diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonEarlyIfConv.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/HexagonEarlyIfConv.cpp | 1063 |
1 files changed, 1063 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonEarlyIfConv.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonEarlyIfConv.cpp new file mode 100644 index 0000000..ee0c318 --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/HexagonEarlyIfConv.cpp @@ -0,0 +1,1063 @@ +//===--- HexagonEarlyIfConv.cpp -------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This implements a Hexagon-specific if-conversion pass that runs on the +// SSA form. +// In SSA it is not straightforward to represent instructions that condi- +// tionally define registers, since a conditionally-defined register may +// only be used under the same condition on which the definition was based. +// To avoid complications of this nature, this patch will only generate +// predicated stores, and speculate other instructions from the "if-conver- +// ted" block. +// The code will recognize CFG patterns where a block with a conditional +// branch "splits" into a "true block" and a "false block". Either of these +// could be omitted (in case of a triangle, for example). +// If after conversion of the side block(s) the CFG allows it, the resul- +// ting blocks may be merged. If the "join" block contained PHI nodes, they +// will be replaced with MUX (or MUX-like) instructions to maintain the +// semantics of the PHI. +// +// Example: +// +// %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1 +// %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0 +// J2_jumpt %vreg41<kill>, <BB#5>, %PC<imp-def,dead> +// J2_jump <BB#4>, %PC<imp-def,dead> +// Successors according to CFG: BB#4(62) BB#5(62) +// +// BB#4: derived from LLVM BB %if.then +// Predecessors according to CFG: BB#3 +// %vreg11<def> = A2_addp %vreg6, %vreg10 +// S2_storerd_io %vreg32, 16, %vreg11 +// Successors according to CFG: BB#5 +// +// BB#5: derived from LLVM BB %if.end +// Predecessors according to CFG: BB#3 BB#4 +// %vreg12<def> = PHI %vreg6, <BB#3>, %vreg11, <BB#4> +// %vreg13<def> = A2_addp %vreg7, %vreg12 +// %vreg42<def> = C2_cmpeqi %vreg9, 10 +// J2_jumpf %vreg42<kill>, <BB#3>, %PC<imp-def,dead> +// J2_jump <BB#6>, %PC<imp-def,dead> +// Successors according to CFG: BB#6(4) BB#3(124) +// +// would become: +// +// %vreg40<def> = L2_loadrub_io %vreg39<kill>, 1 +// %vreg41<def> = S2_tstbit_i %vreg40<kill>, 0 +// spec-> %vreg11<def> = A2_addp %vreg6, %vreg10 +// pred-> S2_pstorerdf_io %vreg41, %vreg32, 16, %vreg11 +// %vreg46<def> = MUX64_rr %vreg41, %vreg6, %vreg11 +// %vreg13<def> = A2_addp %vreg7, %vreg46 +// %vreg42<def> = C2_cmpeqi %vreg9, 10 +// J2_jumpf %vreg42<kill>, <BB#3>, %PC<imp-def,dead> +// J2_jump <BB#6>, %PC<imp-def,dead> +// Successors according to CFG: BB#6 BB#3 + +#define DEBUG_TYPE "hexagon-eif" + +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/CodeGen/MachineBranchProbabilityInfo.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/Passes.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "HexagonTargetMachine.h" + +#include <functional> +#include <set> +#include <vector> + +using namespace llvm; + +namespace llvm { + FunctionPass *createHexagonEarlyIfConversion(); + void initializeHexagonEarlyIfConversionPass(PassRegistry& Registry); +} + +namespace { + cl::opt<bool> EnableHexagonBP("enable-hexagon-br-prob", cl::Hidden, + cl::init(false), cl::desc("Enable branch probability info")); + cl::opt<unsigned> SizeLimit("eif-limit", cl::init(6), cl::Hidden, + cl::desc("Size limit in Hexagon early if-conversion")); + + struct PrintMB { + PrintMB(const MachineBasicBlock *B) : MB(B) {} + const MachineBasicBlock *MB; + }; + raw_ostream &operator<< (raw_ostream &OS, const PrintMB &P) { + if (!P.MB) + return OS << "<none>"; + return OS << '#' << P.MB->getNumber(); + } + + struct FlowPattern { + FlowPattern() : SplitB(0), TrueB(0), FalseB(0), JoinB(0), PredR(0) {} + FlowPattern(MachineBasicBlock *B, unsigned PR, MachineBasicBlock *TB, + MachineBasicBlock *FB, MachineBasicBlock *JB) + : SplitB(B), TrueB(TB), FalseB(FB), JoinB(JB), PredR(PR) {} + + MachineBasicBlock *SplitB; + MachineBasicBlock *TrueB, *FalseB, *JoinB; + unsigned PredR; + }; + struct PrintFP { + PrintFP(const FlowPattern &P, const TargetRegisterInfo &T) + : FP(P), TRI(T) {} + const FlowPattern &FP; + const TargetRegisterInfo &TRI; + friend raw_ostream &operator<< (raw_ostream &OS, const PrintFP &P); + }; + raw_ostream &operator<<(raw_ostream &OS, + const PrintFP &P) LLVM_ATTRIBUTE_UNUSED; + raw_ostream &operator<<(raw_ostream &OS, const PrintFP &P) { + OS << "{ SplitB:" << PrintMB(P.FP.SplitB) + << ", PredR:" << PrintReg(P.FP.PredR, &P.TRI) + << ", TrueB:" << PrintMB(P.FP.TrueB) << ", FalseB:" + << PrintMB(P.FP.FalseB) + << ", JoinB:" << PrintMB(P.FP.JoinB) << " }"; + return OS; + } + + class HexagonEarlyIfConversion : public MachineFunctionPass { + public: + static char ID; + HexagonEarlyIfConversion() : MachineFunctionPass(ID), + TII(0), TRI(0), MFN(0), MRI(0), MDT(0), MLI(0) { + initializeHexagonEarlyIfConversionPass(*PassRegistry::getPassRegistry()); + } + const char *getPassName() const override { + return "Hexagon early if conversion"; + } + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<MachineBranchProbabilityInfo>(); + AU.addRequired<MachineDominatorTree>(); + AU.addPreserved<MachineDominatorTree>(); + AU.addRequired<MachineLoopInfo>(); + MachineFunctionPass::getAnalysisUsage(AU); + } + bool runOnMachineFunction(MachineFunction &MF) override; + + private: + typedef DenseSet<MachineBasicBlock*> BlockSetType; + + bool isPreheader(const MachineBasicBlock *B) const; + bool matchFlowPattern(MachineBasicBlock *B, MachineLoop *L, + FlowPattern &FP); + bool visitBlock(MachineBasicBlock *B, MachineLoop *L); + bool visitLoop(MachineLoop *L); + + bool hasEHLabel(const MachineBasicBlock *B) const; + bool hasUncondBranch(const MachineBasicBlock *B) const; + bool isValidCandidate(const MachineBasicBlock *B) const; + bool usesUndefVReg(const MachineInstr *MI) const; + bool isValid(const FlowPattern &FP) const; + unsigned countPredicateDefs(const MachineBasicBlock *B) const; + unsigned computePhiCost(MachineBasicBlock *B) const; + bool isProfitable(const FlowPattern &FP) const; + bool isPredicableStore(const MachineInstr *MI) const; + bool isSafeToSpeculate(const MachineInstr *MI) const; + + unsigned getCondStoreOpcode(unsigned Opc, bool IfTrue) const; + void predicateInstr(MachineBasicBlock *ToB, MachineBasicBlock::iterator At, + MachineInstr *MI, unsigned PredR, bool IfTrue); + void predicateBlockNB(MachineBasicBlock *ToB, + MachineBasicBlock::iterator At, MachineBasicBlock *FromB, + unsigned PredR, bool IfTrue); + + void updatePhiNodes(MachineBasicBlock *WhereB, const FlowPattern &FP); + void convert(const FlowPattern &FP); + + void removeBlock(MachineBasicBlock *B); + void eliminatePhis(MachineBasicBlock *B); + void replacePhiEdges(MachineBasicBlock *OldB, MachineBasicBlock *NewB); + void mergeBlocks(MachineBasicBlock *PredB, MachineBasicBlock *SuccB); + void simplifyFlowGraph(const FlowPattern &FP); + + const TargetInstrInfo *TII; + const TargetRegisterInfo *TRI; + MachineFunction *MFN; + MachineRegisterInfo *MRI; + MachineDominatorTree *MDT; + MachineLoopInfo *MLI; + BlockSetType Deleted; + const MachineBranchProbabilityInfo *MBPI; + }; + + char HexagonEarlyIfConversion::ID = 0; +} + +INITIALIZE_PASS(HexagonEarlyIfConversion, "hexagon-eif", + "Hexagon early if conversion", false, false) + +bool HexagonEarlyIfConversion::isPreheader(const MachineBasicBlock *B) const { + if (B->succ_size() != 1) + return false; + MachineBasicBlock *SB = *B->succ_begin(); + MachineLoop *L = MLI->getLoopFor(SB); + return L && SB == L->getHeader(); +} + + +bool HexagonEarlyIfConversion::matchFlowPattern(MachineBasicBlock *B, + MachineLoop *L, FlowPattern &FP) { + DEBUG(dbgs() << "Checking flow pattern at BB#" << B->getNumber() << "\n"); + + // Interested only in conditional branches, no .new, no new-value, etc. + // Check the terminators directly, it's easier than handling all responses + // from AnalyzeBranch. + MachineBasicBlock *TB = 0, *FB = 0; + MachineBasicBlock::const_iterator T1I = B->getFirstTerminator(); + if (T1I == B->end()) + return false; + unsigned Opc = T1I->getOpcode(); + if (Opc != Hexagon::J2_jumpt && Opc != Hexagon::J2_jumpf) + return false; + unsigned PredR = T1I->getOperand(0).getReg(); + + // Get the layout successor, or 0 if B does not have one. + MachineFunction::iterator NextBI = std::next(MachineFunction::iterator(B)); + MachineBasicBlock *NextB = (NextBI != MFN->end()) ? &*NextBI : 0; + + MachineBasicBlock *T1B = T1I->getOperand(1).getMBB(); + MachineBasicBlock::const_iterator T2I = std::next(T1I); + // The second terminator should be an unconditional branch. + assert(T2I == B->end() || T2I->getOpcode() == Hexagon::J2_jump); + MachineBasicBlock *T2B = (T2I == B->end()) ? NextB + : T2I->getOperand(0).getMBB(); + if (T1B == T2B) { + // XXX merge if T1B == NextB, or convert branch to unconditional. + // mark as diamond with both sides equal? + return false; + } + // Loop could be null for both. + if (MLI->getLoopFor(T1B) != L || MLI->getLoopFor(T2B) != L) + return false; + + // Record the true/false blocks in such a way that "true" means "if (PredR)", + // and "false" means "if (!PredR)". + if (Opc == Hexagon::J2_jumpt) + TB = T1B, FB = T2B; + else + TB = T2B, FB = T1B; + + if (!MDT->properlyDominates(B, TB) || !MDT->properlyDominates(B, FB)) + return false; + + // Detect triangle first. In case of a triangle, one of the blocks TB/FB + // can fall through into the other, in other words, it will be executed + // in both cases. We only want to predicate the block that is executed + // conditionally. + unsigned TNP = TB->pred_size(), FNP = FB->pred_size(); + unsigned TNS = TB->succ_size(), FNS = FB->succ_size(); + + // A block is predicable if it has one predecessor (it must be B), and + // it has a single successor. In fact, the block has to end either with + // an unconditional branch (which can be predicated), or with a fall- + // through. + bool TOk = (TNP == 1) && (TNS == 1); + bool FOk = (FNP == 1) && (FNS == 1); + + // If neither is predicable, there is nothing interesting. + if (!TOk && !FOk) + return false; + + MachineBasicBlock *TSB = (TNS > 0) ? *TB->succ_begin() : 0; + MachineBasicBlock *FSB = (FNS > 0) ? *FB->succ_begin() : 0; + MachineBasicBlock *JB = 0; + + if (TOk) { + if (FOk) { + if (TSB == FSB) + JB = TSB; + // Diamond: "if (P) then TB; else FB;". + } else { + // TOk && !FOk + if (TSB == FB) { + JB = FB; + FB = 0; + } + } + } else { + // !TOk && FOk (at least one must be true by now). + if (FSB == TB) { + JB = TB; + TB = 0; + } + } + // Don't try to predicate loop preheaders. + if ((TB && isPreheader(TB)) || (FB && isPreheader(FB))) { + DEBUG(dbgs() << "One of blocks " << PrintMB(TB) << ", " << PrintMB(FB) + << " is a loop preheader. Skipping.\n"); + return false; + } + + FP = FlowPattern(B, PredR, TB, FB, JB); + DEBUG(dbgs() << "Detected " << PrintFP(FP, *TRI) << "\n"); + return true; +} + + +// KLUDGE: HexagonInstrInfo::AnalyzeBranch won't work on a block that +// contains EH_LABEL. +bool HexagonEarlyIfConversion::hasEHLabel(const MachineBasicBlock *B) const { + for (auto &I : *B) + if (I.isEHLabel()) + return true; + return false; +} + + +// KLUDGE: HexagonInstrInfo::AnalyzeBranch may be unable to recognize +// that a block can never fall-through. +bool HexagonEarlyIfConversion::hasUncondBranch(const MachineBasicBlock *B) + const { + MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end(); + while (I != E) { + if (I->isBarrier()) + return true; + ++I; + } + return false; +} + + +bool HexagonEarlyIfConversion::isValidCandidate(const MachineBasicBlock *B) + const { + if (!B) + return true; + if (B->isEHPad() || B->hasAddressTaken()) + return false; + if (B->succ_size() == 0) + return false; + + for (auto &MI : *B) { + if (MI.isDebugValue()) + continue; + if (MI.isConditionalBranch()) + return false; + unsigned Opc = MI.getOpcode(); + bool IsJMP = (Opc == Hexagon::J2_jump); + if (!isPredicableStore(&MI) && !IsJMP && !isSafeToSpeculate(&MI)) + return false; + // Look for predicate registers defined by this instruction. It's ok + // to speculate such an instruction, but the predicate register cannot + // be used outside of this block (or else it won't be possible to + // update the use of it after predication). PHI uses will be updated + // to use a result of a MUX, and a MUX cannot be created for predicate + // registers. + for (ConstMIOperands MO(&MI); MO.isValid(); ++MO) { + if (!MO->isReg() || !MO->isDef()) + continue; + unsigned R = MO->getReg(); + if (!TargetRegisterInfo::isVirtualRegister(R)) + continue; + if (MRI->getRegClass(R) != &Hexagon::PredRegsRegClass) + continue; + for (auto U = MRI->use_begin(R); U != MRI->use_end(); ++U) + if (U->getParent()->isPHI()) + return false; + } + } + return true; +} + + +bool HexagonEarlyIfConversion::usesUndefVReg(const MachineInstr *MI) const { + for (ConstMIOperands MO(MI); MO.isValid(); ++MO) { + if (!MO->isReg() || !MO->isUse()) + continue; + unsigned R = MO->getReg(); + if (!TargetRegisterInfo::isVirtualRegister(R)) + continue; + const MachineInstr *DefI = MRI->getVRegDef(R); + // "Undefined" virtual registers are actually defined via IMPLICIT_DEF. + assert(DefI && "Expecting a reaching def in MRI"); + if (DefI->isImplicitDef()) + return true; + } + return false; +} + + +bool HexagonEarlyIfConversion::isValid(const FlowPattern &FP) const { + if (hasEHLabel(FP.SplitB)) // KLUDGE: see function definition + return false; + if (FP.TrueB && !isValidCandidate(FP.TrueB)) + return false; + if (FP.FalseB && !isValidCandidate(FP.FalseB)) + return false; + // Check the PHIs in the join block. If any of them use a register + // that is defined as IMPLICIT_DEF, do not convert this. This can + // legitimately happen if one side of the split never executes, but + // the compiler is unable to prove it. That side may then seem to + // provide an "undef" value to the join block, however it will never + // execute at run-time. If we convert this case, the "undef" will + // be used in a MUX instruction, and that may seem like actually + // using an undefined value to other optimizations. This could lead + // to trouble further down the optimization stream, cause assertions + // to fail, etc. + if (FP.JoinB) { + const MachineBasicBlock &B = *FP.JoinB; + for (auto &MI : B) { + if (!MI.isPHI()) + break; + if (usesUndefVReg(&MI)) + return false; + unsigned DefR = MI.getOperand(0).getReg(); + const TargetRegisterClass *RC = MRI->getRegClass(DefR); + if (RC == &Hexagon::PredRegsRegClass) + return false; + } + } + return true; +} + + +unsigned HexagonEarlyIfConversion::computePhiCost(MachineBasicBlock *B) const { + assert(B->pred_size() <= 2); + if (B->pred_size() < 2) + return 0; + + unsigned Cost = 0; + MachineBasicBlock::const_iterator I, E = B->getFirstNonPHI(); + for (I = B->begin(); I != E; ++I) { + const MachineOperand &RO1 = I->getOperand(1); + const MachineOperand &RO3 = I->getOperand(3); + assert(RO1.isReg() && RO3.isReg()); + // Must have a MUX if the phi uses a subregister. + if (RO1.getSubReg() != 0 || RO3.getSubReg() != 0) { + Cost++; + continue; + } + MachineInstr *Def1 = MRI->getVRegDef(RO1.getReg()); + MachineInstr *Def3 = MRI->getVRegDef(RO3.getReg()); + if (!TII->isPredicable(Def1) || !TII->isPredicable(Def3)) + Cost++; + } + return Cost; +} + + +unsigned HexagonEarlyIfConversion::countPredicateDefs( + const MachineBasicBlock *B) const { + unsigned PredDefs = 0; + for (auto &MI : *B) { + for (ConstMIOperands MO(&MI); MO.isValid(); ++MO) { + if (!MO->isReg() || !MO->isDef()) + continue; + unsigned R = MO->getReg(); + if (!TargetRegisterInfo::isVirtualRegister(R)) + continue; + if (MRI->getRegClass(R) == &Hexagon::PredRegsRegClass) + PredDefs++; + } + } + return PredDefs; +} + + +bool HexagonEarlyIfConversion::isProfitable(const FlowPattern &FP) const { + if (FP.TrueB && FP.FalseB) { + + // Do not IfCovert if the branch is one sided. + if (MBPI) { + BranchProbability Prob(9, 10); + if (MBPI->getEdgeProbability(FP.SplitB, FP.TrueB) > Prob) + return false; + if (MBPI->getEdgeProbability(FP.SplitB, FP.FalseB) > Prob) + return false; + } + + // If both sides are predicable, convert them if they join, and the + // join block has no other predecessors. + MachineBasicBlock *TSB = *FP.TrueB->succ_begin(); + MachineBasicBlock *FSB = *FP.FalseB->succ_begin(); + if (TSB != FSB) + return false; + if (TSB->pred_size() != 2) + return false; + } + + // Calculate the total size of the predicated blocks. + // Assume instruction counts without branches to be the approximation of + // the code size. If the predicated blocks are smaller than a packet size, + // approximate the spare room in the packet that could be filled with the + // predicated/speculated instructions. + unsigned TS = 0, FS = 0, Spare = 0; + if (FP.TrueB) { + TS = std::distance(FP.TrueB->begin(), FP.TrueB->getFirstTerminator()); + if (TS < HEXAGON_PACKET_SIZE) + Spare += HEXAGON_PACKET_SIZE-TS; + } + if (FP.FalseB) { + FS = std::distance(FP.FalseB->begin(), FP.FalseB->getFirstTerminator()); + if (FS < HEXAGON_PACKET_SIZE) + Spare += HEXAGON_PACKET_SIZE-TS; + } + unsigned TotalIn = TS+FS; + DEBUG(dbgs() << "Total number of instructions to be predicated/speculated: " + << TotalIn << ", spare room: " << Spare << "\n"); + if (TotalIn >= SizeLimit+Spare) + return false; + + // Count the number of PHI nodes that will need to be updated (converted + // to MUX). Those can be later converted to predicated instructions, so + // they aren't always adding extra cost. + // KLUDGE: Also, count the number of predicate register definitions in + // each block. The scheduler may increase the pressure of these and cause + // expensive spills (e.g. bitmnp01). + unsigned TotalPh = 0; + unsigned PredDefs = countPredicateDefs(FP.SplitB); + if (FP.JoinB) { + TotalPh = computePhiCost(FP.JoinB); + PredDefs += countPredicateDefs(FP.JoinB); + } else { + if (FP.TrueB && FP.TrueB->succ_size() > 0) { + MachineBasicBlock *SB = *FP.TrueB->succ_begin(); + TotalPh += computePhiCost(SB); + PredDefs += countPredicateDefs(SB); + } + if (FP.FalseB && FP.FalseB->succ_size() > 0) { + MachineBasicBlock *SB = *FP.FalseB->succ_begin(); + TotalPh += computePhiCost(SB); + PredDefs += countPredicateDefs(SB); + } + } + DEBUG(dbgs() << "Total number of extra muxes from converted phis: " + << TotalPh << "\n"); + if (TotalIn+TotalPh >= SizeLimit+Spare) + return false; + + DEBUG(dbgs() << "Total number of predicate registers: " << PredDefs << "\n"); + if (PredDefs > 4) + return false; + + return true; +} + + +bool HexagonEarlyIfConversion::visitBlock(MachineBasicBlock *B, + MachineLoop *L) { + bool Changed = false; + + // Visit all dominated blocks from the same loop first, then process B. + MachineDomTreeNode *N = MDT->getNode(B); + typedef GraphTraits<MachineDomTreeNode*> GTN; + // We will change CFG/DT during this traversal, so take precautions to + // avoid problems related to invalidated iterators. In fact, processing + // a child C of B cannot cause another child to be removed, but it can + // cause a new child to be added (which was a child of C before C itself + // was removed. This new child C, however, would have been processed + // prior to processing B, so there is no need to process it again. + // Simply keep a list of children of B, and traverse that list. + typedef SmallVector<MachineDomTreeNode*,4> DTNodeVectType; + DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N)); + for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) { + MachineBasicBlock *SB = (*I)->getBlock(); + if (!Deleted.count(SB)) + Changed |= visitBlock(SB, L); + } + // When walking down the dominator tree, we want to traverse through + // blocks from nested (other) loops, because they can dominate blocks + // that are in L. Skip the non-L blocks only after the tree traversal. + if (MLI->getLoopFor(B) != L) + return Changed; + + FlowPattern FP; + if (!matchFlowPattern(B, L, FP)) + return Changed; + + if (!isValid(FP)) { + DEBUG(dbgs() << "Conversion is not valid\n"); + return Changed; + } + if (!isProfitable(FP)) { + DEBUG(dbgs() << "Conversion is not profitable\n"); + return Changed; + } + + convert(FP); + simplifyFlowGraph(FP); + return true; +} + + +bool HexagonEarlyIfConversion::visitLoop(MachineLoop *L) { + MachineBasicBlock *HB = L ? L->getHeader() : 0; + DEBUG((L ? dbgs() << "Visiting loop H:" << PrintMB(HB) + : dbgs() << "Visiting function") << "\n"); + bool Changed = false; + if (L) { + for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) + Changed |= visitLoop(*I); + } + + MachineBasicBlock *EntryB = GraphTraits<MachineFunction*>::getEntryNode(MFN); + Changed |= visitBlock(L ? HB : EntryB, L); + return Changed; +} + + +bool HexagonEarlyIfConversion::isPredicableStore(const MachineInstr *MI) + const { + // Exclude post-increment stores. Those return a value, so we cannot + // predicate them. + unsigned Opc = MI->getOpcode(); + using namespace Hexagon; + switch (Opc) { + // Store byte: + case S2_storerb_io: case S4_storerb_rr: + case S2_storerbabs: case S4_storeirb_io: case S2_storerbgp: + // Store halfword: + case S2_storerh_io: case S4_storerh_rr: + case S2_storerhabs: case S4_storeirh_io: case S2_storerhgp: + // Store upper halfword: + case S2_storerf_io: case S4_storerf_rr: + case S2_storerfabs: case S2_storerfgp: + // Store word: + case S2_storeri_io: case S4_storeri_rr: + case S2_storeriabs: case S4_storeiri_io: case S2_storerigp: + // Store doubleword: + case S2_storerd_io: case S4_storerd_rr: + case S2_storerdabs: case S2_storerdgp: + return true; + } + return false; +} + + +bool HexagonEarlyIfConversion::isSafeToSpeculate(const MachineInstr *MI) + const { + if (MI->mayLoad() || MI->mayStore()) + return false; + if (MI->isCall() || MI->isBarrier() || MI->isBranch()) + return false; + if (MI->hasUnmodeledSideEffects()) + return false; + + return true; +} + + +unsigned HexagonEarlyIfConversion::getCondStoreOpcode(unsigned Opc, + bool IfTrue) const { + // Exclude post-increment stores. + using namespace Hexagon; + switch (Opc) { + case S2_storerb_io: + return IfTrue ? S2_pstorerbt_io : S2_pstorerbf_io; + case S4_storerb_rr: + return IfTrue ? S4_pstorerbt_rr : S4_pstorerbf_rr; + case S2_storerbabs: + case S2_storerbgp: + return IfTrue ? S4_pstorerbt_abs : S4_pstorerbf_abs; + case S4_storeirb_io: + return IfTrue ? S4_storeirbt_io : S4_storeirbf_io; + case S2_storerh_io: + return IfTrue ? S2_pstorerht_io : S2_pstorerhf_io; + case S4_storerh_rr: + return IfTrue ? S4_pstorerht_rr : S4_pstorerhf_rr; + case S2_storerhabs: + case S2_storerhgp: + return IfTrue ? S4_pstorerht_abs : S4_pstorerhf_abs; + case S2_storerf_io: + return IfTrue ? S2_pstorerft_io : S2_pstorerff_io; + case S4_storerf_rr: + return IfTrue ? S4_pstorerft_rr : S4_pstorerff_rr; + case S2_storerfabs: + case S2_storerfgp: + return IfTrue ? S4_pstorerft_abs : S4_pstorerff_abs; + case S4_storeirh_io: + return IfTrue ? S4_storeirht_io : S4_storeirhf_io; + case S2_storeri_io: + return IfTrue ? S2_pstorerit_io : S2_pstorerif_io; + case S4_storeri_rr: + return IfTrue ? S4_pstorerit_rr : S4_pstorerif_rr; + case S2_storeriabs: + case S2_storerigp: + return IfTrue ? S4_pstorerit_abs : S4_pstorerif_abs; + case S4_storeiri_io: + return IfTrue ? S4_storeirit_io : S4_storeirif_io; + case S2_storerd_io: + return IfTrue ? S2_pstorerdt_io : S2_pstorerdf_io; + case S4_storerd_rr: + return IfTrue ? S4_pstorerdt_rr : S4_pstorerdf_rr; + case S2_storerdabs: + case S2_storerdgp: + return IfTrue ? S4_pstorerdt_abs : S4_pstorerdf_abs; + } + llvm_unreachable("Unexpected opcode"); + return 0; +} + + +void HexagonEarlyIfConversion::predicateInstr(MachineBasicBlock *ToB, + MachineBasicBlock::iterator At, MachineInstr *MI, + unsigned PredR, bool IfTrue) { + DebugLoc DL; + if (At != ToB->end()) + DL = At->getDebugLoc(); + else if (!ToB->empty()) + DL = ToB->back().getDebugLoc(); + + unsigned Opc = MI->getOpcode(); + + if (isPredicableStore(MI)) { + unsigned COpc = getCondStoreOpcode(Opc, IfTrue); + assert(COpc); + MachineInstrBuilder MIB = BuildMI(*ToB, At, DL, TII->get(COpc)) + .addReg(PredR); + for (MIOperands MO(MI); MO.isValid(); ++MO) + MIB.addOperand(*MO); + + // Set memory references. + MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin(); + MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end(); + MIB.setMemRefs(MMOBegin, MMOEnd); + + MI->eraseFromParent(); + return; + } + + if (Opc == Hexagon::J2_jump) { + MachineBasicBlock *TB = MI->getOperand(0).getMBB(); + const MCInstrDesc &D = TII->get(IfTrue ? Hexagon::J2_jumpt + : Hexagon::J2_jumpf); + BuildMI(*ToB, At, DL, D) + .addReg(PredR) + .addMBB(TB); + MI->eraseFromParent(); + return; + } + + // Print the offending instruction unconditionally as we are about to + // abort. + dbgs() << *MI; + llvm_unreachable("Unexpected instruction"); +} + + +// Predicate/speculate non-branch instructions from FromB into block ToB. +// Leave the branches alone, they will be handled later. Btw, at this point +// FromB should have at most one branch, and it should be unconditional. +void HexagonEarlyIfConversion::predicateBlockNB(MachineBasicBlock *ToB, + MachineBasicBlock::iterator At, MachineBasicBlock *FromB, + unsigned PredR, bool IfTrue) { + DEBUG(dbgs() << "Predicating block " << PrintMB(FromB) << "\n"); + MachineBasicBlock::iterator End = FromB->getFirstTerminator(); + MachineBasicBlock::iterator I, NextI; + + for (I = FromB->begin(); I != End; I = NextI) { + assert(!I->isPHI()); + NextI = std::next(I); + if (isSafeToSpeculate(&*I)) + ToB->splice(At, FromB, I); + else + predicateInstr(ToB, At, &*I, PredR, IfTrue); + } +} + + +void HexagonEarlyIfConversion::updatePhiNodes(MachineBasicBlock *WhereB, + const FlowPattern &FP) { + // Visit all PHI nodes in the WhereB block and generate MUX instructions + // in the split block. Update the PHI nodes with the values of the MUX. + auto NonPHI = WhereB->getFirstNonPHI(); + for (auto I = WhereB->begin(); I != NonPHI; ++I) { + MachineInstr *PN = &*I; + // Registers and subregisters corresponding to TrueB, FalseB and SplitB. + unsigned TR = 0, TSR = 0, FR = 0, FSR = 0, SR = 0, SSR = 0; + for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { + const MachineOperand &RO = PN->getOperand(i), &BO = PN->getOperand(i+1); + if (BO.getMBB() == FP.SplitB) + SR = RO.getReg(), SSR = RO.getSubReg(); + else if (BO.getMBB() == FP.TrueB) + TR = RO.getReg(), TSR = RO.getSubReg(); + else if (BO.getMBB() == FP.FalseB) + FR = RO.getReg(), FSR = RO.getSubReg(); + else + continue; + PN->RemoveOperand(i+1); + PN->RemoveOperand(i); + } + if (TR == 0) + TR = SR, TSR = SSR; + else if (FR == 0) + FR = SR, FSR = SSR; + assert(TR && FR); + + using namespace Hexagon; + unsigned DR = PN->getOperand(0).getReg(); + const TargetRegisterClass *RC = MRI->getRegClass(DR); + const MCInstrDesc &D = RC == &IntRegsRegClass ? TII->get(C2_mux) + : TII->get(MUX64_rr); + + MachineBasicBlock::iterator MuxAt = FP.SplitB->getFirstTerminator(); + DebugLoc DL; + if (MuxAt != FP.SplitB->end()) + DL = MuxAt->getDebugLoc(); + unsigned MuxR = MRI->createVirtualRegister(RC); + BuildMI(*FP.SplitB, MuxAt, DL, D, MuxR) + .addReg(FP.PredR) + .addReg(TR, 0, TSR) + .addReg(FR, 0, FSR); + + PN->addOperand(MachineOperand::CreateReg(MuxR, false)); + PN->addOperand(MachineOperand::CreateMBB(FP.SplitB)); + } +} + + +void HexagonEarlyIfConversion::convert(const FlowPattern &FP) { + MachineBasicBlock *TSB = 0, *FSB = 0; + MachineBasicBlock::iterator OldTI = FP.SplitB->getFirstTerminator(); + assert(OldTI != FP.SplitB->end()); + DebugLoc DL = OldTI->getDebugLoc(); + + if (FP.TrueB) { + TSB = *FP.TrueB->succ_begin(); + predicateBlockNB(FP.SplitB, OldTI, FP.TrueB, FP.PredR, true); + } + if (FP.FalseB) { + FSB = *FP.FalseB->succ_begin(); + MachineBasicBlock::iterator At = FP.SplitB->getFirstTerminator(); + predicateBlockNB(FP.SplitB, At, FP.FalseB, FP.PredR, false); + } + + // Regenerate new terminators in the split block and update the successors. + // First, remember any information that may be needed later and remove the + // existing terminators/successors from the split block. + MachineBasicBlock *SSB = 0; + FP.SplitB->erase(OldTI, FP.SplitB->end()); + while (FP.SplitB->succ_size() > 0) { + MachineBasicBlock *T = *FP.SplitB->succ_begin(); + // It's possible that the split block had a successor that is not a pre- + // dicated block. This could only happen if there was only one block to + // be predicated. Example: + // split_b: + // if (p) jump true_b + // jump unrelated2_b + // unrelated1_b: + // ... + // unrelated2_b: ; can have other predecessors, so it's not "false_b" + // jump other_b + // true_b: ; only reachable from split_b, can be predicated + // ... + // + // Find this successor (SSB) if it exists. + if (T != FP.TrueB && T != FP.FalseB) { + assert(!SSB); + SSB = T; + } + FP.SplitB->removeSuccessor(FP.SplitB->succ_begin()); + } + + // Insert new branches and update the successors of the split block. This + // may create unconditional branches to the layout successor, etc., but + // that will be cleaned up later. For now, make sure that correct code is + // generated. + if (FP.JoinB) { + assert(!SSB || SSB == FP.JoinB); + BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jump)) + .addMBB(FP.JoinB); + FP.SplitB->addSuccessor(FP.JoinB); + } else { + bool HasBranch = false; + if (TSB) { + BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jumpt)) + .addReg(FP.PredR) + .addMBB(TSB); + FP.SplitB->addSuccessor(TSB); + HasBranch = true; + } + if (FSB) { + const MCInstrDesc &D = HasBranch ? TII->get(Hexagon::J2_jump) + : TII->get(Hexagon::J2_jumpf); + MachineInstrBuilder MIB = BuildMI(*FP.SplitB, FP.SplitB->end(), DL, D); + if (!HasBranch) + MIB.addReg(FP.PredR); + MIB.addMBB(FSB); + FP.SplitB->addSuccessor(FSB); + } + if (SSB) { + // This cannot happen if both TSB and FSB are set. [TF]SB are the + // successor blocks of the TrueB and FalseB (or null of the TrueB + // or FalseB block is null). SSB is the potential successor block + // of the SplitB that is neither TrueB nor FalseB. + BuildMI(*FP.SplitB, FP.SplitB->end(), DL, TII->get(Hexagon::J2_jump)) + .addMBB(SSB); + FP.SplitB->addSuccessor(SSB); + } + } + + // What is left to do is to update the PHI nodes that could have entries + // referring to predicated blocks. + if (FP.JoinB) { + updatePhiNodes(FP.JoinB, FP); + } else { + if (TSB) + updatePhiNodes(TSB, FP); + if (FSB) + updatePhiNodes(FSB, FP); + // Nothing to update in SSB, since SSB's predecessors haven't changed. + } +} + + +void HexagonEarlyIfConversion::removeBlock(MachineBasicBlock *B) { + DEBUG(dbgs() << "Removing block " << PrintMB(B) << "\n"); + + // Transfer the immediate dominator information from B to its descendants. + MachineDomTreeNode *N = MDT->getNode(B); + MachineDomTreeNode *IDN = N->getIDom(); + if (IDN) { + MachineBasicBlock *IDB = IDN->getBlock(); + typedef GraphTraits<MachineDomTreeNode*> GTN; + typedef SmallVector<MachineDomTreeNode*,4> DTNodeVectType; + DTNodeVectType Cn(GTN::child_begin(N), GTN::child_end(N)); + for (DTNodeVectType::iterator I = Cn.begin(), E = Cn.end(); I != E; ++I) { + MachineBasicBlock *SB = (*I)->getBlock(); + MDT->changeImmediateDominator(SB, IDB); + } + } + + while (B->succ_size() > 0) + B->removeSuccessor(B->succ_begin()); + + for (auto I = B->pred_begin(), E = B->pred_end(); I != E; ++I) + (*I)->removeSuccessor(B, true); + + Deleted.insert(B); + MDT->eraseNode(B); + MFN->erase(B->getIterator()); +} + + +void HexagonEarlyIfConversion::eliminatePhis(MachineBasicBlock *B) { + DEBUG(dbgs() << "Removing phi nodes from block " << PrintMB(B) << "\n"); + MachineBasicBlock::iterator I, NextI, NonPHI = B->getFirstNonPHI(); + for (I = B->begin(); I != NonPHI; I = NextI) { + NextI = std::next(I); + MachineInstr *PN = &*I; + assert(PN->getNumOperands() == 3 && "Invalid phi node"); + MachineOperand &UO = PN->getOperand(1); + unsigned UseR = UO.getReg(), UseSR = UO.getSubReg(); + unsigned DefR = PN->getOperand(0).getReg(); + unsigned NewR = UseR; + if (UseSR) { + // MRI.replaceVregUsesWith does not allow to update the subregister, + // so instead of doing the use-iteration here, create a copy into a + // "non-subregistered" register. + DebugLoc DL = PN->getDebugLoc(); + const TargetRegisterClass *RC = MRI->getRegClass(DefR); + NewR = MRI->createVirtualRegister(RC); + NonPHI = BuildMI(*B, NonPHI, DL, TII->get(TargetOpcode::COPY), NewR) + .addReg(UseR, 0, UseSR); + } + MRI->replaceRegWith(DefR, NewR); + B->erase(I); + } +} + + +void HexagonEarlyIfConversion::replacePhiEdges(MachineBasicBlock *OldB, + MachineBasicBlock *NewB) { + for (auto I = OldB->succ_begin(), E = OldB->succ_end(); I != E; ++I) { + MachineBasicBlock *SB = *I; + MachineBasicBlock::iterator P, N = SB->getFirstNonPHI(); + for (P = SB->begin(); P != N; ++P) { + MachineInstr *PN = &*P; + for (MIOperands MO(PN); MO.isValid(); ++MO) + if (MO->isMBB() && MO->getMBB() == OldB) + MO->setMBB(NewB); + } + } +} + + +void HexagonEarlyIfConversion::mergeBlocks(MachineBasicBlock *PredB, + MachineBasicBlock *SuccB) { + DEBUG(dbgs() << "Merging blocks " << PrintMB(PredB) << " and " + << PrintMB(SuccB) << "\n"); + bool TermOk = hasUncondBranch(SuccB); + eliminatePhis(SuccB); + TII->RemoveBranch(*PredB); + PredB->removeSuccessor(SuccB); + PredB->splice(PredB->end(), SuccB, SuccB->begin(), SuccB->end()); + MachineBasicBlock::succ_iterator I, E = SuccB->succ_end(); + for (I = SuccB->succ_begin(); I != E; ++I) + PredB->addSuccessor(*I); + PredB->normalizeSuccProbs(); + replacePhiEdges(SuccB, PredB); + removeBlock(SuccB); + if (!TermOk) + PredB->updateTerminator(); +} + + +void HexagonEarlyIfConversion::simplifyFlowGraph(const FlowPattern &FP) { + if (FP.TrueB) + removeBlock(FP.TrueB); + if (FP.FalseB) + removeBlock(FP.FalseB); + + FP.SplitB->updateTerminator(); + if (FP.SplitB->succ_size() != 1) + return; + + MachineBasicBlock *SB = *FP.SplitB->succ_begin(); + if (SB->pred_size() != 1) + return; + + // By now, the split block has only one successor (SB), and SB has only + // one predecessor. We can try to merge them. We will need to update ter- + // minators in FP.Split+SB, and that requires working AnalyzeBranch, which + // fails on Hexagon for blocks that have EH_LABELs. However, if SB ends + // with an unconditional branch, we won't need to touch the terminators. + if (!hasEHLabel(SB) || hasUncondBranch(SB)) + mergeBlocks(FP.SplitB, SB); +} + + +bool HexagonEarlyIfConversion::runOnMachineFunction(MachineFunction &MF) { + auto &ST = MF.getSubtarget(); + TII = ST.getInstrInfo(); + TRI = ST.getRegisterInfo(); + MFN = &MF; + MRI = &MF.getRegInfo(); + MDT = &getAnalysis<MachineDominatorTree>(); + MLI = &getAnalysis<MachineLoopInfo>(); + MBPI = EnableHexagonBP ? &getAnalysis<MachineBranchProbabilityInfo>() : + nullptr; + + Deleted.clear(); + bool Changed = false; + + for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); I != E; ++I) + Changed |= visitLoop(*I); + Changed |= visitLoop(0); + + return Changed; +} + +//===----------------------------------------------------------------------===// +// Public Constructor Functions +//===----------------------------------------------------------------------===// +FunctionPass *llvm::createHexagonEarlyIfConversion() { + return new HexagonEarlyIfConversion(); +} + |