summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp')
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp1967
1 files changed, 1967 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
new file mode 100644
index 0000000..53b6bf6
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonHardwareLoops.cpp
@@ -0,0 +1,1967 @@
+//===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass identifies loops where we can generate the Hexagon hardware
+// loop instruction. The hardware loop can perform loop branches with a
+// zero-cycle overhead.
+//
+// The pattern that defines the induction variable can changed depending on
+// prior optimizations. For example, the IndVarSimplify phase run by 'opt'
+// normalizes induction variables, and the Loop Strength Reduction pass
+// run by 'llc' may also make changes to the induction variable.
+// The pattern detected by this phase is due to running Strength Reduction.
+//
+// Criteria for hardware loops:
+// - Countable loops (w/ ind. var for a trip count)
+// - Assumes loops are normalized by IndVarSimplify
+// - Try inner-most loops first
+// - No function calls in loops.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/SmallSet.h"
+#include "Hexagon.h"
+#include "HexagonSubtarget.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/PassSupport.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include <algorithm>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "hwloops"
+
+#ifndef NDEBUG
+static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1));
+
+// Option to create preheader only for a specific function.
+static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden,
+ cl::init(""));
+#endif
+
+// Option to create a preheader if one doesn't exist.
+static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader",
+ cl::Hidden, cl::init(true),
+ cl::desc("Add a preheader to a hardware loop if one doesn't exist"));
+
+STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");
+
+namespace llvm {
+ FunctionPass *createHexagonHardwareLoops();
+ void initializeHexagonHardwareLoopsPass(PassRegistry&);
+}
+
+namespace {
+ class CountValue;
+ struct HexagonHardwareLoops : public MachineFunctionPass {
+ MachineLoopInfo *MLI;
+ MachineRegisterInfo *MRI;
+ MachineDominatorTree *MDT;
+ const HexagonInstrInfo *TII;
+#ifndef NDEBUG
+ static int Counter;
+#endif
+
+ public:
+ static char ID;
+
+ HexagonHardwareLoops() : MachineFunctionPass(ID) {
+ initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override { return "Hexagon Hardware Loops"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ private:
+ typedef std::map<unsigned, MachineInstr *> LoopFeederMap;
+
+ /// Kinds of comparisons in the compare instructions.
+ struct Comparison {
+ enum Kind {
+ EQ = 0x01,
+ NE = 0x02,
+ L = 0x04,
+ G = 0x08,
+ U = 0x40,
+ LTs = L,
+ LEs = L | EQ,
+ GTs = G,
+ GEs = G | EQ,
+ LTu = L | U,
+ LEu = L | EQ | U,
+ GTu = G | U,
+ GEu = G | EQ | U
+ };
+
+ static Kind getSwappedComparison(Kind Cmp) {
+ assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
+ if ((Cmp & L) || (Cmp & G))
+ return (Kind)(Cmp ^ (L|G));
+ return Cmp;
+ }
+
+ static Kind getNegatedComparison(Kind Cmp) {
+ if ((Cmp & L) || (Cmp & G))
+ return (Kind)((Cmp ^ (L | G)) ^ EQ);
+ if ((Cmp & NE) || (Cmp & EQ))
+ return (Kind)(Cmp ^ (EQ | NE));
+ return (Kind)0;
+ }
+
+ static bool isSigned(Kind Cmp) {
+ return (Cmp & (L | G) && !(Cmp & U));
+ }
+
+ static bool isUnsigned(Kind Cmp) {
+ return (Cmp & U);
+ }
+
+ };
+
+ /// \brief Find the register that contains the loop controlling
+ /// induction variable.
+ /// If successful, it will return true and set the \p Reg, \p IVBump
+ /// and \p IVOp arguments. Otherwise it will return false.
+ /// The returned induction register is the register R that follows the
+ /// following induction pattern:
+ /// loop:
+ /// R = phi ..., [ R.next, LatchBlock ]
+ /// R.next = R + #bump
+ /// if (R.next < #N) goto loop
+ /// IVBump is the immediate value added to R, and IVOp is the instruction
+ /// "R.next = R + #bump".
+ bool findInductionRegister(MachineLoop *L, unsigned &Reg,
+ int64_t &IVBump, MachineInstr *&IVOp) const;
+
+ /// \brief Return the comparison kind for the specified opcode.
+ Comparison::Kind getComparisonKind(unsigned CondOpc,
+ MachineOperand *InitialValue,
+ const MachineOperand *Endvalue,
+ int64_t IVBump) const;
+
+ /// \brief Analyze the statements in a loop to determine if the loop
+ /// has a computable trip count and, if so, return a value that represents
+ /// the trip count expression.
+ CountValue *getLoopTripCount(MachineLoop *L,
+ SmallVectorImpl<MachineInstr *> &OldInsts);
+
+ /// \brief Return the expression that represents the number of times
+ /// a loop iterates. The function takes the operands that represent the
+ /// loop start value, loop end value, and induction value. Based upon
+ /// these operands, the function attempts to compute the trip count.
+ /// If the trip count is not directly available (as an immediate value,
+ /// or a register), the function will attempt to insert computation of it
+ /// to the loop's preheader.
+ CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start,
+ const MachineOperand *End, unsigned IVReg,
+ int64_t IVBump, Comparison::Kind Cmp) const;
+
+ /// \brief Return true if the instruction is not valid within a hardware
+ /// loop.
+ bool isInvalidLoopOperation(const MachineInstr *MI,
+ bool IsInnerHWLoop) const;
+
+ /// \brief Return true if the loop contains an instruction that inhibits
+ /// using the hardware loop.
+ bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const;
+
+ /// \brief Given a loop, check if we can convert it to a hardware loop.
+ /// If so, then perform the conversion and return true.
+ bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used);
+
+ /// \brief Return true if the instruction is now dead.
+ bool isDead(const MachineInstr *MI,
+ SmallVectorImpl<MachineInstr *> &DeadPhis) const;
+
+ /// \brief Remove the instruction if it is now dead.
+ void removeIfDead(MachineInstr *MI);
+
+ /// \brief Make sure that the "bump" instruction executes before the
+ /// compare. We need that for the IV fixup, so that the compare
+ /// instruction would not use a bumped value that has not yet been
+ /// defined. If the instructions are out of order, try to reorder them.
+ bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);
+
+ /// \brief Return true if MO and MI pair is visited only once. If visited
+ /// more than once, this indicates there is recursion. In such a case,
+ /// return false.
+ bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
+ const MachineOperand *MO,
+ LoopFeederMap &LoopFeederPhi) const;
+
+ /// \brief Return true if the Phi may generate a value that may underflow,
+ /// or may wrap.
+ bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
+ MachineBasicBlock *MBB, MachineLoop *L,
+ LoopFeederMap &LoopFeederPhi) const;
+
+ /// \brief Return true if the induction variable may underflow an unsigned
+ /// value in the first iteration.
+ bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
+ const MachineOperand *EndVal,
+ MachineBasicBlock *MBB, MachineLoop *L,
+ LoopFeederMap &LoopFeederPhi) const;
+
+ /// \brief Check if the given operand has a compile-time known constant
+ /// value. Return true if yes, and false otherwise. When returning true, set
+ /// Val to the corresponding constant value.
+ bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;
+
+ /// \brief Check if the operand has a compile-time known constant value.
+ bool isImmediate(const MachineOperand &MO) const {
+ int64_t V;
+ return checkForImmediate(MO, V);
+ }
+
+ /// \brief Return the immediate for the specified operand.
+ int64_t getImmediate(const MachineOperand &MO) const {
+ int64_t V;
+ if (!checkForImmediate(MO, V))
+ llvm_unreachable("Invalid operand");
+ return V;
+ }
+
+ /// \brief Reset the given machine operand to now refer to a new immediate
+ /// value. Assumes that the operand was already referencing an immediate
+ /// value, either directly, or via a register.
+ void setImmediate(MachineOperand &MO, int64_t Val);
+
+ /// \brief Fix the data flow of the induction varible.
+ /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
+ /// |
+ /// +-> back to phi
+ /// where "bump" is the increment of the induction variable:
+ /// iv = iv + #const.
+ /// Due to some prior code transformations, the actual flow may look
+ /// like this:
+ /// phi -+-> bump ---> back to phi
+ /// |
+ /// +-> comparison-in-latch (against upper_bound-bump),
+ /// i.e. the comparison that controls the loop execution may be using
+ /// the value of the induction variable from before the increment.
+ ///
+ /// Return true if the loop's flow is the desired one (i.e. it's
+ /// either been fixed, or no fixing was necessary).
+ /// Otherwise, return false. This can happen if the induction variable
+ /// couldn't be identified, or if the value in the latch's comparison
+ /// cannot be adjusted to reflect the post-bump value.
+ bool fixupInductionVariable(MachineLoop *L);
+
+ /// \brief Given a loop, if it does not have a preheader, create one.
+ /// Return the block that is the preheader.
+ MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
+ };
+
+ char HexagonHardwareLoops::ID = 0;
+#ifndef NDEBUG
+ int HexagonHardwareLoops::Counter = 0;
+#endif
+
+ /// \brief Abstraction for a trip count of a loop. A smaller version
+ /// of the MachineOperand class without the concerns of changing the
+ /// operand representation.
+ class CountValue {
+ public:
+ enum CountValueType {
+ CV_Register,
+ CV_Immediate
+ };
+ private:
+ CountValueType Kind;
+ union Values {
+ struct {
+ unsigned Reg;
+ unsigned Sub;
+ } R;
+ unsigned ImmVal;
+ } Contents;
+
+ public:
+ explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
+ Kind = t;
+ if (Kind == CV_Register) {
+ Contents.R.Reg = v;
+ Contents.R.Sub = u;
+ } else {
+ Contents.ImmVal = v;
+ }
+ }
+ bool isReg() const { return Kind == CV_Register; }
+ bool isImm() const { return Kind == CV_Immediate; }
+
+ unsigned getReg() const {
+ assert(isReg() && "Wrong CountValue accessor");
+ return Contents.R.Reg;
+ }
+ unsigned getSubReg() const {
+ assert(isReg() && "Wrong CountValue accessor");
+ return Contents.R.Sub;
+ }
+ unsigned getImm() const {
+ assert(isImm() && "Wrong CountValue accessor");
+ return Contents.ImmVal;
+ }
+
+ void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
+ if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); }
+ if (isImm()) { OS << Contents.ImmVal; }
+ }
+ };
+} // end anonymous namespace
+
+
+INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
+ "Hexagon Hardware Loops", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
+ "Hexagon Hardware Loops", false, false)
+
+FunctionPass *llvm::createHexagonHardwareLoops() {
+ return new HexagonHardwareLoops();
+}
+
+bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
+ DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
+
+ bool Changed = false;
+
+ MLI = &getAnalysis<MachineLoopInfo>();
+ MRI = &MF.getRegInfo();
+ MDT = &getAnalysis<MachineDominatorTree>();
+ TII = MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
+
+ for (auto &L : *MLI)
+ if (!L->getParentLoop()) {
+ bool L0Used = false;
+ bool L1Used = false;
+ Changed |= convertToHardwareLoop(L, L0Used, L1Used);
+ }
+
+ return Changed;
+}
+
+/// \brief Return the latch block if it's one of the exiting blocks. Otherwise,
+/// return the exiting block. Return 'null' when multiple exiting blocks are
+/// present.
+static MachineBasicBlock* getExitingBlock(MachineLoop *L) {
+ if (MachineBasicBlock *Latch = L->getLoopLatch()) {
+ if (L->isLoopExiting(Latch))
+ return Latch;
+ else
+ return L->getExitingBlock();
+ }
+ return nullptr;
+}
+
+bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
+ unsigned &Reg,
+ int64_t &IVBump,
+ MachineInstr *&IVOp
+ ) const {
+ MachineBasicBlock *Header = L->getHeader();
+ MachineBasicBlock *Preheader = L->getLoopPreheader();
+ MachineBasicBlock *Latch = L->getLoopLatch();
+ MachineBasicBlock *ExitingBlock = getExitingBlock(L);
+ if (!Header || !Preheader || !Latch || !ExitingBlock)
+ return false;
+
+ // This pair represents an induction register together with an immediate
+ // value that will be added to it in each loop iteration.
+ typedef std::pair<unsigned,int64_t> RegisterBump;
+
+ // Mapping: R.next -> (R, bump), where R, R.next and bump are derived
+ // from an induction operation
+ // R.next = R + bump
+ // where bump is an immediate value.
+ typedef std::map<unsigned,RegisterBump> InductionMap;
+
+ InductionMap IndMap;
+
+ typedef MachineBasicBlock::instr_iterator instr_iterator;
+ for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
+ I != E && I->isPHI(); ++I) {
+ MachineInstr *Phi = &*I;
+
+ // Have a PHI instruction. Get the operand that corresponds to the
+ // latch block, and see if is a result of an addition of form "reg+imm",
+ // where the "reg" is defined by the PHI node we are looking at.
+ for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
+ if (Phi->getOperand(i+1).getMBB() != Latch)
+ continue;
+
+ unsigned PhiOpReg = Phi->getOperand(i).getReg();
+ MachineInstr *DI = MRI->getVRegDef(PhiOpReg);
+ unsigned UpdOpc = DI->getOpcode();
+ bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp);
+
+ if (isAdd) {
+ // If the register operand to the add is the PHI we're looking at, this
+ // meets the induction pattern.
+ unsigned IndReg = DI->getOperand(1).getReg();
+ MachineOperand &Opnd2 = DI->getOperand(2);
+ int64_t V;
+ if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
+ unsigned UpdReg = DI->getOperand(0).getReg();
+ IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
+ }
+ }
+ } // for (i)
+ } // for (instr)
+
+ SmallVector<MachineOperand,2> Cond;
+ MachineBasicBlock *TB = nullptr, *FB = nullptr;
+ bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false);
+ if (NotAnalyzed)
+ return false;
+
+ unsigned PredR, PredPos, PredRegFlags;
+ if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags))
+ return false;
+
+ MachineInstr *PredI = MRI->getVRegDef(PredR);
+ if (!PredI->isCompare())
+ return false;
+
+ unsigned CmpReg1 = 0, CmpReg2 = 0;
+ int CmpImm = 0, CmpMask = 0;
+ bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2,
+ CmpMask, CmpImm);
+ // Fail if the compare was not analyzed, or it's not comparing a register
+ // with an immediate value. Not checking the mask here, since we handle
+ // the individual compare opcodes (including A4_cmpb*) later on.
+ if (!CmpAnalyzed)
+ return false;
+
+ // Exactly one of the input registers to the comparison should be among
+ // the induction registers.
+ InductionMap::iterator IndMapEnd = IndMap.end();
+ InductionMap::iterator F = IndMapEnd;
+ if (CmpReg1 != 0) {
+ InductionMap::iterator F1 = IndMap.find(CmpReg1);
+ if (F1 != IndMapEnd)
+ F = F1;
+ }
+ if (CmpReg2 != 0) {
+ InductionMap::iterator F2 = IndMap.find(CmpReg2);
+ if (F2 != IndMapEnd) {
+ if (F != IndMapEnd)
+ return false;
+ F = F2;
+ }
+ }
+ if (F == IndMapEnd)
+ return false;
+
+ Reg = F->second.first;
+ IVBump = F->second.second;
+ IVOp = MRI->getVRegDef(F->first);
+ return true;
+}
+
+// Return the comparison kind for the specified opcode.
+HexagonHardwareLoops::Comparison::Kind
+HexagonHardwareLoops::getComparisonKind(unsigned CondOpc,
+ MachineOperand *InitialValue,
+ const MachineOperand *EndValue,
+ int64_t IVBump) const {
+ Comparison::Kind Cmp = (Comparison::Kind)0;
+ switch (CondOpc) {
+ case Hexagon::C2_cmpeqi:
+ case Hexagon::C2_cmpeq:
+ case Hexagon::C2_cmpeqp:
+ Cmp = Comparison::EQ;
+ break;
+ case Hexagon::C4_cmpneq:
+ case Hexagon::C4_cmpneqi:
+ Cmp = Comparison::NE;
+ break;
+ case Hexagon::C4_cmplte:
+ Cmp = Comparison::LEs;
+ break;
+ case Hexagon::C4_cmplteu:
+ Cmp = Comparison::LEu;
+ break;
+ case Hexagon::C2_cmpgtui:
+ case Hexagon::C2_cmpgtu:
+ case Hexagon::C2_cmpgtup:
+ Cmp = Comparison::GTu;
+ break;
+ case Hexagon::C2_cmpgti:
+ case Hexagon::C2_cmpgt:
+ case Hexagon::C2_cmpgtp:
+ Cmp = Comparison::GTs;
+ break;
+ default:
+ return (Comparison::Kind)0;
+ }
+ return Cmp;
+}
+
+/// \brief Analyze the statements in a loop to determine if the loop has
+/// a computable trip count and, if so, return a value that represents
+/// the trip count expression.
+///
+/// This function iterates over the phi nodes in the loop to check for
+/// induction variable patterns that are used in the calculation for
+/// the number of time the loop is executed.
+CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
+ SmallVectorImpl<MachineInstr *> &OldInsts) {
+ MachineBasicBlock *TopMBB = L->getTopBlock();
+ MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
+ assert(PI != TopMBB->pred_end() &&
+ "Loop must have more than one incoming edge!");
+ MachineBasicBlock *Backedge = *PI++;
+ if (PI == TopMBB->pred_end()) // dead loop?
+ return nullptr;
+ MachineBasicBlock *Incoming = *PI++;
+ if (PI != TopMBB->pred_end()) // multiple backedges?
+ return nullptr;
+
+ // Make sure there is one incoming and one backedge and determine which
+ // is which.
+ if (L->contains(Incoming)) {
+ if (L->contains(Backedge))
+ return nullptr;
+ std::swap(Incoming, Backedge);
+ } else if (!L->contains(Backedge))
+ return nullptr;
+
+ // Look for the cmp instruction to determine if we can get a useful trip
+ // count. The trip count can be either a register or an immediate. The
+ // location of the value depends upon the type (reg or imm).
+ MachineBasicBlock *ExitingBlock = getExitingBlock(L);
+ if (!ExitingBlock)
+ return nullptr;
+
+ unsigned IVReg = 0;
+ int64_t IVBump = 0;
+ MachineInstr *IVOp;
+ bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
+ if (!FoundIV)
+ return nullptr;
+
+ MachineBasicBlock *Preheader = L->getLoopPreheader();
+
+ MachineOperand *InitialValue = nullptr;
+ MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
+ MachineBasicBlock *Latch = L->getLoopLatch();
+ for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
+ MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
+ if (MBB == Preheader)
+ InitialValue = &IV_Phi->getOperand(i);
+ else if (MBB == Latch)
+ IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump.
+ }
+ if (!InitialValue)
+ return nullptr;
+
+ SmallVector<MachineOperand,2> Cond;
+ MachineBasicBlock *TB = nullptr, *FB = nullptr;
+ bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false);
+ if (NotAnalyzed)
+ return nullptr;
+
+ MachineBasicBlock *Header = L->getHeader();
+ // TB must be non-null. If FB is also non-null, one of them must be
+ // the header. Otherwise, branch to TB could be exiting the loop, and
+ // the fall through can go to the header.
+ assert (TB && "Exit block without a branch?");
+ if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
+ MachineBasicBlock *LTB = 0, *LFB = 0;
+ SmallVector<MachineOperand,2> LCond;
+ bool NotAnalyzed = TII->AnalyzeBranch(*Latch, LTB, LFB, LCond, false);
+ if (NotAnalyzed)
+ return nullptr;
+ if (TB == Latch)
+ TB = (LTB == Header) ? LTB : LFB;
+ else
+ FB = (LTB == Header) ? LTB: LFB;
+ }
+ assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
+ if (!TB || (FB && TB != Header && FB != Header))
+ return nullptr;
+
+ // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch
+ // to put imm(0), followed by P in the vector Cond.
+ // If TB is not the header, it means that the "not-taken" path must lead
+ // to the header.
+ bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header);
+ unsigned PredReg, PredPos, PredRegFlags;
+ if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags))
+ return nullptr;
+ MachineInstr *CondI = MRI->getVRegDef(PredReg);
+ unsigned CondOpc = CondI->getOpcode();
+
+ unsigned CmpReg1 = 0, CmpReg2 = 0;
+ int Mask = 0, ImmValue = 0;
+ bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2,
+ Mask, ImmValue);
+ if (!AnalyzedCmp)
+ return nullptr;
+
+ // The comparison operator type determines how we compute the loop
+ // trip count.
+ OldInsts.push_back(CondI);
+ OldInsts.push_back(IVOp);
+
+ // Sadly, the following code gets information based on the position
+ // of the operands in the compare instruction. This has to be done
+ // this way, because the comparisons check for a specific relationship
+ // between the operands (e.g. is-less-than), rather than to find out
+ // what relationship the operands are in (as on PPC).
+ Comparison::Kind Cmp;
+ bool isSwapped = false;
+ const MachineOperand &Op1 = CondI->getOperand(1);
+ const MachineOperand &Op2 = CondI->getOperand(2);
+ const MachineOperand *EndValue = nullptr;
+
+ if (Op1.isReg()) {
+ if (Op2.isImm() || Op1.getReg() == IVReg)
+ EndValue = &Op2;
+ else {
+ EndValue = &Op1;
+ isSwapped = true;
+ }
+ }
+
+ if (!EndValue)
+ return nullptr;
+
+ Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump);
+ if (!Cmp)
+ return nullptr;
+ if (Negated)
+ Cmp = Comparison::getNegatedComparison(Cmp);
+ if (isSwapped)
+ Cmp = Comparison::getSwappedComparison(Cmp);
+
+ if (InitialValue->isReg()) {
+ unsigned R = InitialValue->getReg();
+ MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
+ if (!MDT->properlyDominates(DefBB, Header))
+ return nullptr;
+ OldInsts.push_back(MRI->getVRegDef(R));
+ }
+ if (EndValue->isReg()) {
+ unsigned R = EndValue->getReg();
+ MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
+ if (!MDT->properlyDominates(DefBB, Header))
+ return nullptr;
+ OldInsts.push_back(MRI->getVRegDef(R));
+ }
+
+ return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
+}
+
+/// \brief Helper function that returns the expression that represents the
+/// number of times a loop iterates. The function takes the operands that
+/// represent the loop start value, loop end value, and induction value.
+/// Based upon these operands, the function attempts to compute the trip count.
+CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
+ const MachineOperand *Start,
+ const MachineOperand *End,
+ unsigned IVReg,
+ int64_t IVBump,
+ Comparison::Kind Cmp) const {
+ // Cannot handle comparison EQ, i.e. while (A == B).
+ if (Cmp == Comparison::EQ)
+ return nullptr;
+
+ // Check if either the start or end values are an assignment of an immediate.
+ // If so, use the immediate value rather than the register.
+ if (Start->isReg()) {
+ const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
+ if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi ||
+ StartValInstr->getOpcode() == Hexagon::A2_tfrpi))
+ Start = &StartValInstr->getOperand(1);
+ }
+ if (End->isReg()) {
+ const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
+ if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi ||
+ EndValInstr->getOpcode() == Hexagon::A2_tfrpi))
+ End = &EndValInstr->getOperand(1);
+ }
+
+ if (!Start->isReg() && !Start->isImm())
+ return nullptr;
+ if (!End->isReg() && !End->isImm())
+ return nullptr;
+
+ bool CmpLess = Cmp & Comparison::L;
+ bool CmpGreater = Cmp & Comparison::G;
+ bool CmpHasEqual = Cmp & Comparison::EQ;
+
+ // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds.
+ if (CmpLess && IVBump < 0)
+ // Loop going while iv is "less" with the iv value going down. Must wrap.
+ return nullptr;
+
+ if (CmpGreater && IVBump > 0)
+ // Loop going while iv is "greater" with the iv value going up. Must wrap.
+ return nullptr;
+
+ // Phis that may feed into the loop.
+ LoopFeederMap LoopFeederPhi;
+
+ // Check if the inital value may be zero and can be decremented in the first
+ // iteration. If the value is zero, the endloop instruction will not decrement
+ // the loop counter, so we shoudn't generate a hardware loop in this case.
+ if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
+ LoopFeederPhi))
+ return nullptr;
+
+ if (Start->isImm() && End->isImm()) {
+ // Both, start and end are immediates.
+ int64_t StartV = Start->getImm();
+ int64_t EndV = End->getImm();
+ int64_t Dist = EndV - StartV;
+ if (Dist == 0)
+ return nullptr;
+
+ bool Exact = (Dist % IVBump) == 0;
+
+ if (Cmp == Comparison::NE) {
+ if (!Exact)
+ return nullptr;
+ if ((Dist < 0) ^ (IVBump < 0))
+ return nullptr;
+ }
+
+ // For comparisons that include the final value (i.e. include equality
+ // with the final value), we need to increase the distance by 1.
+ if (CmpHasEqual)
+ Dist = Dist > 0 ? Dist+1 : Dist-1;
+
+ // For the loop to iterate, CmpLess should imply Dist > 0. Similarly,
+ // CmpGreater should imply Dist < 0. These conditions could actually
+ // fail, for example, in unreachable code (which may still appear to be
+ // reachable in the CFG).
+ if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
+ return nullptr;
+
+ // "Normalized" distance, i.e. with the bump set to +-1.
+ int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump - 1)) / IVBump
+ : (-Dist + (-IVBump - 1)) / (-IVBump);
+ assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign.");
+
+ uint64_t Count = Dist1;
+
+ if (Count > 0xFFFFFFFFULL)
+ return nullptr;
+
+ return new CountValue(CountValue::CV_Immediate, Count);
+ }
+
+ // A general case: Start and End are some values, but the actual
+ // iteration count may not be available. If it is not, insert
+ // a computation of it into the preheader.
+
+ // If the induction variable bump is not a power of 2, quit.
+ // Othwerise we'd need a general integer division.
+ if (!isPowerOf2_64(std::abs(IVBump)))
+ return nullptr;
+
+ MachineBasicBlock *PH = Loop->getLoopPreheader();
+ assert (PH && "Should have a preheader by now");
+ MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
+ DebugLoc DL;
+ if (InsertPos != PH->end())
+ DL = InsertPos->getDebugLoc();
+
+ // If Start is an immediate and End is a register, the trip count
+ // will be "reg - imm". Hexagon's "subtract immediate" instruction
+ // is actually "reg + -imm".
+
+ // If the loop IV is going downwards, i.e. if the bump is negative,
+ // then the iteration count (computed as End-Start) will need to be
+ // negated. To avoid the negation, just swap Start and End.
+ if (IVBump < 0) {
+ std::swap(Start, End);
+ IVBump = -IVBump;
+ }
+ // Cmp may now have a wrong direction, e.g. LEs may now be GEs.
+ // Signedness, and "including equality" are preserved.
+
+ bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
+ bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)
+
+ int64_t StartV = 0, EndV = 0;
+ if (Start->isImm())
+ StartV = Start->getImm();
+ if (End->isImm())
+ EndV = End->getImm();
+
+ int64_t AdjV = 0;
+ // To compute the iteration count, we would need this computation:
+ // Count = (End - Start + (IVBump-1)) / IVBump
+ // or, when CmpHasEqual:
+ // Count = (End - Start + (IVBump-1)+1) / IVBump
+ // The "IVBump-1" part is the adjustment (AdjV). We can avoid
+ // generating an instruction specifically to add it if we can adjust
+ // the immediate values for Start or End.
+
+ if (CmpHasEqual) {
+ // Need to add 1 to the total iteration count.
+ if (Start->isImm())
+ StartV--;
+ else if (End->isImm())
+ EndV++;
+ else
+ AdjV += 1;
+ }
+
+ if (Cmp != Comparison::NE) {
+ if (Start->isImm())
+ StartV -= (IVBump-1);
+ else if (End->isImm())
+ EndV += (IVBump-1);
+ else
+ AdjV += (IVBump-1);
+ }
+
+ unsigned R = 0, SR = 0;
+ if (Start->isReg()) {
+ R = Start->getReg();
+ SR = Start->getSubReg();
+ } else {
+ R = End->getReg();
+ SR = End->getSubReg();
+ }
+ const TargetRegisterClass *RC = MRI->getRegClass(R);
+ // Hardware loops cannot handle 64-bit registers. If it's a double
+ // register, it has to have a subregister.
+ if (!SR && RC == &Hexagon::DoubleRegsRegClass)
+ return nullptr;
+ const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;
+
+ // Compute DistR (register with the distance between Start and End).
+ unsigned DistR, DistSR;
+
+ // Avoid special case, where the start value is an imm(0).
+ if (Start->isImm() && StartV == 0) {
+ DistR = End->getReg();
+ DistSR = End->getSubReg();
+ } else {
+ const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
+ (RegToImm ? TII->get(Hexagon::A2_subri) :
+ TII->get(Hexagon::A2_addi));
+ if (RegToReg || RegToImm) {
+ unsigned SubR = MRI->createVirtualRegister(IntRC);
+ MachineInstrBuilder SubIB =
+ BuildMI(*PH, InsertPos, DL, SubD, SubR);
+
+ if (RegToReg)
+ SubIB.addReg(End->getReg(), 0, End->getSubReg())
+ .addReg(Start->getReg(), 0, Start->getSubReg());
+ else
+ SubIB.addImm(EndV)
+ .addReg(Start->getReg(), 0, Start->getSubReg());
+ DistR = SubR;
+ } else {
+ // If the loop has been unrolled, we should use the original loop count
+ // instead of recalculating the value. This will avoid additional
+ // 'Add' instruction.
+ const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
+ if (EndValInstr->getOpcode() == Hexagon::A2_addi &&
+ EndValInstr->getOperand(2).getImm() == StartV) {
+ DistR = EndValInstr->getOperand(1).getReg();
+ } else {
+ unsigned SubR = MRI->createVirtualRegister(IntRC);
+ MachineInstrBuilder SubIB =
+ BuildMI(*PH, InsertPos, DL, SubD, SubR);
+ SubIB.addReg(End->getReg(), 0, End->getSubReg())
+ .addImm(-StartV);
+ DistR = SubR;
+ }
+ }
+ DistSR = 0;
+ }
+
+ // From DistR, compute AdjR (register with the adjusted distance).
+ unsigned AdjR, AdjSR;
+
+ if (AdjV == 0) {
+ AdjR = DistR;
+ AdjSR = DistSR;
+ } else {
+ // Generate CountR = ADD DistR, AdjVal
+ unsigned AddR = MRI->createVirtualRegister(IntRC);
+ MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
+ BuildMI(*PH, InsertPos, DL, AddD, AddR)
+ .addReg(DistR, 0, DistSR)
+ .addImm(AdjV);
+
+ AdjR = AddR;
+ AdjSR = 0;
+ }
+
+ // From AdjR, compute CountR (register with the final count).
+ unsigned CountR, CountSR;
+
+ if (IVBump == 1) {
+ CountR = AdjR;
+ CountSR = AdjSR;
+ } else {
+ // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
+ unsigned Shift = Log2_32(IVBump);
+
+ // Generate NormR = LSR DistR, Shift.
+ unsigned LsrR = MRI->createVirtualRegister(IntRC);
+ const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
+ BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
+ .addReg(AdjR, 0, AdjSR)
+ .addImm(Shift);
+
+ CountR = LsrR;
+ CountSR = 0;
+ }
+
+ return new CountValue(CountValue::CV_Register, CountR, CountSR);
+}
+
+/// \brief Return true if the operation is invalid within hardware loop.
+bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI,
+ bool IsInnerHWLoop) const {
+
+ // Call is not allowed because the callee may use a hardware loop except for
+ // the case when the call never returns.
+ if (MI->getDesc().isCall() && MI->getOpcode() != Hexagon::CALLv3nr)
+ return true;
+
+ // Check if the instruction defines a hardware loop register.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned R = MO.getReg();
+ if (IsInnerHWLoop && (R == Hexagon::LC0 || R == Hexagon::SA0 ||
+ R == Hexagon::LC1 || R == Hexagon::SA1))
+ return true;
+ if (!IsInnerHWLoop && (R == Hexagon::LC1 || R == Hexagon::SA1))
+ return true;
+ }
+ return false;
+}
+
+/// \brief Return true if the loop contains an instruction that inhibits
+/// the use of the hardware loop instruction.
+bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L,
+ bool IsInnerHWLoop) const {
+ const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
+ DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber(););
+ for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
+ MachineBasicBlock *MBB = Blocks[i];
+ for (MachineBasicBlock::iterator
+ MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
+ const MachineInstr *MI = &*MII;
+ if (isInvalidLoopOperation(MI, IsInnerHWLoop)) {
+ DEBUG(dbgs()<< "\nCannot convert to hw_loop due to:"; MI->dump(););
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+/// \brief Returns true if the instruction is dead. This was essentially
+/// copied from DeadMachineInstructionElim::isDead, but with special cases
+/// for inline asm, physical registers and instructions with side effects
+/// removed.
+bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
+ SmallVectorImpl<MachineInstr *> &DeadPhis) const {
+ // Examine each operand.
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+
+ unsigned Reg = MO.getReg();
+ if (MRI->use_nodbg_empty(Reg))
+ continue;
+
+ typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator;
+
+ // This instruction has users, but if the only user is the phi node for the
+ // parent block, and the only use of that phi node is this instruction, then
+ // this instruction is dead: both it (and the phi node) can be removed.
+ use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
+ use_nodbg_iterator End = MRI->use_nodbg_end();
+ if (std::next(I) != End || !I->getParent()->isPHI())
+ return false;
+
+ MachineInstr *OnePhi = I->getParent();
+ for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
+ const MachineOperand &OPO = OnePhi->getOperand(j);
+ if (!OPO.isReg() || !OPO.isDef())
+ continue;
+
+ unsigned OPReg = OPO.getReg();
+ use_nodbg_iterator nextJ;
+ for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
+ J != End; J = nextJ) {
+ nextJ = std::next(J);
+ MachineOperand &Use = *J;
+ MachineInstr *UseMI = Use.getParent();
+
+ // If the phi node has a user that is not MI, bail.
+ if (MI != UseMI)
+ return false;
+ }
+ }
+ DeadPhis.push_back(OnePhi);
+ }
+
+ // If there are no defs with uses, the instruction is dead.
+ return true;
+}
+
+void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
+ // This procedure was essentially copied from DeadMachineInstructionElim.
+
+ SmallVector<MachineInstr*, 1> DeadPhis;
+ if (isDead(MI, DeadPhis)) {
+ DEBUG(dbgs() << "HW looping will remove: " << *MI);
+
+ // It is possible that some DBG_VALUE instructions refer to this
+ // instruction. Examine each def operand for such references;
+ // if found, mark the DBG_VALUE as undef (but don't delete it).
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !MO.isDef())
+ continue;
+ unsigned Reg = MO.getReg();
+ MachineRegisterInfo::use_iterator nextI;
+ for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
+ E = MRI->use_end(); I != E; I = nextI) {
+ nextI = std::next(I); // I is invalidated by the setReg
+ MachineOperand &Use = *I;
+ MachineInstr *UseMI = I->getParent();
+ if (UseMI == MI)
+ continue;
+ if (Use.isDebug())
+ UseMI->getOperand(0).setReg(0U);
+ }
+ }
+
+ MI->eraseFromParent();
+ for (unsigned i = 0; i < DeadPhis.size(); ++i)
+ DeadPhis[i]->eraseFromParent();
+ }
+}
+
+/// \brief Check if the loop is a candidate for converting to a hardware
+/// loop. If so, then perform the transformation.
+///
+/// This function works on innermost loops first. A loop can be converted
+/// if it is a counting loop; either a register value or an immediate.
+///
+/// The code makes several assumptions about the representation of the loop
+/// in llvm.
+bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
+ bool &RecL0used,
+ bool &RecL1used) {
+ // This is just for sanity.
+ assert(L->getHeader() && "Loop without a header?");
+
+ bool Changed = false;
+ bool L0Used = false;
+ bool L1Used = false;
+
+ // Process nested loops first.
+ for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
+ Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used);
+ L0Used |= RecL0used;
+ L1Used |= RecL1used;
+ }
+
+ // If a nested loop has been converted, then we can't convert this loop.
+ if (Changed && L0Used && L1Used)
+ return Changed;
+
+ unsigned LOOP_i;
+ unsigned LOOP_r;
+ unsigned ENDLOOP;
+
+ // Flag used to track loopN instruction:
+ // 1 - Hardware loop is being generated for the inner most loop.
+ // 0 - Hardware loop is being generated for the outer loop.
+ unsigned IsInnerHWLoop = 1;
+
+ if (L0Used) {
+ LOOP_i = Hexagon::J2_loop1i;
+ LOOP_r = Hexagon::J2_loop1r;
+ ENDLOOP = Hexagon::ENDLOOP1;
+ IsInnerHWLoop = 0;
+ } else {
+ LOOP_i = Hexagon::J2_loop0i;
+ LOOP_r = Hexagon::J2_loop0r;
+ ENDLOOP = Hexagon::ENDLOOP0;
+ }
+
+#ifndef NDEBUG
+ // Stop trying after reaching the limit (if any).
+ int Limit = HWLoopLimit;
+ if (Limit >= 0) {
+ if (Counter >= HWLoopLimit)
+ return false;
+ Counter++;
+ }
+#endif
+
+ // Does the loop contain any invalid instructions?
+ if (containsInvalidInstruction(L, IsInnerHWLoop))
+ return false;
+
+ MachineBasicBlock *LastMBB = getExitingBlock(L);
+ // Don't generate hw loop if the loop has more than one exit.
+ if (!LastMBB)
+ return false;
+
+ MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
+ if (LastI == LastMBB->end())
+ return false;
+
+ // Is the induction variable bump feeding the latch condition?
+ if (!fixupInductionVariable(L))
+ return false;
+
+ // Ensure the loop has a preheader: the loop instruction will be
+ // placed there.
+ MachineBasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader) {
+ Preheader = createPreheaderForLoop(L);
+ if (!Preheader)
+ return false;
+ }
+
+ MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();
+
+ SmallVector<MachineInstr*, 2> OldInsts;
+ // Are we able to determine the trip count for the loop?
+ CountValue *TripCount = getLoopTripCount(L, OldInsts);
+ if (!TripCount)
+ return false;
+
+ // Is the trip count available in the preheader?
+ if (TripCount->isReg()) {
+ // There will be a use of the register inserted into the preheader,
+ // so make sure that the register is actually defined at that point.
+ MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
+ MachineBasicBlock *BBDef = TCDef->getParent();
+ if (!MDT->dominates(BBDef, Preheader))
+ return false;
+ }
+
+ // Determine the loop start.
+ MachineBasicBlock *TopBlock = L->getTopBlock();
+ MachineBasicBlock *ExitingBlock = getExitingBlock(L);
+ MachineBasicBlock *LoopStart = 0;
+ if (ExitingBlock != L->getLoopLatch()) {
+ MachineBasicBlock *TB = 0, *FB = 0;
+ SmallVector<MachineOperand, 2> Cond;
+
+ if (TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false))
+ return false;
+
+ if (L->contains(TB))
+ LoopStart = TB;
+ else if (L->contains(FB))
+ LoopStart = FB;
+ else
+ return false;
+ }
+ else
+ LoopStart = TopBlock;
+
+ // Convert the loop to a hardware loop.
+ DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
+ DebugLoc DL;
+ if (InsertPos != Preheader->end())
+ DL = InsertPos->getDebugLoc();
+
+ if (TripCount->isReg()) {
+ // Create a copy of the loop count register.
+ unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
+ BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
+ .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
+ // Add the Loop instruction to the beginning of the loop.
+ BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart)
+ .addReg(CountReg);
+ } else {
+ assert(TripCount->isImm() && "Expecting immediate value for trip count");
+ // Add the Loop immediate instruction to the beginning of the loop,
+ // if the immediate fits in the instructions. Otherwise, we need to
+ // create a new virtual register.
+ int64_t CountImm = TripCount->getImm();
+ if (!TII->isValidOffset(LOOP_i, CountImm)) {
+ unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
+ BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
+ .addImm(CountImm);
+ BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r))
+ .addMBB(LoopStart).addReg(CountReg);
+ } else
+ BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i))
+ .addMBB(LoopStart).addImm(CountImm);
+ }
+
+ // Make sure the loop start always has a reference in the CFG. We need
+ // to create a BlockAddress operand to get this mechanism to work both the
+ // MachineBasicBlock and BasicBlock objects need the flag set.
+ LoopStart->setHasAddressTaken();
+ // This line is needed to set the hasAddressTaken flag on the BasicBlock
+ // object.
+ BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));
+
+ // Replace the loop branch with an endloop instruction.
+ DebugLoc LastIDL = LastI->getDebugLoc();
+ BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart);
+
+ // The loop ends with either:
+ // - a conditional branch followed by an unconditional branch, or
+ // - a conditional branch to the loop start.
+ if (LastI->getOpcode() == Hexagon::J2_jumpt ||
+ LastI->getOpcode() == Hexagon::J2_jumpf) {
+ // Delete one and change/add an uncond. branch to out of the loop.
+ MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
+ LastI = LastMBB->erase(LastI);
+ if (!L->contains(BranchTarget)) {
+ if (LastI != LastMBB->end())
+ LastI = LastMBB->erase(LastI);
+ SmallVector<MachineOperand, 0> Cond;
+ TII->InsertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
+ }
+ } else {
+ // Conditional branch to loop start; just delete it.
+ LastMBB->erase(LastI);
+ }
+ delete TripCount;
+
+ // The induction operation and the comparison may now be
+ // unneeded. If these are unneeded, then remove them.
+ for (unsigned i = 0; i < OldInsts.size(); ++i)
+ removeIfDead(OldInsts[i]);
+
+ ++NumHWLoops;
+
+ // Set RecL1used and RecL0used only after hardware loop has been
+ // successfully generated. Doing it earlier can cause wrong loop instruction
+ // to be used.
+ if (L0Used) // Loop0 was already used. So, the correct loop must be loop1.
+ RecL1used = true;
+ else
+ RecL0used = true;
+
+ return true;
+}
+
+bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
+ MachineInstr *CmpI) {
+ assert (BumpI != CmpI && "Bump and compare in the same instruction?");
+
+ MachineBasicBlock *BB = BumpI->getParent();
+ if (CmpI->getParent() != BB)
+ return false;
+
+ typedef MachineBasicBlock::instr_iterator instr_iterator;
+ // Check if things are in order to begin with.
+ for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I)
+ if (&*I == CmpI)
+ return true;
+
+ // Out of order.
+ unsigned PredR = CmpI->getOperand(0).getReg();
+ bool FoundBump = false;
+ instr_iterator CmpIt = CmpI, NextIt = std::next(CmpIt);
+ for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
+ MachineInstr *In = &*I;
+ for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
+ MachineOperand &MO = In->getOperand(i);
+ if (MO.isReg() && MO.isUse()) {
+ if (MO.getReg() == PredR) // Found an intervening use of PredR.
+ return false;
+ }
+ }
+
+ if (In == BumpI) {
+ instr_iterator After = BumpI;
+ instr_iterator From = CmpI;
+ BB->splice(std::next(After), BB, From);
+ FoundBump = true;
+ break;
+ }
+ }
+ assert (FoundBump && "Cannot determine instruction order");
+ return FoundBump;
+}
+
+/// This function is required to break recursion. Visiting phis in a loop may
+/// result in recursion during compilation. We break the recursion by making
+/// sure that we visit a MachineOperand and its definition in a
+/// MachineInstruction only once. If we attempt to visit more than once, then
+/// there is recursion, and will return false.
+bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
+ MachineInstr *MI,
+ const MachineOperand *MO,
+ LoopFeederMap &LoopFeederPhi) const {
+ if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
+ const std::vector<MachineBasicBlock *> &Blocks = L->getBlocks();
+ DEBUG(dbgs() << "\nhw_loop head, BB#" << Blocks[0]->getNumber(););
+ // Ignore all BBs that form Loop.
+ for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
+ MachineBasicBlock *MBB = Blocks[i];
+ if (A == MBB)
+ return false;
+ }
+ MachineInstr *Def = MRI->getVRegDef(MO->getReg());
+ LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
+ return true;
+ } else
+ // Already visited node.
+ return false;
+}
+
+/// Return true if a Phi may generate a value that can underflow.
+/// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
+bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
+ MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
+ MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
+ assert(Phi->isPHI() && "Expecting a Phi.");
+ // Walk through each Phi, and its used operands. Make sure that
+ // if there is recursion in Phi, we won't generate hardware loops.
+ for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
+ if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
+ if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
+ Phi->getParent(), L, LoopFeederPhi))
+ return true;
+ return false;
+}
+
+/// Return true if the induction variable can underflow in the first iteration.
+/// An example, is an initial unsigned value that is 0 and is decrement in the
+/// first itertion of a do-while loop. In this case, we cannot generate a
+/// hardware loop because the endloop instruction does not decrement the loop
+/// counter if it is <= 1. We only need to perform this analysis if the
+/// initial value is a register.
+///
+/// This function assumes the initial value may underfow unless proven
+/// otherwise. If the type is signed, then we don't care because signed
+/// underflow is undefined. We attempt to prove the initial value is not
+/// zero by perfoming a crude analysis of the loop counter. This function
+/// checks if the initial value is used in any comparison prior to the loop
+/// and, if so, assumes the comparison is a range check. This is inexact,
+/// but will catch the simple cases.
+bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
+ const MachineOperand *InitVal, const MachineOperand *EndVal,
+ MachineBasicBlock *MBB, MachineLoop *L,
+ LoopFeederMap &LoopFeederPhi) const {
+ // Only check register values since they are unknown.
+ if (!InitVal->isReg())
+ return false;
+
+ if (!EndVal->isImm())
+ return false;
+
+ // A register value that is assigned an immediate is a known value, and it
+ // won't underflow in the first iteration.
+ int64_t Imm;
+ if (checkForImmediate(*InitVal, Imm))
+ return (EndVal->getImm() == Imm);
+
+ unsigned Reg = InitVal->getReg();
+
+ // We don't know the value of a physical register.
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ return true;
+
+ MachineInstr *Def = MRI->getVRegDef(Reg);
+ if (!Def)
+ return true;
+
+ // If the initial value is a Phi or copy and the operands may not underflow,
+ // then the definition cannot be underflow either.
+ if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
+ L, LoopFeederPhi))
+ return false;
+ if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
+ EndVal, Def->getParent(),
+ L, LoopFeederPhi))
+ return false;
+
+ // Iterate over the uses of the initial value. If the initial value is used
+ // in a compare, then we assume this is a range check that ensures the loop
+ // doesn't underflow. This is not an exact test and should be improved.
+ for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
+ E = MRI->use_instr_nodbg_end(); I != E; ++I) {
+ MachineInstr *MI = &*I;
+ unsigned CmpReg1 = 0, CmpReg2 = 0;
+ int CmpMask = 0, CmpValue = 0;
+
+ if (!TII->analyzeCompare(MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
+ continue;
+
+ MachineBasicBlock *TBB = 0, *FBB = 0;
+ SmallVector<MachineOperand, 2> Cond;
+ if (TII->AnalyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
+ continue;
+
+ Comparison::Kind Cmp = getComparisonKind(MI->getOpcode(), 0, 0, 0);
+ if (Cmp == 0)
+ continue;
+ if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
+ Cmp = Comparison::getNegatedComparison(Cmp);
+ if (CmpReg2 != 0 && CmpReg2 == Reg)
+ Cmp = Comparison::getSwappedComparison(Cmp);
+
+ // Signed underflow is undefined.
+ if (Comparison::isSigned(Cmp))
+ return false;
+
+ // Check if there is a comparison of the inital value. If the initial value
+ // is greater than or not equal to another value, then assume this is a
+ // range check.
+ if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
+ return false;
+ }
+
+ // OK - this is a hack that needs to be improved. We really need to analyze
+ // the instructions performed on the initial value. This works on the simplest
+ // cases only.
+ if (!Def->isCopy() && !Def->isPHI())
+ return false;
+
+ return true;
+}
+
+bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
+ int64_t &Val) const {
+ if (MO.isImm()) {
+ Val = MO.getImm();
+ return true;
+ }
+ if (!MO.isReg())
+ return false;
+
+ // MO is a register. Check whether it is defined as an immediate value,
+ // and if so, get the value of it in TV. That value will then need to be
+ // processed to handle potential subregisters in MO.
+ int64_t TV;
+
+ unsigned R = MO.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(R))
+ return false;
+ MachineInstr *DI = MRI->getVRegDef(R);
+ unsigned DOpc = DI->getOpcode();
+ switch (DOpc) {
+ case TargetOpcode::COPY:
+ case Hexagon::A2_tfrsi:
+ case Hexagon::A2_tfrpi:
+ case Hexagon::CONST32_Int_Real:
+ case Hexagon::CONST64_Int_Real: {
+ // Call recursively to avoid an extra check whether operand(1) is
+ // indeed an immediate (it could be a global address, for example),
+ // plus we can handle COPY at the same time.
+ if (!checkForImmediate(DI->getOperand(1), TV))
+ return false;
+ break;
+ }
+ case Hexagon::A2_combineii:
+ case Hexagon::A4_combineir:
+ case Hexagon::A4_combineii:
+ case Hexagon::A4_combineri:
+ case Hexagon::A2_combinew: {
+ const MachineOperand &S1 = DI->getOperand(1);
+ const MachineOperand &S2 = DI->getOperand(2);
+ int64_t V1, V2;
+ if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
+ return false;
+ TV = V2 | (V1 << 32);
+ break;
+ }
+ case TargetOpcode::REG_SEQUENCE: {
+ const MachineOperand &S1 = DI->getOperand(1);
+ const MachineOperand &S3 = DI->getOperand(3);
+ int64_t V1, V3;
+ if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
+ return false;
+ unsigned Sub2 = DI->getOperand(2).getImm();
+ unsigned Sub4 = DI->getOperand(4).getImm();
+ if (Sub2 == Hexagon::subreg_loreg && Sub4 == Hexagon::subreg_hireg)
+ TV = V1 | (V3 << 32);
+ else if (Sub2 == Hexagon::subreg_hireg && Sub4 == Hexagon::subreg_loreg)
+ TV = V3 | (V1 << 32);
+ else
+ llvm_unreachable("Unexpected form of REG_SEQUENCE");
+ break;
+ }
+
+ default:
+ return false;
+ }
+
+ // By now, we should have successfuly obtained the immediate value defining
+ // the register referenced in MO. Handle a potential use of a subregister.
+ switch (MO.getSubReg()) {
+ case Hexagon::subreg_loreg:
+ Val = TV & 0xFFFFFFFFULL;
+ break;
+ case Hexagon::subreg_hireg:
+ Val = (TV >> 32) & 0xFFFFFFFFULL;
+ break;
+ default:
+ Val = TV;
+ break;
+ }
+ return true;
+}
+
+void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
+ if (MO.isImm()) {
+ MO.setImm(Val);
+ return;
+ }
+
+ assert(MO.isReg());
+ unsigned R = MO.getReg();
+ MachineInstr *DI = MRI->getVRegDef(R);
+
+ const TargetRegisterClass *RC = MRI->getRegClass(R);
+ unsigned NewR = MRI->createVirtualRegister(RC);
+ MachineBasicBlock &B = *DI->getParent();
+ DebugLoc DL = DI->getDebugLoc();
+ BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
+ MO.setReg(NewR);
+}
+
+static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) {
+ // These two instructions are not extendable.
+ if (CmpOpc == Hexagon::A4_cmpbeqi)
+ return isUInt<8>(Imm);
+ if (CmpOpc == Hexagon::A4_cmpbgti)
+ return isInt<8>(Imm);
+ // The rest of the comparison-with-immediate instructions are extendable.
+ return true;
+}
+
+bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
+ MachineBasicBlock *Header = L->getHeader();
+ MachineBasicBlock *Latch = L->getLoopLatch();
+ MachineBasicBlock *ExitingBlock = getExitingBlock(L);
+
+ if (!(Header && Latch && ExitingBlock))
+ return false;
+
+ // These data structures follow the same concept as the corresponding
+ // ones in findInductionRegister (where some comments are).
+ typedef std::pair<unsigned,int64_t> RegisterBump;
+ typedef std::pair<unsigned,RegisterBump> RegisterInduction;
+ typedef std::set<RegisterInduction> RegisterInductionSet;
+
+ // Register candidates for induction variables, with their associated bumps.
+ RegisterInductionSet IndRegs;
+
+ // Look for induction patterns:
+ // vreg1 = PHI ..., [ latch, vreg2 ]
+ // vreg2 = ADD vreg1, imm
+ typedef MachineBasicBlock::instr_iterator instr_iterator;
+ for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
+ I != E && I->isPHI(); ++I) {
+ MachineInstr *Phi = &*I;
+
+ // Have a PHI instruction.
+ for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
+ if (Phi->getOperand(i+1).getMBB() != Latch)
+ continue;
+
+ unsigned PhiReg = Phi->getOperand(i).getReg();
+ MachineInstr *DI = MRI->getVRegDef(PhiReg);
+ unsigned UpdOpc = DI->getOpcode();
+ bool isAdd = (UpdOpc == Hexagon::A2_addi || UpdOpc == Hexagon::A2_addp);
+
+ if (isAdd) {
+ // If the register operand to the add/sub is the PHI we are looking
+ // at, this meets the induction pattern.
+ unsigned IndReg = DI->getOperand(1).getReg();
+ MachineOperand &Opnd2 = DI->getOperand(2);
+ int64_t V;
+ if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
+ unsigned UpdReg = DI->getOperand(0).getReg();
+ IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
+ }
+ }
+ } // for (i)
+ } // for (instr)
+
+ if (IndRegs.empty())
+ return false;
+
+ MachineBasicBlock *TB = nullptr, *FB = nullptr;
+ SmallVector<MachineOperand,2> Cond;
+ // AnalyzeBranch returns true if it fails to analyze branch.
+ bool NotAnalyzed = TII->AnalyzeBranch(*ExitingBlock, TB, FB, Cond, false);
+ if (NotAnalyzed || Cond.empty())
+ return false;
+
+ if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
+ MachineBasicBlock *LTB = 0, *LFB = 0;
+ SmallVector<MachineOperand,2> LCond;
+ bool NotAnalyzed = TII->AnalyzeBranch(*Latch, LTB, LFB, LCond, false);
+ if (NotAnalyzed)
+ return false;
+
+ // Since latch is not the exiting block, the latch branch should be an
+ // unconditional branch to the loop header.
+ if (TB == Latch)
+ TB = (LTB == Header) ? LTB : LFB;
+ else
+ FB = (LTB == Header) ? LTB : LFB;
+ }
+ if (TB != Header) {
+ if (FB != Header) {
+ // The latch/exit block does not go back to the header.
+ return false;
+ }
+ // FB is the header (i.e., uncond. jump to branch header)
+ // In this case, the LoopBody -> TB should not be a back edge otherwise
+ // it could result in an infinite loop after conversion to hw_loop.
+ // This case can happen when the Latch has two jumps like this:
+ // Jmp_c OuterLoopHeader <-- TB
+ // Jmp InnerLoopHeader <-- FB
+ if (MDT->dominates(TB, FB))
+ return false;
+ }
+
+ // Expecting a predicate register as a condition. It won't be a hardware
+ // predicate register at this point yet, just a vreg.
+ // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0)
+ // into Cond, followed by the predicate register. For non-negated branches
+ // it's just the register.
+ unsigned CSz = Cond.size();
+ if (CSz != 1 && CSz != 2)
+ return false;
+
+ if (!Cond[CSz-1].isReg())
+ return false;
+
+ unsigned P = Cond[CSz-1].getReg();
+ MachineInstr *PredDef = MRI->getVRegDef(P);
+
+ if (!PredDef->isCompare())
+ return false;
+
+ SmallSet<unsigned,2> CmpRegs;
+ MachineOperand *CmpImmOp = nullptr;
+
+ // Go over all operands to the compare and look for immediate and register
+ // operands. Assume that if the compare has a single register use and a
+ // single immediate operand, then the register is being compared with the
+ // immediate value.
+ for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
+ MachineOperand &MO = PredDef->getOperand(i);
+ if (MO.isReg()) {
+ // Skip all implicit references. In one case there was:
+ // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use>
+ if (MO.isImplicit())
+ continue;
+ if (MO.isUse()) {
+ if (!isImmediate(MO)) {
+ CmpRegs.insert(MO.getReg());
+ continue;
+ }
+ // Consider the register to be the "immediate" operand.
+ if (CmpImmOp)
+ return false;
+ CmpImmOp = &MO;
+ }
+ } else if (MO.isImm()) {
+ if (CmpImmOp) // A second immediate argument? Confusing. Bail out.
+ return false;
+ CmpImmOp = &MO;
+ }
+ }
+
+ if (CmpRegs.empty())
+ return false;
+
+ // Check if the compared register follows the order we want. Fix if needed.
+ for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
+ I != E; ++I) {
+ // This is a success. If the register used in the comparison is one that
+ // we have identified as a bumped (updated) induction register, there is
+ // nothing to do.
+ if (CmpRegs.count(I->first))
+ return true;
+
+ // Otherwise, if the register being compared comes out of a PHI node,
+ // and has been recognized as following the induction pattern, and is
+ // compared against an immediate, we can fix it.
+ const RegisterBump &RB = I->second;
+ if (CmpRegs.count(RB.first)) {
+ if (!CmpImmOp) {
+ // If both operands to the compare instruction are registers, see if
+ // it can be changed to use induction register as one of the operands.
+ MachineInstr *IndI = nullptr;
+ MachineInstr *nonIndI = nullptr;
+ MachineOperand *IndMO = nullptr;
+ MachineOperand *nonIndMO = nullptr;
+
+ for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) {
+ MachineOperand &MO = PredDef->getOperand(i);
+ if (MO.isReg() && MO.getReg() == RB.first) {
+ DEBUG(dbgs() << "\n DefMI(" << i << ") = "
+ << *(MRI->getVRegDef(I->first)));
+ if (IndI)
+ return false;
+
+ IndI = MRI->getVRegDef(I->first);
+ IndMO = &MO;
+ } else if (MO.isReg()) {
+ DEBUG(dbgs() << "\n DefMI(" << i << ") = "
+ << *(MRI->getVRegDef(MO.getReg())));
+ if (nonIndI)
+ return false;
+
+ nonIndI = MRI->getVRegDef(MO.getReg());
+ nonIndMO = &MO;
+ }
+ }
+ if (IndI && nonIndI &&
+ nonIndI->getOpcode() == Hexagon::A2_addi &&
+ nonIndI->getOperand(2).isImm() &&
+ nonIndI->getOperand(2).getImm() == - RB.second) {
+ bool Order = orderBumpCompare(IndI, PredDef);
+ if (Order) {
+ IndMO->setReg(I->first);
+ nonIndMO->setReg(nonIndI->getOperand(1).getReg());
+ return true;
+ }
+ }
+ return false;
+ }
+
+ // It is not valid to do this transformation on an unsigned comparison
+ // because it may underflow.
+ Comparison::Kind Cmp = getComparisonKind(PredDef->getOpcode(), 0, 0, 0);
+ if (!Cmp || Comparison::isUnsigned(Cmp))
+ return false;
+
+ // If the register is being compared against an immediate, try changing
+ // the compare instruction to use induction register and adjust the
+ // immediate operand.
+ int64_t CmpImm = getImmediate(*CmpImmOp);
+ int64_t V = RB.second;
+ // Handle Overflow (64-bit).
+ if (((V > 0) && (CmpImm > INT64_MAX - V)) ||
+ ((V < 0) && (CmpImm < INT64_MIN - V)))
+ return false;
+ CmpImm += V;
+ // Most comparisons of register against an immediate value allow
+ // the immediate to be constant-extended. There are some exceptions
+ // though. Make sure the new combination will work.
+ if (CmpImmOp->isImm())
+ if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm))
+ return false;
+
+ // Make sure that the compare happens after the bump. Otherwise,
+ // after the fixup, the compare would use a yet-undefined register.
+ MachineInstr *BumpI = MRI->getVRegDef(I->first);
+ bool Order = orderBumpCompare(BumpI, PredDef);
+ if (!Order)
+ return false;
+
+ // Finally, fix the compare instruction.
+ setImmediate(*CmpImmOp, CmpImm);
+ for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
+ MachineOperand &MO = PredDef->getOperand(i);
+ if (MO.isReg() && MO.getReg() == RB.first) {
+ MO.setReg(I->first);
+ return true;
+ }
+ }
+ }
+ }
+
+ return false;
+}
+
+/// \brief Create a preheader for a given loop.
+MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
+ MachineLoop *L) {
+ if (MachineBasicBlock *TmpPH = L->getLoopPreheader())
+ return TmpPH;
+
+ if (!HWCreatePreheader)
+ return nullptr;
+
+ MachineBasicBlock *Header = L->getHeader();
+ MachineBasicBlock *Latch = L->getLoopLatch();
+ MachineBasicBlock *ExitingBlock = getExitingBlock(L);
+ MachineFunction *MF = Header->getParent();
+ DebugLoc DL;
+
+#ifndef NDEBUG
+ if ((PHFn != "") && (PHFn != MF->getName()))
+ return nullptr;
+#endif
+
+ if (!Latch || !ExitingBlock || Header->hasAddressTaken())
+ return nullptr;
+
+ typedef MachineBasicBlock::instr_iterator instr_iterator;
+
+ // Verify that all existing predecessors have analyzable branches
+ // (or no branches at all).
+ typedef std::vector<MachineBasicBlock*> MBBVector;
+ MBBVector Preds(Header->pred_begin(), Header->pred_end());
+ SmallVector<MachineOperand,2> Tmp1;
+ MachineBasicBlock *TB = nullptr, *FB = nullptr;
+
+ if (TII->AnalyzeBranch(*ExitingBlock, TB, FB, Tmp1, false))
+ return nullptr;
+
+ for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
+ MachineBasicBlock *PB = *I;
+ bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false);
+ if (NotAnalyzed)
+ return nullptr;
+ }
+
+ MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
+ MF->insert(Header, NewPH);
+
+ if (Header->pred_size() > 2) {
+ // Ensure that the header has only two predecessors: the preheader and
+ // the loop latch. Any additional predecessors of the header should
+ // join at the newly created preheader. Inspect all PHI nodes from the
+ // header and create appropriate corresponding PHI nodes in the preheader.
+
+ for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
+ I != E && I->isPHI(); ++I) {
+ MachineInstr *PN = &*I;
+
+ const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
+ MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
+ NewPH->insert(NewPH->end(), NewPN);
+
+ unsigned PR = PN->getOperand(0).getReg();
+ const TargetRegisterClass *RC = MRI->getRegClass(PR);
+ unsigned NewPR = MRI->createVirtualRegister(RC);
+ NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));
+
+ // Copy all non-latch operands of a header's PHI node to the newly
+ // created PHI node in the preheader.
+ for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
+ unsigned PredR = PN->getOperand(i).getReg();
+ unsigned PredRSub = PN->getOperand(i).getSubReg();
+ MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
+ if (PredB == Latch)
+ continue;
+
+ MachineOperand MO = MachineOperand::CreateReg(PredR, false);
+ MO.setSubReg(PredRSub);
+ NewPN->addOperand(MO);
+ NewPN->addOperand(MachineOperand::CreateMBB(PredB));
+ }
+
+ // Remove copied operands from the old PHI node and add the value
+ // coming from the preheader's PHI.
+ for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
+ MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
+ if (PredB != Latch) {
+ PN->RemoveOperand(i+1);
+ PN->RemoveOperand(i);
+ }
+ }
+ PN->addOperand(MachineOperand::CreateReg(NewPR, false));
+ PN->addOperand(MachineOperand::CreateMBB(NewPH));
+ }
+
+ } else {
+ assert(Header->pred_size() == 2);
+
+ // The header has only two predecessors, but the non-latch predecessor
+ // is not a preheader (e.g. it has other successors, etc.)
+ // In such a case we don't need any extra PHI nodes in the new preheader,
+ // all we need is to adjust existing PHIs in the header to now refer to
+ // the new preheader.
+ for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
+ I != E && I->isPHI(); ++I) {
+ MachineInstr *PN = &*I;
+ for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
+ MachineOperand &MO = PN->getOperand(i+1);
+ if (MO.getMBB() != Latch)
+ MO.setMBB(NewPH);
+ }
+ }
+ }
+
+ // "Reroute" the CFG edges to link in the new preheader.
+ // If any of the predecessors falls through to the header, insert a branch
+ // to the new preheader in that place.
+ SmallVector<MachineOperand,1> Tmp2;
+ SmallVector<MachineOperand,1> EmptyCond;
+
+ TB = FB = nullptr;
+
+ for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
+ MachineBasicBlock *PB = *I;
+ if (PB != Latch) {
+ Tmp2.clear();
+ bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false);
+ (void)NotAnalyzed; // suppress compiler warning
+ assert (!NotAnalyzed && "Should be analyzable!");
+ if (TB != Header && (Tmp2.empty() || FB != Header))
+ TII->InsertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
+ PB->ReplaceUsesOfBlockWith(Header, NewPH);
+ }
+ }
+
+ // It can happen that the latch block will fall through into the header.
+ // Insert an unconditional branch to the header.
+ TB = FB = nullptr;
+ bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false);
+ (void)LatchNotAnalyzed; // suppress compiler warning
+ assert (!LatchNotAnalyzed && "Should be analyzable!");
+ if (!TB && !FB)
+ TII->InsertBranch(*Latch, Header, nullptr, EmptyCond, DL);
+
+ // Finally, the branch from the preheader to the header.
+ TII->InsertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
+ NewPH->addSuccessor(Header);
+
+ MachineLoop *ParentLoop = L->getParentLoop();
+ if (ParentLoop)
+ ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase());
+
+ // Update the dominator information with the new preheader.
+ if (MDT) {
+ MachineDomTreeNode *HDom = MDT->getNode(Header);
+ MDT->addNewBlock(NewPH, HDom->getIDom()->getBlock());
+ MDT->changeImmediateDominator(Header, NewPH);
+ }
+
+ return NewPH;
+}
OpenPOWER on IntegriCloud