summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp')
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp953
1 files changed, 684 insertions, 269 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
index 637b0a0..db72899 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
@@ -21,14 +21,13 @@
// - Countable loops (w/ ind. var for a trip count)
// - Assumes loops are normalized by IndVarSimplify
// - Try inner-most loops first
-// - No nested hardware loops.
// - No function calls in loops.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallSet.h"
#include "Hexagon.h"
-#include "HexagonTargetMachine.h"
+#include "HexagonSubtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
@@ -49,9 +48,18 @@ using namespace llvm;
#define DEBUG_TYPE "hwloops"
#ifndef NDEBUG
-static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden, cl::init(-1));
+static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1));
+
+// Option to create preheader only for a specific function.
+static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden,
+ cl::init(""));
#endif
+// Option to create a preheader if one doesn't exist.
+static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader",
+ cl::Hidden, cl::init(true),
+ cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
+
STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
namespace llvm {
@@ -64,9 +72,7 @@ namespace {
MachineLoopInfo *MLI;
MachineRegisterInfo *MRI;
MachineDominatorTree *MDT;
- const HexagonTargetMachine *TM;
const HexagonInstrInfo *TII;
- const HexagonRegisterInfo *TRI;
#ifndef NDEBUG
static int Counter;
#endif
@@ -89,14 +95,16 @@ namespace {
}
private:
+ typedef std::map<unsigned, MachineInstr *> LoopFeederMap;
+
/// Kinds of comparisons in the compare instructions.
struct Comparison {
enum Kind {
EQ = 0x01,
NE = 0x02,
- L = 0x04, // Less-than property.
- G = 0x08, // Greater-than property.
- U = 0x40, // Unsigned property.
+ L = 0x04,
+ G = 0x08,
+ U = 0x40,
LTs = L,
LEs = L | EQ,
GTs = G,
@@ -113,6 +121,23 @@ namespace {
return (Kind)(Cmp ^ (L|G));
return Cmp;
}
+
+ static Kind getNegatedComparison(Kind Cmp) {
+ if ((Cmp & L) || (Cmp & G))
+ return (Kind)((Cmp ^ (L | G)) ^ EQ);
+ if ((Cmp & NE) || (Cmp & EQ))
+ return (Kind)(Cmp ^ (EQ | NE));
+ return (Kind)0;
+ }
+
+ static bool isSigned(Kind Cmp) {
+ return (Cmp & (L | G) && !(Cmp & U));
+ }
+
+ static bool isUnsigned(Kind Cmp) {
+ return (Cmp & U);
+ }
+
};
/// \brief Find the register that contains the loop controlling
@@ -130,6 +155,12 @@ namespace {
bool findInductionRegister(MachineLoop *L, unsigned &Reg,
int64_t &IVBump, MachineInstr *&IVOp) const;
+ /// \brief Return the comparison kind for the specified opcode.
+ Comparison::Kind getComparisonKind(unsigned CondOpc,
+ MachineOperand *InitialValue,
+ const MachineOperand *Endvalue,
+ int64_t IVBump) const;
+
/// \brief Analyze the statements in a loop to determine if the loop
/// has a computable trip count and, if so, return a value that represents
/// the trip count expression.
@@ -143,24 +174,22 @@ namespace {
/// If the trip count is not directly available (as an immediate value,
/// or a register), the function will attempt to insert computation of it
/// to the loop's preheader.
- CountValue *computeCount(MachineLoop *Loop,
- const MachineOperand *Start,
- const MachineOperand *End,
- unsigned IVReg,
- int64_t IVBump,
- Comparison::Kind Cmp) const;
+ CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start,
+ const MachineOperand *End, unsigned IVReg,
+ int64_t IVBump, Comparison::Kind Cmp) const;
/// \brief Return true if the instruction is not valid within a hardware
/// loop.
- bool isInvalidLoopOperation(const MachineInstr *MI) const;
+ bool isInvalidLoopOperation(const MachineInstr *MI,
+ bool IsInnerHWLoop) const;
/// \brief Return true if the loop contains an instruction that inhibits
/// using the hardware loop.
- bool containsInvalidInstruction(MachineLoop *L) const;
+ bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const;
/// \brief Given a loop, check if we can convert it to a hardware loop.
/// If so, then perform the conversion and return true.
- bool convertToHardwareLoop(MachineLoop *L);
+ bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used);
/// \brief Return true if the instruction is now dead.
bool isDead(const MachineInstr *MI,
@@ -175,14 +204,44 @@ namespace {
/// defined. If the instructions are out of order, try to reorder them.
bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
- /// \brief Get the instruction that loads an immediate value into \p R,
- /// or 0 if such an instruction does not exist.
- MachineInstr *defWithImmediate(unsigned R);
+ /// \brief Return true if MO and MI pair is visited only once. If visited
+ /// more than once, this indicates there is recursion. In such a case,
+ /// return false.
+ bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
+ const MachineOperand *MO,
+ LoopFeederMap &LoopFeederPhi) const;
+
+ /// \brief Return true if the Phi may generate a value that may underflow,
+ /// or may wrap.
+ bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
+ MachineBasicBlock *MBB, MachineLoop *L,
+ LoopFeederMap &LoopFeederPhi) const;
+
+ /// \brief Return true if the induction variable may underflow an unsigned
+ /// value in the first iteration.
+ bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
+ const MachineOperand *EndVal,
+ MachineBasicBlock *MBB, MachineLoop *L,
+ LoopFeederMap &LoopFeederPhi) const;
+
+ /// \brief Check if the given operand has a compile-time known constant
+ /// value. Return true if yes, and false otherwise. When returning true, set
+ /// Val to the corresponding constant value.
+ bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;
+
+ /// \brief Check if the operand has a compile-time known constant value.
+ bool isImmediate(const MachineOperand &MO) const {
+ int64_t V;
+ return checkForImmediate(MO, V);
+ }
- /// \brief Get the immediate value referenced to by \p MO, either for
- /// immediate operands, or for register operands, where the register
- /// was defined with an immediate value.
- int64_t getImmediate(MachineOperand &MO);
+ /// \brief Return the immediate for the specified operand.
+ int64_t getImmediate(const MachineOperand &MO) const {
+ int64_t V;
+ if (!checkForImmediate(MO, V))
+ llvm_unreachable("Invalid operand");
+ return V;
+ }
/// \brief Reset the given machine operand to now refer to a new immediate
/// value. Assumes that the operand was already referencing an immediate
@@ -265,9 +324,7 @@ namespace {
return Contents.ImmVal;
}
- void print(raw_ostream &OS, const TargetMachine *TM = nullptr) const {
- const TargetRegisterInfo *TRI =
- TM ? TM->getSubtargetImpl()->getRegisterInfo() : nullptr;
+ void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); }
if (isImm()) { OS << Contents.ImmVal; }
}
@@ -282,18 +339,10 @@ INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
"Hexagon Hardware Loops", false, false)
-
-/// \brief Returns true if the instruction is a hardware loop instruction.
-static bool isHardwareLoop(const MachineInstr *MI) {
- return MI->getOpcode() == Hexagon::J2_loop0r ||
- MI->getOpcode() == Hexagon::J2_loop0i;
-}
-
FunctionPass *llvm::createHexagonHardwareLoops() {
return new HexagonHardwareLoops();
}
-
bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
@@ -302,22 +351,30 @@ bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
MLI = &getAnalysis<MachineLoopInfo>();
MRI = &MF.getRegInfo();
MDT = &getAnalysis<MachineDominatorTree>();
- TM = static_cast<const HexagonTargetMachine*>(&MF.getTarget());
- TII = static_cast<const HexagonInstrInfo *>(
- TM->getSubtargetImpl()->getInstrInfo());
- TRI = static_cast<const HexagonRegisterInfo *>(
- TM->getSubtargetImpl()->getRegisterInfo());
+ TII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
- for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
- I != E; ++I) {
- MachineLoop *L = *I;
- if (!L->getParentLoop())
- Changed |= convertToHardwareLoop(L);
- }
+ for (auto &L : *MLI)
+ if (!L->getParentLoop()) {
+ bool L0Used = false;
+ bool L1Used = false;
+ Changed |= convertToHardwareLoop(L, L0Used, L1Used);
+ }
return Changed;
}
+/// \brief Return the latch block if it's one of the exiting blocks. Otherwise,
+/// return the exiting block. Return 'null' when multiple exiting blocks are
+/// present.
+static MachineBasicBlock* getExitingBlock(MachineLoop *L) {
+ if (MachineBasicBlock *Latch = L->getLoopLatch()) {
+ if (L->isLoopExiting(Latch))
+ return Latch;
+ else
+ return L->getExitingBlock();
+ }
+ return nullptr;
+}
bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
unsigned &Reg,
@@ -327,7 +384,8 @@ bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
MachineBasicBlock *Header = L->getHeader();
MachineBasicBlock *Preheader = L->getLoopPreheader();
MachineBasicBlock *Latch = L->getLoopLatch();
- if (!Header || !Preheader || !Latch)
+ MachineBasicBlock *ExitingBlock = getExitingBlock(L);
+ if (!Header || !Preheader || !Latch || !ExitingBlock)
return false;
// This pair represents an induction register together with an immediate
@@ -357,15 +415,16 @@ bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
unsigned PhiOpReg = Phi->getOperand(i).getReg();
MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
unsigned UpdOpc = DI->getOpcode();
- bool isAdd = (UpdOpc == Hexagon::ADD_ri);
+ bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp);
if (isAdd) {
- // If the register operand to the add is the PHI we're
- // looking at, this meets the induction pattern.
+ // If the register operand to the add is the PHI we're looking at, this
+ // meets the induction pattern.
unsigned IndReg = DI->getOperand(1).getReg();
- if (MRI->getVRegDef(IndReg) == Phi) {
+ MachineOperand &Opnd2 = DI->getOperand(2);
+ int64_t V;
+ if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
unsigned UpdReg = DI->getOperand(0).getReg();
- int64_t V = DI->getOperand(2).getImm();
IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
}
}
@@ -374,13 +433,13 @@ bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
SmallVector<MachineOperand,2> Cond;
MachineBasicBlock *TB = nullptr, *FB = nullptr;
- bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
+ bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false);
if (NotAnalyzed)
return false;
- unsigned CSz = Cond.size();
- assert (CSz == 1 || CSz == 2);
- unsigned PredR = Cond[CSz-1].getReg();
+ unsigned PredR, PredPos, PredRegFlags;
+ if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags))
+ return false;
MachineInstr *PredI = MRI->getVRegDef(PredR);
if (!PredI->isCompare())
@@ -392,7 +451,7 @@ bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
CmpMask, CmpImm);
// Fail if the compare was not analyzed, or it's not comparing a register
// with an immediate value. Not checking the mask here, since we handle
- // the individual compare opcodes (including CMPb) later on.
+ // the individual compare opcodes (including A4_cmpb*) later on.
if (!CmpAnalyzed)
return false;
@@ -422,6 +481,44 @@ bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
return true;
}
+// Return the comparison kind for the specified opcode.
+HexagonHardwareLoops::Comparison::Kind
+HexagonHardwareLoops::getComparisonKind(unsigned CondOpc,
+ MachineOperand *InitialValue,
+ const MachineOperand *EndValue,
+ int64_t IVBump) const {
+ Comparison::Kind Cmp = (Comparison::Kind)0;
+ switch (CondOpc) {
+ case Hexagon::C2_cmpeqi:
+ case Hexagon::C2_cmpeq:
+ case Hexagon::C2_cmpeqp:
+ Cmp = Comparison::EQ;
+ break;
+ case Hexagon::C4_cmpneq:
+ case Hexagon::C4_cmpneqi:
+ Cmp = Comparison::NE;
+ break;
+ case Hexagon::C4_cmplte:
+ Cmp = Comparison::LEs;
+ break;
+ case Hexagon::C4_cmplteu:
+ Cmp = Comparison::LEu;
+ break;
+ case Hexagon::C2_cmpgtui:
+ case Hexagon::C2_cmpgtu:
+ case Hexagon::C2_cmpgtup:
+ Cmp = Comparison::GTu;
+ break;
+ case Hexagon::C2_cmpgti:
+ case Hexagon::C2_cmpgt:
+ case Hexagon::C2_cmpgtp:
+ Cmp = Comparison::GTs;
+ break;
+ default:
+ return (Comparison::Kind)0;
+ }
+ return Cmp;
+}
/// \brief Analyze the statements in a loop to determine if the loop has
/// a computable trip count and, if so, return a value that represents
@@ -431,7 +528,7 @@ bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
/// induction variable patterns that are used in the calculation for
/// the number of time the loop is executed.
CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
- SmallVectorImpl<MachineInstr *> &OldInsts) {
+ SmallVectorImpl<MachineInstr *> &OldInsts) {
MachineBasicBlock *TopMBB = L->getTopBlock();
MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
assert(PI != TopMBB->pred_end() &&
@@ -455,8 +552,8 @@ CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
// Look for the cmp instruction to determine if we can get a useful trip
// count. The trip count can be either a register or an immediate. The
// location of the value depends upon the type (reg or imm).
- MachineBasicBlock *Latch = L->getLoopLatch();
- if (!Latch)
+ MachineBasicBlock *ExitingBlock = getExitingBlock(L);
+ if (!ExitingBlock)
return nullptr;
unsigned IVReg = 0;
@@ -470,6 +567,7 @@ CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
MachineOperand *InitialValue = nullptr;
MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
+ MachineBasicBlock *Latch = L->getLoopLatch();
for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
if (MBB == Preheader)
@@ -482,7 +580,7 @@ CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
SmallVector<MachineOperand,2> Cond;
MachineBasicBlock *TB = nullptr, *FB = nullptr;
- bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
+ bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false);
if (NotAnalyzed)
return nullptr;
@@ -490,7 +588,18 @@ CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
// TB must be non-null. If FB is also non-null, one of them must be
// the header. Otherwise, branch to TB could be exiting the loop, and
// the fall through can go to the header.
- assert (TB && "Latch block without a branch?");
+ assert (TB && "Exit block without a branch?");
+ if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
+ MachineBasicBlock *LTB = 0, *LFB = 0;
+ SmallVector<MachineOperand,2> LCond;
+ bool NotAnalyzed = TII->AnalyzeBranch(*Latch, LTB, LFB, LCond, false);
+ if (NotAnalyzed)
+ return nullptr;
+ if (TB == Latch)
+ TB = (LTB == Header) ? LTB : LFB;
+ else
+ FB = (LTB == Header) ? LTB: LFB;
+ }
assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
if (!TB || (FB && TB != Header && FB != Header))
return nullptr;
@@ -499,8 +608,10 @@ CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
// to put imm(0), followed by P in the vector Cond.
// If TB is not the header, it means that the "not-taken" path must lead
// to the header.
- bool Negated = (Cond.size() > 1) ^ (TB != Header);
- unsigned PredReg = Cond[Cond.size()-1].getReg();
+ bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header);
+ unsigned PredReg, PredPos, PredRegFlags;
+ if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags))
+ return nullptr;
MachineInstr *CondI = MRI->getVRegDef(PredReg);
unsigned CondOpc = CondI->getOpcode();
@@ -539,57 +650,13 @@ CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
if (!EndValue)
return nullptr;
- switch (CondOpc) {
- case Hexagon::C2_cmpeqi:
- case Hexagon::C2_cmpeq:
- Cmp = !Negated ? Comparison::EQ : Comparison::NE;
- break;
- case Hexagon::C2_cmpgtui:
- case Hexagon::C2_cmpgtu:
- Cmp = !Negated ? Comparison::GTu : Comparison::LEu;
- break;
- case Hexagon::C2_cmpgti:
- case Hexagon::C2_cmpgt:
- Cmp = !Negated ? Comparison::GTs : Comparison::LEs;
- break;
- // Very limited support for byte/halfword compares.
- case Hexagon::CMPbEQri_V4:
- case Hexagon::CMPhEQri_V4: {
- if (IVBump != 1)
- return nullptr;
-
- int64_t InitV, EndV;
- // Since the comparisons are "ri", the EndValue should be an
- // immediate. Check it just in case.
- assert(EndValue->isImm() && "Unrecognized latch comparison");
- EndV = EndValue->getImm();
- // Allow InitialValue to be a register defined with an immediate.
- if (InitialValue->isReg()) {
- if (!defWithImmediate(InitialValue->getReg()))
- return nullptr;
- InitV = getImmediate(*InitialValue);
- } else {
- assert(InitialValue->isImm());
- InitV = InitialValue->getImm();
- }
- if (InitV >= EndV)
- return nullptr;
- if (CondOpc == Hexagon::CMPbEQri_V4) {
- if (!isInt<8>(InitV) || !isInt<8>(EndV))
- return nullptr;
- } else { // Hexagon::CMPhEQri_V4
- if (!isInt<16>(InitV) || !isInt<16>(EndV))
- return nullptr;
- }
- Cmp = !Negated ? Comparison::EQ : Comparison::NE;
- break;
- }
- default:
- return nullptr;
- }
-
+ Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump);
+ if (!Cmp)
+ return nullptr;
+ if (Negated)
+ Cmp = Comparison::getNegatedComparison(Cmp);
if (isSwapped)
- Cmp = Comparison::getSwappedComparison(Cmp);
+ Cmp = Comparison::getSwappedComparison(Cmp);
if (InitialValue->isReg()) {
unsigned R = InitialValue->getReg();
@@ -603,6 +670,7 @@ CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
if (!MDT->properlyDominates(DefBB, Header))
return nullptr;
+ OldInsts.push_back(MRI->getVRegDef(R));
}
return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
@@ -626,32 +694,45 @@ CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
// If so, use the immediate value rather than the register.
if (Start->isReg()) {
const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
- if (StartValInstr && StartValInstr->getOpcode() == Hexagon::A2_tfrsi)
+ if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi ||
+ StartValInstr->getOpcode() == Hexagon::A2_tfrpi))
Start = &StartValInstr->getOperand(1);
}
if (End->isReg()) {
const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
- if (EndValInstr && EndValInstr->getOpcode() == Hexagon::A2_tfrsi)
+ if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi ||
+ EndValInstr->getOpcode() == Hexagon::A2_tfrpi))
End = &EndValInstr->getOperand(1);
}
- assert (Start->isReg() || Start->isImm());
- assert (End->isReg() || End->isImm());
+ if (!Start->isReg() && !Start->isImm())
+ return nullptr;
+ if (!End->isReg() && !End->isImm())
+ return nullptr;
bool CmpLess = Cmp & Comparison::L;
bool CmpGreater = Cmp & Comparison::G;
bool CmpHasEqual = Cmp & Comparison::EQ;
// Avoid certain wrap-arounds. This doesn't detect all wrap-arounds.
- // If loop executes while iv is "less" with the iv value going down, then
- // the iv must wrap.
if (CmpLess && IVBump < 0)
+ // Loop going while iv is "less" with the iv value going down. Must wrap.
return nullptr;
- // If loop executes while iv is "greater" with the iv value going up, then
- // the iv must wrap.
+
if (CmpGreater && IVBump > 0)
+ // Loop going while iv is "greater" with the iv value going up. Must wrap.
return nullptr;
+ // Phis that may feed into the loop.
+ LoopFeederMap LoopFeederPhi;
+
+ // Check if the inital value may be zero and can be decremented in the first
+ // iteration. If the value is zero, the endloop instruction will not decrement
+ // the loop counter, so we shoudn't generate a hardware loop in this case.
+ if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
+ LoopFeederPhi))
+ return nullptr;
+
if (Start->isImm() && End->isImm()) {
// Both, start and end are immediates.
int64_t StartV = Start->getImm();
@@ -674,14 +755,16 @@ CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
if (CmpHasEqual)
Dist = Dist > 0 ? Dist+1 : Dist-1;
- // assert (CmpLess => Dist > 0);
- assert ((!CmpLess || Dist > 0) && "Loop should never iterate!");
- // assert (CmpGreater => Dist < 0);
- assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!");
+ // For the loop to iterate, CmpLess should imply Dist > 0. Similarly,
+ // CmpGreater should imply Dist < 0. These conditions could actually
+ // fail, for example, in unreachable code (which may still appear to be
+ // reachable in the CFG).
+ if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
+ return nullptr;
// "Normalized" distance, i.e. with the bump set to +-1.
- int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump-1)) / IVBump
- : (-Dist + (-IVBump-1)) / (-IVBump);
+ int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump
+ : (-Dist + (-IVBump - 1)) / (-IVBump);
assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign.");
uint64_t Count = Dist1;
@@ -698,14 +781,15 @@ CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
// If the induction variable bump is not a power of 2, quit.
// Othwerise we'd need a general integer division.
- if (!isPowerOf2_64(abs64(IVBump)))
+ if (!isPowerOf2_64(std::abs(IVBump)))
return nullptr;
MachineBasicBlock *PH = Loop->getLoopPreheader();
assert (PH && "Should have a preheader by now");
MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
- DebugLoc DL = (InsertPos != PH->end()) ? InsertPos->getDebugLoc()
- : DebugLoc();
+ DebugLoc DL;
+ if (InsertPos != PH->end())
+ DL = InsertPos->getDebugLoc();
// If Start is an immediate and End is a register, the trip count
// will be "reg - imm". Hexagon's "subtract immediate" instruction
@@ -782,23 +866,37 @@ CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
DistSR = End->getSubReg();
} else {
const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
- (RegToImm ? TII->get(Hexagon::SUB_ri) :
- TII->get(Hexagon::ADD_ri));
- unsigned SubR = MRI->createVirtualRegister(IntRC);
- MachineInstrBuilder SubIB =
- BuildMI(*PH, InsertPos, DL, SubD, SubR);
-
- if (RegToReg) {
- SubIB.addReg(End->getReg(), 0, End->getSubReg())
- .addReg(Start->getReg(), 0, Start->getSubReg());
- } else if (RegToImm) {
- SubIB.addImm(EndV)
- .addReg(Start->getReg(), 0, Start->getSubReg());
- } else { // ImmToReg
- SubIB.addReg(End->getReg(), 0, End->getSubReg())
- .addImm(-StartV);
+ (RegToImm ? TII->get(Hexagon::A2_subri) :
+ TII->get(Hexagon::A2_addi));
+ if (RegToReg || RegToImm) {
+ unsigned SubR = MRI->createVirtualRegister(IntRC);
+ MachineInstrBuilder SubIB =
+ BuildMI(*PH, InsertPos, DL, SubD, SubR);
+
+ if (RegToReg)
+ SubIB.addReg(End->getReg(), 0, End->getSubReg())
+ .addReg(Start->getReg(), 0, Start->getSubReg());
+ else
+ SubIB.addImm(EndV)
+ .addReg(Start->getReg(), 0, Start->getSubReg());
+ DistR = SubR;
+ } else {
+ // If the loop has been unrolled, we should use the original loop count
+ // instead of recalculating the value. This will avoid additional
+ // 'Add' instruction.
+ const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
+ if (EndValInstr->getOpcode() == Hexagon::A2_addi &&
+ EndValInstr->getOperand(2).getImm() == StartV) {
+ DistR = EndValInstr->getOperand(1).getReg();
+ } else {
+ unsigned SubR = MRI->createVirtualRegister(IntRC);
+ MachineInstrBuilder SubIB =
+ BuildMI(*PH, InsertPos, DL, SubD, SubR);
+ SubIB.addReg(End->getReg(), 0, End->getSubReg())
+ .addImm(-StartV);
+ DistR = SubR;
+ }
}
- DistR = SubR;
DistSR = 0;
}
@@ -811,7 +909,7 @@ CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
} else {
// Generate CountR = ADD DistR, AdjVal
unsigned AddR = MRI->createVirtualRegister(IntRC);
- const MCInstrDesc &AddD = TII->get(Hexagon::ADD_ri);
+ MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
BuildMI(*PH, InsertPos, DL, AddD, AddR)
.addReg(DistR, 0, DistSR)
.addImm(AdjV);
@@ -844,50 +942,50 @@ CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
return new CountValue(CountValue::CV_Register, CountR, CountSR);
}
-
/// \brief Return true if the operation is invalid within hardware loop.
-bool HexagonHardwareLoops::isInvalidLoopOperation(
- const MachineInstr *MI) const {
+bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI,
+ bool IsInnerHWLoop) const {
- // call is not allowed because the callee may use a hardware loop
- if (MI->getDesc().isCall())
+ // Call is not allowed because the callee may use a hardware loop except for
+ // the case when the call never returns.
+ if (MI->getDesc().isCall() && MI->getOpcode() != Hexagon::CALLv3nr)
return true;
- // do not allow nested hardware loops
- if (isHardwareLoop(MI))
- return true;
-
- // check if the instruction defines a hardware loop register
+ // Check if the instruction defines a hardware loop register.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
unsigned R = MO.getReg();
- if (R == Hexagon::LC0 || R == Hexagon::LC1 ||
- R == Hexagon::SA0 || R == Hexagon::SA1)
+ if (IsInnerHWLoop && (R == Hexagon::LC0 || R == Hexagon::SA0 ||
+ R == Hexagon::LC1 || R == Hexagon::SA1))
+ return true;
+ if (!IsInnerHWLoop && (R == Hexagon::LC1 || R == Hexagon::SA1))
return true;
}
return false;
}
-
-/// \brief - Return true if the loop contains an instruction that inhibits
-/// the use of the hardware loop function.
-bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const {
+/// \brief Return true if the loop contains an instruction that inhibits
+/// the use of the hardware loop instruction.
+bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L,
+ bool IsInnerHWLoop) const {
const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
+ DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber(););
for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
MachineBasicBlock *MBB = Blocks[i];
for (MachineBasicBlock::iterator
MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
const MachineInstr *MI = &*MII;
- if (isInvalidLoopOperation(MI))
+ if (isInvalidLoopOperation(MI, IsInnerHWLoop)) {
+ DEBUG(dbgs()<< "\nCannot convert to hw_loop due to:"; MI->dump(););
return true;
+ }
}
}
return false;
}
-
/// \brief Returns true if the instruction is dead. This was essentially
/// copied from DeadMachineInstructionElim::isDead, but with special cases
/// for inline asm, physical registers and instructions with side effects
@@ -928,7 +1026,7 @@ bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
MachineOperand &Use = *J;
MachineInstr *UseMI = Use.getParent();
- // If the phi node has a user that is not MI, bail...
+ // If the phi node has a user that is not MI, bail.
if (MI != UseMI)
return false;
}
@@ -965,8 +1063,6 @@ void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
continue;
if (Use.isDebug())
UseMI->getOperand(0).setReg(0U);
- // This may also be a "instr -> phi -> instr" case which can
- // be removed too.
}
}
@@ -984,19 +1080,47 @@ void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
///
/// The code makes several assumptions about the representation of the loop
/// in llvm.
-bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
+bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
+ bool &RecL0used,
+ bool &RecL1used) {
// This is just for sanity.
assert(L->getHeader() && "Loop without a header?");
bool Changed = false;
+ bool L0Used = false;
+ bool L1Used = false;
+
// Process nested loops first.
- for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
- Changed |= convertToHardwareLoop(*I);
+ for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
+ Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used);
+ L0Used |= RecL0used;
+ L1Used |= RecL1used;
+ }
// If a nested loop has been converted, then we can't convert this loop.
- if (Changed)
+ if (Changed && L0Used && L1Used)
return Changed;
+ unsigned LOOP_i;
+ unsigned LOOP_r;
+ unsigned ENDLOOP;
+
+ // Flag used to track loopN instruction:
+ // 1 - Hardware loop is being generated for the inner most loop.
+ // 0 - Hardware loop is being generated for the outer loop.
+ unsigned IsInnerHWLoop = 1;
+
+ if (L0Used) {
+ LOOP_i = Hexagon::J2_loop1i;
+ LOOP_r = Hexagon::J2_loop1r;
+ ENDLOOP = Hexagon::ENDLOOP1;
+ IsInnerHWLoop = 0;
+ } else {
+ LOOP_i = Hexagon::J2_loop0i;
+ LOOP_r = Hexagon::J2_loop0r;
+ ENDLOOP = Hexagon::ENDLOOP0;
+ }
+
#ifndef NDEBUG
// Stop trying after reaching the limit (if any).
int Limit = HWLoopLimit;
@@ -1008,14 +1132,10 @@ bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
#endif
// Does the loop contain any invalid instructions?
- if (containsInvalidInstruction(L))
+ if (containsInvalidInstruction(L, IsInnerHWLoop))
return false;
- // Is the induction variable bump feeding the latch condition?
- if (!fixupInductionVariable(L))
- return false;
-
- MachineBasicBlock *LastMBB = L->getExitingBlock();
+ MachineBasicBlock *LastMBB = getExitingBlock(L);
// Don't generate hw loop if the loop has more than one exit.
if (!LastMBB)
return false;
@@ -1024,16 +1144,19 @@ bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
if (LastI == LastMBB->end())
return false;
+ // Is the induction variable bump feeding the latch condition?
+ if (!fixupInductionVariable(L))
+ return false;
+
// Ensure the loop has a preheader: the loop instruction will be
// placed there.
- bool NewPreheader = false;
MachineBasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) {
Preheader = createPreheaderForLoop(L);
if (!Preheader)
return false;
- NewPreheader = true;
}
+
MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
SmallVector<MachineInstr*, 2> OldInsts;
@@ -1048,31 +1171,30 @@ bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
// so make sure that the register is actually defined at that point.
MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
MachineBasicBlock *BBDef = TCDef->getParent();
- if (!NewPreheader) {
- if (!MDT->dominates(BBDef, Preheader))
- return false;
- } else {
- // If we have just created a preheader, the dominator tree won't be
- // aware of it. Check if the definition of the register dominates
- // the header, but is not the header itself.
- if (!MDT->properlyDominates(BBDef, L->getHeader()))
- return false;
- }
+ if (!MDT->dominates(BBDef, Preheader))
+ return false;
}
// Determine the loop start.
- MachineBasicBlock *LoopStart = L->getTopBlock();
- if (L->getLoopLatch() != LastMBB) {
- // When the exit and latch are not the same, use the latch block as the
- // start.
- // The loop start address is used only after the 1st iteration, and the
- // loop latch may contains instrs. that need to be executed after the
- // first iteration.
- LoopStart = L->getLoopLatch();
- // Make sure the latch is a successor of the exit, otherwise it won't work.
- if (!LastMBB->isSuccessor(LoopStart))
+ MachineBasicBlock *TopBlock = L->getTopBlock();
+ MachineBasicBlock *ExitingBlock = getExitingBlock(L);
+ MachineBasicBlock *LoopStart = 0;
+ if (ExitingBlock != L->getLoopLatch()) {
+ MachineBasicBlock *TB = 0, *FB = 0;
+ SmallVector<MachineOperand, 2> Cond;
+
+ if (TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false))
+ return false;
+
+ if (L->contains(TB))
+ LoopStart = TB;
+ else if (L->contains(FB))
+ LoopStart = FB;
+ else
return false;
}
+ else
+ LoopStart = TopBlock;
// Convert the loop to a hardware loop.
DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
@@ -1086,8 +1208,7 @@ bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
.addReg(TripCount->getReg(), 0, TripCount->getSubReg());
// Add the Loop instruction to the beginning of the loop.
- BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0r))
- .addMBB(LoopStart)
+ BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart)
.addReg(CountReg);
} else {
assert(TripCount->isImm() && "Expecting immediate value for trip count");
@@ -1095,14 +1216,14 @@ bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
// if the immediate fits in the instructions. Otherwise, we need to
// create a new virtual register.
int64_t CountImm = TripCount->getImm();
- if (!TII->isValidOffset(Hexagon::J2_loop0i, CountImm)) {
+ if (!TII->isValidOffset(LOOP_i, CountImm)) {
unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
.addImm(CountImm);
- BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0r))
+ BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r))
.addMBB(LoopStart).addReg(CountReg);
} else
- BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::J2_loop0i))
+ BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i))
.addMBB(LoopStart).addImm(CountImm);
}
@@ -1116,8 +1237,7 @@ bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
// Replace the loop branch with an endloop instruction.
DebugLoc LastIDL = LastI->getDebugLoc();
- BuildMI(*LastMBB, LastI, LastIDL,
- TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart);
+ BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart);
// The loop ends with either:
// - a conditional branch followed by an unconditional branch, or
@@ -1145,10 +1265,18 @@ bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) {
removeIfDead(OldInsts[i]);
++NumHWLoops;
+
+ // Set RecL1used and RecL0used only after hardware loop has been
+ // successfully generated. Doing it earlier can cause wrong loop instruction
+ // to be used.
+ if (L0Used) // Loop0 was already used. So, the correct loop must be loop1.
+ RecL1used = true;
+ else
+ RecL0used = true;
+
return true;
}
-
bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
MachineInstr *CmpI) {
assert (BumpI != CmpI && "Bump and compare in the same instruction?");
@@ -1189,35 +1317,226 @@ bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
return FoundBump;
}
+/// This function is required to break recursion. Visiting phis in a loop may
+/// result in recursion during compilation. We break the recursion by making
+/// sure that we visit a MachineOperand and its definition in a
+/// MachineInstruction only once. If we attempt to visit more than once, then
+/// there is recursion, and will return false.
+bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
+ MachineInstr *MI,
+ const MachineOperand *MO,
+ LoopFeederMap &LoopFeederPhi) const {
+ if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
+ const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
+ DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber(););
+ // Ignore all BBs that form Loop.
+ for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
+ MachineBasicBlock *MBB = Blocks[i];
+ if (A == MBB)
+ return false;
+ }
+ MachineInstr *Def = MRI->getVRegDef(MO->getReg());
+ LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
+ return true;
+ } else
+ // Already visited node.
+ return false;
+}
+
+/// Return true if a Phi may generate a value that can underflow.
+/// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
+bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
+ MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
+ MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
+ assert(Phi->isPHI() && "Expecting a Phi.");
+ // Walk through each Phi, and its used operands. Make sure that
+ // if there is recursion in Phi, we won't generate hardware loops.
+ for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
+ if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
+ if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
+ Phi->getParent(), L, LoopFeederPhi))
+ return true;
+ return false;
+}
+
+/// Return true if the induction variable can underflow in the first iteration.
+/// An example, is an initial unsigned value that is 0 and is decrement in the
+/// first itertion of a do-while loop. In this case, we cannot generate a
+/// hardware loop because the endloop instruction does not decrement the loop
+/// counter if it is <= 1. We only need to perform this analysis if the
+/// initial value is a register.
+///
+/// This function assumes the initial value may underfow unless proven
+/// otherwise. If the type is signed, then we don't care because signed
+/// underflow is undefined. We attempt to prove the initial value is not
+/// zero by perfoming a crude analysis of the loop counter. This function
+/// checks if the initial value is used in any comparison prior to the loop
+/// and, if so, assumes the comparison is a range check. This is inexact,
+/// but will catch the simple cases.
+bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
+ const MachineOperand *InitVal, const MachineOperand *EndVal,
+ MachineBasicBlock *MBB, MachineLoop *L,
+ LoopFeederMap &LoopFeederPhi) const {
+ // Only check register values since they are unknown.
+ if (!InitVal->isReg())
+ return false;
+
+ if (!EndVal->isImm())
+ return false;
+
+ // A register value that is assigned an immediate is a known value, and it
+ // won't underflow in the first iteration.
+ int64_t Imm;
+ if (checkForImmediate(*InitVal, Imm))
+ return (EndVal->getImm() == Imm);
+
+ unsigned Reg = InitVal->getReg();
+
+ // We don't know the value of a physical register.
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ return true;
+
+ MachineInstr *Def = MRI->getVRegDef(Reg);
+ if (!Def)
+ return true;
-MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) {
+ // If the initial value is a Phi or copy and the operands may not underflow,
+ // then the definition cannot be underflow either.
+ if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
+ L, LoopFeederPhi))
+ return false;
+ if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
+ EndVal, Def->getParent(),
+ L, LoopFeederPhi))
+ return false;
+
+ // Iterate over the uses of the initial value. If the initial value is used
+ // in a compare, then we assume this is a range check that ensures the loop
+ // doesn't underflow. This is not an exact test and should be improved.
+ for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
+ E = MRI->use_instr_nodbg_end(); I != E; ++I) {
+ MachineInstr *MI = &*I;
+ unsigned CmpReg1 = 0, CmpReg2 = 0;
+ int CmpMask = 0, CmpValue = 0;
+
+ if (!TII->analyzeCompare(MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
+ continue;
+
+ MachineBasicBlock *TBB = 0, *FBB = 0;
+ SmallVector<MachineOperand, 2> Cond;
+ if (TII->AnalyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
+ continue;
+
+ Comparison::Kind Cmp = getComparisonKind(MI->getOpcode(), 0, 0, 0);
+ if (Cmp == 0)
+ continue;
+ if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
+ Cmp = Comparison::getNegatedComparison(Cmp);
+ if (CmpReg2 != 0 && CmpReg2 == Reg)
+ Cmp = Comparison::getSwappedComparison(Cmp);
+
+ // Signed underflow is undefined.
+ if (Comparison::isSigned(Cmp))
+ return false;
+
+ // Check if there is a comparison of the inital value. If the initial value
+ // is greater than or not equal to another value, then assume this is a
+ // range check.
+ if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
+ return false;
+ }
+
+ // OK - this is a hack that needs to be improved. We really need to analyze
+ // the instructions performed on the initial value. This works on the simplest
+ // cases only.
+ if (!Def->isCopy() && !Def->isPHI())
+ return false;
+
+ return true;
+}
+
+bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
+ int64_t &Val) const {
+ if (MO.isImm()) {
+ Val = MO.getImm();
+ return true;
+ }
+ if (!MO.isReg())
+ return false;
+
+ // MO is a register. Check whether it is defined as an immediate value,
+ // and if so, get the value of it in TV. That value will then need to be
+ // processed to handle potential subregisters in MO.
+ int64_t TV;
+
+ unsigned R = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(R))
+ return false;
MachineInstr *DI = MRI->getVRegDef(R);
unsigned DOpc = DI->getOpcode();
switch (DOpc) {
+ case TargetOpcode::COPY:
case Hexagon::A2_tfrsi:
case Hexagon::A2_tfrpi:
case Hexagon::CONST32_Int_Real:
- case Hexagon::CONST64_Int_Real:
- return DI;
- }
- return nullptr;
-}
+ case Hexagon::CONST64_Int_Real: {
+ // Call recursively to avoid an extra check whether operand(1) is
+ // indeed an immediate (it could be a global address, for example),
+ // plus we can handle COPY at the same time.
+ if (!checkForImmediate(DI->getOperand(1), TV))
+ return false;
+ break;
+ }
+ case Hexagon::A2_combineii:
+ case Hexagon::A4_combineir:
+ case Hexagon::A4_combineii:
+ case Hexagon::A4_combineri:
+ case Hexagon::A2_combinew: {
+ const MachineOperand &S1 = DI->getOperand(1);
+ const MachineOperand &S2 = DI->getOperand(2);
+ int64_t V1, V2;
+ if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
+ return false;
+ TV = V2 | (V1 << 32);
+ break;
+ }
+ case TargetOpcode::REG_SEQUENCE: {
+ const MachineOperand &S1 = DI->getOperand(1);
+ const MachineOperand &S3 = DI->getOperand(3);
+ int64_t V1, V3;
+ if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
+ return false;
+ unsigned Sub2 = DI->getOperand(2).getImm();
+ unsigned Sub4 = DI->getOperand(4).getImm();
+ if (Sub2 == Hexagon::subreg_loreg && Sub4 == Hexagon::subreg_hireg)
+ TV = V1 | (V3 << 32);
+ else if (Sub2 == Hexagon::subreg_hireg && Sub4 == Hexagon::subreg_loreg)
+ TV = V3 | (V1 << 32);
+ else
+ llvm_unreachable("Unexpected form of REG_SEQUENCE");
+ break;
+ }
+ default:
+ return false;
+ }
-int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) {
- if (MO.isImm())
- return MO.getImm();
- assert(MO.isReg());
- unsigned R = MO.getReg();
- MachineInstr *DI = defWithImmediate(R);
- assert(DI && "Need an immediate operand");
- // All currently supported "define-with-immediate" instructions have the
- // actual immediate value in the operand(1).
- int64_t v = DI->getOperand(1).getImm();
- return v;
+ // By now, we should have successfuly obtained the immediate value defining
+ // the register referenced in MO. Handle a potential use of a subregister.
+ switch (MO.getSubReg()) {
+ case Hexagon::subreg_loreg:
+ Val = TV & 0xFFFFFFFFULL;
+ break;
+ case Hexagon::subreg_hireg:
+ Val = (TV >> 32) & 0xFFFFFFFFULL;
+ break;
+ default:
+ Val = TV;
+ break;
+ }
+ return true;
}
-
void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
if (MO.isImm()) {
MO.setImm(Val);
@@ -1226,30 +1545,32 @@ void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
assert(MO.isReg());
unsigned R = MO.getReg();
- MachineInstr *DI = defWithImmediate(R);
- if (MRI->hasOneNonDBGUse(R)) {
- // If R has only one use, then just change its defining instruction to
- // the new immediate value.
- DI->getOperand(1).setImm(Val);
- return;
- }
+ MachineInstr *DI = MRI->getVRegDef(R);
const TargetRegisterClass *RC = MRI->getRegClass(R);
unsigned NewR = MRI->createVirtualRegister(RC);
MachineBasicBlock &B = *DI->getParent();
DebugLoc DL = DI->getDebugLoc();
- BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR)
- .addImm(Val);
+ BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
MO.setReg(NewR);
}
+static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) {
+ // These two instructions are not extendable.
+ if (CmpOpc == Hexagon::A4_cmpbeqi)
+ return isUInt<8>(Imm);
+ if (CmpOpc == Hexagon::A4_cmpbgti)
+ return isInt<8>(Imm);
+ // The rest of the comparison-with-immediate instructions are extendable.
+ return true;
+}
bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
MachineBasicBlock *Header = L->getHeader();
- MachineBasicBlock *Preheader = L->getLoopPreheader();
MachineBasicBlock *Latch = L->getLoopLatch();
+ MachineBasicBlock *ExitingBlock = getExitingBlock(L);
- if (!Header || !Preheader || !Latch)
+ if (!(Header && Latch && ExitingBlock))
return false;
// These data structures follow the same concept as the corresponding
@@ -1277,15 +1598,16 @@ bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
unsigned PhiReg = Phi->getOperand(i).getReg();
MachineInstr *DI = MRI->getVRegDef(PhiReg);
unsigned UpdOpc = DI->getOpcode();
- bool isAdd = (UpdOpc == Hexagon::ADD_ri);
+ bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp);
if (isAdd) {
// If the register operand to the add/sub is the PHI we are looking
// at, this meets the induction pattern.
unsigned IndReg = DI->getOperand(1).getReg();
- if (MRI->getVRegDef(IndReg) == Phi) {
+ MachineOperand &Opnd2 = DI->getOperand(2);
+ int64_t V;
+ if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
unsigned UpdReg = DI->getOperand(0).getReg();
- int64_t V = DI->getOperand(2).getImm();
IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
}
}
@@ -1298,17 +1620,38 @@ bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
MachineBasicBlock *TB = nullptr, *FB = nullptr;
SmallVector<MachineOperand,2> Cond;
// AnalyzeBranch returns true if it fails to analyze branch.
- bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false);
- if (NotAnalyzed)
+ bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false);
+ if (NotAnalyzed || Cond.empty())
return false;
- // Check if the latch branch is unconditional.
- if (Cond.empty())
- return false;
+ if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
+ MachineBasicBlock *LTB = 0, *LFB = 0;
+ SmallVector<MachineOperand,2> LCond;
+ bool NotAnalyzed = TII->AnalyzeBranch(*Latch, LTB, LFB, LCond, false);
+ if (NotAnalyzed)
+ return false;
- if (TB != Header && FB != Header)
- // The latch does not go back to the header. Not a latch we know and love.
- return false;
+ // Since latch is not the exiting block, the latch branch should be an
+ // unconditional branch to the loop header.
+ if (TB == Latch)
+ TB = (LTB == Header) ? LTB : LFB;
+ else
+ FB = (LTB == Header) ? LTB : LFB;
+ }
+ if (TB != Header) {
+ if (FB != Header) {
+ // The latch/exit block does not go back to the header.
+ return false;
+ }
+ // FB is the header (i.e., uncond. jump to branch header)
+ // In this case, the LoopBody -> TB should not be a back edge otherwise
+ // it could result in an infinite loop after conversion to hw_loop.
+ // This case can happen when the Latch has two jumps like this:
+ // Jmp_c OuterLoopHeader <-- TB
+ // Jmp InnerLoopHeader <-- FB
+ if (MDT->dominates(TB, FB))
+ return false;
+ }
// Expecting a predicate register as a condition. It won't be a hardware
// predicate register at this point yet, just a vreg.
@@ -1319,6 +1662,9 @@ bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
if (CSz != 1 && CSz != 2)
return false;
+ if (!Cond[CSz-1].isReg())
+ return false;
+
unsigned P = Cond[CSz-1].getReg();
MachineInstr *PredDef = MRI->getVRegDef(P);
@@ -1340,8 +1686,7 @@ bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
if (MO.isImplicit())
continue;
if (MO.isUse()) {
- unsigned R = MO.getReg();
- if (!defWithImmediate(R)) {
+ if (!isImmediate(MO)) {
CmpRegs.insert(MO.getReg());
continue;
}
@@ -1374,20 +1719,70 @@ bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
// compared against an immediate, we can fix it.
const RegisterBump &RB = I->second;
if (CmpRegs.count(RB.first)) {
- if (!CmpImmOp)
+ if (!CmpImmOp) {
+ // If both operands to the compare instruction are registers, see if
+ // it can be changed to use induction register as one of the operands.
+ MachineInstr *IndI = nullptr;
+ MachineInstr *nonIndI = nullptr;
+ MachineOperand *IndMO = nullptr;
+ MachineOperand *nonIndMO = nullptr;
+
+ for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) {
+ MachineOperand &MO = PredDef->getOperand(i);
+ if (MO.isReg() && MO.getReg() == RB.first) {
+ DEBUG(dbgs() << "\n DefMI(" << i << ") = "
+ << *(MRI->getVRegDef(I->first)));
+ if (IndI)
+ return false;
+
+ IndI = MRI->getVRegDef(I->first);
+ IndMO = &MO;
+ } else if (MO.isReg()) {
+ DEBUG(dbgs() << "\n DefMI(" << i << ") = "
+ << *(MRI->getVRegDef(MO.getReg())));
+ if (nonIndI)
+ return false;
+
+ nonIndI = MRI->getVRegDef(MO.getReg());
+ nonIndMO = &MO;
+ }
+ }
+ if (IndI && nonIndI &&
+ nonIndI->getOpcode() == Hexagon::A2_addi &&
+ nonIndI->getOperand(2).isImm() &&
+ nonIndI->getOperand(2).getImm() == - RB.second) {
+ bool Order = orderBumpCompare(IndI, PredDef);
+ if (Order) {
+ IndMO->setReg(I->first);
+ nonIndMO->setReg(nonIndI->getOperand(1).getReg());
+ return true;
+ }
+ }
return false;
+ }
+ // It is not valid to do this transformation on an unsigned comparison
+ // because it may underflow.
+ Comparison::Kind Cmp = getComparisonKind(PredDef->getOpcode(), 0, 0, 0);
+ if (!Cmp || Comparison::isUnsigned(Cmp))
+ return false;
+
+ // If the register is being compared against an immediate, try changing
+ // the compare instruction to use induction register and adjust the
+ // immediate operand.
int64_t CmpImm = getImmediate(*CmpImmOp);
int64_t V = RB.second;
- if (V > 0 && CmpImm+V < CmpImm) // Overflow (64-bit).
- return false;
- if (V < 0 && CmpImm+V > CmpImm) // Overflow (64-bit).
+ // Handle Overflow (64-bit).
+ if (((V > 0) && (CmpImm > INT64_MAX - V)) ||
+ ((V < 0) && (CmpImm < INT64_MIN - V)))
return false;
CmpImm += V;
- // Some forms of cmp-immediate allow u9 and s10. Assume the worst case
- // scenario, i.e. an 8-bit value.
- if (CmpImmOp->isImm() && !isInt<8>(CmpImm))
- return false;
+ // Most comparisons of register against an immediate value allow
+ // the immediate to be constant-extended. There are some exceptions
+ // though. Make sure the new combination will work.
+ if (CmpImmOp->isImm())
+ if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm))
+ return false;
// Make sure that the compare happens after the bump. Otherwise,
// after the fixup, the compare would use a yet-undefined register.
@@ -1411,19 +1806,27 @@ bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
return false;
}
-
/// \brief Create a preheader for a given loop.
MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
MachineLoop *L) {
if (MachineBasicBlock *TmpPH = L->getLoopPreheader())
return TmpPH;
+ if (!HWCreatePreheader)
+ return nullptr;
+
MachineBasicBlock *Header = L->getHeader();
MachineBasicBlock *Latch = L->getLoopLatch();
+ MachineBasicBlock *ExitingBlock = getExitingBlock(L);
MachineFunction *MF = Header->getParent();
DebugLoc DL;
- if (!Latch || Header->hasAddressTaken())
+#ifndef NDEBUG
+ if ((PHFn != "") && (PHFn != MF->getName()))
+ return nullptr;
+#endif
+
+ if (!Latch || !ExitingBlock || Header->hasAddressTaken())
return nullptr;
typedef MachineBasicBlock::instr_iterator instr_iterator;
@@ -1435,16 +1838,14 @@ MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
SmallVector<MachineOperand,2> Tmp1;
MachineBasicBlock *TB = nullptr, *FB = nullptr;
- if (TII->AnalyzeBranch(*Latch, TB, FB, Tmp1, false))
+ if (TII->AnalyzeBranch(*ExitingBlock, TB, FB, Tmp1, false))
return nullptr;
for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
MachineBasicBlock *PB = *I;
- if (PB != Latch) {
- bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false);
- if (NotAnalyzed)
- return nullptr;
- }
+ bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false);
+ if (NotAnalyzed)
+ return nullptr;
}
MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
@@ -1453,7 +1854,7 @@ MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
if (Header->pred_size() > 2) {
// Ensure that the header has only two predecessors: the preheader and
// the loop latch. Any additional predecessors of the header should
- // join at the newly created preheader. Inspect all PHI nodes from the
+ // join at the newly created preheader. Inspect all PHI nodes from the
// header and create appropriate corresponding PHI nodes in the preheader.
for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
@@ -1473,11 +1874,14 @@ MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
// created PHI node in the preheader.
for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
unsigned PredR = PN->getOperand(i).getReg();
+ unsigned PredRSub = PN->getOperand(i).getSubReg();
MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
if (PredB == Latch)
continue;
- NewPN->addOperand(MachineOperand::CreateReg(PredR, false));
+ MachineOperand MO = MachineOperand::CreateReg(PredR, false);
+ MO.setSubReg(PredRSub);
+ NewPN->addOperand(MO);
NewPN->addOperand(MachineOperand::CreateMBB(PredB));
}
@@ -1547,5 +1951,16 @@ MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
TII->InsertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
NewPH->addSuccessor(Header);
+ MachineLoop *ParentLoop = L->getParentLoop();
+ if (ParentLoop)
+ ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase());
+
+ // Update the dominator information with the new preheader.
+ if (MDT) {
+ MachineDomTreeNode *HDom = MDT->getNode(Header);
+ MDT->addNewBlock(NewPH, HDom->getIDom()->getBlock());
+ MDT->changeImmediateDominator(Header, NewPH);
+ }
+
return NewPH;
}
OpenPOWER on IntegriCloud