->getValueType(0),
+ MVT::i32, MVT::Other, Base,
+ TargetConstVal, Chain);
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = LD->getMemOperand();
+ cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
+ if (HasVecOffset) {
+ const SDValue Froms[] = { SDValue(LD, 0),
+ SDValue(LD, 2)
+ };
+ const SDValue Tos[] = { SDValue(Result, 0),
+ SDValue(Result, 2)
+ };
+ ReplaceUses(Froms, Tos, 2);
+ } else {
+ const SDValue Froms[] = { SDValue(LD, 0),
+ SDValue(LD, 1),
+ SDValue(LD, 2)
+ };
+ const SDValue Tos[] = { SDValue(Result, 0),
+ SDValue(Result, 1),
+ SDValue(Result, 2)
+ };
+ ReplaceUses(Froms, Tos, 3);
+ }
+ return Result;
+ } else {
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
+ SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
+ SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl,
+ LD->getValueType(0),
+ MVT::Other, Base, TargetConst0,
+ Chain);
+ SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
+ Base, TargetConstVal,
+ SDValue(Result_1, 1));
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = LD->getMemOperand();
+ cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
+ const SDValue Froms[] = { SDValue(LD, 0),
+ SDValue(LD, 1),
+ SDValue(LD, 2)
+ };
+ const SDValue Tos[] = { SDValue(Result_1, 0),
+ SDValue(Result_2, 0),
+ SDValue(Result_1, 1)
+ };
+ ReplaceUses(Froms, Tos, 3);
+ return Result_1;
+ }
+}
+
+
+SDNode *HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
+ SDNode *result;
+ SDLoc dl(N);
+ LoadSDNode *LD = cast<LoadSDNode>(N);
+ ISD::MemIndexedMode AM = LD->getAddressingMode();
+
+ // Handle indexed loads.
+ if (AM != ISD::UNINDEXED) {
+ result = SelectIndexedLoad(LD, dl);
+ } else {
+ result = SelectCode(LD);
+ }
+
+ return result;
+}
+
+
+SDNode *HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, SDLoc dl) {
+ SDValue Chain = ST->getChain();
+ SDValue Base = ST->getBasePtr();
+ SDValue Offset = ST->getOffset();
+ SDValue Value = ST->getValue();
+ SDNode *OffsetNode = Offset.getNode();
+ // Get the constant value.
+ int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
+ EVT StoredVT = ST->getMemoryVT();
+ EVT ValueVT = Value.getValueType();
+
+ // Offset value must be within representable range
+ // and must have correct alignment properties.
+ if (HII->isValidAutoIncImm(StoredVT, Val)) {
+ unsigned Opcode = 0;
+
+ // Figure out the post inc version of opcode.
+ if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_pi;
+ else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_pi;
+ else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_pi;
+ else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_pi;
+ else if (StoredVT == MVT::v16i32 || StoredVT == MVT::v8i64 ||
+ StoredVT == MVT::v32i16 || StoredVT == MVT::v64i8) {
+ Opcode = Hexagon::V6_vS32b_pi;
+ }
+ // 128B
+ else if (StoredVT == MVT::v32i32 || StoredVT == MVT::v16i64 ||
+ StoredVT == MVT::v64i16 || StoredVT == MVT::v128i8) {
+ Opcode = Hexagon::V6_vS32b_pi_128B;
+ } else llvm_unreachable("unknown memory type");
+
+ if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
+ assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
+ Value = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg,
+ dl, MVT::i32, Value);
+ }
+ SDValue Ops[] = {Base, CurDAG->getTargetConstant(Val, dl, MVT::i32), Value,
+ Chain};
+ // Build post increment store.
+ SDNode* Result = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
+ MVT::Other, Ops);
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = ST->getMemOperand();
+ cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
+
+ ReplaceUses(ST, Result);
+ ReplaceUses(SDValue(ST,1), SDValue(Result,1));
+ return Result;
+ }
+
+ // Note: Order of operands matches the def of instruction:
+ // def S2_storerd_io
+ // : STInst<(outs), (ins IntRegs:$base, imm:$offset, DoubleRegs:$src1), ...
+ // and it differs for POST_ST* for instance.
+ SDValue Ops[] = { Base, CurDAG->getTargetConstant(0, dl, MVT::i32), Value,
+ Chain};
+ unsigned Opcode = 0;
+
+ // Figure out the opcode.
+ if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_io;
+ else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_io;
+ else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_io;
+ else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_io;
+ else if (StoredVT == MVT::v16i32 || StoredVT == MVT::v8i64 ||
+ StoredVT == MVT::v32i16 || StoredVT == MVT::v64i8)
+ Opcode = Hexagon::V6_vS32b_ai;
+ // 128B
+ else if (StoredVT == MVT::v32i32 || StoredVT == MVT::v16i64 ||
+ StoredVT == MVT::v64i16 || StoredVT == MVT::v128i8)
+ Opcode = Hexagon::V6_vS32b_ai_128B;
+ else llvm_unreachable("unknown memory type");
+
+ // Build regular store.
+ SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
+ SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
+ // Build splitted incriment instruction.
+ SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
+ Base,
+ TargetConstVal,
+ SDValue(Result_1, 0));
+ MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
+ MemOp[0] = ST->getMemOperand();
+ cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
+
+ ReplaceUses(SDValue(ST,0), SDValue(Result_2,0));
+ ReplaceUses(SDValue(ST,1), SDValue(Result_1,0));
+ return Result_2;
+}
+
+SDNode *HexagonDAGToDAGISel::SelectStore(SDNode *N) {
+ SDLoc dl(N);
+ StoreSDNode *ST = cast<StoreSDNode>(N);
+ ISD::MemIndexedMode AM = ST->getAddressingMode();
+
+ // Handle indexed stores.
+ if (AM != ISD::UNINDEXED) {
+ return SelectIndexedStore(ST, dl);
+ }
+
+ return SelectCode(ST);
+}
+
+SDNode *HexagonDAGToDAGISel::SelectMul(SDNode *N) {
+ SDLoc dl(N);
+
+ //
+ // %conv.i = sext i32 %tmp1 to i64
+ // %conv2.i = sext i32 %add to i64
+ // %mul.i = mul nsw i64 %conv2.i, %conv.i
+ //
+ // --- match with the following ---
+ //
+ // %mul.i = mpy (%tmp1, %add)
+ //
+
+ if (N->getValueType(0) == MVT::i64) {
+ // Shifting a i64 signed multiply.
+ SDValue MulOp0 = N->getOperand(0);
+ SDValue MulOp1 = N->getOperand(1);
+
+ SDValue OP0;
+ SDValue OP1;
+
+ // Handle sign_extend and sextload.
+ if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) {
+ SDValue Sext0 = MulOp0.getOperand(0);
+ if (Sext0.getNode()->getValueType(0) != MVT::i32) {
+ return SelectCode(N);
+ }
+
+ OP0 = Sext0;
+ } else if (MulOp0.getOpcode() == ISD::LOAD) {
+ LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode());
+ if (LD->getMemoryVT() != MVT::i32 ||
+ LD->getExtensionType() != ISD::SEXTLOAD ||
+ LD->getAddressingMode() != ISD::UNINDEXED) {
+ return SelectCode(N);
+ }
+
+ SDValue Chain = LD->getChain();
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
+ OP0 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
+ MVT::Other,
+ LD->getBasePtr(), TargetConst0,
+ Chain), 0);
+ } else {
+ return SelectCode(N);
+ }
+
+ // Same goes for the second operand.
+ if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) {
+ SDValue Sext1 = MulOp1.getOperand(0);
+ if (Sext1.getNode()->getValueType(0) != MVT::i32) {
+ return SelectCode(N);
+ }
+
+ OP1 = Sext1;
+ } else if (MulOp1.getOpcode() == ISD::LOAD) {
+ LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode());
+ if (LD->getMemoryVT() != MVT::i32 ||
+ LD->getExtensionType() != ISD::SEXTLOAD ||
+ LD->getAddressingMode() != ISD::UNINDEXED) {
+ return SelectCode(N);
+ }
+
+ SDValue Chain = LD->getChain();
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
+ OP1 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
+ MVT::Other,
+ LD->getBasePtr(), TargetConst0,
+ Chain), 0);
+ } else {
+ return SelectCode(N);
+ }
+
+ // Generate a mpy instruction.
+ SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_dpmpyss_s0, dl, MVT::i64,
+ OP0, OP1);
+ ReplaceUses(N, Result);
+ return Result;
+ }
+
+ return SelectCode(N);
+}
+
+SDNode *HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
+ SDLoc dl(N);
+ if (N->getValueType(0) == MVT::i32) {
+ SDValue Shl_0 = N->getOperand(0);
+ SDValue Shl_1 = N->getOperand(1);
+ // RHS is const.
+ if (Shl_1.getOpcode() == ISD::Constant) {
+ if (Shl_0.getOpcode() == ISD::MUL) {
+ SDValue Mul_0 = Shl_0.getOperand(0); // Val
+ SDValue Mul_1 = Shl_0.getOperand(1); // Const
+ // RHS of mul is const.
+ if (Mul_1.getOpcode() == ISD::Constant) {
+ int32_t ShlConst =
+ cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
+ int32_t MulConst =
+ cast<ConstantSDNode>(Mul_1.getNode())->getSExtValue();
+ int32_t ValConst = MulConst << ShlConst;
+ SDValue Val = CurDAG->getTargetConstant(ValConst, dl,
+ MVT::i32);
+ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val.getNode()))
+ if (isInt<9>(CN->getSExtValue())) {
+ SDNode* Result =
+ CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
+ MVT::i32, Mul_0, Val);
+ ReplaceUses(N, Result);
+ return Result;
+ }
+
+ }
+ } else if (Shl_0.getOpcode() == ISD::SUB) {
+ SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
+ SDValue Sub_1 = Shl_0.getOperand(1); // Val
+ if (Sub_0.getOpcode() == ISD::Constant) {
+ int32_t SubConst =
+ cast<ConstantSDNode>(Sub_0.getNode())->getSExtValue();
+ if (SubConst == 0) {
+ if (Sub_1.getOpcode() == ISD::SHL) {
+ SDValue Shl2_0 = Sub_1.getOperand(0); // Val
+ SDValue Shl2_1 = Sub_1.getOperand(1); // Const
+ if (Shl2_1.getOpcode() == ISD::Constant) {
+ int32_t ShlConst =
+ cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
+ int32_t Shl2Const =
+ cast<ConstantSDNode>(Shl2_1.getNode())->getSExtValue();
+ int32_t ValConst = 1 << (ShlConst+Shl2Const);
+ SDValue Val = CurDAG->getTargetConstant(-ValConst, dl,
+ MVT::i32);
+ if (ConstantSDNode *CN =
+ dyn_cast<ConstantSDNode>(Val.getNode()))
+ if (isInt<9>(CN->getSExtValue())) {
+ SDNode* Result =
+ CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, MVT::i32,
+ Shl2_0, Val);
+ ReplaceUses(N, Result);
+ return Result;
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ }
+ return SelectCode(N);
+}
+
+
+//
+// If there is an zero_extend followed an intrinsic in DAG (this means - the
+// result of the intrinsic is predicate); convert the zero_extend to
+// transfer instruction.
+//
+// Zero extend -> transfer is lowered here. Otherwise, zero_extend will be
+// converted into a MUX as predicate registers defined as 1 bit in the
+// compiler. Architecture defines them as 8-bit registers.
+// We want to preserve all the lower 8-bits and, not just 1 LSB bit.
+//
+SDNode *HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) {
+ SDLoc dl(N);
+
+ SDValue Op0 = N->getOperand(0);
+ EVT OpVT = Op0.getValueType();
+ unsigned OpBW = OpVT.getSizeInBits();
+
+ // Special handling for zero-extending a vector of booleans.
+ if (OpVT.isVector() && OpVT.getVectorElementType() == MVT::i1 && OpBW <= 64) {
+ SDNode *Mask = CurDAG->getMachineNode(Hexagon::C2_mask, dl, MVT::i64, Op0);
+ unsigned NE = OpVT.getVectorNumElements();
+ EVT ExVT = N->getValueType(0);
+ unsigned ES = ExVT.getVectorElementType().getSizeInBits();
+ uint64_t MV = 0, Bit = 1;
+ for (unsigned i = 0; i < NE; ++i) {
+ MV |= Bit;
+ Bit <<= ES;
+ }
+ SDValue Ones = CurDAG->getTargetConstant(MV, dl, MVT::i64);
+ SDNode *OnesReg = CurDAG->getMachineNode(Hexagon::CONST64_Int_Real, dl,
+ MVT::i64, Ones);
+ if (ExVT.getSizeInBits() == 32) {
+ SDNode *And = CurDAG->getMachineNode(Hexagon::A2_andp, dl, MVT::i64,
+ SDValue(Mask,0), SDValue(OnesReg,0));
+ SDValue SubR = CurDAG->getTargetConstant(Hexagon::subreg_loreg, dl,
+ MVT::i32);
+ return CurDAG->getMachineNode(Hexagon::EXTRACT_SUBREG, dl, ExVT,
+ SDValue(And,0), SubR);
+ }
+ return CurDAG->getMachineNode(Hexagon::A2_andp, dl, ExVT,
+ SDValue(Mask,0), SDValue(OnesReg,0));
+ }
+
+ SDNode *IsIntrinsic = N->getOperand(0).getNode();
+ if ((IsIntrinsic->getOpcode() == ISD::INTRINSIC_WO_CHAIN)) {
+ unsigned ID =
+ cast<ConstantSDNode>(IsIntrinsic->getOperand(0))->getZExtValue();
+ if (doesIntrinsicReturnPredicate(ID)) {
+ // Now we need to differentiate target data types.
+ if (N->getValueType(0) == MVT::i64) {
+ // Convert the zero_extend to Rs = Pd followed by A2_combinew(0,Rs).
+ SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
+ SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
+ MVT::i32,
+ SDValue(IsIntrinsic, 0));
+ SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl,
+ MVT::i32,
+ TargetConst0);
+ SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
+ MVT::i64, MVT::Other,
+ SDValue(Result_2, 0),
+ SDValue(Result_1, 0));
+ ReplaceUses(N, Result_3);
+ return Result_3;
+ }
+ if (N->getValueType(0) == MVT::i32) {
+ // Convert the zero_extend to Rs = Pd
+ SDNode* RsPd = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
+ MVT::i32,
+ SDValue(IsIntrinsic, 0));
+ ReplaceUses(N, RsPd);
+ return RsPd;
+ }
+ llvm_unreachable("Unexpected value type");
+ }
+ }
+ return SelectCode(N);
+}
+
+//
+// Checking for intrinsics circular load/store, and bitreverse load/store
+// instrisics in order to select the correct lowered operation.
+//
+SDNode *HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ if (IntNo == Intrinsic::hexagon_circ_ldd ||
+ IntNo == Intrinsic::hexagon_circ_ldw ||
+ IntNo == Intrinsic::hexagon_circ_lduh ||
+ IntNo == Intrinsic::hexagon_circ_ldh ||
+ IntNo == Intrinsic::hexagon_circ_ldub ||
+ IntNo == Intrinsic::hexagon_circ_ldb) {
+ SDLoc dl(N);
+ SDValue Chain = N->getOperand(0);
+ SDValue Base = N->getOperand(2);
+ SDValue Load = N->getOperand(3);
+ SDValue ModifierExpr = N->getOperand(4);
+ SDValue Offset = N->getOperand(5);
+
+ // We need to add the rerurn type for the load. This intrinsic has
+ // two return types, one for the load and one for the post-increment.
+ // Only the *_ld instructions push the extra return type, and bump the
+ // result node operand number correspondingly.
+ std::vector<EVT> ResTys;
+ unsigned opc;
+ unsigned memsize, align;
+ MVT MvtSize = MVT::i32;
+
+ if (IntNo == Intrinsic::hexagon_circ_ldd) {
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::i64);
+ opc = Hexagon::L2_loadrd_pci_pseudo;
+ memsize = 8;
+ align = 8;
+ } else if (IntNo == Intrinsic::hexagon_circ_ldw) {
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::i32);
+ opc = Hexagon::L2_loadri_pci_pseudo;
+ memsize = 4;
+ align = 4;
+ } else if (IntNo == Intrinsic::hexagon_circ_ldh) {
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::i32);
+ opc = Hexagon::L2_loadrh_pci_pseudo;
+ memsize = 2;
+ align = 2;
+ MvtSize = MVT::i16;
+ } else if (IntNo == Intrinsic::hexagon_circ_lduh) {
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::i32);
+ opc = Hexagon::L2_loadruh_pci_pseudo;
+ memsize = 2;
+ align = 2;
+ MvtSize = MVT::i16;
+ } else if (IntNo == Intrinsic::hexagon_circ_ldb) {
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::i32);
+ opc = Hexagon::L2_loadrb_pci_pseudo;
+ memsize = 1;
+ align = 1;
+ MvtSize = MVT::i8;
+ } else if (IntNo == Intrinsic::hexagon_circ_ldub) {
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::i32);
+ opc = Hexagon::L2_loadrub_pci_pseudo;
+ memsize = 1;
+ align = 1;
+ MvtSize = MVT::i8;
+ } else
+ llvm_unreachable("no opc");
+
+ ResTys.push_back(MVT::Other);
+
+ // Copy over the arguments, which are the same mostly.
+ SmallVector<SDValue, 5> Ops;
+ Ops.push_back(Base);
+ Ops.push_back(Load);
+ Ops.push_back(ModifierExpr);
+ int32_t Val = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
+ Ops.push_back(CurDAG->getTargetConstant(Val, dl, MVT::i32));
+ Ops.push_back(Chain);
+ SDNode* Result = CurDAG->getMachineNode(opc, dl, ResTys, Ops);
+
+ SDValue ST;
+ MachineMemOperand *Mem =
+ MF->getMachineMemOperand(MachinePointerInfo(),
+ MachineMemOperand::MOStore, memsize, align);
+ if (MvtSize != MVT::i32)
+ ST = CurDAG->getTruncStore(Chain, dl, SDValue(Result, 1), Load,
+ MvtSize, Mem);
+ else
+ ST = CurDAG->getStore(Chain, dl, SDValue(Result, 1), Load, Mem);
+
+ SDNode* Store = SelectStore(ST.getNode());
+
+ const SDValue Froms[] = { SDValue(N, 0),
+ SDValue(N, 1) };
+ const SDValue Tos[] = { SDValue(Result, 0),
+ SDValue(Store, 0) };
+ ReplaceUses(Froms, Tos, 2);
+ return Result;
+ }
+
+ if (IntNo == Intrinsic::hexagon_brev_ldd ||
+ IntNo == Intrinsic::hexagon_brev_ldw ||
+ IntNo == Intrinsic::hexagon_brev_ldh ||
+ IntNo == Intrinsic::hexagon_brev_lduh ||
+ IntNo == Intrinsic::hexagon_brev_ldb ||
+ IntNo == Intrinsic::hexagon_brev_ldub) {
+ SDLoc dl(N);
+ SDValue Chain = N->getOperand(0);
+ SDValue Base = N->getOperand(2);
+ SDValue Load = N->getOperand(3);
+ SDValue ModifierExpr = N->getOperand(4);
+
+ // We need to add the rerurn type for the load. This intrinsic has
+ // two return types, one for the load and one for the post-increment.
+ std::vector<EVT> ResTys;
+ unsigned opc;
+ unsigned memsize, align;
+ MVT MvtSize = MVT::i32;
+
+ if (IntNo == Intrinsic::hexagon_brev_ldd) {
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::i64);
+ opc = Hexagon::L2_loadrd_pbr_pseudo;
+ memsize = 8;
+ align = 8;
+ } else if (IntNo == Intrinsic::hexagon_brev_ldw) {
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::i32);
+ opc = Hexagon::L2_loadri_pbr_pseudo;
+ memsize = 4;
+ align = 4;
+ } else if (IntNo == Intrinsic::hexagon_brev_ldh) {
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::i32);
+ opc = Hexagon::L2_loadrh_pbr_pseudo;
+ memsize = 2;
+ align = 2;
+ MvtSize = MVT::i16;
+ } else if (IntNo == Intrinsic::hexagon_brev_lduh) {
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::i32);
+ opc = Hexagon::L2_loadruh_pbr_pseudo;
+ memsize = 2;
+ align = 2;
+ MvtSize = MVT::i16;
+ } else if (IntNo == Intrinsic::hexagon_brev_ldb) {
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::i32);
+ opc = Hexagon::L2_loadrb_pbr_pseudo;
+ memsize = 1;
+ align = 1;
+ MvtSize = MVT::i8;
+ } else if (IntNo == Intrinsic::hexagon_brev_ldub) {
+ ResTys.push_back(MVT::i32);
+ ResTys.push_back(MVT::i32);
+ opc = Hexagon::L2_loadrub_pbr_pseudo;
+ memsize = 1;
+ align = 1;
+ MvtSize = MVT::i8;
+ } else
+ llvm_unreachable("no opc");
+
+ ResTys.push_back(MVT::Other);
+
+ // Copy over the arguments, which are the same mostly.
+ SmallVector<SDValue, 4> Ops;
+ Ops.push_back(Base);
+ Ops.push_back(Load);
+ Ops.push_back(ModifierExpr);
+ Ops.push_back(Chain);
+ SDNode* Result = CurDAG->getMachineNode(opc, dl, ResTys, Ops);
+ SDValue ST;
+ MachineMemOperand *Mem =
+ MF->getMachineMemOperand(MachinePointerInfo(),
+ MachineMemOperand::MOStore, memsize, align);
+ if (MvtSize != MVT::i32)
+ ST = CurDAG->getTruncStore(Chain, dl, SDValue(Result, 1), Load,
+ MvtSize, Mem);
+ else
+ ST = CurDAG->getStore(Chain, dl, SDValue(Result, 1), Load, Mem);
+
+ SDNode* Store = SelectStore(ST.getNode());
+
+ const SDValue Froms[] = { SDValue(N, 0),
+ SDValue(N, 1) };
+ const SDValue Tos[] = { SDValue(Result, 0),
+ SDValue(Store, 0) };
+ ReplaceUses(Froms, Tos, 2);
+ return Result;
+ }
+
+ return SelectCode(N);
+}
+
+//
+// Checking for intrinsics which have predicate registers as operand(s)
+// and lowering to the actual intrinsic.
+//
+SDNode *HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
+ unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+ unsigned Bits;
+ switch (IID) {
+ case Intrinsic::hexagon_S2_vsplatrb:
+ Bits = 8;
+ break;
+ case Intrinsic::hexagon_S2_vsplatrh:
+ Bits = 16;
+ break;
+ default:
+ return SelectCode(N);
+ }
+
+ SDValue const &V = N->getOperand(1);
+ SDValue U;
+ if (isValueExtension(V, Bits, U)) {
+ SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
+ N->getOperand(0), U);
+ return SelectCode(R.getNode());
+ }
+ return SelectCode(N);
+}
+
+//
+// Map floating point constant values.
+//
+SDNode *HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
+ SDLoc dl(N);
+ ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
+ APFloat APF = CN->getValueAPF();
+ if (N->getValueType(0) == MVT::f32) {
+ return CurDAG->getMachineNode(Hexagon::TFRI_f, dl, MVT::f32,
+ CurDAG->getTargetConstantFP(APF.convertToFloat(), dl, MVT::f32));
+ }
+ else if (N->getValueType(0) == MVT::f64) {
+ return CurDAG->getMachineNode(Hexagon::CONST64_Float_Real, dl, MVT::f64,
+ CurDAG->getTargetConstantFP(APF.convertToDouble(), dl, MVT::f64));
+ }
+
+ return SelectCode(N);
+}
+
+//
+// Map predicate true (encoded as -1 in LLVM) to a XOR.
+//
+SDNode *HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
+ SDLoc dl(N);
+ if (N->getValueType(0) == MVT::i1) {
+ SDNode* Result = 0;
+ int32_t Val = cast<ConstantSDNode>(N)->getSExtValue();
+ if (Val == -1) {
+ Result = CurDAG->getMachineNode(Hexagon::TFR_PdTrue, dl, MVT::i1);
+ } else if (Val == 0) {
+ Result = CurDAG->getMachineNode(Hexagon::TFR_PdFalse, dl, MVT::i1);
+ }
+ if (Result) {
+ ReplaceUses(N, Result);
+ return Result;
+ }
+ }
+
+ return SelectCode(N);
+}
+
+
+//
+// Map add followed by a asr -> asr +=.
+//
+SDNode *HexagonDAGToDAGISel::SelectAdd(SDNode *N) {
+ SDLoc dl(N);
+ if (N->getValueType(0) != MVT::i32) {
+ return SelectCode(N);
+ }
+ // Identify nodes of the form: add(asr(...)).
+ SDNode* Src1 = N->getOperand(0).getNode();
+ if (Src1->getOpcode() != ISD::SRA || !Src1->hasOneUse()
+ || Src1->getValueType(0) != MVT::i32) {
+ return SelectCode(N);
+ }
+
+ // Build Rd = Rd' + asr(Rs, Rt). The machine constraints will ensure that
+ // Rd and Rd' are assigned to the same register
+ SDNode* Result = CurDAG->getMachineNode(Hexagon::S2_asr_r_r_acc, dl, MVT::i32,
+ N->getOperand(1),
+ Src1->getOperand(0),
+ Src1->getOperand(1));
+ ReplaceUses(N, Result);
+
+ return Result;
+}
+
+//
+// Map the following, where possible.
+// AND/FABS -> clrbit
+// OR -> setbit
+// XOR/FNEG ->toggle_bit.
+//
+SDNode *HexagonDAGToDAGISel::SelectBitOp(SDNode *N) {
+ SDLoc dl(N);
+ EVT ValueVT = N->getValueType(0);
+
+ // We handle only 32 and 64-bit bit ops.
+ if (!(ValueVT == MVT::i32 || ValueVT == MVT::i64 ||
+ ValueVT == MVT::f32 || ValueVT == MVT::f64))
+ return SelectCode(N);
+
+ // We handly only fabs and fneg for V5.
+ unsigned Opc = N->getOpcode();
+ if ((Opc == ISD::FABS || Opc == ISD::FNEG) && !HST->hasV5TOps())
+ return SelectCode(N);
+
+ int64_t Val = 0;
+ if (Opc != ISD::FABS && Opc != ISD::FNEG) {
+ if (N->getOperand(1).getOpcode() == ISD::Constant)
+ Val = cast<ConstantSDNode>((N)->getOperand(1))->getSExtValue();
+ else
+ return SelectCode(N);
+ }
+
+ if (Opc == ISD::AND) {
+ // Check if this is a bit-clearing AND, if not select code the usual way.
+ if ((ValueVT == MVT::i32 && isPowerOf2_32(~Val)) ||
+ (ValueVT == MVT::i64 && isPowerOf2_64(~Val)))
+ Val = ~Val;
+ else
+ return SelectCode(N);
+ }
+
+ // If OR or AND is being fed by shl, srl and, sra don't do this change,
+ // because Hexagon provide |= &= on shl, srl, and sra.
+ // Traverse the DAG to see if there is shl, srl and sra.
+ if (Opc == ISD::OR || Opc == ISD::AND) {
+ switch (N->getOperand(0)->getOpcode()) {
+ default:
+ break;
+ case ISD::SRA:
+ case ISD::SRL:
+ case ISD::SHL:
+ return SelectCode(N);
+ }
+ }
+
+ // Make sure it's power of 2.
+ unsigned BitPos = 0;
+ if (Opc != ISD::FABS && Opc != ISD::FNEG) {
+ if ((ValueVT == MVT::i32 && !isPowerOf2_32(Val)) ||
+ (ValueVT == MVT::i64 && !isPowerOf2_64(Val)))
+ return SelectCode(N);
+
+ // Get the bit position.
+ BitPos = countTrailingZeros(uint64_t(Val));
+ } else {
+ // For fabs and fneg, it's always the 31st bit.
+ BitPos = 31;
+ }
+
+ unsigned BitOpc = 0;
+ // Set the right opcode for bitwise operations.
+ switch (Opc) {
+ default:
+ llvm_unreachable("Only bit-wise/abs/neg operations are allowed.");
+ case ISD::AND:
+ case ISD::FABS:
+ BitOpc = Hexagon::S2_clrbit_i;
+ break;
+ case ISD::OR:
+ BitOpc = Hexagon::S2_setbit_i;
+ break;
+ case ISD::XOR:
+ case ISD::FNEG:
+ BitOpc = Hexagon::S2_togglebit_i;
+ break;
+ }
+
+ SDNode *Result;
+ // Get the right SDVal for the opcode.
+ SDValue SDVal = CurDAG->getTargetConstant(BitPos, dl, MVT::i32);
+
+ if (ValueVT == MVT::i32 || ValueVT == MVT::f32) {
+ Result = CurDAG->getMachineNode(BitOpc, dl, ValueVT,
+ N->getOperand(0), SDVal);
+ } else {
+ // 64-bit gymnastic to use REG_SEQUENCE. But it's worth it.
+ EVT SubValueVT;
+ if (ValueVT == MVT::i64)
+ SubValueVT = MVT::i32;
+ else
+ SubValueVT = MVT::f32;
+
+ SDNode *Reg = N->getOperand(0).getNode();
+ SDValue RegClass = CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID,
+ dl, MVT::i64);
+
+ SDValue SubregHiIdx = CurDAG->getTargetConstant(Hexagon::subreg_hireg, dl,
+ MVT::i32);
+ SDValue SubregLoIdx = CurDAG->getTargetConstant(Hexagon::subreg_loreg, dl,
+ MVT::i32);
+
+ SDValue SubregHI = CurDAG->getTargetExtractSubreg(Hexagon::subreg_hireg, dl,
+ MVT::i32, SDValue(Reg, 0));
+
+ SDValue SubregLO = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg, dl,
+ MVT::i32, SDValue(Reg, 0));
+
+ // Clear/set/toggle hi or lo registers depending on the bit position.
+ if (SubValueVT != MVT::f32 && BitPos < 32) {
+ SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
+ SubregLO, SDVal);
+ const SDValue Ops[] = { RegClass, SubregHI, SubregHiIdx,
+ SDValue(Result0, 0), SubregLoIdx };
+ Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
+ dl, ValueVT, Ops);
+ } else {
+ if (Opc != ISD::FABS && Opc != ISD::FNEG)
+ SDVal = CurDAG->getTargetConstant(BitPos-32, dl, MVT::i32);
+ SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
+ SubregHI, SDVal);
+ const SDValue Ops[] = { RegClass, SDValue(Result0, 0), SubregHiIdx,
+ SubregLO, SubregLoIdx };
+ Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
+ dl, ValueVT, Ops);
+ }
+ }
+
+ ReplaceUses(N, Result);
+ return Result;
+}
+
+
+SDNode *HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
+ MachineFrameInfo *MFI = MF->getFrameInfo();
+ const HexagonFrameLowering *HFI = HST->getFrameLowering();
+ int FX = cast<FrameIndexSDNode>(N)->getIndex();
+ unsigned StkA = HFI->getStackAlignment();
+ unsigned MaxA = MFI->getMaxAlignment();
+ SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
+ SDLoc DL(N);
+ SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
+ SDNode *R = 0;
+
+ // Use TFR_FI when:
+ // - the object is fixed, or
+ // - there are no objects with higher-than-default alignment, or
+ // - there are no dynamically allocated objects.
+ // Otherwise, use TFR_FIA.
+ if (FX < 0 || MaxA <= StkA || !MFI->hasVarSizedObjects()) {
+ R = CurDAG->getMachineNode(Hexagon::TFR_FI, DL, MVT::i32, FI, Zero);
+ } else {
+ auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
+ unsigned AR = HMFI.getStackAlignBaseVReg();
+ SDValue CH = CurDAG->getEntryNode();
+ SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
+ R = CurDAG->getMachineNode(Hexagon::TFR_FIA, DL, MVT::i32, Ops);
+ }
+
+ if (N->getHasDebugValue())
+ CurDAG->TransferDbgValues(SDValue(N, 0), SDValue(R, 0));
+ return R;
+}
+
+
+SDNode *HexagonDAGToDAGISel::Select(SDNode *N) {
+ if (N->isMachineOpcode()) {
+ N->setNodeId(-1);
+ return nullptr; // Already selected.
+ }
+
+ switch (N->getOpcode()) {
+ case ISD::Constant:
+ return SelectConstant(N);
+
+ case ISD::ConstantFP:
+ return SelectConstantFP(N);
+
+ case ISD::FrameIndex:
+ return SelectFrameIndex(N);
+
+ case ISD::ADD:
+ return SelectAdd(N);
+
+ case ISD::SHL:
+ return SelectSHL(N);
+
+ case ISD::LOAD:
+ return SelectLoad(N);
+
+ case ISD::STORE:
+ return SelectStore(N);
+
+ case ISD::MUL:
+ return SelectMul(N);
+
+ case ISD::AND:
+ case ISD::OR:
+ case ISD::XOR:
+ case ISD::FABS:
+ case ISD::FNEG:
+ return SelectBitOp(N);
+
+ case ISD::ZERO_EXTEND:
+ return SelectZeroExtend(N);
+
+ case ISD::INTRINSIC_W_CHAIN:
+ return SelectIntrinsicWChain(N);
+
+ case ISD::INTRINSIC_WO_CHAIN:
+ return SelectIntrinsicWOChain(N);
+ }
+
+ return SelectCode(N);
+}
+
+bool HexagonDAGToDAGISel::
+SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
+ std::vector<SDValue> &OutOps) {
+ SDValue Inp = Op, Res;
+
+ switch (ConstraintID) {
+ default:
+ return true;
+ case InlineAsm::Constraint_i:
+ case InlineAsm::Constraint_o: // Offsetable.
+ case InlineAsm::Constraint_v: // Not offsetable.
+ case InlineAsm::Constraint_m: // Memory.
+ if (SelectAddrFI(Inp, Res))
+ OutOps.push_back(Res);
+ else
+ OutOps.push_back(Inp);
+ break;
+ }
+
+ OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
+ return false;
+}
+
+
+void HexagonDAGToDAGISel::PreprocessISelDAG() {
+ SelectionDAG &DAG = *CurDAG;
+ std::vector<SDNode*> Nodes;
+ for (SDNode &Node : DAG.allnodes())
+ Nodes.push_back(&Node);
+
+ // Simplify: (or (select c x 0) z) -> (select c (or x z) z)
+ // (or (select c 0 y) z) -> (select c z (or y z))
+ // This may not be the right thing for all targets, so do it here.
+ for (auto I: Nodes) {
+ if (I->getOpcode() != ISD::OR)
+ continue;
+
+ auto IsZero = [] (const SDValue &V) -> bool {
+ if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
+ return SC->isNullValue();
+ return false;
+ };
+ auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
+ if (Op.getOpcode() != ISD::SELECT)
+ return false;
+ return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2));
+ };
+
+ SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
+ EVT VT = I->getValueType(0);
+ bool SelN0 = IsSelect0(N0);
+ SDValue SOp = SelN0 ? N0 : N1;
+ SDValue VOp = SelN0 ? N1 : N0;
+
+ if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
+ SDValue SC = SOp.getOperand(0);
+ SDValue SX = SOp.getOperand(1);
+ SDValue SY = SOp.getOperand(2);
+ SDLoc DLS = SOp;
+ if (IsZero(SY)) {
+ SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
+ SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
+ DAG.ReplaceAllUsesWith(I, NewSel.getNode());
+ } else if (IsZero(SX)) {
+ SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
+ SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
+ DAG.ReplaceAllUsesWith(I, NewSel.getNode());
+ }
+ }
+ }
+}
+
+void HexagonDAGToDAGISel::EmitFunctionEntryCode() {
+ auto &HST = static_cast<const HexagonSubtarget&>(MF->getSubtarget());
+ auto &HFI = *HST.getFrameLowering();
+ if (!HFI.needsAligna(*MF))
+ return;
+
+ MachineFrameInfo *MFI = MF->getFrameInfo();
+ MachineBasicBlock *EntryBB = &MF->front();
+ unsigned AR = FuncInfo->CreateReg(MVT::i32);
+ unsigned MaxA = MFI->getMaxAlignment();
+ BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::ALIGNA), AR)
+ .addImm(MaxA);
+ MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR);
+}
+
+// Match a frame index that can be used in an addressing mode.
+bool HexagonDAGToDAGISel::SelectAddrFI(SDValue& N, SDValue &R) {
+ if (N.getOpcode() != ISD::FrameIndex)
+ return false;
+ auto &HFI = *HST->getFrameLowering();
+ MachineFrameInfo *MFI = MF->getFrameInfo();
+ int FX = cast<FrameIndexSDNode>(N)->getIndex();
+ if (!MFI->isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
+ return false;
+ R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
+ return true;
+}
+
+inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
+ return SelectGlobalAddress(N, R, false);
+}
+
+inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
+ return SelectGlobalAddress(N, R, true);
+}
+
+bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
+ bool UseGP) {
+ switch (N.getOpcode()) {
+ case ISD::ADD: {
+ SDValue N0 = N.getOperand(0);
+ SDValue N1 = N.getOperand(1);
+ unsigned GAOpc = N0.getOpcode();
+ if (UseGP && GAOpc != HexagonISD::CONST32_GP)
+ return false;
+ if (!UseGP && GAOpc != HexagonISD::CONST32)
+ return false;
+ if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
+ SDValue Addr = N0.getOperand(0);
+ if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
+ if (GA->getOpcode() == ISD::TargetGlobalAddress) {
+ uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
+ R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
+ N.getValueType(), NewOff);
+ return true;
+ }
+ }
+ }
+ break;
+ }
+ case HexagonISD::CONST32:
+ // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
+ // want in the instruction.
+ if (!UseGP)
+ R = N.getOperand(0);
+ return !UseGP;
+ case HexagonISD::CONST32_GP:
+ if (UseGP)
+ R = N.getOperand(0);
+ return UseGP;
+ default:
+ return false;
+ }
+
+ return false;
+}
+
+bool HexagonDAGToDAGISel::isValueExtension(const SDValue &Val,
+ unsigned FromBits, SDValue &Src) {
+ unsigned Opc = Val.getOpcode();
+ switch (Opc) {
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND: {
+ SDValue const &Op0 = Val.getOperand(0);
+ EVT T = Op0.getValueType();
+ if (T.isInteger() && T.getSizeInBits() == FromBits) {
+ Src = Op0;
+ return true;
+ }
+ break;
+ }
+ case ISD::SIGN_EXTEND_INREG:
+ case ISD::AssertSext:
+ case ISD::AssertZext:
+ if (Val.getOperand(0).getValueType().isInteger()) {
+ VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
+ if (T->getVT().getSizeInBits() == FromBits) {
+ Src = Val.getOperand(0);
+ return true;
+ }
+ }
+ break;
+ case ISD::AND: {
+ // Check if this is an AND with "FromBits" of lower bits set to 1.
+ uint64_t FromMask = (1 << FromBits) - 1;
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
+ if (C->getZExtValue() == FromMask) {
+ Src = Val.getOperand(1);
+ return true;
+ }
+ }
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
+ if (C->getZExtValue() == FromMask) {
+ Src = Val.getOperand(0);
+ return true;
+ }
+ }
+ break;
+ }
+ case ISD::OR:
+ case ISD::XOR: {
+ // OR/XOR with the lower "FromBits" bits set to 0.
+ uint64_t FromMask = (1 << FromBits) - 1;
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
+ if ((C->getZExtValue() & FromMask) == 0) {
+ Src = Val.getOperand(1);
+ return true;
+ }
+ }
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
+ if ((C->getZExtValue() & FromMask) == 0) {
+ Src = Val.getOperand(0);
+ return true;
+ }
+ }
+ }
+ default:
+ break;
+ }
+ return false;
+}
OpenPOWER on IntegriCloud