summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/Hexagon/AsmParser/HexagonAsmParser.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/AsmParser/HexagonAsmParser.cpp')
-rw-r--r--contrib/llvm/lib/Target/Hexagon/AsmParser/HexagonAsmParser.cpp2152
1 files changed, 2152 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/AsmParser/HexagonAsmParser.cpp b/contrib/llvm/lib/Target/Hexagon/AsmParser/HexagonAsmParser.cpp
new file mode 100644
index 0000000..a8622a9
--- /dev/null
+++ b/contrib/llvm/lib/Target/Hexagon/AsmParser/HexagonAsmParser.cpp
@@ -0,0 +1,2152 @@
+//===-- HexagonAsmParser.cpp - Parse Hexagon asm to MCInst instructions----===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "mcasmparser"
+
+#include "Hexagon.h"
+#include "HexagonRegisterInfo.h"
+#include "HexagonTargetStreamer.h"
+#include "MCTargetDesc/HexagonBaseInfo.h"
+#include "MCTargetDesc/HexagonMCELFStreamer.h"
+#include "MCTargetDesc/HexagonMCChecker.h"
+#include "MCTargetDesc/HexagonMCExpr.h"
+#include "MCTargetDesc/HexagonMCShuffler.h"
+#include "MCTargetDesc/HexagonMCTargetDesc.h"
+#include "MCTargetDesc/HexagonMCAsmInfo.h"
+#include "MCTargetDesc/HexagonShuffler.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCELFStreamer.h"
+#include "llvm/MC/MCExpr.h"
+#include "llvm/MC/MCInst.h"
+#include "llvm/MC/MCParser/MCAsmLexer.h"
+#include "llvm/MC/MCParser/MCAsmParser.h"
+#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/MCTargetAsmParser.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ELF.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Support/SourceMgr.h"
+#include "llvm/Support/MemoryBuffer.h"
+#include "llvm/Support/TargetRegistry.h"
+#include "llvm/Support/raw_ostream.h"
+#include <sstream>
+
+using namespace llvm;
+
+static cl::opt<bool> EnableFutureRegs("mfuture-regs",
+ cl::desc("Enable future registers"));
+
+static cl::opt<bool> WarnMissingParenthesis("mwarn-missing-parenthesis",
+cl::desc("Warn for missing parenthesis around predicate registers"),
+cl::init(true));
+static cl::opt<bool> ErrorMissingParenthesis("merror-missing-parenthesis",
+cl::desc("Error for missing parenthesis around predicate registers"),
+cl::init(false));
+static cl::opt<bool> WarnSignedMismatch("mwarn-sign-mismatch",
+cl::desc("Warn for mismatching a signed and unsigned value"),
+cl::init(true));
+static cl::opt<bool> WarnNoncontigiousRegister("mwarn-noncontigious-register",
+cl::desc("Warn for register names that arent contigious"),
+cl::init(true));
+static cl::opt<bool> ErrorNoncontigiousRegister("merror-noncontigious-register",
+cl::desc("Error for register names that aren't contigious"),
+cl::init(false));
+
+
+namespace {
+struct HexagonOperand;
+
+class HexagonAsmParser : public MCTargetAsmParser {
+
+ HexagonTargetStreamer &getTargetStreamer() {
+ MCTargetStreamer &TS = *Parser.getStreamer().getTargetStreamer();
+ return static_cast<HexagonTargetStreamer &>(TS);
+ }
+
+ MCAsmParser &Parser;
+ MCAssembler *Assembler;
+ MCInstrInfo const &MCII;
+ MCInst MCB;
+ bool InBrackets;
+
+ MCAsmParser &getParser() const { return Parser; }
+ MCAssembler *getAssembler() const { return Assembler; }
+ MCAsmLexer &getLexer() const { return Parser.getLexer(); }
+
+ bool equalIsAsmAssignment() override { return false; }
+ bool isLabel(AsmToken &Token) override;
+
+ void Warning(SMLoc L, const Twine &Msg) { Parser.Warning(L, Msg); }
+ bool Error(SMLoc L, const Twine &Msg) { return Parser.Error(L, Msg); }
+ bool ParseDirectiveFalign(unsigned Size, SMLoc L);
+
+ virtual bool ParseRegister(unsigned &RegNo,
+ SMLoc &StartLoc,
+ SMLoc &EndLoc) override;
+ bool ParseDirectiveSubsection(SMLoc L);
+ bool ParseDirectiveValue(unsigned Size, SMLoc L);
+ bool ParseDirectiveComm(bool IsLocal, SMLoc L);
+ bool RegisterMatchesArch(unsigned MatchNum) const;
+
+ bool matchBundleOptions();
+ bool handleNoncontigiousRegister(bool Contigious, SMLoc &Loc);
+ bool finishBundle(SMLoc IDLoc, MCStreamer &Out);
+ void canonicalizeImmediates(MCInst &MCI);
+ bool matchOneInstruction(MCInst &MCB, SMLoc IDLoc,
+ OperandVector &InstOperands, uint64_t &ErrorInfo,
+ bool MatchingInlineAsm, bool &MustExtend);
+
+ bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands, MCStreamer &Out,
+ uint64_t &ErrorInfo, bool MatchingInlineAsm) override;
+
+ unsigned validateTargetOperandClass(MCParsedAsmOperand &Op, unsigned Kind) override;
+ void OutOfRange(SMLoc IDLoc, long long Val, long long Max);
+ int processInstruction(MCInst &Inst, OperandVector const &Operands,
+ SMLoc IDLoc, bool &MustExtend);
+
+ // Check if we have an assembler and, if so, set the ELF e_header flags.
+ void chksetELFHeaderEFlags(unsigned flags) {
+ if (getAssembler())
+ getAssembler()->setELFHeaderEFlags(flags);
+ }
+
+/// @name Auto-generated Match Functions
+/// {
+
+#define GET_ASSEMBLER_HEADER
+#include "HexagonGenAsmMatcher.inc"
+
+ /// }
+
+public:
+ HexagonAsmParser(const MCSubtargetInfo &_STI, MCAsmParser &_Parser,
+ const MCInstrInfo &MII, const MCTargetOptions &Options)
+ : MCTargetAsmParser(Options, _STI), Parser(_Parser),
+ MCII (MII), MCB(HexagonMCInstrInfo::createBundle()), InBrackets(false) {
+ setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
+
+ MCAsmParserExtension::Initialize(_Parser);
+
+ Assembler = nullptr;
+ // FIXME: need better way to detect AsmStreamer (upstream removed getKind())
+ if (!Parser.getStreamer().hasRawTextSupport()) {
+ MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer());
+ Assembler = &MES->getAssembler();
+ }
+ }
+
+ bool mustExtend(OperandVector &Operands);
+ bool splitIdentifier(OperandVector &Operands);
+ bool parseOperand(OperandVector &Operands);
+ bool parseInstruction(OperandVector &Operands);
+ bool implicitExpressionLocation(OperandVector &Operands);
+ bool parseExpressionOrOperand(OperandVector &Operands);
+ bool parseExpression(MCExpr const *& Expr);
+ virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ SMLoc NameLoc, OperandVector &Operands) override
+ {
+ llvm_unreachable("Unimplemented");
+ }
+ virtual bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
+ AsmToken ID, OperandVector &Operands) override;
+
+ virtual bool ParseDirective(AsmToken DirectiveID) override;
+};
+
+/// HexagonOperand - Instances of this class represent a parsed Hexagon machine
+/// instruction.
+struct HexagonOperand : public MCParsedAsmOperand {
+ enum KindTy { Token, Immediate, Register } Kind;
+
+ SMLoc StartLoc, EndLoc;
+
+ struct TokTy {
+ const char *Data;
+ unsigned Length;
+ };
+
+ struct RegTy {
+ unsigned RegNum;
+ };
+
+ struct ImmTy {
+ const MCExpr *Val;
+ bool MustExtend;
+ };
+
+ struct InstTy {
+ OperandVector *SubInsts;
+ };
+
+ union {
+ struct TokTy Tok;
+ struct RegTy Reg;
+ struct ImmTy Imm;
+ };
+
+ HexagonOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
+
+public:
+ HexagonOperand(const HexagonOperand &o) : MCParsedAsmOperand() {
+ Kind = o.Kind;
+ StartLoc = o.StartLoc;
+ EndLoc = o.EndLoc;
+ switch (Kind) {
+ case Register:
+ Reg = o.Reg;
+ break;
+ case Immediate:
+ Imm = o.Imm;
+ break;
+ case Token:
+ Tok = o.Tok;
+ break;
+ }
+ }
+
+ /// getStartLoc - Get the location of the first token of this operand.
+ SMLoc getStartLoc() const { return StartLoc; }
+
+ /// getEndLoc - Get the location of the last token of this operand.
+ SMLoc getEndLoc() const { return EndLoc; }
+
+ unsigned getReg() const {
+ assert(Kind == Register && "Invalid access!");
+ return Reg.RegNum;
+ }
+
+ const MCExpr *getImm() const {
+ assert(Kind == Immediate && "Invalid access!");
+ return Imm.Val;
+ }
+
+ bool isToken() const { return Kind == Token; }
+ bool isImm() const { return Kind == Immediate; }
+ bool isMem() const { llvm_unreachable("No isMem"); }
+ bool isReg() const { return Kind == Register; }
+
+ bool CheckImmRange(int immBits, int zeroBits, bool isSigned,
+ bool isRelocatable, bool Extendable) const {
+ if (Kind == Immediate) {
+ const MCExpr *myMCExpr = getImm();
+ if (Imm.MustExtend && !Extendable)
+ return false;
+ int64_t Res;
+ if (myMCExpr->evaluateAsAbsolute(Res)) {
+ int bits = immBits + zeroBits;
+ // Field bit range is zerobits + bits
+ // zeroBits must be 0
+ if (Res & ((1 << zeroBits) - 1))
+ return false;
+ if (isSigned) {
+ if (Res < (1LL << (bits - 1)) && Res >= -(1LL << (bits - 1)))
+ return true;
+ } else {
+ if (bits == 64)
+ return true;
+ if (Res >= 0)
+ return ((uint64_t)Res < (uint64_t)(1ULL << bits)) ? true : false;
+ else {
+ const int64_t high_bit_set = 1ULL << 63;
+ const uint64_t mask = (high_bit_set >> (63 - bits));
+ return (((uint64_t)Res & mask) == mask) ? true : false;
+ }
+ }
+ } else if (myMCExpr->getKind() == MCExpr::SymbolRef && isRelocatable)
+ return true;
+ else if (myMCExpr->getKind() == MCExpr::Binary ||
+ myMCExpr->getKind() == MCExpr::Unary)
+ return true;
+ }
+ return false;
+ }
+
+ bool isf32Ext() const { return false; }
+ bool iss32Imm() const { return CheckImmRange(32, 0, true, true, false); }
+ bool iss8Imm() const { return CheckImmRange(8, 0, true, false, false); }
+ bool iss8Imm64() const { return CheckImmRange(8, 0, true, true, false); }
+ bool iss7Imm() const { return CheckImmRange(7, 0, true, false, false); }
+ bool iss6Imm() const { return CheckImmRange(6, 0, true, false, false); }
+ bool iss4Imm() const { return CheckImmRange(4, 0, true, false, false); }
+ bool iss4_0Imm() const { return CheckImmRange(4, 0, true, false, false); }
+ bool iss4_1Imm() const { return CheckImmRange(4, 1, true, false, false); }
+ bool iss4_2Imm() const { return CheckImmRange(4, 2, true, false, false); }
+ bool iss4_3Imm() const { return CheckImmRange(4, 3, true, false, false); }
+ bool iss4_6Imm() const { return CheckImmRange(4, 0, true, false, false); }
+ bool iss3_6Imm() const { return CheckImmRange(3, 0, true, false, false); }
+ bool iss3Imm() const { return CheckImmRange(3, 0, true, false, false); }
+
+ bool isu64Imm() const { return CheckImmRange(64, 0, false, true, true); }
+ bool isu32Imm() const { return CheckImmRange(32, 0, false, true, false); }
+ bool isu26_6Imm() const { return CheckImmRange(26, 6, false, true, false); }
+ bool isu16Imm() const { return CheckImmRange(16, 0, false, true, false); }
+ bool isu16_0Imm() const { return CheckImmRange(16, 0, false, true, false); }
+ bool isu16_1Imm() const { return CheckImmRange(16, 1, false, true, false); }
+ bool isu16_2Imm() const { return CheckImmRange(16, 2, false, true, false); }
+ bool isu16_3Imm() const { return CheckImmRange(16, 3, false, true, false); }
+ bool isu11_3Imm() const { return CheckImmRange(11, 3, false, false, false); }
+ bool isu6_0Imm() const { return CheckImmRange(6, 0, false, false, false); }
+ bool isu6_1Imm() const { return CheckImmRange(6, 1, false, false, false); }
+ bool isu6_2Imm() const { return CheckImmRange(6, 2, false, false, false); }
+ bool isu6_3Imm() const { return CheckImmRange(6, 3, false, false, false); }
+ bool isu10Imm() const { return CheckImmRange(10, 0, false, false, false); }
+ bool isu9Imm() const { return CheckImmRange(9, 0, false, false, false); }
+ bool isu8Imm() const { return CheckImmRange(8, 0, false, false, false); }
+ bool isu7Imm() const { return CheckImmRange(7, 0, false, false, false); }
+ bool isu6Imm() const { return CheckImmRange(6, 0, false, false, false); }
+ bool isu5Imm() const { return CheckImmRange(5, 0, false, false, false); }
+ bool isu4Imm() const { return CheckImmRange(4, 0, false, false, false); }
+ bool isu3Imm() const { return CheckImmRange(3, 0, false, false, false); }
+ bool isu2Imm() const { return CheckImmRange(2, 0, false, false, false); }
+ bool isu1Imm() const { return CheckImmRange(1, 0, false, false, false); }
+
+ bool ism6Imm() const { return CheckImmRange(6, 0, false, false, false); }
+ bool isn8Imm() const { return CheckImmRange(8, 0, false, false, false); }
+
+ bool iss16Ext() const { return CheckImmRange(16 + 26, 0, true, true, true); }
+ bool iss12Ext() const { return CheckImmRange(12 + 26, 0, true, true, true); }
+ bool iss10Ext() const { return CheckImmRange(10 + 26, 0, true, true, true); }
+ bool iss9Ext() const { return CheckImmRange(9 + 26, 0, true, true, true); }
+ bool iss8Ext() const { return CheckImmRange(8 + 26, 0, true, true, true); }
+ bool iss7Ext() const { return CheckImmRange(7 + 26, 0, true, true, true); }
+ bool iss6Ext() const { return CheckImmRange(6 + 26, 0, true, true, true); }
+ bool iss11_0Ext() const {
+ return CheckImmRange(11 + 26, 0, true, true, true);
+ }
+ bool iss11_1Ext() const {
+ return CheckImmRange(11 + 26, 1, true, true, true);
+ }
+ bool iss11_2Ext() const {
+ return CheckImmRange(11 + 26, 2, true, true, true);
+ }
+ bool iss11_3Ext() const {
+ return CheckImmRange(11 + 26, 3, true, true, true);
+ }
+
+ bool isu6Ext() const { return CheckImmRange(6 + 26, 0, false, true, true); }
+ bool isu7Ext() const { return CheckImmRange(7 + 26, 0, false, true, true); }
+ bool isu8Ext() const { return CheckImmRange(8 + 26, 0, false, true, true); }
+ bool isu9Ext() const { return CheckImmRange(9 + 26, 0, false, true, true); }
+ bool isu10Ext() const { return CheckImmRange(10 + 26, 0, false, true, true); }
+ bool isu6_0Ext() const { return CheckImmRange(6 + 26, 0, false, true, true); }
+ bool isu6_1Ext() const { return CheckImmRange(6 + 26, 1, false, true, true); }
+ bool isu6_2Ext() const { return CheckImmRange(6 + 26, 2, false, true, true); }
+ bool isu6_3Ext() const { return CheckImmRange(6 + 26, 3, false, true, true); }
+ bool isu32MustExt() const { return isImm() && Imm.MustExtend; }
+
+ void addRegOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createReg(getReg()));
+ }
+
+ void addImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ Inst.addOperand(MCOperand::createExpr(getImm()));
+ }
+
+ void addSignedImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ MCExpr const *Expr = getImm();
+ int64_t Value;
+ if (!Expr->evaluateAsAbsolute(Value)) {
+ Inst.addOperand(MCOperand::createExpr(Expr));
+ return;
+ }
+ int64_t Extended = SignExtend64 (Value, 32);
+ if ((Extended < 0) == (Value < 0)) {
+ Inst.addOperand(MCOperand::createExpr(Expr));
+ return;
+ }
+ // Flip bit 33 to signal signed unsigned mismatch
+ Extended ^= 0x100000000;
+ Inst.addOperand(MCOperand::createImm(Extended));
+ }
+
+ void addf32ExtOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+
+ void adds32ImmOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds8ImmOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds8Imm64Operands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds6ImmOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds4ImmOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds4_0ImmOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds4_1ImmOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds4_2ImmOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds4_3ImmOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds3ImmOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+
+ void addu64ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu32ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu26_6ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu16ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu16_0ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu16_1ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu16_2ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu16_3ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu11_3ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu10ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu9ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu8ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu7ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu6ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu6_0ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu6_1ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu6_2ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu6_3ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu5ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu4ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu3ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu2ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu1ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+
+ void addm6ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addn8ImmOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+
+ void adds16ExtOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds12ExtOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds10ExtOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds9ExtOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds8ExtOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds6ExtOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds11_0ExtOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds11_1ExtOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds11_2ExtOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+ void adds11_3ExtOperands(MCInst &Inst, unsigned N) const {
+ addSignedImmOperands(Inst, N);
+ }
+
+ void addu6ExtOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu7ExtOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu8ExtOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu9ExtOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu10ExtOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu6_0ExtOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu6_1ExtOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu6_2ExtOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu6_3ExtOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+ void addu32MustExtOperands(MCInst &Inst, unsigned N) const {
+ addImmOperands(Inst, N);
+ }
+
+ void adds4_6ImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::createImm(CE->getValue() * 64));
+ }
+
+ void adds3_6ImmOperands(MCInst &Inst, unsigned N) const {
+ assert(N == 1 && "Invalid number of operands!");
+ const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
+ Inst.addOperand(MCOperand::createImm(CE->getValue() * 64));
+ }
+
+ StringRef getToken() const {
+ assert(Kind == Token && "Invalid access!");
+ return StringRef(Tok.Data, Tok.Length);
+ }
+
+ virtual void print(raw_ostream &OS) const;
+
+ static std::unique_ptr<HexagonOperand> CreateToken(StringRef Str, SMLoc S) {
+ HexagonOperand *Op = new HexagonOperand(Token);
+ Op->Tok.Data = Str.data();
+ Op->Tok.Length = Str.size();
+ Op->StartLoc = S;
+ Op->EndLoc = S;
+ return std::unique_ptr<HexagonOperand>(Op);
+ }
+
+ static std::unique_ptr<HexagonOperand> CreateReg(unsigned RegNum, SMLoc S,
+ SMLoc E) {
+ HexagonOperand *Op = new HexagonOperand(Register);
+ Op->Reg.RegNum = RegNum;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return std::unique_ptr<HexagonOperand>(Op);
+ }
+
+ static std::unique_ptr<HexagonOperand> CreateImm(const MCExpr *Val, SMLoc S,
+ SMLoc E) {
+ HexagonOperand *Op = new HexagonOperand(Immediate);
+ Op->Imm.Val = Val;
+ Op->Imm.MustExtend = false;
+ Op->StartLoc = S;
+ Op->EndLoc = E;
+ return std::unique_ptr<HexagonOperand>(Op);
+ }
+};
+
+} // end anonymous namespace.
+
+void HexagonOperand::print(raw_ostream &OS) const {
+ switch (Kind) {
+ case Immediate:
+ getImm()->print(OS, nullptr);
+ break;
+ case Register:
+ OS << "<register R";
+ OS << getReg() << ">";
+ break;
+ case Token:
+ OS << "'" << getToken() << "'";
+ break;
+ }
+}
+
+/// @name Auto-generated Match Functions
+static unsigned MatchRegisterName(StringRef Name);
+
+bool HexagonAsmParser::finishBundle(SMLoc IDLoc, MCStreamer &Out) {
+ DEBUG(dbgs() << "Bundle:");
+ DEBUG(MCB.dump_pretty(dbgs()));
+ DEBUG(dbgs() << "--\n");
+
+ // Check the bundle for errors.
+ const MCRegisterInfo *RI = getContext().getRegisterInfo();
+ HexagonMCChecker Check(MCII, getSTI(), MCB, MCB, *RI);
+
+ bool CheckOk = HexagonMCInstrInfo::canonicalizePacket(MCII, getSTI(),
+ getContext(), MCB,
+ &Check);
+
+ while (Check.getNextErrInfo() == true) {
+ unsigned Reg = Check.getErrRegister();
+ Twine R(RI->getName(Reg));
+
+ uint64_t Err = Check.getError();
+ if (Err != HexagonMCErrInfo::CHECK_SUCCESS) {
+ if (HexagonMCErrInfo::CHECK_ERROR_BRANCHES & Err)
+ Error(IDLoc,
+ "unconditional branch cannot precede another branch in packet");
+
+ if (HexagonMCErrInfo::CHECK_ERROR_NEWP & Err ||
+ HexagonMCErrInfo::CHECK_ERROR_NEWV & Err)
+ Error(IDLoc, "register `" + R +
+ "' used with `.new' "
+ "but not validly modified in the same packet");
+
+ if (HexagonMCErrInfo::CHECK_ERROR_REGISTERS & Err)
+ Error(IDLoc, "register `" + R + "' modified more than once");
+
+ if (HexagonMCErrInfo::CHECK_ERROR_READONLY & Err)
+ Error(IDLoc, "cannot write to read-only register `" + R + "'");
+
+ if (HexagonMCErrInfo::CHECK_ERROR_LOOP & Err)
+ Error(IDLoc, "loop-setup and some branch instructions "
+ "cannot be in the same packet");
+
+ if (HexagonMCErrInfo::CHECK_ERROR_ENDLOOP & Err) {
+ Twine N(HexagonMCInstrInfo::isInnerLoop(MCB) ? '0' : '1');
+ Error(IDLoc, "packet marked with `:endloop" + N + "' " +
+ "cannot contain instructions that modify register " +
+ "`" + R + "'");
+ }
+
+ if (HexagonMCErrInfo::CHECK_ERROR_SOLO & Err)
+ Error(IDLoc,
+ "instruction cannot appear in packet with other instructions");
+
+ if (HexagonMCErrInfo::CHECK_ERROR_NOSLOTS & Err)
+ Error(IDLoc, "too many slots used in packet");
+
+ if (Err & HexagonMCErrInfo::CHECK_ERROR_SHUFFLE) {
+ uint64_t Erm = Check.getShuffleError();
+
+ if (HexagonShuffler::SHUFFLE_ERROR_INVALID == Erm)
+ Error(IDLoc, "invalid instruction packet");
+ else if (HexagonShuffler::SHUFFLE_ERROR_STORES == Erm)
+ Error(IDLoc, "invalid instruction packet: too many stores");
+ else if (HexagonShuffler::SHUFFLE_ERROR_LOADS == Erm)
+ Error(IDLoc, "invalid instruction packet: too many loads");
+ else if (HexagonShuffler::SHUFFLE_ERROR_BRANCHES == Erm)
+ Error(IDLoc, "too many branches in packet");
+ else if (HexagonShuffler::SHUFFLE_ERROR_NOSLOTS == Erm)
+ Error(IDLoc, "invalid instruction packet: out of slots");
+ else if (HexagonShuffler::SHUFFLE_ERROR_SLOTS == Erm)
+ Error(IDLoc, "invalid instruction packet: slot error");
+ else if (HexagonShuffler::SHUFFLE_ERROR_ERRATA2 == Erm)
+ Error(IDLoc, "v60 packet violation");
+ else if (HexagonShuffler::SHUFFLE_ERROR_STORE_LOAD_CONFLICT == Erm)
+ Error(IDLoc, "slot 0 instruction does not allow slot 1 store");
+ else
+ Error(IDLoc, "unknown error in instruction packet");
+ }
+ }
+
+ unsigned Warn = Check.getWarning();
+ if (Warn != HexagonMCErrInfo::CHECK_SUCCESS) {
+ if (HexagonMCErrInfo::CHECK_WARN_CURRENT & Warn)
+ Warning(IDLoc, "register `" + R + "' used with `.cur' "
+ "but not used in the same packet");
+ else if (HexagonMCErrInfo::CHECK_WARN_TEMPORARY & Warn)
+ Warning(IDLoc, "register `" + R + "' used with `.tmp' "
+ "but not used in the same packet");
+ }
+ }
+
+ if (CheckOk) {
+ MCB.setLoc(IDLoc);
+ if (HexagonMCInstrInfo::bundleSize(MCB) == 0) {
+ assert(!HexagonMCInstrInfo::isInnerLoop(MCB));
+ assert(!HexagonMCInstrInfo::isOuterLoop(MCB));
+ // Empty packets are valid yet aren't emitted
+ return false;
+ }
+ Out.EmitInstruction(MCB, getSTI());
+ } else {
+ // If compounding and duplexing didn't reduce the size below
+ // 4 or less we have a packet that is too big.
+ if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE) {
+ Error(IDLoc, "invalid instruction packet: out of slots");
+ return true; // Error
+ }
+ }
+
+ return false; // No error
+}
+
+bool HexagonAsmParser::matchBundleOptions() {
+ MCAsmParser &Parser = getParser();
+ MCAsmLexer &Lexer = getLexer();
+ while (true) {
+ if (!Parser.getTok().is(AsmToken::Colon))
+ return false;
+ Lexer.Lex();
+ StringRef Option = Parser.getTok().getString();
+ if (Option.compare_lower("endloop0") == 0)
+ HexagonMCInstrInfo::setInnerLoop(MCB);
+ else if (Option.compare_lower("endloop1") == 0)
+ HexagonMCInstrInfo::setOuterLoop(MCB);
+ else if (Option.compare_lower("mem_noshuf") == 0)
+ HexagonMCInstrInfo::setMemReorderDisabled(MCB);
+ else if (Option.compare_lower("mem_shuf") == 0)
+ HexagonMCInstrInfo::setMemStoreReorderEnabled(MCB);
+ else
+ return true;
+ Lexer.Lex();
+ }
+}
+
+// For instruction aliases, immediates are generated rather than
+// MCConstantExpr. Convert them for uniform MCExpr.
+// Also check for signed/unsigned mismatches and warn
+void HexagonAsmParser::canonicalizeImmediates(MCInst &MCI) {
+ MCInst NewInst;
+ NewInst.setOpcode(MCI.getOpcode());
+ for (MCOperand &I : MCI)
+ if (I.isImm()) {
+ int64_t Value (I.getImm());
+ if ((Value & 0x100000000) != (Value & 0x80000000)) {
+ // Detect flipped bit 33 wrt bit 32 and signal warning
+ Value ^= 0x100000000;
+ if (WarnSignedMismatch)
+ Warning (MCI.getLoc(), "Signed/Unsigned mismatch");
+ }
+ NewInst.addOperand(MCOperand::createExpr(
+ MCConstantExpr::create(Value, getContext())));
+ }
+ else
+ NewInst.addOperand(I);
+ MCI = NewInst;
+}
+
+bool HexagonAsmParser::matchOneInstruction(MCInst &MCI, SMLoc IDLoc,
+ OperandVector &InstOperands,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm,
+ bool &MustExtend) {
+ // Perform matching with tablegen asmmatcher generated function
+ int result =
+ MatchInstructionImpl(InstOperands, MCI, ErrorInfo, MatchingInlineAsm);
+ if (result == Match_Success) {
+ MCI.setLoc(IDLoc);
+ MustExtend = mustExtend(InstOperands);
+ canonicalizeImmediates(MCI);
+ result = processInstruction(MCI, InstOperands, IDLoc, MustExtend);
+
+ DEBUG(dbgs() << "Insn:");
+ DEBUG(MCI.dump_pretty(dbgs()));
+ DEBUG(dbgs() << "\n\n");
+
+ MCI.setLoc(IDLoc);
+ }
+
+ // Create instruction operand for bundle instruction
+ // Break this into a separate function Code here is less readable
+ // Think about how to get an instruction error to report correctly.
+ // SMLoc will return the "{"
+ switch (result) {
+ default:
+ break;
+ case Match_Success:
+ return false;
+ case Match_MissingFeature:
+ return Error(IDLoc, "invalid instruction");
+ case Match_MnemonicFail:
+ return Error(IDLoc, "unrecognized instruction");
+ case Match_InvalidOperand:
+ SMLoc ErrorLoc = IDLoc;
+ if (ErrorInfo != ~0U) {
+ if (ErrorInfo >= InstOperands.size())
+ return Error(IDLoc, "too few operands for instruction");
+
+ ErrorLoc = (static_cast<HexagonOperand *>(InstOperands[ErrorInfo].get()))
+ ->getStartLoc();
+ if (ErrorLoc == SMLoc())
+ ErrorLoc = IDLoc;
+ }
+ return Error(ErrorLoc, "invalid operand for instruction");
+ }
+ llvm_unreachable("Implement any new match types added!");
+}
+
+bool HexagonAsmParser::mustExtend(OperandVector &Operands) {
+ unsigned Count = 0;
+ for (std::unique_ptr<MCParsedAsmOperand> &i : Operands)
+ if (i->isImm())
+ if (static_cast<HexagonOperand *>(i.get())->Imm.MustExtend)
+ ++Count;
+ // Multiple extenders should have been filtered by iss9Ext et. al.
+ assert(Count < 2 && "Multiple extenders");
+ return Count == 1;
+}
+
+bool HexagonAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
+ OperandVector &Operands,
+ MCStreamer &Out,
+ uint64_t &ErrorInfo,
+ bool MatchingInlineAsm) {
+ if (!InBrackets) {
+ MCB.clear();
+ MCB.addOperand(MCOperand::createImm(0));
+ }
+ HexagonOperand &FirstOperand = static_cast<HexagonOperand &>(*Operands[0]);
+ if (FirstOperand.isToken() && FirstOperand.getToken() == "{") {
+ assert(Operands.size() == 1 && "Brackets should be by themselves");
+ if (InBrackets) {
+ getParser().Error(IDLoc, "Already in a packet");
+ return true;
+ }
+ InBrackets = true;
+ return false;
+ }
+ if (FirstOperand.isToken() && FirstOperand.getToken() == "}") {
+ assert(Operands.size() == 1 && "Brackets should be by themselves");
+ if (!InBrackets) {
+ getParser().Error(IDLoc, "Not in a packet");
+ return true;
+ }
+ InBrackets = false;
+ if (matchBundleOptions())
+ return true;
+ return finishBundle(IDLoc, Out);
+ }
+ MCInst *SubInst = new (getParser().getContext()) MCInst;
+ bool MustExtend = false;
+ if (matchOneInstruction(*SubInst, IDLoc, Operands, ErrorInfo,
+ MatchingInlineAsm, MustExtend))
+ return true;
+ HexagonMCInstrInfo::extendIfNeeded(
+ getParser().getContext(), MCII, MCB, *SubInst,
+ HexagonMCInstrInfo::isExtended(MCII, *SubInst) || MustExtend);
+ MCB.addOperand(MCOperand::createInst(SubInst));
+ if (!InBrackets)
+ return finishBundle(IDLoc, Out);
+ return false;
+}
+
+/// ParseDirective parses the Hexagon specific directives
+bool HexagonAsmParser::ParseDirective(AsmToken DirectiveID) {
+ StringRef IDVal = DirectiveID.getIdentifier();
+ if ((IDVal.lower() == ".word") || (IDVal.lower() == ".4byte"))
+ return ParseDirectiveValue(4, DirectiveID.getLoc());
+ if (IDVal.lower() == ".short" || IDVal.lower() == ".hword" ||
+ IDVal.lower() == ".half")
+ return ParseDirectiveValue(2, DirectiveID.getLoc());
+ if (IDVal.lower() == ".falign")
+ return ParseDirectiveFalign(256, DirectiveID.getLoc());
+ if ((IDVal.lower() == ".lcomm") || (IDVal.lower() == ".lcommon"))
+ return ParseDirectiveComm(true, DirectiveID.getLoc());
+ if ((IDVal.lower() == ".comm") || (IDVal.lower() == ".common"))
+ return ParseDirectiveComm(false, DirectiveID.getLoc());
+ if (IDVal.lower() == ".subsection")
+ return ParseDirectiveSubsection(DirectiveID.getLoc());
+
+ return true;
+}
+bool HexagonAsmParser::ParseDirectiveSubsection(SMLoc L) {
+ const MCExpr *Subsection = 0;
+ int64_t Res;
+
+ assert((getLexer().isNot(AsmToken::EndOfStatement)) &&
+ "Invalid subsection directive");
+ getParser().parseExpression(Subsection);
+
+ if (!Subsection->evaluateAsAbsolute(Res))
+ return Error(L, "Cannot evaluate subsection number");
+
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return TokError("unexpected token in directive");
+
+ // 0-8192 is the hard-coded range in MCObjectStreamper.cpp, this keeps the
+ // negative subsections together and in the same order but at the opposite
+ // end of the section. Only legacy hexagon-gcc created assembly code
+ // used negative subsections.
+ if ((Res < 0) && (Res > -8193))
+ Subsection = MCConstantExpr::create(8192 + Res, this->getContext());
+
+ getStreamer().SubSection(Subsection);
+ return false;
+}
+
+/// ::= .falign [expression]
+bool HexagonAsmParser::ParseDirectiveFalign(unsigned Size, SMLoc L) {
+
+ int64_t MaxBytesToFill = 15;
+
+ // if there is an arguement
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+ const MCExpr *Value;
+ SMLoc ExprLoc = L;
+
+ // Make sure we have a number (false is returned if expression is a number)
+ if (getParser().parseExpression(Value) == false) {
+ // Make sure this is a number that is in range
+ const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
+ uint64_t IntValue = MCE->getValue();
+ if (!isUIntN(Size, IntValue) && !isIntN(Size, IntValue))
+ return Error(ExprLoc, "literal value out of range (256) for falign");
+ MaxBytesToFill = IntValue;
+ Lex();
+ } else {
+ return Error(ExprLoc, "not a valid expression for falign directive");
+ }
+ }
+
+ getTargetStreamer().emitFAlign(16, MaxBytesToFill);
+ Lex();
+
+ return false;
+}
+
+/// ::= .word [ expression (, expression)* ]
+bool HexagonAsmParser::ParseDirectiveValue(unsigned Size, SMLoc L) {
+ if (getLexer().isNot(AsmToken::EndOfStatement)) {
+
+ for (;;) {
+ const MCExpr *Value;
+ SMLoc ExprLoc = L;
+ if (getParser().parseExpression(Value))
+ return true;
+
+ // Special case constant expressions to match code generator.
+ if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
+ assert(Size <= 8 && "Invalid size");
+ uint64_t IntValue = MCE->getValue();
+ if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue))
+ return Error(ExprLoc, "literal value out of range for directive");
+ getStreamer().EmitIntValue(IntValue, Size);
+ } else
+ getStreamer().EmitValue(Value, Size);
+
+ if (getLexer().is(AsmToken::EndOfStatement))
+ break;
+
+ // FIXME: Improve diagnostic.
+ if (getLexer().isNot(AsmToken::Comma))
+ return TokError("unexpected token in directive");
+ Lex();
+ }
+ }
+
+ Lex();
+ return false;
+}
+
+// This is largely a copy of AsmParser's ParseDirectiveComm extended to
+// accept a 3rd argument, AccessAlignment which indicates the smallest
+// memory access made to the symbol, expressed in bytes. If no
+// AccessAlignment is specified it defaults to the Alignment Value.
+// Hexagon's .lcomm:
+// .lcomm Symbol, Length, Alignment, AccessAlignment
+bool HexagonAsmParser::ParseDirectiveComm(bool IsLocal, SMLoc Loc) {
+ // FIXME: need better way to detect if AsmStreamer (upstream removed
+ // getKind())
+ if (getStreamer().hasRawTextSupport())
+ return true; // Only object file output requires special treatment.
+
+ StringRef Name;
+ if (getParser().parseIdentifier(Name))
+ return TokError("expected identifier in directive");
+ // Handle the identifier as the key symbol.
+ MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
+
+ if (getLexer().isNot(AsmToken::Comma))
+ return TokError("unexpected token in directive");
+ Lex();
+
+ int64_t Size;
+ SMLoc SizeLoc = getLexer().getLoc();
+ if (getParser().parseAbsoluteExpression(Size))
+ return true;
+
+ int64_t ByteAlignment = 1;
+ SMLoc ByteAlignmentLoc;
+ if (getLexer().is(AsmToken::Comma)) {
+ Lex();
+ ByteAlignmentLoc = getLexer().getLoc();
+ if (getParser().parseAbsoluteExpression(ByteAlignment))
+ return true;
+ if (!isPowerOf2_64(ByteAlignment))
+ return Error(ByteAlignmentLoc, "alignment must be a power of 2");
+ }
+
+ int64_t AccessAlignment = 0;
+ if (getLexer().is(AsmToken::Comma)) {
+ // The optional access argument specifies the size of the smallest memory
+ // access to be made to the symbol, expressed in bytes.
+ SMLoc AccessAlignmentLoc;
+ Lex();
+ AccessAlignmentLoc = getLexer().getLoc();
+ if (getParser().parseAbsoluteExpression(AccessAlignment))
+ return true;
+
+ if (!isPowerOf2_64(AccessAlignment))
+ return Error(AccessAlignmentLoc, "access alignment must be a power of 2");
+ }
+
+ if (getLexer().isNot(AsmToken::EndOfStatement))
+ return TokError("unexpected token in '.comm' or '.lcomm' directive");
+
+ Lex();
+
+ // NOTE: a size of zero for a .comm should create a undefined symbol
+ // but a size of .lcomm creates a bss symbol of size zero.
+ if (Size < 0)
+ return Error(SizeLoc, "invalid '.comm' or '.lcomm' directive size, can't "
+ "be less than zero");
+
+ // NOTE: The alignment in the directive is a power of 2 value, the assembler
+ // may internally end up wanting an alignment in bytes.
+ // FIXME: Diagnose overflow.
+ if (ByteAlignment < 0)
+ return Error(ByteAlignmentLoc, "invalid '.comm' or '.lcomm' directive "
+ "alignment, can't be less than zero");
+
+ if (!Sym->isUndefined())
+ return Error(Loc, "invalid symbol redefinition");
+
+ HexagonMCELFStreamer &HexagonELFStreamer =
+ static_cast<HexagonMCELFStreamer &>(getStreamer());
+ if (IsLocal) {
+ HexagonELFStreamer.HexagonMCEmitLocalCommonSymbol(Sym, Size, ByteAlignment,
+ AccessAlignment);
+ return false;
+ }
+
+ HexagonELFStreamer.HexagonMCEmitCommonSymbol(Sym, Size, ByteAlignment,
+ AccessAlignment);
+ return false;
+}
+
+// validate register against architecture
+bool HexagonAsmParser::RegisterMatchesArch(unsigned MatchNum) const {
+ return true;
+}
+
+// extern "C" void LLVMInitializeHexagonAsmLexer();
+
+/// Force static initialization.
+extern "C" void LLVMInitializeHexagonAsmParser() {
+ RegisterMCAsmParser<HexagonAsmParser> X(TheHexagonTarget);
+}
+
+#define GET_MATCHER_IMPLEMENTATION
+#define GET_REGISTER_MATCHER
+#include "HexagonGenAsmMatcher.inc"
+
+namespace {
+bool previousEqual(OperandVector &Operands, size_t Index, StringRef String) {
+ if (Index >= Operands.size())
+ return false;
+ MCParsedAsmOperand &Operand = *Operands[Operands.size() - Index - 1];
+ if (!Operand.isToken())
+ return false;
+ return static_cast<HexagonOperand &>(Operand).getToken().equals_lower(String);
+}
+bool previousIsLoop(OperandVector &Operands, size_t Index) {
+ return previousEqual(Operands, Index, "loop0") ||
+ previousEqual(Operands, Index, "loop1") ||
+ previousEqual(Operands, Index, "sp1loop0") ||
+ previousEqual(Operands, Index, "sp2loop0") ||
+ previousEqual(Operands, Index, "sp3loop0");
+}
+}
+
+bool HexagonAsmParser::splitIdentifier(OperandVector &Operands) {
+ AsmToken const &Token = getParser().getTok();
+ StringRef String = Token.getString();
+ SMLoc Loc = Token.getLoc();
+ getLexer().Lex();
+ do {
+ std::pair<StringRef, StringRef> HeadTail = String.split('.');
+ if (!HeadTail.first.empty())
+ Operands.push_back(HexagonOperand::CreateToken(HeadTail.first, Loc));
+ if (!HeadTail.second.empty())
+ Operands.push_back(HexagonOperand::CreateToken(
+ String.substr(HeadTail.first.size(), 1), Loc));
+ String = HeadTail.second;
+ } while (!String.empty());
+ return false;
+}
+
+bool HexagonAsmParser::parseOperand(OperandVector &Operands) {
+ unsigned Register;
+ SMLoc Begin;
+ SMLoc End;
+ MCAsmLexer &Lexer = getLexer();
+ if (!ParseRegister(Register, Begin, End)) {
+ if (!ErrorMissingParenthesis)
+ switch (Register) {
+ default:
+ break;
+ case Hexagon::P0:
+ case Hexagon::P1:
+ case Hexagon::P2:
+ case Hexagon::P3:
+ if (previousEqual(Operands, 0, "if")) {
+ if (WarnMissingParenthesis)
+ Warning (Begin, "Missing parenthesis around predicate register");
+ static char const *LParen = "(";
+ static char const *RParen = ")";
+ Operands.push_back(HexagonOperand::CreateToken(LParen, Begin));
+ Operands.push_back(HexagonOperand::CreateReg(Register, Begin, End));
+ AsmToken MaybeDotNew = Lexer.getTok();
+ if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) &&
+ MaybeDotNew.getString().equals_lower(".new"))
+ splitIdentifier(Operands);
+ Operands.push_back(HexagonOperand::CreateToken(RParen, Begin));
+ return false;
+ }
+ if (previousEqual(Operands, 0, "!") &&
+ previousEqual(Operands, 1, "if")) {
+ if (WarnMissingParenthesis)
+ Warning (Begin, "Missing parenthesis around predicate register");
+ static char const *LParen = "(";
+ static char const *RParen = ")";
+ Operands.insert(Operands.end () - 1,
+ HexagonOperand::CreateToken(LParen, Begin));
+ Operands.push_back(HexagonOperand::CreateReg(Register, Begin, End));
+ AsmToken MaybeDotNew = Lexer.getTok();
+ if (MaybeDotNew.is(AsmToken::TokenKind::Identifier) &&
+ MaybeDotNew.getString().equals_lower(".new"))
+ splitIdentifier(Operands);
+ Operands.push_back(HexagonOperand::CreateToken(RParen, Begin));
+ return false;
+ }
+ break;
+ }
+ Operands.push_back(HexagonOperand::CreateReg(
+ Register, Begin, End));
+ return false;
+ }
+ return splitIdentifier(Operands);
+}
+
+bool HexagonAsmParser::isLabel(AsmToken &Token) {
+ MCAsmLexer &Lexer = getLexer();
+ AsmToken const &Second = Lexer.getTok();
+ AsmToken Third = Lexer.peekTok();
+ StringRef String = Token.getString();
+ if (Token.is(AsmToken::TokenKind::LCurly) ||
+ Token.is(AsmToken::TokenKind::RCurly))
+ return false;
+ if (!Token.is(AsmToken::TokenKind::Identifier))
+ return true;
+ if (!MatchRegisterName(String.lower()))
+ return true;
+ (void)Second;
+ assert(Second.is(AsmToken::Colon));
+ StringRef Raw (String.data(), Third.getString().data() - String.data() +
+ Third.getString().size());
+ std::string Collapsed = Raw;
+ Collapsed.erase(std::remove_if(Collapsed.begin(), Collapsed.end(), isspace),
+ Collapsed.end());
+ StringRef Whole = Collapsed;
+ std::pair<StringRef, StringRef> DotSplit = Whole.split('.');
+ if (!MatchRegisterName(DotSplit.first.lower()))
+ return true;
+ return false;
+}
+
+bool HexagonAsmParser::handleNoncontigiousRegister(bool Contigious, SMLoc &Loc) {
+ if (!Contigious && ErrorNoncontigiousRegister) {
+ Error(Loc, "Register name is not contigious");
+ return true;
+ }
+ if (!Contigious && WarnNoncontigiousRegister)
+ Warning(Loc, "Register name is not contigious");
+ return false;
+}
+
+bool HexagonAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) {
+ MCAsmLexer &Lexer = getLexer();
+ StartLoc = getLexer().getLoc();
+ SmallVector<AsmToken, 5> Lookahead;
+ StringRef RawString(Lexer.getTok().getString().data(), 0);
+ bool Again = Lexer.is(AsmToken::Identifier);
+ bool NeededWorkaround = false;
+ while (Again) {
+ AsmToken const &Token = Lexer.getTok();
+ RawString = StringRef(RawString.data(),
+ Token.getString().data() - RawString.data () +
+ Token.getString().size());
+ Lookahead.push_back(Token);
+ Lexer.Lex();
+ bool Contigious = Lexer.getTok().getString().data() ==
+ Lookahead.back().getString().data() +
+ Lookahead.back().getString().size();
+ bool Type = Lexer.is(AsmToken::Identifier) || Lexer.is(AsmToken::Dot) ||
+ Lexer.is(AsmToken::Integer) || Lexer.is(AsmToken::Real) ||
+ Lexer.is(AsmToken::Colon);
+ bool Workaround = Lexer.is(AsmToken::Colon) ||
+ Lookahead.back().is(AsmToken::Colon);
+ Again = (Contigious && Type) || (Workaround && Type);
+ NeededWorkaround = NeededWorkaround || (Again && !(Contigious && Type));
+ }
+ std::string Collapsed = RawString;
+ Collapsed.erase(std::remove_if(Collapsed.begin(), Collapsed.end(), isspace),
+ Collapsed.end());
+ StringRef FullString = Collapsed;
+ std::pair<StringRef, StringRef> DotSplit = FullString.split('.');
+ unsigned DotReg = MatchRegisterName(DotSplit.first.lower());
+ if (DotReg != Hexagon::NoRegister && RegisterMatchesArch(DotReg)) {
+ if (DotSplit.second.empty()) {
+ RegNo = DotReg;
+ EndLoc = Lexer.getLoc();
+ if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
+ return true;
+ return false;
+ } else {
+ RegNo = DotReg;
+ size_t First = RawString.find('.');
+ StringRef DotString (RawString.data() + First, RawString.size() - First);
+ Lexer.UnLex(AsmToken(AsmToken::Identifier, DotString));
+ EndLoc = Lexer.getLoc();
+ if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
+ return true;
+ return false;
+ }
+ }
+ std::pair<StringRef, StringRef> ColonSplit = StringRef(FullString).split(':');
+ unsigned ColonReg = MatchRegisterName(ColonSplit.first.lower());
+ if (ColonReg != Hexagon::NoRegister && RegisterMatchesArch(DotReg)) {
+ Lexer.UnLex(Lookahead.back());
+ Lookahead.pop_back();
+ Lexer.UnLex(Lookahead.back());
+ Lookahead.pop_back();
+ RegNo = ColonReg;
+ EndLoc = Lexer.getLoc();
+ if (handleNoncontigiousRegister(!NeededWorkaround, StartLoc))
+ return true;
+ return false;
+ }
+ while (!Lookahead.empty()) {
+ Lexer.UnLex(Lookahead.back());
+ Lookahead.pop_back();
+ }
+ return true;
+}
+
+bool HexagonAsmParser::implicitExpressionLocation(OperandVector &Operands) {
+ if (previousEqual(Operands, 0, "call"))
+ return true;
+ if (previousEqual(Operands, 0, "jump"))
+ if (!getLexer().getTok().is(AsmToken::Colon))
+ return true;
+ if (previousEqual(Operands, 0, "(") && previousIsLoop(Operands, 1))
+ return true;
+ if (previousEqual(Operands, 1, ":") && previousEqual(Operands, 2, "jump") &&
+ (previousEqual(Operands, 0, "nt") || previousEqual(Operands, 0, "t")))
+ return true;
+ return false;
+}
+
+bool HexagonAsmParser::parseExpression(MCExpr const *& Expr) {
+ llvm::SmallVector<AsmToken, 4> Tokens;
+ MCAsmLexer &Lexer = getLexer();
+ bool Done = false;
+ static char const * Comma = ",";
+ do {
+ Tokens.emplace_back (Lexer.getTok());
+ Lexer.Lex();
+ switch (Tokens.back().getKind())
+ {
+ case AsmToken::TokenKind::Hash:
+ if (Tokens.size () > 1)
+ if ((Tokens.end () - 2)->getKind() == AsmToken::TokenKind::Plus) {
+ Tokens.insert(Tokens.end() - 2,
+ AsmToken(AsmToken::TokenKind::Comma, Comma));
+ Done = true;
+ }
+ break;
+ case AsmToken::TokenKind::RCurly:
+ case AsmToken::TokenKind::EndOfStatement:
+ case AsmToken::TokenKind::Eof:
+ Done = true;
+ break;
+ default:
+ break;
+ }
+ } while (!Done);
+ while (!Tokens.empty()) {
+ Lexer.UnLex(Tokens.back());
+ Tokens.pop_back();
+ }
+ return getParser().parseExpression(Expr);
+}
+
+bool HexagonAsmParser::parseExpressionOrOperand(OperandVector &Operands) {
+ if (implicitExpressionLocation(Operands)) {
+ MCAsmParser &Parser = getParser();
+ SMLoc Loc = Parser.getLexer().getLoc();
+ std::unique_ptr<HexagonOperand> Expr =
+ HexagonOperand::CreateImm(nullptr, Loc, Loc);
+ MCExpr const *& Val = Expr->Imm.Val;
+ Operands.push_back(std::move(Expr));
+ return parseExpression(Val);
+ }
+ return parseOperand(Operands);
+}
+
+/// Parse an instruction.
+bool HexagonAsmParser::parseInstruction(OperandVector &Operands) {
+ MCAsmParser &Parser = getParser();
+ MCAsmLexer &Lexer = getLexer();
+ while (true) {
+ AsmToken const &Token = Parser.getTok();
+ switch (Token.getKind()) {
+ case AsmToken::EndOfStatement: {
+ Lexer.Lex();
+ return false;
+ }
+ case AsmToken::LCurly: {
+ if (!Operands.empty())
+ return true;
+ Operands.push_back(
+ HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
+ Lexer.Lex();
+ return false;
+ }
+ case AsmToken::RCurly: {
+ if (Operands.empty()) {
+ Operands.push_back(
+ HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
+ Lexer.Lex();
+ }
+ return false;
+ }
+ case AsmToken::Comma: {
+ Lexer.Lex();
+ continue;
+ }
+ case AsmToken::EqualEqual:
+ case AsmToken::ExclaimEqual:
+ case AsmToken::GreaterEqual:
+ case AsmToken::GreaterGreater:
+ case AsmToken::LessEqual:
+ case AsmToken::LessLess: {
+ Operands.push_back(HexagonOperand::CreateToken(
+ Token.getString().substr(0, 1), Token.getLoc()));
+ Operands.push_back(HexagonOperand::CreateToken(
+ Token.getString().substr(1, 1), Token.getLoc()));
+ Lexer.Lex();
+ continue;
+ }
+ case AsmToken::Hash: {
+ bool MustNotExtend = false;
+ bool ImplicitExpression = implicitExpressionLocation(Operands);
+ std::unique_ptr<HexagonOperand> Expr = HexagonOperand::CreateImm(
+ nullptr, Lexer.getLoc(), Lexer.getLoc());
+ if (!ImplicitExpression)
+ Operands.push_back(
+ HexagonOperand::CreateToken(Token.getString(), Token.getLoc()));
+ Lexer.Lex();
+ bool MustExtend = false;
+ bool HiOnly = false;
+ bool LoOnly = false;
+ if (Lexer.is(AsmToken::Hash)) {
+ Lexer.Lex();
+ MustExtend = true;
+ } else if (ImplicitExpression)
+ MustNotExtend = true;
+ AsmToken const &Token = Parser.getTok();
+ if (Token.is(AsmToken::Identifier)) {
+ StringRef String = Token.getString();
+ AsmToken IDToken = Token;
+ if (String.lower() == "hi") {
+ HiOnly = true;
+ } else if (String.lower() == "lo") {
+ LoOnly = true;
+ }
+ if (HiOnly || LoOnly) {
+ AsmToken LParen = Lexer.peekTok();
+ if (!LParen.is(AsmToken::LParen)) {
+ HiOnly = false;
+ LoOnly = false;
+ } else {
+ Lexer.Lex();
+ }
+ }
+ }
+ if (parseExpression(Expr->Imm.Val))
+ return true;
+ int64_t Value;
+ MCContext &Context = Parser.getContext();
+ assert(Expr->Imm.Val != nullptr);
+ if (Expr->Imm.Val->evaluateAsAbsolute(Value)) {
+ if (HiOnly)
+ Expr->Imm.Val = MCBinaryExpr::createLShr(
+ Expr->Imm.Val, MCConstantExpr::create(16, Context), Context);
+ if (HiOnly || LoOnly)
+ Expr->Imm.Val = MCBinaryExpr::createAnd(
+ Expr->Imm.Val, MCConstantExpr::create(0xffff, Context), Context);
+ }
+ if (MustNotExtend)
+ Expr->Imm.Val = HexagonNoExtendOperand::Create(Expr->Imm.Val, Context);
+ Expr->Imm.MustExtend = MustExtend;
+ Operands.push_back(std::move(Expr));
+ continue;
+ }
+ default:
+ break;
+ }
+ if (parseExpressionOrOperand(Operands))
+ return true;
+ }
+}
+
+bool HexagonAsmParser::ParseInstruction(ParseInstructionInfo &Info,
+ StringRef Name,
+ AsmToken ID,
+ OperandVector &Operands) {
+ getLexer().UnLex(ID);
+ return parseInstruction(Operands);
+}
+
+namespace {
+MCInst makeCombineInst(int opCode, MCOperand &Rdd,
+ MCOperand &MO1, MCOperand &MO2) {
+ MCInst TmpInst;
+ TmpInst.setOpcode(opCode);
+ TmpInst.addOperand(Rdd);
+ TmpInst.addOperand(MO1);
+ TmpInst.addOperand(MO2);
+
+ return TmpInst;
+}
+}
+
+// Define this matcher function after the auto-generated include so we
+// have the match class enum definitions.
+unsigned HexagonAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
+ unsigned Kind) {
+ HexagonOperand *Op = static_cast<HexagonOperand *>(&AsmOp);
+
+ switch (Kind) {
+ case MCK_0: {
+ int64_t Value;
+ return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 0
+ ? Match_Success
+ : Match_InvalidOperand;
+ }
+ case MCK_1: {
+ int64_t Value;
+ return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == 1
+ ? Match_Success
+ : Match_InvalidOperand;
+ }
+ case MCK__MINUS_1: {
+ int64_t Value;
+ return Op->isImm() && Op->Imm.Val->evaluateAsAbsolute(Value) && Value == -1
+ ? Match_Success
+ : Match_InvalidOperand;
+ }
+ }
+ if (Op->Kind == HexagonOperand::Token && Kind != InvalidMatchClass) {
+ StringRef myStringRef = StringRef(Op->Tok.Data, Op->Tok.Length);
+ if (matchTokenString(myStringRef.lower()) == (MatchClassKind)Kind)
+ return Match_Success;
+ if (matchTokenString(myStringRef.upper()) == (MatchClassKind)Kind)
+ return Match_Success;
+ }
+
+ DEBUG(dbgs() << "Unmatched Operand:");
+ DEBUG(Op->dump());
+ DEBUG(dbgs() << "\n");
+
+ return Match_InvalidOperand;
+}
+
+void HexagonAsmParser::OutOfRange(SMLoc IDLoc, long long Val, long long Max) {
+ std::string errStr;
+ raw_string_ostream ES(errStr);
+ ES << "value " << Val << "(" << format_hex(Val, 0) << ") out of range: ";
+ if (Max >= 0)
+ ES << "0-" << Max;
+ else
+ ES << Max << "-" << (-Max - 1);
+ Error(IDLoc, ES.str().c_str());
+}
+
+int HexagonAsmParser::processInstruction(MCInst &Inst,
+ OperandVector const &Operands,
+ SMLoc IDLoc, bool &MustExtend) {
+ MCContext &Context = getParser().getContext();
+ const MCRegisterInfo *RI = getContext().getRegisterInfo();
+ std::string r = "r";
+ std::string v = "v";
+ std::string Colon = ":";
+
+ bool is32bit = false; // used to distinguish between CONST32 and CONST64
+ switch (Inst.getOpcode()) {
+ default:
+ break;
+
+ case Hexagon::M4_mpyrr_addr:
+ case Hexagon::S4_addi_asl_ri:
+ case Hexagon::S4_addi_lsr_ri:
+ case Hexagon::S4_andi_asl_ri:
+ case Hexagon::S4_andi_lsr_ri:
+ case Hexagon::S4_ori_asl_ri:
+ case Hexagon::S4_ori_lsr_ri:
+ case Hexagon::S4_or_andix:
+ case Hexagon::S4_subi_asl_ri:
+ case Hexagon::S4_subi_lsr_ri: {
+ MCOperand &Ry = Inst.getOperand(0);
+ MCOperand &src = Inst.getOperand(2);
+ if (RI->getEncodingValue(Ry.getReg()) != RI->getEncodingValue(src.getReg()))
+ return Match_InvalidOperand;
+ break;
+ }
+
+ case Hexagon::C2_cmpgei: {
+ MCOperand &MO = Inst.getOperand(2);
+ MO.setExpr(MCBinaryExpr::createSub(
+ MO.getExpr(), MCConstantExpr::create(1, Context), Context));
+ Inst.setOpcode(Hexagon::C2_cmpgti);
+ break;
+ }
+
+ case Hexagon::C2_cmpgeui: {
+ MCOperand &MO = Inst.getOperand(2);
+ int64_t Value;
+ bool Success = MO.getExpr()->evaluateAsAbsolute(Value);
+ (void)Success;
+ assert(Success && "Assured by matcher");
+ if (Value == 0) {
+ MCInst TmpInst;
+ MCOperand &Pd = Inst.getOperand(0);
+ MCOperand &Rt = Inst.getOperand(1);
+ TmpInst.setOpcode(Hexagon::C2_cmpeq);
+ TmpInst.addOperand(Pd);
+ TmpInst.addOperand(Rt);
+ TmpInst.addOperand(Rt);
+ Inst = TmpInst;
+ } else {
+ MO.setExpr(MCBinaryExpr::createSub(
+ MO.getExpr(), MCConstantExpr::create(1, Context), Context));
+ Inst.setOpcode(Hexagon::C2_cmpgtui);
+ }
+ break;
+ }
+ case Hexagon::J2_loop1r:
+ case Hexagon::J2_loop1i:
+ case Hexagon::J2_loop0r:
+ case Hexagon::J2_loop0i: {
+ MCOperand &MO = Inst.getOperand(0);
+ // Loop has different opcodes for extended vs not extended, but we should
+ // not use the other opcode as it is a legacy artifact of TD files.
+ int64_t Value;
+ if (MO.getExpr()->evaluateAsAbsolute(Value)) {
+ // if the operand can fit within a 7:2 field
+ if (Value < (1 << 8) && Value >= -(1 << 8)) {
+ SMLoc myLoc = Operands[2]->getStartLoc();
+ // # is left in startLoc in the case of ##
+ // If '##' found then force extension.
+ if (*myLoc.getPointer() == '#') {
+ MustExtend = true;
+ break;
+ }
+ } else {
+ // If immediate and out of 7:2 range.
+ MustExtend = true;
+ }
+ }
+ break;
+ }
+
+ // Translate a "$Rdd = $Rss" to "$Rdd = combine($Rs, $Rt)"
+ case Hexagon::A2_tfrp: {
+ MCOperand &MO = Inst.getOperand(1);
+ unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
+ std::string R1 = r + llvm::utostr_32(RegPairNum + 1);
+ StringRef Reg1(R1);
+ MO.setReg(MatchRegisterName(Reg1));
+ // Add a new operand for the second register in the pair.
+ std::string R2 = r + llvm::utostr_32(RegPairNum);
+ StringRef Reg2(R2);
+ Inst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
+ Inst.setOpcode(Hexagon::A2_combinew);
+ break;
+ }
+
+ case Hexagon::A2_tfrpt:
+ case Hexagon::A2_tfrpf: {
+ MCOperand &MO = Inst.getOperand(2);
+ unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
+ std::string R1 = r + llvm::utostr_32(RegPairNum + 1);
+ StringRef Reg1(R1);
+ MO.setReg(MatchRegisterName(Reg1));
+ // Add a new operand for the second register in the pair.
+ std::string R2 = r + llvm::utostr_32(RegPairNum);
+ StringRef Reg2(R2);
+ Inst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
+ Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrpt)
+ ? Hexagon::C2_ccombinewt
+ : Hexagon::C2_ccombinewf);
+ break;
+ }
+ case Hexagon::A2_tfrptnew:
+ case Hexagon::A2_tfrpfnew: {
+ MCOperand &MO = Inst.getOperand(2);
+ unsigned int RegPairNum = RI->getEncodingValue(MO.getReg());
+ std::string R1 = r + llvm::utostr_32(RegPairNum + 1);
+ StringRef Reg1(R1);
+ MO.setReg(MatchRegisterName(Reg1));
+ // Add a new operand for the second register in the pair.
+ std::string R2 = r + llvm::utostr_32(RegPairNum);
+ StringRef Reg2(R2);
+ Inst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
+ Inst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrptnew)
+ ? Hexagon::C2_ccombinewnewt
+ : Hexagon::C2_ccombinewnewf);
+ break;
+ }
+
+ // Translate a "$Rx = CONST32(#imm)" to "$Rx = memw(gp+#LABEL) "
+ case Hexagon::CONST32:
+ case Hexagon::CONST32_Float_Real:
+ case Hexagon::CONST32_Int_Real:
+ case Hexagon::FCONST32_nsdata:
+ is32bit = true;
+ // Translate a "$Rx:y = CONST64(#imm)" to "$Rx:y = memd(gp+#LABEL) "
+ case Hexagon::CONST64_Float_Real:
+ case Hexagon::CONST64_Int_Real:
+
+ // FIXME: need better way to detect AsmStreamer (upstream removed getKind())
+ if (!Parser.getStreamer().hasRawTextSupport()) {
+ MCELFStreamer *MES = static_cast<MCELFStreamer *>(&Parser.getStreamer());
+ MCOperand &MO_1 = Inst.getOperand(1);
+ MCOperand &MO_0 = Inst.getOperand(0);
+
+ // push section onto section stack
+ MES->PushSection();
+
+ std::string myCharStr;
+ MCSectionELF *mySection;
+
+ // check if this as an immediate or a symbol
+ int64_t Value;
+ bool Absolute = MO_1.getExpr()->evaluateAsAbsolute(Value);
+ if (Absolute) {
+ // Create a new section - one for each constant
+ // Some or all of the zeros are replaced with the given immediate.
+ if (is32bit) {
+ std::string myImmStr = utohexstr(static_cast<uint32_t>(Value));
+ myCharStr = StringRef(".gnu.linkonce.l4.CONST_00000000")
+ .drop_back(myImmStr.size())
+ .str() +
+ myImmStr;
+ } else {
+ std::string myImmStr = utohexstr(Value);
+ myCharStr = StringRef(".gnu.linkonce.l8.CONST_0000000000000000")
+ .drop_back(myImmStr.size())
+ .str() +
+ myImmStr;
+ }
+
+ mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC | ELF::SHF_WRITE);
+ } else if (MO_1.isExpr()) {
+ // .lita - for expressions
+ myCharStr = ".lita";
+ mySection = getContext().getELFSection(myCharStr, ELF::SHT_PROGBITS,
+ ELF::SHF_ALLOC | ELF::SHF_WRITE);
+ } else
+ llvm_unreachable("unexpected type of machine operand!");
+
+ MES->SwitchSection(mySection);
+ unsigned byteSize = is32bit ? 4 : 8;
+ getStreamer().EmitCodeAlignment(byteSize, byteSize);
+
+ MCSymbol *Sym;
+
+ // for symbols, get rid of prepended ".gnu.linkonce.lx."
+
+ // emit symbol if needed
+ if (Absolute) {
+ Sym = getContext().getOrCreateSymbol(StringRef(myCharStr.c_str() + 16));
+ if (Sym->isUndefined()) {
+ getStreamer().EmitLabel(Sym);
+ getStreamer().EmitSymbolAttribute(Sym, MCSA_Global);
+ getStreamer().EmitIntValue(Value, byteSize);
+ }
+ } else if (MO_1.isExpr()) {
+ const char *StringStart = 0;
+ const char *StringEnd = 0;
+ if (*Operands[4]->getStartLoc().getPointer() == '#') {
+ StringStart = Operands[5]->getStartLoc().getPointer();
+ StringEnd = Operands[6]->getStartLoc().getPointer();
+ } else { // no pound
+ StringStart = Operands[4]->getStartLoc().getPointer();
+ StringEnd = Operands[5]->getStartLoc().getPointer();
+ }
+
+ unsigned size = StringEnd - StringStart;
+ std::string DotConst = ".CONST_";
+ Sym = getContext().getOrCreateSymbol(DotConst +
+ StringRef(StringStart, size));
+
+ if (Sym->isUndefined()) {
+ // case where symbol is not yet defined: emit symbol
+ getStreamer().EmitLabel(Sym);
+ getStreamer().EmitSymbolAttribute(Sym, MCSA_Local);
+ getStreamer().EmitValue(MO_1.getExpr(), 4);
+ }
+ } else
+ llvm_unreachable("unexpected type of machine operand!");
+
+ MES->PopSection();
+
+ if (Sym) {
+ MCInst TmpInst;
+ if (is32bit) // 32 bit
+ TmpInst.setOpcode(Hexagon::L2_loadrigp);
+ else // 64 bit
+ TmpInst.setOpcode(Hexagon::L2_loadrdgp);
+
+ TmpInst.addOperand(MO_0);
+ TmpInst.addOperand(
+ MCOperand::createExpr(MCSymbolRefExpr::create(Sym, getContext())));
+ Inst = TmpInst;
+ }
+ }
+ break;
+
+ // Translate a "$Rdd = #-imm" to "$Rdd = combine(#[-1,0], #-imm)"
+ case Hexagon::A2_tfrpi: {
+ MCOperand &Rdd = Inst.getOperand(0);
+ MCOperand &MO = Inst.getOperand(1);
+ int64_t Value;
+ int sVal = (MO.getExpr()->evaluateAsAbsolute(Value) && Value < 0) ? -1 : 0;
+ MCOperand imm(MCOperand::createExpr(MCConstantExpr::create(sVal, Context)));
+ Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, imm, MO);
+ break;
+ }
+
+ // Translate a "$Rdd = [#]#imm" to "$Rdd = combine(#, [#]#imm)"
+ case Hexagon::TFRI64_V4: {
+ MCOperand &Rdd = Inst.getOperand(0);
+ MCOperand &MO = Inst.getOperand(1);
+ int64_t Value;
+ if (MO.getExpr()->evaluateAsAbsolute(Value)) {
+ unsigned long long u64 = Value;
+ signed int s8 = (u64 >> 32) & 0xFFFFFFFF;
+ if (s8 < -128 || s8 > 127)
+ OutOfRange(IDLoc, s8, -128);
+ MCOperand imm(MCOperand::createExpr(
+ MCConstantExpr::create(s8, Context))); // upper 32
+ MCOperand imm2(MCOperand::createExpr(
+ MCConstantExpr::create(u64 & 0xFFFFFFFF, Context))); // lower 32
+ Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, imm2);
+ } else {
+ MCOperand imm(MCOperand::createExpr(
+ MCConstantExpr::create(0, Context))); // upper 32
+ Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, imm, MO);
+ }
+ break;
+ }
+
+ // Handle $Rdd = combine(##imm, #imm)"
+ case Hexagon::TFRI64_V2_ext: {
+ MCOperand &Rdd = Inst.getOperand(0);
+ MCOperand &MO1 = Inst.getOperand(1);
+ MCOperand &MO2 = Inst.getOperand(2);
+ int64_t Value;
+ if (MO2.getExpr()->evaluateAsAbsolute(Value)) {
+ int s8 = Value;
+ if (s8 < -128 || s8 > 127)
+ OutOfRange(IDLoc, s8, -128);
+ }
+ Inst = makeCombineInst(Hexagon::A2_combineii, Rdd, MO1, MO2);
+ break;
+ }
+
+ // Handle $Rdd = combine(#imm, ##imm)"
+ case Hexagon::A4_combineii: {
+ MCOperand &Rdd = Inst.getOperand(0);
+ MCOperand &MO1 = Inst.getOperand(1);
+ int64_t Value;
+ if (MO1.getExpr()->evaluateAsAbsolute(Value)) {
+ int s8 = Value;
+ if (s8 < -128 || s8 > 127)
+ OutOfRange(IDLoc, s8, -128);
+ }
+ MCOperand &MO2 = Inst.getOperand(2);
+ Inst = makeCombineInst(Hexagon::A4_combineii, Rdd, MO1, MO2);
+ break;
+ }
+
+ case Hexagon::S2_tableidxb_goodsyntax: {
+ Inst.setOpcode(Hexagon::S2_tableidxb);
+ break;
+ }
+
+ case Hexagon::S2_tableidxh_goodsyntax: {
+ MCInst TmpInst;
+ MCOperand &Rx = Inst.getOperand(0);
+ MCOperand &_dst_ = Inst.getOperand(1);
+ MCOperand &Rs = Inst.getOperand(2);
+ MCOperand &Imm4 = Inst.getOperand(3);
+ MCOperand &Imm6 = Inst.getOperand(4);
+ Imm6.setExpr(MCBinaryExpr::createSub(
+ Imm6.getExpr(), MCConstantExpr::create(1, Context), Context));
+ TmpInst.setOpcode(Hexagon::S2_tableidxh);
+ TmpInst.addOperand(Rx);
+ TmpInst.addOperand(_dst_);
+ TmpInst.addOperand(Rs);
+ TmpInst.addOperand(Imm4);
+ TmpInst.addOperand(Imm6);
+ Inst = TmpInst;
+ break;
+ }
+
+ case Hexagon::S2_tableidxw_goodsyntax: {
+ MCInst TmpInst;
+ MCOperand &Rx = Inst.getOperand(0);
+ MCOperand &_dst_ = Inst.getOperand(1);
+ MCOperand &Rs = Inst.getOperand(2);
+ MCOperand &Imm4 = Inst.getOperand(3);
+ MCOperand &Imm6 = Inst.getOperand(4);
+ Imm6.setExpr(MCBinaryExpr::createSub(
+ Imm6.getExpr(), MCConstantExpr::create(2, Context), Context));
+ TmpInst.setOpcode(Hexagon::S2_tableidxw);
+ TmpInst.addOperand(Rx);
+ TmpInst.addOperand(_dst_);
+ TmpInst.addOperand(Rs);
+ TmpInst.addOperand(Imm4);
+ TmpInst.addOperand(Imm6);
+ Inst = TmpInst;
+ break;
+ }
+
+ case Hexagon::S2_tableidxd_goodsyntax: {
+ MCInst TmpInst;
+ MCOperand &Rx = Inst.getOperand(0);
+ MCOperand &_dst_ = Inst.getOperand(1);
+ MCOperand &Rs = Inst.getOperand(2);
+ MCOperand &Imm4 = Inst.getOperand(3);
+ MCOperand &Imm6 = Inst.getOperand(4);
+ Imm6.setExpr(MCBinaryExpr::createSub(
+ Imm6.getExpr(), MCConstantExpr::create(3, Context), Context));
+ TmpInst.setOpcode(Hexagon::S2_tableidxd);
+ TmpInst.addOperand(Rx);
+ TmpInst.addOperand(_dst_);
+ TmpInst.addOperand(Rs);
+ TmpInst.addOperand(Imm4);
+ TmpInst.addOperand(Imm6);
+ Inst = TmpInst;
+ break;
+ }
+
+ case Hexagon::M2_mpyui: {
+ Inst.setOpcode(Hexagon::M2_mpyi);
+ break;
+ }
+ case Hexagon::M2_mpysmi: {
+ MCInst TmpInst;
+ MCOperand &Rd = Inst.getOperand(0);
+ MCOperand &Rs = Inst.getOperand(1);
+ MCOperand &Imm = Inst.getOperand(2);
+ int64_t Value;
+ bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
+ assert(Absolute);
+ (void)Absolute;
+ if (!MustExtend) {
+ if (Value < 0 && Value > -256) {
+ Imm.setExpr(MCConstantExpr::create(Value * -1, Context));
+ TmpInst.setOpcode(Hexagon::M2_mpysin);
+ } else if (Value < 256 && Value >= 0)
+ TmpInst.setOpcode(Hexagon::M2_mpysip);
+ else
+ return Match_InvalidOperand;
+ } else {
+ if (Value >= 0)
+ TmpInst.setOpcode(Hexagon::M2_mpysip);
+ else
+ return Match_InvalidOperand;
+ }
+ TmpInst.addOperand(Rd);
+ TmpInst.addOperand(Rs);
+ TmpInst.addOperand(Imm);
+ Inst = TmpInst;
+ break;
+ }
+
+ case Hexagon::S2_asr_i_r_rnd_goodsyntax: {
+ MCOperand &Imm = Inst.getOperand(2);
+ MCInst TmpInst;
+ int64_t Value;
+ bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
+ assert(Absolute);
+ (void)Absolute;
+ if (Value == 0) { // convert to $Rd = $Rs
+ TmpInst.setOpcode(Hexagon::A2_tfr);
+ MCOperand &Rd = Inst.getOperand(0);
+ MCOperand &Rs = Inst.getOperand(1);
+ TmpInst.addOperand(Rd);
+ TmpInst.addOperand(Rs);
+ } else {
+ Imm.setExpr(MCBinaryExpr::createSub(
+ Imm.getExpr(), MCConstantExpr::create(1, Context), Context));
+ TmpInst.setOpcode(Hexagon::S2_asr_i_r_rnd);
+ MCOperand &Rd = Inst.getOperand(0);
+ MCOperand &Rs = Inst.getOperand(1);
+ TmpInst.addOperand(Rd);
+ TmpInst.addOperand(Rs);
+ TmpInst.addOperand(Imm);
+ }
+ Inst = TmpInst;
+ break;
+ }
+
+ case Hexagon::S2_asr_i_p_rnd_goodsyntax: {
+ MCOperand &Rdd = Inst.getOperand(0);
+ MCOperand &Rss = Inst.getOperand(1);
+ MCOperand &Imm = Inst.getOperand(2);
+ int64_t Value;
+ bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
+ assert(Absolute);
+ (void)Absolute;
+ if (Value == 0) { // convert to $Rdd = combine ($Rs[0], $Rs[1])
+ MCInst TmpInst;
+ unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg());
+ std::string R1 = r + llvm::utostr_32(RegPairNum + 1);
+ StringRef Reg1(R1);
+ Rss.setReg(MatchRegisterName(Reg1));
+ // Add a new operand for the second register in the pair.
+ std::string R2 = r + llvm::utostr_32(RegPairNum);
+ StringRef Reg2(R2);
+ TmpInst.setOpcode(Hexagon::A2_combinew);
+ TmpInst.addOperand(Rdd);
+ TmpInst.addOperand(Rss);
+ TmpInst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
+ Inst = TmpInst;
+ } else {
+ Imm.setExpr(MCBinaryExpr::createSub(
+ Imm.getExpr(), MCConstantExpr::create(1, Context), Context));
+ Inst.setOpcode(Hexagon::S2_asr_i_p_rnd);
+ }
+ break;
+ }
+
+ case Hexagon::A4_boundscheck: {
+ MCOperand &Rs = Inst.getOperand(1);
+ unsigned int RegNum = RI->getEncodingValue(Rs.getReg());
+ if (RegNum & 1) { // Odd mapped to raw:hi, regpair is rodd:odd-1, like r3:2
+ Inst.setOpcode(Hexagon::A4_boundscheck_hi);
+ std::string Name =
+ r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1);
+ StringRef RegPair = Name;
+ Rs.setReg(MatchRegisterName(RegPair));
+ } else { // raw:lo
+ Inst.setOpcode(Hexagon::A4_boundscheck_lo);
+ std::string Name =
+ r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum);
+ StringRef RegPair = Name;
+ Rs.setReg(MatchRegisterName(RegPair));
+ }
+ break;
+ }
+
+ case Hexagon::A2_addsp: {
+ MCOperand &Rs = Inst.getOperand(1);
+ unsigned int RegNum = RI->getEncodingValue(Rs.getReg());
+ if (RegNum & 1) { // Odd mapped to raw:hi
+ Inst.setOpcode(Hexagon::A2_addsph);
+ std::string Name =
+ r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1);
+ StringRef RegPair = Name;
+ Rs.setReg(MatchRegisterName(RegPair));
+ } else { // Even mapped raw:lo
+ Inst.setOpcode(Hexagon::A2_addspl);
+ std::string Name =
+ r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum);
+ StringRef RegPair = Name;
+ Rs.setReg(MatchRegisterName(RegPair));
+ }
+ break;
+ }
+
+ case Hexagon::M2_vrcmpys_s1: {
+ MCOperand &Rt = Inst.getOperand(2);
+ unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
+ if (RegNum & 1) { // Odd mapped to sat:raw:hi
+ Inst.setOpcode(Hexagon::M2_vrcmpys_s1_h);
+ std::string Name =
+ r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1);
+ StringRef RegPair = Name;
+ Rt.setReg(MatchRegisterName(RegPair));
+ } else { // Even mapped sat:raw:lo
+ Inst.setOpcode(Hexagon::M2_vrcmpys_s1_l);
+ std::string Name =
+ r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum);
+ StringRef RegPair = Name;
+ Rt.setReg(MatchRegisterName(RegPair));
+ }
+ break;
+ }
+
+ case Hexagon::M2_vrcmpys_acc_s1: {
+ MCInst TmpInst;
+ MCOperand &Rxx = Inst.getOperand(0);
+ MCOperand &Rss = Inst.getOperand(2);
+ MCOperand &Rt = Inst.getOperand(3);
+ unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
+ if (RegNum & 1) { // Odd mapped to sat:raw:hi
+ TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_h);
+ std::string Name =
+ r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1);
+ StringRef RegPair = Name;
+ Rt.setReg(MatchRegisterName(RegPair));
+ } else { // Even mapped sat:raw:lo
+ TmpInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_l);
+ std::string Name =
+ r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum);
+ StringRef RegPair = Name;
+ Rt.setReg(MatchRegisterName(RegPair));
+ }
+ // Registers are in different positions
+ TmpInst.addOperand(Rxx);
+ TmpInst.addOperand(Rxx);
+ TmpInst.addOperand(Rss);
+ TmpInst.addOperand(Rt);
+ Inst = TmpInst;
+ break;
+ }
+
+ case Hexagon::M2_vrcmpys_s1rp: {
+ MCOperand &Rt = Inst.getOperand(2);
+ unsigned int RegNum = RI->getEncodingValue(Rt.getReg());
+ if (RegNum & 1) { // Odd mapped to rnd:sat:raw:hi
+ Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_h);
+ std::string Name =
+ r + llvm::utostr_32(RegNum) + Colon + llvm::utostr_32(RegNum - 1);
+ StringRef RegPair = Name;
+ Rt.setReg(MatchRegisterName(RegPair));
+ } else { // Even mapped rnd:sat:raw:lo
+ Inst.setOpcode(Hexagon::M2_vrcmpys_s1rp_l);
+ std::string Name =
+ r + llvm::utostr_32(RegNum + 1) + Colon + llvm::utostr_32(RegNum);
+ StringRef RegPair = Name;
+ Rt.setReg(MatchRegisterName(RegPair));
+ }
+ break;
+ }
+
+ case Hexagon::S5_asrhub_rnd_sat_goodsyntax: {
+ MCOperand &Imm = Inst.getOperand(2);
+ int64_t Value;
+ bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
+ assert(Absolute);
+ (void)Absolute;
+ if (Value == 0)
+ Inst.setOpcode(Hexagon::S2_vsathub);
+ else {
+ Imm.setExpr(MCBinaryExpr::createSub(
+ Imm.getExpr(), MCConstantExpr::create(1, Context), Context));
+ Inst.setOpcode(Hexagon::S5_asrhub_rnd_sat);
+ }
+ break;
+ }
+
+ case Hexagon::S5_vasrhrnd_goodsyntax: {
+ MCOperand &Rdd = Inst.getOperand(0);
+ MCOperand &Rss = Inst.getOperand(1);
+ MCOperand &Imm = Inst.getOperand(2);
+ int64_t Value;
+ bool Absolute = Imm.getExpr()->evaluateAsAbsolute(Value);
+ assert(Absolute);
+ (void)Absolute;
+ if (Value == 0) {
+ MCInst TmpInst;
+ unsigned int RegPairNum = RI->getEncodingValue(Rss.getReg());
+ std::string R1 = r + llvm::utostr_32(RegPairNum + 1);
+ StringRef Reg1(R1);
+ Rss.setReg(MatchRegisterName(Reg1));
+ // Add a new operand for the second register in the pair.
+ std::string R2 = r + llvm::utostr_32(RegPairNum);
+ StringRef Reg2(R2);
+ TmpInst.setOpcode(Hexagon::A2_combinew);
+ TmpInst.addOperand(Rdd);
+ TmpInst.addOperand(Rss);
+ TmpInst.addOperand(MCOperand::createReg(MatchRegisterName(Reg2)));
+ Inst = TmpInst;
+ } else {
+ Imm.setExpr(MCBinaryExpr::createSub(
+ Imm.getExpr(), MCConstantExpr::create(1, Context), Context));
+ Inst.setOpcode(Hexagon::S5_vasrhrnd);
+ }
+ break;
+ }
+
+ case Hexagon::A2_not: {
+ MCInst TmpInst;
+ MCOperand &Rd = Inst.getOperand(0);
+ MCOperand &Rs = Inst.getOperand(1);
+ TmpInst.setOpcode(Hexagon::A2_subri);
+ TmpInst.addOperand(Rd);
+ TmpInst.addOperand(
+ MCOperand::createExpr(MCConstantExpr::create(-1, Context)));
+ TmpInst.addOperand(Rs);
+ Inst = TmpInst;
+ break;
+ }
+ } // switch
+
+ return Match_Success;
+}
OpenPOWER on IntegriCloud