diff options
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/AsmParser/HexagonAsmParser.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/Hexagon/AsmParser/HexagonAsmParser.cpp | 2152 |
1 files changed, 2152 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/AsmParser/HexagonAsmParser.cpp b/contrib/llvm/lib/Target/Hexagon/AsmParser/HexagonAsmParser.cpp new file mode 100644 index 0000000..a8622a9 --- /dev/null +++ b/contrib/llvm/lib/Target/Hexagon/AsmParser/HexagonAsmParser.cpp @@ -0,0 +1,2152 @@ +//===-- HexagonAsmParser.cpp - Parse Hexagon asm to MCInst instructions----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "mcasmparser" + +#include "Hexagon.h" +#include "HexagonRegisterInfo.h" +#include "HexagonTargetStreamer.h" +#include "MCTargetDesc/HexagonBaseInfo.h" +#include "MCTargetDesc/HexagonMCELFStreamer.h" +#include "MCTargetDesc/HexagonMCChecker.h" +#include "MCTargetDesc/HexagonMCExpr.h" +#include "MCTargetDesc/HexagonMCShuffler.h" +#include "MCTargetDesc/HexagonMCTargetDesc.h" +#include "MCTargetDesc/HexagonMCAsmInfo.h" +#include "MCTargetDesc/HexagonShuffler.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/Twine.h" +#include "llvm/MC/MCContext.h" +#include "llvm/MC/MCELFStreamer.h" +#include "llvm/MC/MCExpr.h" +#include "llvm/MC/MCInst.h" +#include "llvm/MC/MCParser/MCAsmLexer.h" +#include "llvm/MC/MCParser/MCAsmParser.h" +#include "llvm/MC/MCParser/MCParsedAsmOperand.h" +#include "llvm/MC/MCStreamer.h" +#include "llvm/MC/MCSectionELF.h" +#include "llvm/MC/MCSubtargetInfo.h" +#include "llvm/MC/MCTargetAsmParser.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ELF.h" +#include "llvm/Support/Format.h" +#include "llvm/Support/SourceMgr.h" +#include "llvm/Support/MemoryBuffer.h" +#include "llvm/Support/TargetRegistry.h" +#include "llvm/Support/raw_ostream.h" +#include <sstream> + +using namespace llvm; + +static cl::opt<bool> EnableFutureRegs("mfuture-regs", + cl::desc("Enable future registers")); + +static cl::opt<bool> WarnMissingParenthesis("mwarn-missing-parenthesis", +cl::desc("Warn for missing parenthesis around predicate registers"), +cl::init(true)); +static cl::opt<bool> ErrorMissingParenthesis("merror-missing-parenthesis", +cl::desc("Error for missing parenthesis around predicate registers"), +cl::init(false)); +static cl::opt<bool> WarnSignedMismatch("mwarn-sign-mismatch", +cl::desc("Warn for mismatching a signed and unsigned value"), +cl::init(true)); +static cl::opt<bool> WarnNoncontigiousRegister("mwarn-noncontigious-register", +cl::desc("Warn for register names that arent contigious"), +cl::init(true)); +static cl::opt<bool> ErrorNoncontigiousRegister("merror-noncontigious-register", +cl::desc("Error for register names that aren't contigious"), +cl::init(false)); + + +namespace { +struct HexagonOperand; + +class HexagonAsmParser : public MCTargetAsmParser { + + HexagonTargetStreamer &getTargetStreamer() { + MCTargetStreamer &TS = *Parser.getStreamer().getTargetStreamer(); + return static_cast<HexagonTargetStreamer &>(TS); + } + + MCAsmParser &Parser; + MCAssembler *Assembler; + MCInstrInfo const &MCII; + MCInst MCB; + bool InBrackets; + + MCAsmParser &getParser() const { return Parser; } + MCAssembler *getAssembler() const { return Assembler; } + MCAsmLexer &getLexer() const { return Parser.getLexer(); } + + bool equalIsAsmAssignment() override { return false; } + bool isLabel(AsmToken &Token) override; + + void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); } + bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); } + bool ParseDirectiveFalign(unsigned Size, SMLoc L); + + virtual bool ParseRegister(unsigned &RegNo, + SMLoc &StartLoc, + SMLoc &EndLoc) override; + bool ParseDirectiveSubsection(SMLoc L); + bool ParseDirectiveValue(unsigned Size, SMLoc L); + bool ParseDirectiveComm(bool IsLocal, SMLoc L); + bool RegisterMatchesArch(unsigned MatchNum) const; + + bool matchBundleOptions(); + bool handleNoncontigiousRegister(bool Contigious, SMLoc &Loc); + bool finishBundle(SMLoc IDLoc, MCStreamer &Out); + void canonicalizeImmediates(MCInst &MCI); + bool matchOneInstruction(MCInst &MCB, SMLoc IDLoc, + OperandVector &InstOperands, uint64_t &ErrorInfo, + bool MatchingInlineAsm, bool &MustExtend); + + bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, + OperandVector &Operands, MCStreamer &Out, + uint64_t &ErrorInfo, bool MatchingInlineAsm) override; + + unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind) override; + void OutOfRange(SMLoc IDLoc, long long Val, long long Max); + int processInstruction(MCInst &Inst, OperandVector const &Operands, + SMLoc IDLoc, bool &MustExtend); + + // Check if we have an assembler and, if so, set the ELF e_header flags. + void chksetELFHeaderEFlags(unsigned flags) { + if (getAssembler()) + getAssembler()->setELFHeaderEFlags(flags); + } + +/// @name Auto-generated Match Functions +/// { + +#define GET_ASSEMBLER_HEADER +#include "HexagonGenAsmMatcher.inc" + + /// } + +public: + HexagonAsmParser(const MCSubtargetInfo &_STI, MCAsmParser &_Parser, + const MCInstrInfo &MII, const MCTargetOptions &Options) + : MCTargetAsmParser(Options, _STI), Parser(_Parser), + MCII (MII), MCB(HexagonMCInstrInfo::createBundle()), InBrackets(false) { + setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits())); + + MCAsmParserExtension::Initialize(_Parser); + + Assembler = nullptr; + // FIXME: need better way to detect AsmStreamer (upstream removed getKind()) + if (!Parser.getStreamer().hasRawTextSupport()) { + MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer()); + Assembler = &MES->getAssembler(); + } + } + + bool mustExtend(OperandVector &Operands); + bool splitIdentifier(OperandVector &Operands); + bool parseOperand(OperandVector &Operands); + bool parseInstruction(OperandVector &Operands); + bool implicitExpressionLocation(OperandVector &Operands); + bool parseExpressionOrOperand(OperandVector &Operands); + bool parseExpression(MCExpr const *& Expr); + virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, + SMLoc NameLoc, OperandVector &Operands) override + { + llvm_unreachable("Unimplemented"); + } + virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name, + AsmToken ID, OperandVector &Operands) override; + + virtual bool ParseDirective(AsmToken DirectiveID) override; +}; + +/// HexagonOperand - Instances of this class represent a parsed Hexagon machine +/// instruction. +struct HexagonOperand : public MCParsedAsmOperand { + enum KindTy { Token, Immediate, Register } Kind; + + SMLoc StartLoc, EndLoc; + + struct TokTy { + const char *Data; + unsigned Length; + }; + + struct RegTy { + unsigned RegNum; + }; + + struct ImmTy { + const MCExpr *Val; + bool MustExtend; + }; + + struct InstTy { + OperandVector *SubInsts; + }; + + union { + struct TokTy Tok; + struct RegTy Reg; + struct ImmTy Imm; + }; + + HexagonOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {} + +public: + HexagonOperand(const HexagonOperand &o) : MCParsedAsmOperand() { + Kind = o.Kind; + StartLoc = o.StartLoc; + EndLoc = o.EndLoc; + switch (Kind) { + case Register: + Reg = o.Reg; + break; + case Immediate: + Imm = o.Imm; + break; + case Token: + Tok = o.Tok; + break; + } + } + + /// getStartLoc - Get the location of the first token of this operand. + SMLoc getStartLoc() const { return StartLoc; } + + /// getEndLoc - Get the location of the last token of this operand. + SMLoc getEndLoc() const { return EndLoc; } + + unsigned getReg() const { + assert(Kind == Register && "Invalid access!"); + return Reg.RegNum; + } + + const MCExpr *getImm() const { + assert(Kind == Immediate && "Invalid access!"); + return Imm.Val; + } + + bool isToken() const { return Kind == Token; } + bool isImm() const { return Kind == Immediate; } + bool isMem() const { llvm_unreachable("No isMem"); } + bool isReg() const { return Kind == Register; } + + bool CheckImmRange(int immBits, int zeroBits, bool isSigned, + bool isRelocatable, bool Extendable) const { + if (Kind == Immediate) { + const MCExpr *myMCExpr = getImm(); + if (Imm.MustExtend && !Extendable) + return false; + int64_t Res; + if (myMCExpr->evaluateAsAbsolute(Res)) { + int bits = immBits + zeroBits; + // Field bit range is zerobits + bits + // zeroBits must be 0 + if (Res & ((1 << zeroBits) - 1)) + return false; + if (isSigned) { + if (Res < (1LL << (bits - 1)) && Res >= -(1LL << (bits - 1))) + return true; + } else { + if (bits == 64) + return true; + if (Res >= 0) + return ((uint64_t)Res < (uint64_t)(1ULL << bits)) ? true : false; + else { + const int64_t high_bit_set = 1ULL << 63; + const uint64_t mask = (high_bit_set >> (63 - bits)); + return (((uint64_t)Res & mask) == mask) ? true : false; + } + } + } else if (myMCExpr->getKind() == MCExpr::SymbolRef && isRelocatable) + return true; + else if (myMCExpr->getKind() == MCExpr::Binary || + myMCExpr->getKind() == MCExpr::Unary) + return true; + } + return false; + } + + bool isf32Ext() const { return false; } + bool iss32Imm() const { return CheckImmRange(32, 0, true, true, false); } + bool iss8Imm() const { return CheckImmRange(8, 0, true, false, false); } + bool iss8Imm64() const { return CheckImmRange(8, 0, true, true, false); } + bool iss7Imm() const { return CheckImmRange(7, 0, true, false, false); } + bool iss6Imm() const { return CheckImmRange(6, 0, true, false, false); } + bool iss4Imm() const { return CheckImmRange(4, 0, true, false, false); } + bool iss4_0Imm() const { return CheckImmRange(4, 0, true, false, false); } + bool iss4_1Imm() const { return CheckImmRange(4, 1, true, false, false); } + bool iss4_2Imm() const { return CheckImmRange(4, 2, true, false, false); } + bool iss4_3Imm() const { return CheckImmRange(4, 3, true, false, false); } + bool iss4_6Imm() const { return CheckImmRange(4, 0, true, false, false); } + bool iss3_6Imm() const { return CheckImmRange(3, 0, true, false, false); } + bool iss3Imm() const { return CheckImmRange(3, 0, true, false, false); } + + bool isu64Imm() const { return CheckImmRange(64, 0, false, true, true); } + bool isu32Imm() const { return CheckImmRange(32, 0, false, true, false); } + bool isu26_6Imm() const { return CheckImmRange(26, 6, false, true, false); } + bool isu16Imm() const { return CheckImmRange(16, 0, false, true, false); } + bool isu16_0Imm() const { return CheckImmRange(16, 0, false, true, false); } + bool isu16_1Imm() const { return CheckImmRange(16, 1, false, true, false); } + bool isu16_2Imm() const { return CheckImmRange(16, 2, false, true, false); } + bool isu16_3Imm() const { return CheckImmRange(16, 3, false, true, false); } + bool isu11_3Imm() const { return CheckImmRange(11, 3, false, false, false); } + bool isu6_0Imm() const { return CheckImmRange(6, 0, false, false, false); } + bool isu6_1Imm() const { return CheckImmRange(6, 1, false, false, false); } + bool isu6_2Imm() const { return CheckImmRange(6, 2, false, false, false); } + bool isu6_3Imm() const { return CheckImmRange(6, 3, false, false, false); } + bool isu10Imm() const { return CheckImmRange(10, 0, false, false, false); } + bool isu9Imm() const { return CheckImmRange(9, 0, false, false, false); } + bool isu8Imm() const { return CheckImmRange(8, 0, false, false, false); } + bool isu7Imm() const { return CheckImmRange(7, 0, false, false, false); } + bool isu6Imm() const { return CheckImmRange(6, 0, false, false, false); } + bool isu5Imm() const { return CheckImmRange(5, 0, false, false, false); } + bool isu4Imm() const { return CheckImmRange(4, 0, false, false, false); } + bool isu3Imm() const { return CheckImmRange(3, 0, false, false, false); } + bool isu2Imm() const { return CheckImmRange(2, 0, false, false, false); } + bool isu1Imm() const { return CheckImmRange(1, 0, false, false, false); } + + bool ism6Imm() const { return CheckImmRange(6, 0, false, false, false); } + bool isn8Imm() const { return CheckImmRange(8, 0, false, false, false); } + + bool iss16Ext() const { return CheckImmRange(16 + 26, 0, true, true, true); } + bool iss12Ext() const { return CheckImmRange(12 + 26, 0, true, true, true); } + bool iss10Ext() const { return CheckImmRange(10 + 26, 0, true, true, true); } + bool iss9Ext() const { return CheckImmRange(9 + 26, 0, true, true, true); } + bool iss8Ext() const { return CheckImmRange(8 + 26, 0, true, true, true); } + bool iss7Ext() const { return CheckImmRange(7 + 26, 0, true, true, true); } + bool iss6Ext() const { return CheckImmRange(6 + 26, 0, true, true, true); } + bool iss11_0Ext() const { + return CheckImmRange(11 + 26, 0, true, true, true); + } + bool iss11_1Ext() const { + return CheckImmRange(11 + 26, 1, true, true, true); + } + bool iss11_2Ext() const { + return CheckImmRange(11 + 26, 2, true, true, true); + } + bool iss11_3Ext() const { + return CheckImmRange(11 + 26, 3, true, true, true); + } + + bool isu6Ext() const { return CheckImmRange(6 + 26, 0, false, true, true); } + bool isu7Ext() const { return CheckImmRange(7 + 26, 0, false, true, true); } + bool isu8Ext() const { return CheckImmRange(8 + 26, 0, false, true, true); } + bool isu9Ext() const { return CheckImmRange(9 + 26, 0, false, true, true); } + bool isu10Ext() const { return CheckImmRange(10 + 26, 0, false, true, true); } + bool isu6_0Ext() const { return CheckImmRange(6 + 26, 0, false, true, true); } + bool isu6_1Ext() const { return CheckImmRange(6 + 26, 1, false, true, true); } + bool isu6_2Ext() const { return CheckImmRange(6 + 26, 2, false, true, true); } + bool isu6_3Ext() const { return CheckImmRange(6 + 26, 3, false, true, true); } + bool isu32MustExt() const { return isImm() && Imm.MustExtend; } + + void addRegOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createReg(getReg())); + } + + void addImmOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + Inst.addOperand(MCOperand::createExpr(getImm())); + } + + void addSignedImmOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + MCExpr const *Expr = getImm(); + int64_t Value; + if (!Expr->evaluateAsAbsolute(Value)) { + Inst.addOperand(MCOperand::createExpr(Expr)); + return; + } + int64_t Extended = SignExtend64 (Value, 32); + if ((Extended < 0) == (Value < 0)) { + Inst.addOperand(MCOperand::createExpr(Expr)); + return; + } + // Flip bit 33 to signal signed unsigned mismatch + Extended ^= 0x100000000; + Inst.addOperand(MCOperand::createImm(Extended)); + } + + void addf32ExtOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + + void adds32ImmOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds8ImmOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds8Imm64Operands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds6ImmOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds4ImmOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds4_0ImmOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds4_1ImmOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds4_2ImmOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds4_3ImmOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds3ImmOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + + void addu64ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu32ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu26_6ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu16ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu16_0ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu16_1ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu16_2ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu16_3ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu11_3ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu10ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu9ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu8ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu7ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu6ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu6_0ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu6_1ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu6_2ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu6_3ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu5ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu4ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu3ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu2ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu1ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + + void addm6ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addn8ImmOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + + void adds16ExtOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds12ExtOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds10ExtOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds9ExtOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds8ExtOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds6ExtOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds11_0ExtOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds11_1ExtOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds11_2ExtOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + void adds11_3ExtOperands(MCInst &Inst, unsigned N) const { + addSignedImmOperands(Inst, N); + } + + void addu6ExtOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu7ExtOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu8ExtOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu9ExtOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu10ExtOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu6_0ExtOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu6_1ExtOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu6_2ExtOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu6_3ExtOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + void addu32MustExtOperands(MCInst &Inst, unsigned N) const { + addImmOperands(Inst, N); + } + + void adds4_6ImmOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); + Inst.addOperand(MCOperand::createImm(CE->getValue() * 64)); + } + + void adds3_6ImmOperands(MCInst &Inst, unsigned N) const { + assert(N == 1 && "Invalid number of operands!"); + const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm()); + Inst.addOperand(MCOperand::createImm(CE->getValue() * 64)); + } + + StringRef getToken() const { + assert(Kind == Token && "Invalid access!"); + return StringRef(Tok.Data, Tok.Length); + } + + virtual void print(raw_ostream &OS) const; + + static std::unique_ptr<HexagonOperand> CreateToken(StringRef Str, SMLoc S) { + HexagonOperand *Op = new HexagonOperand(Token); + Op->Tok.Data = Str.data(); + Op->Tok.Length = Str.size(); + Op->StartLoc = S; + Op->EndLoc = S; + return std::unique_ptr<HexagonOperand>(Op); + } + + static std::unique_ptr<HexagonOperand> CreateReg(unsigned RegNum, SMLoc S, + SMLoc E) { + HexagonOperand *Op = new HexagonOperand(Register); + Op->Reg.RegNum = RegNum; + Op->StartLoc = S; + Op->EndLoc = E; + return std::unique_ptr<HexagonOperand>(Op); + } + + static std::unique_ptr<HexagonOperand> CreateImm(const MCExpr *Val, SMLoc S, + SMLoc E) { + HexagonOperand *Op = new HexagonOperand(Immediate); + Op->Imm.Val = Val; + Op->Imm.MustExtend = false; + Op->StartLoc = S; + Op->EndLoc = E; + return std::unique_ptr<HexagonOperand>(Op); + } +}; + +} // end anonymous namespace. + +void HexagonOperand::print(raw_ostream &OS) const { + switch (Kind) { + case Immediate: + getImm()->print(OS, nullptr); + break; + case Register: + OS << "<register R"; + OS << getReg() << ">"; + break; + case Token: + OS << "'" << getToken() << "'"; + break; + } +} + +/// @name Auto-generated Match Functions +static unsigned MatchRegisterName(StringRef Name); + +bool HexagonAsmParser::finishBundle(SMLoc IDLoc, MCStreamer &Out) { + DEBUG(dbgs() << "Bundle:"); + DEBUG(MCB.dump_pretty(dbgs())); + DEBUG(dbgs() << "--\n"); + + // Check the bundle for errors. + const MCRegisterInfo *RI = getContext().getRegisterInfo(); + HexagonMCChecker Check(MCII, getSTI(), MCB, MCB, *RI); + + bool CheckOk = HexagonMCInstrInfo::canonicalizePacket(MCII, getSTI(), + getContext(), MCB, + &Check); + + while (Check.getNextErrInfo() == true) { + unsigned Reg = Check.getErrRegister(); + Twine R(RI->getName(Reg)); + + uint64_t Err = Check.getError(); + if (Err != HexagonMCErrInfo::CHECK_SUCCESS) { + if (HexagonMCErrInfo::CHECK_ERROR_BRANCHES & Err) + Error(IDLoc, + "unconditional branch cannot precede another branch in packet"); + + if (HexagonMCErrInfo::CHECK_ERROR_NEWP & Err || + HexagonMCErrInfo::CHECK_ERROR_NEWV & Err) + Error(IDLoc, "register `" + R + + "' used with `.new' " + "but not validly modified in the same packet"); + + if (HexagonMCErrInfo::CHECK_ERROR_REGISTERS & Err) + Error(IDLoc, "register `" + R + "' modified more than once"); + + if (HexagonMCErrInfo::CHECK_ERROR_READONLY & Err) + Error(IDLoc, "cannot write to read-only register `" + R + "'"); + + if (HexagonMCErrInfo::CHECK_ERROR_LOOP & Err) + Error(IDLoc, "loop-setup and some branch instructions " + "cannot be in the same packet"); + + if (HexagonMCErrInfo::CHECK_ERROR_ENDLOOP & Err) { + Twine N(HexagonMCInstrInfo::isInnerLoop(MCB) ? '0' : '1'); + Error(IDLoc, "packet marked with `:endloop" + N + "' " + + "cannot contain instructions that modify register " + + "`" + R + "'"); + } + + if (HexagonMCErrInfo::CHECK_ERROR_SOLO & Err) + Error(IDLoc, + "instruction cannot appear in packet with other instructions"); + + if (HexagonMCErrInfo::CHECK_ERROR_NOSLOTS & Err) + Error(IDLoc, "too many slots used in packet"); + + if (Err & HexagonMCErrInfo::CHECK_ERROR_SHUFFLE) { + uint64_t Erm = Check.getShuffleError(); + + if (HexagonShuffler::SHUFFLE_ERROR_INVALID == Erm) + Error(IDLoc, "invalid instruction packet"); + else if (HexagonShuffler::SHUFFLE_ERROR_STORES == Erm) + Error(IDLoc, "invalid instruction packet: too many stores"); + else if (HexagonShuffler::SHUFFLE_ERROR_LOADS == Erm) + Error(IDLoc, "invalid instruction packet: too many loads"); + else if (HexagonShuffler::SHUFFLE_ERROR_BRANCHES == Erm) + Error(IDLoc, "too many branches in packet"); + else if (HexagonShuffler::SHUFFLE_ERROR_NOSLOTS == Erm) + Error(IDLoc, "invalid instruction packet: out of slots"); + else if (HexagonShuffler::SHUFFLE_ERROR_SLOTS == Erm) + Error(IDLoc, "invalid instruction packet: slot error"); + else if (HexagonShuffler::SHUFFLE_ERROR_ERRATA2 == Erm) + Error(IDLoc, "v60 packet violation"); + else if (HexagonShuffler::SHUFFLE_ERROR_STORE_LOAD_CONFLICT == Erm) + Error(IDLoc, "slot 0 instruction does not allow slot 1 store"); + else + Error(IDLoc, "unknown error in instruction packet"); + } + } + + unsigned Warn = Check.getWarning(); + if (Warn != HexagonMCErrInfo::CHECK_SUCCESS) { + if (HexagonMCErrInfo::CHECK_WARN_CURRENT & Warn) + Warning(IDLoc, "register `" + R + "' used with `.cur' " + "but not used in the same packet"); + else if (HexagonMCErrInfo::CHECK_WARN_TEMPORARY & Warn) + Warning(IDLoc, "register `" + R + "' used with `.tmp' " + "but not used in the same packet"); + } + } + + if (CheckOk) { + MCB.setLoc(IDLoc); + if (HexagonMCInstrInfo::bundleSize(MCB) == 0) { + assert(!HexagonMCInstrInfo::isInnerLoop(MCB)); + assert(!HexagonMCInstrInfo::isOuterLoop(MCB)); + // Empty packets are valid yet aren't emitted + return false; + } + Out.EmitInstruction(MCB, getSTI()); + } else { + // If compounding and duplexing didn't reduce the size below + // 4 or less we have a packet that is too big. + if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE) { + Error(IDLoc, "invalid instruction packet: out of slots"); + return true; // Error + } + } + + return false; // No error +} + +bool HexagonAsmParser::matchBundleOptions() { + MCAsmParser &Parser = getParser(); + MCAsmLexer &Lexer = getLexer(); + while (true) { + if (!Parser.getTok().is(AsmToken::Colon)) + return false; + Lexer.Lex(); + StringRef Option = Parser.getTok().getString(); + if (Option.compare_lower("endloop0") == 0) + HexagonMCInstrInfo::setInnerLoop(MCB); + else if (Option.compare_lower("endloop1") == 0) + HexagonMCInstrInfo::setOuterLoop(MCB); + else if (Option.compare_lower("mem_noshuf") == 0) + HexagonMCInstrInfo::setMemReorderDisabled(MCB); + else if (Option.compare_lower("mem_shuf") == 0) + HexagonMCInstrInfo::setMemStoreReorderEnabled(MCB); + else + return true; + Lexer.Lex(); + } +} + +// For instruction aliases, immediates are generated rather than +// MCConstantExpr. Convert them for uniform MCExpr. +// Also check for signed/unsigned mismatches and warn +void HexagonAsmParser::canonicalizeImmediates(MCInst &MCI) { + MCInst NewInst; + NewInst.setOpcode(MCI.getOpcode()); + for (MCOperand &I : MCI) + if (I.isImm()) { + int64_t Value (I.getImm()); + if ((Value & 0x100000000) != (Value & 0x80000000)) { + // Detect flipped bit 33 wrt bit 32 and signal warning + Value ^= 0x100000000; + if (WarnSignedMismatch) + Warning (MCI.getLoc(), "Signed/Unsigned mismatch"); + } + NewInst.addOperand(MCOperand::createExpr( + MCConstantExpr::create(Value, getContext()))); + } + else + NewInst.addOperand(I); + MCI = NewInst; +} + +bool HexagonAsmParser::matchOneInstruction(MCInst &MCI, SMLoc IDLoc, + OperandVector &InstOperands, + uint64_t &ErrorInfo, + bool MatchingInlineAsm, + bool &MustExtend) { + // Perform matching with tablegen asmmatcher generated function + int result = + MatchInstructionImpl(InstOperands, MCI, ErrorInfo, MatchingInlineAsm); + if (result == Match_Success) { + MCI.setLoc(IDLoc); + MustExtend = mustExtend(InstOperands); + canonicalizeImmediates(MCI); + result = processInstruction(MCI, InstOperands, IDLoc, MustExtend); + + DEBUG(dbgs() << "Insn:"); + DEBUG(MCI.dump_pretty(dbgs())); + DEBUG(dbgs() << "\n\n"); + + MCI.setLoc(IDLoc); + } + + // Create instruction operand for bundle instruction + // Break this into a separate function Code here is less readable + // Think about how to get an instruction error to report correctly. + // SMLoc will return the "{" + switch (result) { + default: + break; + case Match_Success: + return false; + case Match_MissingFeature: + return Error(IDLoc, "invalid instruction"); + case Match_MnemonicFail: + return Error(IDLoc, "unrecognized instruction"); + case Match_InvalidOperand: + SMLoc ErrorLoc = IDLoc; + if (ErrorInfo != ~0U) { + if (ErrorInfo >= InstOperands.size()) + return Error(IDLoc, "too few operands for instruction"); + + ErrorLoc = (static_cast<HexagonOperand *>(InstOperands[ErrorInfo].get())) + ->getStartLoc(); + if (ErrorLoc == SMLoc()) + ErrorLoc = IDLoc; + } + return Error(ErrorLoc, "invalid operand for instruction"); + } + llvm_unreachable("Implement any new match types added!"); +} + +bool HexagonAsmParser::mustExtend(OperandVector &Operands) { + unsigned Count = 0; + for (std::unique_ptr<MCParsedAsmOperand> &i : Operands) + if (i->isImm()) + if (static_cast<HexagonOperand *>(i.get())->Imm.MustExtend) + ++Count; + // Multiple extenders should have been filtered by iss9Ext et. al. + assert(Count < 2 && "Multiple extenders"); + return Count == 1; +} + +bool HexagonAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode, + OperandVector &Operands, + MCStreamer &Out, + uint64_t &ErrorInfo, + bool MatchingInlineAsm) { + if (!InBrackets) { + MCB.clear(); + MCB.addOperand(MCOperand::createImm(0)); + } + HexagonOperand &FirstOperand = static_cast<HexagonOperand &>(*Operands[0]); + if (FirstOperand.isToken() && FirstOperand.getToken() == "{") { + assert(Operands.size() == 1 && "Brackets should be by themselves"); + if (InBrackets) { + getParser().Error(IDLoc, "Already in a packet"); + return true; + } + InBrackets = true; + return false; + } + if (FirstOperand.isToken() && FirstOperand.getToken() == "}") { + assert(Operands.size() == 1 && "Brackets should be by themselves"); + if (!InBrackets) { + getParser().Error(IDLoc, "Not in a packet"); + return true; + } + InBrackets = false; + if (matchBundleOptions()) + return true; + return finishBundle(IDLoc, Out); + } + MCInst *SubInst = new (getParser().getContext()) MCInst; + bool MustExtend = false; + if (matchOneInstruction(*SubInst, IDLoc, Operands, ErrorInfo, + MatchingInlineAsm, MustExtend)) + return true; + HexagonMCInstrInfo::extendIfNeeded( + getParser().getContext(), MCII, MCB, *SubInst, + HexagonMCInstrInfo::isExtended(MCII, *SubInst) || MustExtend); + MCB.addOperand(MCOperand::createInst(SubInst)); + if (!InBrackets) + return finishBundle(IDLoc, Out); + return false; +} + +/// ParseDirective parses the Hexagon specific directives +bool HexagonAsmParser::ParseDirective(AsmToken DirectiveID) { + StringRef IDVal = DirectiveID.getIdentifier(); + if ((IDVal.lower() == ".word") || (IDVal.lower() == ".4byte")) + return ParseDirectiveValue(4, DirectiveID.getLoc()); + if (IDVal.lower() == ".short" || IDVal.lower() == ".hword" || + IDVal.lower() == ".half") + return ParseDirectiveValue(2, DirectiveID.getLoc()); + if (IDVal.lower() == ".falign") + return ParseDirectiveFalign(256, DirectiveID.getLoc()); + if ((IDVal.lower() == ".lcomm") || (IDVal.lower() == ".lcommon")) + return ParseDirectiveComm(true, DirectiveID.getLoc()); + if ((IDVal.lower() == ".comm") || (IDVal.lower() == ".common")) + return ParseDirectiveComm(false, DirectiveID.getLoc()); + if (IDVal.lower() == ".subsection") + return ParseDirectiveSubsection(DirectiveID.getLoc()); + + return true; +} +bool HexagonAsmParser::ParseDirectiveSubsection(SMLoc L) { + const MCExpr *Subsection = 0; + int64_t Res; + + assert((getLexer().isNot(AsmToken::EndOfStatement)) && + "Invalid subsection directive"); + getParser().parseExpression(Subsection); + + if (!Subsection->evaluateAsAbsolute(Res)) + return Error(L, "Cannot evaluate subsection number"); + + if (getLexer().isNot(AsmToken::EndOfStatement)) + return TokError("unexpected token in directive"); + + // 0-8192 is the hard-coded range in MCObjectStreamper.cpp, this keeps the + // negative subsections together and in the same order but at the opposite + // end of the section. Only legacy hexagon-gcc created assembly code + // used negative subsections. + if ((Res < 0) && (Res > -8193)) + Subsection = MCConstantExpr::create(8192 + Res, this->getContext()); + + getStreamer().SubSection(Subsection); + return false; +} + +/// ::= .falign [expression] +bool HexagonAsmParser::ParseDirectiveFalign(unsigned Size, SMLoc L) { + + int64_t MaxBytesToFill = 15; + + // if there is an arguement + if (getLexer().isNot(AsmToken::EndOfStatement)) { + const MCExpr *Value; + SMLoc ExprLoc = L; + + // Make sure we have a number (false is returned if expression is a number) + if (getParser().parseExpression(Value) == false) { + // Make sure this is a number that is in range + const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value); + uint64_t IntValue = MCE->getValue(); + if (!isUIntN(Size, IntValue) && !isIntN(Size, IntValue)) + return Error(ExprLoc, "literal value out of range (256) for falign"); + MaxBytesToFill = IntValue; + Lex(); + } else { + return Error(ExprLoc, "not a valid expression for falign directive"); + } + } + + getTargetStreamer().emitFAlign(16, MaxBytesToFill); + Lex(); + + return false; +} + +/// ::= .word [ expression (, expression)* ] +bool HexagonAsmParser::ParseDirectiveValue(unsigned Size, SMLoc L) { + if (getLexer().isNot(AsmToken::EndOfStatement)) { + + for (;;) { + const MCExpr *Value; + SMLoc ExprLoc = L; + if (getParser().parseExpression(Value)) + return true; + + // Special case constant expressions to match code generator. + if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) { + assert(Size <= 8 && "Invalid size"); + uint64_t IntValue = MCE->getValue(); + if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) + return Error(ExprLoc, "literal value out of range for directive"); + getStreamer().EmitIntValue(IntValue, Size); + } else + getStreamer().EmitValue(Value, Size); + + if (getLexer().is(AsmToken::EndOfStatement)) + break; + + // FIXME: Improve diagnostic. + if (getLexer().isNot(AsmToken::Comma)) + return TokError("unexpected token in directive"); + Lex(); + } + } + + Lex(); + return false; +} + +// This is largely a copy of AsmParser's ParseDirectiveComm extended to +// accept a 3rd argument, AccessAlignment which indicates the smallest +// memory access made to the symbol, expressed in bytes. If no +// AccessAlignment is specified it defaults to the Alignment Value. +// Hexagon's .lcomm: +// .lcomm Symbol, Length, Alignment, AccessAlignment +bool HexagonAsmParser::ParseDirectiveComm(bool IsLocal, SMLoc Loc) { + // FIXME: need better way to detect if AsmStreamer (upstream removed + // getKind()) + if (getStreamer().hasRawTextSupport()) + return true; // Only object file output requires special treatment. + + StringRef Name; + if (getParser().parseIdentifier(Name)) + return TokError("expected identifier in directive"); + // Handle the identifier as the key symbol. + MCSymbol *Sym = getContext().getOrCreateSymbol(Name); + + if (getLexer().isNot(AsmToken::Comma)) + return TokError("unexpected token in directive"); + Lex(); + + int64_t Size; + SMLoc SizeLoc = getLexer().getLoc(); + if (getParser().parseAbsoluteExpression(Size)) + return true; + + int64_t ByteAlignment = 1; + SMLoc ByteAlignmentLoc; + if (getLexer().is(AsmToken::Comma)) { + Lex(); + ByteAlignmentLoc = getLexer().getLoc(); + if (getParser().parseAbsoluteExpression(ByteAlignment)) + return true; + if (!isPowerOf2_64(ByteAlignment)) + return Error(ByteAlignmentLoc, "alignment must be a power of 2"); + } + + int64_t AccessAlignment = 0; + if (getLexer().is(AsmToken::Comma)) { + // The optional access argument specifies the size of the smallest memory + // access to be made to the symbol, expressed in bytes. + SMLoc AccessAlignmentLoc; + Lex(); + AccessAlignmentLoc = getLexer().getLoc(); + if (getParser().parseAbsoluteExpression(AccessAlignment)) + return true; + + if (!isPowerOf2_64(AccessAlignment)) + return Error(AccessAlignmentLoc, "access alignment must be a power of 2"); + } + + if (getLexer().isNot(AsmToken::EndOfStatement)) + return TokError("unexpected token in '.comm' or '.lcomm' directive"); + + Lex(); + + // NOTE: a size of zero for a .comm should create a undefined symbol + // but a size of .lcomm creates a bss symbol of size zero. + if (Size < 0) + return Error(SizeLoc, "invalid '.comm' or '.lcomm' directive size, can't " + "be less than zero"); + + // NOTE: The alignment in the directive is a power of 2 value, the assembler + // may internally end up wanting an alignment in bytes. + // FIXME: Diagnose overflow. + if (ByteAlignment < 0) + return Error(ByteAlignmentLoc, "invalid '.comm' or '.lcomm' directive " + "alignment, can't be less than zero"); + + if (!Sym->isUndefined()) + return Error(Loc, "invalid symbol redefinition"); + + HexagonMCELFStreamer &HexagonELFStreamer = + static_cast<HexagonMCELFStreamer &>(getStreamer()); + if (IsLocal) { + HexagonELFStreamer.HexagonMCEmitLocalCommonSymbol(Sym, Size, ByteAlignment, + AccessAlignment); + return false; + } + + HexagonELFStreamer.HexagonMCEmitCommonSymbol(Sym, Size, ByteAlignment, + AccessAlignment); + return false; +} + +// validate register against architecture +bool HexagonAsmParser::RegisterMatchesArch(unsigned MatchNum) const { + return true; +} + +// extern "C" void LLVMInitializeHexagonAsmLexer(); + +/// Force static initialization. +extern "C" void LLVMInitializeHexagonAsmParser() { + RegisterMCAsmParser<HexagonAsmParser> X(TheHexagonTarget); +} + +#define GET_MATCHER_IMPLEMENTATION +#define GET_REGISTER_MATCHER +#include "HexagonGenAsmMatcher.inc" + +namespace { +bool previousEqual(OperandVector &Operands, size_t Index, StringRef String) { + if (Index >= Operands.size()) + return false; + MCParsedAsmOperand &Operand = *Operands[Operands.size() - Index - 1]; + if (!Operand.isToken()) + return false; + return static_cast<HexagonOperand &>(Operand).getToken().equals_lower(String); +} +bool previousIsLoop(OperandVector &Operands, size_t Index) { + return previousEqual(Operands, Index, "loop0") || + previousEqual(Operands, Index, "loop1") || + previousEqual(Operands, Index, "sp1loop0") || + previousEqual(Operands, Index, "sp2loop0") || + previousEqual(Operands, Index, "sp3loop0"); +} +} + +bool HexagonAsmParser::splitIdentifier(OperandVector &Operands) { + AsmToken const &Token = getParser().getTok(); + StringRef String = Token.getString(); + SMLoc Loc = Token.getLoc(); + getLexer().Lex(); + do { + std::pair<StringRef, StringRef> HeadTail = String.split('.'); + if (!HeadTail.first.empty()) + Operands.push_back(HexagonOperand::CreateToken(HeadTail.first, Loc)); + if (!HeadTail.second.empty()) + Operands.push_back(HexagonOperand::CreateToken( + String.substr(HeadTail.first.size(), 1), Loc)); + String = HeadTail.second; + } while (!String.empty()); + return false; +} + +bool HexagonAsmParser::parseOperand(OperandVector &Operands) { + unsigned Register; + SMLoc Begin; + SMLoc End; + MCAsmLexer &Lexer = getLexer(); + if (!ParseRegister(Register, Begin, End)) { + if (!ErrorMissingParenthesis) + switch (Register) { + default: + break; + case Hexagon::P0: + case Hexagon::P1: + case Hexagon::P2: + case Hexagon::P3: + if (previousEqual(Operands, 0, "if")) { + if (WarnMissingParenthesis) + Warning (Begin, "Missing parenthesis around predicate register"); + static char const *LParen = "("; + static char const *RParen = ")"; + Operands.push_back(HexagonOperand::CreateToken(LParen, Begin)); + Operands.push_back(HexagonOperand::CreateReg(Register, Begin, End)); + AsmToken MaybeDotNew = Lexer.getTok(); + if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) && + MaybeDotNew.getString().equals_lower(".new")) + splitIdentifier(Operands); + Operands.push_back(HexagonOperand::CreateToken(RParen, Begin)); + return false; + } + if (previousEqual(Operands, 0, "!") && + previousEqual(Operands, 1, "if")) { + if (WarnMissingParenthesis) + Warning (Begin, "Missing parenthesis around predicate register"); + static char const *LParen = "("; + static char const *RParen = ")"; + Operands.insert(Operands.end () - 1, + HexagonOperand::CreateToken(LParen, Begin)); + Operands.push_back(HexagonOperand::CreateReg(Register, Begin, End)); + AsmToken MaybeDotNew = Lexer.getTok(); + if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) && + MaybeDotNew.getString().equals_lower(".new")) + splitIdentifier(Operands); + Operands.push_back(HexagonOperand::CreateToken(RParen, Begin)); + return false; + } + break; + } + Operands.push_back(HexagonOperand::CreateReg( + Register, Begin, End)); + return false; + } + return splitIdentifier(Operands); +} + +bool HexagonAsmParser::isLabel(AsmToken &Token) { + MCAsmLexer &Lexer = getLexer(); + AsmToken const &Second = Lexer.getTok(); + AsmToken Third = Lexer.peekTok(); + StringRef String = Token.getString(); + if (Token.is(AsmToken::TokenKind::LCurly) || + Token.is(AsmToken::TokenKind::RCurly)) + return false; + if (!Token.is(AsmToken::TokenKind::Identifier)) + return true; + if (!MatchRegisterName(String.lower())) + return true; + (void)Second; + assert(Second.is(AsmToken::Colon)); + StringRef Raw (String.data(), Third.getString().data() - String.data() + + Third.getString().size()); + std::string Collapsed = Raw; + Collapsed.erase(std::remove_if(Collapsed.begin(), Collapsed.end(), isspace), + Collapsed.end()); + StringRef Whole = Collapsed; + std::pair<StringRef, StringRef> DotSplit = Whole.split('.'); + if (!MatchRegisterName(DotSplit.first.lower())) + return true; + return false; +} + +bool HexagonAsmParser::handleNoncontigiousRegister(bool Contigious, SMLoc &Loc) { + if (!Contigious && ErrorNoncontigiousRegister) { + Error(Loc, "Register name is not contigious"); + return true; + } + if (!Contigious && WarnNoncontigiousRegister) + Warning(Loc, "Register name is not contigious"); + return false; +} + +bool HexagonAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) { + MCAsmLexer &Lexer = getLexer(); + StartLoc = getLexer().getLoc(); + SmallVector<AsmToken, 5> Lookahead; + StringRef RawString(Lexer.getTok().getString().data(), 0); + bool Again = Lexer.is(AsmToken::Identifier); + bool NeededWorkaround = false; + while (Again) { + AsmToken const &Token = Lexer.getTok(); + RawString = StringRef(RawString.data(), + Token.getString().data() - RawString.data () + + Token.getString().size()); + Lookahead.push_back(Token); + Lexer.Lex(); + bool Contigious = Lexer.getTok().getString().data() == + Lookahead.back().getString().data() + + Lookahead.back().getString().size(); + bool Type = Lexer.is(AsmToken::Identifier) || Lexer.is(AsmToken::Dot) || + Lexer.is(AsmToken::Integer) || Lexer.is(AsmToken::Real) || + Lexer.is(AsmToken::Colon); + bool Workaround = Lexer.is(AsmToken::Colon) || + Lookahead.back().is(AsmToken::Colon); + Again = (Contigious && Type) || (Workaround && Type); + NeededWorkaround = NeededWorkaround || (Again && !(Contigious && Type)); + } + std::string Collapsed = RawString; + Collapsed.erase(std::remove_if(Collapsed.begin(), Collapsed.end(), isspace), + Collapsed.end()); + StringRef FullString = Collapsed; + std::pair<StringRef, StringRef> DotSplit = FullString.split('.'); + unsigned DotReg = MatchRegisterName(DotSplit.first.lower()); + if (DotReg != Hexagon::NoRegister && RegisterMatchesArch(DotReg)) { + if (DotSplit.second.empty()) { + RegNo = DotReg; + EndLoc = Lexer.getLoc(); + if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc)) + return true; + return false; + } else { + RegNo = DotReg; + size_t First = RawString.find('.'); + StringRef DotString (RawString.data() + First, RawString.size() - First); + Lexer.UnLex(AsmToken(AsmToken::Identifier, DotString)); + EndLoc = Lexer.getLoc(); + if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc)) + return true; + return false; + } + } + std::pair<StringRef, StringRef> ColonSplit = StringRef(FullString).split(':'); + unsigned ColonReg = MatchRegisterName(ColonSplit.first.lower()); + if (ColonReg != Hexagon::NoRegister && RegisterMatchesArch(DotReg)) { + Lexer.UnLex(Lookahead.back()); + Lookahead.pop_back(); + Lexer.UnLex(Lookahead.back()); + Lookahead.pop_back(); + RegNo = ColonReg; + EndLoc = Lexer.getLoc(); + if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc)) + return true; + return false; + } + while (!Lookahead.empty()) { + Lexer.UnLex(Lookahead.back()); + Lookahead.pop_back(); + } + return true; +} + +bool HexagonAsmParser::implicitExpressionLocation(OperandVector &Operands) { + if (previousEqual(Operands, 0, "call")) + return true; + if (previousEqual(Operands, 0, "jump")) + if (!getLexer().getTok().is(AsmToken::Colon)) + return true; + if (previousEqual(Operands, 0, "(") && previousIsLoop(Operands, 1)) + return true; + if (previousEqual(Operands, 1, ":") && previousEqual(Operands, 2, "jump") && + (previousEqual(Operands, 0, "nt") || previousEqual(Operands, 0, "t"))) + return true; + return false; +} + +bool HexagonAsmParser::parseExpression(MCExpr const *& Expr) { + llvm::SmallVector<AsmToken, 4> Tokens; + MCAsmLexer &Lexer = getLexer(); + bool Done = false; + static char const * Comma = ","; + do { + Tokens.emplace_back (Lexer.getTok()); + Lexer.Lex(); + switch (Tokens.back().getKind()) + { + case AsmToken::TokenKind::Hash: + if (Tokens.size () > 1) + if ((Tokens.end () - 2)->getKind() == AsmToken::TokenKind::Plus) { + Tokens.insert(Tokens.end() - 2, + AsmToken(AsmToken::TokenKind::Comma, Comma)); + Done = true; + } + break; + case AsmToken::TokenKind::RCurly: + case AsmToken::TokenKind::EndOfStatement: + case AsmToken::TokenKind::Eof: + Done = true; + break; + default: + break; + } + } while (!Done); + while (!Tokens.empty()) { + Lexer.UnLex(Tokens.back()); + Tokens.pop_back(); + } + return getParser().parseExpression(Expr); +} + +bool HexagonAsmParser::parseExpressionOrOperand(OperandVector &Operands) { + if (implicitExpressionLocation(Operands)) { + MCAsmParser &Parser = getParser(); + SMLoc Loc = Parser.getLexer().getLoc(); + std::unique_ptr<HexagonOperand> Expr = + HexagonOperand::CreateImm(nullptr, Loc, Loc); + MCExpr const *& Val = Expr->Imm.Val; + Operands.push_back(std::move(Expr)); + return parseExpression(Val); + } + return parseOperand(Operands); +} + +/// Parse an instruction. +bool HexagonAsmParser::parseInstruction(OperandVector &Operands) { + MCAsmParser &Parser = getParser(); + MCAsmLexer &Lexer = getLexer(); + while (true) { + AsmToken const &Token = Parser.getTok(); + switch (Token.getKind()) { + case AsmToken::EndOfStatement: { + Lexer.Lex(); + return false; + } + case AsmToken::LCurly: { + if (!Operands.empty()) + return true; + Operands.push_back( + HexagonOperand::CreateToken(Token.getString(), Token.getLoc())); + Lexer.Lex(); + return false; + } + case AsmToken::RCurly: { + if (Operands.empty()) { + Operands.push_back( + HexagonOperand::CreateToken(Token.getString(), Token.getLoc())); + Lexer.Lex(); + } + return false; + } + case AsmToken::Comma: { + Lexer.Lex(); + continue; + } + case AsmToken::EqualEqual: + case AsmToken::ExclaimEqual: + case AsmToken::GreaterEqual: + case AsmToken::GreaterGreater: + case AsmToken::LessEqual: + case AsmToken::LessLess: { + Operands.push_back(HexagonOperand::CreateToken( + Token.getString().substr(0, 1), Token.getLoc())); + Operands.push_back(HexagonOperand::CreateToken( + Token.getString().substr(1, 1), Token.getLoc())); + Lexer.Lex(); + continue; + } + case AsmToken::Hash: { + bool MustNotExtend = false; + bool ImplicitExpression = implicitExpressionLocation(Operands); + std::unique_ptr<HexagonOperand> Expr = HexagonOperand::CreateImm( + nullptr, Lexer.getLoc(), Lexer.getLoc()); + if (!ImplicitExpression) + Operands.push_back( + HexagonOperand::CreateToken(Token.getString(), Token.getLoc())); + Lexer.Lex(); + bool MustExtend = false; + bool HiOnly = false; + bool LoOnly = false; + if (Lexer.is(AsmToken::Hash)) { + Lexer.Lex(); + MustExtend = true; + } else if (ImplicitExpression) + MustNotExtend = true; + AsmToken const &Token = Parser.getTok(); + if (Token.is(AsmToken::Identifier)) { + StringRef String = Token.getString(); + AsmToken IDToken = Token; + if (String.lower() == "hi") { + HiOnly = true; + } else if (String.lower() == "lo") { + LoOnly = true; + } + if (HiOnly || LoOnly) { + AsmToken LParen = Lexer.peekTok(); + if (!LParen.is(AsmToken::LParen)) { + HiOnly = false; + LoOnly = false; + } else { + Lexer.Lex(); + } + } + } + if (parseExpression(Expr->Imm.Val)) + return true; + int64_t Value; + MCContext &Context = Parser.getContext(); + assert(Expr->Imm.Val != nullptr); + if (Expr->Imm.Val->evaluateAsAbsolute(Value)) { + if (HiOnly) + Expr->Imm.Val = MCBinaryExpr::createLShr( + Expr->Imm.Val, MCConstantExpr::create(16, Context), Context); + if (HiOnly || LoOnly) + Expr->Imm.Val = MCBinaryExpr::createAnd( + Expr->Imm.Val, MCConstantExpr::create(0xffff, Context), Context); + } + if (MustNotExtend) + Expr->Imm.Val = HexagonNoExtendOperand::Create(Expr->Imm.Val, Context); + Expr->Imm.MustExtend = MustExtend; + Operands.push_back(std::move(Expr)); + continue; + } + default: + break; + } + if (parseExpressionOrOperand(Operands)) + return true; + } +} + +bool HexagonAsmParser::ParseInstruction(ParseInstructionInfo &Info, + StringRef Name, + AsmToken ID, + OperandVector &Operands) { + getLexer().UnLex(ID); + return parseInstruction(Operands); +} + +namespace { +MCInst makeCombineInst(int opCode, MCOperand &Rdd, + MCOperand &MO1, MCOperand &MO2) { + MCInst TmpInst; + TmpInst.setOpcode(opCode); + TmpInst.addOperand(Rdd); + TmpInst.addOperand(MO1); + TmpInst.addOperand(MO2); + + return TmpInst; +} +} + +// Define this matcher function after the auto-generated include so we +// have the match class enum definitions. +unsigned HexagonAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp, + unsigned Kind) { + HexagonOperand *Op = static_cast<HexagonOperand *>(&AsmOp); + + switch (Kind) { + case MCK_0: { + int64_t Value; + return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 0 + ? Match_Success + : Match_InvalidOperand; + } + case MCK_1: { + int64_t Value; + return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 1 + ? Match_Success + : Match_InvalidOperand; + } + case MCK__MINUS_1: { + int64_t Value; + return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == -1 + ? Match_Success + : Match_InvalidOperand; + } + } + if (Op->Kind == HexagonOperand::Token && Kind != InvalidMatchClass) { + StringRef myStringRef = StringRef(Op->Tok.Data, Op->Tok.Length); + if (matchTokenString(myStringRef.lower()) == (MatchClassKind)Kind) + return Match_Success; + if (matchTokenString(myStringRef.upper()) == (MatchClassKind)Kind) + return Match_Success; + } + + DEBUG(dbgs() << "Unmatched Operand:"); + DEBUG(Op->dump()); + DEBUG(dbgs() << "\n"); + + return Match_InvalidOperand; +} + +void HexagonAsmParser::OutOfRange(SMLoc IDLoc, long long Val, long long Max) { + std::string errStr; + raw_string_ostream ES(errStr); + ES << "value " << Val << "(" << format_hex(Val, 0) << ") out of range: "; + if (Max >= 0) + ES << "0-" << Max; + else + ES << Max << "-" << (-Max - 1); + Error(IDLoc, ES.str().c_str()); +} + +int HexagonAsmParser::processInstruction(MCInst &Inst, + OperandVector const &Operands, + SMLoc IDLoc, bool &MustExtend) { + MCContext &Context = getParser().getContext(); + const MCRegisterInfo *RI = getContext().getRegisterInfo(); + std::string r = "r"; + std::string v = "v"; + std::string Colon = ":"; + + bool is32bit = false; // used to distinguish between CONST32 and CONST64 + switch (Inst.getOpcode()) { + default: + break; + + case Hexagon::M4_mpyrr_addr: + case Hexagon::S4_addi_asl_ri: + case Hexagon::S4_addi_lsr_ri: + case Hexagon::S4_andi_asl_ri: + case Hexagon::S4_andi_lsr_ri: + case Hexagon::S4_ori_asl_ri: + case Hexagon::S4_ori_lsr_ri: + case Hexagon::S4_or_andix: + case Hexagon::S4_subi_asl_ri: + case Hexagon::S4_subi_lsr_ri: { + MCOperand &Ry = Inst.getOperand(0); + MCOperand &src = Inst.getOperand(2); + if (RI->getEncodingValue(Ry.getReg()) != RI->getEncodingValue(src.getReg())) + return Match_InvalidOperand; + break; + } + + case Hexagon::C2_cmpgei: { + MCOperand &MO = Inst.getOperand(2); + MO.setExpr(MCBinaryExpr::createSub( + MO.getExpr(), MCConstantExpr::create(1, Context), Context)); + Inst.setOpcode(Hexagon::C2_cmpgti); + break; + } + + case Hexagon::C2_cmpgeui: { + MCOperand &MO = Inst.getOperand(2); + int64_t Value; + bool Success = MO.getExpr()->evaluateAsAbsolute(Value); + (void)Success; + assert(Success && "Assured by matcher"); + if (Value == 0) { + MCInst TmpInst; + MCOperand &Pd = Inst.getOperand(0); + MCOperand &Rt = Inst.getOperand(1); + TmpInst.setOpcode(Hexagon::C2_cmpeq); + TmpInst.addOperand(Pd); + TmpInst.addOperand(Rt); + TmpInst.addOperand(Rt); + Inst = TmpInst; + } else { + MO.setExpr(MCBinaryExpr::createSub( + MO.getExpr(), MCConstantExpr::create(1, Context), Context)); + Inst.setOpcode(Hexagon::C2_cmpgtui); + } + break; + } + case Hexagon::J2_loop1r: + case Hexagon::J2_loop1i: + case Hexagon::J2_loop0r: + case Hexagon::J2_loop0i: { + MCOperand &MO = Inst.getOperand(0); + // Loop has different opcodes for extended vs not extended, but we should + // not use the other opcode as it is a legacy artifact of TD files. + int64_t Value; + if (MO.getExpr()->evaluateAsAbsolute(Value)) { + // if the operand can fit within a 7:2 field + if (Value < (1 << 8) && Value >= -(1 << 8)) { + SMLoc myLoc = Operands[2]->getStartLoc(); + // # is left in startLoc in the case of ## + // If '##' found then force extension. + if (*myLoc.getPointer() == '#') { + MustExtend = true; + break; + } + } else { + // If immediate and out of 7:2 range. + MustExtend = true; + } + } + break; + } + + // Translate a "$Rdd = $Rss" to "$Rdd = combine($Rs, $Rt)" + case Hexagon::A2_tfrp: { + MCOperand &MO = Inst.getOperand(1); + unsigned int RegPairNum = RI->getEncodingValue(MO.getReg()); + std::string R1 = r + llvm::utostr_32(RegPairNum + 1); + StringRef Reg1(R1); + MO.setReg(MatchRegisterName(Reg1)); + // Add a new operand for the second register in the pair. + std::string R2 = r + llvm::utostr_32(RegPairNum); + StringRef Reg2(R2); + Inst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2))); + Inst.setOpcode(Hexagon::A2_combinew); + break; + } + + case Hexagon::A2_tfrpt: + case Hexagon::A2_tfrpf: { + MCOperand &MO = Inst.getOperand(2); + unsigned int RegPairNum = RI->getEncodingValue(MO.getReg()); + std::string R1 = r + llvm::utostr_32(RegPairNum + 1); + StringRef Reg1(R1); + MO.setReg(MatchRegisterName(Reg1)); + // Add a new operand for the second register in the pair. + std::string R2 = r + llvm::utostr_32(RegPairNum); + StringRef Reg2(R2); + Inst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2))); + Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrpt) + ? Hexagon::C2_ccombinewt + : Hexagon::C2_ccombinewf); + break; + } + case Hexagon::A2_tfrptnew: + case Hexagon::A2_tfrpfnew: { + MCOperand &MO = Inst.getOperand(2); + unsigned int RegPairNum = RI->getEncodingValue(MO.getReg()); + std::string R1 = r + llvm::utostr_32(RegPairNum + 1); + StringRef Reg1(R1); + MO.setReg(MatchRegisterName(Reg1)); + // Add a new operand for the second register in the pair. + std::string R2 = r + llvm::utostr_32(RegPairNum); + StringRef Reg2(R2); + Inst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2))); + Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrptnew) + ? Hexagon::C2_ccombinewnewt + : Hexagon::C2_ccombinewnewf); + break; + } + + // Translate a "$Rx = CONST32(#imm)" to "$Rx = memw(gp+#LABEL) " + case Hexagon::CONST32: + case Hexagon::CONST32_Float_Real: + case Hexagon::CONST32_Int_Real: + case Hexagon::FCONST32_nsdata: + is32bit = true; + // Translate a "$Rx:y = CONST64(#imm)" to "$Rx:y = memd(gp+#LABEL) " + case Hexagon::CONST64_Float_Real: + case Hexagon::CONST64_Int_Real: + + // FIXME: need better way to detect AsmStreamer (upstream removed getKind()) + if (!Parser.getStreamer().hasRawTextSupport()) { + MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer()); + MCOperand &MO_1 = Inst.getOperand(1); + MCOperand &MO_0 = Inst.getOperand(0); + + // push section onto section stack + MES->PushSection(); + + std::string myCharStr; + MCSectionELF *mySection; + + // check if this as an immediate or a symbol + int64_t Value; + bool Absolute = MO_1.getExpr()->evaluateAsAbsolute(Value); + if (Absolute) { + // Create a new section - one for each constant + // Some or all of the zeros are replaced with the given immediate. + if (is32bit) { + std::string myImmStr = utohexstr(static_cast<uint32_t>(Value)); + myCharStr = StringRef(".gnu.linkonce.l4.CONST_00000000") + .drop_back(myImmStr.size()) + .str() + + myImmStr; + } else { + std::string myImmStr = utohexstr(Value); + myCharStr = StringRef(".gnu.linkonce.l8.CONST_0000000000000000") + .drop_back(myImmStr.size()) + .str() + + myImmStr; + } + + mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS, + ELF::SHF_ALLOC | ELF::SHF_WRITE); + } else if (MO_1.isExpr()) { + // .lita - for expressions + myCharStr = ".lita"; + mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS, + ELF::SHF_ALLOC | ELF::SHF_WRITE); + } else + llvm_unreachable("unexpected type of machine operand!"); + + MES->SwitchSection(mySection); + unsigned byteSize = is32bit ? 4 : 8; + getStreamer().EmitCodeAlignment(byteSize, byteSize); + + MCSymbol *Sym; + + // for symbols, get rid of prepended ".gnu.linkonce.lx." + + // emit symbol if needed + if (Absolute) { + Sym = getContext().getOrCreateSymbol(StringRef(myCharStr.c_str() + 16)); + if (Sym->isUndefined()) { + getStreamer().EmitLabel(Sym); + getStreamer().EmitSymbolAttribute(Sym, MCSA_Global); + getStreamer().EmitIntValue(Value, byteSize); + } + } else if (MO_1.isExpr()) { + const char *StringStart = 0; + const char *StringEnd = 0; + if (*Operands[4]->getStartLoc().getPointer() == '#') { + StringStart = Operands[5]->getStartLoc().getPointer(); + StringEnd = Operands[6]->getStartLoc().getPointer(); + } else { // no pound + StringStart = Operands[4]->getStartLoc().getPointer(); + StringEnd = Operands[5]->getStartLoc().getPointer(); + } + + unsigned size = StringEnd - StringStart; + std::string DotConst = ".CONST_"; + Sym = getContext().getOrCreateSymbol(DotConst + + StringRef(StringStart, size)); + + if (Sym->isUndefined()) { + // case where symbol is not yet defined: emit symbol + getStreamer().EmitLabel(Sym); + getStreamer().EmitSymbolAttribute(Sym, MCSA_Local); + getStreamer().EmitValue(MO_1.getExpr(), 4); + } + } else + llvm_unreachable("unexpected type of machine operand!"); + + MES->PopSection(); + + if (Sym) { + MCInst TmpInst; + if (is32bit) // 32 bit + TmpInst.setOpcode(Hexagon::L2_loadrigp); + else // 64 bit + TmpInst.setOpcode(Hexagon::L2_loadrdgp); + + TmpInst.addOperand(MO_0); + TmpInst.addOperand( + MCOperand::createExpr(MCSymbolRefExpr::create(Sym, getContext()))); + Inst = TmpInst; + } + } + break; + + // Translate a "$Rdd = #-imm" to "$Rdd = combine(#[-1,0], #-imm)" + case Hexagon::A2_tfrpi: { + MCOperand &Rdd = Inst.getOperand(0); + MCOperand &MO = Inst.getOperand(1); + int64_t Value; + int sVal = (MO.getExpr()->evaluateAsAbsolute(Value) && Value < 0) ? -1 : 0; + MCOperand imm(MCOperand::createExpr(MCConstantExpr::create(sVal, Context))); + Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, imm, MO); + break; + } + + // Translate a "$Rdd = [#]#imm" to "$Rdd = combine(#, [#]#imm)" + case Hexagon::TFRI64_V4: { + MCOperand &Rdd = Inst.getOperand(0); + MCOperand &MO = Inst.getOperand(1); + int64_t Value; + if (MO.getExpr()->evaluateAsAbsolute(Value)) { + unsigned long long u64 = Value; + signed int s8 = (u64 >> 32) & 0xFFFFFFFF; + if (s8 < -128 || s8 > 127) + OutOfRange(IDLoc, s8, -128); + MCOperand imm(MCOperand::createExpr( + MCConstantExpr::create(s8, Context))); // upper 32 + MCOperand imm2(MCOperand::createExpr( + MCConstantExpr::create(u64 & 0xFFFFFFFF, Context))); // lower 32 + Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, imm2); + } else { + MCOperand imm(MCOperand::createExpr( + MCConstantExpr::create(0, Context))); // upper 32 + Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, MO); + } + break; + } + + // Handle $Rdd = combine(##imm, #imm)" + case Hexagon::TFRI64_V2_ext: { + MCOperand &Rdd = Inst.getOperand(0); + MCOperand &MO1 = Inst.getOperand(1); + MCOperand &MO2 = Inst.getOperand(2); + int64_t Value; + if (MO2.getExpr()->evaluateAsAbsolute(Value)) { + int s8 = Value; + if (s8 < -128 || s8 > 127) + OutOfRange(IDLoc, s8, -128); + } + Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, MO1, MO2); + break; + } + + // Handle $Rdd = combine(#imm, ##imm)" + case Hexagon::A4_combineii: { + MCOperand &Rdd = Inst.getOperand(0); + MCOperand &MO1 = Inst.getOperand(1); + int64_t Value; + if (MO1.getExpr()->evaluateAsAbsolute(Value)) { + int s8 = Value; + if (s8 < -128 || s8 > 127) + OutOfRange(IDLoc, s8, -128); + } + MCOperand &MO2 = Inst.getOperand(2); + Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, MO1, MO2); + break; + } + + case Hexagon::S2_tableidxb_goodsyntax: { + Inst.setOpcode(Hexagon::S2_tableidxb); + break; + } + + case Hexagon::S2_tableidxh_goodsyntax: { + MCInst TmpInst; + MCOperand &Rx = Inst.getOperand(0); + MCOperand &_dst_ = Inst.getOperand(1); + MCOperand &Rs = Inst.getOperand(2); + MCOperand &Imm4 = Inst.getOperand(3); + MCOperand &Imm6 = Inst.getOperand(4); + Imm6.setExpr(MCBinaryExpr::createSub( + Imm6.getExpr(), MCConstantExpr::create(1, Context), Context)); + TmpInst.setOpcode(Hexagon::S2_tableidxh); + TmpInst.addOperand(Rx); + TmpInst.addOperand(_dst_); + TmpInst.addOperand(Rs); + TmpInst.addOperand(Imm4); + TmpInst.addOperand(Imm6); + Inst = TmpInst; + break; + } + + case Hexagon::S2_tableidxw_goodsyntax: { + MCInst TmpInst; + MCOperand &Rx = Inst.getOperand(0); + MCOperand &_dst_ = Inst.getOperand(1); + MCOperand &Rs = Inst.getOperand(2); + MCOperand &Imm4 = Inst.getOperand(3); + MCOperand &Imm6 = Inst.getOperand(4); + Imm6.setExpr(MCBinaryExpr::createSub( + Imm6.getExpr(), MCConstantExpr::create(2, Context), Context)); + TmpInst.setOpcode(Hexagon::S2_tableidxw); + TmpInst.addOperand(Rx); + TmpInst.addOperand(_dst_); + TmpInst.addOperand(Rs); + TmpInst.addOperand(Imm4); + TmpInst.addOperand(Imm6); + Inst = TmpInst; + break; + } + + case Hexagon::S2_tableidxd_goodsyntax: { + MCInst TmpInst; + MCOperand &Rx = Inst.getOperand(0); + MCOperand &_dst_ = Inst.getOperand(1); + MCOperand &Rs = Inst.getOperand(2); + MCOperand &Imm4 = Inst.getOperand(3); + MCOperand &Imm6 = Inst.getOperand(4); + Imm6.setExpr(MCBinaryExpr::createSub( + Imm6.getExpr(), MCConstantExpr::create(3, Context), Context)); + TmpInst.setOpcode(Hexagon::S2_tableidxd); + TmpInst.addOperand(Rx); + TmpInst.addOperand(_dst_); + TmpInst.addOperand(Rs); + TmpInst.addOperand(Imm4); + TmpInst.addOperand(Imm6); + Inst = TmpInst; + break; + } + + case Hexagon::M2_mpyui: { + Inst.setOpcode(Hexagon::M2_mpyi); + break; + } + case Hexagon::M2_mpysmi: { + MCInst TmpInst; + MCOperand &Rd = Inst.getOperand(0); + MCOperand &Rs = Inst.getOperand(1); + MCOperand &Imm = Inst.getOperand(2); + int64_t Value; + bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value); + assert(Absolute); + (void)Absolute; + if (!MustExtend) { + if (Value < 0 && Value > -256) { + Imm.setExpr(MCConstantExpr::create(Value * -1, Context)); + TmpInst.setOpcode(Hexagon::M2_mpysin); + } else if (Value < 256 && Value >= 0) + TmpInst.setOpcode(Hexagon::M2_mpysip); + else + return Match_InvalidOperand; + } else { + if (Value >= 0) + TmpInst.setOpcode(Hexagon::M2_mpysip); + else + return Match_InvalidOperand; + } + TmpInst.addOperand(Rd); + TmpInst.addOperand(Rs); + TmpInst.addOperand(Imm); + Inst = TmpInst; + break; + } + + case Hexagon::S2_asr_i_r_rnd_goodsyntax: { + MCOperand &Imm = Inst.getOperand(2); + MCInst TmpInst; + int64_t Value; + bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value); + assert(Absolute); + (void)Absolute; + if (Value == 0) { // convert to $Rd = $Rs + TmpInst.setOpcode(Hexagon::A2_tfr); + MCOperand &Rd = Inst.getOperand(0); + MCOperand &Rs = Inst.getOperand(1); + TmpInst.addOperand(Rd); + TmpInst.addOperand(Rs); + } else { + Imm.setExpr(MCBinaryExpr::createSub( + Imm.getExpr(), MCConstantExpr::create(1, Context), Context)); + TmpInst.setOpcode(Hexagon::S2_asr_i_r_rnd); + MCOperand &Rd = Inst.getOperand(0); + MCOperand &Rs = Inst.getOperand(1); + TmpInst.addOperand(Rd); + TmpInst.addOperand(Rs); + TmpInst.addOperand(Imm); + } + Inst = TmpInst; + break; + } + + case Hexagon::S2_asr_i_p_rnd_goodsyntax: { + MCOperand &Rdd = Inst.getOperand(0); + MCOperand &Rss = Inst.getOperand(1); + MCOperand &Imm = Inst.getOperand(2); + int64_t Value; + bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value); + assert(Absolute); + (void)Absolute; + if (Value == 0) { // convert to $Rdd = combine ($Rs[0], $Rs[1]) + MCInst TmpInst; + unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg()); + std::string R1 = r + llvm::utostr_32(RegPairNum + 1); + StringRef Reg1(R1); + Rss.setReg(MatchRegisterName(Reg1)); + // Add a new operand for the second register in the pair. + std::string R2 = r + llvm::utostr_32(RegPairNum); + StringRef Reg2(R2); + TmpInst.setOpcode(Hexagon::A2_combinew); + TmpInst.addOperand(Rdd); + TmpInst.addOperand(Rss); + TmpInst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2))); + Inst = TmpInst; + } else { + Imm.setExpr(MCBinaryExpr::createSub( + Imm.getExpr(), MCConstantExpr::create(1, Context), Context)); + Inst.setOpcode(Hexagon::S2_asr_i_p_rnd); + } + break; + } + + case Hexagon::A4_boundscheck: { + MCOperand &Rs = Inst.getOperand(1); + unsigned int RegNum = RI->getEncodingValue(Rs.getReg()); + if (RegNum & 1) { // Odd mapped to raw:hi, regpair is rodd:odd-1, like r3:2 + Inst.setOpcode(Hexagon::A4_boundscheck_hi); + std::string Name = + r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1); + StringRef RegPair = Name; + Rs.setReg(MatchRegisterName(RegPair)); + } else { // raw:lo + Inst.setOpcode(Hexagon::A4_boundscheck_lo); + std::string Name = + r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum); + StringRef RegPair = Name; + Rs.setReg(MatchRegisterName(RegPair)); + } + break; + } + + case Hexagon::A2_addsp: { + MCOperand &Rs = Inst.getOperand(1); + unsigned int RegNum = RI->getEncodingValue(Rs.getReg()); + if (RegNum & 1) { // Odd mapped to raw:hi + Inst.setOpcode(Hexagon::A2_addsph); + std::string Name = + r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1); + StringRef RegPair = Name; + Rs.setReg(MatchRegisterName(RegPair)); + } else { // Even mapped raw:lo + Inst.setOpcode(Hexagon::A2_addspl); + std::string Name = + r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum); + StringRef RegPair = Name; + Rs.setReg(MatchRegisterName(RegPair)); + } + break; + } + + case Hexagon::M2_vrcmpys_s1: { + MCOperand &Rt = Inst.getOperand(2); + unsigned int RegNum = RI->getEncodingValue(Rt.getReg()); + if (RegNum & 1) { // Odd mapped to sat:raw:hi + Inst.setOpcode(Hexagon::M2_vrcmpys_s1_h); + std::string Name = + r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1); + StringRef RegPair = Name; + Rt.setReg(MatchRegisterName(RegPair)); + } else { // Even mapped sat:raw:lo + Inst.setOpcode(Hexagon::M2_vrcmpys_s1_l); + std::string Name = + r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum); + StringRef RegPair = Name; + Rt.setReg(MatchRegisterName(RegPair)); + } + break; + } + + case Hexagon::M2_vrcmpys_acc_s1: { + MCInst TmpInst; + MCOperand &Rxx = Inst.getOperand(0); + MCOperand &Rss = Inst.getOperand(2); + MCOperand &Rt = Inst.getOperand(3); + unsigned int RegNum = RI->getEncodingValue(Rt.getReg()); + if (RegNum & 1) { // Odd mapped to sat:raw:hi + TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_h); + std::string Name = + r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1); + StringRef RegPair = Name; + Rt.setReg(MatchRegisterName(RegPair)); + } else { // Even mapped sat:raw:lo + TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_l); + std::string Name = + r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum); + StringRef RegPair = Name; + Rt.setReg(MatchRegisterName(RegPair)); + } + // Registers are in different positions + TmpInst.addOperand(Rxx); + TmpInst.addOperand(Rxx); + TmpInst.addOperand(Rss); + TmpInst.addOperand(Rt); + Inst = TmpInst; + break; + } + + case Hexagon::M2_vrcmpys_s1rp: { + MCOperand &Rt = Inst.getOperand(2); + unsigned int RegNum = RI->getEncodingValue(Rt.getReg()); + if (RegNum & 1) { // Odd mapped to rnd:sat:raw:hi + Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_h); + std::string Name = + r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1); + StringRef RegPair = Name; + Rt.setReg(MatchRegisterName(RegPair)); + } else { // Even mapped rnd:sat:raw:lo + Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_l); + std::string Name = + r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum); + StringRef RegPair = Name; + Rt.setReg(MatchRegisterName(RegPair)); + } + break; + } + + case Hexagon::S5_asrhub_rnd_sat_goodsyntax: { + MCOperand &Imm = Inst.getOperand(2); + int64_t Value; + bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value); + assert(Absolute); + (void)Absolute; + if (Value == 0) + Inst.setOpcode(Hexagon::S2_vsathub); + else { + Imm.setExpr(MCBinaryExpr::createSub( + Imm.getExpr(), MCConstantExpr::create(1, Context), Context)); + Inst.setOpcode(Hexagon::S5_asrhub_rnd_sat); + } + break; + } + + case Hexagon::S5_vasrhrnd_goodsyntax: { + MCOperand &Rdd = Inst.getOperand(0); + MCOperand &Rss = Inst.getOperand(1); + MCOperand &Imm = Inst.getOperand(2); + int64_t Value; + bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value); + assert(Absolute); + (void)Absolute; + if (Value == 0) { + MCInst TmpInst; + unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg()); + std::string R1 = r + llvm::utostr_32(RegPairNum + 1); + StringRef Reg1(R1); + Rss.setReg(MatchRegisterName(Reg1)); + // Add a new operand for the second register in the pair. + std::string R2 = r + llvm::utostr_32(RegPairNum); + StringRef Reg2(R2); + TmpInst.setOpcode(Hexagon::A2_combinew); + TmpInst.addOperand(Rdd); + TmpInst.addOperand(Rss); + TmpInst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2))); + Inst = TmpInst; + } else { + Imm.setExpr(MCBinaryExpr::createSub( + Imm.getExpr(), MCConstantExpr::create(1, Context), Context)); + Inst.setOpcode(Hexagon::S5_vasrhrnd); + } + break; + } + + case Hexagon::A2_not: { + MCInst TmpInst; + MCOperand &Rd = Inst.getOperand(0); + MCOperand &Rs = Inst.getOperand(1); + TmpInst.setOpcode(Hexagon::A2_subri); + TmpInst.addOperand(Rd); + TmpInst.addOperand( + MCOperand::createExpr(MCConstantExpr::create(-1, Context))); + TmpInst.addOperand(Rs); + Inst = TmpInst; + break; + } + } // switch + + return Match_Success; +} |