diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp | 1174 |
1 files changed, 1174 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp new file mode 100644 index 0000000..021e58a --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/HexagonBitTracker.cpp @@ -0,0 +1,1174 @@ +//===--- HexagonBitTracker.cpp --------------------------------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/IR/Module.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" + +#include "Hexagon.h" +#include "HexagonInstrInfo.h" +#include "HexagonRegisterInfo.h" +#include "HexagonTargetMachine.h" +#include "HexagonBitTracker.h" + +using namespace llvm; + +typedef BitTracker BT; + +HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri, + MachineRegisterInfo &mri, + const HexagonInstrInfo &tii, + MachineFunction &mf) + : MachineEvaluator(tri, mri), MF(mf), MFI(*mf.getFrameInfo()), TII(tii) { + // Populate the VRX map (VR to extension-type). + // Go over all the formal parameters of the function. If a given parameter + // P is sign- or zero-extended, locate the virtual register holding that + // parameter and create an entry in the VRX map indicating the type of ex- + // tension (and the source type). + // This is a bit complicated to do accurately, since the memory layout in- + // formation is necessary to precisely determine whether an aggregate para- + // meter will be passed in a register or in memory. What is given in MRI + // is the association between the physical register that is live-in (i.e. + // holds an argument), and the virtual register that this value will be + // copied into. This, by itself, is not sufficient to map back the virtual + // register to a formal parameter from Function (since consecutive live-ins + // from MRI may not correspond to consecutive formal parameters from Func- + // tion). To avoid the complications with in-memory arguments, only consi- + // der the initial sequence of formal parameters that are known to be + // passed via registers. + unsigned AttrIdx = 0; + unsigned InVirtReg, InPhysReg = 0; + const Function &F = *MF.getFunction(); + typedef Function::const_arg_iterator arg_iterator; + for (arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { + AttrIdx++; + const Argument &Arg = *I; + Type *ATy = Arg.getType(); + unsigned Width = 0; + if (ATy->isIntegerTy()) + Width = ATy->getIntegerBitWidth(); + else if (ATy->isPointerTy()) + Width = 32; + // If pointer size is not set through target data, it will default to + // Module::AnyPointerSize. + if (Width == 0 || Width > 64) + break; + InPhysReg = getNextPhysReg(InPhysReg, Width); + if (!InPhysReg) + break; + InVirtReg = getVirtRegFor(InPhysReg); + if (!InVirtReg) + continue; + AttributeSet Attrs = F.getAttributes(); + if (Attrs.hasAttribute(AttrIdx, Attribute::SExt)) + VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width))); + else if (Attrs.hasAttribute(AttrIdx, Attribute::ZExt)) + VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width))); + } +} + + +BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const { + if (Sub == 0) + return MachineEvaluator::mask(Reg, 0); + using namespace Hexagon; + const TargetRegisterClass *RC = MRI.getRegClass(Reg); + unsigned ID = RC->getID(); + uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub)); + switch (ID) { + case DoubleRegsRegClassID: + return (Sub == subreg_loreg) ? BT::BitMask(0, RW-1) + : BT::BitMask(RW, 2*RW-1); + default: + break; + } +#ifndef NDEBUG + dbgs() << PrintReg(Reg, &TRI, Sub) << '\n'; +#endif + llvm_unreachable("Unexpected register/subregister"); +} + + +namespace { + struct RegisterRefs : public std::vector<BT::RegisterRef> { + typedef std::vector<BT::RegisterRef> Base; + RegisterRefs(const MachineInstr *MI); + const BT::RegisterRef &operator[](unsigned n) const { + // The main purpose of this operator is to assert with bad argument. + assert(n < size()); + return Base::operator[](n); + } + }; + + RegisterRefs::RegisterRefs(const MachineInstr *MI) + : Base(MI->getNumOperands()) { + for (unsigned i = 0, n = size(); i < n; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (MO.isReg()) + at(i) = BT::RegisterRef(MO); + // For indices that don't correspond to registers, the entry will + // remain constructed via the default constructor. + } + } +} + + +bool HexagonEvaluator::evaluate(const MachineInstr *MI, + const CellMapType &Inputs, CellMapType &Outputs) const { + unsigned NumDefs = 0; + + // Sanity verification: there should not be any defs with subregisters. + for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg() || !MO.isDef()) + continue; + NumDefs++; + assert(MO.getSubReg() == 0); + } + + if (NumDefs == 0) + return false; + + if (MI->mayLoad()) + return evaluateLoad(MI, Inputs, Outputs); + + // Check COPY instructions that copy formal parameters into virtual + // registers. Such parameters can be sign- or zero-extended at the + // call site, and we should take advantage of this knowledge. The MRI + // keeps a list of pairs of live-in physical and virtual registers, + // which provides information about which virtual registers will hold + // the argument values. The function will still contain instructions + // defining those virtual registers, and in practice those are COPY + // instructions from a physical to a virtual register. In such cases, + // applying the argument extension to the virtual register can be seen + // as simply mirroring the extension that had already been applied to + // the physical register at the call site. If the defining instruction + // was not a COPY, it would not be clear how to mirror that extension + // on the callee's side. For that reason, only check COPY instructions + // for potential extensions. + if (MI->isCopy()) { + if (evaluateFormalCopy(MI, Inputs, Outputs)) + return true; + } + + // Beyond this point, if any operand is a global, skip that instruction. + // The reason is that certain instructions that can take an immediate + // operand can also have a global symbol in that operand. To avoid + // checking what kind of operand a given instruction has individually + // for each instruction, do it here. Global symbols as operands gene- + // rally do not provide any useful information. + for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) { + const MachineOperand &MO = MI->getOperand(i); + if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() || + MO.isCPI()) + return false; + } + + RegisterRefs Reg(MI); + unsigned Opc = MI->getOpcode(); + using namespace Hexagon; + #define op(i) MI->getOperand(i) + #define rc(i) RegisterCell::ref(getCell(Reg[i],Inputs)) + #define im(i) MI->getOperand(i).getImm() + + // If the instruction has no register operands, skip it. + if (Reg.size() == 0) + return false; + + // Record result for register in operand 0. + auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs) + -> bool { + putCell(Reg[0], Val, Outputs); + return true; + }; + // Get the cell corresponding to the N-th operand. + auto cop = [this,Reg,MI,Inputs] (unsigned N, uint16_t W) + -> BT::RegisterCell { + const MachineOperand &Op = MI->getOperand(N); + if (Op.isImm()) + return eIMM(Op.getImm(), W); + if (!Op.isReg()) + return RegisterCell::self(0, W); + assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch"); + return rc(N); + }; + // Extract RW low bits of the cell. + auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW) + -> BT::RegisterCell { + assert(RW <= RC.width()); + return eXTR(RC, 0, RW); + }; + // Extract RW high bits of the cell. + auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW) + -> BT::RegisterCell { + uint16_t W = RC.width(); + assert(RW <= W); + return eXTR(RC, W-RW, W); + }; + // Extract N-th halfword (counting from the least significant position). + auto half = [this] (const BT::RegisterCell &RC, unsigned N) + -> BT::RegisterCell { + assert(N*16+16 <= RC.width()); + return eXTR(RC, N*16, N*16+16); + }; + // Shuffle bits (pick even/odd from cells and merge into result). + auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt, + uint16_t BW, bool Odd) -> BT::RegisterCell { + uint16_t I = Odd, Ws = Rs.width(); + assert(Ws == Rt.width()); + RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW)); + I += 2; + while (I*BW < Ws) { + RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW)); + I += 2; + } + return RC; + }; + + // The bitwidth of the 0th operand. In most (if not all) of the + // instructions below, the 0th operand is the defined register. + // Pre-compute the bitwidth here, because it is needed in many cases + // cases below. + uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0; + + switch (Opc) { + // Transfer immediate: + + case A2_tfrsi: + case A2_tfrpi: + case CONST32: + case CONST32_Float_Real: + case CONST32_Int_Real: + case CONST64_Float_Real: + case CONST64_Int_Real: + return rr0(eIMM(im(1), W0), Outputs); + case TFR_PdFalse: + return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs); + case TFR_PdTrue: + return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs); + case TFR_FI: { + int FI = op(1).getIndex(); + int Off = op(2).getImm(); + unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off); + unsigned L = Log2_32(A); + RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0); + RC.fill(0, L, BT::BitValue::Zero); + return rr0(RC, Outputs); + } + + // Transfer register: + + case A2_tfr: + case A2_tfrp: + case C2_pxfer_map: + return rr0(rc(1), Outputs); + case C2_tfrpr: { + uint16_t RW = W0; + uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]); + assert(PW <= RW); + RegisterCell PC = eXTR(rc(1), 0, PW); + RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1)); + RC.fill(PW, RW, BT::BitValue::Zero); + return rr0(RC, Outputs); + } + case C2_tfrrp: { + RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0); + W0 = 8; // XXX Pred size + return rr0(eINS(RC, eXTR(rc(1), 0, W0), 0), Outputs); + } + + // Arithmetic: + + case A2_abs: + case A2_absp: + // TODO + break; + + case A2_addsp: { + uint16_t W1 = getRegBitWidth(Reg[1]); + assert(W0 == 64 && W1 == 32); + RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1)); + RegisterCell RC = eADD(eSXT(CW, W1), rc(2)); + return rr0(RC, Outputs); + } + case A2_add: + case A2_addp: + return rr0(eADD(rc(1), rc(2)), Outputs); + case A2_addi: + return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs); + case S4_addi_asl_ri: { + RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3))); + return rr0(RC, Outputs); + } + case S4_addi_lsr_ri: { + RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3))); + return rr0(RC, Outputs); + } + case S4_addaddi: { + RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0))); + return rr0(RC, Outputs); + } + case M4_mpyri_addi: { + RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); + RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0)); + return rr0(RC, Outputs); + } + case M4_mpyrr_addi: { + RegisterCell M = eMLS(rc(2), rc(3)); + RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0)); + return rr0(RC, Outputs); + } + case M4_mpyri_addr_u2: { + RegisterCell M = eMLS(eIMM(im(2), W0), rc(3)); + RegisterCell RC = eADD(rc(1), lo(M, W0)); + return rr0(RC, Outputs); + } + case M4_mpyri_addr: { + RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); + RegisterCell RC = eADD(rc(1), lo(M, W0)); + return rr0(RC, Outputs); + } + case M4_mpyrr_addr: { + RegisterCell M = eMLS(rc(2), rc(3)); + RegisterCell RC = eADD(rc(1), lo(M, W0)); + return rr0(RC, Outputs); + } + case S4_subaddi: { + RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3))); + return rr0(RC, Outputs); + } + case M2_accii: { + RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0))); + return rr0(RC, Outputs); + } + case M2_acci: { + RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3))); + return rr0(RC, Outputs); + } + case M2_subacc: { + RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3))); + return rr0(RC, Outputs); + } + case S2_addasl_rrri: { + RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3))); + return rr0(RC, Outputs); + } + case C4_addipc: { + RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0); + RPC.fill(0, 2, BT::BitValue::Zero); + return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs); + } + case A2_sub: + case A2_subp: + return rr0(eSUB(rc(1), rc(2)), Outputs); + case A2_subri: + return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs); + case S4_subi_asl_ri: { + RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3))); + return rr0(RC, Outputs); + } + case S4_subi_lsr_ri: { + RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3))); + return rr0(RC, Outputs); + } + case M2_naccii: { + RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0))); + return rr0(RC, Outputs); + } + case M2_nacci: { + RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3))); + return rr0(RC, Outputs); + } + // 32-bit negation is done by "Rd = A2_subri 0, Rs" + case A2_negp: + return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs); + + case M2_mpy_up: { + RegisterCell M = eMLS(rc(1), rc(2)); + return rr0(hi(M, W0), Outputs); + } + case M2_dpmpyss_s0: + return rr0(eMLS(rc(1), rc(2)), Outputs); + case M2_dpmpyss_acc_s0: + return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs); + case M2_dpmpyss_nac_s0: + return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs); + case M2_mpyi: { + RegisterCell M = eMLS(rc(1), rc(2)); + return rr0(lo(M, W0), Outputs); + } + case M2_macsip: { + RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); + RegisterCell RC = eADD(rc(1), lo(M, W0)); + return rr0(RC, Outputs); + } + case M2_macsin: { + RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); + RegisterCell RC = eSUB(rc(1), lo(M, W0)); + return rr0(RC, Outputs); + } + case M2_maci: { + RegisterCell M = eMLS(rc(2), rc(3)); + RegisterCell RC = eADD(rc(1), lo(M, W0)); + return rr0(RC, Outputs); + } + case M2_mpysmi: { + RegisterCell M = eMLS(rc(1), eIMM(im(2), W0)); + return rr0(lo(M, 32), Outputs); + } + case M2_mpysin: { + RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0)); + return rr0(lo(M, 32), Outputs); + } + case M2_mpysip: { + RegisterCell M = eMLS(rc(1), eIMM(im(2), W0)); + return rr0(lo(M, 32), Outputs); + } + case M2_mpyu_up: { + RegisterCell M = eMLU(rc(1), rc(2)); + return rr0(hi(M, W0), Outputs); + } + case M2_dpmpyuu_s0: + return rr0(eMLU(rc(1), rc(2)), Outputs); + case M2_dpmpyuu_acc_s0: + return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs); + case M2_dpmpyuu_nac_s0: + return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs); + //case M2_mpysu_up: + + // Logical/bitwise: + + case A2_andir: + return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs); + case A2_and: + case A2_andp: + return rr0(eAND(rc(1), rc(2)), Outputs); + case A4_andn: + case A4_andnp: + return rr0(eAND(rc(1), eNOT(rc(2))), Outputs); + case S4_andi_asl_ri: { + RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3))); + return rr0(RC, Outputs); + } + case S4_andi_lsr_ri: { + RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3))); + return rr0(RC, Outputs); + } + case M4_and_and: + return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs); + case M4_and_andn: + return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); + case M4_and_or: + return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs); + case M4_and_xor: + return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs); + case A2_orir: + return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs); + case A2_or: + case A2_orp: + return rr0(eORL(rc(1), rc(2)), Outputs); + case A4_orn: + case A4_ornp: + return rr0(eORL(rc(1), eNOT(rc(2))), Outputs); + case S4_ori_asl_ri: { + RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3))); + return rr0(RC, Outputs); + } + case S4_ori_lsr_ri: { + RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3))); + return rr0(RC, Outputs); + } + case M4_or_and: + return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs); + case M4_or_andn: + return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); + case S4_or_andi: + case S4_or_andix: { + RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0))); + return rr0(RC, Outputs); + } + case S4_or_ori: { + RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0))); + return rr0(RC, Outputs); + } + case M4_or_or: + return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs); + case M4_or_xor: + return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs); + case A2_xor: + case A2_xorp: + return rr0(eXOR(rc(1), rc(2)), Outputs); + case M4_xor_and: + return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs); + case M4_xor_andn: + return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); + case M4_xor_or: + return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs); + case M4_xor_xacc: + return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs); + case A2_not: + case A2_notp: + return rr0(eNOT(rc(1)), Outputs); + + case S2_asl_i_r: + case S2_asl_i_p: + return rr0(eASL(rc(1), im(2)), Outputs); + case A2_aslh: + return rr0(eASL(rc(1), 16), Outputs); + case S2_asl_i_r_acc: + case S2_asl_i_p_acc: + return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs); + case S2_asl_i_r_nac: + case S2_asl_i_p_nac: + return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs); + case S2_asl_i_r_and: + case S2_asl_i_p_and: + return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs); + case S2_asl_i_r_or: + case S2_asl_i_p_or: + return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs); + case S2_asl_i_r_xacc: + case S2_asl_i_p_xacc: + return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs); + case S2_asl_i_vh: + case S2_asl_i_vw: + // TODO + break; + + case S2_asr_i_r: + case S2_asr_i_p: + return rr0(eASR(rc(1), im(2)), Outputs); + case A2_asrh: + return rr0(eASR(rc(1), 16), Outputs); + case S2_asr_i_r_acc: + case S2_asr_i_p_acc: + return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs); + case S2_asr_i_r_nac: + case S2_asr_i_p_nac: + return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs); + case S2_asr_i_r_and: + case S2_asr_i_p_and: + return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs); + case S2_asr_i_r_or: + case S2_asr_i_p_or: + return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs); + case S2_asr_i_r_rnd: { + // The input is first sign-extended to 64 bits, then the output + // is truncated back to 32 bits. + assert(W0 == 32); + RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0); + RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1); + return rr0(eXTR(RC, 0, W0), Outputs); + } + case S2_asr_i_r_rnd_goodsyntax: { + int64_t S = im(2); + if (S == 0) + return rr0(rc(1), Outputs); + // Result: S2_asr_i_r_rnd Rs, u5-1 + RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0); + RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1); + return rr0(eXTR(RC, 0, W0), Outputs); + } + case S2_asr_r_vh: + case S2_asr_i_vw: + case S2_asr_i_svw_trun: + // TODO + break; + + case S2_lsr_i_r: + case S2_lsr_i_p: + return rr0(eLSR(rc(1), im(2)), Outputs); + case S2_lsr_i_r_acc: + case S2_lsr_i_p_acc: + return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs); + case S2_lsr_i_r_nac: + case S2_lsr_i_p_nac: + return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs); + case S2_lsr_i_r_and: + case S2_lsr_i_p_and: + return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs); + case S2_lsr_i_r_or: + case S2_lsr_i_p_or: + return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs); + case S2_lsr_i_r_xacc: + case S2_lsr_i_p_xacc: + return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs); + + case S2_clrbit_i: { + RegisterCell RC = rc(1); + RC[im(2)] = BT::BitValue::Zero; + return rr0(RC, Outputs); + } + case S2_setbit_i: { + RegisterCell RC = rc(1); + RC[im(2)] = BT::BitValue::One; + return rr0(RC, Outputs); + } + case S2_togglebit_i: { + RegisterCell RC = rc(1); + uint16_t BX = im(2); + RC[BX] = RC[BX].is(0) ? BT::BitValue::One + : RC[BX].is(1) ? BT::BitValue::Zero + : BT::BitValue::self(); + return rr0(RC, Outputs); + } + + case A4_bitspliti: { + uint16_t W1 = getRegBitWidth(Reg[1]); + uint16_t BX = im(2); + // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx] + const BT::BitValue Zero = BT::BitValue::Zero; + RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero) + .fill(W1+(W1-BX), W0, Zero); + RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1); + RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1); + return rr0(RC, Outputs); + } + case S4_extract: + case S4_extractp: + case S2_extractu: + case S2_extractup: { + uint16_t Wd = im(2), Of = im(3); + assert(Wd <= W0); + if (Wd == 0) + return rr0(eIMM(0, W0), Outputs); + // If the width extends beyond the register size, pad the register + // with 0 bits. + RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1); + RegisterCell Ext = eXTR(Pad, Of, Wd+Of); + // Ext is short, need to extend it with 0s or sign bit. + RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1)); + if (Opc == S2_extractu || Opc == S2_extractup) + return rr0(eZXT(RC, Wd), Outputs); + return rr0(eSXT(RC, Wd), Outputs); + } + case S2_insert: + case S2_insertp: { + uint16_t Wd = im(3), Of = im(4); + assert(Wd < W0 && Of < W0); + // If Wd+Of exceeds W0, the inserted bits are truncated. + if (Wd+Of > W0) + Wd = W0-Of; + if (Wd == 0) + return rr0(rc(1), Outputs); + return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs); + } + + // Bit permutations: + + case A2_combineii: + case A4_combineii: + case A4_combineir: + case A4_combineri: + case A2_combinew: + assert(W0 % 2 == 0); + return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs); + case A2_combine_ll: + case A2_combine_lh: + case A2_combine_hl: + case A2_combine_hh: { + assert(W0 == 32); + assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32); + // Low half in the output is 0 for _ll and _hl, 1 otherwise: + unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl); + // High half in the output is 0 for _ll and _lh, 1 otherwise: + unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh); + RegisterCell R1 = rc(1); + RegisterCell R2 = rc(2); + RegisterCell RC = half(R2, LoH).cat(half(R1, HiH)); + return rr0(RC, Outputs); + } + case S2_packhl: { + assert(W0 == 64); + assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32); + RegisterCell R1 = rc(1); + RegisterCell R2 = rc(2); + RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1)) + .cat(half(R1, 1)); + return rr0(RC, Outputs); + } + case S2_shuffeb: { + RegisterCell RC = shuffle(rc(1), rc(2), 8, false); + return rr0(RC, Outputs); + } + case S2_shuffeh: { + RegisterCell RC = shuffle(rc(1), rc(2), 16, false); + return rr0(RC, Outputs); + } + case S2_shuffob: { + RegisterCell RC = shuffle(rc(1), rc(2), 8, true); + return rr0(RC, Outputs); + } + case S2_shuffoh: { + RegisterCell RC = shuffle(rc(1), rc(2), 16, true); + return rr0(RC, Outputs); + } + case C2_mask: { + uint16_t WR = W0; + uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]); + assert(WR == 64 && WP == 8); + RegisterCell R1 = rc(1); + RegisterCell RC(WR); + for (uint16_t i = 0; i < WP; ++i) { + const BT::BitValue &V = R1[i]; + BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self(); + RC.fill(i*8, i*8+8, F); + } + return rr0(RC, Outputs); + } + + // Mux: + + case C2_muxii: + case C2_muxir: + case C2_muxri: + case C2_mux: { + BT::BitValue PC0 = rc(1)[0]; + RegisterCell R2 = cop(2, W0); + RegisterCell R3 = cop(3, W0); + if (PC0.is(0) || PC0.is(1)) + return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs); + R2.meet(R3, Reg[0].Reg); + return rr0(R2, Outputs); + } + case C2_vmux: + // TODO + break; + + // Sign- and zero-extension: + + case A2_sxtb: + return rr0(eSXT(rc(1), 8), Outputs); + case A2_sxth: + return rr0(eSXT(rc(1), 16), Outputs); + case A2_sxtw: { + uint16_t W1 = getRegBitWidth(Reg[1]); + assert(W0 == 64 && W1 == 32); + RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1); + return rr0(RC, Outputs); + } + case A2_zxtb: + return rr0(eZXT(rc(1), 8), Outputs); + case A2_zxth: + return rr0(eZXT(rc(1), 16), Outputs); + + // Bit count: + + case S2_cl0: + case S2_cl0p: + // Always produce a 32-bit result. + return rr0(eCLB(rc(1), 0/*bit*/, 32), Outputs); + case S2_cl1: + case S2_cl1p: + return rr0(eCLB(rc(1), 1/*bit*/, 32), Outputs); + case S2_clb: + case S2_clbp: { + uint16_t W1 = getRegBitWidth(Reg[1]); + RegisterCell R1 = rc(1); + BT::BitValue TV = R1[W1-1]; + if (TV.is(0) || TV.is(1)) + return rr0(eCLB(R1, TV, 32), Outputs); + break; + } + case S2_ct0: + case S2_ct0p: + return rr0(eCTB(rc(1), 0/*bit*/, 32), Outputs); + case S2_ct1: + case S2_ct1p: + return rr0(eCTB(rc(1), 1/*bit*/, 32), Outputs); + case S5_popcountp: + // TODO + break; + + case C2_all8: { + RegisterCell P1 = rc(1); + bool Has0 = false, All1 = true; + for (uint16_t i = 0; i < 8/*XXX*/; ++i) { + if (!P1[i].is(1)) + All1 = false; + if (!P1[i].is(0)) + continue; + Has0 = true; + break; + } + if (!Has0 && !All1) + break; + RegisterCell RC(W0); + RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero)); + return rr0(RC, Outputs); + } + case C2_any8: { + RegisterCell P1 = rc(1); + bool Has1 = false, All0 = true; + for (uint16_t i = 0; i < 8/*XXX*/; ++i) { + if (!P1[i].is(0)) + All0 = false; + if (!P1[i].is(1)) + continue; + Has1 = true; + break; + } + if (!Has1 && !All0) + break; + RegisterCell RC(W0); + RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero)); + return rr0(RC, Outputs); + } + case C2_and: + return rr0(eAND(rc(1), rc(2)), Outputs); + case C2_andn: + return rr0(eAND(rc(1), eNOT(rc(2))), Outputs); + case C2_not: + return rr0(eNOT(rc(1)), Outputs); + case C2_or: + return rr0(eORL(rc(1), rc(2)), Outputs); + case C2_orn: + return rr0(eORL(rc(1), eNOT(rc(2))), Outputs); + case C2_xor: + return rr0(eXOR(rc(1), rc(2)), Outputs); + case C4_and_and: + return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs); + case C4_and_andn: + return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); + case C4_and_or: + return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs); + case C4_and_orn: + return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs); + case C4_or_and: + return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs); + case C4_or_andn: + return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); + case C4_or_or: + return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs); + case C4_or_orn: + return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs); + case C2_bitsclr: + case C2_bitsclri: + case C2_bitsset: + case C4_nbitsclr: + case C4_nbitsclri: + case C4_nbitsset: + // TODO + break; + case S2_tstbit_i: + case S4_ntstbit_i: { + BT::BitValue V = rc(1)[im(2)]; + if (V.is(0) || V.is(1)) { + // If instruction is S2_tstbit_i, test for 1, otherwise test for 0. + bool TV = (Opc == S2_tstbit_i); + BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero; + return rr0(RegisterCell(W0).fill(0, W0, F), Outputs); + } + break; + } + + default: + return MachineEvaluator::evaluate(MI, Inputs, Outputs); + } + #undef im + #undef rc + #undef op + return false; +} + + +bool HexagonEvaluator::evaluate(const MachineInstr *BI, + const CellMapType &Inputs, BranchTargetList &Targets, + bool &FallsThru) const { + // We need to evaluate one branch at a time. TII::AnalyzeBranch checks + // all the branches in a basic block at once, so we cannot use it. + unsigned Opc = BI->getOpcode(); + bool SimpleBranch = false; + bool Negated = false; + switch (Opc) { + case Hexagon::J2_jumpf: + case Hexagon::J2_jumpfnew: + case Hexagon::J2_jumpfnewpt: + Negated = true; + case Hexagon::J2_jumpt: + case Hexagon::J2_jumptnew: + case Hexagon::J2_jumptnewpt: + // Simple branch: if([!]Pn) jump ... + // i.e. Op0 = predicate, Op1 = branch target. + SimpleBranch = true; + break; + case Hexagon::J2_jump: + Targets.insert(BI->getOperand(0).getMBB()); + FallsThru = false; + return true; + default: + // If the branch is of unknown type, assume that all successors are + // executable. + return false; + } + + if (!SimpleBranch) + return false; + + // BI is a conditional branch if we got here. + RegisterRef PR = BI->getOperand(0); + RegisterCell PC = getCell(PR, Inputs); + const BT::BitValue &Test = PC[0]; + + // If the condition is neither true nor false, then it's unknown. + if (!Test.is(0) && !Test.is(1)) + return false; + + // "Test.is(!Negated)" means "branch condition is true". + if (!Test.is(!Negated)) { + // Condition known to be false. + FallsThru = true; + return true; + } + + Targets.insert(BI->getOperand(1).getMBB()); + FallsThru = false; + return true; +} + + +bool HexagonEvaluator::evaluateLoad(const MachineInstr *MI, + const CellMapType &Inputs, CellMapType &Outputs) const { + if (TII.isPredicated(MI)) + return false; + assert(MI->mayLoad() && "A load that mayn't?"); + unsigned Opc = MI->getOpcode(); + + uint16_t BitNum; + bool SignEx; + using namespace Hexagon; + + switch (Opc) { + default: + return false; + +#if 0 + // memb_fifo + case L2_loadalignb_pbr: + case L2_loadalignb_pcr: + case L2_loadalignb_pi: + // memh_fifo + case L2_loadalignh_pbr: + case L2_loadalignh_pcr: + case L2_loadalignh_pi: + // membh + case L2_loadbsw2_pbr: + case L2_loadbsw2_pci: + case L2_loadbsw2_pcr: + case L2_loadbsw2_pi: + case L2_loadbsw4_pbr: + case L2_loadbsw4_pci: + case L2_loadbsw4_pcr: + case L2_loadbsw4_pi: + // memubh + case L2_loadbzw2_pbr: + case L2_loadbzw2_pci: + case L2_loadbzw2_pcr: + case L2_loadbzw2_pi: + case L2_loadbzw4_pbr: + case L2_loadbzw4_pci: + case L2_loadbzw4_pcr: + case L2_loadbzw4_pi: +#endif + + case L2_loadrbgp: + case L2_loadrb_io: + case L2_loadrb_pbr: + case L2_loadrb_pci: + case L2_loadrb_pcr: + case L2_loadrb_pi: + case L4_loadrb_abs: + case L4_loadrb_ap: + case L4_loadrb_rr: + case L4_loadrb_ur: + BitNum = 8; + SignEx = true; + break; + + case L2_loadrubgp: + case L2_loadrub_io: + case L2_loadrub_pbr: + case L2_loadrub_pci: + case L2_loadrub_pcr: + case L2_loadrub_pi: + case L4_loadrub_abs: + case L4_loadrub_ap: + case L4_loadrub_rr: + case L4_loadrub_ur: + BitNum = 8; + SignEx = false; + break; + + case L2_loadrhgp: + case L2_loadrh_io: + case L2_loadrh_pbr: + case L2_loadrh_pci: + case L2_loadrh_pcr: + case L2_loadrh_pi: + case L4_loadrh_abs: + case L4_loadrh_ap: + case L4_loadrh_rr: + case L4_loadrh_ur: + BitNum = 16; + SignEx = true; + break; + + case L2_loadruhgp: + case L2_loadruh_io: + case L2_loadruh_pbr: + case L2_loadruh_pci: + case L2_loadruh_pcr: + case L2_loadruh_pi: + case L4_loadruh_rr: + case L4_loadruh_abs: + case L4_loadruh_ap: + case L4_loadruh_ur: + BitNum = 16; + SignEx = false; + break; + + case L2_loadrigp: + case L2_loadri_io: + case L2_loadri_pbr: + case L2_loadri_pci: + case L2_loadri_pcr: + case L2_loadri_pi: + case L2_loadw_locked: + case L4_loadri_abs: + case L4_loadri_ap: + case L4_loadri_rr: + case L4_loadri_ur: + case LDriw_pred: + BitNum = 32; + SignEx = true; + break; + + case L2_loadrdgp: + case L2_loadrd_io: + case L2_loadrd_pbr: + case L2_loadrd_pci: + case L2_loadrd_pcr: + case L2_loadrd_pi: + case L4_loadd_locked: + case L4_loadrd_abs: + case L4_loadrd_ap: + case L4_loadrd_rr: + case L4_loadrd_ur: + BitNum = 64; + SignEx = true; + break; + } + + const MachineOperand &MD = MI->getOperand(0); + assert(MD.isReg() && MD.isDef()); + RegisterRef RD = MD; + + uint16_t W = getRegBitWidth(RD); + assert(W >= BitNum && BitNum > 0); + RegisterCell Res(W); + + for (uint16_t i = 0; i < BitNum; ++i) + Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i)); + + if (SignEx) { + const BT::BitValue &Sign = Res[BitNum-1]; + for (uint16_t i = BitNum; i < W; ++i) + Res[i] = BT::BitValue::ref(Sign); + } else { + for (uint16_t i = BitNum; i < W; ++i) + Res[i] = BT::BitValue::Zero; + } + + putCell(RD, Res, Outputs); + return true; +} + + +bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr *MI, + const CellMapType &Inputs, CellMapType &Outputs) const { + // If MI defines a formal parameter, but is not a copy (loads are handled + // in evaluateLoad), then it's not clear what to do. + assert(MI->isCopy()); + + RegisterRef RD = MI->getOperand(0); + RegisterRef RS = MI->getOperand(1); + assert(RD.Sub == 0); + if (!TargetRegisterInfo::isPhysicalRegister(RS.Reg)) + return false; + RegExtMap::const_iterator F = VRX.find(RD.Reg); + if (F == VRX.end()) + return false; + + uint16_t EW = F->second.Width; + // Store RD's cell into the map. This will associate the cell with a virtual + // register, and make zero-/sign-extends possible (otherwise we would be ex- + // tending "self" bit values, which will have no effect, since "self" values + // cannot be references to anything). + putCell(RD, getCell(RS, Inputs), Outputs); + + RegisterCell Res; + // Read RD's cell from the outputs instead of RS's cell from the inputs: + if (F->second.Type == ExtType::SExt) + Res = eSXT(getCell(RD, Outputs), EW); + else if (F->second.Type == ExtType::ZExt) + Res = eZXT(getCell(RD, Outputs), EW); + + putCell(RD, Res, Outputs); + return true; +} + + +unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const { + using namespace Hexagon; + bool Is64 = DoubleRegsRegClass.contains(PReg); + assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg)); + + static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 }; + static const unsigned Phys64[] = { D0, D1, D2 }; + const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned); + const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned); + + // Return the first parameter register of the required width. + if (PReg == 0) + return (Width <= 32) ? Phys32[0] : Phys64[0]; + + // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the + // next register. + unsigned Idx32 = 0, Idx64 = 0; + if (!Is64) { + while (Idx32 < Num32) { + if (Phys32[Idx32] == PReg) + break; + Idx32++; + } + Idx64 = Idx32/2; + } else { + while (Idx64 < Num64) { + if (Phys64[Idx64] == PReg) + break; + Idx64++; + } + Idx32 = Idx64*2+1; + } + + if (Width <= 32) + return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0; + return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0; +} + + +unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const { + typedef MachineRegisterInfo::livein_iterator iterator; + for (iterator I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I) { + if (I->first == PReg) + return I->second; + } + return 0; +} |