diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp | 1479 |
1 files changed, 1479 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp new file mode 100644 index 0000000..7a52a1c --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp @@ -0,0 +1,1479 @@ +//===-- HexagonFrameLowering.cpp - Define frame lowering ------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "hexagon-pei" + +#include "HexagonFrameLowering.h" +#include "Hexagon.h" +#include "HexagonInstrInfo.h" +#include "HexagonMachineFunctionInfo.h" +#include "HexagonRegisterInfo.h" +#include "HexagonSubtarget.h" +#include "HexagonTargetMachine.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineModuleInfo.h" +#include "llvm/CodeGen/MachinePostDominators.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/RegisterScavenging.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/Target/TargetOptions.h" + +// Hexagon stack frame layout as defined by the ABI: +// +// Incoming arguments +// passed via stack +// | +// | +// SP during function's FP during function's | +// +-- runtime (top of stack) runtime (bottom) --+ | +// | | | +// --++---------------------+------------------+-----------------++-+------- +// | parameter area for | variable-size | fixed-size |LR| arg +// | called functions | local objects | local objects |FP| +// --+----------------------+------------------+-----------------+--+------- +// <- size known -> <- size unknown -> <- size known -> +// +// Low address High address +// +// <--- stack growth +// +// +// - In any circumstances, the outgoing function arguments are always accessi- +// ble using the SP, and the incoming arguments are accessible using the FP. +// - If the local objects are not aligned, they can always be accessed using +// the FP. +// - If there are no variable-sized objects, the local objects can always be +// accessed using the SP, regardless whether they are aligned or not. (The +// alignment padding will be at the bottom of the stack (highest address), +// and so the offset with respect to the SP will be known at the compile- +// -time.) +// +// The only complication occurs if there are both, local aligned objects, and +// dynamically allocated (variable-sized) objects. The alignment pad will be +// placed between the FP and the local objects, thus preventing the use of the +// FP to access the local objects. At the same time, the variable-sized objects +// will be between the SP and the local objects, thus introducing an unknown +// distance from the SP to the locals. +// +// To avoid this problem, a new register is created that holds the aligned +// address of the bottom of the stack, referred in the sources as AP (aligned +// pointer). The AP will be equal to "FP-p", where "p" is the smallest pad +// that aligns AP to the required boundary (a maximum of the alignments of +// all stack objects, fixed- and variable-sized). All local objects[1] will +// then use AP as the base pointer. +// [1] The exception is with "fixed" stack objects. "Fixed" stack objects get +// their name from being allocated at fixed locations on the stack, relative +// to the FP. In the presence of dynamic allocation and local alignment, such +// objects can only be accessed through the FP. +// +// Illustration of the AP: +// FP --+ +// | +// ---------------+---------------------+-----+-----------------------++-+-- +// Rest of the | Local stack objects | Pad | Fixed stack objects |LR| +// stack frame | (aligned) | | (CSR, spills, etc.) |FP| +// ---------------+---------------------+-----+-----------------+-----+--+-- +// |<-- Multiple of the -->| +// stack alignment +-- AP +// +// The AP is set up at the beginning of the function. Since it is not a dedi- +// cated (reserved) register, it needs to be kept live throughout the function +// to be available as the base register for local object accesses. +// Normally, an address of a stack objects is obtained by a pseudo-instruction +// TFR_FI. To access local objects with the AP register present, a different +// pseudo-instruction needs to be used: TFR_FIA. The TFR_FIA takes one extra +// argument compared to TFR_FI: the first input register is the AP register. +// This keeps the register live between its definition and its uses. + +// The AP register is originally set up using pseudo-instruction ALIGNA: +// AP = ALIGNA A +// where +// A - required stack alignment +// The alignment value must be the maximum of all alignments required by +// any stack object. + +// The dynamic allocation uses a pseudo-instruction ALLOCA: +// Rd = ALLOCA Rs, A +// where +// Rd - address of the allocated space +// Rs - minimum size (the actual allocated can be larger to accommodate +// alignment) +// A - required alignment + + +using namespace llvm; + +static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret", + cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target")); + + +static cl::opt<int> NumberScavengerSlots("number-scavenger-slots", + cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2), + cl::ZeroOrMore); + +static cl::opt<int> SpillFuncThreshold("spill-func-threshold", + cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"), + cl::init(6), cl::ZeroOrMore); + +static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os", + cl::Hidden, cl::desc("Specify Os spill func threshold"), + cl::init(1), cl::ZeroOrMore); + +static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame", + cl::init(true), cl::Hidden, cl::ZeroOrMore, + cl::desc("Enable stack frame shrink wrapping")); + +static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit", cl::init(UINT_MAX), + cl::Hidden, cl::ZeroOrMore, cl::desc("Max count of stack frame " + "shrink-wraps")); + +static cl::opt<bool> UseAllocframe("use-allocframe", cl::init(true), + cl::Hidden, cl::desc("Use allocframe more conservatively")); + + +namespace llvm { + void initializeHexagonCallFrameInformationPass(PassRegistry&); + FunctionPass *createHexagonCallFrameInformation(); +} + +namespace { + class HexagonCallFrameInformation : public MachineFunctionPass { + public: + static char ID; + HexagonCallFrameInformation() : MachineFunctionPass(ID) { + PassRegistry &PR = *PassRegistry::getPassRegistry(); + initializeHexagonCallFrameInformationPass(PR); + } + bool runOnMachineFunction(MachineFunction &MF) override; + }; + + char HexagonCallFrameInformation::ID = 0; +} + +bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) { + auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering(); + bool NeedCFI = MF.getMMI().hasDebugInfo() || + MF.getFunction()->needsUnwindTableEntry(); + + if (!NeedCFI) + return false; + HFI.insertCFIInstructions(MF); + return true; +} + +INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi", + "Hexagon call frame information", false, false) + +FunctionPass *llvm::createHexagonCallFrameInformation() { + return new HexagonCallFrameInformation(); +} + + +namespace { + /// Map a register pair Reg to the subregister that has the greater "number", + /// i.e. D3 (aka R7:6) will be mapped to R7, etc. + unsigned getMax32BitSubRegister(unsigned Reg, const TargetRegisterInfo &TRI, + bool hireg = true) { + if (Reg < Hexagon::D0 || Reg > Hexagon::D15) + return Reg; + + unsigned RegNo = 0; + for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) { + if (hireg) { + if (*SubRegs > RegNo) + RegNo = *SubRegs; + } else { + if (!RegNo || *SubRegs < RegNo) + RegNo = *SubRegs; + } + } + return RegNo; + } + + /// Returns the callee saved register with the largest id in the vector. + unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI, + const TargetRegisterInfo &TRI) { + assert(Hexagon::R1 > 0 && + "Assume physical registers are encoded as positive integers"); + if (CSI.empty()) + return 0; + + unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI); + for (unsigned I = 1, E = CSI.size(); I < E; ++I) { + unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI); + if (Reg > Max) + Max = Reg; + } + return Max; + } + + /// Checks if the basic block contains any instruction that needs a stack + /// frame to be already in place. + bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR) { + for (auto &I : MBB) { + const MachineInstr *MI = &I; + if (MI->isCall()) + return true; + unsigned Opc = MI->getOpcode(); + switch (Opc) { + case Hexagon::ALLOCA: + case Hexagon::ALIGNA: + return true; + default: + break; + } + // Check individual operands. + for (const MachineOperand &MO : MI->operands()) { + // While the presence of a frame index does not prove that a stack + // frame will be required, all frame indexes should be within alloc- + // frame/deallocframe. Otherwise, the code that translates a frame + // index into an offset would have to be aware of the placement of + // the frame creation/destruction instructions. + if (MO.isFI()) + return true; + if (!MO.isReg()) + continue; + unsigned R = MO.getReg(); + // Virtual registers will need scavenging, which then may require + // a stack slot. + if (TargetRegisterInfo::isVirtualRegister(R)) + return true; + if (CSR[R]) + return true; + } + } + return false; + } + + /// Returns true if MBB has a machine instructions that indicates a tail call + /// in the block. + bool hasTailCall(const MachineBasicBlock &MBB) { + MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr(); + unsigned RetOpc = I->getOpcode(); + return RetOpc == Hexagon::TCRETURNi || RetOpc == Hexagon::TCRETURNr; + } + + /// Returns true if MBB contains an instruction that returns. + bool hasReturn(const MachineBasicBlock &MBB) { + for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I) + if (I->isReturn()) + return true; + return false; + } +} + + +/// Implements shrink-wrapping of the stack frame. By default, stack frame +/// is created in the function entry block, and is cleaned up in every block +/// that returns. This function finds alternate blocks: one for the frame +/// setup (prolog) and one for the cleanup (epilog). +void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF, + MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const { + static unsigned ShrinkCounter = 0; + + if (ShrinkLimit.getPosition()) { + if (ShrinkCounter >= ShrinkLimit) + return; + ShrinkCounter++; + } + + auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget()); + auto &HRI = *HST.getRegisterInfo(); + + MachineDominatorTree MDT; + MDT.runOnMachineFunction(MF); + MachinePostDominatorTree MPT; + MPT.runOnMachineFunction(MF); + + typedef DenseMap<unsigned,unsigned> UnsignedMap; + UnsignedMap RPO; + typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType; + RPOTType RPOT(&MF); + unsigned RPON = 0; + for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I) + RPO[(*I)->getNumber()] = RPON++; + + // Don't process functions that have loops, at least for now. Placement + // of prolog and epilog must take loop structure into account. For simpli- + // city don't do it right now. + for (auto &I : MF) { + unsigned BN = RPO[I.getNumber()]; + for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) { + // If found a back-edge, return. + if (RPO[(*SI)->getNumber()] <= BN) + return; + } + } + + // Collect the set of blocks that need a stack frame to execute. Scan + // each block for uses/defs of callee-saved registers, calls, etc. + SmallVector<MachineBasicBlock*,16> SFBlocks; + BitVector CSR(Hexagon::NUM_TARGET_REGS); + for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P) + CSR[*P] = true; + + for (auto &I : MF) + if (needsStackFrame(I, CSR)) + SFBlocks.push_back(&I); + + DEBUG({ + dbgs() << "Blocks needing SF: {"; + for (auto &B : SFBlocks) + dbgs() << " BB#" << B->getNumber(); + dbgs() << " }\n"; + }); + // No frame needed? + if (SFBlocks.empty()) + return; + + // Pick a common dominator and a common post-dominator. + MachineBasicBlock *DomB = SFBlocks[0]; + for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { + DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]); + if (!DomB) + break; + } + MachineBasicBlock *PDomB = SFBlocks[0]; + for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) { + PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]); + if (!PDomB) + break; + } + DEBUG({ + dbgs() << "Computed dom block: BB#"; + if (DomB) dbgs() << DomB->getNumber(); + else dbgs() << "<null>"; + dbgs() << ", computed pdom block: BB#"; + if (PDomB) dbgs() << PDomB->getNumber(); + else dbgs() << "<null>"; + dbgs() << "\n"; + }); + if (!DomB || !PDomB) + return; + + // Make sure that DomB dominates PDomB and PDomB post-dominates DomB. + if (!MDT.dominates(DomB, PDomB)) { + DEBUG(dbgs() << "Dom block does not dominate pdom block\n"); + return; + } + if (!MPT.dominates(PDomB, DomB)) { + DEBUG(dbgs() << "PDom block does not post-dominate dom block\n"); + return; + } + + // Finally, everything seems right. + PrologB = DomB; + EpilogB = PDomB; +} + +/// Perform most of the PEI work here: +/// - saving/restoring of the callee-saved registers, +/// - stack frame creation and destruction. +/// Normally, this work is distributed among various functions, but doing it +/// in one place allows shrink-wrapping of the stack frame. +void HexagonFrameLowering::emitPrologue(MachineFunction &MF, + MachineBasicBlock &MBB) const { + auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget()); + auto &HRI = *HST.getRegisterInfo(); + + assert(&MF.front() == &MBB && "Shrink-wrapping not yet supported"); + MachineFrameInfo *MFI = MF.getFrameInfo(); + const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); + + MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr; + if (EnableShrinkWrapping) + findShrunkPrologEpilog(MF, PrologB, EpilogB); + + insertCSRSpillsInBlock(*PrologB, CSI, HRI); + insertPrologueInBlock(*PrologB); + + if (EpilogB) { + insertCSRRestoresInBlock(*EpilogB, CSI, HRI); + insertEpilogueInBlock(*EpilogB); + } else { + for (auto &B : MF) + if (B.isReturnBlock()) + insertCSRRestoresInBlock(B, CSI, HRI); + + for (auto &B : MF) + if (B.isReturnBlock()) + insertEpilogueInBlock(B); + } +} + + +void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB) const { + MachineFunction &MF = *MBB.getParent(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + auto &HII = *HST.getInstrInfo(); + auto &HRI = *HST.getRegisterInfo(); + DebugLoc dl; + + unsigned MaxAlign = std::max(MFI->getMaxAlignment(), getStackAlignment()); + + // Calculate the total stack frame size. + // Get the number of bytes to allocate from the FrameInfo. + unsigned FrameSize = MFI->getStackSize(); + // Round up the max call frame size to the max alignment on the stack. + unsigned MaxCFA = RoundUpToAlignment(MFI->getMaxCallFrameSize(), MaxAlign); + MFI->setMaxCallFrameSize(MaxCFA); + + FrameSize = MaxCFA + RoundUpToAlignment(FrameSize, MaxAlign); + MFI->setStackSize(FrameSize); + + bool AlignStack = (MaxAlign > getStackAlignment()); + + // Get the number of bytes to allocate from the FrameInfo. + unsigned NumBytes = MFI->getStackSize(); + unsigned SP = HRI.getStackRegister(); + unsigned MaxCF = MFI->getMaxCallFrameSize(); + MachineBasicBlock::iterator InsertPt = MBB.begin(); + + auto *FuncInfo = MF.getInfo<HexagonMachineFunctionInfo>(); + auto &AdjustRegs = FuncInfo->getAllocaAdjustInsts(); + + for (auto MI : AdjustRegs) { + assert((MI->getOpcode() == Hexagon::ALLOCA) && "Expected alloca"); + expandAlloca(MI, HII, SP, MaxCF); + MI->eraseFromParent(); + } + + if (!hasFP(MF)) + return; + + // Check for overflow. + // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used? + const unsigned int ALLOCFRAME_MAX = 16384; + + // Create a dummy memory operand to avoid allocframe from being treated as + // a volatile memory reference. + MachineMemOperand *MMO = + MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore, + 4, 4); + + if (NumBytes >= ALLOCFRAME_MAX) { + // Emit allocframe(#0). + BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) + .addImm(0) + .addMemOperand(MMO); + + // Subtract offset from frame pointer. + // We use a caller-saved non-parameter register for that. + unsigned CallerSavedReg = HRI.getFirstCallerSavedNonParamReg(); + BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CONST32_Int_Real), + CallerSavedReg).addImm(NumBytes); + BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_sub), SP) + .addReg(SP) + .addReg(CallerSavedReg); + } else { + BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe)) + .addImm(NumBytes) + .addMemOperand(MMO); + } + + if (AlignStack) { + BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP) + .addReg(SP) + .addImm(-int64_t(MaxAlign)); + } +} + +void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const { + MachineFunction &MF = *MBB.getParent(); + if (!hasFP(MF)) + return; + + auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget()); + auto &HII = *HST.getInstrInfo(); + auto &HRI = *HST.getRegisterInfo(); + unsigned SP = HRI.getStackRegister(); + + MachineInstr *RetI = nullptr; + for (auto &I : MBB) { + if (!I.isReturn()) + continue; + RetI = &I; + break; + } + unsigned RetOpc = RetI ? RetI->getOpcode() : 0; + + MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator(); + DebugLoc DL; + if (InsertPt != MBB.end()) + DL = InsertPt->getDebugLoc(); + else if (!MBB.empty()) + DL = std::prev(MBB.end())->getDebugLoc(); + + // Handle EH_RETURN. + if (RetOpc == Hexagon::EH_RETURN_JMPR) { + BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe)); + BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::A2_add), SP) + .addReg(SP) + .addReg(Hexagon::R28); + return; + } + + // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc- + // frame instruction if we encounter it. + if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4) { + MachineBasicBlock::iterator It = RetI; + ++It; + // Delete all instructions after the RESTORE (except labels). + while (It != MBB.end()) { + if (!It->isLabel()) + It = MBB.erase(It); + else + ++It; + } + return; + } + + // It is possible that the restoring code is a call to a library function. + // All of the restore* functions include "deallocframe", so we need to make + // sure that we don't add an extra one. + bool NeedsDeallocframe = true; + if (!MBB.empty() && InsertPt != MBB.begin()) { + MachineBasicBlock::iterator PrevIt = std::prev(InsertPt); + unsigned COpc = PrevIt->getOpcode(); + if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4) + NeedsDeallocframe = false; + } + + if (!NeedsDeallocframe) + return; + // If the returning instruction is JMPret, replace it with dealloc_return, + // otherwise just add deallocframe. The function could be returning via a + // tail call. + if (RetOpc != Hexagon::JMPret || DisableDeallocRet) { + BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe)); + return; + } + unsigned NewOpc = Hexagon::L4_return; + MachineInstr *NewI = BuildMI(MBB, RetI, DL, HII.get(NewOpc)); + // Transfer the function live-out registers. + NewI->copyImplicitOps(MF, RetI); + MBB.erase(RetI); +} + + +namespace { + bool IsAllocFrame(MachineBasicBlock::const_iterator It) { + if (!It->isBundle()) + return It->getOpcode() == Hexagon::S2_allocframe; + auto End = It->getParent()->instr_end(); + MachineBasicBlock::const_instr_iterator I = It.getInstrIterator(); + while (++I != End && I->isBundled()) + if (I->getOpcode() == Hexagon::S2_allocframe) + return true; + return false; + } + + MachineBasicBlock::iterator FindAllocFrame(MachineBasicBlock &B) { + for (auto &I : B) + if (IsAllocFrame(I)) + return I; + return B.end(); + } +} + + +void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const { + for (auto &B : MF) { + auto AF = FindAllocFrame(B); + if (AF == B.end()) + continue; + insertCFIInstructionsAt(B, ++AF); + } +} + + +void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB, + MachineBasicBlock::iterator At) const { + MachineFunction &MF = *MBB.getParent(); + MachineFrameInfo *MFI = MF.getFrameInfo(); + MachineModuleInfo &MMI = MF.getMMI(); + auto &HST = MF.getSubtarget<HexagonSubtarget>(); + auto &HII = *HST.getInstrInfo(); + auto &HRI = *HST.getRegisterInfo(); + + // If CFI instructions have debug information attached, something goes + // wrong with the final assembly generation: the prolog_end is placed + // in a wrong location. + DebugLoc DL; + const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION); + + MCSymbol *FrameLabel = MMI.getContext().createTempSymbol(); + + if (hasFP(MF)) { + unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true); + unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true); + + // Define CFA via an offset from the value of FP. + // + // -8 -4 0 (SP) + // --+----+----+--------------------- + // | FP | LR | increasing addresses --> + // --+----+----+--------------------- + // | +-- Old SP (before allocframe) + // +-- New FP (after allocframe) + // + // MCCFIInstruction::createDefCfa subtracts the offset from the register. + // MCCFIInstruction::createOffset takes the offset without sign change. + auto DefCfa = MCCFIInstruction::createDefCfa(FrameLabel, DwFPReg, -8); + BuildMI(MBB, At, DL, CFID) + .addCFIIndex(MMI.addFrameInst(DefCfa)); + // R31 (return addr) = CFA - 4 + auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4); + BuildMI(MBB, At, DL, CFID) + .addCFIIndex(MMI.addFrameInst(OffR31)); + // R30 (frame ptr) = CFA - 8 + auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8); + BuildMI(MBB, At, DL, CFID) + .addCFIIndex(MMI.addFrameInst(OffR30)); + } + + static unsigned int RegsToMove[] = { + Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2, + Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18, + Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22, + Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26, + Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9, + Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13, + Hexagon::NoRegister + }; + + const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); + + for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) { + unsigned Reg = RegsToMove[i]; + auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool { + return C.getReg() == Reg; + }; + auto F = std::find_if(CSI.begin(), CSI.end(), IfR); + if (F == CSI.end()) + continue; + + // Subtract 8 to make room for R30 and R31, which are added above. + unsigned FrameReg; + int64_t Offset = getFrameIndexReference(MF, F->getFrameIdx(), FrameReg) - 8; + + if (Reg < Hexagon::D0 || Reg > Hexagon::D15) { + unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true); + auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg, + Offset); + BuildMI(MBB, At, DL, CFID) + .addCFIIndex(MMI.addFrameInst(OffReg)); + } else { + // Split the double regs into subregs, and generate appropriate + // cfi_offsets. + // The only reason, we are split double regs is, llvm-mc does not + // understand paired registers for cfi_offset. + // Eg .cfi_offset r1:0, -64 + + unsigned HiReg = HRI.getSubReg(Reg, Hexagon::subreg_hireg); + unsigned LoReg = HRI.getSubReg(Reg, Hexagon::subreg_loreg); + unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true); + unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true); + auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg, + Offset+4); + BuildMI(MBB, At, DL, CFID) + .addCFIIndex(MMI.addFrameInst(OffHi)); + auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg, + Offset); + BuildMI(MBB, At, DL, CFID) + .addCFIIndex(MMI.addFrameInst(OffLo)); + } + } +} + + +bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const { + auto &MFI = *MF.getFrameInfo(); + auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + + bool HasFixed = MFI.getNumFixedObjects(); + bool HasPrealloc = const_cast<MachineFrameInfo&>(MFI) + .getLocalFrameObjectCount(); + bool HasExtraAlign = HRI.needsStackRealignment(MF); + bool HasAlloca = MFI.hasVarSizedObjects(); + + // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think + // that this shouldn't be required, but doing so now because gcc does and + // gdb can't break at the start of the function without it. Will remove if + // this turns out to be a gdb bug. + // + if (MF.getTarget().getOptLevel() == CodeGenOpt::None) + return true; + + // By default we want to use SP (since it's always there). FP requires + // some setup (i.e. ALLOCFRAME). + // Fixed and preallocated objects need FP if the distance from them to + // the SP is unknown (as is with alloca or aligna). + if ((HasFixed || HasPrealloc) && (HasAlloca || HasExtraAlign)) + return true; + + if (MFI.getStackSize() > 0) { + if (UseAllocframe) + return true; + } + + if (MFI.hasCalls() || + MF.getInfo<HexagonMachineFunctionInfo>()->hasClobberLR()) + return true; + + return false; +} + + +enum SpillKind { + SK_ToMem, + SK_FromMem, + SK_FromMemTailcall +}; + +static const char * +getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType) { + const char * V4SpillToMemoryFunctions[] = { + "__save_r16_through_r17", + "__save_r16_through_r19", + "__save_r16_through_r21", + "__save_r16_through_r23", + "__save_r16_through_r25", + "__save_r16_through_r27" }; + + const char * V4SpillFromMemoryFunctions[] = { + "__restore_r16_through_r17_and_deallocframe", + "__restore_r16_through_r19_and_deallocframe", + "__restore_r16_through_r21_and_deallocframe", + "__restore_r16_through_r23_and_deallocframe", + "__restore_r16_through_r25_and_deallocframe", + "__restore_r16_through_r27_and_deallocframe" }; + + const char * V4SpillFromMemoryTailcallFunctions[] = { + "__restore_r16_through_r17_and_deallocframe_before_tailcall", + "__restore_r16_through_r19_and_deallocframe_before_tailcall", + "__restore_r16_through_r21_and_deallocframe_before_tailcall", + "__restore_r16_through_r23_and_deallocframe_before_tailcall", + "__restore_r16_through_r25_and_deallocframe_before_tailcall", + "__restore_r16_through_r27_and_deallocframe_before_tailcall" + }; + + const char **SpillFunc = nullptr; + + switch(SpillType) { + case SK_ToMem: + SpillFunc = V4SpillToMemoryFunctions; + break; + case SK_FromMem: + SpillFunc = V4SpillFromMemoryFunctions; + break; + case SK_FromMemTailcall: + SpillFunc = V4SpillFromMemoryTailcallFunctions; + break; + } + assert(SpillFunc && "Unknown spill kind"); + + // Spill all callee-saved registers up to the highest register used. + switch (MaxReg) { + case Hexagon::R17: + return SpillFunc[0]; + case Hexagon::R19: + return SpillFunc[1]; + case Hexagon::R21: + return SpillFunc[2]; + case Hexagon::R23: + return SpillFunc[3]; + case Hexagon::R25: + return SpillFunc[4]; + case Hexagon::R27: + return SpillFunc[5]; + default: + llvm_unreachable("Unhandled maximum callee save register"); + } + return 0; +} + +/// Adds all callee-saved registers up to MaxReg to the instruction. +static void addCalleeSaveRegistersAsImpOperand(MachineInstr *Inst, + unsigned MaxReg, bool IsDef) { + // Add the callee-saved registers as implicit uses. + for (unsigned R = Hexagon::R16; R <= MaxReg; ++R) { + MachineOperand ImpUse = MachineOperand::CreateReg(R, IsDef, true); + Inst->addOperand(ImpUse); + } +} + + +int HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF, + int FI, unsigned &FrameReg) const { + auto &MFI = *MF.getFrameInfo(); + auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo(); + + // Large parts of this code are shared with HRI::eliminateFrameIndex. + int Offset = MFI.getObjectOffset(FI); + bool HasAlloca = MFI.hasVarSizedObjects(); + bool HasExtraAlign = HRI.needsStackRealignment(MF); + bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None; + + unsigned SP = HRI.getStackRegister(), FP = HRI.getFrameRegister(); + unsigned AP = 0; + if (const MachineInstr *AI = getAlignaInstr(MF)) + AP = AI->getOperand(0).getReg(); + unsigned FrameSize = MFI.getStackSize(); + + bool UseFP = false, UseAP = false; // Default: use SP (except at -O0). + // Use FP at -O0, except when there are objects with extra alignment. + // That additional alignment requirement may cause a pad to be inserted, + // which will make it impossible to use FP to access objects located + // past the pad. + if (NoOpt && !HasExtraAlign) + UseFP = true; + if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) { + // Fixed and preallocated objects will be located before any padding + // so FP must be used to access them. + UseFP |= (HasAlloca || HasExtraAlign); + } else { + if (HasAlloca) { + if (HasExtraAlign) + UseAP = true; + else + UseFP = true; + } + } + + // If FP was picked, then there had better be FP. + bool HasFP = hasFP(MF); + assert((HasFP || !UseFP) && "This function must have frame pointer"); + + // Having FP implies allocframe. Allocframe will store extra 8 bytes: + // FP/LR. If the base register is used to access an object across these + // 8 bytes, then the offset will need to be adjusted by 8. + // + // After allocframe: + // HexagonISelLowering adds 8 to ---+ + // the offsets of all stack-based | + // arguments (*) | + // | + // getObjectOffset < 0 0 8 getObjectOffset >= 8 + // ------------------------+-----+------------------------> increasing + // <local objects> |FP/LR| <input arguments> addresses + // -----------------+------+-----+------------------------> + // | | + // SP/AP point --+ +-- FP points here (**) + // somewhere on + // this side of FP/LR + // + // (*) See LowerFormalArguments. The FP/LR is assumed to be present. + // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR. + + // The lowering assumes that FP/LR is present, and so the offsets of + // the formal arguments start at 8. If FP/LR is not there we need to + // reduce the offset by 8. + if (Offset > 0 && !HasFP) + Offset -= 8; + + if (UseFP) + FrameReg = FP; + else if (UseAP) + FrameReg = AP; + else + FrameReg = SP; + + // Calculate the actual offset in the instruction. If there is no FP + // (in other words, no allocframe), then SP will not be adjusted (i.e. + // there will be no SP -= FrameSize), so the frame size should not be + // added to the calculated offset. + int RealOffset = Offset; + if (!UseFP && !UseAP && HasFP) + RealOffset = FrameSize+Offset; + return RealOffset; +} + + +bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB, + const CSIVect &CSI, const HexagonRegisterInfo &HRI) const { + if (CSI.empty()) + return true; + + MachineBasicBlock::iterator MI = MBB.begin(); + MachineFunction &MF = *MBB.getParent(); + auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); + + if (useSpillFunction(MF, CSI)) { + unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI); + const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem); + // Call spill function. + DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc(); + MachineInstr *SaveRegsCall = + BuildMI(MBB, MI, DL, HII.get(Hexagon::SAVE_REGISTERS_CALL_V4)) + .addExternalSymbol(SpillFun); + // Add callee-saved registers as use. + addCalleeSaveRegistersAsImpOperand(SaveRegsCall, MaxReg, false); + // Add live in registers. + for (unsigned I = 0; I < CSI.size(); ++I) + MBB.addLiveIn(CSI[I].getReg()); + return true; + } + + for (unsigned i = 0, n = CSI.size(); i < n; ++i) { + unsigned Reg = CSI[i].getReg(); + // Add live in registers. We treat eh_return callee saved register r0 - r3 + // specially. They are not really callee saved registers as they are not + // supposed to be killed. + bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg); + int FI = CSI[i].getFrameIdx(); + const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); + HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI); + if (IsKill) + MBB.addLiveIn(Reg); + } + return true; +} + + +bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB, + const CSIVect &CSI, const HexagonRegisterInfo &HRI) const { + if (CSI.empty()) + return false; + + MachineBasicBlock::iterator MI = MBB.getFirstTerminator(); + MachineFunction &MF = *MBB.getParent(); + auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo(); + + if (useRestoreFunction(MF, CSI)) { + bool HasTC = hasTailCall(MBB) || !hasReturn(MBB); + unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI); + SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem; + const char *RestoreFn = getSpillFunctionFor(MaxR, Kind); + + // Call spill function. + DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() + : MBB.getLastNonDebugInstr()->getDebugLoc(); + MachineInstr *DeallocCall = nullptr; + + if (HasTC) { + unsigned ROpc = Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4; + DeallocCall = BuildMI(MBB, MI, DL, HII.get(ROpc)) + .addExternalSymbol(RestoreFn); + } else { + // The block has a return. + MachineBasicBlock::iterator It = MBB.getFirstTerminator(); + assert(It->isReturn() && std::next(It) == MBB.end()); + unsigned ROpc = Hexagon::RESTORE_DEALLOC_RET_JMP_V4; + DeallocCall = BuildMI(MBB, It, DL, HII.get(ROpc)) + .addExternalSymbol(RestoreFn); + // Transfer the function live-out registers. + DeallocCall->copyImplicitOps(MF, It); + } + addCalleeSaveRegistersAsImpOperand(DeallocCall, MaxR, true); + return true; + } + + for (unsigned i = 0; i < CSI.size(); ++i) { + unsigned Reg = CSI[i].getReg(); + const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg); + int FI = CSI[i].getFrameIdx(); + HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI); + } + return true; +} + + +void HexagonFrameLowering::eliminateCallFramePseudoInstr(MachineFunction &MF, + MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { + MachineInstr &MI = *I; + unsigned Opc = MI.getOpcode(); + (void)Opc; // Silence compiler warning. + assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) && + "Cannot handle this call frame pseudo instruction"); + MBB.erase(I); +} + + +void HexagonFrameLowering::processFunctionBeforeFrameFinalized( + MachineFunction &MF, RegScavenger *RS) const { + // If this function has uses aligned stack and also has variable sized stack + // objects, then we need to map all spill slots to fixed positions, so that + // they can be accessed through FP. Otherwise they would have to be accessed + // via AP, which may not be available at the particular place in the program. + MachineFrameInfo *MFI = MF.getFrameInfo(); + bool HasAlloca = MFI->hasVarSizedObjects(); + bool NeedsAlign = (MFI->getMaxAlignment() > getStackAlignment()); + + if (!HasAlloca || !NeedsAlign) + return; + + unsigned LFS = MFI->getLocalFrameSize(); + int Offset = -LFS; + for (int i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) { + if (!MFI->isSpillSlotObjectIndex(i) || MFI->isDeadObjectIndex(i)) + continue; + int S = MFI->getObjectSize(i); + LFS += S; + Offset -= S; + MFI->mapLocalFrameObject(i, Offset); + } + + MFI->setLocalFrameSize(LFS); + unsigned A = MFI->getLocalFrameMaxAlign(); + assert(A <= 8 && "Unexpected local frame alignment"); + if (A == 0) + MFI->setLocalFrameMaxAlign(8); + MFI->setUseLocalStackAllocationBlock(true); +} + +/// Returns true if there is no caller saved registers available. +static bool needToReserveScavengingSpillSlots(MachineFunction &MF, + const HexagonRegisterInfo &HRI) { + MachineRegisterInfo &MRI = MF.getRegInfo(); + const MCPhysReg *CallerSavedRegs = HRI.getCallerSavedRegs(&MF); + // Check for an unused caller-saved register. + for ( ; *CallerSavedRegs; ++CallerSavedRegs) { + MCPhysReg FreeReg = *CallerSavedRegs; + if (!MRI.reg_nodbg_empty(FreeReg)) + continue; + + // Check aliased register usage. + bool IsCurrentRegUsed = false; + for (MCRegAliasIterator AI(FreeReg, &HRI, false); AI.isValid(); ++AI) + if (!MRI.reg_nodbg_empty(*AI)) { + IsCurrentRegUsed = true; + break; + } + if (IsCurrentRegUsed) + continue; + + // Neither directly used nor used through an aliased register. + return false; + } + // All caller-saved registers are used. + return true; +} + + +/// Replaces the predicate spill code pseudo instructions by valid instructions. +bool HexagonFrameLowering::replacePredRegPseudoSpillCode(MachineFunction &MF) + const { + auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget()); + auto &HII = *HST.getInstrInfo(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + bool HasReplacedPseudoInst = false; + // Replace predicate spill pseudo instructions by real code. + // Loop over all of the basic blocks. + for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end(); + MBBb != MBBe; ++MBBb) { + MachineBasicBlock *MBB = &*MBBb; + // Traverse the basic block. + MachineBasicBlock::iterator NextII; + for (MachineBasicBlock::iterator MII = MBB->begin(); MII != MBB->end(); + MII = NextII) { + MachineInstr *MI = MII; + NextII = std::next(MII); + int Opc = MI->getOpcode(); + if (Opc == Hexagon::STriw_pred) { + HasReplacedPseudoInst = true; + // STriw_pred FI, 0, SrcReg; + unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); + unsigned SrcReg = MI->getOperand(2).getReg(); + bool IsOrigSrcRegKilled = MI->getOperand(2).isKill(); + + assert(MI->getOperand(0).isFI() && "Expect a frame index"); + assert(Hexagon::PredRegsRegClass.contains(SrcReg) && + "Not a predicate register"); + + // Insert transfer to general purpose register. + // VirtReg = C2_tfrpr SrcPredReg + BuildMI(*MBB, MII, MI->getDebugLoc(), HII.get(Hexagon::C2_tfrpr), + VirtReg).addReg(SrcReg, getKillRegState(IsOrigSrcRegKilled)); + + // Change instruction to S2_storeri_io. + // S2_storeri_io FI, 0, VirtReg + MI->setDesc(HII.get(Hexagon::S2_storeri_io)); + MI->getOperand(2).setReg(VirtReg); + MI->getOperand(2).setIsKill(); + + } else if (Opc == Hexagon::LDriw_pred) { + // DstReg = LDriw_pred FI, 0 + MachineOperand &M0 = MI->getOperand(0); + if (M0.isDead()) { + MBB->erase(MII); + continue; + } + + unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass); + unsigned DestReg = MI->getOperand(0).getReg(); + + assert(MI->getOperand(1).isFI() && "Expect a frame index"); + assert(Hexagon::PredRegsRegClass.contains(DestReg) && + "Not a predicate register"); + + // Change instruction to L2_loadri_io. + // VirtReg = L2_loadri_io FI, 0 + MI->setDesc(HII.get(Hexagon::L2_loadri_io)); + MI->getOperand(0).setReg(VirtReg); + + // Insert transfer to general purpose register. + // DestReg = C2_tfrrp VirtReg + const MCInstrDesc &D = HII.get(Hexagon::C2_tfrrp); + BuildMI(*MBB, std::next(MII), MI->getDebugLoc(), D, DestReg) + .addReg(VirtReg, getKillRegState(true)); + HasReplacedPseudoInst = true; + } + } + } + return HasReplacedPseudoInst; +} + + +void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF, + BitVector &SavedRegs, + RegScavenger *RS) const { + TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); + + auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget()); + auto &HRI = *HST.getRegisterInfo(); + + bool HasEHReturn = MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn(); + + // If we have a function containing __builtin_eh_return we want to spill and + // restore all callee saved registers. Pretend that they are used. + if (HasEHReturn) { + for (const MCPhysReg *CSRegs = HRI.getCalleeSavedRegs(&MF); *CSRegs; + ++CSRegs) + SavedRegs.set(*CSRegs); + } + + const TargetRegisterClass &RC = Hexagon::IntRegsRegClass; + + // Replace predicate register pseudo spill code. + bool HasReplacedPseudoInst = replacePredRegPseudoSpillCode(MF); + + // We need to reserve a a spill slot if scavenging could potentially require + // spilling a scavenged register. + if (HasReplacedPseudoInst && needToReserveScavengingSpillSlots(MF, HRI)) { + MachineFrameInfo *MFI = MF.getFrameInfo(); + for (int i=0; i < NumberScavengerSlots; i++) + RS->addScavengingFrameIndex( + MFI->CreateSpillStackObject(RC.getSize(), RC.getAlignment())); + } +} + + +#ifndef NDEBUG +static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) { + dbgs() << '{'; + for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) { + unsigned R = x; + dbgs() << ' ' << PrintReg(R, &TRI); + } + dbgs() << " }"; +} +#endif + + +bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF, + const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const { + DEBUG(dbgs() << LLVM_FUNCTION_NAME << " on " + << MF.getFunction()->getName() << '\n'); + MachineFrameInfo *MFI = MF.getFrameInfo(); + BitVector SRegs(Hexagon::NUM_TARGET_REGS); + + // Generate a set of unique, callee-saved registers (SRegs), where each + // register in the set is maximal in terms of sub-/super-register relation, + // i.e. for each R in SRegs, no proper super-register of R is also in SRegs. + + // (1) For each callee-saved register, add that register and all of its + // sub-registers to SRegs. + DEBUG(dbgs() << "Initial CS registers: {"); + for (unsigned i = 0, n = CSI.size(); i < n; ++i) { + unsigned R = CSI[i].getReg(); + DEBUG(dbgs() << ' ' << PrintReg(R, TRI)); + for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) + SRegs[*SR] = true; + } + DEBUG(dbgs() << " }\n"); + DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); dbgs() << "\n"); + + // (2) For each reserved register, remove that register and all of its + // sub- and super-registers from SRegs. + BitVector Reserved = TRI->getReservedRegs(MF); + for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) { + unsigned R = x; + for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR) + SRegs[*SR] = false; + } + DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI); dbgs() << "\n"); + DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); dbgs() << "\n"); + + // (3) Collect all registers that have at least one sub-register in SRegs, + // and also have no sub-registers that are reserved. These will be the can- + // didates for saving as a whole instead of their individual sub-registers. + // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.) + BitVector TmpSup(Hexagon::NUM_TARGET_REGS); + for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { + unsigned R = x; + for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) + TmpSup[*SR] = true; + } + for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) { + unsigned R = x; + for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) { + if (!Reserved[*SR]) + continue; + TmpSup[R] = false; + break; + } + } + DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI); dbgs() << "\n"); + + // (4) Include all super-registers found in (3) into SRegs. + SRegs |= TmpSup; + DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); dbgs() << "\n"); + + // (5) For each register R in SRegs, if any super-register of R is in SRegs, + // remove R from SRegs. + for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { + unsigned R = x; + for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) { + if (!SRegs[*SR]) + continue; + SRegs[R] = false; + break; + } + } + DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); dbgs() << "\n"); + + // Now, for each register that has a fixed stack slot, create the stack + // object for it. + CSI.clear(); + + typedef TargetFrameLowering::SpillSlot SpillSlot; + unsigned NumFixed; + int MinOffset = 0; // CS offsets are negative. + const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed); + for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) { + if (!SRegs[S->Reg]) + continue; + const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg); + int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), S->Offset); + MinOffset = std::min(MinOffset, S->Offset); + CSI.push_back(CalleeSavedInfo(S->Reg, FI)); + SRegs[S->Reg] = false; + } + + // There can be some registers that don't have fixed slots. For example, + // we need to store R0-R3 in functions with exception handling. For each + // such register, create a non-fixed stack object. + for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { + unsigned R = x; + const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R); + int Off = MinOffset - RC->getSize(); + unsigned Align = std::min(RC->getAlignment(), getStackAlignment()); + assert(isPowerOf2_32(Align)); + Off &= -Align; + int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), Off); + MinOffset = std::min(MinOffset, Off); + CSI.push_back(CalleeSavedInfo(R, FI)); + SRegs[R] = false; + } + + DEBUG({ + dbgs() << "CS information: {"; + for (unsigned i = 0, n = CSI.size(); i < n; ++i) { + int FI = CSI[i].getFrameIdx(); + int Off = MFI->getObjectOffset(FI); + dbgs() << ' ' << PrintReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp"; + if (Off >= 0) + dbgs() << '+'; + dbgs() << Off; + } + dbgs() << " }\n"; + }); + +#ifndef NDEBUG + // Verify that all registers were handled. + bool MissedReg = false; + for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) { + unsigned R = x; + dbgs() << PrintReg(R, TRI) << ' '; + MissedReg = true; + } + if (MissedReg) + llvm_unreachable("...there are unhandled callee-saved registers!"); +#endif + + return true; +} + + +void HexagonFrameLowering::expandAlloca(MachineInstr *AI, + const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const { + MachineBasicBlock &MB = *AI->getParent(); + DebugLoc DL = AI->getDebugLoc(); + unsigned A = AI->getOperand(2).getImm(); + + // Have + // Rd = alloca Rs, #A + // + // If Rs and Rd are different registers, use this sequence: + // Rd = sub(r29, Rs) + // r29 = sub(r29, Rs) + // Rd = and(Rd, #-A) ; if necessary + // r29 = and(r29, #-A) ; if necessary + // Rd = add(Rd, #CF) ; CF size aligned to at most A + // otherwise, do + // Rd = sub(r29, Rs) + // Rd = and(Rd, #-A) ; if necessary + // r29 = Rd + // Rd = add(Rd, #CF) ; CF size aligned to at most A + + MachineOperand &RdOp = AI->getOperand(0); + MachineOperand &RsOp = AI->getOperand(1); + unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg(); + + // Rd = sub(r29, Rs) + BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd) + .addReg(SP) + .addReg(Rs); + if (Rs != Rd) { + // r29 = sub(r29, Rs) + BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP) + .addReg(SP) + .addReg(Rs); + } + if (A > 8) { + // Rd = and(Rd, #-A) + BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd) + .addReg(Rd) + .addImm(-int64_t(A)); + if (Rs != Rd) + BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP) + .addReg(SP) + .addImm(-int64_t(A)); + } + if (Rs == Rd) { + // r29 = Rd + BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP) + .addReg(Rd); + } + if (CF > 0) { + // Rd = add(Rd, #CF) + BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd) + .addReg(Rd) + .addImm(CF); + } +} + + +bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const { + const MachineFrameInfo *MFI = MF.getFrameInfo(); + if (!MFI->hasVarSizedObjects()) + return false; + unsigned MaxA = MFI->getMaxAlignment(); + if (MaxA <= getStackAlignment()) + return false; + return true; +} + + +const MachineInstr *HexagonFrameLowering::getAlignaInstr( + const MachineFunction &MF) const { + for (auto &B : MF) + for (auto &I : B) + if (I.getOpcode() == Hexagon::ALIGNA) + return &I; + return nullptr; +} + + +// FIXME: Use Function::optForSize(). +inline static bool isOptSize(const MachineFunction &MF) { + AttributeSet AF = MF.getFunction()->getAttributes(); + return AF.hasAttribute(AttributeSet::FunctionIndex, + Attribute::OptimizeForSize); +} + +inline static bool isMinSize(const MachineFunction &MF) { + return MF.getFunction()->optForMinSize(); +} + + +/// Determine whether the callee-saved register saves and restores should +/// be generated via inline code. If this function returns "true", inline +/// code will be generated. If this function returns "false", additional +/// checks are performed, which may still lead to the inline code. +bool HexagonFrameLowering::shouldInlineCSR(MachineFunction &MF, + const CSIVect &CSI) const { + if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn()) + return true; + if (!isOptSize(MF) && !isMinSize(MF)) + if (MF.getTarget().getOptLevel() > CodeGenOpt::Default) + return true; + + // Check if CSI only has double registers, and if the registers form + // a contiguous block starting from D8. + BitVector Regs(Hexagon::NUM_TARGET_REGS); + for (unsigned i = 0, n = CSI.size(); i < n; ++i) { + unsigned R = CSI[i].getReg(); + if (!Hexagon::DoubleRegsRegClass.contains(R)) + return true; + Regs[R] = true; + } + int F = Regs.find_first(); + if (F != Hexagon::D8) + return true; + while (F >= 0) { + int N = Regs.find_next(F); + if (N >= 0 && N != F+1) + return true; + F = N; + } + + return false; +} + + +bool HexagonFrameLowering::useSpillFunction(MachineFunction &MF, + const CSIVect &CSI) const { + if (shouldInlineCSR(MF, CSI)) + return false; + unsigned NumCSI = CSI.size(); + if (NumCSI <= 1) + return false; + + unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs + : SpillFuncThreshold; + return Threshold < NumCSI; +} + + +bool HexagonFrameLowering::useRestoreFunction(MachineFunction &MF, + const CSIVect &CSI) const { + if (shouldInlineCSR(MF, CSI)) + return false; + unsigned NumCSI = CSI.size(); + unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1 + : SpillFuncThreshold; + return Threshold < NumCSI; +} |