summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp1479
1 files changed, 1479 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp
new file mode 100644
index 0000000..7a52a1c
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonFrameLowering.cpp
@@ -0,0 +1,1479 @@
+//===-- HexagonFrameLowering.cpp - Define frame lowering ------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "hexagon-pei"
+
+#include "HexagonFrameLowering.h"
+#include "Hexagon.h"
+#include "HexagonInstrInfo.h"
+#include "HexagonMachineFunctionInfo.h"
+#include "HexagonRegisterInfo.h"
+#include "HexagonSubtarget.h"
+#include "HexagonTargetMachine.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachinePostDominators.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+
+// Hexagon stack frame layout as defined by the ABI:
+//
+// Incoming arguments
+// passed via stack
+// |
+// |
+// SP during function's FP during function's |
+// +-- runtime (top of stack) runtime (bottom) --+ |
+// | | |
+// --++---------------------+------------------+-----------------++-+-------
+// | parameter area for | variable-size | fixed-size |LR| arg
+// | called functions | local objects | local objects |FP|
+// --+----------------------+------------------+-----------------+--+-------
+// <- size known -> <- size unknown -> <- size known ->
+//
+// Low address High address
+//
+// <--- stack growth
+//
+//
+// - In any circumstances, the outgoing function arguments are always accessi-
+// ble using the SP, and the incoming arguments are accessible using the FP.
+// - If the local objects are not aligned, they can always be accessed using
+// the FP.
+// - If there are no variable-sized objects, the local objects can always be
+// accessed using the SP, regardless whether they are aligned or not. (The
+// alignment padding will be at the bottom of the stack (highest address),
+// and so the offset with respect to the SP will be known at the compile-
+// -time.)
+//
+// The only complication occurs if there are both, local aligned objects, and
+// dynamically allocated (variable-sized) objects. The alignment pad will be
+// placed between the FP and the local objects, thus preventing the use of the
+// FP to access the local objects. At the same time, the variable-sized objects
+// will be between the SP and the local objects, thus introducing an unknown
+// distance from the SP to the locals.
+//
+// To avoid this problem, a new register is created that holds the aligned
+// address of the bottom of the stack, referred in the sources as AP (aligned
+// pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
+// that aligns AP to the required boundary (a maximum of the alignments of
+// all stack objects, fixed- and variable-sized). All local objects[1] will
+// then use AP as the base pointer.
+// [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
+// their name from being allocated at fixed locations on the stack, relative
+// to the FP. In the presence of dynamic allocation and local alignment, such
+// objects can only be accessed through the FP.
+//
+// Illustration of the AP:
+// FP --+
+// |
+// ---------------+---------------------+-----+-----------------------++-+--
+// Rest of the | Local stack objects | Pad | Fixed stack objects |LR|
+// stack frame | (aligned) | | (CSR, spills, etc.) |FP|
+// ---------------+---------------------+-----+-----------------+-----+--+--
+// |<-- Multiple of the -->|
+// stack alignment +-- AP
+//
+// The AP is set up at the beginning of the function. Since it is not a dedi-
+// cated (reserved) register, it needs to be kept live throughout the function
+// to be available as the base register for local object accesses.
+// Normally, an address of a stack objects is obtained by a pseudo-instruction
+// TFR_FI. To access local objects with the AP register present, a different
+// pseudo-instruction needs to be used: TFR_FIA. The TFR_FIA takes one extra
+// argument compared to TFR_FI: the first input register is the AP register.
+// This keeps the register live between its definition and its uses.
+
+// The AP register is originally set up using pseudo-instruction ALIGNA:
+// AP = ALIGNA A
+// where
+// A - required stack alignment
+// The alignment value must be the maximum of all alignments required by
+// any stack object.
+
+// The dynamic allocation uses a pseudo-instruction ALLOCA:
+// Rd = ALLOCA Rs, A
+// where
+// Rd - address of the allocated space
+// Rs - minimum size (the actual allocated can be larger to accommodate
+// alignment)
+// A - required alignment
+
+
+using namespace llvm;
+
+static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
+ cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
+
+
+static cl::opt<int> NumberScavengerSlots("number-scavenger-slots",
+ cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
+ cl::ZeroOrMore);
+
+static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
+ cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
+ cl::init(6), cl::ZeroOrMore);
+
+static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
+ cl::Hidden, cl::desc("Specify Os spill func threshold"),
+ cl::init(1), cl::ZeroOrMore);
+
+static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
+ cl::init(true), cl::Hidden, cl::ZeroOrMore,
+ cl::desc("Enable stack frame shrink wrapping"));
+
+static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit", cl::init(UINT_MAX),
+ cl::Hidden, cl::ZeroOrMore, cl::desc("Max count of stack frame "
+ "shrink-wraps"));
+
+static cl::opt<bool> UseAllocframe("use-allocframe", cl::init(true),
+ cl::Hidden, cl::desc("Use allocframe more conservatively"));
+
+
+namespace llvm {
+ void initializeHexagonCallFrameInformationPass(PassRegistry&);
+ FunctionPass *createHexagonCallFrameInformation();
+}
+
+namespace {
+ class HexagonCallFrameInformation : public MachineFunctionPass {
+ public:
+ static char ID;
+ HexagonCallFrameInformation() : MachineFunctionPass(ID) {
+ PassRegistry &PR = *PassRegistry::getPassRegistry();
+ initializeHexagonCallFrameInformationPass(PR);
+ }
+ bool runOnMachineFunction(MachineFunction &MF) override;
+ };
+
+ char HexagonCallFrameInformation::ID = 0;
+}
+
+bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
+ auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
+ bool NeedCFI = MF.getMMI().hasDebugInfo() ||
+ MF.getFunction()->needsUnwindTableEntry();
+
+ if (!NeedCFI)
+ return false;
+ HFI.insertCFIInstructions(MF);
+ return true;
+}
+
+INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
+ "Hexagon call frame information", false, false)
+
+FunctionPass *llvm::createHexagonCallFrameInformation() {
+ return new HexagonCallFrameInformation();
+}
+
+
+namespace {
+ /// Map a register pair Reg to the subregister that has the greater "number",
+ /// i.e. D3 (aka R7:6) will be mapped to R7, etc.
+ unsigned getMax32BitSubRegister(unsigned Reg, const TargetRegisterInfo &TRI,
+ bool hireg = true) {
+ if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
+ return Reg;
+
+ unsigned RegNo = 0;
+ for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
+ if (hireg) {
+ if (*SubRegs > RegNo)
+ RegNo = *SubRegs;
+ } else {
+ if (!RegNo || *SubRegs < RegNo)
+ RegNo = *SubRegs;
+ }
+ }
+ return RegNo;
+ }
+
+ /// Returns the callee saved register with the largest id in the vector.
+ unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI,
+ const TargetRegisterInfo &TRI) {
+ assert(Hexagon::R1 > 0 &&
+ "Assume physical registers are encoded as positive integers");
+ if (CSI.empty())
+ return 0;
+
+ unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
+ for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
+ unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
+ if (Reg > Max)
+ Max = Reg;
+ }
+ return Max;
+ }
+
+ /// Checks if the basic block contains any instruction that needs a stack
+ /// frame to be already in place.
+ bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR) {
+ for (auto &I : MBB) {
+ const MachineInstr *MI = &I;
+ if (MI->isCall())
+ return true;
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ case Hexagon::ALLOCA:
+ case Hexagon::ALIGNA:
+ return true;
+ default:
+ break;
+ }
+ // Check individual operands.
+ for (const MachineOperand &MO : MI->operands()) {
+ // While the presence of a frame index does not prove that a stack
+ // frame will be required, all frame indexes should be within alloc-
+ // frame/deallocframe. Otherwise, the code that translates a frame
+ // index into an offset would have to be aware of the placement of
+ // the frame creation/destruction instructions.
+ if (MO.isFI())
+ return true;
+ if (!MO.isReg())
+ continue;
+ unsigned R = MO.getReg();
+ // Virtual registers will need scavenging, which then may require
+ // a stack slot.
+ if (TargetRegisterInfo::isVirtualRegister(R))
+ return true;
+ if (CSR[R])
+ return true;
+ }
+ }
+ return false;
+ }
+
+ /// Returns true if MBB has a machine instructions that indicates a tail call
+ /// in the block.
+ bool hasTailCall(const MachineBasicBlock &MBB) {
+ MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
+ unsigned RetOpc = I->getOpcode();
+ return RetOpc == Hexagon::TCRETURNi || RetOpc == Hexagon::TCRETURNr;
+ }
+
+ /// Returns true if MBB contains an instruction that returns.
+ bool hasReturn(const MachineBasicBlock &MBB) {
+ for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I)
+ if (I->isReturn())
+ return true;
+ return false;
+ }
+}
+
+
+/// Implements shrink-wrapping of the stack frame. By default, stack frame
+/// is created in the function entry block, and is cleaned up in every block
+/// that returns. This function finds alternate blocks: one for the frame
+/// setup (prolog) and one for the cleanup (epilog).
+void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
+ MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
+ static unsigned ShrinkCounter = 0;
+
+ if (ShrinkLimit.getPosition()) {
+ if (ShrinkCounter >= ShrinkLimit)
+ return;
+ ShrinkCounter++;
+ }
+
+ auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
+ auto &HRI = *HST.getRegisterInfo();
+
+ MachineDominatorTree MDT;
+ MDT.runOnMachineFunction(MF);
+ MachinePostDominatorTree MPT;
+ MPT.runOnMachineFunction(MF);
+
+ typedef DenseMap<unsigned,unsigned> UnsignedMap;
+ UnsignedMap RPO;
+ typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
+ RPOTType RPOT(&MF);
+ unsigned RPON = 0;
+ for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
+ RPO[(*I)->getNumber()] = RPON++;
+
+ // Don't process functions that have loops, at least for now. Placement
+ // of prolog and epilog must take loop structure into account. For simpli-
+ // city don't do it right now.
+ for (auto &I : MF) {
+ unsigned BN = RPO[I.getNumber()];
+ for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) {
+ // If found a back-edge, return.
+ if (RPO[(*SI)->getNumber()] <= BN)
+ return;
+ }
+ }
+
+ // Collect the set of blocks that need a stack frame to execute. Scan
+ // each block for uses/defs of callee-saved registers, calls, etc.
+ SmallVector<MachineBasicBlock*,16> SFBlocks;
+ BitVector CSR(Hexagon::NUM_TARGET_REGS);
+ for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
+ CSR[*P] = true;
+
+ for (auto &I : MF)
+ if (needsStackFrame(I, CSR))
+ SFBlocks.push_back(&I);
+
+ DEBUG({
+ dbgs() << "Blocks needing SF: {";
+ for (auto &B : SFBlocks)
+ dbgs() << " BB#" << B->getNumber();
+ dbgs() << " }\n";
+ });
+ // No frame needed?
+ if (SFBlocks.empty())
+ return;
+
+ // Pick a common dominator and a common post-dominator.
+ MachineBasicBlock *DomB = SFBlocks[0];
+ for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
+ DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
+ if (!DomB)
+ break;
+ }
+ MachineBasicBlock *PDomB = SFBlocks[0];
+ for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
+ PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
+ if (!PDomB)
+ break;
+ }
+ DEBUG({
+ dbgs() << "Computed dom block: BB#";
+ if (DomB) dbgs() << DomB->getNumber();
+ else dbgs() << "<null>";
+ dbgs() << ", computed pdom block: BB#";
+ if (PDomB) dbgs() << PDomB->getNumber();
+ else dbgs() << "<null>";
+ dbgs() << "\n";
+ });
+ if (!DomB || !PDomB)
+ return;
+
+ // Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
+ if (!MDT.dominates(DomB, PDomB)) {
+ DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
+ return;
+ }
+ if (!MPT.dominates(PDomB, DomB)) {
+ DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
+ return;
+ }
+
+ // Finally, everything seems right.
+ PrologB = DomB;
+ EpilogB = PDomB;
+}
+
+/// Perform most of the PEI work here:
+/// - saving/restoring of the callee-saved registers,
+/// - stack frame creation and destruction.
+/// Normally, this work is distributed among various functions, but doing it
+/// in one place allows shrink-wrapping of the stack frame.
+void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
+ MachineBasicBlock &MBB) const {
+ auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
+ auto &HRI = *HST.getRegisterInfo();
+
+ assert(&MF.front() == &MBB && "Shrink-wrapping not yet supported");
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+
+ MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
+ if (EnableShrinkWrapping)
+ findShrunkPrologEpilog(MF, PrologB, EpilogB);
+
+ insertCSRSpillsInBlock(*PrologB, CSI, HRI);
+ insertPrologueInBlock(*PrologB);
+
+ if (EpilogB) {
+ insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
+ insertEpilogueInBlock(*EpilogB);
+ } else {
+ for (auto &B : MF)
+ if (B.isReturnBlock())
+ insertCSRRestoresInBlock(B, CSI, HRI);
+
+ for (auto &B : MF)
+ if (B.isReturnBlock())
+ insertEpilogueInBlock(B);
+ }
+}
+
+
+void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB) const {
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ auto &HII = *HST.getInstrInfo();
+ auto &HRI = *HST.getRegisterInfo();
+ DebugLoc dl;
+
+ unsigned MaxAlign = std::max(MFI->getMaxAlignment(), getStackAlignment());
+
+ // Calculate the total stack frame size.
+ // Get the number of bytes to allocate from the FrameInfo.
+ unsigned FrameSize = MFI->getStackSize();
+ // Round up the max call frame size to the max alignment on the stack.
+ unsigned MaxCFA = RoundUpToAlignment(MFI->getMaxCallFrameSize(), MaxAlign);
+ MFI->setMaxCallFrameSize(MaxCFA);
+
+ FrameSize = MaxCFA + RoundUpToAlignment(FrameSize, MaxAlign);
+ MFI->setStackSize(FrameSize);
+
+ bool AlignStack = (MaxAlign > getStackAlignment());
+
+ // Get the number of bytes to allocate from the FrameInfo.
+ unsigned NumBytes = MFI->getStackSize();
+ unsigned SP = HRI.getStackRegister();
+ unsigned MaxCF = MFI->getMaxCallFrameSize();
+ MachineBasicBlock::iterator InsertPt = MBB.begin();
+
+ auto *FuncInfo = MF.getInfo<HexagonMachineFunctionInfo>();
+ auto &AdjustRegs = FuncInfo->getAllocaAdjustInsts();
+
+ for (auto MI : AdjustRegs) {
+ assert((MI->getOpcode() == Hexagon::ALLOCA) && "Expected alloca");
+ expandAlloca(MI, HII, SP, MaxCF);
+ MI->eraseFromParent();
+ }
+
+ if (!hasFP(MF))
+ return;
+
+ // Check for overflow.
+ // Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
+ const unsigned int ALLOCFRAME_MAX = 16384;
+
+ // Create a dummy memory operand to avoid allocframe from being treated as
+ // a volatile memory reference.
+ MachineMemOperand *MMO =
+ MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
+ 4, 4);
+
+ if (NumBytes >= ALLOCFRAME_MAX) {
+ // Emit allocframe(#0).
+ BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
+ .addImm(0)
+ .addMemOperand(MMO);
+
+ // Subtract offset from frame pointer.
+ // We use a caller-saved non-parameter register for that.
+ unsigned CallerSavedReg = HRI.getFirstCallerSavedNonParamReg();
+ BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CONST32_Int_Real),
+ CallerSavedReg).addImm(NumBytes);
+ BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_sub), SP)
+ .addReg(SP)
+ .addReg(CallerSavedReg);
+ } else {
+ BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
+ .addImm(NumBytes)
+ .addMemOperand(MMO);
+ }
+
+ if (AlignStack) {
+ BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
+ .addReg(SP)
+ .addImm(-int64_t(MaxAlign));
+ }
+}
+
+void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
+ MachineFunction &MF = *MBB.getParent();
+ if (!hasFP(MF))
+ return;
+
+ auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
+ auto &HII = *HST.getInstrInfo();
+ auto &HRI = *HST.getRegisterInfo();
+ unsigned SP = HRI.getStackRegister();
+
+ MachineInstr *RetI = nullptr;
+ for (auto &I : MBB) {
+ if (!I.isReturn())
+ continue;
+ RetI = &I;
+ break;
+ }
+ unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
+
+ MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
+ DebugLoc DL;
+ if (InsertPt != MBB.end())
+ DL = InsertPt->getDebugLoc();
+ else if (!MBB.empty())
+ DL = std::prev(MBB.end())->getDebugLoc();
+
+ // Handle EH_RETURN.
+ if (RetOpc == Hexagon::EH_RETURN_JMPR) {
+ BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
+ BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::A2_add), SP)
+ .addReg(SP)
+ .addReg(Hexagon::R28);
+ return;
+ }
+
+ // Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
+ // frame instruction if we encounter it.
+ if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4) {
+ MachineBasicBlock::iterator It = RetI;
+ ++It;
+ // Delete all instructions after the RESTORE (except labels).
+ while (It != MBB.end()) {
+ if (!It->isLabel())
+ It = MBB.erase(It);
+ else
+ ++It;
+ }
+ return;
+ }
+
+ // It is possible that the restoring code is a call to a library function.
+ // All of the restore* functions include "deallocframe", so we need to make
+ // sure that we don't add an extra one.
+ bool NeedsDeallocframe = true;
+ if (!MBB.empty() && InsertPt != MBB.begin()) {
+ MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
+ unsigned COpc = PrevIt->getOpcode();
+ if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4)
+ NeedsDeallocframe = false;
+ }
+
+ if (!NeedsDeallocframe)
+ return;
+ // If the returning instruction is JMPret, replace it with dealloc_return,
+ // otherwise just add deallocframe. The function could be returning via a
+ // tail call.
+ if (RetOpc != Hexagon::JMPret || DisableDeallocRet) {
+ BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
+ return;
+ }
+ unsigned NewOpc = Hexagon::L4_return;
+ MachineInstr *NewI = BuildMI(MBB, RetI, DL, HII.get(NewOpc));
+ // Transfer the function live-out registers.
+ NewI->copyImplicitOps(MF, RetI);
+ MBB.erase(RetI);
+}
+
+
+namespace {
+ bool IsAllocFrame(MachineBasicBlock::const_iterator It) {
+ if (!It->isBundle())
+ return It->getOpcode() == Hexagon::S2_allocframe;
+ auto End = It->getParent()->instr_end();
+ MachineBasicBlock::const_instr_iterator I = It.getInstrIterator();
+ while (++I != End && I->isBundled())
+ if (I->getOpcode() == Hexagon::S2_allocframe)
+ return true;
+ return false;
+ }
+
+ MachineBasicBlock::iterator FindAllocFrame(MachineBasicBlock &B) {
+ for (auto &I : B)
+ if (IsAllocFrame(I))
+ return I;
+ return B.end();
+ }
+}
+
+
+void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
+ for (auto &B : MF) {
+ auto AF = FindAllocFrame(B);
+ if (AF == B.end())
+ continue;
+ insertCFIInstructionsAt(B, ++AF);
+ }
+}
+
+
+void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator At) const {
+ MachineFunction &MF = *MBB.getParent();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MachineModuleInfo &MMI = MF.getMMI();
+ auto &HST = MF.getSubtarget<HexagonSubtarget>();
+ auto &HII = *HST.getInstrInfo();
+ auto &HRI = *HST.getRegisterInfo();
+
+ // If CFI instructions have debug information attached, something goes
+ // wrong with the final assembly generation: the prolog_end is placed
+ // in a wrong location.
+ DebugLoc DL;
+ const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);
+
+ MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
+
+ if (hasFP(MF)) {
+ unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
+ unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
+
+ // Define CFA via an offset from the value of FP.
+ //
+ // -8 -4 0 (SP)
+ // --+----+----+---------------------
+ // | FP | LR | increasing addresses -->
+ // --+----+----+---------------------
+ // | +-- Old SP (before allocframe)
+ // +-- New FP (after allocframe)
+ //
+ // MCCFIInstruction::createDefCfa subtracts the offset from the register.
+ // MCCFIInstruction::createOffset takes the offset without sign change.
+ auto DefCfa = MCCFIInstruction::createDefCfa(FrameLabel, DwFPReg, -8);
+ BuildMI(MBB, At, DL, CFID)
+ .addCFIIndex(MMI.addFrameInst(DefCfa));
+ // R31 (return addr) = CFA - 4
+ auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
+ BuildMI(MBB, At, DL, CFID)
+ .addCFIIndex(MMI.addFrameInst(OffR31));
+ // R30 (frame ptr) = CFA - 8
+ auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
+ BuildMI(MBB, At, DL, CFID)
+ .addCFIIndex(MMI.addFrameInst(OffR30));
+ }
+
+ static unsigned int RegsToMove[] = {
+ Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2,
+ Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
+ Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
+ Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
+ Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9,
+ Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
+ Hexagon::NoRegister
+ };
+
+ const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
+
+ for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
+ unsigned Reg = RegsToMove[i];
+ auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
+ return C.getReg() == Reg;
+ };
+ auto F = std::find_if(CSI.begin(), CSI.end(), IfR);
+ if (F == CSI.end())
+ continue;
+
+ // Subtract 8 to make room for R30 and R31, which are added above.
+ unsigned FrameReg;
+ int64_t Offset = getFrameIndexReference(MF, F->getFrameIdx(), FrameReg) - 8;
+
+ if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
+ unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
+ auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
+ Offset);
+ BuildMI(MBB, At, DL, CFID)
+ .addCFIIndex(MMI.addFrameInst(OffReg));
+ } else {
+ // Split the double regs into subregs, and generate appropriate
+ // cfi_offsets.
+ // The only reason, we are split double regs is, llvm-mc does not
+ // understand paired registers for cfi_offset.
+ // Eg .cfi_offset r1:0, -64
+
+ unsigned HiReg = HRI.getSubReg(Reg, Hexagon::subreg_hireg);
+ unsigned LoReg = HRI.getSubReg(Reg, Hexagon::subreg_loreg);
+ unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
+ unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
+ auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
+ Offset+4);
+ BuildMI(MBB, At, DL, CFID)
+ .addCFIIndex(MMI.addFrameInst(OffHi));
+ auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
+ Offset);
+ BuildMI(MBB, At, DL, CFID)
+ .addCFIIndex(MMI.addFrameInst(OffLo));
+ }
+ }
+}
+
+
+bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
+ auto &MFI = *MF.getFrameInfo();
+ auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
+
+ bool HasFixed = MFI.getNumFixedObjects();
+ bool HasPrealloc = const_cast<MachineFrameInfo&>(MFI)
+ .getLocalFrameObjectCount();
+ bool HasExtraAlign = HRI.needsStackRealignment(MF);
+ bool HasAlloca = MFI.hasVarSizedObjects();
+
+ // Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think
+ // that this shouldn't be required, but doing so now because gcc does and
+ // gdb can't break at the start of the function without it. Will remove if
+ // this turns out to be a gdb bug.
+ //
+ if (MF.getTarget().getOptLevel() == CodeGenOpt::None)
+ return true;
+
+ // By default we want to use SP (since it's always there). FP requires
+ // some setup (i.e. ALLOCFRAME).
+ // Fixed and preallocated objects need FP if the distance from them to
+ // the SP is unknown (as is with alloca or aligna).
+ if ((HasFixed || HasPrealloc) && (HasAlloca || HasExtraAlign))
+ return true;
+
+ if (MFI.getStackSize() > 0) {
+ if (UseAllocframe)
+ return true;
+ }
+
+ if (MFI.hasCalls() ||
+ MF.getInfo<HexagonMachineFunctionInfo>()->hasClobberLR())
+ return true;
+
+ return false;
+}
+
+
+enum SpillKind {
+ SK_ToMem,
+ SK_FromMem,
+ SK_FromMemTailcall
+};
+
+static const char *
+getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType) {
+ const char * V4SpillToMemoryFunctions[] = {
+ "__save_r16_through_r17",
+ "__save_r16_through_r19",
+ "__save_r16_through_r21",
+ "__save_r16_through_r23",
+ "__save_r16_through_r25",
+ "__save_r16_through_r27" };
+
+ const char * V4SpillFromMemoryFunctions[] = {
+ "__restore_r16_through_r17_and_deallocframe",
+ "__restore_r16_through_r19_and_deallocframe",
+ "__restore_r16_through_r21_and_deallocframe",
+ "__restore_r16_through_r23_and_deallocframe",
+ "__restore_r16_through_r25_and_deallocframe",
+ "__restore_r16_through_r27_and_deallocframe" };
+
+ const char * V4SpillFromMemoryTailcallFunctions[] = {
+ "__restore_r16_through_r17_and_deallocframe_before_tailcall",
+ "__restore_r16_through_r19_and_deallocframe_before_tailcall",
+ "__restore_r16_through_r21_and_deallocframe_before_tailcall",
+ "__restore_r16_through_r23_and_deallocframe_before_tailcall",
+ "__restore_r16_through_r25_and_deallocframe_before_tailcall",
+ "__restore_r16_through_r27_and_deallocframe_before_tailcall"
+ };
+
+ const char **SpillFunc = nullptr;
+
+ switch(SpillType) {
+ case SK_ToMem:
+ SpillFunc = V4SpillToMemoryFunctions;
+ break;
+ case SK_FromMem:
+ SpillFunc = V4SpillFromMemoryFunctions;
+ break;
+ case SK_FromMemTailcall:
+ SpillFunc = V4SpillFromMemoryTailcallFunctions;
+ break;
+ }
+ assert(SpillFunc && "Unknown spill kind");
+
+ // Spill all callee-saved registers up to the highest register used.
+ switch (MaxReg) {
+ case Hexagon::R17:
+ return SpillFunc[0];
+ case Hexagon::R19:
+ return SpillFunc[1];
+ case Hexagon::R21:
+ return SpillFunc[2];
+ case Hexagon::R23:
+ return SpillFunc[3];
+ case Hexagon::R25:
+ return SpillFunc[4];
+ case Hexagon::R27:
+ return SpillFunc[5];
+ default:
+ llvm_unreachable("Unhandled maximum callee save register");
+ }
+ return 0;
+}
+
+/// Adds all callee-saved registers up to MaxReg to the instruction.
+static void addCalleeSaveRegistersAsImpOperand(MachineInstr *Inst,
+ unsigned MaxReg, bool IsDef) {
+ // Add the callee-saved registers as implicit uses.
+ for (unsigned R = Hexagon::R16; R <= MaxReg; ++R) {
+ MachineOperand ImpUse = MachineOperand::CreateReg(R, IsDef, true);
+ Inst->addOperand(ImpUse);
+ }
+}
+
+
+int HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF,
+ int FI, unsigned &FrameReg) const {
+ auto &MFI = *MF.getFrameInfo();
+ auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
+
+ // Large parts of this code are shared with HRI::eliminateFrameIndex.
+ int Offset = MFI.getObjectOffset(FI);
+ bool HasAlloca = MFI.hasVarSizedObjects();
+ bool HasExtraAlign = HRI.needsStackRealignment(MF);
+ bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None;
+
+ unsigned SP = HRI.getStackRegister(), FP = HRI.getFrameRegister();
+ unsigned AP = 0;
+ if (const MachineInstr *AI = getAlignaInstr(MF))
+ AP = AI->getOperand(0).getReg();
+ unsigned FrameSize = MFI.getStackSize();
+
+ bool UseFP = false, UseAP = false; // Default: use SP (except at -O0).
+ // Use FP at -O0, except when there are objects with extra alignment.
+ // That additional alignment requirement may cause a pad to be inserted,
+ // which will make it impossible to use FP to access objects located
+ // past the pad.
+ if (NoOpt && !HasExtraAlign)
+ UseFP = true;
+ if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
+ // Fixed and preallocated objects will be located before any padding
+ // so FP must be used to access them.
+ UseFP |= (HasAlloca || HasExtraAlign);
+ } else {
+ if (HasAlloca) {
+ if (HasExtraAlign)
+ UseAP = true;
+ else
+ UseFP = true;
+ }
+ }
+
+ // If FP was picked, then there had better be FP.
+ bool HasFP = hasFP(MF);
+ assert((HasFP || !UseFP) && "This function must have frame pointer");
+
+ // Having FP implies allocframe. Allocframe will store extra 8 bytes:
+ // FP/LR. If the base register is used to access an object across these
+ // 8 bytes, then the offset will need to be adjusted by 8.
+ //
+ // After allocframe:
+ // HexagonISelLowering adds 8 to ---+
+ // the offsets of all stack-based |
+ // arguments (*) |
+ // |
+ // getObjectOffset < 0 0 8 getObjectOffset >= 8
+ // ------------------------+-----+------------------------> increasing
+ // <local objects> |FP/LR| <input arguments> addresses
+ // -----------------+------+-----+------------------------>
+ // | |
+ // SP/AP point --+ +-- FP points here (**)
+ // somewhere on
+ // this side of FP/LR
+ //
+ // (*) See LowerFormalArguments. The FP/LR is assumed to be present.
+ // (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
+
+ // The lowering assumes that FP/LR is present, and so the offsets of
+ // the formal arguments start at 8. If FP/LR is not there we need to
+ // reduce the offset by 8.
+ if (Offset > 0 && !HasFP)
+ Offset -= 8;
+
+ if (UseFP)
+ FrameReg = FP;
+ else if (UseAP)
+ FrameReg = AP;
+ else
+ FrameReg = SP;
+
+ // Calculate the actual offset in the instruction. If there is no FP
+ // (in other words, no allocframe), then SP will not be adjusted (i.e.
+ // there will be no SP -= FrameSize), so the frame size should not be
+ // added to the calculated offset.
+ int RealOffset = Offset;
+ if (!UseFP && !UseAP && HasFP)
+ RealOffset = FrameSize+Offset;
+ return RealOffset;
+}
+
+
+bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
+ const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
+ if (CSI.empty())
+ return true;
+
+ MachineBasicBlock::iterator MI = MBB.begin();
+ MachineFunction &MF = *MBB.getParent();
+ auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
+
+ if (useSpillFunction(MF, CSI)) {
+ unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
+ const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem);
+ // Call spill function.
+ DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
+ MachineInstr *SaveRegsCall =
+ BuildMI(MBB, MI, DL, HII.get(Hexagon::SAVE_REGISTERS_CALL_V4))
+ .addExternalSymbol(SpillFun);
+ // Add callee-saved registers as use.
+ addCalleeSaveRegistersAsImpOperand(SaveRegsCall, MaxReg, false);
+ // Add live in registers.
+ for (unsigned I = 0; I < CSI.size(); ++I)
+ MBB.addLiveIn(CSI[I].getReg());
+ return true;
+ }
+
+ for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
+ unsigned Reg = CSI[i].getReg();
+ // Add live in registers. We treat eh_return callee saved register r0 - r3
+ // specially. They are not really callee saved registers as they are not
+ // supposed to be killed.
+ bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
+ int FI = CSI[i].getFrameIdx();
+ const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
+ HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
+ if (IsKill)
+ MBB.addLiveIn(Reg);
+ }
+ return true;
+}
+
+
+bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
+ const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
+ if (CSI.empty())
+ return false;
+
+ MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
+ MachineFunction &MF = *MBB.getParent();
+ auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
+
+ if (useRestoreFunction(MF, CSI)) {
+ bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
+ unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
+ SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
+ const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
+
+ // Call spill function.
+ DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
+ : MBB.getLastNonDebugInstr()->getDebugLoc();
+ MachineInstr *DeallocCall = nullptr;
+
+ if (HasTC) {
+ unsigned ROpc = Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
+ DeallocCall = BuildMI(MBB, MI, DL, HII.get(ROpc))
+ .addExternalSymbol(RestoreFn);
+ } else {
+ // The block has a return.
+ MachineBasicBlock::iterator It = MBB.getFirstTerminator();
+ assert(It->isReturn() && std::next(It) == MBB.end());
+ unsigned ROpc = Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
+ DeallocCall = BuildMI(MBB, It, DL, HII.get(ROpc))
+ .addExternalSymbol(RestoreFn);
+ // Transfer the function live-out registers.
+ DeallocCall->copyImplicitOps(MF, It);
+ }
+ addCalleeSaveRegistersAsImpOperand(DeallocCall, MaxR, true);
+ return true;
+ }
+
+ for (unsigned i = 0; i < CSI.size(); ++i) {
+ unsigned Reg = CSI[i].getReg();
+ const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
+ int FI = CSI[i].getFrameIdx();
+ HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
+ }
+ return true;
+}
+
+
+void HexagonFrameLowering::eliminateCallFramePseudoInstr(MachineFunction &MF,
+ MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const {
+ MachineInstr &MI = *I;
+ unsigned Opc = MI.getOpcode();
+ (void)Opc; // Silence compiler warning.
+ assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
+ "Cannot handle this call frame pseudo instruction");
+ MBB.erase(I);
+}
+
+
+void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
+ MachineFunction &MF, RegScavenger *RS) const {
+ // If this function has uses aligned stack and also has variable sized stack
+ // objects, then we need to map all spill slots to fixed positions, so that
+ // they can be accessed through FP. Otherwise they would have to be accessed
+ // via AP, which may not be available at the particular place in the program.
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ bool HasAlloca = MFI->hasVarSizedObjects();
+ bool NeedsAlign = (MFI->getMaxAlignment() > getStackAlignment());
+
+ if (!HasAlloca || !NeedsAlign)
+ return;
+
+ unsigned LFS = MFI->getLocalFrameSize();
+ int Offset = -LFS;
+ for (int i = 0, e = MFI->getObjectIndexEnd(); i != e; ++i) {
+ if (!MFI->isSpillSlotObjectIndex(i) || MFI->isDeadObjectIndex(i))
+ continue;
+ int S = MFI->getObjectSize(i);
+ LFS += S;
+ Offset -= S;
+ MFI->mapLocalFrameObject(i, Offset);
+ }
+
+ MFI->setLocalFrameSize(LFS);
+ unsigned A = MFI->getLocalFrameMaxAlign();
+ assert(A <= 8 && "Unexpected local frame alignment");
+ if (A == 0)
+ MFI->setLocalFrameMaxAlign(8);
+ MFI->setUseLocalStackAllocationBlock(true);
+}
+
+/// Returns true if there is no caller saved registers available.
+static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
+ const HexagonRegisterInfo &HRI) {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ const MCPhysReg *CallerSavedRegs = HRI.getCallerSavedRegs(&MF);
+ // Check for an unused caller-saved register.
+ for ( ; *CallerSavedRegs; ++CallerSavedRegs) {
+ MCPhysReg FreeReg = *CallerSavedRegs;
+ if (!MRI.reg_nodbg_empty(FreeReg))
+ continue;
+
+ // Check aliased register usage.
+ bool IsCurrentRegUsed = false;
+ for (MCRegAliasIterator AI(FreeReg, &HRI, false); AI.isValid(); ++AI)
+ if (!MRI.reg_nodbg_empty(*AI)) {
+ IsCurrentRegUsed = true;
+ break;
+ }
+ if (IsCurrentRegUsed)
+ continue;
+
+ // Neither directly used nor used through an aliased register.
+ return false;
+ }
+ // All caller-saved registers are used.
+ return true;
+}
+
+
+/// Replaces the predicate spill code pseudo instructions by valid instructions.
+bool HexagonFrameLowering::replacePredRegPseudoSpillCode(MachineFunction &MF)
+ const {
+ auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
+ auto &HII = *HST.getInstrInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ bool HasReplacedPseudoInst = false;
+ // Replace predicate spill pseudo instructions by real code.
+ // Loop over all of the basic blocks.
+ for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
+ MBBb != MBBe; ++MBBb) {
+ MachineBasicBlock *MBB = &*MBBb;
+ // Traverse the basic block.
+ MachineBasicBlock::iterator NextII;
+ for (MachineBasicBlock::iterator MII = MBB->begin(); MII != MBB->end();
+ MII = NextII) {
+ MachineInstr *MI = MII;
+ NextII = std::next(MII);
+ int Opc = MI->getOpcode();
+ if (Opc == Hexagon::STriw_pred) {
+ HasReplacedPseudoInst = true;
+ // STriw_pred FI, 0, SrcReg;
+ unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
+ unsigned SrcReg = MI->getOperand(2).getReg();
+ bool IsOrigSrcRegKilled = MI->getOperand(2).isKill();
+
+ assert(MI->getOperand(0).isFI() && "Expect a frame index");
+ assert(Hexagon::PredRegsRegClass.contains(SrcReg) &&
+ "Not a predicate register");
+
+ // Insert transfer to general purpose register.
+ // VirtReg = C2_tfrpr SrcPredReg
+ BuildMI(*MBB, MII, MI->getDebugLoc(), HII.get(Hexagon::C2_tfrpr),
+ VirtReg).addReg(SrcReg, getKillRegState(IsOrigSrcRegKilled));
+
+ // Change instruction to S2_storeri_io.
+ // S2_storeri_io FI, 0, VirtReg
+ MI->setDesc(HII.get(Hexagon::S2_storeri_io));
+ MI->getOperand(2).setReg(VirtReg);
+ MI->getOperand(2).setIsKill();
+
+ } else if (Opc == Hexagon::LDriw_pred) {
+ // DstReg = LDriw_pred FI, 0
+ MachineOperand &M0 = MI->getOperand(0);
+ if (M0.isDead()) {
+ MBB->erase(MII);
+ continue;
+ }
+
+ unsigned VirtReg = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
+ unsigned DestReg = MI->getOperand(0).getReg();
+
+ assert(MI->getOperand(1).isFI() && "Expect a frame index");
+ assert(Hexagon::PredRegsRegClass.contains(DestReg) &&
+ "Not a predicate register");
+
+ // Change instruction to L2_loadri_io.
+ // VirtReg = L2_loadri_io FI, 0
+ MI->setDesc(HII.get(Hexagon::L2_loadri_io));
+ MI->getOperand(0).setReg(VirtReg);
+
+ // Insert transfer to general purpose register.
+ // DestReg = C2_tfrrp VirtReg
+ const MCInstrDesc &D = HII.get(Hexagon::C2_tfrrp);
+ BuildMI(*MBB, std::next(MII), MI->getDebugLoc(), D, DestReg)
+ .addReg(VirtReg, getKillRegState(true));
+ HasReplacedPseudoInst = true;
+ }
+ }
+ }
+ return HasReplacedPseudoInst;
+}
+
+
+void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
+ BitVector &SavedRegs,
+ RegScavenger *RS) const {
+ TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
+
+ auto &HST = static_cast<const HexagonSubtarget&>(MF.getSubtarget());
+ auto &HRI = *HST.getRegisterInfo();
+
+ bool HasEHReturn = MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn();
+
+ // If we have a function containing __builtin_eh_return we want to spill and
+ // restore all callee saved registers. Pretend that they are used.
+ if (HasEHReturn) {
+ for (const MCPhysReg *CSRegs = HRI.getCalleeSavedRegs(&MF); *CSRegs;
+ ++CSRegs)
+ SavedRegs.set(*CSRegs);
+ }
+
+ const TargetRegisterClass &RC = Hexagon::IntRegsRegClass;
+
+ // Replace predicate register pseudo spill code.
+ bool HasReplacedPseudoInst = replacePredRegPseudoSpillCode(MF);
+
+ // We need to reserve a a spill slot if scavenging could potentially require
+ // spilling a scavenged register.
+ if (HasReplacedPseudoInst && needToReserveScavengingSpillSlots(MF, HRI)) {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ for (int i=0; i < NumberScavengerSlots; i++)
+ RS->addScavengingFrameIndex(
+ MFI->CreateSpillStackObject(RC.getSize(), RC.getAlignment()));
+ }
+}
+
+
+#ifndef NDEBUG
+static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
+ dbgs() << '{';
+ for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
+ unsigned R = x;
+ dbgs() << ' ' << PrintReg(R, &TRI);
+ }
+ dbgs() << " }";
+}
+#endif
+
+
+bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
+ const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
+ DEBUG(dbgs() << LLVM_FUNCTION_NAME << " on "
+ << MF.getFunction()->getName() << '\n');
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ BitVector SRegs(Hexagon::NUM_TARGET_REGS);
+
+ // Generate a set of unique, callee-saved registers (SRegs), where each
+ // register in the set is maximal in terms of sub-/super-register relation,
+ // i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
+
+ // (1) For each callee-saved register, add that register and all of its
+ // sub-registers to SRegs.
+ DEBUG(dbgs() << "Initial CS registers: {");
+ for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
+ unsigned R = CSI[i].getReg();
+ DEBUG(dbgs() << ' ' << PrintReg(R, TRI));
+ for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
+ SRegs[*SR] = true;
+ }
+ DEBUG(dbgs() << " }\n");
+ DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
+
+ // (2) For each reserved register, remove that register and all of its
+ // sub- and super-registers from SRegs.
+ BitVector Reserved = TRI->getReservedRegs(MF);
+ for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
+ unsigned R = x;
+ for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
+ SRegs[*SR] = false;
+ }
+ DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI); dbgs() << "\n");
+ DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
+
+ // (3) Collect all registers that have at least one sub-register in SRegs,
+ // and also have no sub-registers that are reserved. These will be the can-
+ // didates for saving as a whole instead of their individual sub-registers.
+ // (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
+ BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
+ for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
+ unsigned R = x;
+ for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
+ TmpSup[*SR] = true;
+ }
+ for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
+ unsigned R = x;
+ for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
+ if (!Reserved[*SR])
+ continue;
+ TmpSup[R] = false;
+ break;
+ }
+ }
+ DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI); dbgs() << "\n");
+
+ // (4) Include all super-registers found in (3) into SRegs.
+ SRegs |= TmpSup;
+ DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
+
+ // (5) For each register R in SRegs, if any super-register of R is in SRegs,
+ // remove R from SRegs.
+ for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
+ unsigned R = x;
+ for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
+ if (!SRegs[*SR])
+ continue;
+ SRegs[R] = false;
+ break;
+ }
+ }
+ DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
+
+ // Now, for each register that has a fixed stack slot, create the stack
+ // object for it.
+ CSI.clear();
+
+ typedef TargetFrameLowering::SpillSlot SpillSlot;
+ unsigned NumFixed;
+ int MinOffset = 0; // CS offsets are negative.
+ const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
+ for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
+ if (!SRegs[S->Reg])
+ continue;
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
+ int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), S->Offset);
+ MinOffset = std::min(MinOffset, S->Offset);
+ CSI.push_back(CalleeSavedInfo(S->Reg, FI));
+ SRegs[S->Reg] = false;
+ }
+
+ // There can be some registers that don't have fixed slots. For example,
+ // we need to store R0-R3 in functions with exception handling. For each
+ // such register, create a non-fixed stack object.
+ for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
+ unsigned R = x;
+ const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
+ int Off = MinOffset - RC->getSize();
+ unsigned Align = std::min(RC->getAlignment(), getStackAlignment());
+ assert(isPowerOf2_32(Align));
+ Off &= -Align;
+ int FI = MFI->CreateFixedSpillStackObject(RC->getSize(), Off);
+ MinOffset = std::min(MinOffset, Off);
+ CSI.push_back(CalleeSavedInfo(R, FI));
+ SRegs[R] = false;
+ }
+
+ DEBUG({
+ dbgs() << "CS information: {";
+ for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
+ int FI = CSI[i].getFrameIdx();
+ int Off = MFI->getObjectOffset(FI);
+ dbgs() << ' ' << PrintReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp";
+ if (Off >= 0)
+ dbgs() << '+';
+ dbgs() << Off;
+ }
+ dbgs() << " }\n";
+ });
+
+#ifndef NDEBUG
+ // Verify that all registers were handled.
+ bool MissedReg = false;
+ for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
+ unsigned R = x;
+ dbgs() << PrintReg(R, TRI) << ' ';
+ MissedReg = true;
+ }
+ if (MissedReg)
+ llvm_unreachable("...there are unhandled callee-saved registers!");
+#endif
+
+ return true;
+}
+
+
+void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
+ const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
+ MachineBasicBlock &MB = *AI->getParent();
+ DebugLoc DL = AI->getDebugLoc();
+ unsigned A = AI->getOperand(2).getImm();
+
+ // Have
+ // Rd = alloca Rs, #A
+ //
+ // If Rs and Rd are different registers, use this sequence:
+ // Rd = sub(r29, Rs)
+ // r29 = sub(r29, Rs)
+ // Rd = and(Rd, #-A) ; if necessary
+ // r29 = and(r29, #-A) ; if necessary
+ // Rd = add(Rd, #CF) ; CF size aligned to at most A
+ // otherwise, do
+ // Rd = sub(r29, Rs)
+ // Rd = and(Rd, #-A) ; if necessary
+ // r29 = Rd
+ // Rd = add(Rd, #CF) ; CF size aligned to at most A
+
+ MachineOperand &RdOp = AI->getOperand(0);
+ MachineOperand &RsOp = AI->getOperand(1);
+ unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
+
+ // Rd = sub(r29, Rs)
+ BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
+ .addReg(SP)
+ .addReg(Rs);
+ if (Rs != Rd) {
+ // r29 = sub(r29, Rs)
+ BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
+ .addReg(SP)
+ .addReg(Rs);
+ }
+ if (A > 8) {
+ // Rd = and(Rd, #-A)
+ BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
+ .addReg(Rd)
+ .addImm(-int64_t(A));
+ if (Rs != Rd)
+ BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
+ .addReg(SP)
+ .addImm(-int64_t(A));
+ }
+ if (Rs == Rd) {
+ // r29 = Rd
+ BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
+ .addReg(Rd);
+ }
+ if (CF > 0) {
+ // Rd = add(Rd, #CF)
+ BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
+ .addReg(Rd)
+ .addImm(CF);
+ }
+}
+
+
+bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
+ const MachineFrameInfo *MFI = MF.getFrameInfo();
+ if (!MFI->hasVarSizedObjects())
+ return false;
+ unsigned MaxA = MFI->getMaxAlignment();
+ if (MaxA <= getStackAlignment())
+ return false;
+ return true;
+}
+
+
+const MachineInstr *HexagonFrameLowering::getAlignaInstr(
+ const MachineFunction &MF) const {
+ for (auto &B : MF)
+ for (auto &I : B)
+ if (I.getOpcode() == Hexagon::ALIGNA)
+ return &I;
+ return nullptr;
+}
+
+
+// FIXME: Use Function::optForSize().
+inline static bool isOptSize(const MachineFunction &MF) {
+ AttributeSet AF = MF.getFunction()->getAttributes();
+ return AF.hasAttribute(AttributeSet::FunctionIndex,
+ Attribute::OptimizeForSize);
+}
+
+inline static bool isMinSize(const MachineFunction &MF) {
+ return MF.getFunction()->optForMinSize();
+}
+
+
+/// Determine whether the callee-saved register saves and restores should
+/// be generated via inline code. If this function returns "true", inline
+/// code will be generated. If this function returns "false", additional
+/// checks are performed, which may still lead to the inline code.
+bool HexagonFrameLowering::shouldInlineCSR(MachineFunction &MF,
+ const CSIVect &CSI) const {
+ if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
+ return true;
+ if (!isOptSize(MF) && !isMinSize(MF))
+ if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
+ return true;
+
+ // Check if CSI only has double registers, and if the registers form
+ // a contiguous block starting from D8.
+ BitVector Regs(Hexagon::NUM_TARGET_REGS);
+ for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
+ unsigned R = CSI[i].getReg();
+ if (!Hexagon::DoubleRegsRegClass.contains(R))
+ return true;
+ Regs[R] = true;
+ }
+ int F = Regs.find_first();
+ if (F != Hexagon::D8)
+ return true;
+ while (F >= 0) {
+ int N = Regs.find_next(F);
+ if (N >= 0 && N != F+1)
+ return true;
+ F = N;
+ }
+
+ return false;
+}
+
+
+bool HexagonFrameLowering::useSpillFunction(MachineFunction &MF,
+ const CSIVect &CSI) const {
+ if (shouldInlineCSR(MF, CSI))
+ return false;
+ unsigned NumCSI = CSI.size();
+ if (NumCSI <= 1)
+ return false;
+
+ unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
+ : SpillFuncThreshold;
+ return Threshold < NumCSI;
+}
+
+
+bool HexagonFrameLowering::useRestoreFunction(MachineFunction &MF,
+ const CSIVect &CSI) const {
+ if (shouldInlineCSR(MF, CSI))
+ return false;
+ unsigned NumCSI = CSI.size();
+ unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
+ : SpillFuncThreshold;
+ return Threshold < NumCSI;
+}
OpenPOWER on IntegriCloud