diff options
Diffstat (limited to 'contrib/llvm/lib/Target/CellSPU/SPUInstrInfo.td')
-rw-r--r-- | contrib/llvm/lib/Target/CellSPU/SPUInstrInfo.td | 4484 |
1 files changed, 4484 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/CellSPU/SPUInstrInfo.td b/contrib/llvm/lib/Target/CellSPU/SPUInstrInfo.td new file mode 100644 index 0000000..117acd7 --- /dev/null +++ b/contrib/llvm/lib/Target/CellSPU/SPUInstrInfo.td @@ -0,0 +1,4484 @@ +//==- SPUInstrInfo.td - Describe the Cell SPU Instructions -*- tablegen -*-==// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// Cell SPU Instructions: +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// TODO Items (not urgent today, but would be nice, low priority) +// +// ANDBI, ORBI: SPU constructs a 4-byte constant for these instructions by +// concatenating the byte argument b as "bbbb". Could recognize this bit pattern +// in 16-bit and 32-bit constants and reduce instruction count. +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Pseudo instructions: +//===----------------------------------------------------------------------===// + +let hasCtrlDep = 1, Defs = [R1], Uses = [R1] in { + def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm_i32:$amt), + "${:comment} ADJCALLSTACKDOWN", + [(callseq_start timm:$amt)]>; + def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm_i32:$amt), + "${:comment} ADJCALLSTACKUP", + [(callseq_end timm:$amt)]>; + def HBR_LABEL : Pseudo<(outs), (ins hbrtarget:$targ), + "$targ:\t${:comment}branch hint target",[ ]>; +} + +//===----------------------------------------------------------------------===// +// Loads: +// NB: The ordering is actually important, since the instruction selection +// will try each of the instructions in sequence, i.e., the D-form first with +// the 10-bit displacement, then the A-form with the 16 bit displacement, and +// finally the X-form with the register-register. +//===----------------------------------------------------------------------===// + +let canFoldAsLoad = 1 in { + class LoadDFormVec<ValueType vectype> + : RI10Form<0b00101100, (outs VECREG:$rT), (ins dformaddr:$src), + "lqd\t$rT, $src", + LoadStore, + [(set (vectype VECREG:$rT), (load dform_addr:$src))]> + { } + + class LoadDForm<RegisterClass rclass> + : RI10Form<0b00101100, (outs rclass:$rT), (ins dformaddr:$src), + "lqd\t$rT, $src", + LoadStore, + [(set rclass:$rT, (load dform_addr:$src))]> + { } + + multiclass LoadDForms + { + def v16i8: LoadDFormVec<v16i8>; + def v8i16: LoadDFormVec<v8i16>; + def v4i32: LoadDFormVec<v4i32>; + def v2i64: LoadDFormVec<v2i64>; + def v4f32: LoadDFormVec<v4f32>; + def v2f64: LoadDFormVec<v2f64>; + + def r128: LoadDForm<GPRC>; + def r64: LoadDForm<R64C>; + def r32: LoadDForm<R32C>; + def f32: LoadDForm<R32FP>; + def f64: LoadDForm<R64FP>; + def r16: LoadDForm<R16C>; + def r8: LoadDForm<R8C>; + } + + class LoadAFormVec<ValueType vectype> + : RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src), + "lqa\t$rT, $src", + LoadStore, + [(set (vectype VECREG:$rT), (load aform_addr:$src))]> + { } + + class LoadAForm<RegisterClass rclass> + : RI16Form<0b100001100, (outs rclass:$rT), (ins addr256k:$src), + "lqa\t$rT, $src", + LoadStore, + [(set rclass:$rT, (load aform_addr:$src))]> + { } + + multiclass LoadAForms + { + def v16i8: LoadAFormVec<v16i8>; + def v8i16: LoadAFormVec<v8i16>; + def v4i32: LoadAFormVec<v4i32>; + def v2i64: LoadAFormVec<v2i64>; + def v4f32: LoadAFormVec<v4f32>; + def v2f64: LoadAFormVec<v2f64>; + + def r128: LoadAForm<GPRC>; + def r64: LoadAForm<R64C>; + def r32: LoadAForm<R32C>; + def f32: LoadAForm<R32FP>; + def f64: LoadAForm<R64FP>; + def r16: LoadAForm<R16C>; + def r8: LoadAForm<R8C>; + } + + class LoadXFormVec<ValueType vectype> + : RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src), + "lqx\t$rT, $src", + LoadStore, + [(set (vectype VECREG:$rT), (load xform_addr:$src))]> + { } + + class LoadXForm<RegisterClass rclass> + : RRForm<0b00100011100, (outs rclass:$rT), (ins memrr:$src), + "lqx\t$rT, $src", + LoadStore, + [(set rclass:$rT, (load xform_addr:$src))]> + { } + + multiclass LoadXForms + { + def v16i8: LoadXFormVec<v16i8>; + def v8i16: LoadXFormVec<v8i16>; + def v4i32: LoadXFormVec<v4i32>; + def v2i64: LoadXFormVec<v2i64>; + def v4f32: LoadXFormVec<v4f32>; + def v2f64: LoadXFormVec<v2f64>; + + def r128: LoadXForm<GPRC>; + def r64: LoadXForm<R64C>; + def r32: LoadXForm<R32C>; + def f32: LoadXForm<R32FP>; + def f64: LoadXForm<R64FP>; + def r16: LoadXForm<R16C>; + def r8: LoadXForm<R8C>; + } + + defm LQA : LoadAForms; + defm LQD : LoadDForms; + defm LQX : LoadXForms; + +/* Load quadword, PC relative: Not much use at this point in time. + Might be of use later for relocatable code. It's effectively the + same as LQA, but uses PC-relative addressing. + def LQR : RI16Form<0b111001100, (outs VECREG:$rT), (ins s16imm:$disp), + "lqr\t$rT, $disp", LoadStore, + [(set VECREG:$rT, (load iaddr:$disp))]>; + */ +} + +//===----------------------------------------------------------------------===// +// Stores: +//===----------------------------------------------------------------------===// +class StoreDFormVec<ValueType vectype> + : RI10Form<0b00100100, (outs), (ins VECREG:$rT, dformaddr:$src), + "stqd\t$rT, $src", + LoadStore, + [(store (vectype VECREG:$rT), dform_addr:$src)]> +{ } + +class StoreDForm<RegisterClass rclass> + : RI10Form<0b00100100, (outs), (ins rclass:$rT, dformaddr:$src), + "stqd\t$rT, $src", + LoadStore, + [(store rclass:$rT, dform_addr:$src)]> +{ } + +multiclass StoreDForms +{ + def v16i8: StoreDFormVec<v16i8>; + def v8i16: StoreDFormVec<v8i16>; + def v4i32: StoreDFormVec<v4i32>; + def v2i64: StoreDFormVec<v2i64>; + def v4f32: StoreDFormVec<v4f32>; + def v2f64: StoreDFormVec<v2f64>; + + def r128: StoreDForm<GPRC>; + def r64: StoreDForm<R64C>; + def r32: StoreDForm<R32C>; + def f32: StoreDForm<R32FP>; + def f64: StoreDForm<R64FP>; + def r16: StoreDForm<R16C>; + def r8: StoreDForm<R8C>; +} + +class StoreAFormVec<ValueType vectype> + : RI16Form<0b0010010, (outs), (ins VECREG:$rT, addr256k:$src), + "stqa\t$rT, $src", + LoadStore, + [(store (vectype VECREG:$rT), aform_addr:$src)]>; + +class StoreAForm<RegisterClass rclass> + : RI16Form<0b001001, (outs), (ins rclass:$rT, addr256k:$src), + "stqa\t$rT, $src", + LoadStore, + [(store rclass:$rT, aform_addr:$src)]>; + +multiclass StoreAForms +{ + def v16i8: StoreAFormVec<v16i8>; + def v8i16: StoreAFormVec<v8i16>; + def v4i32: StoreAFormVec<v4i32>; + def v2i64: StoreAFormVec<v2i64>; + def v4f32: StoreAFormVec<v4f32>; + def v2f64: StoreAFormVec<v2f64>; + + def r128: StoreAForm<GPRC>; + def r64: StoreAForm<R64C>; + def r32: StoreAForm<R32C>; + def f32: StoreAForm<R32FP>; + def f64: StoreAForm<R64FP>; + def r16: StoreAForm<R16C>; + def r8: StoreAForm<R8C>; +} + +class StoreXFormVec<ValueType vectype> + : RRForm<0b00100100, (outs), (ins VECREG:$rT, memrr:$src), + "stqx\t$rT, $src", + LoadStore, + [(store (vectype VECREG:$rT), xform_addr:$src)]> +{ } + +class StoreXForm<RegisterClass rclass> + : RRForm<0b00100100, (outs), (ins rclass:$rT, memrr:$src), + "stqx\t$rT, $src", + LoadStore, + [(store rclass:$rT, xform_addr:$src)]> +{ } + +multiclass StoreXForms +{ + def v16i8: StoreXFormVec<v16i8>; + def v8i16: StoreXFormVec<v8i16>; + def v4i32: StoreXFormVec<v4i32>; + def v2i64: StoreXFormVec<v2i64>; + def v4f32: StoreXFormVec<v4f32>; + def v2f64: StoreXFormVec<v2f64>; + + def r128: StoreXForm<GPRC>; + def r64: StoreXForm<R64C>; + def r32: StoreXForm<R32C>; + def f32: StoreXForm<R32FP>; + def f64: StoreXForm<R64FP>; + def r16: StoreXForm<R16C>; + def r8: StoreXForm<R8C>; +} + +defm STQD : StoreDForms; +defm STQA : StoreAForms; +defm STQX : StoreXForms; + +/* Store quadword, PC relative: Not much use at this point in time. Might + be useful for relocatable code. +def STQR : RI16Form<0b111000100, (outs), (ins VECREG:$rT, s16imm:$disp), + "stqr\t$rT, $disp", LoadStore, + [(store VECREG:$rT, iaddr:$disp)]>; +*/ + +//===----------------------------------------------------------------------===// +// Generate Controls for Insertion: +//===----------------------------------------------------------------------===// + +def CBD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src), + "cbd\t$rT, $src", ShuffleOp, + [(set (v16i8 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; + +def CBX: RRForm<0b00101011100, (outs VECREG:$rT), (ins memrr:$src), + "cbx\t$rT, $src", ShuffleOp, + [(set (v16i8 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; + +def CHD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src), + "chd\t$rT, $src", ShuffleOp, + [(set (v8i16 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; + +def CHX: RRForm<0b10101011100, (outs VECREG:$rT), (ins memrr:$src), + "chx\t$rT, $src", ShuffleOp, + [(set (v8i16 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; + +def CWD: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src), + "cwd\t$rT, $src", ShuffleOp, + [(set (v4i32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; + +def CWX: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src), + "cwx\t$rT, $src", ShuffleOp, + [(set (v4i32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; + +def CWDf32: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src), + "cwd\t$rT, $src", ShuffleOp, + [(set (v4f32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; + +def CWXf32: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src), + "cwx\t$rT, $src", ShuffleOp, + [(set (v4f32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; + +def CDD: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src), + "cdd\t$rT, $src", ShuffleOp, + [(set (v2i64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; + +def CDX: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src), + "cdx\t$rT, $src", ShuffleOp, + [(set (v2i64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; + +def CDDf64: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src), + "cdd\t$rT, $src", ShuffleOp, + [(set (v2f64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>; + +def CDXf64: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src), + "cdx\t$rT, $src", ShuffleOp, + [(set (v2f64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>; + +//===----------------------------------------------------------------------===// +// Constant formation: +//===----------------------------------------------------------------------===// + +def ILHv8i16: + RI16Form<0b110000010, (outs VECREG:$rT), (ins s16imm:$val), + "ilh\t$rT, $val", ImmLoad, + [(set (v8i16 VECREG:$rT), (v8i16 v8i16SExt16Imm:$val))]>; + +def ILHr16: + RI16Form<0b110000010, (outs R16C:$rT), (ins s16imm:$val), + "ilh\t$rT, $val", ImmLoad, + [(set R16C:$rT, immSExt16:$val)]>; + +// Cell SPU doesn't have a native 8-bit immediate load, but ILH works ("with +// the right constant") +def ILHr8: + RI16Form<0b110000010, (outs R8C:$rT), (ins s16imm_i8:$val), + "ilh\t$rT, $val", ImmLoad, + [(set R8C:$rT, immSExt8:$val)]>; + +// IL does sign extension! + +class ILInst<dag OOL, dag IOL, list<dag> pattern>: + RI16Form<0b100000010, OOL, IOL, "il\t$rT, $val", + ImmLoad, pattern>; + +class ILVecInst<ValueType vectype, Operand immtype, PatLeaf xform>: + ILInst<(outs VECREG:$rT), (ins immtype:$val), + [(set (vectype VECREG:$rT), (vectype xform:$val))]>; + +class ILRegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>: + ILInst<(outs rclass:$rT), (ins immtype:$val), + [(set rclass:$rT, xform:$val)]>; + +multiclass ImmediateLoad +{ + def v2i64: ILVecInst<v2i64, s16imm_i64, v2i64SExt16Imm>; + def v4i32: ILVecInst<v4i32, s16imm_i32, v4i32SExt16Imm>; + + // TODO: Need v2f64, v4f32 + + def r64: ILRegInst<R64C, s16imm_i64, immSExt16>; + def r32: ILRegInst<R32C, s16imm_i32, immSExt16>; + def f32: ILRegInst<R32FP, s16imm_f32, fpimmSExt16>; + def f64: ILRegInst<R64FP, s16imm_f64, fpimmSExt16>; +} + +defm IL : ImmediateLoad; + +class ILHUInst<dag OOL, dag IOL, list<dag> pattern>: + RI16Form<0b010000010, OOL, IOL, "ilhu\t$rT, $val", + ImmLoad, pattern>; + +class ILHUVecInst<ValueType vectype, Operand immtype, PatLeaf xform>: + ILHUInst<(outs VECREG:$rT), (ins immtype:$val), + [(set (vectype VECREG:$rT), (vectype xform:$val))]>; + +class ILHURegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>: + ILHUInst<(outs rclass:$rT), (ins immtype:$val), + [(set rclass:$rT, xform:$val)]>; + +multiclass ImmLoadHalfwordUpper +{ + def v2i64: ILHUVecInst<v2i64, u16imm_i64, immILHUvec_i64>; + def v4i32: ILHUVecInst<v4i32, u16imm_i32, immILHUvec>; + + def r64: ILHURegInst<R64C, u16imm_i64, hi16>; + def r32: ILHURegInst<R32C, u16imm_i32, hi16>; + + // Loads the high portion of an address + def hi: ILHURegInst<R32C, symbolHi, hi16>; + + // Used in custom lowering constant SFP loads: + def f32: ILHURegInst<R32FP, f16imm, hi16_f32>; +} + +defm ILHU : ImmLoadHalfwordUpper; + +// Immediate load address (can also be used to load 18-bit unsigned constants, +// see the zext 16->32 pattern) + +class ILAInst<dag OOL, dag IOL, list<dag> pattern>: + RI18Form<0b1000010, OOL, IOL, "ila\t$rT, $val", + LoadNOP, pattern>; + +class ILAVecInst<ValueType vectype, Operand immtype, PatLeaf xform>: + ILAInst<(outs VECREG:$rT), (ins immtype:$val), + [(set (vectype VECREG:$rT), (vectype xform:$val))]>; + +class ILARegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>: + ILAInst<(outs rclass:$rT), (ins immtype:$val), + [(set rclass:$rT, xform:$val)]>; + +multiclass ImmLoadAddress +{ + def v2i64: ILAVecInst<v2i64, u18imm, v2i64Uns18Imm>; + def v4i32: ILAVecInst<v4i32, u18imm, v4i32Uns18Imm>; + + def r64: ILARegInst<R64C, u18imm_i64, imm18>; + def r32: ILARegInst<R32C, u18imm, imm18>; + def f32: ILARegInst<R32FP, f18imm, fpimm18>; + def f64: ILARegInst<R64FP, f18imm_f64, fpimm18>; + + def hi: ILARegInst<R32C, symbolHi, imm18>; + def lo: ILARegInst<R32C, symbolLo, imm18>; + + def lsa: ILAInst<(outs R32C:$rT), (ins symbolLSA:$val), + [(set R32C:$rT, imm18:$val)]>; +} + +defm ILA : ImmLoadAddress; + +// Immediate OR, Halfword Lower: The "other" part of loading large constants +// into 32-bit registers. See the anonymous pattern Pat<(i32 imm:$imm), ...> +// Note that these are really two operand instructions, but they're encoded +// as three operands with the first two arguments tied-to each other. + +class IOHLInst<dag OOL, dag IOL, list<dag> pattern>: + RI16Form<0b100000110, OOL, IOL, "iohl\t$rT, $val", + ImmLoad, pattern>, + RegConstraint<"$rS = $rT">, + NoEncode<"$rS">; + +class IOHLVecInst<ValueType vectype, Operand immtype /* , PatLeaf xform */>: + IOHLInst<(outs VECREG:$rT), (ins VECREG:$rS, immtype:$val), + [/* no pattern */]>; + +class IOHLRegInst<RegisterClass rclass, Operand immtype /* , PatLeaf xform */>: + IOHLInst<(outs rclass:$rT), (ins rclass:$rS, immtype:$val), + [/* no pattern */]>; + +multiclass ImmOrHalfwordLower +{ + def v2i64: IOHLVecInst<v2i64, u16imm_i64>; + def v4i32: IOHLVecInst<v4i32, u16imm_i32>; + + def r32: IOHLRegInst<R32C, i32imm>; + def f32: IOHLRegInst<R32FP, f32imm>; + + def lo: IOHLRegInst<R32C, symbolLo>; +} + +defm IOHL: ImmOrHalfwordLower; + +// Form select mask for bytes using immediate, used in conjunction with the +// SELB instruction: + +class FSMBIVec<ValueType vectype>: + RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val), + "fsmbi\t$rT, $val", + SelectOp, + [(set (vectype VECREG:$rT), (SPUselmask (i16 immU16:$val)))]>; + +multiclass FormSelectMaskBytesImm +{ + def v16i8: FSMBIVec<v16i8>; + def v8i16: FSMBIVec<v8i16>; + def v4i32: FSMBIVec<v4i32>; + def v2i64: FSMBIVec<v2i64>; +} + +defm FSMBI : FormSelectMaskBytesImm; + +// fsmb: Form select mask for bytes. N.B. Input operand, $rA, is 16-bits +class FSMBInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm_1<0b01101101100, OOL, IOL, "fsmb\t$rT, $rA", SelectOp, + pattern>; + +class FSMBRegInst<RegisterClass rclass, ValueType vectype>: + FSMBInst<(outs VECREG:$rT), (ins rclass:$rA), + [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>; + +class FSMBVecInst<ValueType vectype>: + FSMBInst<(outs VECREG:$rT), (ins VECREG:$rA), + [(set (vectype VECREG:$rT), + (SPUselmask (vectype VECREG:$rA)))]>; + +multiclass FormSelectMaskBits { + def v16i8_r16: FSMBRegInst<R16C, v16i8>; + def v16i8: FSMBVecInst<v16i8>; +} + +defm FSMB: FormSelectMaskBits; + +// fsmh: Form select mask for halfwords. N.B., Input operand, $rA, is +// only 8-bits wide (even though it's input as 16-bits here) + +class FSMHInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm_1<0b10101101100, OOL, IOL, "fsmh\t$rT, $rA", SelectOp, + pattern>; + +class FSMHRegInst<RegisterClass rclass, ValueType vectype>: + FSMHInst<(outs VECREG:$rT), (ins rclass:$rA), + [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>; + +class FSMHVecInst<ValueType vectype>: + FSMHInst<(outs VECREG:$rT), (ins VECREG:$rA), + [(set (vectype VECREG:$rT), + (SPUselmask (vectype VECREG:$rA)))]>; + +multiclass FormSelectMaskHalfword { + def v8i16_r16: FSMHRegInst<R16C, v8i16>; + def v8i16: FSMHVecInst<v8i16>; +} + +defm FSMH: FormSelectMaskHalfword; + +// fsm: Form select mask for words. Like the other fsm* instructions, +// only the lower 4 bits of $rA are significant. + +class FSMInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm_1<0b00101101100, OOL, IOL, "fsm\t$rT, $rA", SelectOp, + pattern>; + +class FSMRegInst<ValueType vectype, RegisterClass rclass>: + FSMInst<(outs VECREG:$rT), (ins rclass:$rA), + [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>; + +class FSMVecInst<ValueType vectype>: + FSMInst<(outs VECREG:$rT), (ins VECREG:$rA), + [(set (vectype VECREG:$rT), (SPUselmask (vectype VECREG:$rA)))]>; + +multiclass FormSelectMaskWord { + def v4i32: FSMVecInst<v4i32>; + + def r32 : FSMRegInst<v4i32, R32C>; + def r16 : FSMRegInst<v4i32, R16C>; +} + +defm FSM : FormSelectMaskWord; + +// Special case when used for i64 math operations +multiclass FormSelectMaskWord64 { + def r32 : FSMRegInst<v2i64, R32C>; + def r16 : FSMRegInst<v2i64, R16C>; +} + +defm FSM64 : FormSelectMaskWord64; + +//===----------------------------------------------------------------------===// +// Integer and Logical Operations: +//===----------------------------------------------------------------------===// + +def AHv8i16: + RRForm<0b00010011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + "ah\t$rT, $rA, $rB", IntegerOp, + [(set (v8i16 VECREG:$rT), (int_spu_si_ah VECREG:$rA, VECREG:$rB))]>; + +def : Pat<(add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)), + (AHv8i16 VECREG:$rA, VECREG:$rB)>; + +def AHr16: + RRForm<0b00010011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), + "ah\t$rT, $rA, $rB", IntegerOp, + [(set R16C:$rT, (add R16C:$rA, R16C:$rB))]>; + +def AHIvec: + RI10Form<0b10111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + "ahi\t$rT, $rA, $val", IntegerOp, + [(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA), + v8i16SExt10Imm:$val))]>; + +def AHIr16: + RI10Form<0b10111000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), + "ahi\t$rT, $rA, $val", IntegerOp, + [(set R16C:$rT, (add R16C:$rA, i16ImmSExt10:$val))]>; + +// v4i32, i32 add instruction: + +class AInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b00000011000, OOL, IOL, + "a\t$rT, $rA, $rB", IntegerOp, + pattern>; + +class AVecInst<ValueType vectype>: + AInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA), + (vectype VECREG:$rB)))]>; + +class ARegInst<RegisterClass rclass>: + AInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), + [(set rclass:$rT, (add rclass:$rA, rclass:$rB))]>; + +multiclass AddInstruction { + def v4i32: AVecInst<v4i32>; + def v16i8: AVecInst<v16i8>; + def r32: ARegInst<R32C>; +} + +defm A : AddInstruction; + +class AIInst<dag OOL, dag IOL, list<dag> pattern>: + RI10Form<0b00111000, OOL, IOL, + "ai\t$rT, $rA, $val", IntegerOp, + pattern>; + +class AIVecInst<ValueType vectype, PatLeaf immpred>: + AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA), immpred:$val))]>; + +class AIFPVecInst<ValueType vectype, PatLeaf immpred>: + AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + [/* no pattern */]>; + +class AIRegInst<RegisterClass rclass, PatLeaf immpred>: + AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val), + [(set rclass:$rT, (add rclass:$rA, immpred:$val))]>; + +// This is used to add epsilons to floating point numbers in the f32 fdiv code: +class AIFPInst<RegisterClass rclass, PatLeaf immpred>: + AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val), + [/* no pattern */]>; + +multiclass AddImmediate { + def v4i32: AIVecInst<v4i32, v4i32SExt10Imm>; + + def r32: AIRegInst<R32C, i32ImmSExt10>; + + def v4f32: AIFPVecInst<v4f32, v4i32SExt10Imm>; + def f32: AIFPInst<R32FP, i32ImmSExt10>; +} + +defm AI : AddImmediate; + +def SFHvec: + RRForm<0b00010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + "sfh\t$rT, $rA, $rB", IntegerOp, + [(set (v8i16 VECREG:$rT), (sub (v8i16 VECREG:$rA), + (v8i16 VECREG:$rB)))]>; + +def SFHr16: + RRForm<0b00010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), + "sfh\t$rT, $rA, $rB", IntegerOp, + [(set R16C:$rT, (sub R16C:$rB, R16C:$rA))]>; + +def SFHIvec: + RI10Form<0b10110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + "sfhi\t$rT, $rA, $val", IntegerOp, + [(set (v8i16 VECREG:$rT), (sub v8i16SExt10Imm:$val, + (v8i16 VECREG:$rA)))]>; + +def SFHIr16 : RI10Form<0b10110000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), + "sfhi\t$rT, $rA, $val", IntegerOp, + [(set R16C:$rT, (sub i16ImmSExt10:$val, R16C:$rA))]>; + +def SFvec : RRForm<0b00000010000, (outs VECREG:$rT), + (ins VECREG:$rA, VECREG:$rB), + "sf\t$rT, $rA, $rB", IntegerOp, + [(set (v4i32 VECREG:$rT), (sub (v4i32 VECREG:$rB), (v4i32 VECREG:$rA)))]>; + + +def SFr32 : RRForm<0b00000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), + "sf\t$rT, $rA, $rB", IntegerOp, + [(set R32C:$rT, (sub R32C:$rB, R32C:$rA))]>; + +def SFIvec: + RI10Form<0b00110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + "sfi\t$rT, $rA, $val", IntegerOp, + [(set (v4i32 VECREG:$rT), (sub v4i32SExt10Imm:$val, + (v4i32 VECREG:$rA)))]>; + +def SFIr32 : RI10Form<0b00110000, (outs R32C:$rT), + (ins R32C:$rA, s10imm_i32:$val), + "sfi\t$rT, $rA, $val", IntegerOp, + [(set R32C:$rT, (sub i32ImmSExt10:$val, R32C:$rA))]>; + +// ADDX: only available in vector form, doesn't match a pattern. +class ADDXInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b00000010110, OOL, IOL, + "addx\t$rT, $rA, $rB", + IntegerOp, pattern>; + +class ADDXVecInst<ValueType vectype>: + ADDXInst<(outs VECREG:$rT), + (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry), + [/* no pattern */]>, + RegConstraint<"$rCarry = $rT">, + NoEncode<"$rCarry">; + +class ADDXRegInst<RegisterClass rclass>: + ADDXInst<(outs rclass:$rT), + (ins rclass:$rA, rclass:$rB, rclass:$rCarry), + [/* no pattern */]>, + RegConstraint<"$rCarry = $rT">, + NoEncode<"$rCarry">; + +multiclass AddExtended { + def v2i64 : ADDXVecInst<v2i64>; + def v4i32 : ADDXVecInst<v4i32>; + def r64 : ADDXRegInst<R64C>; + def r32 : ADDXRegInst<R32C>; +} + +defm ADDX : AddExtended; + +// CG: Generate carry for add +class CGInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b01000011000, OOL, IOL, + "cg\t$rT, $rA, $rB", + IntegerOp, pattern>; + +class CGVecInst<ValueType vectype>: + CGInst<(outs VECREG:$rT), + (ins VECREG:$rA, VECREG:$rB), + [/* no pattern */]>; + +class CGRegInst<RegisterClass rclass>: + CGInst<(outs rclass:$rT), + (ins rclass:$rA, rclass:$rB), + [/* no pattern */]>; + +multiclass CarryGenerate { + def v2i64 : CGVecInst<v2i64>; + def v4i32 : CGVecInst<v4i32>; + def r64 : CGRegInst<R64C>; + def r32 : CGRegInst<R32C>; +} + +defm CG : CarryGenerate; + +// SFX: Subract from, extended. This is used in conjunction with BG to subtract +// with carry (borrow, in this case) +class SFXInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b10000010110, OOL, IOL, + "sfx\t$rT, $rA, $rB", + IntegerOp, pattern>; + +class SFXVecInst<ValueType vectype>: + SFXInst<(outs VECREG:$rT), + (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry), + [/* no pattern */]>, + RegConstraint<"$rCarry = $rT">, + NoEncode<"$rCarry">; + +class SFXRegInst<RegisterClass rclass>: + SFXInst<(outs rclass:$rT), + (ins rclass:$rA, rclass:$rB, rclass:$rCarry), + [/* no pattern */]>, + RegConstraint<"$rCarry = $rT">, + NoEncode<"$rCarry">; + +multiclass SubtractExtended { + def v2i64 : SFXVecInst<v2i64>; + def v4i32 : SFXVecInst<v4i32>; + def r64 : SFXRegInst<R64C>; + def r32 : SFXRegInst<R32C>; +} + +defm SFX : SubtractExtended; + +// BG: only available in vector form, doesn't match a pattern. +class BGInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b01000010000, OOL, IOL, + "bg\t$rT, $rA, $rB", + IntegerOp, pattern>; + +class BGVecInst<ValueType vectype>: + BGInst<(outs VECREG:$rT), + (ins VECREG:$rA, VECREG:$rB), + [/* no pattern */]>; + +class BGRegInst<RegisterClass rclass>: + BGInst<(outs rclass:$rT), + (ins rclass:$rA, rclass:$rB), + [/* no pattern */]>; + +multiclass BorrowGenerate { + def v4i32 : BGVecInst<v4i32>; + def v2i64 : BGVecInst<v2i64>; + def r64 : BGRegInst<R64C>; + def r32 : BGRegInst<R32C>; +} + +defm BG : BorrowGenerate; + +// BGX: Borrow generate, extended. +def BGXvec: + RRForm<0b11000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, + VECREG:$rCarry), + "bgx\t$rT, $rA, $rB", IntegerOp, + []>, + RegConstraint<"$rCarry = $rT">, + NoEncode<"$rCarry">; + +// Halfword multiply variants: +// N.B: These can be used to build up larger quantities (16x16 -> 32) + +def MPYv8i16: + RRForm<0b00100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + "mpy\t$rT, $rA, $rB", IntegerMulDiv, + [/* no pattern */]>; + +def MPYr16: + RRForm<0b00100011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB), + "mpy\t$rT, $rA, $rB", IntegerMulDiv, + [(set R16C:$rT, (mul R16C:$rA, R16C:$rB))]>; + +// Unsigned 16-bit multiply: + +class MPYUInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b00110011110, OOL, IOL, + "mpyu\t$rT, $rA, $rB", IntegerMulDiv, + pattern>; + +def MPYUv4i32: + MPYUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [/* no pattern */]>; + +def MPYUr16: + MPYUInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB), + [(set R32C:$rT, (mul (zext R16C:$rA), (zext R16C:$rB)))]>; + +def MPYUr32: + MPYUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), + [/* no pattern */]>; + +// mpyi: multiply 16 x s10imm -> 32 result. + +class MPYIInst<dag OOL, dag IOL, list<dag> pattern>: + RI10Form<0b00101110, OOL, IOL, + "mpyi\t$rT, $rA, $val", IntegerMulDiv, + pattern>; + +def MPYIvec: + MPYIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + [(set (v8i16 VECREG:$rT), + (mul (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>; + +def MPYIr16: + MPYIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val), + [(set R16C:$rT, (mul R16C:$rA, i16ImmSExt10:$val))]>; + +// mpyui: same issues as other multiplies, plus, this doesn't match a +// pattern... but may be used during target DAG selection or lowering + +class MPYUIInst<dag OOL, dag IOL, list<dag> pattern>: + RI10Form<0b10101110, OOL, IOL, + "mpyui\t$rT, $rA, $val", IntegerMulDiv, + pattern>; + +def MPYUIvec: + MPYUIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + []>; + +def MPYUIr16: + MPYUIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val), + []>; + +// mpya: 16 x 16 + 16 -> 32 bit result +class MPYAInst<dag OOL, dag IOL, list<dag> pattern>: + RRRForm<0b0011, OOL, IOL, + "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv, + pattern>; + +def MPYAv4i32: + MPYAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), + [(set (v4i32 VECREG:$rT), + (add (v4i32 (bitconvert (mul (v8i16 VECREG:$rA), + (v8i16 VECREG:$rB)))), + (v4i32 VECREG:$rC)))]>; + +def MPYAr32: + MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC), + [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)), + R32C:$rC))]>; + +def MPYAr32_sext: + MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC), + [(set R32C:$rT, (add (mul (sext R16C:$rA), (sext R16C:$rB)), + R32C:$rC))]>; + +def MPYAr32_sextinreg: + MPYAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC), + [(set R32C:$rT, (add (mul (sext_inreg R32C:$rA, i16), + (sext_inreg R32C:$rB, i16)), + R32C:$rC))]>; + +// mpyh: multiply high, used to synthesize 32-bit multiplies +class MPYHInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b10100011110, OOL, IOL, + "mpyh\t$rT, $rA, $rB", IntegerMulDiv, + pattern>; + +def MPYHv4i32: + MPYHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [/* no pattern */]>; + +def MPYHr32: + MPYHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), + [/* no pattern */]>; + +// mpys: multiply high and shift right (returns the top half of +// a 16-bit multiply, sign extended to 32 bits.) + +class MPYSInst<dag OOL, dag IOL>: + RRForm<0b11100011110, OOL, IOL, + "mpys\t$rT, $rA, $rB", IntegerMulDiv, + [/* no pattern */]>; + +def MPYSv4i32: + MPYSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>; + +def MPYSr16: + MPYSInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB)>; + +// mpyhh: multiply high-high (returns the 32-bit result from multiplying +// the top 16 bits of the $rA, $rB) + +class MPYHHInst<dag OOL, dag IOL>: + RRForm<0b01100011110, OOL, IOL, + "mpyhh\t$rT, $rA, $rB", IntegerMulDiv, + [/* no pattern */]>; + +def MPYHHv8i16: + MPYHHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>; + +def MPYHHr32: + MPYHHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>; + +// mpyhha: Multiply high-high, add to $rT: + +class MPYHHAInst<dag OOL, dag IOL>: + RRForm<0b01100010110, OOL, IOL, + "mpyhha\t$rT, $rA, $rB", IntegerMulDiv, + [/* no pattern */]>; + +def MPYHHAvec: + MPYHHAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>; + +def MPYHHAr32: + MPYHHAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>; + +// mpyhhu: Multiply high-high, unsigned, e.g.: +// +// +-------+-------+ +-------+-------+ +---------+ +// | a0 . a1 | x | b0 . b1 | = | a0 x b0 | +// +-------+-------+ +-------+-------+ +---------+ +// +// where a0, b0 are the upper 16 bits of the 32-bit word + +class MPYHHUInst<dag OOL, dag IOL>: + RRForm<0b01110011110, OOL, IOL, + "mpyhhu\t$rT, $rA, $rB", IntegerMulDiv, + [/* no pattern */]>; + +def MPYHHUv4i32: + MPYHHUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>; + +def MPYHHUr32: + MPYHHUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>; + +// mpyhhau: Multiply high-high, unsigned + +class MPYHHAUInst<dag OOL, dag IOL>: + RRForm<0b01110010110, OOL, IOL, + "mpyhhau\t$rT, $rA, $rB", IntegerMulDiv, + [/* no pattern */]>; + +def MPYHHAUvec: + MPYHHAUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>; + +def MPYHHAUr32: + MPYHHAUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// clz: Count leading zeroes +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +class CLZInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm_1<0b10100101010, OOL, IOL, "clz\t$rT, $rA", + IntegerOp, pattern>; + +class CLZRegInst<RegisterClass rclass>: + CLZInst<(outs rclass:$rT), (ins rclass:$rA), + [(set rclass:$rT, (ctlz rclass:$rA))]>; + +class CLZVecInst<ValueType vectype>: + CLZInst<(outs VECREG:$rT), (ins VECREG:$rA), + [(set (vectype VECREG:$rT), (ctlz (vectype VECREG:$rA)))]>; + +multiclass CountLeadingZeroes { + def v4i32 : CLZVecInst<v4i32>; + def r32 : CLZRegInst<R32C>; +} + +defm CLZ : CountLeadingZeroes; + +// cntb: Count ones in bytes (aka "population count") +// +// NOTE: This instruction is really a vector instruction, but the custom +// lowering code uses it in unorthodox ways to support CTPOP for other +// data types! + +def CNTBv16i8: + RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA), + "cntb\t$rT, $rA", IntegerOp, + [(set (v16i8 VECREG:$rT), (SPUcntb (v16i8 VECREG:$rA)))]>; + +def CNTBv8i16 : + RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA), + "cntb\t$rT, $rA", IntegerOp, + [(set (v8i16 VECREG:$rT), (SPUcntb (v8i16 VECREG:$rA)))]>; + +def CNTBv4i32 : + RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA), + "cntb\t$rT, $rA", IntegerOp, + [(set (v4i32 VECREG:$rT), (SPUcntb (v4i32 VECREG:$rA)))]>; + +// gbb: Gather the low order bits from each byte in $rA into a single 16-bit +// quantity stored into $rT's slot 0, upper 16 bits are zeroed, as are +// slots 1-3. +// +// Note: This instruction "pairs" with the fsmb instruction for all of the +// various types defined here. +// +// Note 2: The "VecInst" and "RegInst" forms refer to the result being either +// a vector or register. + +class GBBInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm_1<0b01001101100, OOL, IOL, "gbb\t$rT, $rA", GatherOp, pattern>; + +class GBBRegInst<RegisterClass rclass, ValueType vectype>: + GBBInst<(outs rclass:$rT), (ins VECREG:$rA), + [/* no pattern */]>; + +class GBBVecInst<ValueType vectype>: + GBBInst<(outs VECREG:$rT), (ins VECREG:$rA), + [/* no pattern */]>; + +multiclass GatherBitsFromBytes { + def v16i8_r32: GBBRegInst<R32C, v16i8>; + def v16i8_r16: GBBRegInst<R16C, v16i8>; + def v16i8: GBBVecInst<v16i8>; +} + +defm GBB: GatherBitsFromBytes; + +// gbh: Gather all low order bits from each halfword in $rA into a single +// 8-bit quantity stored in $rT's slot 0, with the upper bits of $rT set to 0 +// and slots 1-3 also set to 0. +// +// See notes for GBBInst, above. + +class GBHInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm_1<0b10001101100, OOL, IOL, "gbh\t$rT, $rA", GatherOp, + pattern>; + +class GBHRegInst<RegisterClass rclass, ValueType vectype>: + GBHInst<(outs rclass:$rT), (ins VECREG:$rA), + [/* no pattern */]>; + +class GBHVecInst<ValueType vectype>: + GBHInst<(outs VECREG:$rT), (ins VECREG:$rA), + [/* no pattern */]>; + +multiclass GatherBitsHalfword { + def v8i16_r32: GBHRegInst<R32C, v8i16>; + def v8i16_r16: GBHRegInst<R16C, v8i16>; + def v8i16: GBHVecInst<v8i16>; +} + +defm GBH: GatherBitsHalfword; + +// gb: Gather all low order bits from each word in $rA into a single +// 4-bit quantity stored in $rT's slot 0, upper bits in $rT set to 0, +// as well as slots 1-3. +// +// See notes for gbb, above. + +class GBInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm_1<0b00001101100, OOL, IOL, "gb\t$rT, $rA", GatherOp, + pattern>; + +class GBRegInst<RegisterClass rclass, ValueType vectype>: + GBInst<(outs rclass:$rT), (ins VECREG:$rA), + [/* no pattern */]>; + +class GBVecInst<ValueType vectype>: + GBInst<(outs VECREG:$rT), (ins VECREG:$rA), + [/* no pattern */]>; + +multiclass GatherBitsWord { + def v4i32_r32: GBRegInst<R32C, v4i32>; + def v4i32_r16: GBRegInst<R16C, v4i32>; + def v4i32: GBVecInst<v4i32>; +} + +defm GB: GatherBitsWord; + +// avgb: average bytes +def AVGB: + RRForm<0b11001011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + "avgb\t$rT, $rA, $rB", ByteOp, + []>; + +// absdb: absolute difference of bytes +def ABSDB: + RRForm<0b11001010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + "absdb\t$rT, $rA, $rB", ByteOp, + []>; + +// sumb: sum bytes into halfwords +def SUMB: + RRForm<0b11001010010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + "sumb\t$rT, $rA, $rB", ByteOp, + []>; + +// Sign extension operations: +class XSBHInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm_1<0b01101101010, OOL, IOL, + "xsbh\t$rDst, $rSrc", + IntegerOp, pattern>; + +class XSBHInRegInst<RegisterClass rclass, list<dag> pattern>: + XSBHInst<(outs rclass:$rDst), (ins rclass:$rSrc), + pattern>; + +multiclass ExtendByteHalfword { + def v16i8: XSBHInst<(outs VECREG:$rDst), (ins VECREG:$rSrc), + [ + /*(set (v8i16 VECREG:$rDst), (sext (v8i16 VECREG:$rSrc)))*/]>; + def r8: XSBHInst<(outs R16C:$rDst), (ins R8C:$rSrc), + [(set R16C:$rDst, (sext R8C:$rSrc))]>; + def r16: XSBHInRegInst<R16C, + [(set R16C:$rDst, (sext_inreg R16C:$rSrc, i8))]>; + + // 32-bit form for XSBH: used to sign extend 8-bit quantities to 16-bit + // quantities to 32-bit quantities via a 32-bit register (see the sext 8->32 + // pattern below). Intentionally doesn't match a pattern because we want the + // sext 8->32 pattern to do the work for us, namely because we need the extra + // XSHWr32. + def r32: XSBHInRegInst<R32C, [/* no pattern */]>; + + // Same as the 32-bit version, but for i64 + def r64: XSBHInRegInst<R64C, [/* no pattern */]>; +} + +defm XSBH : ExtendByteHalfword; + +// Sign extend halfwords to words: + +class XSHWInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm_1<0b01101101010, OOL, IOL, "xshw\t$rDest, $rSrc", + IntegerOp, pattern>; + +class XSHWVecInst<ValueType in_vectype, ValueType out_vectype>: + XSHWInst<(outs VECREG:$rDest), (ins VECREG:$rSrc), + [(set (out_vectype VECREG:$rDest), + (sext (in_vectype VECREG:$rSrc)))]>; + +class XSHWInRegInst<RegisterClass rclass, list<dag> pattern>: + XSHWInst<(outs rclass:$rDest), (ins rclass:$rSrc), + pattern>; + +class XSHWRegInst<RegisterClass rclass>: + XSHWInst<(outs rclass:$rDest), (ins R16C:$rSrc), + [(set rclass:$rDest, (sext R16C:$rSrc))]>; + +multiclass ExtendHalfwordWord { + def v4i32: XSHWVecInst<v8i16, v4i32>; + + def r16: XSHWRegInst<R32C>; + + def r32: XSHWInRegInst<R32C, + [(set R32C:$rDest, (sext_inreg R32C:$rSrc, i16))]>; + def r64: XSHWInRegInst<R64C, [/* no pattern */]>; +} + +defm XSHW : ExtendHalfwordWord; + +// Sign-extend words to doublewords (32->64 bits) + +class XSWDInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm_1<0b01100101010, OOL, IOL, "xswd\t$rDst, $rSrc", + IntegerOp, pattern>; + +class XSWDVecInst<ValueType in_vectype, ValueType out_vectype>: + XSWDInst<(outs VECREG:$rDst), (ins VECREG:$rSrc), + [/*(set (out_vectype VECREG:$rDst), + (sext (out_vectype VECREG:$rSrc)))*/]>; + +class XSWDRegInst<RegisterClass in_rclass, RegisterClass out_rclass>: + XSWDInst<(outs out_rclass:$rDst), (ins in_rclass:$rSrc), + [(set out_rclass:$rDst, (sext in_rclass:$rSrc))]>; + +multiclass ExtendWordToDoubleWord { + def v2i64: XSWDVecInst<v4i32, v2i64>; + def r64: XSWDRegInst<R32C, R64C>; + + def r64_inreg: XSWDInst<(outs R64C:$rDst), (ins R64C:$rSrc), + [(set R64C:$rDst, (sext_inreg R64C:$rSrc, i32))]>; +} + +defm XSWD : ExtendWordToDoubleWord; + +// AND operations + +class ANDInst<dag OOL, dag IOL, list<dag> pattern> : + RRForm<0b10000011000, OOL, IOL, "and\t$rT, $rA, $rB", + IntegerOp, pattern>; + +class ANDVecInst<ValueType vectype>: + ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), (and (vectype VECREG:$rA), + (vectype VECREG:$rB)))]>; + +class ANDRegInst<RegisterClass rclass>: + ANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), + [(set rclass:$rT, (and rclass:$rA, rclass:$rB))]>; + +multiclass BitwiseAnd +{ + def v16i8: ANDVecInst<v16i8>; + def v8i16: ANDVecInst<v8i16>; + def v4i32: ANDVecInst<v4i32>; + def v2i64: ANDVecInst<v2i64>; + + def r128: ANDRegInst<GPRC>; + def r64: ANDRegInst<R64C>; + def r32: ANDRegInst<R32C>; + def r16: ANDRegInst<R16C>; + def r8: ANDRegInst<R8C>; + + //===--------------------------------------------- + // Special instructions to perform the fabs instruction + def fabs32: ANDInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB), + [/* Intentionally does not match a pattern */]>; + + def fabs64: ANDInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB), + [/* Intentionally does not match a pattern */]>; + + def fabsvec: ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [/* Intentionally does not match a pattern */]>; + + //===--------------------------------------------- + + // Hacked form of AND to zero-extend 16-bit quantities to 32-bit + // quantities -- see 16->32 zext pattern. + // + // This pattern is somewhat artificial, since it might match some + // compiler generated pattern but it is unlikely to do so. + + def i16i32: ANDInst<(outs R32C:$rT), (ins R16C:$rA, R32C:$rB), + [(set R32C:$rT, (and (zext R16C:$rA), R32C:$rB))]>; +} + +defm AND : BitwiseAnd; + + +def vnot_cell_conv : PatFrag<(ops node:$in), + (xor node:$in, (bitconvert (v4i32 immAllOnesV)))>; + +// N.B.: vnot_cell_conv is one of those special target selection pattern +// fragments, +// in which we expect there to be a bit_convert on the constant. Bear in mind +// that llvm translates "not <reg>" to "xor <reg>, -1" (or in this case, a +// constant -1 vector.) + +class ANDCInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b10000011010, OOL, IOL, "andc\t$rT, $rA, $rB", + IntegerOp, pattern>; + +class ANDCVecInst<ValueType vectype, PatFrag vnot_frag = vnot>: + ANDCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), + (and (vectype VECREG:$rA), + (vnot_frag (vectype VECREG:$rB))))]>; + +class ANDCRegInst<RegisterClass rclass>: + ANDCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), + [(set rclass:$rT, (and rclass:$rA, (not rclass:$rB)))]>; + +multiclass AndComplement +{ + def v16i8: ANDCVecInst<v16i8>; + def v8i16: ANDCVecInst<v8i16>; + def v4i32: ANDCVecInst<v4i32>; + def v2i64: ANDCVecInst<v2i64>; + + def r128: ANDCRegInst<GPRC>; + def r64: ANDCRegInst<R64C>; + def r32: ANDCRegInst<R32C>; + def r16: ANDCRegInst<R16C>; + def r8: ANDCRegInst<R8C>; + + // Sometimes, the xor pattern has a bitcast constant: + def v16i8_conv: ANDCVecInst<v16i8, vnot_cell_conv>; +} + +defm ANDC : AndComplement; + +class ANDBIInst<dag OOL, dag IOL, list<dag> pattern>: + RI10Form<0b01101000, OOL, IOL, "andbi\t$rT, $rA, $val", + ByteOp, pattern>; + +multiclass AndByteImm +{ + def v16i8: ANDBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), + [(set (v16i8 VECREG:$rT), + (and (v16i8 VECREG:$rA), + (v16i8 v16i8U8Imm:$val)))]>; + + def r8: ANDBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val), + [(set R8C:$rT, (and R8C:$rA, immU8:$val))]>; +} + +defm ANDBI : AndByteImm; + +class ANDHIInst<dag OOL, dag IOL, list<dag> pattern> : + RI10Form<0b10101000, OOL, IOL, "andhi\t$rT, $rA, $val", + ByteOp, pattern>; + +multiclass AndHalfwordImm +{ + def v8i16: ANDHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + [(set (v8i16 VECREG:$rT), + (and (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>; + + def r16: ANDHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val), + [(set R16C:$rT, (and R16C:$rA, i16ImmUns10:$val))]>; + + // Zero-extend i8 to i16: + def i8i16: ANDHIInst<(outs R16C:$rT), (ins R8C:$rA, u10imm:$val), + [(set R16C:$rT, (and (zext R8C:$rA), i16ImmUns10:$val))]>; +} + +defm ANDHI : AndHalfwordImm; + +class ANDIInst<dag OOL, dag IOL, list<dag> pattern> : + RI10Form<0b00101000, OOL, IOL, "andi\t$rT, $rA, $val", + IntegerOp, pattern>; + +multiclass AndWordImm +{ + def v4i32: ANDIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + [(set (v4i32 VECREG:$rT), + (and (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>; + + def r32: ANDIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), + [(set R32C:$rT, (and R32C:$rA, i32ImmSExt10:$val))]>; + + // Hacked form of ANDI to zero-extend i8 quantities to i32. See the zext 8->32 + // pattern below. + def i8i32: ANDIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val), + [(set R32C:$rT, + (and (zext R8C:$rA), i32ImmSExt10:$val))]>; + + // Hacked form of ANDI to zero-extend i16 quantities to i32. See the + // zext 16->32 pattern below. + // + // Note that this pattern is somewhat artificial, since it might match + // something the compiler generates but is unlikely to occur in practice. + def i16i32: ANDIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val), + [(set R32C:$rT, + (and (zext R16C:$rA), i32ImmSExt10:$val))]>; +} + +defm ANDI : AndWordImm; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// Bitwise OR group: +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +// Bitwise "or" (N.B.: These are also register-register copy instructions...) +class ORInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b10000010000, OOL, IOL, "or\t$rT, $rA, $rB", + IntegerOp, pattern>; + +class ORVecInst<ValueType vectype>: + ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA), + (vectype VECREG:$rB)))]>; + +class ORRegInst<RegisterClass rclass>: + ORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), + [(set rclass:$rT, (or rclass:$rA, rclass:$rB))]>; + + +multiclass BitwiseOr +{ + def v16i8: ORVecInst<v16i8>; + def v8i16: ORVecInst<v8i16>; + def v4i32: ORVecInst<v4i32>; + def v2i64: ORVecInst<v2i64>; + + def v4f32: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (v4f32 VECREG:$rT), + (v4f32 (bitconvert (or (v4i32 VECREG:$rA), + (v4i32 VECREG:$rB)))))]>; + + def v2f64: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (v2f64 VECREG:$rT), + (v2f64 (bitconvert (or (v2i64 VECREG:$rA), + (v2i64 VECREG:$rB)))))]>; + + def r128: ORRegInst<GPRC>; + def r64: ORRegInst<R64C>; + def r32: ORRegInst<R32C>; + def r16: ORRegInst<R16C>; + def r8: ORRegInst<R8C>; + + // OR instructions used to copy f32 and f64 registers. + def f32: ORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), + [/* no pattern */]>; + + def f64: ORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), + [/* no pattern */]>; +} + +defm OR : BitwiseOr; + +//===----------------------------------------------------------------------===// +// SPU::PREFSLOT2VEC and VEC2PREFSLOT re-interpretations of registers +//===----------------------------------------------------------------------===// +def : Pat<(v16i8 (SPUprefslot2vec R8C:$rA)), + (COPY_TO_REGCLASS R8C:$rA, VECREG)>; + +def : Pat<(v8i16 (SPUprefslot2vec R16C:$rA)), + (COPY_TO_REGCLASS R16C:$rA, VECREG)>; + +def : Pat<(v4i32 (SPUprefslot2vec R32C:$rA)), + (COPY_TO_REGCLASS R32C:$rA, VECREG)>; + +def : Pat<(v2i64 (SPUprefslot2vec R64C:$rA)), + (COPY_TO_REGCLASS R64C:$rA, VECREG)>; + +def : Pat<(v4f32 (SPUprefslot2vec R32FP:$rA)), + (COPY_TO_REGCLASS R32FP:$rA, VECREG)>; + +def : Pat<(v2f64 (SPUprefslot2vec R64FP:$rA)), + (COPY_TO_REGCLASS R64FP:$rA, VECREG)>; + +def : Pat<(i8 (SPUvec2prefslot (v16i8 VECREG:$rA))), + (COPY_TO_REGCLASS (v16i8 VECREG:$rA), R8C)>; + +def : Pat<(i16 (SPUvec2prefslot (v8i16 VECREG:$rA))), + (COPY_TO_REGCLASS (v8i16 VECREG:$rA), R16C)>; + +def : Pat<(i32 (SPUvec2prefslot (v4i32 VECREG:$rA))), + (COPY_TO_REGCLASS (v4i32 VECREG:$rA), R32C)>; + +def : Pat<(i64 (SPUvec2prefslot (v2i64 VECREG:$rA))), + (COPY_TO_REGCLASS (v2i64 VECREG:$rA), R64C)>; + +def : Pat<(f32 (SPUvec2prefslot (v4f32 VECREG:$rA))), + (COPY_TO_REGCLASS (v4f32 VECREG:$rA), R32FP)>; + +def : Pat<(f64 (SPUvec2prefslot (v2f64 VECREG:$rA))), + (COPY_TO_REGCLASS (v2f64 VECREG:$rA), R64FP)>; + +// Load Register: This is an assembler alias for a bitwise OR of a register +// against itself. It's here because it brings some clarity to assembly +// language output. + +let hasCtrlDep = 1 in { + class LRInst<dag OOL, dag IOL> + : SPUInstr<OOL, IOL, "lr\t$rT, $rA", IntegerOp> { + bits<7> RA; + bits<7> RT; + + let Pattern = [/*no pattern*/]; + + let Inst{0-10} = 0b10000010000; /* It's an OR operation */ + let Inst{11-17} = RA; + let Inst{18-24} = RA; + let Inst{25-31} = RT; + } + + class LRVecInst<ValueType vectype>: + LRInst<(outs VECREG:$rT), (ins VECREG:$rA)>; + + class LRRegInst<RegisterClass rclass>: + LRInst<(outs rclass:$rT), (ins rclass:$rA)>; + + multiclass LoadRegister { + def v2i64: LRVecInst<v2i64>; + def v2f64: LRVecInst<v2f64>; + def v4i32: LRVecInst<v4i32>; + def v4f32: LRVecInst<v4f32>; + def v8i16: LRVecInst<v8i16>; + def v16i8: LRVecInst<v16i8>; + + def r128: LRRegInst<GPRC>; + def r64: LRRegInst<R64C>; + def f64: LRRegInst<R64FP>; + def r32: LRRegInst<R32C>; + def f32: LRRegInst<R32FP>; + def r16: LRRegInst<R16C>; + def r8: LRRegInst<R8C>; + } + + defm LR: LoadRegister; +} + +// ORC: Bitwise "or" with complement (c = a | ~b) + +class ORCInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b10010010000, OOL, IOL, "orc\t$rT, $rA, $rB", + IntegerOp, pattern>; + +class ORCVecInst<ValueType vectype>: + ORCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA), + (vnot (vectype VECREG:$rB))))]>; + +class ORCRegInst<RegisterClass rclass>: + ORCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), + [(set rclass:$rT, (or rclass:$rA, (not rclass:$rB)))]>; + +multiclass BitwiseOrComplement +{ + def v16i8: ORCVecInst<v16i8>; + def v8i16: ORCVecInst<v8i16>; + def v4i32: ORCVecInst<v4i32>; + def v2i64: ORCVecInst<v2i64>; + + def r128: ORCRegInst<GPRC>; + def r64: ORCRegInst<R64C>; + def r32: ORCRegInst<R32C>; + def r16: ORCRegInst<R16C>; + def r8: ORCRegInst<R8C>; +} + +defm ORC : BitwiseOrComplement; + +// OR byte immediate +class ORBIInst<dag OOL, dag IOL, list<dag> pattern>: + RI10Form<0b01100000, OOL, IOL, "orbi\t$rT, $rA, $val", + IntegerOp, pattern>; + +class ORBIVecInst<ValueType vectype, PatLeaf immpred>: + ORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), + [(set (v16i8 VECREG:$rT), (or (vectype VECREG:$rA), + (vectype immpred:$val)))]>; + +multiclass BitwiseOrByteImm +{ + def v16i8: ORBIVecInst<v16i8, v16i8U8Imm>; + + def r8: ORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val), + [(set R8C:$rT, (or R8C:$rA, immU8:$val))]>; +} + +defm ORBI : BitwiseOrByteImm; + +// OR halfword immediate +class ORHIInst<dag OOL, dag IOL, list<dag> pattern>: + RI10Form<0b10100000, OOL, IOL, "orhi\t$rT, $rA, $val", + IntegerOp, pattern>; + +class ORHIVecInst<ValueType vectype, PatLeaf immpred>: + ORHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), + [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA), + immpred:$val))]>; + +multiclass BitwiseOrHalfwordImm +{ + def v8i16: ORHIVecInst<v8i16, v8i16Uns10Imm>; + + def r16: ORHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val), + [(set R16C:$rT, (or R16C:$rA, i16ImmUns10:$val))]>; + + // Specialized ORHI form used to promote 8-bit registers to 16-bit + def i8i16: ORHIInst<(outs R16C:$rT), (ins R8C:$rA, s10imm:$val), + [(set R16C:$rT, (or (anyext R8C:$rA), + i16ImmSExt10:$val))]>; +} + +defm ORHI : BitwiseOrHalfwordImm; + +class ORIInst<dag OOL, dag IOL, list<dag> pattern>: + RI10Form<0b00100000, OOL, IOL, "ori\t$rT, $rA, $val", + IntegerOp, pattern>; + +class ORIVecInst<ValueType vectype, PatLeaf immpred>: + ORIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), + [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA), + immpred:$val))]>; + +// Bitwise "or" with immediate +multiclass BitwiseOrImm +{ + def v4i32: ORIVecInst<v4i32, v4i32Uns10Imm>; + + def r32: ORIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), + [(set R32C:$rT, (or R32C:$rA, i32ImmSExt10:$val))]>; + + // i16i32: hacked version of the ori instruction to extend 16-bit quantities + // to 32-bit quantities. used exclusively to match "anyext" conversions (vide + // infra "anyext 16->32" pattern.) + def i16i32: ORIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val), + [(set R32C:$rT, (or (anyext R16C:$rA), + i32ImmSExt10:$val))]>; + + // i8i32: Hacked version of the ORI instruction to extend 16-bit quantities + // to 32-bit quantities. Used exclusively to match "anyext" conversions (vide + // infra "anyext 16->32" pattern.) + def i8i32: ORIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val), + [(set R32C:$rT, (or (anyext R8C:$rA), + i32ImmSExt10:$val))]>; +} + +defm ORI : BitwiseOrImm; + +// ORX: "or" across the vector: or's $rA's word slots leaving the result in +// $rT[0], slots 1-3 are zeroed. +// +// FIXME: Needs to match an intrinsic pattern. +def ORXv4i32: + RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + "orx\t$rT, $rA, $rB", IntegerOp, + []>; + +// XOR: + +class XORInst<dag OOL, dag IOL, list<dag> pattern> : + RRForm<0b10010010000, OOL, IOL, "xor\t$rT, $rA, $rB", + IntegerOp, pattern>; + +class XORVecInst<ValueType vectype>: + XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), (xor (vectype VECREG:$rA), + (vectype VECREG:$rB)))]>; + +class XORRegInst<RegisterClass rclass>: + XORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), + [(set rclass:$rT, (xor rclass:$rA, rclass:$rB))]>; + +multiclass BitwiseExclusiveOr +{ + def v16i8: XORVecInst<v16i8>; + def v8i16: XORVecInst<v8i16>; + def v4i32: XORVecInst<v4i32>; + def v2i64: XORVecInst<v2i64>; + + def r128: XORRegInst<GPRC>; + def r64: XORRegInst<R64C>; + def r32: XORRegInst<R32C>; + def r16: XORRegInst<R16C>; + def r8: XORRegInst<R8C>; + + // XOR instructions used to negate f32 and f64 quantities. + + def fneg32: XORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB), + [/* no pattern */]>; + + def fneg64: XORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB), + [/* no pattern */]>; + + def fnegvec: XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [/* no pattern, see fneg{32,64} */]>; +} + +defm XOR : BitwiseExclusiveOr; + +//==---------------------------------------------------------- + +class XORBIInst<dag OOL, dag IOL, list<dag> pattern>: + RI10Form<0b01100000, OOL, IOL, "xorbi\t$rT, $rA, $val", + IntegerOp, pattern>; + +multiclass XorByteImm +{ + def v16i8: + XORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), + [(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), v16i8U8Imm:$val))]>; + + def r8: + XORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val), + [(set R8C:$rT, (xor R8C:$rA, immU8:$val))]>; +} + +defm XORBI : XorByteImm; + +def XORHIv8i16: + RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val), + "xorhi\t$rT, $rA, $val", IntegerOp, + [(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA), + v8i16SExt10Imm:$val))]>; + +def XORHIr16: + RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val), + "xorhi\t$rT, $rA, $val", IntegerOp, + [(set R16C:$rT, (xor R16C:$rA, i16ImmSExt10:$val))]>; + +def XORIv4i32: + RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm_i32:$val), + "xori\t$rT, $rA, $val", IntegerOp, + [(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA), + v4i32SExt10Imm:$val))]>; + +def XORIr32: + RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), + "xori\t$rT, $rA, $val", IntegerOp, + [(set R32C:$rT, (xor R32C:$rA, i32ImmSExt10:$val))]>; + +// NAND: + +class NANDInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b10010011000, OOL, IOL, "nand\t$rT, $rA, $rB", + IntegerOp, pattern>; + +class NANDVecInst<ValueType vectype>: + NANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), (vnot (and (vectype VECREG:$rA), + (vectype VECREG:$rB))))]>; +class NANDRegInst<RegisterClass rclass>: + NANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), + [(set rclass:$rT, (not (and rclass:$rA, rclass:$rB)))]>; + +multiclass BitwiseNand +{ + def v16i8: NANDVecInst<v16i8>; + def v8i16: NANDVecInst<v8i16>; + def v4i32: NANDVecInst<v4i32>; + def v2i64: NANDVecInst<v2i64>; + + def r128: NANDRegInst<GPRC>; + def r64: NANDRegInst<R64C>; + def r32: NANDRegInst<R32C>; + def r16: NANDRegInst<R16C>; + def r8: NANDRegInst<R8C>; +} + +defm NAND : BitwiseNand; + +// NOR: + +class NORInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b10010010000, OOL, IOL, "nor\t$rT, $rA, $rB", + IntegerOp, pattern>; + +class NORVecInst<ValueType vectype>: + NORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), (vnot (or (vectype VECREG:$rA), + (vectype VECREG:$rB))))]>; +class NORRegInst<RegisterClass rclass>: + NORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), + [(set rclass:$rT, (not (or rclass:$rA, rclass:$rB)))]>; + +multiclass BitwiseNor +{ + def v16i8: NORVecInst<v16i8>; + def v8i16: NORVecInst<v8i16>; + def v4i32: NORVecInst<v4i32>; + def v2i64: NORVecInst<v2i64>; + + def r128: NORRegInst<GPRC>; + def r64: NORRegInst<R64C>; + def r32: NORRegInst<R32C>; + def r16: NORRegInst<R16C>; + def r8: NORRegInst<R8C>; +} + +defm NOR : BitwiseNor; + +// Select bits: +class SELBInst<dag OOL, dag IOL, list<dag> pattern>: + RRRForm<0b1000, OOL, IOL, "selb\t$rT, $rA, $rB, $rC", + IntegerOp, pattern>; + +class SELBVecInst<ValueType vectype, PatFrag vnot_frag = vnot>: + SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), + [(set (vectype VECREG:$rT), + (or (and (vectype VECREG:$rC), (vectype VECREG:$rB)), + (and (vnot_frag (vectype VECREG:$rC)), + (vectype VECREG:$rA))))]>; + +class SELBVecVCondInst<ValueType vectype>: + SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), + [(set (vectype VECREG:$rT), + (select (vectype VECREG:$rC), + (vectype VECREG:$rB), + (vectype VECREG:$rA)))]>; + +class SELBVecCondInst<ValueType vectype>: + SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, R32C:$rC), + [(set (vectype VECREG:$rT), + (select R32C:$rC, + (vectype VECREG:$rB), + (vectype VECREG:$rA)))]>; + +class SELBRegInst<RegisterClass rclass>: + SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rclass:$rC), + [(set rclass:$rT, + (or (and rclass:$rB, rclass:$rC), + (and rclass:$rA, (not rclass:$rC))))]>; + +class SELBRegCondInst<RegisterClass rcond, RegisterClass rclass>: + SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rcond:$rC), + [(set rclass:$rT, + (select rcond:$rC, rclass:$rB, rclass:$rA))]>; + +multiclass SelectBits +{ + def v16i8: SELBVecInst<v16i8>; + def v8i16: SELBVecInst<v8i16>; + def v4i32: SELBVecInst<v4i32>; + def v2i64: SELBVecInst<v2i64, vnot_cell_conv>; + + def r128: SELBRegInst<GPRC>; + def r64: SELBRegInst<R64C>; + def r32: SELBRegInst<R32C>; + def r16: SELBRegInst<R16C>; + def r8: SELBRegInst<R8C>; + + def v16i8_cond: SELBVecCondInst<v16i8>; + def v8i16_cond: SELBVecCondInst<v8i16>; + def v4i32_cond: SELBVecCondInst<v4i32>; + def v2i64_cond: SELBVecCondInst<v2i64>; + + def v16i8_vcond: SELBVecCondInst<v16i8>; + def v8i16_vcond: SELBVecCondInst<v8i16>; + def v4i32_vcond: SELBVecCondInst<v4i32>; + def v2i64_vcond: SELBVecCondInst<v2i64>; + + def v4f32_cond: + SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), + [(set (v4f32 VECREG:$rT), + (select (v4i32 VECREG:$rC), + (v4f32 VECREG:$rB), + (v4f32 VECREG:$rA)))]>; + + // SELBr64_cond is defined in SPU64InstrInfo.td + def r32_cond: SELBRegCondInst<R32C, R32C>; + def f32_cond: SELBRegCondInst<R32C, R32FP>; + def r16_cond: SELBRegCondInst<R16C, R16C>; + def r8_cond: SELBRegCondInst<R8C, R8C>; +} + +defm SELB : SelectBits; + +class SPUselbPatVec<ValueType vectype, SPUInstr inst>: + Pat<(SPUselb (vectype VECREG:$rA), (vectype VECREG:$rB), (vectype VECREG:$rC)), + (inst VECREG:$rA, VECREG:$rB, VECREG:$rC)>; + +def : SPUselbPatVec<v16i8, SELBv16i8>; +def : SPUselbPatVec<v8i16, SELBv8i16>; +def : SPUselbPatVec<v4i32, SELBv4i32>; +def : SPUselbPatVec<v2i64, SELBv2i64>; + +class SPUselbPatReg<RegisterClass rclass, SPUInstr inst>: + Pat<(SPUselb rclass:$rA, rclass:$rB, rclass:$rC), + (inst rclass:$rA, rclass:$rB, rclass:$rC)>; + +def : SPUselbPatReg<R8C, SELBr8>; +def : SPUselbPatReg<R16C, SELBr16>; +def : SPUselbPatReg<R32C, SELBr32>; +def : SPUselbPatReg<R64C, SELBr64>; + +// EQV: Equivalence (1 for each same bit, otherwise 0) +// +// Note: There are a lot of ways to match this bit operator and these patterns +// attempt to be as exhaustive as possible. + +class EQVInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b10010010000, OOL, IOL, "eqv\t$rT, $rA, $rB", + IntegerOp, pattern>; + +class EQVVecInst<ValueType vectype>: + EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), + (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)), + (and (vnot (vectype VECREG:$rA)), + (vnot (vectype VECREG:$rB)))))]>; + +class EQVRegInst<RegisterClass rclass>: + EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), + [(set rclass:$rT, (or (and rclass:$rA, rclass:$rB), + (and (not rclass:$rA), (not rclass:$rB))))]>; + +class EQVVecPattern1<ValueType vectype>: + EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), + (xor (vectype VECREG:$rA), (vnot (vectype VECREG:$rB))))]>; + +class EQVRegPattern1<RegisterClass rclass>: + EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), + [(set rclass:$rT, (xor rclass:$rA, (not rclass:$rB)))]>; + +class EQVVecPattern2<ValueType vectype>: + EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), + (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)), + (vnot (or (vectype VECREG:$rA), (vectype VECREG:$rB)))))]>; + +class EQVRegPattern2<RegisterClass rclass>: + EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), + [(set rclass:$rT, + (or (and rclass:$rA, rclass:$rB), + (not (or rclass:$rA, rclass:$rB))))]>; + +class EQVVecPattern3<ValueType vectype>: + EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), + (not (xor (vectype VECREG:$rA), (vectype VECREG:$rB))))]>; + +class EQVRegPattern3<RegisterClass rclass>: + EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), + [(set rclass:$rT, (not (xor rclass:$rA, rclass:$rB)))]>; + +multiclass BitEquivalence +{ + def v16i8: EQVVecInst<v16i8>; + def v8i16: EQVVecInst<v8i16>; + def v4i32: EQVVecInst<v4i32>; + def v2i64: EQVVecInst<v2i64>; + + def v16i8_1: EQVVecPattern1<v16i8>; + def v8i16_1: EQVVecPattern1<v8i16>; + def v4i32_1: EQVVecPattern1<v4i32>; + def v2i64_1: EQVVecPattern1<v2i64>; + + def v16i8_2: EQVVecPattern2<v16i8>; + def v8i16_2: EQVVecPattern2<v8i16>; + def v4i32_2: EQVVecPattern2<v4i32>; + def v2i64_2: EQVVecPattern2<v2i64>; + + def v16i8_3: EQVVecPattern3<v16i8>; + def v8i16_3: EQVVecPattern3<v8i16>; + def v4i32_3: EQVVecPattern3<v4i32>; + def v2i64_3: EQVVecPattern3<v2i64>; + + def r128: EQVRegInst<GPRC>; + def r64: EQVRegInst<R64C>; + def r32: EQVRegInst<R32C>; + def r16: EQVRegInst<R16C>; + def r8: EQVRegInst<R8C>; + + def r128_1: EQVRegPattern1<GPRC>; + def r64_1: EQVRegPattern1<R64C>; + def r32_1: EQVRegPattern1<R32C>; + def r16_1: EQVRegPattern1<R16C>; + def r8_1: EQVRegPattern1<R8C>; + + def r128_2: EQVRegPattern2<GPRC>; + def r64_2: EQVRegPattern2<R64C>; + def r32_2: EQVRegPattern2<R32C>; + def r16_2: EQVRegPattern2<R16C>; + def r8_2: EQVRegPattern2<R8C>; + + def r128_3: EQVRegPattern3<GPRC>; + def r64_3: EQVRegPattern3<R64C>; + def r32_3: EQVRegPattern3<R32C>; + def r16_3: EQVRegPattern3<R16C>; + def r8_3: EQVRegPattern3<R8C>; +} + +defm EQV: BitEquivalence; + +//===----------------------------------------------------------------------===// +// Vector shuffle... +//===----------------------------------------------------------------------===// +// SPUshuffle is generated in LowerVECTOR_SHUFFLE and gets replaced with SHUFB. +// See the SPUshuffle SDNode operand above, which sets up the DAG pattern +// matcher to emit something when the LowerVECTOR_SHUFFLE generates a node with +// the SPUISD::SHUFB opcode. +//===----------------------------------------------------------------------===// + +class SHUFBInst<dag OOL, dag IOL, list<dag> pattern>: + RRRForm<0b1000, OOL, IOL, "shufb\t$rT, $rA, $rB, $rC", + ShuffleOp, pattern>; + +class SHUFBVecInst<ValueType resultvec, ValueType maskvec>: + SHUFBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), + [(set (resultvec VECREG:$rT), + (SPUshuffle (resultvec VECREG:$rA), + (resultvec VECREG:$rB), + (maskvec VECREG:$rC)))]>; + +class SHUFBGPRCInst: + SHUFBInst<(outs VECREG:$rT), (ins GPRC:$rA, GPRC:$rB, VECREG:$rC), + [/* no pattern */]>; + +multiclass ShuffleBytes +{ + def v16i8 : SHUFBVecInst<v16i8, v16i8>; + def v16i8_m32 : SHUFBVecInst<v16i8, v4i32>; + def v8i16 : SHUFBVecInst<v8i16, v16i8>; + def v8i16_m32 : SHUFBVecInst<v8i16, v4i32>; + def v4i32 : SHUFBVecInst<v4i32, v16i8>; + def v4i32_m32 : SHUFBVecInst<v4i32, v4i32>; + def v2i64 : SHUFBVecInst<v2i64, v16i8>; + def v2i64_m32 : SHUFBVecInst<v2i64, v4i32>; + + def v4f32 : SHUFBVecInst<v4f32, v16i8>; + def v4f32_m32 : SHUFBVecInst<v4f32, v4i32>; + + def v2f64 : SHUFBVecInst<v2f64, v16i8>; + def v2f64_m32 : SHUFBVecInst<v2f64, v4i32>; + + def gprc : SHUFBGPRCInst; +} + +defm SHUFB : ShuffleBytes; + +//===----------------------------------------------------------------------===// +// Shift and rotate group: +//===----------------------------------------------------------------------===// + +class SHLHInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b11111010000, OOL, IOL, "shlh\t$rT, $rA, $rB", + RotShiftVec, pattern>; + +class SHLHVecInst<ValueType vectype>: + SHLHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), + (SPUvec_shl (vectype VECREG:$rA), (vectype VECREG:$rB)))]>; + +multiclass ShiftLeftHalfword +{ + def v8i16: SHLHVecInst<v8i16>; + def r16: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB), + [(set R16C:$rT, (shl R16C:$rA, R16C:$rB))]>; + def r16_r32: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB), + [(set R16C:$rT, (shl R16C:$rA, R32C:$rB))]>; +} + +defm SHLH : ShiftLeftHalfword; + +//===----------------------------------------------------------------------===// + +class SHLHIInst<dag OOL, dag IOL, list<dag> pattern>: + RI7Form<0b11111010000, OOL, IOL, "shlhi\t$rT, $rA, $val", + RotShiftVec, pattern>; + +class SHLHIVecInst<ValueType vectype>: + SHLHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), + [(set (vectype VECREG:$rT), + (SPUvec_shl (vectype VECREG:$rA), (i16 uimm7:$val)))]>; + +multiclass ShiftLeftHalfwordImm +{ + def v8i16: SHLHIVecInst<v8i16>; + def r16: SHLHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val), + [(set R16C:$rT, (shl R16C:$rA, (i16 uimm7:$val)))]>; +} + +defm SHLHI : ShiftLeftHalfwordImm; + +def : Pat<(SPUvec_shl (v8i16 VECREG:$rA), (i32 uimm7:$val)), + (SHLHIv8i16 VECREG:$rA, (TO_IMM16 uimm7:$val))>; + +def : Pat<(shl R16C:$rA, (i32 uimm7:$val)), + (SHLHIr16 R16C:$rA, (TO_IMM16 uimm7:$val))>; + +//===----------------------------------------------------------------------===// + +class SHLInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b11111010000, OOL, IOL, "shl\t$rT, $rA, $rB", + RotShiftVec, pattern>; + +multiclass ShiftLeftWord +{ + def v4i32: + SHLInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (v4i32 VECREG:$rT), + (SPUvec_shl (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; + def r32: + SHLInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), + [(set R32C:$rT, (shl R32C:$rA, R32C:$rB))]>; +} + +defm SHL: ShiftLeftWord; + +//===----------------------------------------------------------------------===// + +class SHLIInst<dag OOL, dag IOL, list<dag> pattern>: + RI7Form<0b11111010000, OOL, IOL, "shli\t$rT, $rA, $val", + RotShiftVec, pattern>; + +multiclass ShiftLeftWordImm +{ + def v4i32: + SHLIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val), + [(set (v4i32 VECREG:$rT), + (SPUvec_shl (v4i32 VECREG:$rA), (i32 uimm7:$val)))]>; + + def r32: + SHLIInst<(outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val), + [(set R32C:$rT, (shl R32C:$rA, (i32 uimm7:$val)))]>; +} + +defm SHLI : ShiftLeftWordImm; + +//===----------------------------------------------------------------------===// +// SHLQBI vec form: Note that this will shift the entire vector (the 128-bit +// register) to the left. Vector form is here to ensure type correctness. +// +// The shift count is in the lowest 3 bits (29-31) of $rB, so only a bit shift +// of 7 bits is actually possible. +// +// Note also that SHLQBI/SHLQBII are used in conjunction with SHLQBY/SHLQBYI +// to shift i64 and i128. SHLQBI is the residual left over after shifting by +// bytes with SHLQBY. + +class SHLQBIInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b11011011100, OOL, IOL, "shlqbi\t$rT, $rA, $rB", + RotShiftQuad, pattern>; + +class SHLQBIVecInst<ValueType vectype>: + SHLQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), + [(set (vectype VECREG:$rT), + (SPUshlquad_l_bits (vectype VECREG:$rA), R32C:$rB))]>; + +class SHLQBIRegInst<RegisterClass rclass>: + SHLQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), + [/* no pattern */]>; + +multiclass ShiftLeftQuadByBits +{ + def v16i8: SHLQBIVecInst<v16i8>; + def v8i16: SHLQBIVecInst<v8i16>; + def v4i32: SHLQBIVecInst<v4i32>; + def v4f32: SHLQBIVecInst<v4f32>; + def v2i64: SHLQBIVecInst<v2i64>; + def v2f64: SHLQBIVecInst<v2f64>; + + def r128: SHLQBIRegInst<GPRC>; +} + +defm SHLQBI : ShiftLeftQuadByBits; + +// See note above on SHLQBI. In this case, the predicate actually does then +// enforcement, whereas with SHLQBI, we have to "take it on faith." +class SHLQBIIInst<dag OOL, dag IOL, list<dag> pattern>: + RI7Form<0b11011111100, OOL, IOL, "shlqbii\t$rT, $rA, $val", + RotShiftQuad, pattern>; + +class SHLQBIIVecInst<ValueType vectype>: + SHLQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val), + [(set (vectype VECREG:$rT), + (SPUshlquad_l_bits (vectype VECREG:$rA), (i32 bitshift:$val)))]>; + +multiclass ShiftLeftQuadByBitsImm +{ + def v16i8 : SHLQBIIVecInst<v16i8>; + def v8i16 : SHLQBIIVecInst<v8i16>; + def v4i32 : SHLQBIIVecInst<v4i32>; + def v4f32 : SHLQBIIVecInst<v4f32>; + def v2i64 : SHLQBIIVecInst<v2i64>; + def v2f64 : SHLQBIIVecInst<v2f64>; +} + +defm SHLQBII : ShiftLeftQuadByBitsImm; + +// SHLQBY, SHLQBYI vector forms: Shift the entire vector to the left by bytes, +// not by bits. See notes above on SHLQBI. + +class SHLQBYInst<dag OOL, dag IOL, list<dag> pattern>: + RI7Form<0b11111011100, OOL, IOL, "shlqby\t$rT, $rA, $rB", + RotShiftQuad, pattern>; + +class SHLQBYVecInst<ValueType vectype>: + SHLQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), + [(set (vectype VECREG:$rT), + (SPUshlquad_l_bytes (vectype VECREG:$rA), R32C:$rB))]>; + +multiclass ShiftLeftQuadBytes +{ + def v16i8: SHLQBYVecInst<v16i8>; + def v8i16: SHLQBYVecInst<v8i16>; + def v4i32: SHLQBYVecInst<v4i32>; + def v4f32: SHLQBYVecInst<v4f32>; + def v2i64: SHLQBYVecInst<v2i64>; + def v2f64: SHLQBYVecInst<v2f64>; + def r128: SHLQBYInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB), + [(set GPRC:$rT, (SPUshlquad_l_bytes GPRC:$rA, R32C:$rB))]>; +} + +defm SHLQBY: ShiftLeftQuadBytes; + +class SHLQBYIInst<dag OOL, dag IOL, list<dag> pattern>: + RI7Form<0b11111111100, OOL, IOL, "shlqbyi\t$rT, $rA, $val", + RotShiftQuad, pattern>; + +class SHLQBYIVecInst<ValueType vectype>: + SHLQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val), + [(set (vectype VECREG:$rT), + (SPUshlquad_l_bytes (vectype VECREG:$rA), (i32 uimm7:$val)))]>; + +multiclass ShiftLeftQuadBytesImm +{ + def v16i8: SHLQBYIVecInst<v16i8>; + def v8i16: SHLQBYIVecInst<v8i16>; + def v4i32: SHLQBYIVecInst<v4i32>; + def v4f32: SHLQBYIVecInst<v4f32>; + def v2i64: SHLQBYIVecInst<v2i64>; + def v2f64: SHLQBYIVecInst<v2f64>; + def r128: SHLQBYIInst<(outs GPRC:$rT), (ins GPRC:$rA, u7imm_i32:$val), + [(set GPRC:$rT, + (SPUshlquad_l_bytes GPRC:$rA, (i32 uimm7:$val)))]>; +} + +defm SHLQBYI : ShiftLeftQuadBytesImm; + +class SHLQBYBIInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b00111001111, OOL, IOL, "shlqbybi\t$rT, $rA, $rB", + RotShiftQuad, pattern>; + +class SHLQBYBIVecInst<ValueType vectype>: + SHLQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), + [/* no pattern */]>; + +class SHLQBYBIRegInst<RegisterClass rclass>: + SHLQBYBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), + [/* no pattern */]>; + +multiclass ShiftLeftQuadBytesBitCount +{ + def v16i8: SHLQBYBIVecInst<v16i8>; + def v8i16: SHLQBYBIVecInst<v8i16>; + def v4i32: SHLQBYBIVecInst<v4i32>; + def v4f32: SHLQBYBIVecInst<v4f32>; + def v2i64: SHLQBYBIVecInst<v2i64>; + def v2f64: SHLQBYBIVecInst<v2f64>; + + def r128: SHLQBYBIRegInst<GPRC>; +} + +defm SHLQBYBI : ShiftLeftQuadBytesBitCount; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// Rotate halfword: +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +class ROTHInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b00111010000, OOL, IOL, "roth\t$rT, $rA, $rB", + RotShiftVec, pattern>; + +class ROTHVecInst<ValueType vectype>: + ROTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), + (SPUvec_rotl VECREG:$rA, (v8i16 VECREG:$rB)))]>; + +class ROTHRegInst<RegisterClass rclass>: + ROTHInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB), + [(set rclass:$rT, (rotl rclass:$rA, rclass:$rB))]>; + +multiclass RotateLeftHalfword +{ + def v8i16: ROTHVecInst<v8i16>; + def r16: ROTHRegInst<R16C>; +} + +defm ROTH: RotateLeftHalfword; + +def ROTHr16_r32: ROTHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB), + [(set R16C:$rT, (rotl R16C:$rA, R32C:$rB))]>; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// Rotate halfword, immediate: +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +class ROTHIInst<dag OOL, dag IOL, list<dag> pattern>: + RI7Form<0b00111110000, OOL, IOL, "rothi\t$rT, $rA, $val", + RotShiftVec, pattern>; + +class ROTHIVecInst<ValueType vectype>: + ROTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val), + [(set (vectype VECREG:$rT), + (SPUvec_rotl VECREG:$rA, (i16 uimm7:$val)))]>; + +multiclass RotateLeftHalfwordImm +{ + def v8i16: ROTHIVecInst<v8i16>; + def r16: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val), + [(set R16C:$rT, (rotl R16C:$rA, (i16 uimm7:$val)))]>; + def r16_r32: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val), + [(set R16C:$rT, (rotl R16C:$rA, (i32 uimm7:$val)))]>; +} + +defm ROTHI: RotateLeftHalfwordImm; + +def : Pat<(SPUvec_rotl (v8i16 VECREG:$rA), (i32 uimm7:$val)), + (ROTHIv8i16 VECREG:$rA, (TO_IMM16 imm:$val))>; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// Rotate word: +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +class ROTInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b00011010000, OOL, IOL, "rot\t$rT, $rA, $rB", + RotShiftVec, pattern>; + +class ROTVecInst<ValueType vectype>: + ROTInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), + [(set (vectype VECREG:$rT), + (SPUvec_rotl (vectype VECREG:$rA), R32C:$rB))]>; + +class ROTRegInst<RegisterClass rclass>: + ROTInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), + [(set rclass:$rT, + (rotl rclass:$rA, R32C:$rB))]>; + +multiclass RotateLeftWord +{ + def v4i32: ROTVecInst<v4i32>; + def r32: ROTRegInst<R32C>; +} + +defm ROT: RotateLeftWord; + +// The rotate amount is in the same bits whether we've got an 8-bit, 16-bit or +// 32-bit register +def ROTr32_r16_anyext: + ROTInst<(outs R32C:$rT), (ins R32C:$rA, R16C:$rB), + [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R16C:$rB))))]>; + +def : Pat<(rotl R32C:$rA, (i32 (zext R16C:$rB))), + (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>; + +def : Pat<(rotl R32C:$rA, (i32 (sext R16C:$rB))), + (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>; + +def ROTr32_r8_anyext: + ROTInst<(outs R32C:$rT), (ins R32C:$rA, R8C:$rB), + [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R8C:$rB))))]>; + +def : Pat<(rotl R32C:$rA, (i32 (zext R8C:$rB))), + (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>; + +def : Pat<(rotl R32C:$rA, (i32 (sext R8C:$rB))), + (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// Rotate word, immediate +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +class ROTIInst<dag OOL, dag IOL, list<dag> pattern>: + RI7Form<0b00011110000, OOL, IOL, "roti\t$rT, $rA, $val", + RotShiftVec, pattern>; + +class ROTIVecInst<ValueType vectype, Operand optype, ValueType inttype, PatLeaf pred>: + ROTIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val), + [(set (vectype VECREG:$rT), + (SPUvec_rotl (vectype VECREG:$rA), (inttype pred:$val)))]>; + +class ROTIRegInst<RegisterClass rclass, Operand optype, ValueType inttype, PatLeaf pred>: + ROTIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val), + [(set rclass:$rT, (rotl rclass:$rA, (inttype pred:$val)))]>; + +multiclass RotateLeftWordImm +{ + def v4i32: ROTIVecInst<v4i32, u7imm_i32, i32, uimm7>; + def v4i32_i16: ROTIVecInst<v4i32, u7imm, i16, uimm7>; + def v4i32_i8: ROTIVecInst<v4i32, u7imm_i8, i8, uimm7>; + + def r32: ROTIRegInst<R32C, u7imm_i32, i32, uimm7>; + def r32_i16: ROTIRegInst<R32C, u7imm, i16, uimm7>; + def r32_i8: ROTIRegInst<R32C, u7imm_i8, i8, uimm7>; +} + +defm ROTI : RotateLeftWordImm; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// Rotate quad by byte (count) +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +class ROTQBYInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b00111011100, OOL, IOL, "rotqby\t$rT, $rA, $rB", + RotShiftQuad, pattern>; + +class ROTQBYGenInst<ValueType type, RegisterClass rc>: + ROTQBYInst<(outs rc:$rT), (ins rc:$rA, R32C:$rB), + [(set (type rc:$rT), + (SPUrotbytes_left (type rc:$rA), R32C:$rB))]>; + +class ROTQBYVecInst<ValueType type>: + ROTQBYGenInst<type, VECREG>; + +multiclass RotateQuadLeftByBytes +{ + def v16i8: ROTQBYVecInst<v16i8>; + def v8i16: ROTQBYVecInst<v8i16>; + def v4i32: ROTQBYVecInst<v4i32>; + def v4f32: ROTQBYVecInst<v4f32>; + def v2i64: ROTQBYVecInst<v2i64>; + def v2f64: ROTQBYVecInst<v2f64>; + def i128: ROTQBYGenInst<i128, GPRC>; +} + +defm ROTQBY: RotateQuadLeftByBytes; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// Rotate quad by byte (count), immediate +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +class ROTQBYIInst<dag OOL, dag IOL, list<dag> pattern>: + RI7Form<0b00111111100, OOL, IOL, "rotqbyi\t$rT, $rA, $val", + RotShiftQuad, pattern>; + +class ROTQBYIGenInst<ValueType type, RegisterClass rclass>: + ROTQBYIInst<(outs rclass:$rT), (ins rclass:$rA, u7imm:$val), + [(set (type rclass:$rT), + (SPUrotbytes_left (type rclass:$rA), (i16 uimm7:$val)))]>; + +class ROTQBYIVecInst<ValueType vectype>: + ROTQBYIGenInst<vectype, VECREG>; + +multiclass RotateQuadByBytesImm +{ + def v16i8: ROTQBYIVecInst<v16i8>; + def v8i16: ROTQBYIVecInst<v8i16>; + def v4i32: ROTQBYIVecInst<v4i32>; + def v4f32: ROTQBYIVecInst<v4f32>; + def v2i64: ROTQBYIVecInst<v2i64>; + def vfi64: ROTQBYIVecInst<v2f64>; + def i128: ROTQBYIGenInst<i128, GPRC>; +} + +defm ROTQBYI: RotateQuadByBytesImm; + +// See ROTQBY note above. +class ROTQBYBIInst<dag OOL, dag IOL, list<dag> pattern>: + RI7Form<0b00110011100, OOL, IOL, + "rotqbybi\t$rT, $rA, $shift", + RotShiftQuad, pattern>; + +class ROTQBYBIVecInst<ValueType vectype, RegisterClass rclass>: + ROTQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, rclass:$shift), + [(set (vectype VECREG:$rT), + (SPUrotbytes_left_bits (vectype VECREG:$rA), rclass:$shift))]>; + +multiclass RotateQuadByBytesByBitshift { + def v16i8_r32: ROTQBYBIVecInst<v16i8, R32C>; + def v8i16_r32: ROTQBYBIVecInst<v8i16, R32C>; + def v4i32_r32: ROTQBYBIVecInst<v4i32, R32C>; + def v2i64_r32: ROTQBYBIVecInst<v2i64, R32C>; +} + +defm ROTQBYBI : RotateQuadByBytesByBitshift; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// See ROTQBY note above. +// +// Assume that the user of this instruction knows to shift the rotate count +// into bit 29 +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +class ROTQBIInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b00011011100, OOL, IOL, "rotqbi\t$rT, $rA, $rB", + RotShiftQuad, pattern>; + +class ROTQBIVecInst<ValueType vectype>: + ROTQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), + [/* no pattern yet */]>; + +class ROTQBIRegInst<RegisterClass rclass>: + ROTQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), + [/* no pattern yet */]>; + +multiclass RotateQuadByBitCount +{ + def v16i8: ROTQBIVecInst<v16i8>; + def v8i16: ROTQBIVecInst<v8i16>; + def v4i32: ROTQBIVecInst<v4i32>; + def v2i64: ROTQBIVecInst<v2i64>; + + def r128: ROTQBIRegInst<GPRC>; + def r64: ROTQBIRegInst<R64C>; +} + +defm ROTQBI: RotateQuadByBitCount; + +class ROTQBIIInst<dag OOL, dag IOL, list<dag> pattern>: + RI7Form<0b00011111100, OOL, IOL, "rotqbii\t$rT, $rA, $val", + RotShiftQuad, pattern>; + +class ROTQBIIVecInst<ValueType vectype, Operand optype, ValueType inttype, + PatLeaf pred>: + ROTQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val), + [/* no pattern yet */]>; + +class ROTQBIIRegInst<RegisterClass rclass, Operand optype, ValueType inttype, + PatLeaf pred>: + ROTQBIIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val), + [/* no pattern yet */]>; + +multiclass RotateQuadByBitCountImm +{ + def v16i8: ROTQBIIVecInst<v16i8, u7imm_i32, i32, uimm7>; + def v8i16: ROTQBIIVecInst<v8i16, u7imm_i32, i32, uimm7>; + def v4i32: ROTQBIIVecInst<v4i32, u7imm_i32, i32, uimm7>; + def v2i64: ROTQBIIVecInst<v2i64, u7imm_i32, i32, uimm7>; + + def r128: ROTQBIIRegInst<GPRC, u7imm_i32, i32, uimm7>; + def r64: ROTQBIIRegInst<R64C, u7imm_i32, i32, uimm7>; +} + +defm ROTQBII : RotateQuadByBitCountImm; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// ROTHM v8i16 form: +// NOTE(1): No vector rotate is generated by the C/C++ frontend (today), +// so this only matches a synthetically generated/lowered code +// fragment. +// NOTE(2): $rB must be negated before the right rotate! +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +class ROTHMInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b10111010000, OOL, IOL, "rothm\t$rT, $rA, $rB", + RotShiftVec, pattern>; + +def ROTHMv8i16: + ROTHMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [/* see patterns below - $rB must be negated */]>; + +def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)), + (ROTHMv8i16 VECREG:$rA, (SFHIvec VECREG:$rB, 0))>; + +// ROTHM r16 form: Rotate 16-bit quantity to right, zero fill at the left +// Note: This instruction doesn't match a pattern because rB must be negated +// for the instruction to work. Thus, the pattern below the instruction! + +def ROTHMr16: + ROTHMInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB), + [/* see patterns below - $rB must be negated! */]>; + +def : Pat<(srl R16C:$rA, R32C:$rB), + (ROTHMr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>; + +def : Pat<(srl R16C:$rA, R16C:$rB), + (ROTHMr16 R16C:$rA, + (SFIr32 (XSHWr16 R16C:$rB), 0))>; + +def : Pat<(srl R16C:$rA, R8C:$rB), + (ROTHMr16 R16C:$rA, + (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>; + +// ROTHMI v8i16 form: See the comment for ROTHM v8i16. The difference here is +// that the immediate can be complemented, so that the user doesn't have to +// worry about it. + +class ROTHMIInst<dag OOL, dag IOL, list<dag> pattern>: + RI7Form<0b10111110000, OOL, IOL, "rothmi\t$rT, $rA, $val", + RotShiftVec, pattern>; + +def ROTHMIv8i16: + ROTHMIInst<(outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val), + [/* no pattern */]>; + +def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i32 imm:$val)), + (ROTHMIv8i16 VECREG:$rA, imm:$val)>; + +def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i16 imm:$val)), + (ROTHMIv8i16 VECREG:$rA, (TO_IMM32 imm:$val))>; + +def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i8 imm:$val)), + (ROTHMIv8i16 VECREG:$rA, (TO_IMM32 imm:$val))>; + +def ROTHMIr16: + ROTHMIInst<(outs R16C:$rT), (ins R16C:$rA, rothNeg7imm:$val), + [/* no pattern */]>; + +def: Pat<(srl R16C:$rA, (i32 uimm7:$val)), + (ROTHMIr16 R16C:$rA, uimm7:$val)>; + +def: Pat<(srl R16C:$rA, (i16 uimm7:$val)), + (ROTHMIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>; + +def: Pat<(srl R16C:$rA, (i8 uimm7:$val)), + (ROTHMIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>; + +// ROTM v4i32 form: See the ROTHM v8i16 comments. +class ROTMInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b10011010000, OOL, IOL, "rotm\t$rT, $rA, $rB", + RotShiftVec, pattern>; + +def ROTMv4i32: + ROTMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [/* see patterns below - $rB must be negated */]>; + +def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)), + (ROTMv4i32 VECREG:$rA, (SFIvec VECREG:$rB, 0))>; + +def ROTMr32: + ROTMInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), + [/* see patterns below - $rB must be negated */]>; + +def : Pat<(srl R32C:$rA, R32C:$rB), + (ROTMr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>; + +def : Pat<(srl R32C:$rA, R16C:$rB), + (ROTMr32 R32C:$rA, + (SFIr32 (XSHWr16 R16C:$rB), 0))>; + +def : Pat<(srl R32C:$rA, R8C:$rB), + (ROTMr32 R32C:$rA, + (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; + +// ROTMI v4i32 form: See the comment for ROTHM v8i16. +def ROTMIv4i32: + RI7Form<0b10011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), + "rotmi\t$rT, $rA, $val", RotShiftVec, + [(set (v4i32 VECREG:$rT), + (SPUvec_srl VECREG:$rA, (i32 uimm7:$val)))]>; + +def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (i16 uimm7:$val)), + (ROTMIv4i32 VECREG:$rA, (TO_IMM32 uimm7:$val))>; + +def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (i8 uimm7:$val)), + (ROTMIv4i32 VECREG:$rA, (TO_IMM32 uimm7:$val))>; + +// ROTMI r32 form: know how to complement the immediate value. +def ROTMIr32: + RI7Form<0b10011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val), + "rotmi\t$rT, $rA, $val", RotShiftVec, + [(set R32C:$rT, (srl R32C:$rA, (i32 uimm7:$val)))]>; + +def : Pat<(srl R32C:$rA, (i16 imm:$val)), + (ROTMIr32 R32C:$rA, (TO_IMM32 uimm7:$val))>; + +def : Pat<(srl R32C:$rA, (i8 imm:$val)), + (ROTMIr32 R32C:$rA, (TO_IMM32 uimm7:$val))>; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// ROTQMBY: This is a vector form merely so that when used in an +// instruction pattern, type checking will succeed. This instruction assumes +// that the user knew to negate $rB. +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +class ROTQMBYInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b10111011100, OOL, IOL, "rotqmby\t$rT, $rA, $rB", + RotShiftQuad, pattern>; + +class ROTQMBYVecInst<ValueType vectype>: + ROTQMBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), + [/* no pattern, $rB must be negated */]>; + +class ROTQMBYRegInst<RegisterClass rclass>: + ROTQMBYInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), + [/* no pattern */]>; + +multiclass RotateQuadBytes +{ + def v16i8: ROTQMBYVecInst<v16i8>; + def v8i16: ROTQMBYVecInst<v8i16>; + def v4i32: ROTQMBYVecInst<v4i32>; + def v2i64: ROTQMBYVecInst<v2i64>; + + def r128: ROTQMBYRegInst<GPRC>; + def r64: ROTQMBYRegInst<R64C>; +} + +defm ROTQMBY : RotateQuadBytes; + +def : Pat<(SPUsrl_bytes GPRC:$rA, R32C:$rB), + (ROTQMBYr128 GPRC:$rA, + (SFIr32 R32C:$rB, 0))>; + +class ROTQMBYIInst<dag OOL, dag IOL, list<dag> pattern>: + RI7Form<0b10111111100, OOL, IOL, "rotqmbyi\t$rT, $rA, $val", + RotShiftQuad, pattern>; + +class ROTQMBYIVecInst<ValueType vectype>: + ROTQMBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), + [/* no pattern */]>; + +class ROTQMBYIRegInst<RegisterClass rclass, Operand optype, ValueType inttype, + PatLeaf pred>: + ROTQMBYIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val), + [/* no pattern */]>; + +// 128-bit zero extension form: +class ROTQMBYIZExtInst<RegisterClass rclass, Operand optype, PatLeaf pred>: + ROTQMBYIInst<(outs GPRC:$rT), (ins rclass:$rA, optype:$val), + [/* no pattern */]>; + +multiclass RotateQuadBytesImm +{ + def v16i8: ROTQMBYIVecInst<v16i8>; + def v8i16: ROTQMBYIVecInst<v8i16>; + def v4i32: ROTQMBYIVecInst<v4i32>; + def v2i64: ROTQMBYIVecInst<v2i64>; + + def r128: ROTQMBYIRegInst<GPRC, rotNeg7imm, i32, uimm7>; + def r64: ROTQMBYIRegInst<R64C, rotNeg7imm, i32, uimm7>; + + def r128_zext_r8: ROTQMBYIZExtInst<R8C, rotNeg7imm, uimm7>; + def r128_zext_r16: ROTQMBYIZExtInst<R16C, rotNeg7imm, uimm7>; + def r128_zext_r32: ROTQMBYIZExtInst<R32C, rotNeg7imm, uimm7>; + def r128_zext_r64: ROTQMBYIZExtInst<R64C, rotNeg7imm, uimm7>; +} + +defm ROTQMBYI : RotateQuadBytesImm; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// Rotate right and mask by bit count +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +class ROTQMBYBIInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b10110011100, OOL, IOL, "rotqmbybi\t$rT, $rA, $rB", + RotShiftQuad, pattern>; + +class ROTQMBYBIVecInst<ValueType vectype>: + ROTQMBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), + [/* no pattern, */]>; + +multiclass RotateMaskQuadByBitCount +{ + def v16i8: ROTQMBYBIVecInst<v16i8>; + def v8i16: ROTQMBYBIVecInst<v8i16>; + def v4i32: ROTQMBYBIVecInst<v4i32>; + def v2i64: ROTQMBYBIVecInst<v2i64>; + def r128: ROTQMBYBIInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB), + [/*no pattern*/]>; +} + +defm ROTQMBYBI: RotateMaskQuadByBitCount; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// Rotate quad and mask by bits +// Note that the rotate amount has to be negated +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +class ROTQMBIInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b10011011100, OOL, IOL, "rotqmbi\t$rT, $rA, $rB", + RotShiftQuad, pattern>; + +class ROTQMBIVecInst<ValueType vectype>: + ROTQMBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB), + [/* no pattern */]>; + +class ROTQMBIRegInst<RegisterClass rclass>: + ROTQMBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB), + [/* no pattern */]>; + +multiclass RotateMaskQuadByBits +{ + def v16i8: ROTQMBIVecInst<v16i8>; + def v8i16: ROTQMBIVecInst<v8i16>; + def v4i32: ROTQMBIVecInst<v4i32>; + def v2i64: ROTQMBIVecInst<v2i64>; + + def r128: ROTQMBIRegInst<GPRC>; + def r64: ROTQMBIRegInst<R64C>; +} + +defm ROTQMBI: RotateMaskQuadByBits; + +def : Pat<(srl GPRC:$rA, R32C:$rB), + (ROTQMBYBIr128 (ROTQMBIr128 GPRC:$rA, + (SFIr32 R32C:$rB, 0)), + (SFIr32 R32C:$rB, 0))>; + + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// Rotate quad and mask by bits, immediate +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +class ROTQMBIIInst<dag OOL, dag IOL, list<dag> pattern>: + RI7Form<0b10011111100, OOL, IOL, "rotqmbii\t$rT, $rA, $val", + RotShiftQuad, pattern>; + +class ROTQMBIIVecInst<ValueType vectype>: + ROTQMBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val), + [/* no pattern */]>; + +class ROTQMBIIRegInst<RegisterClass rclass>: + ROTQMBIIInst<(outs rclass:$rT), (ins rclass:$rA, rotNeg7imm:$val), + [/* no pattern */]>; + +multiclass RotateMaskQuadByBitsImm +{ + def v16i8: ROTQMBIIVecInst<v16i8>; + def v8i16: ROTQMBIIVecInst<v8i16>; + def v4i32: ROTQMBIIVecInst<v4i32>; + def v2i64: ROTQMBIIVecInst<v2i64>; + + def r128: ROTQMBIIRegInst<GPRC>; + def r64: ROTQMBIIRegInst<R64C>; +} + +defm ROTQMBII: RotateMaskQuadByBitsImm; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +def ROTMAHv8i16: + RRForm<0b01111010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + "rotmah\t$rT, $rA, $rB", RotShiftVec, + [/* see patterns below - $rB must be negated */]>; + +def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)), + (ROTMAHv8i16 VECREG:$rA, (SFHIvec VECREG:$rB, 0))>; + +def ROTMAHr16: + RRForm<0b01111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB), + "rotmah\t$rT, $rA, $rB", RotShiftVec, + [/* see patterns below - $rB must be negated */]>; + +def : Pat<(sra R16C:$rA, R32C:$rB), + (ROTMAHr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>; + +def : Pat<(sra R16C:$rA, R16C:$rB), + (ROTMAHr16 R16C:$rA, + (SFIr32 (XSHWr16 R16C:$rB), 0))>; + +def : Pat<(sra R16C:$rA, R8C:$rB), + (ROTMAHr16 R16C:$rA, + (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; + +def ROTMAHIv8i16: + RRForm<0b01111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val), + "rotmahi\t$rT, $rA, $val", RotShiftVec, + [(set (v8i16 VECREG:$rT), + (SPUvec_sra (v8i16 VECREG:$rA), (i32 uimm7:$val)))]>; + +def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i16 uimm7:$val)), + (ROTMAHIv8i16 (v8i16 VECREG:$rA), (TO_IMM32 uimm7:$val))>; + +def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i8 uimm7:$val)), + (ROTMAHIv8i16 (v8i16 VECREG:$rA), (TO_IMM32 uimm7:$val))>; + +def ROTMAHIr16: + RRForm<0b01111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm_i16:$val), + "rotmahi\t$rT, $rA, $val", RotShiftVec, + [(set R16C:$rT, (sra R16C:$rA, (i16 uimm7:$val)))]>; + +def : Pat<(sra R16C:$rA, (i32 imm:$val)), + (ROTMAHIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>; + +def : Pat<(sra R16C:$rA, (i8 imm:$val)), + (ROTMAHIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>; + +def ROTMAv4i32: + RRForm<0b01011010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + "rotma\t$rT, $rA, $rB", RotShiftVec, + [/* see patterns below - $rB must be negated */]>; + +def : Pat<(SPUvec_sra (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)), + (ROTMAv4i32 VECREG:$rA, (SFIvec (v4i32 VECREG:$rB), 0))>; + +def ROTMAr32: + RRForm<0b01011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB), + "rotma\t$rT, $rA, $rB", RotShiftVec, + [/* see patterns below - $rB must be negated */]>; + +def : Pat<(sra R32C:$rA, R32C:$rB), + (ROTMAr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>; + +def : Pat<(sra R32C:$rA, R16C:$rB), + (ROTMAr32 R32C:$rA, + (SFIr32 (XSHWr16 R16C:$rB), 0))>; + +def : Pat<(sra R32C:$rA, R8C:$rB), + (ROTMAr32 R32C:$rA, + (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>; + +class ROTMAIInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b01011110000, OOL, IOL, + "rotmai\t$rT, $rA, $val", + RotShiftVec, pattern>; + +class ROTMAIVecInst<ValueType vectype, Operand intop, ValueType inttype>: + ROTMAIInst<(outs VECREG:$rT), (ins VECREG:$rA, intop:$val), + [(set (vectype VECREG:$rT), + (SPUvec_sra VECREG:$rA, (inttype uimm7:$val)))]>; + +class ROTMAIRegInst<RegisterClass rclass, Operand intop, ValueType inttype>: + ROTMAIInst<(outs rclass:$rT), (ins rclass:$rA, intop:$val), + [(set rclass:$rT, (sra rclass:$rA, (inttype uimm7:$val)))]>; + +multiclass RotateMaskAlgebraicImm { + def v2i64_i32 : ROTMAIVecInst<v2i64, rotNeg7imm, i32>; + def v4i32_i32 : ROTMAIVecInst<v4i32, rotNeg7imm, i32>; + def r64_i32 : ROTMAIRegInst<R64C, rotNeg7imm, i32>; + def r32_i32 : ROTMAIRegInst<R32C, rotNeg7imm, i32>; +} + +defm ROTMAI : RotateMaskAlgebraicImm; + +//===----------------------------------------------------------------------===// +// Branch and conditionals: +//===----------------------------------------------------------------------===// + +let isTerminator = 1, isBarrier = 1 in { + // Halt If Equal (r32 preferred slot only, no vector form) + def HEQr32: + RRForm_3<0b00011011110, (outs), (ins R32C:$rA, R32C:$rB), + "heq\t$rA, $rB", BranchResolv, + [/* no pattern to match */]>; + + def HEQIr32 : + RI10Form_2<0b11111110, (outs), (ins R32C:$rA, s10imm:$val), + "heqi\t$rA, $val", BranchResolv, + [/* no pattern to match */]>; + + // HGT/HGTI: These instructions use signed arithmetic for the comparison, + // contrasting with HLGT/HLGTI, which use unsigned comparison: + def HGTr32: + RRForm_3<0b00011010010, (outs), (ins R32C:$rA, R32C:$rB), + "hgt\t$rA, $rB", BranchResolv, + [/* no pattern to match */]>; + + def HGTIr32: + RI10Form_2<0b11110010, (outs), (ins R32C:$rA, s10imm:$val), + "hgti\t$rA, $val", BranchResolv, + [/* no pattern to match */]>; + + def HLGTr32: + RRForm_3<0b00011011010, (outs), (ins R32C:$rA, R32C:$rB), + "hlgt\t$rA, $rB", BranchResolv, + [/* no pattern to match */]>; + + def HLGTIr32: + RI10Form_2<0b11111010, (outs), (ins R32C:$rA, s10imm:$val), + "hlgti\t$rA, $val", BranchResolv, + [/* no pattern to match */]>; +} + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// Comparison operators for i8, i16 and i32: +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +class CEQBInst<dag OOL, dag IOL, list<dag> pattern> : + RRForm<0b00001011110, OOL, IOL, "ceqb\t$rT, $rA, $rB", + ByteOp, pattern>; + +multiclass CmpEqualByte +{ + def v16i8 : + CEQBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (v16i8 VECREG:$rT), (seteq (v8i16 VECREG:$rA), + (v8i16 VECREG:$rB)))]>; + + def r8 : + CEQBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB), + [(set R8C:$rT, (seteq R8C:$rA, R8C:$rB))]>; +} + +class CEQBIInst<dag OOL, dag IOL, list<dag> pattern> : + RI10Form<0b01111110, OOL, IOL, "ceqbi\t$rT, $rA, $val", + ByteOp, pattern>; + +multiclass CmpEqualByteImm +{ + def v16i8 : + CEQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val), + [(set (v16i8 VECREG:$rT), (seteq (v16i8 VECREG:$rA), + v16i8SExt8Imm:$val))]>; + def r8: + CEQBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val), + [(set R8C:$rT, (seteq R8C:$rA, immSExt8:$val))]>; +} + +class CEQHInst<dag OOL, dag IOL, list<dag> pattern> : + RRForm<0b00010011110, OOL, IOL, "ceqh\t$rT, $rA, $rB", + ByteOp, pattern>; + +multiclass CmpEqualHalfword +{ + def v8i16 : CEQHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (v8i16 VECREG:$rT), (seteq (v8i16 VECREG:$rA), + (v8i16 VECREG:$rB)))]>; + + def r16 : CEQHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB), + [(set R16C:$rT, (seteq R16C:$rA, R16C:$rB))]>; +} + +class CEQHIInst<dag OOL, dag IOL, list<dag> pattern> : + RI10Form<0b10111110, OOL, IOL, "ceqhi\t$rT, $rA, $val", + ByteOp, pattern>; + +multiclass CmpEqualHalfwordImm +{ + def v8i16 : CEQHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + [(set (v8i16 VECREG:$rT), + (seteq (v8i16 VECREG:$rA), + (v8i16 v8i16SExt10Imm:$val)))]>; + def r16 : CEQHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val), + [(set R16C:$rT, (seteq R16C:$rA, i16ImmSExt10:$val))]>; +} + +class CEQInst<dag OOL, dag IOL, list<dag> pattern> : + RRForm<0b00000011110, OOL, IOL, "ceq\t$rT, $rA, $rB", + ByteOp, pattern>; + +multiclass CmpEqualWord +{ + def v4i32 : CEQInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (v4i32 VECREG:$rT), + (seteq (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; + + def r32 : CEQInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), + [(set R32C:$rT, (seteq R32C:$rA, R32C:$rB))]>; +} + +class CEQIInst<dag OOL, dag IOL, list<dag> pattern> : + RI10Form<0b00111110, OOL, IOL, "ceqi\t$rT, $rA, $val", + ByteOp, pattern>; + +multiclass CmpEqualWordImm +{ + def v4i32 : CEQIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + [(set (v4i32 VECREG:$rT), + (seteq (v4i32 VECREG:$rA), + (v4i32 v4i32SExt16Imm:$val)))]>; + + def r32: CEQIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), + [(set R32C:$rT, (seteq R32C:$rA, i32ImmSExt10:$val))]>; +} + +class CGTBInst<dag OOL, dag IOL, list<dag> pattern> : + RRForm<0b00001010010, OOL, IOL, "cgtb\t$rT, $rA, $rB", + ByteOp, pattern>; + +multiclass CmpGtrByte +{ + def v16i8 : + CGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (v16i8 VECREG:$rT), (setgt (v8i16 VECREG:$rA), + (v8i16 VECREG:$rB)))]>; + + def r8 : + CGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB), + [(set R8C:$rT, (setgt R8C:$rA, R8C:$rB))]>; +} + +class CGTBIInst<dag OOL, dag IOL, list<dag> pattern> : + RI10Form<0b01110010, OOL, IOL, "cgtbi\t$rT, $rA, $val", + ByteOp, pattern>; + +multiclass CmpGtrByteImm +{ + def v16i8 : + CGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val), + [(set (v16i8 VECREG:$rT), (setgt (v16i8 VECREG:$rA), + v16i8SExt8Imm:$val))]>; + def r8: + CGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val), + [(set R8C:$rT, (setgt R8C:$rA, immSExt8:$val))]>; +} + +class CGTHInst<dag OOL, dag IOL, list<dag> pattern> : + RRForm<0b00010010010, OOL, IOL, "cgth\t$rT, $rA, $rB", + ByteOp, pattern>; + +multiclass CmpGtrHalfword +{ + def v8i16 : CGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (v8i16 VECREG:$rT), (setgt (v8i16 VECREG:$rA), + (v8i16 VECREG:$rB)))]>; + + def r16 : CGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB), + [(set R16C:$rT, (setgt R16C:$rA, R16C:$rB))]>; +} + +class CGTHIInst<dag OOL, dag IOL, list<dag> pattern> : + RI10Form<0b10110010, OOL, IOL, "cgthi\t$rT, $rA, $val", + ByteOp, pattern>; + +multiclass CmpGtrHalfwordImm +{ + def v8i16 : CGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + [(set (v8i16 VECREG:$rT), + (setgt (v8i16 VECREG:$rA), + (v8i16 v8i16SExt10Imm:$val)))]>; + def r16 : CGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val), + [(set R16C:$rT, (setgt R16C:$rA, i16ImmSExt10:$val))]>; +} + +class CGTInst<dag OOL, dag IOL, list<dag> pattern> : + RRForm<0b00000010010, OOL, IOL, "cgt\t$rT, $rA, $rB", + ByteOp, pattern>; + +multiclass CmpGtrWord +{ + def v4i32 : CGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (v4i32 VECREG:$rT), + (setgt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; + + def r32 : CGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), + [(set R32C:$rT, (setgt R32C:$rA, R32C:$rB))]>; +} + +class CGTIInst<dag OOL, dag IOL, list<dag> pattern> : + RI10Form<0b00110010, OOL, IOL, "cgti\t$rT, $rA, $val", + ByteOp, pattern>; + +multiclass CmpGtrWordImm +{ + def v4i32 : CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + [(set (v4i32 VECREG:$rT), + (setgt (v4i32 VECREG:$rA), + (v4i32 v4i32SExt16Imm:$val)))]>; + + def r32: CGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), + [(set R32C:$rT, (setgt R32C:$rA, i32ImmSExt10:$val))]>; + + // CGTIv4f32, CGTIf32: These are used in the f32 fdiv instruction sequence: + def v4f32: CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + [(set (v4i32 VECREG:$rT), + (setgt (v4i32 (bitconvert (v4f32 VECREG:$rA))), + (v4i32 v4i32SExt16Imm:$val)))]>; + + def f32: CGTIInst<(outs R32C:$rT), (ins R32FP:$rA, s10imm_i32:$val), + [/* no pattern */]>; +} + +class CLGTBInst<dag OOL, dag IOL, list<dag> pattern> : + RRForm<0b00001011010, OOL, IOL, "clgtb\t$rT, $rA, $rB", + ByteOp, pattern>; + +multiclass CmpLGtrByte +{ + def v16i8 : + CLGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (v16i8 VECREG:$rT), (setugt (v8i16 VECREG:$rA), + (v8i16 VECREG:$rB)))]>; + + def r8 : + CLGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB), + [(set R8C:$rT, (setugt R8C:$rA, R8C:$rB))]>; +} + +class CLGTBIInst<dag OOL, dag IOL, list<dag> pattern> : + RI10Form<0b01111010, OOL, IOL, "clgtbi\t$rT, $rA, $val", + ByteOp, pattern>; + +multiclass CmpLGtrByteImm +{ + def v16i8 : + CLGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val), + [(set (v16i8 VECREG:$rT), (setugt (v16i8 VECREG:$rA), + v16i8SExt8Imm:$val))]>; + def r8: + CLGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val), + [(set R8C:$rT, (setugt R8C:$rA, immSExt8:$val))]>; +} + +class CLGTHInst<dag OOL, dag IOL, list<dag> pattern> : + RRForm<0b00010011010, OOL, IOL, "clgth\t$rT, $rA, $rB", + ByteOp, pattern>; + +multiclass CmpLGtrHalfword +{ + def v8i16 : CLGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (v8i16 VECREG:$rT), (setugt (v8i16 VECREG:$rA), + (v8i16 VECREG:$rB)))]>; + + def r16 : CLGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB), + [(set R16C:$rT, (setugt R16C:$rA, R16C:$rB))]>; +} + +class CLGTHIInst<dag OOL, dag IOL, list<dag> pattern> : + RI10Form<0b10111010, OOL, IOL, "clgthi\t$rT, $rA, $val", + ByteOp, pattern>; + +multiclass CmpLGtrHalfwordImm +{ + def v8i16 : CLGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + [(set (v8i16 VECREG:$rT), + (setugt (v8i16 VECREG:$rA), + (v8i16 v8i16SExt10Imm:$val)))]>; + def r16 : CLGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val), + [(set R16C:$rT, (setugt R16C:$rA, i16ImmSExt10:$val))]>; +} + +class CLGTInst<dag OOL, dag IOL, list<dag> pattern> : + RRForm<0b00000011010, OOL, IOL, "clgt\t$rT, $rA, $rB", + ByteOp, pattern>; + +multiclass CmpLGtrWord +{ + def v4i32 : CLGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (v4i32 VECREG:$rT), + (setugt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>; + + def r32 : CLGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB), + [(set R32C:$rT, (setugt R32C:$rA, R32C:$rB))]>; +} + +class CLGTIInst<dag OOL, dag IOL, list<dag> pattern> : + RI10Form<0b00111010, OOL, IOL, "clgti\t$rT, $rA, $val", + ByteOp, pattern>; + +multiclass CmpLGtrWordImm +{ + def v4i32 : CLGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val), + [(set (v4i32 VECREG:$rT), + (setugt (v4i32 VECREG:$rA), + (v4i32 v4i32SExt16Imm:$val)))]>; + + def r32: CLGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val), + [(set R32C:$rT, (setugt R32C:$rA, i32ImmSExt10:$val))]>; +} + +defm CEQB : CmpEqualByte; +defm CEQBI : CmpEqualByteImm; +defm CEQH : CmpEqualHalfword; +defm CEQHI : CmpEqualHalfwordImm; +defm CEQ : CmpEqualWord; +defm CEQI : CmpEqualWordImm; +defm CGTB : CmpGtrByte; +defm CGTBI : CmpGtrByteImm; +defm CGTH : CmpGtrHalfword; +defm CGTHI : CmpGtrHalfwordImm; +defm CGT : CmpGtrWord; +defm CGTI : CmpGtrWordImm; +defm CLGTB : CmpLGtrByte; +defm CLGTBI : CmpLGtrByteImm; +defm CLGTH : CmpLGtrHalfword; +defm CLGTHI : CmpLGtrHalfwordImm; +defm CLGT : CmpLGtrWord; +defm CLGTI : CmpLGtrWordImm; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// For SETCC primitives not supported above (setlt, setle, setge, etc.) +// define a pattern to generate the right code, as a binary operator +// (in a manner of speaking.) +// +// Notes: +// 1. This only matches the setcc set of conditionals. Special pattern +// matching is used for select conditionals. +// +// 2. The "DAG" versions of these classes is almost exclusively used for +// i64 comparisons. See the tblgen fundamentals documentation for what +// ".ResultInstrs[0]" means; see TargetSelectionDAG.td and the Pattern +// class for where ResultInstrs originates. +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +class SETCCNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype, + SPUInstr xorinst, SPUInstr cmpare>: + Pat<(cond rclass:$rA, rclass:$rB), + (xorinst (cmpare rclass:$rA, rclass:$rB), (inttype -1))>; + +class SETCCNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype, + PatLeaf immpred, SPUInstr xorinst, SPUInstr cmpare>: + Pat<(cond rclass:$rA, (inttype immpred:$imm)), + (xorinst (cmpare rclass:$rA, (inttype immpred:$imm)), (inttype -1))>; + +def : SETCCNegCondReg<setne, R8C, i8, XORBIr8, CEQBr8>; +def : SETCCNegCondImm<setne, R8C, i8, immSExt8, XORBIr8, CEQBIr8>; + +def : SETCCNegCondReg<setne, R16C, i16, XORHIr16, CEQHr16>; +def : SETCCNegCondImm<setne, R16C, i16, i16ImmSExt10, XORHIr16, CEQHIr16>; + +def : SETCCNegCondReg<setne, R32C, i32, XORIr32, CEQr32>; +def : SETCCNegCondImm<setne, R32C, i32, i32ImmSExt10, XORIr32, CEQIr32>; + +class SETCCBinOpReg<PatFrag cond, RegisterClass rclass, + SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>: + Pat<(cond rclass:$rA, rclass:$rB), + (binop (cmpOp1 rclass:$rA, rclass:$rB), + (cmpOp2 rclass:$rA, rclass:$rB))>; + +class SETCCBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred, + ValueType immtype, + SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>: + Pat<(cond rclass:$rA, (immtype immpred:$imm)), + (binop (cmpOp1 rclass:$rA, (immtype immpred:$imm)), + (cmpOp2 rclass:$rA, (immtype immpred:$imm)))>; + +def : SETCCBinOpReg<setge, R8C, ORr8, CGTBr8, CEQBr8>; +def : SETCCBinOpImm<setge, R8C, immSExt8, i8, ORr8, CGTBIr8, CEQBIr8>; +def : SETCCBinOpReg<setlt, R8C, NORr8, CGTBr8, CEQBr8>; +def : SETCCBinOpImm<setlt, R8C, immSExt8, i8, NORr8, CGTBIr8, CEQBIr8>; +def : Pat<(setle R8C:$rA, R8C:$rB), + (XORBIr8 (CGTBr8 R8C:$rA, R8C:$rB), 0xff)>; +def : Pat<(setle R8C:$rA, immU8:$imm), + (XORBIr8 (CGTBIr8 R8C:$rA, immU8:$imm), 0xff)>; + +def : SETCCBinOpReg<setge, R16C, ORr16, CGTHr16, CEQHr16>; +def : SETCCBinOpImm<setge, R16C, i16ImmSExt10, i16, + ORr16, CGTHIr16, CEQHIr16>; +def : SETCCBinOpReg<setlt, R16C, NORr16, CGTHr16, CEQHr16>; +def : SETCCBinOpImm<setlt, R16C, i16ImmSExt10, i16, NORr16, CGTHIr16, CEQHIr16>; +def : Pat<(setle R16C:$rA, R16C:$rB), + (XORHIr16 (CGTHr16 R16C:$rA, R16C:$rB), 0xffff)>; +def : Pat<(setle R16C:$rA, i16ImmSExt10:$imm), + (XORHIr16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>; + +def : SETCCBinOpReg<setge, R32C, ORr32, CGTr32, CEQr32>; +def : SETCCBinOpImm<setge, R32C, i32ImmSExt10, i32, + ORr32, CGTIr32, CEQIr32>; +def : SETCCBinOpReg<setlt, R32C, NORr32, CGTr32, CEQr32>; +def : SETCCBinOpImm<setlt, R32C, i32ImmSExt10, i32, NORr32, CGTIr32, CEQIr32>; +def : Pat<(setle R32C:$rA, R32C:$rB), + (XORIr32 (CGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>; +def : Pat<(setle R32C:$rA, i32ImmSExt10:$imm), + (XORIr32 (CGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>; + +def : SETCCBinOpReg<setuge, R8C, ORr8, CLGTBr8, CEQBr8>; +def : SETCCBinOpImm<setuge, R8C, immSExt8, i8, ORr8, CLGTBIr8, CEQBIr8>; +def : SETCCBinOpReg<setult, R8C, NORr8, CLGTBr8, CEQBr8>; +def : SETCCBinOpImm<setult, R8C, immSExt8, i8, NORr8, CLGTBIr8, CEQBIr8>; +def : Pat<(setule R8C:$rA, R8C:$rB), + (XORBIr8 (CLGTBr8 R8C:$rA, R8C:$rB), 0xff)>; +def : Pat<(setule R8C:$rA, immU8:$imm), + (XORBIr8 (CLGTBIr8 R8C:$rA, immU8:$imm), 0xff)>; + +def : SETCCBinOpReg<setuge, R16C, ORr16, CLGTHr16, CEQHr16>; +def : SETCCBinOpImm<setuge, R16C, i16ImmSExt10, i16, + ORr16, CLGTHIr16, CEQHIr16>; +def : SETCCBinOpReg<setult, R16C, NORr16, CLGTHr16, CEQHr16>; +def : SETCCBinOpImm<setult, R16C, i16ImmSExt10, i16, NORr16, + CLGTHIr16, CEQHIr16>; +def : Pat<(setule R16C:$rA, R16C:$rB), + (XORHIr16 (CLGTHr16 R16C:$rA, R16C:$rB), 0xffff)>; +def : Pat<(setule R16C:$rA, i16ImmSExt10:$imm), + (XORHIr16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>; + +def : SETCCBinOpReg<setuge, R32C, ORr32, CLGTr32, CEQr32>; +def : SETCCBinOpImm<setuge, R32C, i32ImmSExt10, i32, + ORr32, CLGTIr32, CEQIr32>; +def : SETCCBinOpReg<setult, R32C, NORr32, CLGTr32, CEQr32>; +def : SETCCBinOpImm<setult, R32C, i32ImmSExt10, i32, NORr32, CLGTIr32, CEQIr32>; +def : Pat<(setule R32C:$rA, R32C:$rB), + (XORIr32 (CLGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>; +def : Pat<(setule R32C:$rA, i32ImmSExt10:$imm), + (XORIr32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ +// select conditional patterns: +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +class SELECTNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype, + SPUInstr selinstr, SPUInstr cmpare>: + Pat<(select (inttype (cond rclass:$rA, rclass:$rB)), + rclass:$rTrue, rclass:$rFalse), + (selinstr rclass:$rTrue, rclass:$rFalse, + (cmpare rclass:$rA, rclass:$rB))>; + +class SELECTNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype, + PatLeaf immpred, SPUInstr selinstr, SPUInstr cmpare>: + Pat<(select (inttype (cond rclass:$rA, immpred:$imm)), + rclass:$rTrue, rclass:$rFalse), + (selinstr rclass:$rTrue, rclass:$rFalse, + (cmpare rclass:$rA, immpred:$imm))>; + +def : SELECTNegCondReg<setne, R8C, i8, SELBr8, CEQBr8>; +def : SELECTNegCondImm<setne, R8C, i8, immSExt8, SELBr8, CEQBIr8>; +def : SELECTNegCondReg<setle, R8C, i8, SELBr8, CGTBr8>; +def : SELECTNegCondImm<setle, R8C, i8, immSExt8, SELBr8, CGTBr8>; +def : SELECTNegCondReg<setule, R8C, i8, SELBr8, CLGTBr8>; +def : SELECTNegCondImm<setule, R8C, i8, immU8, SELBr8, CLGTBIr8>; + +def : SELECTNegCondReg<setne, R16C, i16, SELBr16, CEQHr16>; +def : SELECTNegCondImm<setne, R16C, i16, i16ImmSExt10, SELBr16, CEQHIr16>; +def : SELECTNegCondReg<setle, R16C, i16, SELBr16, CGTHr16>; +def : SELECTNegCondImm<setle, R16C, i16, i16ImmSExt10, SELBr16, CGTHIr16>; +def : SELECTNegCondReg<setule, R16C, i16, SELBr16, CLGTHr16>; +def : SELECTNegCondImm<setule, R16C, i16, i16ImmSExt10, SELBr16, CLGTHIr16>; + +def : SELECTNegCondReg<setne, R32C, i32, SELBr32, CEQr32>; +def : SELECTNegCondImm<setne, R32C, i32, i32ImmSExt10, SELBr32, CEQIr32>; +def : SELECTNegCondReg<setle, R32C, i32, SELBr32, CGTr32>; +def : SELECTNegCondImm<setle, R32C, i32, i32ImmSExt10, SELBr32, CGTIr32>; +def : SELECTNegCondReg<setule, R32C, i32, SELBr32, CLGTr32>; +def : SELECTNegCondImm<setule, R32C, i32, i32ImmSExt10, SELBr32, CLGTIr32>; + +class SELECTBinOpReg<PatFrag cond, RegisterClass rclass, ValueType inttype, + SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1, + SPUInstr cmpOp2>: + Pat<(select (inttype (cond rclass:$rA, rclass:$rB)), + rclass:$rTrue, rclass:$rFalse), + (selinstr rclass:$rFalse, rclass:$rTrue, + (binop (cmpOp1 rclass:$rA, rclass:$rB), + (cmpOp2 rclass:$rA, rclass:$rB)))>; + +class SELECTBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred, + ValueType inttype, + SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1, + SPUInstr cmpOp2>: + Pat<(select (inttype (cond rclass:$rA, (inttype immpred:$imm))), + rclass:$rTrue, rclass:$rFalse), + (selinstr rclass:$rFalse, rclass:$rTrue, + (binop (cmpOp1 rclass:$rA, (inttype immpred:$imm)), + (cmpOp2 rclass:$rA, (inttype immpred:$imm))))>; + +def : SELECTBinOpReg<setge, R8C, i8, SELBr8, ORr8, CGTBr8, CEQBr8>; +def : SELECTBinOpImm<setge, R8C, immSExt8, i8, + SELBr8, ORr8, CGTBIr8, CEQBIr8>; + +def : SELECTBinOpReg<setge, R16C, i16, SELBr16, ORr16, CGTHr16, CEQHr16>; +def : SELECTBinOpImm<setge, R16C, i16ImmSExt10, i16, + SELBr16, ORr16, CGTHIr16, CEQHIr16>; + +def : SELECTBinOpReg<setge, R32C, i32, SELBr32, ORr32, CGTr32, CEQr32>; +def : SELECTBinOpImm<setge, R32C, i32ImmSExt10, i32, + SELBr32, ORr32, CGTIr32, CEQIr32>; + +def : SELECTBinOpReg<setuge, R8C, i8, SELBr8, ORr8, CLGTBr8, CEQBr8>; +def : SELECTBinOpImm<setuge, R8C, immSExt8, i8, + SELBr8, ORr8, CLGTBIr8, CEQBIr8>; + +def : SELECTBinOpReg<setuge, R16C, i16, SELBr16, ORr16, CLGTHr16, CEQHr16>; +def : SELECTBinOpImm<setuge, R16C, i16ImmUns10, i16, + SELBr16, ORr16, CLGTHIr16, CEQHIr16>; + +def : SELECTBinOpReg<setuge, R32C, i32, SELBr32, ORr32, CLGTr32, CEQr32>; +def : SELECTBinOpImm<setuge, R32C, i32ImmUns10, i32, + SELBr32, ORr32, CLGTIr32, CEQIr32>; + +//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~ + +let isCall = 1, + // All calls clobber the non-callee-saved registers: + Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, + R10,R11,R12,R13,R14,R15,R16,R17,R18,R19, + R20,R21,R22,R23,R24,R25,R26,R27,R28,R29, + R30,R31,R32,R33,R34,R35,R36,R37,R38,R39, + R40,R41,R42,R43,R44,R45,R46,R47,R48,R49, + R50,R51,R52,R53,R54,R55,R56,R57,R58,R59, + R60,R61,R62,R63,R64,R65,R66,R67,R68,R69, + R70,R71,R72,R73,R74,R75,R76,R77,R78,R79], + // All of these instructions use $lr (aka $0) + Uses = [R0] in { + // Branch relative and set link: Used if we actually know that the target + // is within [-32768, 32767] bytes of the target + def BRSL: + BranchSetLink<0b011001100, (outs), (ins relcalltarget:$func), + "brsl\t$$lr, $func", + [(SPUcall (SPUpcrel tglobaladdr:$func, 0))]>; + + // Branch absolute and set link: Used if we actually know that the target + // is an absolute address + def BRASL: + BranchSetLink<0b011001100, (outs), (ins calltarget:$func), + "brasl\t$$lr, $func", + [(SPUcall (SPUaform tglobaladdr:$func, 0))]>; + + // Branch indirect and set link if external data. These instructions are not + // actually generated, matched by an intrinsic: + def BISLED_00: BISLEDForm<0b11, "bisled\t$$lr, $func", [/* empty pattern */]>; + def BISLED_E0: BISLEDForm<0b10, "bisled\t$$lr, $func", [/* empty pattern */]>; + def BISLED_0D: BISLEDForm<0b01, "bisled\t$$lr, $func", [/* empty pattern */]>; + def BISLED_ED: BISLEDForm<0b00, "bisled\t$$lr, $func", [/* empty pattern */]>; + + // Branch indirect and set link. This is the "X-form" address version of a + // function call + def BISL: + BIForm<0b10010101100, "bisl\t$$lr, $func", [(SPUcall R32C:$func)]>; +} + +// Support calls to external symbols: +def : Pat<(SPUcall (SPUpcrel texternalsym:$func, 0)), + (BRSL texternalsym:$func)>; + +def : Pat<(SPUcall (SPUaform texternalsym:$func, 0)), + (BRASL texternalsym:$func)>; + +// Unconditional branches: +let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in { + let isBarrier = 1 in { + def BR : + UncondBranch<0b001001100, (outs), (ins brtarget:$dest), + "br\t$dest", + [(br bb:$dest)]>; + + // Unconditional, absolute address branch + def BRA: + UncondBranch<0b001100000, (outs), (ins brtarget:$dest), + "bra\t$dest", + [/* no pattern */]>; + + // Indirect branch + let isIndirectBranch = 1 in { + def BI: + BIForm<0b00010101100, "bi\t$func", [(brind R32C:$func)]>; + } + } + + // Conditional branches: + class BRNZInst<dag IOL, list<dag> pattern>: + RI16Form<0b010000100, (outs), IOL, "brnz\t$rCond,$dest", + BranchResolv, pattern>; + + class BRNZRegInst<RegisterClass rclass>: + BRNZInst<(ins rclass:$rCond, brtarget:$dest), + [(brcond rclass:$rCond, bb:$dest)]>; + + class BRNZVecInst<ValueType vectype>: + BRNZInst<(ins VECREG:$rCond, brtarget:$dest), + [(brcond (vectype VECREG:$rCond), bb:$dest)]>; + + multiclass BranchNotZero { + def v4i32 : BRNZVecInst<v4i32>; + def r32 : BRNZRegInst<R32C>; + } + + defm BRNZ : BranchNotZero; + + class BRZInst<dag IOL, list<dag> pattern>: + RI16Form<0b000000100, (outs), IOL, "brz\t$rT,$dest", + BranchResolv, pattern>; + + class BRZRegInst<RegisterClass rclass>: + BRZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>; + + class BRZVecInst<ValueType vectype>: + BRZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>; + + multiclass BranchZero { + def v4i32: BRZVecInst<v4i32>; + def r32: BRZRegInst<R32C>; + } + + defm BRZ: BranchZero; + + // Note: LLVM doesn't do branch conditional, indirect. Otherwise these would + // be useful: + /* + class BINZInst<dag IOL, list<dag> pattern>: + BICondForm<0b10010100100, (outs), IOL, "binz\t$rA, $dest", pattern>; + + class BINZRegInst<RegisterClass rclass>: + BINZInst<(ins rclass:$rA, brtarget:$dest), + [(brcond rclass:$rA, R32C:$dest)]>; + + class BINZVecInst<ValueType vectype>: + BINZInst<(ins VECREG:$rA, R32C:$dest), + [(brcond (vectype VECREG:$rA), R32C:$dest)]>; + + multiclass BranchNotZeroIndirect { + def v4i32: BINZVecInst<v4i32>; + def r32: BINZRegInst<R32C>; + } + + defm BINZ: BranchNotZeroIndirect; + + class BIZInst<dag IOL, list<dag> pattern>: + BICondForm<0b00010100100, (outs), IOL, "biz\t$rA, $func", pattern>; + + class BIZRegInst<RegisterClass rclass>: + BIZInst<(ins rclass:$rA, R32C:$func), [/* no pattern */]>; + + class BIZVecInst<ValueType vectype>: + BIZInst<(ins VECREG:$rA, R32C:$func), [/* no pattern */]>; + + multiclass BranchZeroIndirect { + def v4i32: BIZVecInst<v4i32>; + def r32: BIZRegInst<R32C>; + } + + defm BIZ: BranchZeroIndirect; + */ + + class BRHNZInst<dag IOL, list<dag> pattern>: + RI16Form<0b011000100, (outs), IOL, "brhnz\t$rCond,$dest", BranchResolv, + pattern>; + + class BRHNZRegInst<RegisterClass rclass>: + BRHNZInst<(ins rclass:$rCond, brtarget:$dest), + [(brcond rclass:$rCond, bb:$dest)]>; + + class BRHNZVecInst<ValueType vectype>: + BRHNZInst<(ins VECREG:$rCond, brtarget:$dest), [/* no pattern */]>; + + multiclass BranchNotZeroHalfword { + def v8i16: BRHNZVecInst<v8i16>; + def r16: BRHNZRegInst<R16C>; + } + + defm BRHNZ: BranchNotZeroHalfword; + + class BRHZInst<dag IOL, list<dag> pattern>: + RI16Form<0b001000100, (outs), IOL, "brhz\t$rT,$dest", BranchResolv, + pattern>; + + class BRHZRegInst<RegisterClass rclass>: + BRHZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>; + + class BRHZVecInst<ValueType vectype>: + BRHZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>; + + multiclass BranchZeroHalfword { + def v8i16: BRHZVecInst<v8i16>; + def r16: BRHZRegInst<R16C>; + } + + defm BRHZ: BranchZeroHalfword; +} + +//===----------------------------------------------------------------------===// +// setcc and brcond patterns: +//===----------------------------------------------------------------------===// + +def : Pat<(brcond (i16 (seteq R16C:$rA, 0)), bb:$dest), + (BRHZr16 R16C:$rA, bb:$dest)>; +def : Pat<(brcond (i16 (setne R16C:$rA, 0)), bb:$dest), + (BRHNZr16 R16C:$rA, bb:$dest)>; + +def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest), + (BRZr32 R32C:$rA, bb:$dest)>; +def : Pat<(brcond (i32 (setne R32C:$rA, 0)), bb:$dest), + (BRNZr32 R32C:$rA, bb:$dest)>; + +multiclass BranchCondEQ<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32> +{ + def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest), + (brinst16 (CEQHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>; + + def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest), + (brinst16 (CEQHr16 R16C:$rA, R16:$rB), bb:$dest)>; + + def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest), + (brinst32 (CEQIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>; + + def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest), + (brinst32 (CEQr32 R32C:$rA, R32C:$rB), bb:$dest)>; +} + +defm BRCONDeq : BranchCondEQ<seteq, BRHNZr16, BRNZr32>; +defm BRCONDne : BranchCondEQ<setne, BRHZr16, BRZr32>; + +multiclass BranchCondLGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32> +{ + def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest), + (brinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>; + + def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest), + (brinst16 (CLGTHr16 R16C:$rA, R16:$rB), bb:$dest)>; + + def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest), + (brinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>; + + def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest), + (brinst32 (CLGTr32 R32C:$rA, R32C:$rB), bb:$dest)>; +} + +defm BRCONDugt : BranchCondLGT<setugt, BRHNZr16, BRNZr32>; +defm BRCONDule : BranchCondLGT<setule, BRHZr16, BRZr32>; + +multiclass BranchCondLGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16, + SPUInstr orinst32, SPUInstr brinst32> +{ + def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest), + (brinst16 (orinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val), + (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)), + bb:$dest)>; + + def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest), + (brinst16 (orinst16 (CLGTHr16 R16C:$rA, R16:$rB), + (CEQHr16 R16C:$rA, R16:$rB)), + bb:$dest)>; + + def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest), + (brinst32 (orinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val), + (CEQIr32 R32C:$rA, i32ImmSExt10:$val)), + bb:$dest)>; + + def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest), + (brinst32 (orinst32 (CLGTr32 R32C:$rA, R32C:$rB), + (CEQr32 R32C:$rA, R32C:$rB)), + bb:$dest)>; +} + +defm BRCONDuge : BranchCondLGTEQ<setuge, ORr16, BRHNZr16, ORr32, BRNZr32>; +defm BRCONDult : BranchCondLGTEQ<setult, ORr16, BRHZr16, ORr32, BRZr32>; + +multiclass BranchCondGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32> +{ + def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest), + (brinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>; + + def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest), + (brinst16 (CGTHr16 R16C:$rA, R16:$rB), bb:$dest)>; + + def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest), + (brinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>; + + def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest), + (brinst32 (CGTr32 R32C:$rA, R32C:$rB), bb:$dest)>; +} + +defm BRCONDgt : BranchCondGT<setgt, BRHNZr16, BRNZr32>; +defm BRCONDle : BranchCondGT<setle, BRHZr16, BRZr32>; + +multiclass BranchCondGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16, + SPUInstr orinst32, SPUInstr brinst32> +{ + def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest), + (brinst16 (orinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val), + (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)), + bb:$dest)>; + + def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest), + (brinst16 (orinst16 (CGTHr16 R16C:$rA, R16:$rB), + (CEQHr16 R16C:$rA, R16:$rB)), + bb:$dest)>; + + def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest), + (brinst32 (orinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val), + (CEQIr32 R32C:$rA, i32ImmSExt10:$val)), + bb:$dest)>; + + def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest), + (brinst32 (orinst32 (CGTr32 R32C:$rA, R32C:$rB), + (CEQr32 R32C:$rA, R32C:$rB)), + bb:$dest)>; +} + +defm BRCONDge : BranchCondGTEQ<setge, ORr16, BRHNZr16, ORr32, BRNZr32>; +defm BRCONDlt : BranchCondGTEQ<setlt, ORr16, BRHZr16, ORr32, BRZr32>; + +let isTerminator = 1, isBarrier = 1 in { + let isReturn = 1 in { + def RET: + RETForm<"bi\t$$lr", [(retflag)]>; + } +} + +//===----------------------------------------------------------------------===// +// Single precision floating point instructions +//===----------------------------------------------------------------------===// + +class FAInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b01011000100, OOL, IOL, "fa\t$rT, $rA, $rB", + SPrecFP, pattern>; + +class FAVecInst<ValueType vectype>: + FAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), + (fadd (vectype VECREG:$rA), (vectype VECREG:$rB)))]>; + +multiclass SFPAdd +{ + def v4f32: FAVecInst<v4f32>; + def f32: FAInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), + [(set R32FP:$rT, (fadd R32FP:$rA, R32FP:$rB))]>; +} + +defm FA : SFPAdd; + +class FSInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b01011000100, OOL, IOL, "fs\t$rT, $rA, $rB", + SPrecFP, pattern>; + +class FSVecInst<ValueType vectype>: + FSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (vectype VECREG:$rT), + (fsub (vectype VECREG:$rA), (vectype VECREG:$rB)))]>; + +multiclass SFPSub +{ + def v4f32: FSVecInst<v4f32>; + def f32: FSInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), + [(set R32FP:$rT, (fsub R32FP:$rA, R32FP:$rB))]>; +} + +defm FS : SFPSub; + +class FMInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b01100011010, OOL, IOL, + "fm\t$rT, $rA, $rB", SPrecFP, + pattern>; + +class FMVecInst<ValueType type>: + FMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + [(set (type VECREG:$rT), + (fmul (type VECREG:$rA), (type VECREG:$rB)))]>; + +multiclass SFPMul +{ + def v4f32: FMVecInst<v4f32>; + def f32: FMInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), + [(set R32FP:$rT, (fmul R32FP:$rA, R32FP:$rB))]>; +} + +defm FM : SFPMul; + +// Floating point multiply and add +// e.g. d = c + (a * b) +def FMAv4f32: + RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), + "fma\t$rT, $rA, $rB, $rC", SPrecFP, + [(set (v4f32 VECREG:$rT), + (fadd (v4f32 VECREG:$rC), + (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>; + +def FMAf32: + RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC), + "fma\t$rT, $rA, $rB, $rC", SPrecFP, + [(set R32FP:$rT, (fadd R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>; + +// FP multiply and subtract +// Subtracts value in rC from product +// res = a * b - c +def FMSv4f32 : + RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), + "fms\t$rT, $rA, $rB, $rC", SPrecFP, + [(set (v4f32 VECREG:$rT), + (fsub (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)), + (v4f32 VECREG:$rC)))]>; + +def FMSf32 : + RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC), + "fms\t$rT, $rA, $rB, $rC", SPrecFP, + [(set R32FP:$rT, + (fsub (fmul R32FP:$rA, R32FP:$rB), R32FP:$rC))]>; + +// Floating Negative Mulitply and Subtract +// Subtracts product from value in rC +// res = fneg(fms a b c) +// = - (a * b - c) +// = c - a * b +// NOTE: subtraction order +// fsub a b = a - b +// fs a b = b - a? +def FNMSf32 : + RRRForm<0b1101, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC), + "fnms\t$rT, $rA, $rB, $rC", SPrecFP, + [(set R32FP:$rT, (fsub R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>; + +def FNMSv4f32 : + RRRForm<0b1101, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), + "fnms\t$rT, $rA, $rB, $rC", SPrecFP, + [(set (v4f32 VECREG:$rT), + (fsub (v4f32 VECREG:$rC), + (fmul (v4f32 VECREG:$rA), + (v4f32 VECREG:$rB))))]>; + + + + +// Floating point reciprocal estimate + +class FRESTInst<dag OOL, dag IOL>: + RRForm_1<0b00110111000, OOL, IOL, + "frest\t$rT, $rA", SPrecFP, + [/* no pattern */]>; + +def FRESTv4f32 : + FRESTInst<(outs VECREG:$rT), (ins VECREG:$rA)>; + +def FRESTf32 : + FRESTInst<(outs R32FP:$rT), (ins R32FP:$rA)>; + +// Floating point interpolate (used in conjunction with reciprocal estimate) +def FIv4f32 : + RRForm<0b00101011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + "fi\t$rT, $rA, $rB", SPrecFP, + [/* no pattern */]>; + +def FIf32 : + RRForm<0b00101011110, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB), + "fi\t$rT, $rA, $rB", SPrecFP, + [/* no pattern */]>; + +//-------------------------------------------------------------------------- +// Basic single precision floating point comparisons: +// +// Note: There is no support on SPU for single precision NaN. Consequently, +// ordered and unordered comparisons are the same. +//-------------------------------------------------------------------------- + +def FCEQf32 : + RRForm<0b01000011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), + "fceq\t$rT, $rA, $rB", SPrecFP, + [(set R32C:$rT, (setueq R32FP:$rA, R32FP:$rB))]>; + +def : Pat<(setoeq R32FP:$rA, R32FP:$rB), + (FCEQf32 R32FP:$rA, R32FP:$rB)>; + +def FCMEQf32 : + RRForm<0b01010011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), + "fcmeq\t$rT, $rA, $rB", SPrecFP, + [(set R32C:$rT, (setueq (fabs R32FP:$rA), (fabs R32FP:$rB)))]>; + +def : Pat<(setoeq (fabs R32FP:$rA), (fabs R32FP:$rB)), + (FCMEQf32 R32FP:$rA, R32FP:$rB)>; + +def FCGTf32 : + RRForm<0b01000011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), + "fcgt\t$rT, $rA, $rB", SPrecFP, + [(set R32C:$rT, (setugt R32FP:$rA, R32FP:$rB))]>; + +def : Pat<(setogt R32FP:$rA, R32FP:$rB), + (FCGTf32 R32FP:$rA, R32FP:$rB)>; + +def FCMGTf32 : + RRForm<0b01010011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB), + "fcmgt\t$rT, $rA, $rB", SPrecFP, + [(set R32C:$rT, (setugt (fabs R32FP:$rA), (fabs R32FP:$rB)))]>; + +def : Pat<(setogt (fabs R32FP:$rA), (fabs R32FP:$rB)), + (FCMGTf32 R32FP:$rA, R32FP:$rB)>; + +//-------------------------------------------------------------------------- +// Single precision floating point comparisons and SETCC equivalents: +//-------------------------------------------------------------------------- + +def : SETCCNegCondReg<setune, R32FP, i32, XORIr32, FCEQf32>; +def : SETCCNegCondReg<setone, R32FP, i32, XORIr32, FCEQf32>; + +def : SETCCBinOpReg<setuge, R32FP, ORr32, FCGTf32, FCEQf32>; +def : SETCCBinOpReg<setoge, R32FP, ORr32, FCGTf32, FCEQf32>; + +def : SETCCBinOpReg<setult, R32FP, NORr32, FCGTf32, FCEQf32>; +def : SETCCBinOpReg<setolt, R32FP, NORr32, FCGTf32, FCEQf32>; + +def : Pat<(setule R32FP:$rA, R32FP:$rB), + (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>; +def : Pat<(setole R32FP:$rA, R32FP:$rB), + (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>; + +// FP Status and Control Register Write +// Why isn't rT a don't care in the ISA? +// Should we create a special RRForm_3 for this guy and zero out the rT? +def FSCRWf32 : + RRForm_1<0b01011101110, (outs R32FP:$rT), (ins R32FP:$rA), + "fscrwr\t$rA", SPrecFP, + [/* This instruction requires an intrinsic. Note: rT is unused. */]>; + +// FP Status and Control Register Read +def FSCRRf32 : + RRForm_2<0b01011101110, (outs R32FP:$rT), (ins), + "fscrrd\t$rT", SPrecFP, + [/* This instruction requires an intrinsic */]>; + +// llvm instruction space +// How do these map onto cell instructions? +// fdiv rA rB +// frest rC rB # c = 1/b (both lines) +// fi rC rB rC +// fm rD rA rC # d = a * 1/b +// fnms rB rD rB rA # b = - (d * b - a) --should == 0 in a perfect world +// fma rB rB rC rD # b = b * c + d +// = -(d *b -a) * c + d +// = a * c - c ( a *b *c - a) + +// fcopysign (???) + +// Library calls: +// These llvm instructions will actually map to library calls. +// All that's needed, then, is to check that the appropriate library is +// imported and do a brsl to the proper function name. +// frem # fmod(x, y): x - (x/y) * y +// (Note: fmod(double, double), fmodf(float,float) +// fsqrt? +// fsin? +// fcos? +// Unimplemented SPU instruction space +// floating reciprocal absolute square root estimate (frsqest) + +// The following are probably just intrinsics +// status and control register write +// status and control register read + +//-------------------------------------- +// Floating Point Conversions +// Signed conversions: +def CSiFv4f32: + CVTIntFPForm<0b0101101110, (outs VECREG:$rT), (ins VECREG:$rA), + "csflt\t$rT, $rA, 0", SPrecFP, + [(set (v4f32 VECREG:$rT), (sint_to_fp (v4i32 VECREG:$rA)))]>; + +// Convert signed integer to floating point +def CSiFf32 : + CVTIntFPForm<0b0101101110, (outs R32FP:$rT), (ins R32C:$rA), + "csflt\t$rT, $rA, 0", SPrecFP, + [(set R32FP:$rT, (sint_to_fp R32C:$rA))]>; + +// Convert unsigned into to float +def CUiFv4f32 : + CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA), + "cuflt\t$rT, $rA, 0", SPrecFP, + [(set (v4f32 VECREG:$rT), (uint_to_fp (v4i32 VECREG:$rA)))]>; + +def CUiFf32 : + CVTIntFPForm<0b1101101110, (outs R32FP:$rT), (ins R32C:$rA), + "cuflt\t$rT, $rA, 0", SPrecFP, + [(set R32FP:$rT, (uint_to_fp R32C:$rA))]>; + +// Convert float to unsigned int +// Assume that scale = 0 + +def CFUiv4f32 : + CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA), + "cfltu\t$rT, $rA, 0", SPrecFP, + [(set (v4i32 VECREG:$rT), (fp_to_uint (v4f32 VECREG:$rA)))]>; + +def CFUif32 : + CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA), + "cfltu\t$rT, $rA, 0", SPrecFP, + [(set R32C:$rT, (fp_to_uint R32FP:$rA))]>; + +// Convert float to signed int +// Assume that scale = 0 + +def CFSiv4f32 : + CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA), + "cflts\t$rT, $rA, 0", SPrecFP, + [(set (v4i32 VECREG:$rT), (fp_to_sint (v4f32 VECREG:$rA)))]>; + +def CFSif32 : + CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA), + "cflts\t$rT, $rA, 0", SPrecFP, + [(set R32C:$rT, (fp_to_sint R32FP:$rA))]>; + +//===----------------------------------------------------------------------==// +// Single<->Double precision conversions +//===----------------------------------------------------------------------==// + +// NOTE: We use "vec" name suffix here to avoid confusion (e.g. input is a +// v4f32, output is v2f64--which goes in the name?) + +// Floating point extend single to double +// NOTE: Not sure if passing in v4f32 to FESDvec is correct since it +// operates on two double-word slots (i.e. 1st and 3rd fp numbers +// are ignored). +def FESDvec : + RRForm_1<0b00011101110, (outs VECREG:$rT), (ins VECREG:$rA), + "fesd\t$rT, $rA", SPrecFP, + [/*(set (v2f64 VECREG:$rT), (fextend (v4f32 VECREG:$rA)))*/]>; + +def FESDf32 : + RRForm_1<0b00011101110, (outs R64FP:$rT), (ins R32FP:$rA), + "fesd\t$rT, $rA", SPrecFP, + [(set R64FP:$rT, (fextend R32FP:$rA))]>; + +// Floating point round double to single +//def FRDSvec : +// RRForm_1<0b10011101110, (outs VECREG:$rT), (ins VECREG:$rA), +// "frds\t$rT, $rA,", SPrecFP, +// [(set (v4f32 R32FP:$rT), (fround (v2f64 R64FP:$rA)))]>; + +def FRDSf64 : + RRForm_1<0b10011101110, (outs R32FP:$rT), (ins R64FP:$rA), + "frds\t$rT, $rA", SPrecFP, + [(set R32FP:$rT, (fround R64FP:$rA))]>; + +//ToDo include anyextend? + +//===----------------------------------------------------------------------==// +// Double precision floating point instructions +//===----------------------------------------------------------------------==// +def FAf64 : + RRForm<0b00110011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), + "dfa\t$rT, $rA, $rB", DPrecFP, + [(set R64FP:$rT, (fadd R64FP:$rA, R64FP:$rB))]>; + +def FAv2f64 : + RRForm<0b00110011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + "dfa\t$rT, $rA, $rB", DPrecFP, + [(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>; + +def FSf64 : + RRForm<0b10100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), + "dfs\t$rT, $rA, $rB", DPrecFP, + [(set R64FP:$rT, (fsub R64FP:$rA, R64FP:$rB))]>; + +def FSv2f64 : + RRForm<0b10100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + "dfs\t$rT, $rA, $rB", DPrecFP, + [(set (v2f64 VECREG:$rT), + (fsub (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>; + +def FMf64 : + RRForm<0b01100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB), + "dfm\t$rT, $rA, $rB", DPrecFP, + [(set R64FP:$rT, (fmul R64FP:$rA, R64FP:$rB))]>; + +def FMv2f64: + RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB), + "dfm\t$rT, $rA, $rB", DPrecFP, + [(set (v2f64 VECREG:$rT), + (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>; + +def FMAf64: + RRForm<0b00111010110, (outs R64FP:$rT), + (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), + "dfma\t$rT, $rA, $rB", DPrecFP, + [(set R64FP:$rT, (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>, + RegConstraint<"$rC = $rT">, + NoEncode<"$rC">; + +def FMAv2f64: + RRForm<0b00111010110, (outs VECREG:$rT), + (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), + "dfma\t$rT, $rA, $rB", DPrecFP, + [(set (v2f64 VECREG:$rT), + (fadd (v2f64 VECREG:$rC), + (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>, + RegConstraint<"$rC = $rT">, + NoEncode<"$rC">; + +def FMSf64 : + RRForm<0b10111010110, (outs R64FP:$rT), + (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), + "dfms\t$rT, $rA, $rB", DPrecFP, + [(set R64FP:$rT, (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))]>, + RegConstraint<"$rC = $rT">, + NoEncode<"$rC">; + +def FMSv2f64 : + RRForm<0b10111010110, (outs VECREG:$rT), + (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), + "dfms\t$rT, $rA, $rB", DPrecFP, + [(set (v2f64 VECREG:$rT), + (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)), + (v2f64 VECREG:$rC)))]>; + +// DFNMS: - (a * b - c) +// - (a * b) + c => c - (a * b) + +class DFNMSInst<dag OOL, dag IOL, list<dag> pattern>: + RRForm<0b01111010110, OOL, IOL, "dfnms\t$rT, $rA, $rB", + DPrecFP, pattern>, + RegConstraint<"$rC = $rT">, + NoEncode<"$rC">; + +class DFNMSVecInst<list<dag> pattern>: + DFNMSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), + pattern>; + +class DFNMSRegInst<list<dag> pattern>: + DFNMSInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), + pattern>; + +multiclass DFMultiplySubtract +{ + def v2f64 : DFNMSVecInst<[(set (v2f64 VECREG:$rT), + (fsub (v2f64 VECREG:$rC), + (fmul (v2f64 VECREG:$rA), + (v2f64 VECREG:$rB))))]>; + + def f64 : DFNMSRegInst<[(set R64FP:$rT, + (fsub R64FP:$rC, + (fmul R64FP:$rA, R64FP:$rB)))]>; +} + +defm DFNMS : DFMultiplySubtract; + +// - (a * b + c) +// - (a * b) - c +def FNMAf64 : + RRForm<0b11111010110, (outs R64FP:$rT), + (ins R64FP:$rA, R64FP:$rB, R64FP:$rC), + "dfnma\t$rT, $rA, $rB", DPrecFP, + [(set R64FP:$rT, (fneg (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB))))]>, + RegConstraint<"$rC = $rT">, + NoEncode<"$rC">; + +def FNMAv2f64 : + RRForm<0b11111010110, (outs VECREG:$rT), + (ins VECREG:$rA, VECREG:$rB, VECREG:$rC), + "dfnma\t$rT, $rA, $rB", DPrecFP, + [(set (v2f64 VECREG:$rT), + (fneg (fadd (v2f64 VECREG:$rC), + (fmul (v2f64 VECREG:$rA), + (v2f64 VECREG:$rB)))))]>, + RegConstraint<"$rC = $rT">, + NoEncode<"$rC">; + +//===----------------------------------------------------------------------==// +// Floating point negation and absolute value +//===----------------------------------------------------------------------==// + +def : Pat<(fneg (v4f32 VECREG:$rA)), + (XORfnegvec (v4f32 VECREG:$rA), + (v4f32 (ILHUv4i32 0x8000)))>; + +def : Pat<(fneg R32FP:$rA), + (XORfneg32 R32FP:$rA, (ILHUr32 0x8000))>; + +// Floating point absolute value +// Note: f64 fabs is custom-selected. + +def : Pat<(fabs R32FP:$rA), + (ANDfabs32 R32FP:$rA, (IOHLr32 (ILHUr32 0x7fff), 0xffff))>; + +def : Pat<(fabs (v4f32 VECREG:$rA)), + (ANDfabsvec (v4f32 VECREG:$rA), + (IOHLv4i32 (ILHUv4i32 0x7fff), 0xffff))>; + +//===----------------------------------------------------------------------===// +// Hint for branch instructions: +//===----------------------------------------------------------------------===// +def HBRA : + HBI16Form<0b0001001,(ins hbrtarget:$brinst, brtarget:$btarg), "hbra\t$brinst, $btarg">; + +//===----------------------------------------------------------------------===// +// Execution, Load NOP (execute NOPs belong in even pipeline, load NOPs belong +// in the odd pipeline) +//===----------------------------------------------------------------------===// + +def ENOP : SPUInstr<(outs), (ins), "nop", ExecNOP> { + let Pattern = []; + + let Inst{0-10} = 0b10000000010; + let Inst{11-17} = 0; + let Inst{18-24} = 0; + let Inst{25-31} = 0; +} + +def LNOP : SPUInstr<(outs), (ins), "lnop", LoadNOP> { + let Pattern = []; + + let Inst{0-10} = 0b10000000000; + let Inst{11-17} = 0; + let Inst{18-24} = 0; + let Inst{25-31} = 0; +} + +//===----------------------------------------------------------------------===// +// Bit conversions (type conversions between vector/packed types) +// NOTE: Promotions are handled using the XS* instructions. +//===----------------------------------------------------------------------===// +def : Pat<(v16i8 (bitconvert (v8i16 VECREG:$src))), (v16i8 VECREG:$src)>; +def : Pat<(v16i8 (bitconvert (v4i32 VECREG:$src))), (v16i8 VECREG:$src)>; +def : Pat<(v16i8 (bitconvert (v2i64 VECREG:$src))), (v16i8 VECREG:$src)>; +def : Pat<(v16i8 (bitconvert (v4f32 VECREG:$src))), (v16i8 VECREG:$src)>; +def : Pat<(v16i8 (bitconvert (v2f64 VECREG:$src))), (v16i8 VECREG:$src)>; + +def : Pat<(v8i16 (bitconvert (v16i8 VECREG:$src))), (v8i16 VECREG:$src)>; +def : Pat<(v8i16 (bitconvert (v4i32 VECREG:$src))), (v8i16 VECREG:$src)>; +def : Pat<(v8i16 (bitconvert (v2i64 VECREG:$src))), (v8i16 VECREG:$src)>; +def : Pat<(v8i16 (bitconvert (v4f32 VECREG:$src))), (v8i16 VECREG:$src)>; +def : Pat<(v8i16 (bitconvert (v2f64 VECREG:$src))), (v8i16 VECREG:$src)>; + +def : Pat<(v4i32 (bitconvert (v16i8 VECREG:$src))), (v4i32 VECREG:$src)>; +def : Pat<(v4i32 (bitconvert (v8i16 VECREG:$src))), (v4i32 VECREG:$src)>; +def : Pat<(v4i32 (bitconvert (v2i64 VECREG:$src))), (v4i32 VECREG:$src)>; +def : Pat<(v4i32 (bitconvert (v4f32 VECREG:$src))), (v4i32 VECREG:$src)>; +def : Pat<(v4i32 (bitconvert (v2f64 VECREG:$src))), (v4i32 VECREG:$src)>; + +def : Pat<(v2i64 (bitconvert (v16i8 VECREG:$src))), (v2i64 VECREG:$src)>; +def : Pat<(v2i64 (bitconvert (v8i16 VECREG:$src))), (v2i64 VECREG:$src)>; +def : Pat<(v2i64 (bitconvert (v4i32 VECREG:$src))), (v2i64 VECREG:$src)>; +def : Pat<(v2i64 (bitconvert (v4f32 VECREG:$src))), (v2i64 VECREG:$src)>; +def : Pat<(v2i64 (bitconvert (v2f64 VECREG:$src))), (v2i64 VECREG:$src)>; + +def : Pat<(v4f32 (bitconvert (v16i8 VECREG:$src))), (v4f32 VECREG:$src)>; +def : Pat<(v4f32 (bitconvert (v8i16 VECREG:$src))), (v4f32 VECREG:$src)>; +def : Pat<(v4f32 (bitconvert (v2i64 VECREG:$src))), (v4f32 VECREG:$src)>; +def : Pat<(v4f32 (bitconvert (v4i32 VECREG:$src))), (v4f32 VECREG:$src)>; +def : Pat<(v4f32 (bitconvert (v2f64 VECREG:$src))), (v4f32 VECREG:$src)>; + +def : Pat<(v2f64 (bitconvert (v16i8 VECREG:$src))), (v2f64 VECREG:$src)>; +def : Pat<(v2f64 (bitconvert (v8i16 VECREG:$src))), (v2f64 VECREG:$src)>; +def : Pat<(v2f64 (bitconvert (v4i32 VECREG:$src))), (v2f64 VECREG:$src)>; +def : Pat<(v2f64 (bitconvert (v2i64 VECREG:$src))), (v2f64 VECREG:$src)>; +def : Pat<(v2f64 (bitconvert (v4f32 VECREG:$src))), (v2f64 VECREG:$src)>; + +def : Pat<(i128 (bitconvert (v16i8 VECREG:$src))), + (COPY_TO_REGCLASS VECREG:$src, GPRC)>; +def : Pat<(i128 (bitconvert (v8i16 VECREG:$src))), + (COPY_TO_REGCLASS VECREG:$src, GPRC)>; +def : Pat<(i128 (bitconvert (v4i32 VECREG:$src))), + (COPY_TO_REGCLASS VECREG:$src, GPRC)>; +def : Pat<(i128 (bitconvert (v2i64 VECREG:$src))), + (COPY_TO_REGCLASS VECREG:$src, GPRC)>; +def : Pat<(i128 (bitconvert (v4f32 VECREG:$src))), + (COPY_TO_REGCLASS VECREG:$src, GPRC)>; +def : Pat<(i128 (bitconvert (v2f64 VECREG:$src))), + (COPY_TO_REGCLASS VECREG:$src, GPRC)>; + +def : Pat<(v16i8 (bitconvert (i128 GPRC:$src))), + (v16i8 (COPY_TO_REGCLASS GPRC:$src, VECREG))>; +def : Pat<(v8i16 (bitconvert (i128 GPRC:$src))), + (v8i16 (COPY_TO_REGCLASS GPRC:$src, VECREG))>; +def : Pat<(v4i32 (bitconvert (i128 GPRC:$src))), + (v4i32 (COPY_TO_REGCLASS GPRC:$src, VECREG))>; +def : Pat<(v2i64 (bitconvert (i128 GPRC:$src))), + (v2i64 (COPY_TO_REGCLASS GPRC:$src, VECREG))>; +def : Pat<(v4f32 (bitconvert (i128 GPRC:$src))), + (v4f32 (COPY_TO_REGCLASS GPRC:$src, VECREG))>; +def : Pat<(v2f64 (bitconvert (i128 GPRC:$src))), + (v2f64 (COPY_TO_REGCLASS GPRC:$src, VECREG))>; + +def : Pat<(i32 (bitconvert R32FP:$rA)), + (COPY_TO_REGCLASS R32FP:$rA, R32C)>; + +def : Pat<(f32 (bitconvert R32C:$rA)), + (COPY_TO_REGCLASS R32C:$rA, R32FP)>; + +def : Pat<(i64 (bitconvert R64FP:$rA)), + (COPY_TO_REGCLASS R64FP:$rA, R64C)>; + +def : Pat<(f64 (bitconvert R64C:$rA)), + (COPY_TO_REGCLASS R64C:$rA, R64FP)>; + + +//===----------------------------------------------------------------------===// +// Instruction patterns: +//===----------------------------------------------------------------------===// + +// General 32-bit constants: +def : Pat<(i32 imm:$imm), + (IOHLr32 (ILHUr32 (HI16 imm:$imm)), (LO16 imm:$imm))>; + +// Single precision float constants: +def : Pat<(f32 fpimm:$imm), + (IOHLf32 (ILHUf32 (HI16_f32 fpimm:$imm)), (LO16_f32 fpimm:$imm))>; + +// General constant 32-bit vectors +def : Pat<(v4i32 v4i32Imm:$imm), + (IOHLv4i32 (v4i32 (ILHUv4i32 (HI16_vec v4i32Imm:$imm))), + (LO16_vec v4i32Imm:$imm))>; + +// 8-bit constants +def : Pat<(i8 imm:$imm), + (ILHr8 imm:$imm)>; + +//===----------------------------------------------------------------------===// +// Zero/Any/Sign extensions +//===----------------------------------------------------------------------===// + +// sext 8->32: Sign extend bytes to words +def : Pat<(sext_inreg R32C:$rSrc, i8), + (XSHWr32 (XSBHr32 R32C:$rSrc))>; + +def : Pat<(i32 (sext R8C:$rSrc)), + (XSHWr16 (XSBHr8 R8C:$rSrc))>; + +// sext 8->64: Sign extend bytes to double word +def : Pat<(sext_inreg R64C:$rSrc, i8), + (XSWDr64_inreg (XSHWr64 (XSBHr64 R64C:$rSrc)))>; + +def : Pat<(i64 (sext R8C:$rSrc)), + (XSWDr64 (XSHWr16 (XSBHr8 R8C:$rSrc)))>; + +// zext 8->16: Zero extend bytes to halfwords +def : Pat<(i16 (zext R8C:$rSrc)), + (ANDHIi8i16 R8C:$rSrc, 0xff)>; + +// zext 8->32: Zero extend bytes to words +def : Pat<(i32 (zext R8C:$rSrc)), + (ANDIi8i32 R8C:$rSrc, 0xff)>; + +// zext 8->64: Zero extend bytes to double words +def : Pat<(i64 (zext R8C:$rSrc)), + (COPY_TO_REGCLASS (SELBv4i32 (ROTQMBYv4i32 + (COPY_TO_REGCLASS + (ANDIi8i32 R8C:$rSrc,0xff), VECREG), + 0x4), + (ILv4i32 0x0), + (FSMBIv4i32 0x0f0f)), R64C)>; + +// anyext 8->16: Extend 8->16 bits, irrespective of sign, preserves high bits +def : Pat<(i16 (anyext R8C:$rSrc)), + (ORHIi8i16 R8C:$rSrc, 0)>; + +// anyext 8->32: Extend 8->32 bits, irrespective of sign, preserves high bits +def : Pat<(i32 (anyext R8C:$rSrc)), + (COPY_TO_REGCLASS R8C:$rSrc, R32C)>; + +// sext 16->64: Sign extend halfword to double word +def : Pat<(sext_inreg R64C:$rSrc, i16), + (XSWDr64_inreg (XSHWr64 R64C:$rSrc))>; + +def : Pat<(sext R16C:$rSrc), + (XSWDr64 (XSHWr16 R16C:$rSrc))>; + +// zext 16->32: Zero extend halfwords to words +def : Pat<(i32 (zext R16C:$rSrc)), + (ANDi16i32 R16C:$rSrc, (ILAr32 0xffff))>; + +def : Pat<(i32 (zext (and R16C:$rSrc, 0xf))), + (ANDIi16i32 R16C:$rSrc, 0xf)>; + +def : Pat<(i32 (zext (and R16C:$rSrc, 0xff))), + (ANDIi16i32 R16C:$rSrc, 0xff)>; + +def : Pat<(i32 (zext (and R16C:$rSrc, 0xfff))), + (ANDIi16i32 R16C:$rSrc, 0xfff)>; + +// anyext 16->32: Extend 16->32 bits, irrespective of sign +def : Pat<(i32 (anyext R16C:$rSrc)), + (COPY_TO_REGCLASS R16C:$rSrc, R32C)>; + +//===----------------------------------------------------------------------===// +// Truncates: +// These truncates are for the SPU's supported types (i8, i16, i32). i64 and +// above are custom lowered. +//===----------------------------------------------------------------------===// + +def : Pat<(i8 (trunc GPRC:$src)), + (COPY_TO_REGCLASS + (SHUFBgprc GPRC:$src, GPRC:$src, + (IOHLv4i32 (ILHUv4i32 0x0f0f), 0x0f0f)), R8C)>; + +def : Pat<(i8 (trunc R64C:$src)), + (COPY_TO_REGCLASS + (SHUFBv2i64_m32 + (COPY_TO_REGCLASS R64C:$src, VECREG), + (COPY_TO_REGCLASS R64C:$src, VECREG), + (IOHLv4i32 (ILHUv4i32 0x0707), 0x0707)), R8C)>; + +def : Pat<(i8 (trunc R32C:$src)), + (COPY_TO_REGCLASS + (SHUFBv4i32_m32 + (COPY_TO_REGCLASS R32C:$src, VECREG), + (COPY_TO_REGCLASS R32C:$src, VECREG), + (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)), R8C)>; + +def : Pat<(i8 (trunc R16C:$src)), + (COPY_TO_REGCLASS + (SHUFBv4i32_m32 + (COPY_TO_REGCLASS R16C:$src, VECREG), + (COPY_TO_REGCLASS R16C:$src, VECREG), + (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)), R8C)>; + +def : Pat<(i16 (trunc GPRC:$src)), + (COPY_TO_REGCLASS + (SHUFBgprc GPRC:$src, GPRC:$src, + (IOHLv4i32 (ILHUv4i32 0x0e0f), 0x0e0f)), R16C)>; + +def : Pat<(i16 (trunc R64C:$src)), + (COPY_TO_REGCLASS + (SHUFBv2i64_m32 + (COPY_TO_REGCLASS R64C:$src, VECREG), + (COPY_TO_REGCLASS R64C:$src, VECREG), + (IOHLv4i32 (ILHUv4i32 0x0607), 0x0607)), R16C)>; + +def : Pat<(i16 (trunc R32C:$src)), + (COPY_TO_REGCLASS + (SHUFBv4i32_m32 + (COPY_TO_REGCLASS R32C:$src, VECREG), + (COPY_TO_REGCLASS R32C:$src, VECREG), + (IOHLv4i32 (ILHUv4i32 0x0203), 0x0203)), R16C)>; + +def : Pat<(i32 (trunc GPRC:$src)), + (COPY_TO_REGCLASS + (SHUFBgprc GPRC:$src, GPRC:$src, + (IOHLv4i32 (ILHUv4i32 0x0c0d), 0x0e0f)), R32C)>; + +def : Pat<(i32 (trunc R64C:$src)), + (COPY_TO_REGCLASS + (SHUFBv2i64_m32 + (COPY_TO_REGCLASS R64C:$src, VECREG), + (COPY_TO_REGCLASS R64C:$src, VECREG), + (IOHLv4i32 (ILHUv4i32 0x0405), 0x0607)), R32C)>; + +//===----------------------------------------------------------------------===// +// Address generation: SPU, like PPC, has to split addresses into high and +// low parts in order to load them into a register. +//===----------------------------------------------------------------------===// + +def : Pat<(SPUaform tglobaladdr:$in, 0), (ILAlsa tglobaladdr:$in)>; +def : Pat<(SPUaform texternalsym:$in, 0), (ILAlsa texternalsym:$in)>; +def : Pat<(SPUaform tjumptable:$in, 0), (ILAlsa tjumptable:$in)>; +def : Pat<(SPUaform tconstpool:$in, 0), (ILAlsa tconstpool:$in)>; + +def : Pat<(SPUindirect (SPUhi tglobaladdr:$in, 0), + (SPUlo tglobaladdr:$in, 0)), + (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>; + +def : Pat<(SPUindirect (SPUhi texternalsym:$in, 0), + (SPUlo texternalsym:$in, 0)), + (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>; + +def : Pat<(SPUindirect (SPUhi tjumptable:$in, 0), + (SPUlo tjumptable:$in, 0)), + (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>; + +def : Pat<(SPUindirect (SPUhi tconstpool:$in, 0), + (SPUlo tconstpool:$in, 0)), + (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>; + +def : Pat<(add (SPUhi tglobaladdr:$in, 0), (SPUlo tglobaladdr:$in, 0)), + (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>; + +def : Pat<(add (SPUhi texternalsym:$in, 0), (SPUlo texternalsym:$in, 0)), + (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>; + +def : Pat<(add (SPUhi tjumptable:$in, 0), (SPUlo tjumptable:$in, 0)), + (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>; + +def : Pat<(add (SPUhi tconstpool:$in, 0), (SPUlo tconstpool:$in, 0)), + (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>; + +// Intrinsics: +include "CellSDKIntrinsics.td" +// Various math operator instruction sequences +include "SPUMathInstr.td" +// 64-bit "instructions"/support +include "SPU64InstrInfo.td" +// 128-bit "instructions"/support +include "SPU128InstrInfo.td" |