summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/CellSPU/SPUInstrInfo.td
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/CellSPU/SPUInstrInfo.td')
-rw-r--r--contrib/llvm/lib/Target/CellSPU/SPUInstrInfo.td4484
1 files changed, 4484 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/CellSPU/SPUInstrInfo.td b/contrib/llvm/lib/Target/CellSPU/SPUInstrInfo.td
new file mode 100644
index 0000000..117acd7
--- /dev/null
+++ b/contrib/llvm/lib/Target/CellSPU/SPUInstrInfo.td
@@ -0,0 +1,4484 @@
+//==- SPUInstrInfo.td - Describe the Cell SPU Instructions -*- tablegen -*-==//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// Cell SPU Instructions:
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// TODO Items (not urgent today, but would be nice, low priority)
+//
+// ANDBI, ORBI: SPU constructs a 4-byte constant for these instructions by
+// concatenating the byte argument b as "bbbb". Could recognize this bit pattern
+// in 16-bit and 32-bit constants and reduce instruction count.
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Pseudo instructions:
+//===----------------------------------------------------------------------===//
+
+let hasCtrlDep = 1, Defs = [R1], Uses = [R1] in {
+ def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm_i32:$amt),
+ "${:comment} ADJCALLSTACKDOWN",
+ [(callseq_start timm:$amt)]>;
+ def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm_i32:$amt),
+ "${:comment} ADJCALLSTACKUP",
+ [(callseq_end timm:$amt)]>;
+ def HBR_LABEL : Pseudo<(outs), (ins hbrtarget:$targ),
+ "$targ:\t${:comment}branch hint target",[ ]>;
+}
+
+//===----------------------------------------------------------------------===//
+// Loads:
+// NB: The ordering is actually important, since the instruction selection
+// will try each of the instructions in sequence, i.e., the D-form first with
+// the 10-bit displacement, then the A-form with the 16 bit displacement, and
+// finally the X-form with the register-register.
+//===----------------------------------------------------------------------===//
+
+let canFoldAsLoad = 1 in {
+ class LoadDFormVec<ValueType vectype>
+ : RI10Form<0b00101100, (outs VECREG:$rT), (ins dformaddr:$src),
+ "lqd\t$rT, $src",
+ LoadStore,
+ [(set (vectype VECREG:$rT), (load dform_addr:$src))]>
+ { }
+
+ class LoadDForm<RegisterClass rclass>
+ : RI10Form<0b00101100, (outs rclass:$rT), (ins dformaddr:$src),
+ "lqd\t$rT, $src",
+ LoadStore,
+ [(set rclass:$rT, (load dform_addr:$src))]>
+ { }
+
+ multiclass LoadDForms
+ {
+ def v16i8: LoadDFormVec<v16i8>;
+ def v8i16: LoadDFormVec<v8i16>;
+ def v4i32: LoadDFormVec<v4i32>;
+ def v2i64: LoadDFormVec<v2i64>;
+ def v4f32: LoadDFormVec<v4f32>;
+ def v2f64: LoadDFormVec<v2f64>;
+
+ def r128: LoadDForm<GPRC>;
+ def r64: LoadDForm<R64C>;
+ def r32: LoadDForm<R32C>;
+ def f32: LoadDForm<R32FP>;
+ def f64: LoadDForm<R64FP>;
+ def r16: LoadDForm<R16C>;
+ def r8: LoadDForm<R8C>;
+ }
+
+ class LoadAFormVec<ValueType vectype>
+ : RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
+ "lqa\t$rT, $src",
+ LoadStore,
+ [(set (vectype VECREG:$rT), (load aform_addr:$src))]>
+ { }
+
+ class LoadAForm<RegisterClass rclass>
+ : RI16Form<0b100001100, (outs rclass:$rT), (ins addr256k:$src),
+ "lqa\t$rT, $src",
+ LoadStore,
+ [(set rclass:$rT, (load aform_addr:$src))]>
+ { }
+
+ multiclass LoadAForms
+ {
+ def v16i8: LoadAFormVec<v16i8>;
+ def v8i16: LoadAFormVec<v8i16>;
+ def v4i32: LoadAFormVec<v4i32>;
+ def v2i64: LoadAFormVec<v2i64>;
+ def v4f32: LoadAFormVec<v4f32>;
+ def v2f64: LoadAFormVec<v2f64>;
+
+ def r128: LoadAForm<GPRC>;
+ def r64: LoadAForm<R64C>;
+ def r32: LoadAForm<R32C>;
+ def f32: LoadAForm<R32FP>;
+ def f64: LoadAForm<R64FP>;
+ def r16: LoadAForm<R16C>;
+ def r8: LoadAForm<R8C>;
+ }
+
+ class LoadXFormVec<ValueType vectype>
+ : RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
+ "lqx\t$rT, $src",
+ LoadStore,
+ [(set (vectype VECREG:$rT), (load xform_addr:$src))]>
+ { }
+
+ class LoadXForm<RegisterClass rclass>
+ : RRForm<0b00100011100, (outs rclass:$rT), (ins memrr:$src),
+ "lqx\t$rT, $src",
+ LoadStore,
+ [(set rclass:$rT, (load xform_addr:$src))]>
+ { }
+
+ multiclass LoadXForms
+ {
+ def v16i8: LoadXFormVec<v16i8>;
+ def v8i16: LoadXFormVec<v8i16>;
+ def v4i32: LoadXFormVec<v4i32>;
+ def v2i64: LoadXFormVec<v2i64>;
+ def v4f32: LoadXFormVec<v4f32>;
+ def v2f64: LoadXFormVec<v2f64>;
+
+ def r128: LoadXForm<GPRC>;
+ def r64: LoadXForm<R64C>;
+ def r32: LoadXForm<R32C>;
+ def f32: LoadXForm<R32FP>;
+ def f64: LoadXForm<R64FP>;
+ def r16: LoadXForm<R16C>;
+ def r8: LoadXForm<R8C>;
+ }
+
+ defm LQA : LoadAForms;
+ defm LQD : LoadDForms;
+ defm LQX : LoadXForms;
+
+/* Load quadword, PC relative: Not much use at this point in time.
+ Might be of use later for relocatable code. It's effectively the
+ same as LQA, but uses PC-relative addressing.
+ def LQR : RI16Form<0b111001100, (outs VECREG:$rT), (ins s16imm:$disp),
+ "lqr\t$rT, $disp", LoadStore,
+ [(set VECREG:$rT, (load iaddr:$disp))]>;
+ */
+}
+
+//===----------------------------------------------------------------------===//
+// Stores:
+//===----------------------------------------------------------------------===//
+class StoreDFormVec<ValueType vectype>
+ : RI10Form<0b00100100, (outs), (ins VECREG:$rT, dformaddr:$src),
+ "stqd\t$rT, $src",
+ LoadStore,
+ [(store (vectype VECREG:$rT), dform_addr:$src)]>
+{ }
+
+class StoreDForm<RegisterClass rclass>
+ : RI10Form<0b00100100, (outs), (ins rclass:$rT, dformaddr:$src),
+ "stqd\t$rT, $src",
+ LoadStore,
+ [(store rclass:$rT, dform_addr:$src)]>
+{ }
+
+multiclass StoreDForms
+{
+ def v16i8: StoreDFormVec<v16i8>;
+ def v8i16: StoreDFormVec<v8i16>;
+ def v4i32: StoreDFormVec<v4i32>;
+ def v2i64: StoreDFormVec<v2i64>;
+ def v4f32: StoreDFormVec<v4f32>;
+ def v2f64: StoreDFormVec<v2f64>;
+
+ def r128: StoreDForm<GPRC>;
+ def r64: StoreDForm<R64C>;
+ def r32: StoreDForm<R32C>;
+ def f32: StoreDForm<R32FP>;
+ def f64: StoreDForm<R64FP>;
+ def r16: StoreDForm<R16C>;
+ def r8: StoreDForm<R8C>;
+}
+
+class StoreAFormVec<ValueType vectype>
+ : RI16Form<0b0010010, (outs), (ins VECREG:$rT, addr256k:$src),
+ "stqa\t$rT, $src",
+ LoadStore,
+ [(store (vectype VECREG:$rT), aform_addr:$src)]>;
+
+class StoreAForm<RegisterClass rclass>
+ : RI16Form<0b001001, (outs), (ins rclass:$rT, addr256k:$src),
+ "stqa\t$rT, $src",
+ LoadStore,
+ [(store rclass:$rT, aform_addr:$src)]>;
+
+multiclass StoreAForms
+{
+ def v16i8: StoreAFormVec<v16i8>;
+ def v8i16: StoreAFormVec<v8i16>;
+ def v4i32: StoreAFormVec<v4i32>;
+ def v2i64: StoreAFormVec<v2i64>;
+ def v4f32: StoreAFormVec<v4f32>;
+ def v2f64: StoreAFormVec<v2f64>;
+
+ def r128: StoreAForm<GPRC>;
+ def r64: StoreAForm<R64C>;
+ def r32: StoreAForm<R32C>;
+ def f32: StoreAForm<R32FP>;
+ def f64: StoreAForm<R64FP>;
+ def r16: StoreAForm<R16C>;
+ def r8: StoreAForm<R8C>;
+}
+
+class StoreXFormVec<ValueType vectype>
+ : RRForm<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
+ "stqx\t$rT, $src",
+ LoadStore,
+ [(store (vectype VECREG:$rT), xform_addr:$src)]>
+{ }
+
+class StoreXForm<RegisterClass rclass>
+ : RRForm<0b00100100, (outs), (ins rclass:$rT, memrr:$src),
+ "stqx\t$rT, $src",
+ LoadStore,
+ [(store rclass:$rT, xform_addr:$src)]>
+{ }
+
+multiclass StoreXForms
+{
+ def v16i8: StoreXFormVec<v16i8>;
+ def v8i16: StoreXFormVec<v8i16>;
+ def v4i32: StoreXFormVec<v4i32>;
+ def v2i64: StoreXFormVec<v2i64>;
+ def v4f32: StoreXFormVec<v4f32>;
+ def v2f64: StoreXFormVec<v2f64>;
+
+ def r128: StoreXForm<GPRC>;
+ def r64: StoreXForm<R64C>;
+ def r32: StoreXForm<R32C>;
+ def f32: StoreXForm<R32FP>;
+ def f64: StoreXForm<R64FP>;
+ def r16: StoreXForm<R16C>;
+ def r8: StoreXForm<R8C>;
+}
+
+defm STQD : StoreDForms;
+defm STQA : StoreAForms;
+defm STQX : StoreXForms;
+
+/* Store quadword, PC relative: Not much use at this point in time. Might
+ be useful for relocatable code.
+def STQR : RI16Form<0b111000100, (outs), (ins VECREG:$rT, s16imm:$disp),
+ "stqr\t$rT, $disp", LoadStore,
+ [(store VECREG:$rT, iaddr:$disp)]>;
+*/
+
+//===----------------------------------------------------------------------===//
+// Generate Controls for Insertion:
+//===----------------------------------------------------------------------===//
+
+def CBD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src),
+ "cbd\t$rT, $src", ShuffleOp,
+ [(set (v16i8 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
+
+def CBX: RRForm<0b00101011100, (outs VECREG:$rT), (ins memrr:$src),
+ "cbx\t$rT, $src", ShuffleOp,
+ [(set (v16i8 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
+
+def CHD: RI7Form<0b10101111100, (outs VECREG:$rT), (ins shufaddr:$src),
+ "chd\t$rT, $src", ShuffleOp,
+ [(set (v8i16 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
+
+def CHX: RRForm<0b10101011100, (outs VECREG:$rT), (ins memrr:$src),
+ "chx\t$rT, $src", ShuffleOp,
+ [(set (v8i16 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
+
+def CWD: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src),
+ "cwd\t$rT, $src", ShuffleOp,
+ [(set (v4i32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
+
+def CWX: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
+ "cwx\t$rT, $src", ShuffleOp,
+ [(set (v4i32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
+
+def CWDf32: RI7Form<0b01101111100, (outs VECREG:$rT), (ins shufaddr:$src),
+ "cwd\t$rT, $src", ShuffleOp,
+ [(set (v4f32 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
+
+def CWXf32: RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
+ "cwx\t$rT, $src", ShuffleOp,
+ [(set (v4f32 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
+
+def CDD: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src),
+ "cdd\t$rT, $src", ShuffleOp,
+ [(set (v2i64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
+
+def CDX: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
+ "cdx\t$rT, $src", ShuffleOp,
+ [(set (v2i64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
+
+def CDDf64: RI7Form<0b11101111100, (outs VECREG:$rT), (ins shufaddr:$src),
+ "cdd\t$rT, $src", ShuffleOp,
+ [(set (v2f64 VECREG:$rT), (SPUshufmask dform2_addr:$src))]>;
+
+def CDXf64: RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
+ "cdx\t$rT, $src", ShuffleOp,
+ [(set (v2f64 VECREG:$rT), (SPUshufmask xform_addr:$src))]>;
+
+//===----------------------------------------------------------------------===//
+// Constant formation:
+//===----------------------------------------------------------------------===//
+
+def ILHv8i16:
+ RI16Form<0b110000010, (outs VECREG:$rT), (ins s16imm:$val),
+ "ilh\t$rT, $val", ImmLoad,
+ [(set (v8i16 VECREG:$rT), (v8i16 v8i16SExt16Imm:$val))]>;
+
+def ILHr16:
+ RI16Form<0b110000010, (outs R16C:$rT), (ins s16imm:$val),
+ "ilh\t$rT, $val", ImmLoad,
+ [(set R16C:$rT, immSExt16:$val)]>;
+
+// Cell SPU doesn't have a native 8-bit immediate load, but ILH works ("with
+// the right constant")
+def ILHr8:
+ RI16Form<0b110000010, (outs R8C:$rT), (ins s16imm_i8:$val),
+ "ilh\t$rT, $val", ImmLoad,
+ [(set R8C:$rT, immSExt8:$val)]>;
+
+// IL does sign extension!
+
+class ILInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI16Form<0b100000010, OOL, IOL, "il\t$rT, $val",
+ ImmLoad, pattern>;
+
+class ILVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
+ ILInst<(outs VECREG:$rT), (ins immtype:$val),
+ [(set (vectype VECREG:$rT), (vectype xform:$val))]>;
+
+class ILRegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
+ ILInst<(outs rclass:$rT), (ins immtype:$val),
+ [(set rclass:$rT, xform:$val)]>;
+
+multiclass ImmediateLoad
+{
+ def v2i64: ILVecInst<v2i64, s16imm_i64, v2i64SExt16Imm>;
+ def v4i32: ILVecInst<v4i32, s16imm_i32, v4i32SExt16Imm>;
+
+ // TODO: Need v2f64, v4f32
+
+ def r64: ILRegInst<R64C, s16imm_i64, immSExt16>;
+ def r32: ILRegInst<R32C, s16imm_i32, immSExt16>;
+ def f32: ILRegInst<R32FP, s16imm_f32, fpimmSExt16>;
+ def f64: ILRegInst<R64FP, s16imm_f64, fpimmSExt16>;
+}
+
+defm IL : ImmediateLoad;
+
+class ILHUInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI16Form<0b010000010, OOL, IOL, "ilhu\t$rT, $val",
+ ImmLoad, pattern>;
+
+class ILHUVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
+ ILHUInst<(outs VECREG:$rT), (ins immtype:$val),
+ [(set (vectype VECREG:$rT), (vectype xform:$val))]>;
+
+class ILHURegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
+ ILHUInst<(outs rclass:$rT), (ins immtype:$val),
+ [(set rclass:$rT, xform:$val)]>;
+
+multiclass ImmLoadHalfwordUpper
+{
+ def v2i64: ILHUVecInst<v2i64, u16imm_i64, immILHUvec_i64>;
+ def v4i32: ILHUVecInst<v4i32, u16imm_i32, immILHUvec>;
+
+ def r64: ILHURegInst<R64C, u16imm_i64, hi16>;
+ def r32: ILHURegInst<R32C, u16imm_i32, hi16>;
+
+ // Loads the high portion of an address
+ def hi: ILHURegInst<R32C, symbolHi, hi16>;
+
+ // Used in custom lowering constant SFP loads:
+ def f32: ILHURegInst<R32FP, f16imm, hi16_f32>;
+}
+
+defm ILHU : ImmLoadHalfwordUpper;
+
+// Immediate load address (can also be used to load 18-bit unsigned constants,
+// see the zext 16->32 pattern)
+
+class ILAInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI18Form<0b1000010, OOL, IOL, "ila\t$rT, $val",
+ LoadNOP, pattern>;
+
+class ILAVecInst<ValueType vectype, Operand immtype, PatLeaf xform>:
+ ILAInst<(outs VECREG:$rT), (ins immtype:$val),
+ [(set (vectype VECREG:$rT), (vectype xform:$val))]>;
+
+class ILARegInst<RegisterClass rclass, Operand immtype, PatLeaf xform>:
+ ILAInst<(outs rclass:$rT), (ins immtype:$val),
+ [(set rclass:$rT, xform:$val)]>;
+
+multiclass ImmLoadAddress
+{
+ def v2i64: ILAVecInst<v2i64, u18imm, v2i64Uns18Imm>;
+ def v4i32: ILAVecInst<v4i32, u18imm, v4i32Uns18Imm>;
+
+ def r64: ILARegInst<R64C, u18imm_i64, imm18>;
+ def r32: ILARegInst<R32C, u18imm, imm18>;
+ def f32: ILARegInst<R32FP, f18imm, fpimm18>;
+ def f64: ILARegInst<R64FP, f18imm_f64, fpimm18>;
+
+ def hi: ILARegInst<R32C, symbolHi, imm18>;
+ def lo: ILARegInst<R32C, symbolLo, imm18>;
+
+ def lsa: ILAInst<(outs R32C:$rT), (ins symbolLSA:$val),
+ [(set R32C:$rT, imm18:$val)]>;
+}
+
+defm ILA : ImmLoadAddress;
+
+// Immediate OR, Halfword Lower: The "other" part of loading large constants
+// into 32-bit registers. See the anonymous pattern Pat<(i32 imm:$imm), ...>
+// Note that these are really two operand instructions, but they're encoded
+// as three operands with the first two arguments tied-to each other.
+
+class IOHLInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI16Form<0b100000110, OOL, IOL, "iohl\t$rT, $val",
+ ImmLoad, pattern>,
+ RegConstraint<"$rS = $rT">,
+ NoEncode<"$rS">;
+
+class IOHLVecInst<ValueType vectype, Operand immtype /* , PatLeaf xform */>:
+ IOHLInst<(outs VECREG:$rT), (ins VECREG:$rS, immtype:$val),
+ [/* no pattern */]>;
+
+class IOHLRegInst<RegisterClass rclass, Operand immtype /* , PatLeaf xform */>:
+ IOHLInst<(outs rclass:$rT), (ins rclass:$rS, immtype:$val),
+ [/* no pattern */]>;
+
+multiclass ImmOrHalfwordLower
+{
+ def v2i64: IOHLVecInst<v2i64, u16imm_i64>;
+ def v4i32: IOHLVecInst<v4i32, u16imm_i32>;
+
+ def r32: IOHLRegInst<R32C, i32imm>;
+ def f32: IOHLRegInst<R32FP, f32imm>;
+
+ def lo: IOHLRegInst<R32C, symbolLo>;
+}
+
+defm IOHL: ImmOrHalfwordLower;
+
+// Form select mask for bytes using immediate, used in conjunction with the
+// SELB instruction:
+
+class FSMBIVec<ValueType vectype>:
+ RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val),
+ "fsmbi\t$rT, $val",
+ SelectOp,
+ [(set (vectype VECREG:$rT), (SPUselmask (i16 immU16:$val)))]>;
+
+multiclass FormSelectMaskBytesImm
+{
+ def v16i8: FSMBIVec<v16i8>;
+ def v8i16: FSMBIVec<v8i16>;
+ def v4i32: FSMBIVec<v4i32>;
+ def v2i64: FSMBIVec<v2i64>;
+}
+
+defm FSMBI : FormSelectMaskBytesImm;
+
+// fsmb: Form select mask for bytes. N.B. Input operand, $rA, is 16-bits
+class FSMBInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm_1<0b01101101100, OOL, IOL, "fsmb\t$rT, $rA", SelectOp,
+ pattern>;
+
+class FSMBRegInst<RegisterClass rclass, ValueType vectype>:
+ FSMBInst<(outs VECREG:$rT), (ins rclass:$rA),
+ [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
+
+class FSMBVecInst<ValueType vectype>:
+ FSMBInst<(outs VECREG:$rT), (ins VECREG:$rA),
+ [(set (vectype VECREG:$rT),
+ (SPUselmask (vectype VECREG:$rA)))]>;
+
+multiclass FormSelectMaskBits {
+ def v16i8_r16: FSMBRegInst<R16C, v16i8>;
+ def v16i8: FSMBVecInst<v16i8>;
+}
+
+defm FSMB: FormSelectMaskBits;
+
+// fsmh: Form select mask for halfwords. N.B., Input operand, $rA, is
+// only 8-bits wide (even though it's input as 16-bits here)
+
+class FSMHInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm_1<0b10101101100, OOL, IOL, "fsmh\t$rT, $rA", SelectOp,
+ pattern>;
+
+class FSMHRegInst<RegisterClass rclass, ValueType vectype>:
+ FSMHInst<(outs VECREG:$rT), (ins rclass:$rA),
+ [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
+
+class FSMHVecInst<ValueType vectype>:
+ FSMHInst<(outs VECREG:$rT), (ins VECREG:$rA),
+ [(set (vectype VECREG:$rT),
+ (SPUselmask (vectype VECREG:$rA)))]>;
+
+multiclass FormSelectMaskHalfword {
+ def v8i16_r16: FSMHRegInst<R16C, v8i16>;
+ def v8i16: FSMHVecInst<v8i16>;
+}
+
+defm FSMH: FormSelectMaskHalfword;
+
+// fsm: Form select mask for words. Like the other fsm* instructions,
+// only the lower 4 bits of $rA are significant.
+
+class FSMInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm_1<0b00101101100, OOL, IOL, "fsm\t$rT, $rA", SelectOp,
+ pattern>;
+
+class FSMRegInst<ValueType vectype, RegisterClass rclass>:
+ FSMInst<(outs VECREG:$rT), (ins rclass:$rA),
+ [(set (vectype VECREG:$rT), (SPUselmask rclass:$rA))]>;
+
+class FSMVecInst<ValueType vectype>:
+ FSMInst<(outs VECREG:$rT), (ins VECREG:$rA),
+ [(set (vectype VECREG:$rT), (SPUselmask (vectype VECREG:$rA)))]>;
+
+multiclass FormSelectMaskWord {
+ def v4i32: FSMVecInst<v4i32>;
+
+ def r32 : FSMRegInst<v4i32, R32C>;
+ def r16 : FSMRegInst<v4i32, R16C>;
+}
+
+defm FSM : FormSelectMaskWord;
+
+// Special case when used for i64 math operations
+multiclass FormSelectMaskWord64 {
+ def r32 : FSMRegInst<v2i64, R32C>;
+ def r16 : FSMRegInst<v2i64, R16C>;
+}
+
+defm FSM64 : FormSelectMaskWord64;
+
+//===----------------------------------------------------------------------===//
+// Integer and Logical Operations:
+//===----------------------------------------------------------------------===//
+
+def AHv8i16:
+ RRForm<0b00010011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ "ah\t$rT, $rA, $rB", IntegerOp,
+ [(set (v8i16 VECREG:$rT), (int_spu_si_ah VECREG:$rA, VECREG:$rB))]>;
+
+def : Pat<(add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
+ (AHv8i16 VECREG:$rA, VECREG:$rB)>;
+
+def AHr16:
+ RRForm<0b00010011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
+ "ah\t$rT, $rA, $rB", IntegerOp,
+ [(set R16C:$rT, (add R16C:$rA, R16C:$rB))]>;
+
+def AHIvec:
+ RI10Form<0b10111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ "ahi\t$rT, $rA, $val", IntegerOp,
+ [(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA),
+ v8i16SExt10Imm:$val))]>;
+
+def AHIr16:
+ RI10Form<0b10111000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
+ "ahi\t$rT, $rA, $val", IntegerOp,
+ [(set R16C:$rT, (add R16C:$rA, i16ImmSExt10:$val))]>;
+
+// v4i32, i32 add instruction:
+
+class AInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b00000011000, OOL, IOL,
+ "a\t$rT, $rA, $rB", IntegerOp,
+ pattern>;
+
+class AVecInst<ValueType vectype>:
+ AInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA),
+ (vectype VECREG:$rB)))]>;
+
+class ARegInst<RegisterClass rclass>:
+ AInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
+ [(set rclass:$rT, (add rclass:$rA, rclass:$rB))]>;
+
+multiclass AddInstruction {
+ def v4i32: AVecInst<v4i32>;
+ def v16i8: AVecInst<v16i8>;
+ def r32: ARegInst<R32C>;
+}
+
+defm A : AddInstruction;
+
+class AIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI10Form<0b00111000, OOL, IOL,
+ "ai\t$rT, $rA, $val", IntegerOp,
+ pattern>;
+
+class AIVecInst<ValueType vectype, PatLeaf immpred>:
+ AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ [(set (vectype VECREG:$rT), (add (vectype VECREG:$rA), immpred:$val))]>;
+
+class AIFPVecInst<ValueType vectype, PatLeaf immpred>:
+ AIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ [/* no pattern */]>;
+
+class AIRegInst<RegisterClass rclass, PatLeaf immpred>:
+ AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val),
+ [(set rclass:$rT, (add rclass:$rA, immpred:$val))]>;
+
+// This is used to add epsilons to floating point numbers in the f32 fdiv code:
+class AIFPInst<RegisterClass rclass, PatLeaf immpred>:
+ AIInst<(outs rclass:$rT), (ins rclass:$rA, s10imm_i32:$val),
+ [/* no pattern */]>;
+
+multiclass AddImmediate {
+ def v4i32: AIVecInst<v4i32, v4i32SExt10Imm>;
+
+ def r32: AIRegInst<R32C, i32ImmSExt10>;
+
+ def v4f32: AIFPVecInst<v4f32, v4i32SExt10Imm>;
+ def f32: AIFPInst<R32FP, i32ImmSExt10>;
+}
+
+defm AI : AddImmediate;
+
+def SFHvec:
+ RRForm<0b00010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ "sfh\t$rT, $rA, $rB", IntegerOp,
+ [(set (v8i16 VECREG:$rT), (sub (v8i16 VECREG:$rA),
+ (v8i16 VECREG:$rB)))]>;
+
+def SFHr16:
+ RRForm<0b00010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
+ "sfh\t$rT, $rA, $rB", IntegerOp,
+ [(set R16C:$rT, (sub R16C:$rB, R16C:$rA))]>;
+
+def SFHIvec:
+ RI10Form<0b10110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ "sfhi\t$rT, $rA, $val", IntegerOp,
+ [(set (v8i16 VECREG:$rT), (sub v8i16SExt10Imm:$val,
+ (v8i16 VECREG:$rA)))]>;
+
+def SFHIr16 : RI10Form<0b10110000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
+ "sfhi\t$rT, $rA, $val", IntegerOp,
+ [(set R16C:$rT, (sub i16ImmSExt10:$val, R16C:$rA))]>;
+
+def SFvec : RRForm<0b00000010000, (outs VECREG:$rT),
+ (ins VECREG:$rA, VECREG:$rB),
+ "sf\t$rT, $rA, $rB", IntegerOp,
+ [(set (v4i32 VECREG:$rT), (sub (v4i32 VECREG:$rB), (v4i32 VECREG:$rA)))]>;
+
+
+def SFr32 : RRForm<0b00000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
+ "sf\t$rT, $rA, $rB", IntegerOp,
+ [(set R32C:$rT, (sub R32C:$rB, R32C:$rA))]>;
+
+def SFIvec:
+ RI10Form<0b00110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ "sfi\t$rT, $rA, $val", IntegerOp,
+ [(set (v4i32 VECREG:$rT), (sub v4i32SExt10Imm:$val,
+ (v4i32 VECREG:$rA)))]>;
+
+def SFIr32 : RI10Form<0b00110000, (outs R32C:$rT),
+ (ins R32C:$rA, s10imm_i32:$val),
+ "sfi\t$rT, $rA, $val", IntegerOp,
+ [(set R32C:$rT, (sub i32ImmSExt10:$val, R32C:$rA))]>;
+
+// ADDX: only available in vector form, doesn't match a pattern.
+class ADDXInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b00000010110, OOL, IOL,
+ "addx\t$rT, $rA, $rB",
+ IntegerOp, pattern>;
+
+class ADDXVecInst<ValueType vectype>:
+ ADDXInst<(outs VECREG:$rT),
+ (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry),
+ [/* no pattern */]>,
+ RegConstraint<"$rCarry = $rT">,
+ NoEncode<"$rCarry">;
+
+class ADDXRegInst<RegisterClass rclass>:
+ ADDXInst<(outs rclass:$rT),
+ (ins rclass:$rA, rclass:$rB, rclass:$rCarry),
+ [/* no pattern */]>,
+ RegConstraint<"$rCarry = $rT">,
+ NoEncode<"$rCarry">;
+
+multiclass AddExtended {
+ def v2i64 : ADDXVecInst<v2i64>;
+ def v4i32 : ADDXVecInst<v4i32>;
+ def r64 : ADDXRegInst<R64C>;
+ def r32 : ADDXRegInst<R32C>;
+}
+
+defm ADDX : AddExtended;
+
+// CG: Generate carry for add
+class CGInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b01000011000, OOL, IOL,
+ "cg\t$rT, $rA, $rB",
+ IntegerOp, pattern>;
+
+class CGVecInst<ValueType vectype>:
+ CGInst<(outs VECREG:$rT),
+ (ins VECREG:$rA, VECREG:$rB),
+ [/* no pattern */]>;
+
+class CGRegInst<RegisterClass rclass>:
+ CGInst<(outs rclass:$rT),
+ (ins rclass:$rA, rclass:$rB),
+ [/* no pattern */]>;
+
+multiclass CarryGenerate {
+ def v2i64 : CGVecInst<v2i64>;
+ def v4i32 : CGVecInst<v4i32>;
+ def r64 : CGRegInst<R64C>;
+ def r32 : CGRegInst<R32C>;
+}
+
+defm CG : CarryGenerate;
+
+// SFX: Subract from, extended. This is used in conjunction with BG to subtract
+// with carry (borrow, in this case)
+class SFXInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b10000010110, OOL, IOL,
+ "sfx\t$rT, $rA, $rB",
+ IntegerOp, pattern>;
+
+class SFXVecInst<ValueType vectype>:
+ SFXInst<(outs VECREG:$rT),
+ (ins VECREG:$rA, VECREG:$rB, VECREG:$rCarry),
+ [/* no pattern */]>,
+ RegConstraint<"$rCarry = $rT">,
+ NoEncode<"$rCarry">;
+
+class SFXRegInst<RegisterClass rclass>:
+ SFXInst<(outs rclass:$rT),
+ (ins rclass:$rA, rclass:$rB, rclass:$rCarry),
+ [/* no pattern */]>,
+ RegConstraint<"$rCarry = $rT">,
+ NoEncode<"$rCarry">;
+
+multiclass SubtractExtended {
+ def v2i64 : SFXVecInst<v2i64>;
+ def v4i32 : SFXVecInst<v4i32>;
+ def r64 : SFXRegInst<R64C>;
+ def r32 : SFXRegInst<R32C>;
+}
+
+defm SFX : SubtractExtended;
+
+// BG: only available in vector form, doesn't match a pattern.
+class BGInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b01000010000, OOL, IOL,
+ "bg\t$rT, $rA, $rB",
+ IntegerOp, pattern>;
+
+class BGVecInst<ValueType vectype>:
+ BGInst<(outs VECREG:$rT),
+ (ins VECREG:$rA, VECREG:$rB),
+ [/* no pattern */]>;
+
+class BGRegInst<RegisterClass rclass>:
+ BGInst<(outs rclass:$rT),
+ (ins rclass:$rA, rclass:$rB),
+ [/* no pattern */]>;
+
+multiclass BorrowGenerate {
+ def v4i32 : BGVecInst<v4i32>;
+ def v2i64 : BGVecInst<v2i64>;
+ def r64 : BGRegInst<R64C>;
+ def r32 : BGRegInst<R32C>;
+}
+
+defm BG : BorrowGenerate;
+
+// BGX: Borrow generate, extended.
+def BGXvec:
+ RRForm<0b11000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
+ VECREG:$rCarry),
+ "bgx\t$rT, $rA, $rB", IntegerOp,
+ []>,
+ RegConstraint<"$rCarry = $rT">,
+ NoEncode<"$rCarry">;
+
+// Halfword multiply variants:
+// N.B: These can be used to build up larger quantities (16x16 -> 32)
+
+def MPYv8i16:
+ RRForm<0b00100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ "mpy\t$rT, $rA, $rB", IntegerMulDiv,
+ [/* no pattern */]>;
+
+def MPYr16:
+ RRForm<0b00100011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
+ "mpy\t$rT, $rA, $rB", IntegerMulDiv,
+ [(set R16C:$rT, (mul R16C:$rA, R16C:$rB))]>;
+
+// Unsigned 16-bit multiply:
+
+class MPYUInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b00110011110, OOL, IOL,
+ "mpyu\t$rT, $rA, $rB", IntegerMulDiv,
+ pattern>;
+
+def MPYUv4i32:
+ MPYUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [/* no pattern */]>;
+
+def MPYUr16:
+ MPYUInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB),
+ [(set R32C:$rT, (mul (zext R16C:$rA), (zext R16C:$rB)))]>;
+
+def MPYUr32:
+ MPYUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
+ [/* no pattern */]>;
+
+// mpyi: multiply 16 x s10imm -> 32 result.
+
+class MPYIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI10Form<0b00101110, OOL, IOL,
+ "mpyi\t$rT, $rA, $val", IntegerMulDiv,
+ pattern>;
+
+def MPYIvec:
+ MPYIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ [(set (v8i16 VECREG:$rT),
+ (mul (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
+
+def MPYIr16:
+ MPYIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
+ [(set R16C:$rT, (mul R16C:$rA, i16ImmSExt10:$val))]>;
+
+// mpyui: same issues as other multiplies, plus, this doesn't match a
+// pattern... but may be used during target DAG selection or lowering
+
+class MPYUIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI10Form<0b10101110, OOL, IOL,
+ "mpyui\t$rT, $rA, $val", IntegerMulDiv,
+ pattern>;
+
+def MPYUIvec:
+ MPYUIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ []>;
+
+def MPYUIr16:
+ MPYUIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
+ []>;
+
+// mpya: 16 x 16 + 16 -> 32 bit result
+class MPYAInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRRForm<0b0011, OOL, IOL,
+ "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
+ pattern>;
+
+def MPYAv4i32:
+ MPYAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
+ [(set (v4i32 VECREG:$rT),
+ (add (v4i32 (bitconvert (mul (v8i16 VECREG:$rA),
+ (v8i16 VECREG:$rB)))),
+ (v4i32 VECREG:$rC)))]>;
+
+def MPYAr32:
+ MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
+ [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)),
+ R32C:$rC))]>;
+
+def MPYAr32_sext:
+ MPYAInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
+ [(set R32C:$rT, (add (mul (sext R16C:$rA), (sext R16C:$rB)),
+ R32C:$rC))]>;
+
+def MPYAr32_sextinreg:
+ MPYAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC),
+ [(set R32C:$rT, (add (mul (sext_inreg R32C:$rA, i16),
+ (sext_inreg R32C:$rB, i16)),
+ R32C:$rC))]>;
+
+// mpyh: multiply high, used to synthesize 32-bit multiplies
+class MPYHInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b10100011110, OOL, IOL,
+ "mpyh\t$rT, $rA, $rB", IntegerMulDiv,
+ pattern>;
+
+def MPYHv4i32:
+ MPYHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [/* no pattern */]>;
+
+def MPYHr32:
+ MPYHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
+ [/* no pattern */]>;
+
+// mpys: multiply high and shift right (returns the top half of
+// a 16-bit multiply, sign extended to 32 bits.)
+
+class MPYSInst<dag OOL, dag IOL>:
+ RRForm<0b11100011110, OOL, IOL,
+ "mpys\t$rT, $rA, $rB", IntegerMulDiv,
+ [/* no pattern */]>;
+
+def MPYSv4i32:
+ MPYSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
+
+def MPYSr16:
+ MPYSInst<(outs R32C:$rT), (ins R16C:$rA, R16C:$rB)>;
+
+// mpyhh: multiply high-high (returns the 32-bit result from multiplying
+// the top 16 bits of the $rA, $rB)
+
+class MPYHHInst<dag OOL, dag IOL>:
+ RRForm<0b01100011110, OOL, IOL,
+ "mpyhh\t$rT, $rA, $rB", IntegerMulDiv,
+ [/* no pattern */]>;
+
+def MPYHHv8i16:
+ MPYHHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
+
+def MPYHHr32:
+ MPYHHInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
+
+// mpyhha: Multiply high-high, add to $rT:
+
+class MPYHHAInst<dag OOL, dag IOL>:
+ RRForm<0b01100010110, OOL, IOL,
+ "mpyhha\t$rT, $rA, $rB", IntegerMulDiv,
+ [/* no pattern */]>;
+
+def MPYHHAvec:
+ MPYHHAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
+
+def MPYHHAr32:
+ MPYHHAInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
+
+// mpyhhu: Multiply high-high, unsigned, e.g.:
+//
+// +-------+-------+ +-------+-------+ +---------+
+// | a0 . a1 | x | b0 . b1 | = | a0 x b0 |
+// +-------+-------+ +-------+-------+ +---------+
+//
+// where a0, b0 are the upper 16 bits of the 32-bit word
+
+class MPYHHUInst<dag OOL, dag IOL>:
+ RRForm<0b01110011110, OOL, IOL,
+ "mpyhhu\t$rT, $rA, $rB", IntegerMulDiv,
+ [/* no pattern */]>;
+
+def MPYHHUv4i32:
+ MPYHHUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
+
+def MPYHHUr32:
+ MPYHHUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
+
+// mpyhhau: Multiply high-high, unsigned
+
+class MPYHHAUInst<dag OOL, dag IOL>:
+ RRForm<0b01110010110, OOL, IOL,
+ "mpyhhau\t$rT, $rA, $rB", IntegerMulDiv,
+ [/* no pattern */]>;
+
+def MPYHHAUvec:
+ MPYHHAUInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB)>;
+
+def MPYHHAUr32:
+ MPYHHAUInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB)>;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// clz: Count leading zeroes
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+class CLZInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm_1<0b10100101010, OOL, IOL, "clz\t$rT, $rA",
+ IntegerOp, pattern>;
+
+class CLZRegInst<RegisterClass rclass>:
+ CLZInst<(outs rclass:$rT), (ins rclass:$rA),
+ [(set rclass:$rT, (ctlz rclass:$rA))]>;
+
+class CLZVecInst<ValueType vectype>:
+ CLZInst<(outs VECREG:$rT), (ins VECREG:$rA),
+ [(set (vectype VECREG:$rT), (ctlz (vectype VECREG:$rA)))]>;
+
+multiclass CountLeadingZeroes {
+ def v4i32 : CLZVecInst<v4i32>;
+ def r32 : CLZRegInst<R32C>;
+}
+
+defm CLZ : CountLeadingZeroes;
+
+// cntb: Count ones in bytes (aka "population count")
+//
+// NOTE: This instruction is really a vector instruction, but the custom
+// lowering code uses it in unorthodox ways to support CTPOP for other
+// data types!
+
+def CNTBv16i8:
+ RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
+ "cntb\t$rT, $rA", IntegerOp,
+ [(set (v16i8 VECREG:$rT), (SPUcntb (v16i8 VECREG:$rA)))]>;
+
+def CNTBv8i16 :
+ RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
+ "cntb\t$rT, $rA", IntegerOp,
+ [(set (v8i16 VECREG:$rT), (SPUcntb (v8i16 VECREG:$rA)))]>;
+
+def CNTBv4i32 :
+ RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
+ "cntb\t$rT, $rA", IntegerOp,
+ [(set (v4i32 VECREG:$rT), (SPUcntb (v4i32 VECREG:$rA)))]>;
+
+// gbb: Gather the low order bits from each byte in $rA into a single 16-bit
+// quantity stored into $rT's slot 0, upper 16 bits are zeroed, as are
+// slots 1-3.
+//
+// Note: This instruction "pairs" with the fsmb instruction for all of the
+// various types defined here.
+//
+// Note 2: The "VecInst" and "RegInst" forms refer to the result being either
+// a vector or register.
+
+class GBBInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm_1<0b01001101100, OOL, IOL, "gbb\t$rT, $rA", GatherOp, pattern>;
+
+class GBBRegInst<RegisterClass rclass, ValueType vectype>:
+ GBBInst<(outs rclass:$rT), (ins VECREG:$rA),
+ [/* no pattern */]>;
+
+class GBBVecInst<ValueType vectype>:
+ GBBInst<(outs VECREG:$rT), (ins VECREG:$rA),
+ [/* no pattern */]>;
+
+multiclass GatherBitsFromBytes {
+ def v16i8_r32: GBBRegInst<R32C, v16i8>;
+ def v16i8_r16: GBBRegInst<R16C, v16i8>;
+ def v16i8: GBBVecInst<v16i8>;
+}
+
+defm GBB: GatherBitsFromBytes;
+
+// gbh: Gather all low order bits from each halfword in $rA into a single
+// 8-bit quantity stored in $rT's slot 0, with the upper bits of $rT set to 0
+// and slots 1-3 also set to 0.
+//
+// See notes for GBBInst, above.
+
+class GBHInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm_1<0b10001101100, OOL, IOL, "gbh\t$rT, $rA", GatherOp,
+ pattern>;
+
+class GBHRegInst<RegisterClass rclass, ValueType vectype>:
+ GBHInst<(outs rclass:$rT), (ins VECREG:$rA),
+ [/* no pattern */]>;
+
+class GBHVecInst<ValueType vectype>:
+ GBHInst<(outs VECREG:$rT), (ins VECREG:$rA),
+ [/* no pattern */]>;
+
+multiclass GatherBitsHalfword {
+ def v8i16_r32: GBHRegInst<R32C, v8i16>;
+ def v8i16_r16: GBHRegInst<R16C, v8i16>;
+ def v8i16: GBHVecInst<v8i16>;
+}
+
+defm GBH: GatherBitsHalfword;
+
+// gb: Gather all low order bits from each word in $rA into a single
+// 4-bit quantity stored in $rT's slot 0, upper bits in $rT set to 0,
+// as well as slots 1-3.
+//
+// See notes for gbb, above.
+
+class GBInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm_1<0b00001101100, OOL, IOL, "gb\t$rT, $rA", GatherOp,
+ pattern>;
+
+class GBRegInst<RegisterClass rclass, ValueType vectype>:
+ GBInst<(outs rclass:$rT), (ins VECREG:$rA),
+ [/* no pattern */]>;
+
+class GBVecInst<ValueType vectype>:
+ GBInst<(outs VECREG:$rT), (ins VECREG:$rA),
+ [/* no pattern */]>;
+
+multiclass GatherBitsWord {
+ def v4i32_r32: GBRegInst<R32C, v4i32>;
+ def v4i32_r16: GBRegInst<R16C, v4i32>;
+ def v4i32: GBVecInst<v4i32>;
+}
+
+defm GB: GatherBitsWord;
+
+// avgb: average bytes
+def AVGB:
+ RRForm<0b11001011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ "avgb\t$rT, $rA, $rB", ByteOp,
+ []>;
+
+// absdb: absolute difference of bytes
+def ABSDB:
+ RRForm<0b11001010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ "absdb\t$rT, $rA, $rB", ByteOp,
+ []>;
+
+// sumb: sum bytes into halfwords
+def SUMB:
+ RRForm<0b11001010010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ "sumb\t$rT, $rA, $rB", ByteOp,
+ []>;
+
+// Sign extension operations:
+class XSBHInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm_1<0b01101101010, OOL, IOL,
+ "xsbh\t$rDst, $rSrc",
+ IntegerOp, pattern>;
+
+class XSBHInRegInst<RegisterClass rclass, list<dag> pattern>:
+ XSBHInst<(outs rclass:$rDst), (ins rclass:$rSrc),
+ pattern>;
+
+multiclass ExtendByteHalfword {
+ def v16i8: XSBHInst<(outs VECREG:$rDst), (ins VECREG:$rSrc),
+ [
+ /*(set (v8i16 VECREG:$rDst), (sext (v8i16 VECREG:$rSrc)))*/]>;
+ def r8: XSBHInst<(outs R16C:$rDst), (ins R8C:$rSrc),
+ [(set R16C:$rDst, (sext R8C:$rSrc))]>;
+ def r16: XSBHInRegInst<R16C,
+ [(set R16C:$rDst, (sext_inreg R16C:$rSrc, i8))]>;
+
+ // 32-bit form for XSBH: used to sign extend 8-bit quantities to 16-bit
+ // quantities to 32-bit quantities via a 32-bit register (see the sext 8->32
+ // pattern below). Intentionally doesn't match a pattern because we want the
+ // sext 8->32 pattern to do the work for us, namely because we need the extra
+ // XSHWr32.
+ def r32: XSBHInRegInst<R32C, [/* no pattern */]>;
+
+ // Same as the 32-bit version, but for i64
+ def r64: XSBHInRegInst<R64C, [/* no pattern */]>;
+}
+
+defm XSBH : ExtendByteHalfword;
+
+// Sign extend halfwords to words:
+
+class XSHWInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm_1<0b01101101010, OOL, IOL, "xshw\t$rDest, $rSrc",
+ IntegerOp, pattern>;
+
+class XSHWVecInst<ValueType in_vectype, ValueType out_vectype>:
+ XSHWInst<(outs VECREG:$rDest), (ins VECREG:$rSrc),
+ [(set (out_vectype VECREG:$rDest),
+ (sext (in_vectype VECREG:$rSrc)))]>;
+
+class XSHWInRegInst<RegisterClass rclass, list<dag> pattern>:
+ XSHWInst<(outs rclass:$rDest), (ins rclass:$rSrc),
+ pattern>;
+
+class XSHWRegInst<RegisterClass rclass>:
+ XSHWInst<(outs rclass:$rDest), (ins R16C:$rSrc),
+ [(set rclass:$rDest, (sext R16C:$rSrc))]>;
+
+multiclass ExtendHalfwordWord {
+ def v4i32: XSHWVecInst<v8i16, v4i32>;
+
+ def r16: XSHWRegInst<R32C>;
+
+ def r32: XSHWInRegInst<R32C,
+ [(set R32C:$rDest, (sext_inreg R32C:$rSrc, i16))]>;
+ def r64: XSHWInRegInst<R64C, [/* no pattern */]>;
+}
+
+defm XSHW : ExtendHalfwordWord;
+
+// Sign-extend words to doublewords (32->64 bits)
+
+class XSWDInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm_1<0b01100101010, OOL, IOL, "xswd\t$rDst, $rSrc",
+ IntegerOp, pattern>;
+
+class XSWDVecInst<ValueType in_vectype, ValueType out_vectype>:
+ XSWDInst<(outs VECREG:$rDst), (ins VECREG:$rSrc),
+ [/*(set (out_vectype VECREG:$rDst),
+ (sext (out_vectype VECREG:$rSrc)))*/]>;
+
+class XSWDRegInst<RegisterClass in_rclass, RegisterClass out_rclass>:
+ XSWDInst<(outs out_rclass:$rDst), (ins in_rclass:$rSrc),
+ [(set out_rclass:$rDst, (sext in_rclass:$rSrc))]>;
+
+multiclass ExtendWordToDoubleWord {
+ def v2i64: XSWDVecInst<v4i32, v2i64>;
+ def r64: XSWDRegInst<R32C, R64C>;
+
+ def r64_inreg: XSWDInst<(outs R64C:$rDst), (ins R64C:$rSrc),
+ [(set R64C:$rDst, (sext_inreg R64C:$rSrc, i32))]>;
+}
+
+defm XSWD : ExtendWordToDoubleWord;
+
+// AND operations
+
+class ANDInst<dag OOL, dag IOL, list<dag> pattern> :
+ RRForm<0b10000011000, OOL, IOL, "and\t$rT, $rA, $rB",
+ IntegerOp, pattern>;
+
+class ANDVecInst<ValueType vectype>:
+ ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT), (and (vectype VECREG:$rA),
+ (vectype VECREG:$rB)))]>;
+
+class ANDRegInst<RegisterClass rclass>:
+ ANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
+ [(set rclass:$rT, (and rclass:$rA, rclass:$rB))]>;
+
+multiclass BitwiseAnd
+{
+ def v16i8: ANDVecInst<v16i8>;
+ def v8i16: ANDVecInst<v8i16>;
+ def v4i32: ANDVecInst<v4i32>;
+ def v2i64: ANDVecInst<v2i64>;
+
+ def r128: ANDRegInst<GPRC>;
+ def r64: ANDRegInst<R64C>;
+ def r32: ANDRegInst<R32C>;
+ def r16: ANDRegInst<R16C>;
+ def r8: ANDRegInst<R8C>;
+
+ //===---------------------------------------------
+ // Special instructions to perform the fabs instruction
+ def fabs32: ANDInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
+ [/* Intentionally does not match a pattern */]>;
+
+ def fabs64: ANDInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB),
+ [/* Intentionally does not match a pattern */]>;
+
+ def fabsvec: ANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [/* Intentionally does not match a pattern */]>;
+
+ //===---------------------------------------------
+
+ // Hacked form of AND to zero-extend 16-bit quantities to 32-bit
+ // quantities -- see 16->32 zext pattern.
+ //
+ // This pattern is somewhat artificial, since it might match some
+ // compiler generated pattern but it is unlikely to do so.
+
+ def i16i32: ANDInst<(outs R32C:$rT), (ins R16C:$rA, R32C:$rB),
+ [(set R32C:$rT, (and (zext R16C:$rA), R32C:$rB))]>;
+}
+
+defm AND : BitwiseAnd;
+
+
+def vnot_cell_conv : PatFrag<(ops node:$in),
+ (xor node:$in, (bitconvert (v4i32 immAllOnesV)))>;
+
+// N.B.: vnot_cell_conv is one of those special target selection pattern
+// fragments,
+// in which we expect there to be a bit_convert on the constant. Bear in mind
+// that llvm translates "not <reg>" to "xor <reg>, -1" (or in this case, a
+// constant -1 vector.)
+
+class ANDCInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b10000011010, OOL, IOL, "andc\t$rT, $rA, $rB",
+ IntegerOp, pattern>;
+
+class ANDCVecInst<ValueType vectype, PatFrag vnot_frag = vnot>:
+ ANDCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT),
+ (and (vectype VECREG:$rA),
+ (vnot_frag (vectype VECREG:$rB))))]>;
+
+class ANDCRegInst<RegisterClass rclass>:
+ ANDCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
+ [(set rclass:$rT, (and rclass:$rA, (not rclass:$rB)))]>;
+
+multiclass AndComplement
+{
+ def v16i8: ANDCVecInst<v16i8>;
+ def v8i16: ANDCVecInst<v8i16>;
+ def v4i32: ANDCVecInst<v4i32>;
+ def v2i64: ANDCVecInst<v2i64>;
+
+ def r128: ANDCRegInst<GPRC>;
+ def r64: ANDCRegInst<R64C>;
+ def r32: ANDCRegInst<R32C>;
+ def r16: ANDCRegInst<R16C>;
+ def r8: ANDCRegInst<R8C>;
+
+ // Sometimes, the xor pattern has a bitcast constant:
+ def v16i8_conv: ANDCVecInst<v16i8, vnot_cell_conv>;
+}
+
+defm ANDC : AndComplement;
+
+class ANDBIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI10Form<0b01101000, OOL, IOL, "andbi\t$rT, $rA, $val",
+ ByteOp, pattern>;
+
+multiclass AndByteImm
+{
+ def v16i8: ANDBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
+ [(set (v16i8 VECREG:$rT),
+ (and (v16i8 VECREG:$rA),
+ (v16i8 v16i8U8Imm:$val)))]>;
+
+ def r8: ANDBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
+ [(set R8C:$rT, (and R8C:$rA, immU8:$val))]>;
+}
+
+defm ANDBI : AndByteImm;
+
+class ANDHIInst<dag OOL, dag IOL, list<dag> pattern> :
+ RI10Form<0b10101000, OOL, IOL, "andhi\t$rT, $rA, $val",
+ ByteOp, pattern>;
+
+multiclass AndHalfwordImm
+{
+ def v8i16: ANDHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ [(set (v8i16 VECREG:$rT),
+ (and (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
+
+ def r16: ANDHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
+ [(set R16C:$rT, (and R16C:$rA, i16ImmUns10:$val))]>;
+
+ // Zero-extend i8 to i16:
+ def i8i16: ANDHIInst<(outs R16C:$rT), (ins R8C:$rA, u10imm:$val),
+ [(set R16C:$rT, (and (zext R8C:$rA), i16ImmUns10:$val))]>;
+}
+
+defm ANDHI : AndHalfwordImm;
+
+class ANDIInst<dag OOL, dag IOL, list<dag> pattern> :
+ RI10Form<0b00101000, OOL, IOL, "andi\t$rT, $rA, $val",
+ IntegerOp, pattern>;
+
+multiclass AndWordImm
+{
+ def v4i32: ANDIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ [(set (v4i32 VECREG:$rT),
+ (and (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>;
+
+ def r32: ANDIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
+ [(set R32C:$rT, (and R32C:$rA, i32ImmSExt10:$val))]>;
+
+ // Hacked form of ANDI to zero-extend i8 quantities to i32. See the zext 8->32
+ // pattern below.
+ def i8i32: ANDIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
+ [(set R32C:$rT,
+ (and (zext R8C:$rA), i32ImmSExt10:$val))]>;
+
+ // Hacked form of ANDI to zero-extend i16 quantities to i32. See the
+ // zext 16->32 pattern below.
+ //
+ // Note that this pattern is somewhat artificial, since it might match
+ // something the compiler generates but is unlikely to occur in practice.
+ def i16i32: ANDIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
+ [(set R32C:$rT,
+ (and (zext R16C:$rA), i32ImmSExt10:$val))]>;
+}
+
+defm ANDI : AndWordImm;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// Bitwise OR group:
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+// Bitwise "or" (N.B.: These are also register-register copy instructions...)
+class ORInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b10000010000, OOL, IOL, "or\t$rT, $rA, $rB",
+ IntegerOp, pattern>;
+
+class ORVecInst<ValueType vectype>:
+ ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
+ (vectype VECREG:$rB)))]>;
+
+class ORRegInst<RegisterClass rclass>:
+ ORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
+ [(set rclass:$rT, (or rclass:$rA, rclass:$rB))]>;
+
+
+multiclass BitwiseOr
+{
+ def v16i8: ORVecInst<v16i8>;
+ def v8i16: ORVecInst<v8i16>;
+ def v4i32: ORVecInst<v4i32>;
+ def v2i64: ORVecInst<v2i64>;
+
+ def v4f32: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (v4f32 VECREG:$rT),
+ (v4f32 (bitconvert (or (v4i32 VECREG:$rA),
+ (v4i32 VECREG:$rB)))))]>;
+
+ def v2f64: ORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (v2f64 VECREG:$rT),
+ (v2f64 (bitconvert (or (v2i64 VECREG:$rA),
+ (v2i64 VECREG:$rB)))))]>;
+
+ def r128: ORRegInst<GPRC>;
+ def r64: ORRegInst<R64C>;
+ def r32: ORRegInst<R32C>;
+ def r16: ORRegInst<R16C>;
+ def r8: ORRegInst<R8C>;
+
+ // OR instructions used to copy f32 and f64 registers.
+ def f32: ORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
+ [/* no pattern */]>;
+
+ def f64: ORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
+ [/* no pattern */]>;
+}
+
+defm OR : BitwiseOr;
+
+//===----------------------------------------------------------------------===//
+// SPU::PREFSLOT2VEC and VEC2PREFSLOT re-interpretations of registers
+//===----------------------------------------------------------------------===//
+def : Pat<(v16i8 (SPUprefslot2vec R8C:$rA)),
+ (COPY_TO_REGCLASS R8C:$rA, VECREG)>;
+
+def : Pat<(v8i16 (SPUprefslot2vec R16C:$rA)),
+ (COPY_TO_REGCLASS R16C:$rA, VECREG)>;
+
+def : Pat<(v4i32 (SPUprefslot2vec R32C:$rA)),
+ (COPY_TO_REGCLASS R32C:$rA, VECREG)>;
+
+def : Pat<(v2i64 (SPUprefslot2vec R64C:$rA)),
+ (COPY_TO_REGCLASS R64C:$rA, VECREG)>;
+
+def : Pat<(v4f32 (SPUprefslot2vec R32FP:$rA)),
+ (COPY_TO_REGCLASS R32FP:$rA, VECREG)>;
+
+def : Pat<(v2f64 (SPUprefslot2vec R64FP:$rA)),
+ (COPY_TO_REGCLASS R64FP:$rA, VECREG)>;
+
+def : Pat<(i8 (SPUvec2prefslot (v16i8 VECREG:$rA))),
+ (COPY_TO_REGCLASS (v16i8 VECREG:$rA), R8C)>;
+
+def : Pat<(i16 (SPUvec2prefslot (v8i16 VECREG:$rA))),
+ (COPY_TO_REGCLASS (v8i16 VECREG:$rA), R16C)>;
+
+def : Pat<(i32 (SPUvec2prefslot (v4i32 VECREG:$rA))),
+ (COPY_TO_REGCLASS (v4i32 VECREG:$rA), R32C)>;
+
+def : Pat<(i64 (SPUvec2prefslot (v2i64 VECREG:$rA))),
+ (COPY_TO_REGCLASS (v2i64 VECREG:$rA), R64C)>;
+
+def : Pat<(f32 (SPUvec2prefslot (v4f32 VECREG:$rA))),
+ (COPY_TO_REGCLASS (v4f32 VECREG:$rA), R32FP)>;
+
+def : Pat<(f64 (SPUvec2prefslot (v2f64 VECREG:$rA))),
+ (COPY_TO_REGCLASS (v2f64 VECREG:$rA), R64FP)>;
+
+// Load Register: This is an assembler alias for a bitwise OR of a register
+// against itself. It's here because it brings some clarity to assembly
+// language output.
+
+let hasCtrlDep = 1 in {
+ class LRInst<dag OOL, dag IOL>
+ : SPUInstr<OOL, IOL, "lr\t$rT, $rA", IntegerOp> {
+ bits<7> RA;
+ bits<7> RT;
+
+ let Pattern = [/*no pattern*/];
+
+ let Inst{0-10} = 0b10000010000; /* It's an OR operation */
+ let Inst{11-17} = RA;
+ let Inst{18-24} = RA;
+ let Inst{25-31} = RT;
+ }
+
+ class LRVecInst<ValueType vectype>:
+ LRInst<(outs VECREG:$rT), (ins VECREG:$rA)>;
+
+ class LRRegInst<RegisterClass rclass>:
+ LRInst<(outs rclass:$rT), (ins rclass:$rA)>;
+
+ multiclass LoadRegister {
+ def v2i64: LRVecInst<v2i64>;
+ def v2f64: LRVecInst<v2f64>;
+ def v4i32: LRVecInst<v4i32>;
+ def v4f32: LRVecInst<v4f32>;
+ def v8i16: LRVecInst<v8i16>;
+ def v16i8: LRVecInst<v16i8>;
+
+ def r128: LRRegInst<GPRC>;
+ def r64: LRRegInst<R64C>;
+ def f64: LRRegInst<R64FP>;
+ def r32: LRRegInst<R32C>;
+ def f32: LRRegInst<R32FP>;
+ def r16: LRRegInst<R16C>;
+ def r8: LRRegInst<R8C>;
+ }
+
+ defm LR: LoadRegister;
+}
+
+// ORC: Bitwise "or" with complement (c = a | ~b)
+
+class ORCInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b10010010000, OOL, IOL, "orc\t$rT, $rA, $rB",
+ IntegerOp, pattern>;
+
+class ORCVecInst<ValueType vectype>:
+ ORCInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
+ (vnot (vectype VECREG:$rB))))]>;
+
+class ORCRegInst<RegisterClass rclass>:
+ ORCInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
+ [(set rclass:$rT, (or rclass:$rA, (not rclass:$rB)))]>;
+
+multiclass BitwiseOrComplement
+{
+ def v16i8: ORCVecInst<v16i8>;
+ def v8i16: ORCVecInst<v8i16>;
+ def v4i32: ORCVecInst<v4i32>;
+ def v2i64: ORCVecInst<v2i64>;
+
+ def r128: ORCRegInst<GPRC>;
+ def r64: ORCRegInst<R64C>;
+ def r32: ORCRegInst<R32C>;
+ def r16: ORCRegInst<R16C>;
+ def r8: ORCRegInst<R8C>;
+}
+
+defm ORC : BitwiseOrComplement;
+
+// OR byte immediate
+class ORBIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI10Form<0b01100000, OOL, IOL, "orbi\t$rT, $rA, $val",
+ IntegerOp, pattern>;
+
+class ORBIVecInst<ValueType vectype, PatLeaf immpred>:
+ ORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
+ [(set (v16i8 VECREG:$rT), (or (vectype VECREG:$rA),
+ (vectype immpred:$val)))]>;
+
+multiclass BitwiseOrByteImm
+{
+ def v16i8: ORBIVecInst<v16i8, v16i8U8Imm>;
+
+ def r8: ORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
+ [(set R8C:$rT, (or R8C:$rA, immU8:$val))]>;
+}
+
+defm ORBI : BitwiseOrByteImm;
+
+// OR halfword immediate
+class ORHIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI10Form<0b10100000, OOL, IOL, "orhi\t$rT, $rA, $val",
+ IntegerOp, pattern>;
+
+class ORHIVecInst<ValueType vectype, PatLeaf immpred>:
+ ORHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
+ [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
+ immpred:$val))]>;
+
+multiclass BitwiseOrHalfwordImm
+{
+ def v8i16: ORHIVecInst<v8i16, v8i16Uns10Imm>;
+
+ def r16: ORHIInst<(outs R16C:$rT), (ins R16C:$rA, u10imm:$val),
+ [(set R16C:$rT, (or R16C:$rA, i16ImmUns10:$val))]>;
+
+ // Specialized ORHI form used to promote 8-bit registers to 16-bit
+ def i8i16: ORHIInst<(outs R16C:$rT), (ins R8C:$rA, s10imm:$val),
+ [(set R16C:$rT, (or (anyext R8C:$rA),
+ i16ImmSExt10:$val))]>;
+}
+
+defm ORHI : BitwiseOrHalfwordImm;
+
+class ORIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI10Form<0b00100000, OOL, IOL, "ori\t$rT, $rA, $val",
+ IntegerOp, pattern>;
+
+class ORIVecInst<ValueType vectype, PatLeaf immpred>:
+ ORIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
+ [(set (vectype VECREG:$rT), (or (vectype VECREG:$rA),
+ immpred:$val))]>;
+
+// Bitwise "or" with immediate
+multiclass BitwiseOrImm
+{
+ def v4i32: ORIVecInst<v4i32, v4i32Uns10Imm>;
+
+ def r32: ORIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
+ [(set R32C:$rT, (or R32C:$rA, i32ImmSExt10:$val))]>;
+
+ // i16i32: hacked version of the ori instruction to extend 16-bit quantities
+ // to 32-bit quantities. used exclusively to match "anyext" conversions (vide
+ // infra "anyext 16->32" pattern.)
+ def i16i32: ORIInst<(outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
+ [(set R32C:$rT, (or (anyext R16C:$rA),
+ i32ImmSExt10:$val))]>;
+
+ // i8i32: Hacked version of the ORI instruction to extend 16-bit quantities
+ // to 32-bit quantities. Used exclusively to match "anyext" conversions (vide
+ // infra "anyext 16->32" pattern.)
+ def i8i32: ORIInst<(outs R32C:$rT), (ins R8C:$rA, s10imm_i32:$val),
+ [(set R32C:$rT, (or (anyext R8C:$rA),
+ i32ImmSExt10:$val))]>;
+}
+
+defm ORI : BitwiseOrImm;
+
+// ORX: "or" across the vector: or's $rA's word slots leaving the result in
+// $rT[0], slots 1-3 are zeroed.
+//
+// FIXME: Needs to match an intrinsic pattern.
+def ORXv4i32:
+ RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ "orx\t$rT, $rA, $rB", IntegerOp,
+ []>;
+
+// XOR:
+
+class XORInst<dag OOL, dag IOL, list<dag> pattern> :
+ RRForm<0b10010010000, OOL, IOL, "xor\t$rT, $rA, $rB",
+ IntegerOp, pattern>;
+
+class XORVecInst<ValueType vectype>:
+ XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT), (xor (vectype VECREG:$rA),
+ (vectype VECREG:$rB)))]>;
+
+class XORRegInst<RegisterClass rclass>:
+ XORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
+ [(set rclass:$rT, (xor rclass:$rA, rclass:$rB))]>;
+
+multiclass BitwiseExclusiveOr
+{
+ def v16i8: XORVecInst<v16i8>;
+ def v8i16: XORVecInst<v8i16>;
+ def v4i32: XORVecInst<v4i32>;
+ def v2i64: XORVecInst<v2i64>;
+
+ def r128: XORRegInst<GPRC>;
+ def r64: XORRegInst<R64C>;
+ def r32: XORRegInst<R32C>;
+ def r16: XORRegInst<R16C>;
+ def r8: XORRegInst<R8C>;
+
+ // XOR instructions used to negate f32 and f64 quantities.
+
+ def fneg32: XORInst<(outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
+ [/* no pattern */]>;
+
+ def fneg64: XORInst<(outs R64FP:$rT), (ins R64FP:$rA, R64C:$rB),
+ [/* no pattern */]>;
+
+ def fnegvec: XORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [/* no pattern, see fneg{32,64} */]>;
+}
+
+defm XOR : BitwiseExclusiveOr;
+
+//==----------------------------------------------------------
+
+class XORBIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI10Form<0b01100000, OOL, IOL, "xorbi\t$rT, $rA, $val",
+ IntegerOp, pattern>;
+
+multiclass XorByteImm
+{
+ def v16i8:
+ XORBIInst<(outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
+ [(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), v16i8U8Imm:$val))]>;
+
+ def r8:
+ XORBIInst<(outs R8C:$rT), (ins R8C:$rA, u10imm_i8:$val),
+ [(set R8C:$rT, (xor R8C:$rA, immU8:$val))]>;
+}
+
+defm XORBI : XorByteImm;
+
+def XORHIv8i16:
+ RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
+ "xorhi\t$rT, $rA, $val", IntegerOp,
+ [(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA),
+ v8i16SExt10Imm:$val))]>;
+
+def XORHIr16:
+ RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
+ "xorhi\t$rT, $rA, $val", IntegerOp,
+ [(set R16C:$rT, (xor R16C:$rA, i16ImmSExt10:$val))]>;
+
+def XORIv4i32:
+ RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm_i32:$val),
+ "xori\t$rT, $rA, $val", IntegerOp,
+ [(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA),
+ v4i32SExt10Imm:$val))]>;
+
+def XORIr32:
+ RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
+ "xori\t$rT, $rA, $val", IntegerOp,
+ [(set R32C:$rT, (xor R32C:$rA, i32ImmSExt10:$val))]>;
+
+// NAND:
+
+class NANDInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b10010011000, OOL, IOL, "nand\t$rT, $rA, $rB",
+ IntegerOp, pattern>;
+
+class NANDVecInst<ValueType vectype>:
+ NANDInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT), (vnot (and (vectype VECREG:$rA),
+ (vectype VECREG:$rB))))]>;
+class NANDRegInst<RegisterClass rclass>:
+ NANDInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
+ [(set rclass:$rT, (not (and rclass:$rA, rclass:$rB)))]>;
+
+multiclass BitwiseNand
+{
+ def v16i8: NANDVecInst<v16i8>;
+ def v8i16: NANDVecInst<v8i16>;
+ def v4i32: NANDVecInst<v4i32>;
+ def v2i64: NANDVecInst<v2i64>;
+
+ def r128: NANDRegInst<GPRC>;
+ def r64: NANDRegInst<R64C>;
+ def r32: NANDRegInst<R32C>;
+ def r16: NANDRegInst<R16C>;
+ def r8: NANDRegInst<R8C>;
+}
+
+defm NAND : BitwiseNand;
+
+// NOR:
+
+class NORInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b10010010000, OOL, IOL, "nor\t$rT, $rA, $rB",
+ IntegerOp, pattern>;
+
+class NORVecInst<ValueType vectype>:
+ NORInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT), (vnot (or (vectype VECREG:$rA),
+ (vectype VECREG:$rB))))]>;
+class NORRegInst<RegisterClass rclass>:
+ NORInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
+ [(set rclass:$rT, (not (or rclass:$rA, rclass:$rB)))]>;
+
+multiclass BitwiseNor
+{
+ def v16i8: NORVecInst<v16i8>;
+ def v8i16: NORVecInst<v8i16>;
+ def v4i32: NORVecInst<v4i32>;
+ def v2i64: NORVecInst<v2i64>;
+
+ def r128: NORRegInst<GPRC>;
+ def r64: NORRegInst<R64C>;
+ def r32: NORRegInst<R32C>;
+ def r16: NORRegInst<R16C>;
+ def r8: NORRegInst<R8C>;
+}
+
+defm NOR : BitwiseNor;
+
+// Select bits:
+class SELBInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRRForm<0b1000, OOL, IOL, "selb\t$rT, $rA, $rB, $rC",
+ IntegerOp, pattern>;
+
+class SELBVecInst<ValueType vectype, PatFrag vnot_frag = vnot>:
+ SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
+ [(set (vectype VECREG:$rT),
+ (or (and (vectype VECREG:$rC), (vectype VECREG:$rB)),
+ (and (vnot_frag (vectype VECREG:$rC)),
+ (vectype VECREG:$rA))))]>;
+
+class SELBVecVCondInst<ValueType vectype>:
+ SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
+ [(set (vectype VECREG:$rT),
+ (select (vectype VECREG:$rC),
+ (vectype VECREG:$rB),
+ (vectype VECREG:$rA)))]>;
+
+class SELBVecCondInst<ValueType vectype>:
+ SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, R32C:$rC),
+ [(set (vectype VECREG:$rT),
+ (select R32C:$rC,
+ (vectype VECREG:$rB),
+ (vectype VECREG:$rA)))]>;
+
+class SELBRegInst<RegisterClass rclass>:
+ SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rclass:$rC),
+ [(set rclass:$rT,
+ (or (and rclass:$rB, rclass:$rC),
+ (and rclass:$rA, (not rclass:$rC))))]>;
+
+class SELBRegCondInst<RegisterClass rcond, RegisterClass rclass>:
+ SELBInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB, rcond:$rC),
+ [(set rclass:$rT,
+ (select rcond:$rC, rclass:$rB, rclass:$rA))]>;
+
+multiclass SelectBits
+{
+ def v16i8: SELBVecInst<v16i8>;
+ def v8i16: SELBVecInst<v8i16>;
+ def v4i32: SELBVecInst<v4i32>;
+ def v2i64: SELBVecInst<v2i64, vnot_cell_conv>;
+
+ def r128: SELBRegInst<GPRC>;
+ def r64: SELBRegInst<R64C>;
+ def r32: SELBRegInst<R32C>;
+ def r16: SELBRegInst<R16C>;
+ def r8: SELBRegInst<R8C>;
+
+ def v16i8_cond: SELBVecCondInst<v16i8>;
+ def v8i16_cond: SELBVecCondInst<v8i16>;
+ def v4i32_cond: SELBVecCondInst<v4i32>;
+ def v2i64_cond: SELBVecCondInst<v2i64>;
+
+ def v16i8_vcond: SELBVecCondInst<v16i8>;
+ def v8i16_vcond: SELBVecCondInst<v8i16>;
+ def v4i32_vcond: SELBVecCondInst<v4i32>;
+ def v2i64_vcond: SELBVecCondInst<v2i64>;
+
+ def v4f32_cond:
+ SELBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
+ [(set (v4f32 VECREG:$rT),
+ (select (v4i32 VECREG:$rC),
+ (v4f32 VECREG:$rB),
+ (v4f32 VECREG:$rA)))]>;
+
+ // SELBr64_cond is defined in SPU64InstrInfo.td
+ def r32_cond: SELBRegCondInst<R32C, R32C>;
+ def f32_cond: SELBRegCondInst<R32C, R32FP>;
+ def r16_cond: SELBRegCondInst<R16C, R16C>;
+ def r8_cond: SELBRegCondInst<R8C, R8C>;
+}
+
+defm SELB : SelectBits;
+
+class SPUselbPatVec<ValueType vectype, SPUInstr inst>:
+ Pat<(SPUselb (vectype VECREG:$rA), (vectype VECREG:$rB), (vectype VECREG:$rC)),
+ (inst VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
+
+def : SPUselbPatVec<v16i8, SELBv16i8>;
+def : SPUselbPatVec<v8i16, SELBv8i16>;
+def : SPUselbPatVec<v4i32, SELBv4i32>;
+def : SPUselbPatVec<v2i64, SELBv2i64>;
+
+class SPUselbPatReg<RegisterClass rclass, SPUInstr inst>:
+ Pat<(SPUselb rclass:$rA, rclass:$rB, rclass:$rC),
+ (inst rclass:$rA, rclass:$rB, rclass:$rC)>;
+
+def : SPUselbPatReg<R8C, SELBr8>;
+def : SPUselbPatReg<R16C, SELBr16>;
+def : SPUselbPatReg<R32C, SELBr32>;
+def : SPUselbPatReg<R64C, SELBr64>;
+
+// EQV: Equivalence (1 for each same bit, otherwise 0)
+//
+// Note: There are a lot of ways to match this bit operator and these patterns
+// attempt to be as exhaustive as possible.
+
+class EQVInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b10010010000, OOL, IOL, "eqv\t$rT, $rA, $rB",
+ IntegerOp, pattern>;
+
+class EQVVecInst<ValueType vectype>:
+ EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT),
+ (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)),
+ (and (vnot (vectype VECREG:$rA)),
+ (vnot (vectype VECREG:$rB)))))]>;
+
+class EQVRegInst<RegisterClass rclass>:
+ EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
+ [(set rclass:$rT, (or (and rclass:$rA, rclass:$rB),
+ (and (not rclass:$rA), (not rclass:$rB))))]>;
+
+class EQVVecPattern1<ValueType vectype>:
+ EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT),
+ (xor (vectype VECREG:$rA), (vnot (vectype VECREG:$rB))))]>;
+
+class EQVRegPattern1<RegisterClass rclass>:
+ EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
+ [(set rclass:$rT, (xor rclass:$rA, (not rclass:$rB)))]>;
+
+class EQVVecPattern2<ValueType vectype>:
+ EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT),
+ (or (and (vectype VECREG:$rA), (vectype VECREG:$rB)),
+ (vnot (or (vectype VECREG:$rA), (vectype VECREG:$rB)))))]>;
+
+class EQVRegPattern2<RegisterClass rclass>:
+ EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
+ [(set rclass:$rT,
+ (or (and rclass:$rA, rclass:$rB),
+ (not (or rclass:$rA, rclass:$rB))))]>;
+
+class EQVVecPattern3<ValueType vectype>:
+ EQVInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT),
+ (not (xor (vectype VECREG:$rA), (vectype VECREG:$rB))))]>;
+
+class EQVRegPattern3<RegisterClass rclass>:
+ EQVInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
+ [(set rclass:$rT, (not (xor rclass:$rA, rclass:$rB)))]>;
+
+multiclass BitEquivalence
+{
+ def v16i8: EQVVecInst<v16i8>;
+ def v8i16: EQVVecInst<v8i16>;
+ def v4i32: EQVVecInst<v4i32>;
+ def v2i64: EQVVecInst<v2i64>;
+
+ def v16i8_1: EQVVecPattern1<v16i8>;
+ def v8i16_1: EQVVecPattern1<v8i16>;
+ def v4i32_1: EQVVecPattern1<v4i32>;
+ def v2i64_1: EQVVecPattern1<v2i64>;
+
+ def v16i8_2: EQVVecPattern2<v16i8>;
+ def v8i16_2: EQVVecPattern2<v8i16>;
+ def v4i32_2: EQVVecPattern2<v4i32>;
+ def v2i64_2: EQVVecPattern2<v2i64>;
+
+ def v16i8_3: EQVVecPattern3<v16i8>;
+ def v8i16_3: EQVVecPattern3<v8i16>;
+ def v4i32_3: EQVVecPattern3<v4i32>;
+ def v2i64_3: EQVVecPattern3<v2i64>;
+
+ def r128: EQVRegInst<GPRC>;
+ def r64: EQVRegInst<R64C>;
+ def r32: EQVRegInst<R32C>;
+ def r16: EQVRegInst<R16C>;
+ def r8: EQVRegInst<R8C>;
+
+ def r128_1: EQVRegPattern1<GPRC>;
+ def r64_1: EQVRegPattern1<R64C>;
+ def r32_1: EQVRegPattern1<R32C>;
+ def r16_1: EQVRegPattern1<R16C>;
+ def r8_1: EQVRegPattern1<R8C>;
+
+ def r128_2: EQVRegPattern2<GPRC>;
+ def r64_2: EQVRegPattern2<R64C>;
+ def r32_2: EQVRegPattern2<R32C>;
+ def r16_2: EQVRegPattern2<R16C>;
+ def r8_2: EQVRegPattern2<R8C>;
+
+ def r128_3: EQVRegPattern3<GPRC>;
+ def r64_3: EQVRegPattern3<R64C>;
+ def r32_3: EQVRegPattern3<R32C>;
+ def r16_3: EQVRegPattern3<R16C>;
+ def r8_3: EQVRegPattern3<R8C>;
+}
+
+defm EQV: BitEquivalence;
+
+//===----------------------------------------------------------------------===//
+// Vector shuffle...
+//===----------------------------------------------------------------------===//
+// SPUshuffle is generated in LowerVECTOR_SHUFFLE and gets replaced with SHUFB.
+// See the SPUshuffle SDNode operand above, which sets up the DAG pattern
+// matcher to emit something when the LowerVECTOR_SHUFFLE generates a node with
+// the SPUISD::SHUFB opcode.
+//===----------------------------------------------------------------------===//
+
+class SHUFBInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRRForm<0b1000, OOL, IOL, "shufb\t$rT, $rA, $rB, $rC",
+ ShuffleOp, pattern>;
+
+class SHUFBVecInst<ValueType resultvec, ValueType maskvec>:
+ SHUFBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
+ [(set (resultvec VECREG:$rT),
+ (SPUshuffle (resultvec VECREG:$rA),
+ (resultvec VECREG:$rB),
+ (maskvec VECREG:$rC)))]>;
+
+class SHUFBGPRCInst:
+ SHUFBInst<(outs VECREG:$rT), (ins GPRC:$rA, GPRC:$rB, VECREG:$rC),
+ [/* no pattern */]>;
+
+multiclass ShuffleBytes
+{
+ def v16i8 : SHUFBVecInst<v16i8, v16i8>;
+ def v16i8_m32 : SHUFBVecInst<v16i8, v4i32>;
+ def v8i16 : SHUFBVecInst<v8i16, v16i8>;
+ def v8i16_m32 : SHUFBVecInst<v8i16, v4i32>;
+ def v4i32 : SHUFBVecInst<v4i32, v16i8>;
+ def v4i32_m32 : SHUFBVecInst<v4i32, v4i32>;
+ def v2i64 : SHUFBVecInst<v2i64, v16i8>;
+ def v2i64_m32 : SHUFBVecInst<v2i64, v4i32>;
+
+ def v4f32 : SHUFBVecInst<v4f32, v16i8>;
+ def v4f32_m32 : SHUFBVecInst<v4f32, v4i32>;
+
+ def v2f64 : SHUFBVecInst<v2f64, v16i8>;
+ def v2f64_m32 : SHUFBVecInst<v2f64, v4i32>;
+
+ def gprc : SHUFBGPRCInst;
+}
+
+defm SHUFB : ShuffleBytes;
+
+//===----------------------------------------------------------------------===//
+// Shift and rotate group:
+//===----------------------------------------------------------------------===//
+
+class SHLHInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b11111010000, OOL, IOL, "shlh\t$rT, $rA, $rB",
+ RotShiftVec, pattern>;
+
+class SHLHVecInst<ValueType vectype>:
+ SHLHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT),
+ (SPUvec_shl (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;
+
+multiclass ShiftLeftHalfword
+{
+ def v8i16: SHLHVecInst<v8i16>;
+ def r16: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
+ [(set R16C:$rT, (shl R16C:$rA, R16C:$rB))]>;
+ def r16_r32: SHLHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
+ [(set R16C:$rT, (shl R16C:$rA, R32C:$rB))]>;
+}
+
+defm SHLH : ShiftLeftHalfword;
+
+//===----------------------------------------------------------------------===//
+
+class SHLHIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI7Form<0b11111010000, OOL, IOL, "shlhi\t$rT, $rA, $val",
+ RotShiftVec, pattern>;
+
+class SHLHIVecInst<ValueType vectype>:
+ SHLHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
+ [(set (vectype VECREG:$rT),
+ (SPUvec_shl (vectype VECREG:$rA), (i16 uimm7:$val)))]>;
+
+multiclass ShiftLeftHalfwordImm
+{
+ def v8i16: SHLHIVecInst<v8i16>;
+ def r16: SHLHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
+ [(set R16C:$rT, (shl R16C:$rA, (i16 uimm7:$val)))]>;
+}
+
+defm SHLHI : ShiftLeftHalfwordImm;
+
+def : Pat<(SPUvec_shl (v8i16 VECREG:$rA), (i32 uimm7:$val)),
+ (SHLHIv8i16 VECREG:$rA, (TO_IMM16 uimm7:$val))>;
+
+def : Pat<(shl R16C:$rA, (i32 uimm7:$val)),
+ (SHLHIr16 R16C:$rA, (TO_IMM16 uimm7:$val))>;
+
+//===----------------------------------------------------------------------===//
+
+class SHLInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b11111010000, OOL, IOL, "shl\t$rT, $rA, $rB",
+ RotShiftVec, pattern>;
+
+multiclass ShiftLeftWord
+{
+ def v4i32:
+ SHLInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (v4i32 VECREG:$rT),
+ (SPUvec_shl (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
+ def r32:
+ SHLInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
+ [(set R32C:$rT, (shl R32C:$rA, R32C:$rB))]>;
+}
+
+defm SHL: ShiftLeftWord;
+
+//===----------------------------------------------------------------------===//
+
+class SHLIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI7Form<0b11111010000, OOL, IOL, "shli\t$rT, $rA, $val",
+ RotShiftVec, pattern>;
+
+multiclass ShiftLeftWordImm
+{
+ def v4i32:
+ SHLIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
+ [(set (v4i32 VECREG:$rT),
+ (SPUvec_shl (v4i32 VECREG:$rA), (i32 uimm7:$val)))]>;
+
+ def r32:
+ SHLIInst<(outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val),
+ [(set R32C:$rT, (shl R32C:$rA, (i32 uimm7:$val)))]>;
+}
+
+defm SHLI : ShiftLeftWordImm;
+
+//===----------------------------------------------------------------------===//
+// SHLQBI vec form: Note that this will shift the entire vector (the 128-bit
+// register) to the left. Vector form is here to ensure type correctness.
+//
+// The shift count is in the lowest 3 bits (29-31) of $rB, so only a bit shift
+// of 7 bits is actually possible.
+//
+// Note also that SHLQBI/SHLQBII are used in conjunction with SHLQBY/SHLQBYI
+// to shift i64 and i128. SHLQBI is the residual left over after shifting by
+// bytes with SHLQBY.
+
+class SHLQBIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b11011011100, OOL, IOL, "shlqbi\t$rT, $rA, $rB",
+ RotShiftQuad, pattern>;
+
+class SHLQBIVecInst<ValueType vectype>:
+ SHLQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
+ [(set (vectype VECREG:$rT),
+ (SPUshlquad_l_bits (vectype VECREG:$rA), R32C:$rB))]>;
+
+class SHLQBIRegInst<RegisterClass rclass>:
+ SHLQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
+ [/* no pattern */]>;
+
+multiclass ShiftLeftQuadByBits
+{
+ def v16i8: SHLQBIVecInst<v16i8>;
+ def v8i16: SHLQBIVecInst<v8i16>;
+ def v4i32: SHLQBIVecInst<v4i32>;
+ def v4f32: SHLQBIVecInst<v4f32>;
+ def v2i64: SHLQBIVecInst<v2i64>;
+ def v2f64: SHLQBIVecInst<v2f64>;
+
+ def r128: SHLQBIRegInst<GPRC>;
+}
+
+defm SHLQBI : ShiftLeftQuadByBits;
+
+// See note above on SHLQBI. In this case, the predicate actually does then
+// enforcement, whereas with SHLQBI, we have to "take it on faith."
+class SHLQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI7Form<0b11011111100, OOL, IOL, "shlqbii\t$rT, $rA, $val",
+ RotShiftQuad, pattern>;
+
+class SHLQBIIVecInst<ValueType vectype>:
+ SHLQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
+ [(set (vectype VECREG:$rT),
+ (SPUshlquad_l_bits (vectype VECREG:$rA), (i32 bitshift:$val)))]>;
+
+multiclass ShiftLeftQuadByBitsImm
+{
+ def v16i8 : SHLQBIIVecInst<v16i8>;
+ def v8i16 : SHLQBIIVecInst<v8i16>;
+ def v4i32 : SHLQBIIVecInst<v4i32>;
+ def v4f32 : SHLQBIIVecInst<v4f32>;
+ def v2i64 : SHLQBIIVecInst<v2i64>;
+ def v2f64 : SHLQBIIVecInst<v2f64>;
+}
+
+defm SHLQBII : ShiftLeftQuadByBitsImm;
+
+// SHLQBY, SHLQBYI vector forms: Shift the entire vector to the left by bytes,
+// not by bits. See notes above on SHLQBI.
+
+class SHLQBYInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI7Form<0b11111011100, OOL, IOL, "shlqby\t$rT, $rA, $rB",
+ RotShiftQuad, pattern>;
+
+class SHLQBYVecInst<ValueType vectype>:
+ SHLQBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
+ [(set (vectype VECREG:$rT),
+ (SPUshlquad_l_bytes (vectype VECREG:$rA), R32C:$rB))]>;
+
+multiclass ShiftLeftQuadBytes
+{
+ def v16i8: SHLQBYVecInst<v16i8>;
+ def v8i16: SHLQBYVecInst<v8i16>;
+ def v4i32: SHLQBYVecInst<v4i32>;
+ def v4f32: SHLQBYVecInst<v4f32>;
+ def v2i64: SHLQBYVecInst<v2i64>;
+ def v2f64: SHLQBYVecInst<v2f64>;
+ def r128: SHLQBYInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB),
+ [(set GPRC:$rT, (SPUshlquad_l_bytes GPRC:$rA, R32C:$rB))]>;
+}
+
+defm SHLQBY: ShiftLeftQuadBytes;
+
+class SHLQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI7Form<0b11111111100, OOL, IOL, "shlqbyi\t$rT, $rA, $val",
+ RotShiftQuad, pattern>;
+
+class SHLQBYIVecInst<ValueType vectype>:
+ SHLQBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
+ [(set (vectype VECREG:$rT),
+ (SPUshlquad_l_bytes (vectype VECREG:$rA), (i32 uimm7:$val)))]>;
+
+multiclass ShiftLeftQuadBytesImm
+{
+ def v16i8: SHLQBYIVecInst<v16i8>;
+ def v8i16: SHLQBYIVecInst<v8i16>;
+ def v4i32: SHLQBYIVecInst<v4i32>;
+ def v4f32: SHLQBYIVecInst<v4f32>;
+ def v2i64: SHLQBYIVecInst<v2i64>;
+ def v2f64: SHLQBYIVecInst<v2f64>;
+ def r128: SHLQBYIInst<(outs GPRC:$rT), (ins GPRC:$rA, u7imm_i32:$val),
+ [(set GPRC:$rT,
+ (SPUshlquad_l_bytes GPRC:$rA, (i32 uimm7:$val)))]>;
+}
+
+defm SHLQBYI : ShiftLeftQuadBytesImm;
+
+class SHLQBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b00111001111, OOL, IOL, "shlqbybi\t$rT, $rA, $rB",
+ RotShiftQuad, pattern>;
+
+class SHLQBYBIVecInst<ValueType vectype>:
+ SHLQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
+ [/* no pattern */]>;
+
+class SHLQBYBIRegInst<RegisterClass rclass>:
+ SHLQBYBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
+ [/* no pattern */]>;
+
+multiclass ShiftLeftQuadBytesBitCount
+{
+ def v16i8: SHLQBYBIVecInst<v16i8>;
+ def v8i16: SHLQBYBIVecInst<v8i16>;
+ def v4i32: SHLQBYBIVecInst<v4i32>;
+ def v4f32: SHLQBYBIVecInst<v4f32>;
+ def v2i64: SHLQBYBIVecInst<v2i64>;
+ def v2f64: SHLQBYBIVecInst<v2f64>;
+
+ def r128: SHLQBYBIRegInst<GPRC>;
+}
+
+defm SHLQBYBI : ShiftLeftQuadBytesBitCount;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// Rotate halfword:
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+class ROTHInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b00111010000, OOL, IOL, "roth\t$rT, $rA, $rB",
+ RotShiftVec, pattern>;
+
+class ROTHVecInst<ValueType vectype>:
+ ROTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT),
+ (SPUvec_rotl VECREG:$rA, (v8i16 VECREG:$rB)))]>;
+
+class ROTHRegInst<RegisterClass rclass>:
+ ROTHInst<(outs rclass:$rT), (ins rclass:$rA, rclass:$rB),
+ [(set rclass:$rT, (rotl rclass:$rA, rclass:$rB))]>;
+
+multiclass RotateLeftHalfword
+{
+ def v8i16: ROTHVecInst<v8i16>;
+ def r16: ROTHRegInst<R16C>;
+}
+
+defm ROTH: RotateLeftHalfword;
+
+def ROTHr16_r32: ROTHInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
+ [(set R16C:$rT, (rotl R16C:$rA, R32C:$rB))]>;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// Rotate halfword, immediate:
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+class ROTHIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI7Form<0b00111110000, OOL, IOL, "rothi\t$rT, $rA, $val",
+ RotShiftVec, pattern>;
+
+class ROTHIVecInst<ValueType vectype>:
+ ROTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
+ [(set (vectype VECREG:$rT),
+ (SPUvec_rotl VECREG:$rA, (i16 uimm7:$val)))]>;
+
+multiclass RotateLeftHalfwordImm
+{
+ def v8i16: ROTHIVecInst<v8i16>;
+ def r16: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
+ [(set R16C:$rT, (rotl R16C:$rA, (i16 uimm7:$val)))]>;
+ def r16_r32: ROTHIInst<(outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val),
+ [(set R16C:$rT, (rotl R16C:$rA, (i32 uimm7:$val)))]>;
+}
+
+defm ROTHI: RotateLeftHalfwordImm;
+
+def : Pat<(SPUvec_rotl (v8i16 VECREG:$rA), (i32 uimm7:$val)),
+ (ROTHIv8i16 VECREG:$rA, (TO_IMM16 imm:$val))>;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// Rotate word:
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+class ROTInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b00011010000, OOL, IOL, "rot\t$rT, $rA, $rB",
+ RotShiftVec, pattern>;
+
+class ROTVecInst<ValueType vectype>:
+ ROTInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
+ [(set (vectype VECREG:$rT),
+ (SPUvec_rotl (vectype VECREG:$rA), R32C:$rB))]>;
+
+class ROTRegInst<RegisterClass rclass>:
+ ROTInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
+ [(set rclass:$rT,
+ (rotl rclass:$rA, R32C:$rB))]>;
+
+multiclass RotateLeftWord
+{
+ def v4i32: ROTVecInst<v4i32>;
+ def r32: ROTRegInst<R32C>;
+}
+
+defm ROT: RotateLeftWord;
+
+// The rotate amount is in the same bits whether we've got an 8-bit, 16-bit or
+// 32-bit register
+def ROTr32_r16_anyext:
+ ROTInst<(outs R32C:$rT), (ins R32C:$rA, R16C:$rB),
+ [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R16C:$rB))))]>;
+
+def : Pat<(rotl R32C:$rA, (i32 (zext R16C:$rB))),
+ (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;
+
+def : Pat<(rotl R32C:$rA, (i32 (sext R16C:$rB))),
+ (ROTr32_r16_anyext R32C:$rA, R16C:$rB)>;
+
+def ROTr32_r8_anyext:
+ ROTInst<(outs R32C:$rT), (ins R32C:$rA, R8C:$rB),
+ [(set R32C:$rT, (rotl R32C:$rA, (i32 (anyext R8C:$rB))))]>;
+
+def : Pat<(rotl R32C:$rA, (i32 (zext R8C:$rB))),
+ (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;
+
+def : Pat<(rotl R32C:$rA, (i32 (sext R8C:$rB))),
+ (ROTr32_r8_anyext R32C:$rA, R8C:$rB)>;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// Rotate word, immediate
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+class ROTIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI7Form<0b00011110000, OOL, IOL, "roti\t$rT, $rA, $val",
+ RotShiftVec, pattern>;
+
+class ROTIVecInst<ValueType vectype, Operand optype, ValueType inttype, PatLeaf pred>:
+ ROTIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
+ [(set (vectype VECREG:$rT),
+ (SPUvec_rotl (vectype VECREG:$rA), (inttype pred:$val)))]>;
+
+class ROTIRegInst<RegisterClass rclass, Operand optype, ValueType inttype, PatLeaf pred>:
+ ROTIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
+ [(set rclass:$rT, (rotl rclass:$rA, (inttype pred:$val)))]>;
+
+multiclass RotateLeftWordImm
+{
+ def v4i32: ROTIVecInst<v4i32, u7imm_i32, i32, uimm7>;
+ def v4i32_i16: ROTIVecInst<v4i32, u7imm, i16, uimm7>;
+ def v4i32_i8: ROTIVecInst<v4i32, u7imm_i8, i8, uimm7>;
+
+ def r32: ROTIRegInst<R32C, u7imm_i32, i32, uimm7>;
+ def r32_i16: ROTIRegInst<R32C, u7imm, i16, uimm7>;
+ def r32_i8: ROTIRegInst<R32C, u7imm_i8, i8, uimm7>;
+}
+
+defm ROTI : RotateLeftWordImm;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// Rotate quad by byte (count)
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+class ROTQBYInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b00111011100, OOL, IOL, "rotqby\t$rT, $rA, $rB",
+ RotShiftQuad, pattern>;
+
+class ROTQBYGenInst<ValueType type, RegisterClass rc>:
+ ROTQBYInst<(outs rc:$rT), (ins rc:$rA, R32C:$rB),
+ [(set (type rc:$rT),
+ (SPUrotbytes_left (type rc:$rA), R32C:$rB))]>;
+
+class ROTQBYVecInst<ValueType type>:
+ ROTQBYGenInst<type, VECREG>;
+
+multiclass RotateQuadLeftByBytes
+{
+ def v16i8: ROTQBYVecInst<v16i8>;
+ def v8i16: ROTQBYVecInst<v8i16>;
+ def v4i32: ROTQBYVecInst<v4i32>;
+ def v4f32: ROTQBYVecInst<v4f32>;
+ def v2i64: ROTQBYVecInst<v2i64>;
+ def v2f64: ROTQBYVecInst<v2f64>;
+ def i128: ROTQBYGenInst<i128, GPRC>;
+}
+
+defm ROTQBY: RotateQuadLeftByBytes;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// Rotate quad by byte (count), immediate
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+class ROTQBYIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI7Form<0b00111111100, OOL, IOL, "rotqbyi\t$rT, $rA, $val",
+ RotShiftQuad, pattern>;
+
+class ROTQBYIGenInst<ValueType type, RegisterClass rclass>:
+ ROTQBYIInst<(outs rclass:$rT), (ins rclass:$rA, u7imm:$val),
+ [(set (type rclass:$rT),
+ (SPUrotbytes_left (type rclass:$rA), (i16 uimm7:$val)))]>;
+
+class ROTQBYIVecInst<ValueType vectype>:
+ ROTQBYIGenInst<vectype, VECREG>;
+
+multiclass RotateQuadByBytesImm
+{
+ def v16i8: ROTQBYIVecInst<v16i8>;
+ def v8i16: ROTQBYIVecInst<v8i16>;
+ def v4i32: ROTQBYIVecInst<v4i32>;
+ def v4f32: ROTQBYIVecInst<v4f32>;
+ def v2i64: ROTQBYIVecInst<v2i64>;
+ def vfi64: ROTQBYIVecInst<v2f64>;
+ def i128: ROTQBYIGenInst<i128, GPRC>;
+}
+
+defm ROTQBYI: RotateQuadByBytesImm;
+
+// See ROTQBY note above.
+class ROTQBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI7Form<0b00110011100, OOL, IOL,
+ "rotqbybi\t$rT, $rA, $shift",
+ RotShiftQuad, pattern>;
+
+class ROTQBYBIVecInst<ValueType vectype, RegisterClass rclass>:
+ ROTQBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, rclass:$shift),
+ [(set (vectype VECREG:$rT),
+ (SPUrotbytes_left_bits (vectype VECREG:$rA), rclass:$shift))]>;
+
+multiclass RotateQuadByBytesByBitshift {
+ def v16i8_r32: ROTQBYBIVecInst<v16i8, R32C>;
+ def v8i16_r32: ROTQBYBIVecInst<v8i16, R32C>;
+ def v4i32_r32: ROTQBYBIVecInst<v4i32, R32C>;
+ def v2i64_r32: ROTQBYBIVecInst<v2i64, R32C>;
+}
+
+defm ROTQBYBI : RotateQuadByBytesByBitshift;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// See ROTQBY note above.
+//
+// Assume that the user of this instruction knows to shift the rotate count
+// into bit 29
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+class ROTQBIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b00011011100, OOL, IOL, "rotqbi\t$rT, $rA, $rB",
+ RotShiftQuad, pattern>;
+
+class ROTQBIVecInst<ValueType vectype>:
+ ROTQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
+ [/* no pattern yet */]>;
+
+class ROTQBIRegInst<RegisterClass rclass>:
+ ROTQBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
+ [/* no pattern yet */]>;
+
+multiclass RotateQuadByBitCount
+{
+ def v16i8: ROTQBIVecInst<v16i8>;
+ def v8i16: ROTQBIVecInst<v8i16>;
+ def v4i32: ROTQBIVecInst<v4i32>;
+ def v2i64: ROTQBIVecInst<v2i64>;
+
+ def r128: ROTQBIRegInst<GPRC>;
+ def r64: ROTQBIRegInst<R64C>;
+}
+
+defm ROTQBI: RotateQuadByBitCount;
+
+class ROTQBIIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI7Form<0b00011111100, OOL, IOL, "rotqbii\t$rT, $rA, $val",
+ RotShiftQuad, pattern>;
+
+class ROTQBIIVecInst<ValueType vectype, Operand optype, ValueType inttype,
+ PatLeaf pred>:
+ ROTQBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, optype:$val),
+ [/* no pattern yet */]>;
+
+class ROTQBIIRegInst<RegisterClass rclass, Operand optype, ValueType inttype,
+ PatLeaf pred>:
+ ROTQBIIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
+ [/* no pattern yet */]>;
+
+multiclass RotateQuadByBitCountImm
+{
+ def v16i8: ROTQBIIVecInst<v16i8, u7imm_i32, i32, uimm7>;
+ def v8i16: ROTQBIIVecInst<v8i16, u7imm_i32, i32, uimm7>;
+ def v4i32: ROTQBIIVecInst<v4i32, u7imm_i32, i32, uimm7>;
+ def v2i64: ROTQBIIVecInst<v2i64, u7imm_i32, i32, uimm7>;
+
+ def r128: ROTQBIIRegInst<GPRC, u7imm_i32, i32, uimm7>;
+ def r64: ROTQBIIRegInst<R64C, u7imm_i32, i32, uimm7>;
+}
+
+defm ROTQBII : RotateQuadByBitCountImm;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// ROTHM v8i16 form:
+// NOTE(1): No vector rotate is generated by the C/C++ frontend (today),
+// so this only matches a synthetically generated/lowered code
+// fragment.
+// NOTE(2): $rB must be negated before the right rotate!
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+class ROTHMInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b10111010000, OOL, IOL, "rothm\t$rT, $rA, $rB",
+ RotShiftVec, pattern>;
+
+def ROTHMv8i16:
+ ROTHMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [/* see patterns below - $rB must be negated */]>;
+
+def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
+ (ROTHMv8i16 VECREG:$rA, (SFHIvec VECREG:$rB, 0))>;
+
+// ROTHM r16 form: Rotate 16-bit quantity to right, zero fill at the left
+// Note: This instruction doesn't match a pattern because rB must be negated
+// for the instruction to work. Thus, the pattern below the instruction!
+
+def ROTHMr16:
+ ROTHMInst<(outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
+ [/* see patterns below - $rB must be negated! */]>;
+
+def : Pat<(srl R16C:$rA, R32C:$rB),
+ (ROTHMr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
+
+def : Pat<(srl R16C:$rA, R16C:$rB),
+ (ROTHMr16 R16C:$rA,
+ (SFIr32 (XSHWr16 R16C:$rB), 0))>;
+
+def : Pat<(srl R16C:$rA, R8C:$rB),
+ (ROTHMr16 R16C:$rA,
+ (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB) ), 0))>;
+
+// ROTHMI v8i16 form: See the comment for ROTHM v8i16. The difference here is
+// that the immediate can be complemented, so that the user doesn't have to
+// worry about it.
+
+class ROTHMIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI7Form<0b10111110000, OOL, IOL, "rothmi\t$rT, $rA, $val",
+ RotShiftVec, pattern>;
+
+def ROTHMIv8i16:
+ ROTHMIInst<(outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
+ [/* no pattern */]>;
+
+def : Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i32 imm:$val)),
+ (ROTHMIv8i16 VECREG:$rA, imm:$val)>;
+
+def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i16 imm:$val)),
+ (ROTHMIv8i16 VECREG:$rA, (TO_IMM32 imm:$val))>;
+
+def: Pat<(SPUvec_srl (v8i16 VECREG:$rA), (i8 imm:$val)),
+ (ROTHMIv8i16 VECREG:$rA, (TO_IMM32 imm:$val))>;
+
+def ROTHMIr16:
+ ROTHMIInst<(outs R16C:$rT), (ins R16C:$rA, rothNeg7imm:$val),
+ [/* no pattern */]>;
+
+def: Pat<(srl R16C:$rA, (i32 uimm7:$val)),
+ (ROTHMIr16 R16C:$rA, uimm7:$val)>;
+
+def: Pat<(srl R16C:$rA, (i16 uimm7:$val)),
+ (ROTHMIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
+
+def: Pat<(srl R16C:$rA, (i8 uimm7:$val)),
+ (ROTHMIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
+
+// ROTM v4i32 form: See the ROTHM v8i16 comments.
+class ROTMInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b10011010000, OOL, IOL, "rotm\t$rT, $rA, $rB",
+ RotShiftVec, pattern>;
+
+def ROTMv4i32:
+ ROTMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [/* see patterns below - $rB must be negated */]>;
+
+def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)),
+ (ROTMv4i32 VECREG:$rA, (SFIvec VECREG:$rB, 0))>;
+
+def ROTMr32:
+ ROTMInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
+ [/* see patterns below - $rB must be negated */]>;
+
+def : Pat<(srl R32C:$rA, R32C:$rB),
+ (ROTMr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
+
+def : Pat<(srl R32C:$rA, R16C:$rB),
+ (ROTMr32 R32C:$rA,
+ (SFIr32 (XSHWr16 R16C:$rB), 0))>;
+
+def : Pat<(srl R32C:$rA, R8C:$rB),
+ (ROTMr32 R32C:$rA,
+ (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
+
+// ROTMI v4i32 form: See the comment for ROTHM v8i16.
+def ROTMIv4i32:
+ RI7Form<0b10011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
+ "rotmi\t$rT, $rA, $val", RotShiftVec,
+ [(set (v4i32 VECREG:$rT),
+ (SPUvec_srl VECREG:$rA, (i32 uimm7:$val)))]>;
+
+def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (i16 uimm7:$val)),
+ (ROTMIv4i32 VECREG:$rA, (TO_IMM32 uimm7:$val))>;
+
+def : Pat<(SPUvec_srl (v4i32 VECREG:$rA), (i8 uimm7:$val)),
+ (ROTMIv4i32 VECREG:$rA, (TO_IMM32 uimm7:$val))>;
+
+// ROTMI r32 form: know how to complement the immediate value.
+def ROTMIr32:
+ RI7Form<0b10011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val),
+ "rotmi\t$rT, $rA, $val", RotShiftVec,
+ [(set R32C:$rT, (srl R32C:$rA, (i32 uimm7:$val)))]>;
+
+def : Pat<(srl R32C:$rA, (i16 imm:$val)),
+ (ROTMIr32 R32C:$rA, (TO_IMM32 uimm7:$val))>;
+
+def : Pat<(srl R32C:$rA, (i8 imm:$val)),
+ (ROTMIr32 R32C:$rA, (TO_IMM32 uimm7:$val))>;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// ROTQMBY: This is a vector form merely so that when used in an
+// instruction pattern, type checking will succeed. This instruction assumes
+// that the user knew to negate $rB.
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+class ROTQMBYInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b10111011100, OOL, IOL, "rotqmby\t$rT, $rA, $rB",
+ RotShiftQuad, pattern>;
+
+class ROTQMBYVecInst<ValueType vectype>:
+ ROTQMBYInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
+ [/* no pattern, $rB must be negated */]>;
+
+class ROTQMBYRegInst<RegisterClass rclass>:
+ ROTQMBYInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
+ [/* no pattern */]>;
+
+multiclass RotateQuadBytes
+{
+ def v16i8: ROTQMBYVecInst<v16i8>;
+ def v8i16: ROTQMBYVecInst<v8i16>;
+ def v4i32: ROTQMBYVecInst<v4i32>;
+ def v2i64: ROTQMBYVecInst<v2i64>;
+
+ def r128: ROTQMBYRegInst<GPRC>;
+ def r64: ROTQMBYRegInst<R64C>;
+}
+
+defm ROTQMBY : RotateQuadBytes;
+
+def : Pat<(SPUsrl_bytes GPRC:$rA, R32C:$rB),
+ (ROTQMBYr128 GPRC:$rA,
+ (SFIr32 R32C:$rB, 0))>;
+
+class ROTQMBYIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI7Form<0b10111111100, OOL, IOL, "rotqmbyi\t$rT, $rA, $val",
+ RotShiftQuad, pattern>;
+
+class ROTQMBYIVecInst<ValueType vectype>:
+ ROTQMBYIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
+ [/* no pattern */]>;
+
+class ROTQMBYIRegInst<RegisterClass rclass, Operand optype, ValueType inttype,
+ PatLeaf pred>:
+ ROTQMBYIInst<(outs rclass:$rT), (ins rclass:$rA, optype:$val),
+ [/* no pattern */]>;
+
+// 128-bit zero extension form:
+class ROTQMBYIZExtInst<RegisterClass rclass, Operand optype, PatLeaf pred>:
+ ROTQMBYIInst<(outs GPRC:$rT), (ins rclass:$rA, optype:$val),
+ [/* no pattern */]>;
+
+multiclass RotateQuadBytesImm
+{
+ def v16i8: ROTQMBYIVecInst<v16i8>;
+ def v8i16: ROTQMBYIVecInst<v8i16>;
+ def v4i32: ROTQMBYIVecInst<v4i32>;
+ def v2i64: ROTQMBYIVecInst<v2i64>;
+
+ def r128: ROTQMBYIRegInst<GPRC, rotNeg7imm, i32, uimm7>;
+ def r64: ROTQMBYIRegInst<R64C, rotNeg7imm, i32, uimm7>;
+
+ def r128_zext_r8: ROTQMBYIZExtInst<R8C, rotNeg7imm, uimm7>;
+ def r128_zext_r16: ROTQMBYIZExtInst<R16C, rotNeg7imm, uimm7>;
+ def r128_zext_r32: ROTQMBYIZExtInst<R32C, rotNeg7imm, uimm7>;
+ def r128_zext_r64: ROTQMBYIZExtInst<R64C, rotNeg7imm, uimm7>;
+}
+
+defm ROTQMBYI : RotateQuadBytesImm;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// Rotate right and mask by bit count
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+class ROTQMBYBIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b10110011100, OOL, IOL, "rotqmbybi\t$rT, $rA, $rB",
+ RotShiftQuad, pattern>;
+
+class ROTQMBYBIVecInst<ValueType vectype>:
+ ROTQMBYBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
+ [/* no pattern, */]>;
+
+multiclass RotateMaskQuadByBitCount
+{
+ def v16i8: ROTQMBYBIVecInst<v16i8>;
+ def v8i16: ROTQMBYBIVecInst<v8i16>;
+ def v4i32: ROTQMBYBIVecInst<v4i32>;
+ def v2i64: ROTQMBYBIVecInst<v2i64>;
+ def r128: ROTQMBYBIInst<(outs GPRC:$rT), (ins GPRC:$rA, R32C:$rB),
+ [/*no pattern*/]>;
+}
+
+defm ROTQMBYBI: RotateMaskQuadByBitCount;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// Rotate quad and mask by bits
+// Note that the rotate amount has to be negated
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+class ROTQMBIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b10011011100, OOL, IOL, "rotqmbi\t$rT, $rA, $rB",
+ RotShiftQuad, pattern>;
+
+class ROTQMBIVecInst<ValueType vectype>:
+ ROTQMBIInst<(outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
+ [/* no pattern */]>;
+
+class ROTQMBIRegInst<RegisterClass rclass>:
+ ROTQMBIInst<(outs rclass:$rT), (ins rclass:$rA, R32C:$rB),
+ [/* no pattern */]>;
+
+multiclass RotateMaskQuadByBits
+{
+ def v16i8: ROTQMBIVecInst<v16i8>;
+ def v8i16: ROTQMBIVecInst<v8i16>;
+ def v4i32: ROTQMBIVecInst<v4i32>;
+ def v2i64: ROTQMBIVecInst<v2i64>;
+
+ def r128: ROTQMBIRegInst<GPRC>;
+ def r64: ROTQMBIRegInst<R64C>;
+}
+
+defm ROTQMBI: RotateMaskQuadByBits;
+
+def : Pat<(srl GPRC:$rA, R32C:$rB),
+ (ROTQMBYBIr128 (ROTQMBIr128 GPRC:$rA,
+ (SFIr32 R32C:$rB, 0)),
+ (SFIr32 R32C:$rB, 0))>;
+
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// Rotate quad and mask by bits, immediate
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+class ROTQMBIIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RI7Form<0b10011111100, OOL, IOL, "rotqmbii\t$rT, $rA, $val",
+ RotShiftQuad, pattern>;
+
+class ROTQMBIIVecInst<ValueType vectype>:
+ ROTQMBIIInst<(outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
+ [/* no pattern */]>;
+
+class ROTQMBIIRegInst<RegisterClass rclass>:
+ ROTQMBIIInst<(outs rclass:$rT), (ins rclass:$rA, rotNeg7imm:$val),
+ [/* no pattern */]>;
+
+multiclass RotateMaskQuadByBitsImm
+{
+ def v16i8: ROTQMBIIVecInst<v16i8>;
+ def v8i16: ROTQMBIIVecInst<v8i16>;
+ def v4i32: ROTQMBIIVecInst<v4i32>;
+ def v2i64: ROTQMBIIVecInst<v2i64>;
+
+ def r128: ROTQMBIIRegInst<GPRC>;
+ def r64: ROTQMBIIRegInst<R64C>;
+}
+
+defm ROTQMBII: RotateMaskQuadByBitsImm;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+def ROTMAHv8i16:
+ RRForm<0b01111010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ "rotmah\t$rT, $rA, $rB", RotShiftVec,
+ [/* see patterns below - $rB must be negated */]>;
+
+def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
+ (ROTMAHv8i16 VECREG:$rA, (SFHIvec VECREG:$rB, 0))>;
+
+def ROTMAHr16:
+ RRForm<0b01111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
+ "rotmah\t$rT, $rA, $rB", RotShiftVec,
+ [/* see patterns below - $rB must be negated */]>;
+
+def : Pat<(sra R16C:$rA, R32C:$rB),
+ (ROTMAHr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
+
+def : Pat<(sra R16C:$rA, R16C:$rB),
+ (ROTMAHr16 R16C:$rA,
+ (SFIr32 (XSHWr16 R16C:$rB), 0))>;
+
+def : Pat<(sra R16C:$rA, R8C:$rB),
+ (ROTMAHr16 R16C:$rA,
+ (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
+
+def ROTMAHIv8i16:
+ RRForm<0b01111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
+ "rotmahi\t$rT, $rA, $val", RotShiftVec,
+ [(set (v8i16 VECREG:$rT),
+ (SPUvec_sra (v8i16 VECREG:$rA), (i32 uimm7:$val)))]>;
+
+def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i16 uimm7:$val)),
+ (ROTMAHIv8i16 (v8i16 VECREG:$rA), (TO_IMM32 uimm7:$val))>;
+
+def : Pat<(SPUvec_sra (v8i16 VECREG:$rA), (i8 uimm7:$val)),
+ (ROTMAHIv8i16 (v8i16 VECREG:$rA), (TO_IMM32 uimm7:$val))>;
+
+def ROTMAHIr16:
+ RRForm<0b01111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm_i16:$val),
+ "rotmahi\t$rT, $rA, $val", RotShiftVec,
+ [(set R16C:$rT, (sra R16C:$rA, (i16 uimm7:$val)))]>;
+
+def : Pat<(sra R16C:$rA, (i32 imm:$val)),
+ (ROTMAHIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
+
+def : Pat<(sra R16C:$rA, (i8 imm:$val)),
+ (ROTMAHIr16 R16C:$rA, (TO_IMM32 uimm7:$val))>;
+
+def ROTMAv4i32:
+ RRForm<0b01011010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ "rotma\t$rT, $rA, $rB", RotShiftVec,
+ [/* see patterns below - $rB must be negated */]>;
+
+def : Pat<(SPUvec_sra (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)),
+ (ROTMAv4i32 VECREG:$rA, (SFIvec (v4i32 VECREG:$rB), 0))>;
+
+def ROTMAr32:
+ RRForm<0b01011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
+ "rotma\t$rT, $rA, $rB", RotShiftVec,
+ [/* see patterns below - $rB must be negated */]>;
+
+def : Pat<(sra R32C:$rA, R32C:$rB),
+ (ROTMAr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
+
+def : Pat<(sra R32C:$rA, R16C:$rB),
+ (ROTMAr32 R32C:$rA,
+ (SFIr32 (XSHWr16 R16C:$rB), 0))>;
+
+def : Pat<(sra R32C:$rA, R8C:$rB),
+ (ROTMAr32 R32C:$rA,
+ (SFIr32 (XSHWr16 (XSBHr8 R8C:$rB)), 0))>;
+
+class ROTMAIInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b01011110000, OOL, IOL,
+ "rotmai\t$rT, $rA, $val",
+ RotShiftVec, pattern>;
+
+class ROTMAIVecInst<ValueType vectype, Operand intop, ValueType inttype>:
+ ROTMAIInst<(outs VECREG:$rT), (ins VECREG:$rA, intop:$val),
+ [(set (vectype VECREG:$rT),
+ (SPUvec_sra VECREG:$rA, (inttype uimm7:$val)))]>;
+
+class ROTMAIRegInst<RegisterClass rclass, Operand intop, ValueType inttype>:
+ ROTMAIInst<(outs rclass:$rT), (ins rclass:$rA, intop:$val),
+ [(set rclass:$rT, (sra rclass:$rA, (inttype uimm7:$val)))]>;
+
+multiclass RotateMaskAlgebraicImm {
+ def v2i64_i32 : ROTMAIVecInst<v2i64, rotNeg7imm, i32>;
+ def v4i32_i32 : ROTMAIVecInst<v4i32, rotNeg7imm, i32>;
+ def r64_i32 : ROTMAIRegInst<R64C, rotNeg7imm, i32>;
+ def r32_i32 : ROTMAIRegInst<R32C, rotNeg7imm, i32>;
+}
+
+defm ROTMAI : RotateMaskAlgebraicImm;
+
+//===----------------------------------------------------------------------===//
+// Branch and conditionals:
+//===----------------------------------------------------------------------===//
+
+let isTerminator = 1, isBarrier = 1 in {
+ // Halt If Equal (r32 preferred slot only, no vector form)
+ def HEQr32:
+ RRForm_3<0b00011011110, (outs), (ins R32C:$rA, R32C:$rB),
+ "heq\t$rA, $rB", BranchResolv,
+ [/* no pattern to match */]>;
+
+ def HEQIr32 :
+ RI10Form_2<0b11111110, (outs), (ins R32C:$rA, s10imm:$val),
+ "heqi\t$rA, $val", BranchResolv,
+ [/* no pattern to match */]>;
+
+ // HGT/HGTI: These instructions use signed arithmetic for the comparison,
+ // contrasting with HLGT/HLGTI, which use unsigned comparison:
+ def HGTr32:
+ RRForm_3<0b00011010010, (outs), (ins R32C:$rA, R32C:$rB),
+ "hgt\t$rA, $rB", BranchResolv,
+ [/* no pattern to match */]>;
+
+ def HGTIr32:
+ RI10Form_2<0b11110010, (outs), (ins R32C:$rA, s10imm:$val),
+ "hgti\t$rA, $val", BranchResolv,
+ [/* no pattern to match */]>;
+
+ def HLGTr32:
+ RRForm_3<0b00011011010, (outs), (ins R32C:$rA, R32C:$rB),
+ "hlgt\t$rA, $rB", BranchResolv,
+ [/* no pattern to match */]>;
+
+ def HLGTIr32:
+ RI10Form_2<0b11111010, (outs), (ins R32C:$rA, s10imm:$val),
+ "hlgti\t$rA, $val", BranchResolv,
+ [/* no pattern to match */]>;
+}
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// Comparison operators for i8, i16 and i32:
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+class CEQBInst<dag OOL, dag IOL, list<dag> pattern> :
+ RRForm<0b00001011110, OOL, IOL, "ceqb\t$rT, $rA, $rB",
+ ByteOp, pattern>;
+
+multiclass CmpEqualByte
+{
+ def v16i8 :
+ CEQBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (v16i8 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
+ (v8i16 VECREG:$rB)))]>;
+
+ def r8 :
+ CEQBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
+ [(set R8C:$rT, (seteq R8C:$rA, R8C:$rB))]>;
+}
+
+class CEQBIInst<dag OOL, dag IOL, list<dag> pattern> :
+ RI10Form<0b01111110, OOL, IOL, "ceqbi\t$rT, $rA, $val",
+ ByteOp, pattern>;
+
+multiclass CmpEqualByteImm
+{
+ def v16i8 :
+ CEQBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
+ [(set (v16i8 VECREG:$rT), (seteq (v16i8 VECREG:$rA),
+ v16i8SExt8Imm:$val))]>;
+ def r8:
+ CEQBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
+ [(set R8C:$rT, (seteq R8C:$rA, immSExt8:$val))]>;
+}
+
+class CEQHInst<dag OOL, dag IOL, list<dag> pattern> :
+ RRForm<0b00010011110, OOL, IOL, "ceqh\t$rT, $rA, $rB",
+ ByteOp, pattern>;
+
+multiclass CmpEqualHalfword
+{
+ def v8i16 : CEQHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (v8i16 VECREG:$rT), (seteq (v8i16 VECREG:$rA),
+ (v8i16 VECREG:$rB)))]>;
+
+ def r16 : CEQHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
+ [(set R16C:$rT, (seteq R16C:$rA, R16C:$rB))]>;
+}
+
+class CEQHIInst<dag OOL, dag IOL, list<dag> pattern> :
+ RI10Form<0b10111110, OOL, IOL, "ceqhi\t$rT, $rA, $val",
+ ByteOp, pattern>;
+
+multiclass CmpEqualHalfwordImm
+{
+ def v8i16 : CEQHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ [(set (v8i16 VECREG:$rT),
+ (seteq (v8i16 VECREG:$rA),
+ (v8i16 v8i16SExt10Imm:$val)))]>;
+ def r16 : CEQHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
+ [(set R16C:$rT, (seteq R16C:$rA, i16ImmSExt10:$val))]>;
+}
+
+class CEQInst<dag OOL, dag IOL, list<dag> pattern> :
+ RRForm<0b00000011110, OOL, IOL, "ceq\t$rT, $rA, $rB",
+ ByteOp, pattern>;
+
+multiclass CmpEqualWord
+{
+ def v4i32 : CEQInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (v4i32 VECREG:$rT),
+ (seteq (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
+
+ def r32 : CEQInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
+ [(set R32C:$rT, (seteq R32C:$rA, R32C:$rB))]>;
+}
+
+class CEQIInst<dag OOL, dag IOL, list<dag> pattern> :
+ RI10Form<0b00111110, OOL, IOL, "ceqi\t$rT, $rA, $val",
+ ByteOp, pattern>;
+
+multiclass CmpEqualWordImm
+{
+ def v4i32 : CEQIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ [(set (v4i32 VECREG:$rT),
+ (seteq (v4i32 VECREG:$rA),
+ (v4i32 v4i32SExt16Imm:$val)))]>;
+
+ def r32: CEQIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
+ [(set R32C:$rT, (seteq R32C:$rA, i32ImmSExt10:$val))]>;
+}
+
+class CGTBInst<dag OOL, dag IOL, list<dag> pattern> :
+ RRForm<0b00001010010, OOL, IOL, "cgtb\t$rT, $rA, $rB",
+ ByteOp, pattern>;
+
+multiclass CmpGtrByte
+{
+ def v16i8 :
+ CGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (v16i8 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
+ (v8i16 VECREG:$rB)))]>;
+
+ def r8 :
+ CGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
+ [(set R8C:$rT, (setgt R8C:$rA, R8C:$rB))]>;
+}
+
+class CGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
+ RI10Form<0b01110010, OOL, IOL, "cgtbi\t$rT, $rA, $val",
+ ByteOp, pattern>;
+
+multiclass CmpGtrByteImm
+{
+ def v16i8 :
+ CGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
+ [(set (v16i8 VECREG:$rT), (setgt (v16i8 VECREG:$rA),
+ v16i8SExt8Imm:$val))]>;
+ def r8:
+ CGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
+ [(set R8C:$rT, (setgt R8C:$rA, immSExt8:$val))]>;
+}
+
+class CGTHInst<dag OOL, dag IOL, list<dag> pattern> :
+ RRForm<0b00010010010, OOL, IOL, "cgth\t$rT, $rA, $rB",
+ ByteOp, pattern>;
+
+multiclass CmpGtrHalfword
+{
+ def v8i16 : CGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (v8i16 VECREG:$rT), (setgt (v8i16 VECREG:$rA),
+ (v8i16 VECREG:$rB)))]>;
+
+ def r16 : CGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
+ [(set R16C:$rT, (setgt R16C:$rA, R16C:$rB))]>;
+}
+
+class CGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
+ RI10Form<0b10110010, OOL, IOL, "cgthi\t$rT, $rA, $val",
+ ByteOp, pattern>;
+
+multiclass CmpGtrHalfwordImm
+{
+ def v8i16 : CGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ [(set (v8i16 VECREG:$rT),
+ (setgt (v8i16 VECREG:$rA),
+ (v8i16 v8i16SExt10Imm:$val)))]>;
+ def r16 : CGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
+ [(set R16C:$rT, (setgt R16C:$rA, i16ImmSExt10:$val))]>;
+}
+
+class CGTInst<dag OOL, dag IOL, list<dag> pattern> :
+ RRForm<0b00000010010, OOL, IOL, "cgt\t$rT, $rA, $rB",
+ ByteOp, pattern>;
+
+multiclass CmpGtrWord
+{
+ def v4i32 : CGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (v4i32 VECREG:$rT),
+ (setgt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
+
+ def r32 : CGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
+ [(set R32C:$rT, (setgt R32C:$rA, R32C:$rB))]>;
+}
+
+class CGTIInst<dag OOL, dag IOL, list<dag> pattern> :
+ RI10Form<0b00110010, OOL, IOL, "cgti\t$rT, $rA, $val",
+ ByteOp, pattern>;
+
+multiclass CmpGtrWordImm
+{
+ def v4i32 : CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ [(set (v4i32 VECREG:$rT),
+ (setgt (v4i32 VECREG:$rA),
+ (v4i32 v4i32SExt16Imm:$val)))]>;
+
+ def r32: CGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
+ [(set R32C:$rT, (setgt R32C:$rA, i32ImmSExt10:$val))]>;
+
+ // CGTIv4f32, CGTIf32: These are used in the f32 fdiv instruction sequence:
+ def v4f32: CGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ [(set (v4i32 VECREG:$rT),
+ (setgt (v4i32 (bitconvert (v4f32 VECREG:$rA))),
+ (v4i32 v4i32SExt16Imm:$val)))]>;
+
+ def f32: CGTIInst<(outs R32C:$rT), (ins R32FP:$rA, s10imm_i32:$val),
+ [/* no pattern */]>;
+}
+
+class CLGTBInst<dag OOL, dag IOL, list<dag> pattern> :
+ RRForm<0b00001011010, OOL, IOL, "clgtb\t$rT, $rA, $rB",
+ ByteOp, pattern>;
+
+multiclass CmpLGtrByte
+{
+ def v16i8 :
+ CLGTBInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (v16i8 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
+ (v8i16 VECREG:$rB)))]>;
+
+ def r8 :
+ CLGTBInst<(outs R8C:$rT), (ins R8C:$rA, R8C:$rB),
+ [(set R8C:$rT, (setugt R8C:$rA, R8C:$rB))]>;
+}
+
+class CLGTBIInst<dag OOL, dag IOL, list<dag> pattern> :
+ RI10Form<0b01111010, OOL, IOL, "clgtbi\t$rT, $rA, $val",
+ ByteOp, pattern>;
+
+multiclass CmpLGtrByteImm
+{
+ def v16i8 :
+ CLGTBIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm_i8:$val),
+ [(set (v16i8 VECREG:$rT), (setugt (v16i8 VECREG:$rA),
+ v16i8SExt8Imm:$val))]>;
+ def r8:
+ CLGTBIInst<(outs R8C:$rT), (ins R8C:$rA, s10imm_i8:$val),
+ [(set R8C:$rT, (setugt R8C:$rA, immSExt8:$val))]>;
+}
+
+class CLGTHInst<dag OOL, dag IOL, list<dag> pattern> :
+ RRForm<0b00010011010, OOL, IOL, "clgth\t$rT, $rA, $rB",
+ ByteOp, pattern>;
+
+multiclass CmpLGtrHalfword
+{
+ def v8i16 : CLGTHInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (v8i16 VECREG:$rT), (setugt (v8i16 VECREG:$rA),
+ (v8i16 VECREG:$rB)))]>;
+
+ def r16 : CLGTHInst<(outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
+ [(set R16C:$rT, (setugt R16C:$rA, R16C:$rB))]>;
+}
+
+class CLGTHIInst<dag OOL, dag IOL, list<dag> pattern> :
+ RI10Form<0b10111010, OOL, IOL, "clgthi\t$rT, $rA, $val",
+ ByteOp, pattern>;
+
+multiclass CmpLGtrHalfwordImm
+{
+ def v8i16 : CLGTHIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ [(set (v8i16 VECREG:$rT),
+ (setugt (v8i16 VECREG:$rA),
+ (v8i16 v8i16SExt10Imm:$val)))]>;
+ def r16 : CLGTHIInst<(outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
+ [(set R16C:$rT, (setugt R16C:$rA, i16ImmSExt10:$val))]>;
+}
+
+class CLGTInst<dag OOL, dag IOL, list<dag> pattern> :
+ RRForm<0b00000011010, OOL, IOL, "clgt\t$rT, $rA, $rB",
+ ByteOp, pattern>;
+
+multiclass CmpLGtrWord
+{
+ def v4i32 : CLGTInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (v4i32 VECREG:$rT),
+ (setugt (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
+
+ def r32 : CLGTInst<(outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
+ [(set R32C:$rT, (setugt R32C:$rA, R32C:$rB))]>;
+}
+
+class CLGTIInst<dag OOL, dag IOL, list<dag> pattern> :
+ RI10Form<0b00111010, OOL, IOL, "clgti\t$rT, $rA, $val",
+ ByteOp, pattern>;
+
+multiclass CmpLGtrWordImm
+{
+ def v4i32 : CLGTIInst<(outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
+ [(set (v4i32 VECREG:$rT),
+ (setugt (v4i32 VECREG:$rA),
+ (v4i32 v4i32SExt16Imm:$val)))]>;
+
+ def r32: CLGTIInst<(outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
+ [(set R32C:$rT, (setugt R32C:$rA, i32ImmSExt10:$val))]>;
+}
+
+defm CEQB : CmpEqualByte;
+defm CEQBI : CmpEqualByteImm;
+defm CEQH : CmpEqualHalfword;
+defm CEQHI : CmpEqualHalfwordImm;
+defm CEQ : CmpEqualWord;
+defm CEQI : CmpEqualWordImm;
+defm CGTB : CmpGtrByte;
+defm CGTBI : CmpGtrByteImm;
+defm CGTH : CmpGtrHalfword;
+defm CGTHI : CmpGtrHalfwordImm;
+defm CGT : CmpGtrWord;
+defm CGTI : CmpGtrWordImm;
+defm CLGTB : CmpLGtrByte;
+defm CLGTBI : CmpLGtrByteImm;
+defm CLGTH : CmpLGtrHalfword;
+defm CLGTHI : CmpLGtrHalfwordImm;
+defm CLGT : CmpLGtrWord;
+defm CLGTI : CmpLGtrWordImm;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// For SETCC primitives not supported above (setlt, setle, setge, etc.)
+// define a pattern to generate the right code, as a binary operator
+// (in a manner of speaking.)
+//
+// Notes:
+// 1. This only matches the setcc set of conditionals. Special pattern
+// matching is used for select conditionals.
+//
+// 2. The "DAG" versions of these classes is almost exclusively used for
+// i64 comparisons. See the tblgen fundamentals documentation for what
+// ".ResultInstrs[0]" means; see TargetSelectionDAG.td and the Pattern
+// class for where ResultInstrs originates.
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+class SETCCNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
+ SPUInstr xorinst, SPUInstr cmpare>:
+ Pat<(cond rclass:$rA, rclass:$rB),
+ (xorinst (cmpare rclass:$rA, rclass:$rB), (inttype -1))>;
+
+class SETCCNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype,
+ PatLeaf immpred, SPUInstr xorinst, SPUInstr cmpare>:
+ Pat<(cond rclass:$rA, (inttype immpred:$imm)),
+ (xorinst (cmpare rclass:$rA, (inttype immpred:$imm)), (inttype -1))>;
+
+def : SETCCNegCondReg<setne, R8C, i8, XORBIr8, CEQBr8>;
+def : SETCCNegCondImm<setne, R8C, i8, immSExt8, XORBIr8, CEQBIr8>;
+
+def : SETCCNegCondReg<setne, R16C, i16, XORHIr16, CEQHr16>;
+def : SETCCNegCondImm<setne, R16C, i16, i16ImmSExt10, XORHIr16, CEQHIr16>;
+
+def : SETCCNegCondReg<setne, R32C, i32, XORIr32, CEQr32>;
+def : SETCCNegCondImm<setne, R32C, i32, i32ImmSExt10, XORIr32, CEQIr32>;
+
+class SETCCBinOpReg<PatFrag cond, RegisterClass rclass,
+ SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
+ Pat<(cond rclass:$rA, rclass:$rB),
+ (binop (cmpOp1 rclass:$rA, rclass:$rB),
+ (cmpOp2 rclass:$rA, rclass:$rB))>;
+
+class SETCCBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred,
+ ValueType immtype,
+ SPUInstr binop, SPUInstr cmpOp1, SPUInstr cmpOp2>:
+ Pat<(cond rclass:$rA, (immtype immpred:$imm)),
+ (binop (cmpOp1 rclass:$rA, (immtype immpred:$imm)),
+ (cmpOp2 rclass:$rA, (immtype immpred:$imm)))>;
+
+def : SETCCBinOpReg<setge, R8C, ORr8, CGTBr8, CEQBr8>;
+def : SETCCBinOpImm<setge, R8C, immSExt8, i8, ORr8, CGTBIr8, CEQBIr8>;
+def : SETCCBinOpReg<setlt, R8C, NORr8, CGTBr8, CEQBr8>;
+def : SETCCBinOpImm<setlt, R8C, immSExt8, i8, NORr8, CGTBIr8, CEQBIr8>;
+def : Pat<(setle R8C:$rA, R8C:$rB),
+ (XORBIr8 (CGTBr8 R8C:$rA, R8C:$rB), 0xff)>;
+def : Pat<(setle R8C:$rA, immU8:$imm),
+ (XORBIr8 (CGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;
+
+def : SETCCBinOpReg<setge, R16C, ORr16, CGTHr16, CEQHr16>;
+def : SETCCBinOpImm<setge, R16C, i16ImmSExt10, i16,
+ ORr16, CGTHIr16, CEQHIr16>;
+def : SETCCBinOpReg<setlt, R16C, NORr16, CGTHr16, CEQHr16>;
+def : SETCCBinOpImm<setlt, R16C, i16ImmSExt10, i16, NORr16, CGTHIr16, CEQHIr16>;
+def : Pat<(setle R16C:$rA, R16C:$rB),
+ (XORHIr16 (CGTHr16 R16C:$rA, R16C:$rB), 0xffff)>;
+def : Pat<(setle R16C:$rA, i16ImmSExt10:$imm),
+ (XORHIr16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;
+
+def : SETCCBinOpReg<setge, R32C, ORr32, CGTr32, CEQr32>;
+def : SETCCBinOpImm<setge, R32C, i32ImmSExt10, i32,
+ ORr32, CGTIr32, CEQIr32>;
+def : SETCCBinOpReg<setlt, R32C, NORr32, CGTr32, CEQr32>;
+def : SETCCBinOpImm<setlt, R32C, i32ImmSExt10, i32, NORr32, CGTIr32, CEQIr32>;
+def : Pat<(setle R32C:$rA, R32C:$rB),
+ (XORIr32 (CGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
+def : Pat<(setle R32C:$rA, i32ImmSExt10:$imm),
+ (XORIr32 (CGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;
+
+def : SETCCBinOpReg<setuge, R8C, ORr8, CLGTBr8, CEQBr8>;
+def : SETCCBinOpImm<setuge, R8C, immSExt8, i8, ORr8, CLGTBIr8, CEQBIr8>;
+def : SETCCBinOpReg<setult, R8C, NORr8, CLGTBr8, CEQBr8>;
+def : SETCCBinOpImm<setult, R8C, immSExt8, i8, NORr8, CLGTBIr8, CEQBIr8>;
+def : Pat<(setule R8C:$rA, R8C:$rB),
+ (XORBIr8 (CLGTBr8 R8C:$rA, R8C:$rB), 0xff)>;
+def : Pat<(setule R8C:$rA, immU8:$imm),
+ (XORBIr8 (CLGTBIr8 R8C:$rA, immU8:$imm), 0xff)>;
+
+def : SETCCBinOpReg<setuge, R16C, ORr16, CLGTHr16, CEQHr16>;
+def : SETCCBinOpImm<setuge, R16C, i16ImmSExt10, i16,
+ ORr16, CLGTHIr16, CEQHIr16>;
+def : SETCCBinOpReg<setult, R16C, NORr16, CLGTHr16, CEQHr16>;
+def : SETCCBinOpImm<setult, R16C, i16ImmSExt10, i16, NORr16,
+ CLGTHIr16, CEQHIr16>;
+def : Pat<(setule R16C:$rA, R16C:$rB),
+ (XORHIr16 (CLGTHr16 R16C:$rA, R16C:$rB), 0xffff)>;
+def : Pat<(setule R16C:$rA, i16ImmSExt10:$imm),
+ (XORHIr16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$imm), 0xffff)>;
+
+def : SETCCBinOpReg<setuge, R32C, ORr32, CLGTr32, CEQr32>;
+def : SETCCBinOpImm<setuge, R32C, i32ImmSExt10, i32,
+ ORr32, CLGTIr32, CEQIr32>;
+def : SETCCBinOpReg<setult, R32C, NORr32, CLGTr32, CEQr32>;
+def : SETCCBinOpImm<setult, R32C, i32ImmSExt10, i32, NORr32, CLGTIr32, CEQIr32>;
+def : Pat<(setule R32C:$rA, R32C:$rB),
+ (XORIr32 (CLGTr32 R32C:$rA, R32C:$rB), 0xffffffff)>;
+def : Pat<(setule R32C:$rA, i32ImmSExt10:$imm),
+ (XORIr32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$imm), 0xffffffff)>;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+// select conditional patterns:
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+class SELECTNegCondReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
+ SPUInstr selinstr, SPUInstr cmpare>:
+ Pat<(select (inttype (cond rclass:$rA, rclass:$rB)),
+ rclass:$rTrue, rclass:$rFalse),
+ (selinstr rclass:$rTrue, rclass:$rFalse,
+ (cmpare rclass:$rA, rclass:$rB))>;
+
+class SELECTNegCondImm<PatFrag cond, RegisterClass rclass, ValueType inttype,
+ PatLeaf immpred, SPUInstr selinstr, SPUInstr cmpare>:
+ Pat<(select (inttype (cond rclass:$rA, immpred:$imm)),
+ rclass:$rTrue, rclass:$rFalse),
+ (selinstr rclass:$rTrue, rclass:$rFalse,
+ (cmpare rclass:$rA, immpred:$imm))>;
+
+def : SELECTNegCondReg<setne, R8C, i8, SELBr8, CEQBr8>;
+def : SELECTNegCondImm<setne, R8C, i8, immSExt8, SELBr8, CEQBIr8>;
+def : SELECTNegCondReg<setle, R8C, i8, SELBr8, CGTBr8>;
+def : SELECTNegCondImm<setle, R8C, i8, immSExt8, SELBr8, CGTBr8>;
+def : SELECTNegCondReg<setule, R8C, i8, SELBr8, CLGTBr8>;
+def : SELECTNegCondImm<setule, R8C, i8, immU8, SELBr8, CLGTBIr8>;
+
+def : SELECTNegCondReg<setne, R16C, i16, SELBr16, CEQHr16>;
+def : SELECTNegCondImm<setne, R16C, i16, i16ImmSExt10, SELBr16, CEQHIr16>;
+def : SELECTNegCondReg<setle, R16C, i16, SELBr16, CGTHr16>;
+def : SELECTNegCondImm<setle, R16C, i16, i16ImmSExt10, SELBr16, CGTHIr16>;
+def : SELECTNegCondReg<setule, R16C, i16, SELBr16, CLGTHr16>;
+def : SELECTNegCondImm<setule, R16C, i16, i16ImmSExt10, SELBr16, CLGTHIr16>;
+
+def : SELECTNegCondReg<setne, R32C, i32, SELBr32, CEQr32>;
+def : SELECTNegCondImm<setne, R32C, i32, i32ImmSExt10, SELBr32, CEQIr32>;
+def : SELECTNegCondReg<setle, R32C, i32, SELBr32, CGTr32>;
+def : SELECTNegCondImm<setle, R32C, i32, i32ImmSExt10, SELBr32, CGTIr32>;
+def : SELECTNegCondReg<setule, R32C, i32, SELBr32, CLGTr32>;
+def : SELECTNegCondImm<setule, R32C, i32, i32ImmSExt10, SELBr32, CLGTIr32>;
+
+class SELECTBinOpReg<PatFrag cond, RegisterClass rclass, ValueType inttype,
+ SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1,
+ SPUInstr cmpOp2>:
+ Pat<(select (inttype (cond rclass:$rA, rclass:$rB)),
+ rclass:$rTrue, rclass:$rFalse),
+ (selinstr rclass:$rFalse, rclass:$rTrue,
+ (binop (cmpOp1 rclass:$rA, rclass:$rB),
+ (cmpOp2 rclass:$rA, rclass:$rB)))>;
+
+class SELECTBinOpImm<PatFrag cond, RegisterClass rclass, PatLeaf immpred,
+ ValueType inttype,
+ SPUInstr selinstr, SPUInstr binop, SPUInstr cmpOp1,
+ SPUInstr cmpOp2>:
+ Pat<(select (inttype (cond rclass:$rA, (inttype immpred:$imm))),
+ rclass:$rTrue, rclass:$rFalse),
+ (selinstr rclass:$rFalse, rclass:$rTrue,
+ (binop (cmpOp1 rclass:$rA, (inttype immpred:$imm)),
+ (cmpOp2 rclass:$rA, (inttype immpred:$imm))))>;
+
+def : SELECTBinOpReg<setge, R8C, i8, SELBr8, ORr8, CGTBr8, CEQBr8>;
+def : SELECTBinOpImm<setge, R8C, immSExt8, i8,
+ SELBr8, ORr8, CGTBIr8, CEQBIr8>;
+
+def : SELECTBinOpReg<setge, R16C, i16, SELBr16, ORr16, CGTHr16, CEQHr16>;
+def : SELECTBinOpImm<setge, R16C, i16ImmSExt10, i16,
+ SELBr16, ORr16, CGTHIr16, CEQHIr16>;
+
+def : SELECTBinOpReg<setge, R32C, i32, SELBr32, ORr32, CGTr32, CEQr32>;
+def : SELECTBinOpImm<setge, R32C, i32ImmSExt10, i32,
+ SELBr32, ORr32, CGTIr32, CEQIr32>;
+
+def : SELECTBinOpReg<setuge, R8C, i8, SELBr8, ORr8, CLGTBr8, CEQBr8>;
+def : SELECTBinOpImm<setuge, R8C, immSExt8, i8,
+ SELBr8, ORr8, CLGTBIr8, CEQBIr8>;
+
+def : SELECTBinOpReg<setuge, R16C, i16, SELBr16, ORr16, CLGTHr16, CEQHr16>;
+def : SELECTBinOpImm<setuge, R16C, i16ImmUns10, i16,
+ SELBr16, ORr16, CLGTHIr16, CEQHIr16>;
+
+def : SELECTBinOpReg<setuge, R32C, i32, SELBr32, ORr32, CLGTr32, CEQr32>;
+def : SELECTBinOpImm<setuge, R32C, i32ImmUns10, i32,
+ SELBr32, ORr32, CLGTIr32, CEQIr32>;
+
+//-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~-~
+
+let isCall = 1,
+ // All calls clobber the non-callee-saved registers:
+ Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9,
+ R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,
+ R20,R21,R22,R23,R24,R25,R26,R27,R28,R29,
+ R30,R31,R32,R33,R34,R35,R36,R37,R38,R39,
+ R40,R41,R42,R43,R44,R45,R46,R47,R48,R49,
+ R50,R51,R52,R53,R54,R55,R56,R57,R58,R59,
+ R60,R61,R62,R63,R64,R65,R66,R67,R68,R69,
+ R70,R71,R72,R73,R74,R75,R76,R77,R78,R79],
+ // All of these instructions use $lr (aka $0)
+ Uses = [R0] in {
+ // Branch relative and set link: Used if we actually know that the target
+ // is within [-32768, 32767] bytes of the target
+ def BRSL:
+ BranchSetLink<0b011001100, (outs), (ins relcalltarget:$func),
+ "brsl\t$$lr, $func",
+ [(SPUcall (SPUpcrel tglobaladdr:$func, 0))]>;
+
+ // Branch absolute and set link: Used if we actually know that the target
+ // is an absolute address
+ def BRASL:
+ BranchSetLink<0b011001100, (outs), (ins calltarget:$func),
+ "brasl\t$$lr, $func",
+ [(SPUcall (SPUaform tglobaladdr:$func, 0))]>;
+
+ // Branch indirect and set link if external data. These instructions are not
+ // actually generated, matched by an intrinsic:
+ def BISLED_00: BISLEDForm<0b11, "bisled\t$$lr, $func", [/* empty pattern */]>;
+ def BISLED_E0: BISLEDForm<0b10, "bisled\t$$lr, $func", [/* empty pattern */]>;
+ def BISLED_0D: BISLEDForm<0b01, "bisled\t$$lr, $func", [/* empty pattern */]>;
+ def BISLED_ED: BISLEDForm<0b00, "bisled\t$$lr, $func", [/* empty pattern */]>;
+
+ // Branch indirect and set link. This is the "X-form" address version of a
+ // function call
+ def BISL:
+ BIForm<0b10010101100, "bisl\t$$lr, $func", [(SPUcall R32C:$func)]>;
+}
+
+// Support calls to external symbols:
+def : Pat<(SPUcall (SPUpcrel texternalsym:$func, 0)),
+ (BRSL texternalsym:$func)>;
+
+def : Pat<(SPUcall (SPUaform texternalsym:$func, 0)),
+ (BRASL texternalsym:$func)>;
+
+// Unconditional branches:
+let isBranch = 1, isTerminator = 1, hasCtrlDep = 1 in {
+ let isBarrier = 1 in {
+ def BR :
+ UncondBranch<0b001001100, (outs), (ins brtarget:$dest),
+ "br\t$dest",
+ [(br bb:$dest)]>;
+
+ // Unconditional, absolute address branch
+ def BRA:
+ UncondBranch<0b001100000, (outs), (ins brtarget:$dest),
+ "bra\t$dest",
+ [/* no pattern */]>;
+
+ // Indirect branch
+ let isIndirectBranch = 1 in {
+ def BI:
+ BIForm<0b00010101100, "bi\t$func", [(brind R32C:$func)]>;
+ }
+ }
+
+ // Conditional branches:
+ class BRNZInst<dag IOL, list<dag> pattern>:
+ RI16Form<0b010000100, (outs), IOL, "brnz\t$rCond,$dest",
+ BranchResolv, pattern>;
+
+ class BRNZRegInst<RegisterClass rclass>:
+ BRNZInst<(ins rclass:$rCond, brtarget:$dest),
+ [(brcond rclass:$rCond, bb:$dest)]>;
+
+ class BRNZVecInst<ValueType vectype>:
+ BRNZInst<(ins VECREG:$rCond, brtarget:$dest),
+ [(brcond (vectype VECREG:$rCond), bb:$dest)]>;
+
+ multiclass BranchNotZero {
+ def v4i32 : BRNZVecInst<v4i32>;
+ def r32 : BRNZRegInst<R32C>;
+ }
+
+ defm BRNZ : BranchNotZero;
+
+ class BRZInst<dag IOL, list<dag> pattern>:
+ RI16Form<0b000000100, (outs), IOL, "brz\t$rT,$dest",
+ BranchResolv, pattern>;
+
+ class BRZRegInst<RegisterClass rclass>:
+ BRZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>;
+
+ class BRZVecInst<ValueType vectype>:
+ BRZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>;
+
+ multiclass BranchZero {
+ def v4i32: BRZVecInst<v4i32>;
+ def r32: BRZRegInst<R32C>;
+ }
+
+ defm BRZ: BranchZero;
+
+ // Note: LLVM doesn't do branch conditional, indirect. Otherwise these would
+ // be useful:
+ /*
+ class BINZInst<dag IOL, list<dag> pattern>:
+ BICondForm<0b10010100100, (outs), IOL, "binz\t$rA, $dest", pattern>;
+
+ class BINZRegInst<RegisterClass rclass>:
+ BINZInst<(ins rclass:$rA, brtarget:$dest),
+ [(brcond rclass:$rA, R32C:$dest)]>;
+
+ class BINZVecInst<ValueType vectype>:
+ BINZInst<(ins VECREG:$rA, R32C:$dest),
+ [(brcond (vectype VECREG:$rA), R32C:$dest)]>;
+
+ multiclass BranchNotZeroIndirect {
+ def v4i32: BINZVecInst<v4i32>;
+ def r32: BINZRegInst<R32C>;
+ }
+
+ defm BINZ: BranchNotZeroIndirect;
+
+ class BIZInst<dag IOL, list<dag> pattern>:
+ BICondForm<0b00010100100, (outs), IOL, "biz\t$rA, $func", pattern>;
+
+ class BIZRegInst<RegisterClass rclass>:
+ BIZInst<(ins rclass:$rA, R32C:$func), [/* no pattern */]>;
+
+ class BIZVecInst<ValueType vectype>:
+ BIZInst<(ins VECREG:$rA, R32C:$func), [/* no pattern */]>;
+
+ multiclass BranchZeroIndirect {
+ def v4i32: BIZVecInst<v4i32>;
+ def r32: BIZRegInst<R32C>;
+ }
+
+ defm BIZ: BranchZeroIndirect;
+ */
+
+ class BRHNZInst<dag IOL, list<dag> pattern>:
+ RI16Form<0b011000100, (outs), IOL, "brhnz\t$rCond,$dest", BranchResolv,
+ pattern>;
+
+ class BRHNZRegInst<RegisterClass rclass>:
+ BRHNZInst<(ins rclass:$rCond, brtarget:$dest),
+ [(brcond rclass:$rCond, bb:$dest)]>;
+
+ class BRHNZVecInst<ValueType vectype>:
+ BRHNZInst<(ins VECREG:$rCond, brtarget:$dest), [/* no pattern */]>;
+
+ multiclass BranchNotZeroHalfword {
+ def v8i16: BRHNZVecInst<v8i16>;
+ def r16: BRHNZRegInst<R16C>;
+ }
+
+ defm BRHNZ: BranchNotZeroHalfword;
+
+ class BRHZInst<dag IOL, list<dag> pattern>:
+ RI16Form<0b001000100, (outs), IOL, "brhz\t$rT,$dest", BranchResolv,
+ pattern>;
+
+ class BRHZRegInst<RegisterClass rclass>:
+ BRHZInst<(ins rclass:$rT, brtarget:$dest), [/* no pattern */]>;
+
+ class BRHZVecInst<ValueType vectype>:
+ BRHZInst<(ins VECREG:$rT, brtarget:$dest), [/* no pattern */]>;
+
+ multiclass BranchZeroHalfword {
+ def v8i16: BRHZVecInst<v8i16>;
+ def r16: BRHZRegInst<R16C>;
+ }
+
+ defm BRHZ: BranchZeroHalfword;
+}
+
+//===----------------------------------------------------------------------===//
+// setcc and brcond patterns:
+//===----------------------------------------------------------------------===//
+
+def : Pat<(brcond (i16 (seteq R16C:$rA, 0)), bb:$dest),
+ (BRHZr16 R16C:$rA, bb:$dest)>;
+def : Pat<(brcond (i16 (setne R16C:$rA, 0)), bb:$dest),
+ (BRHNZr16 R16C:$rA, bb:$dest)>;
+
+def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest),
+ (BRZr32 R32C:$rA, bb:$dest)>;
+def : Pat<(brcond (i32 (setne R32C:$rA, 0)), bb:$dest),
+ (BRNZr32 R32C:$rA, bb:$dest)>;
+
+multiclass BranchCondEQ<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
+{
+ def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
+ (brinst16 (CEQHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
+
+ def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
+ (brinst16 (CEQHr16 R16C:$rA, R16:$rB), bb:$dest)>;
+
+ def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
+ (brinst32 (CEQIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
+
+ def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
+ (brinst32 (CEQr32 R32C:$rA, R32C:$rB), bb:$dest)>;
+}
+
+defm BRCONDeq : BranchCondEQ<seteq, BRHNZr16, BRNZr32>;
+defm BRCONDne : BranchCondEQ<setne, BRHZr16, BRZr32>;
+
+multiclass BranchCondLGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
+{
+ def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
+ (brinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
+
+ def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
+ (brinst16 (CLGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;
+
+ def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
+ (brinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
+
+ def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
+ (brinst32 (CLGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
+}
+
+defm BRCONDugt : BranchCondLGT<setugt, BRHNZr16, BRNZr32>;
+defm BRCONDule : BranchCondLGT<setule, BRHZr16, BRZr32>;
+
+multiclass BranchCondLGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
+ SPUInstr orinst32, SPUInstr brinst32>
+{
+ def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
+ (brinst16 (orinst16 (CLGTHIr16 R16C:$rA, i16ImmSExt10:$val),
+ (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
+ bb:$dest)>;
+
+ def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
+ (brinst16 (orinst16 (CLGTHr16 R16C:$rA, R16:$rB),
+ (CEQHr16 R16C:$rA, R16:$rB)),
+ bb:$dest)>;
+
+ def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
+ (brinst32 (orinst32 (CLGTIr32 R32C:$rA, i32ImmSExt10:$val),
+ (CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
+ bb:$dest)>;
+
+ def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
+ (brinst32 (orinst32 (CLGTr32 R32C:$rA, R32C:$rB),
+ (CEQr32 R32C:$rA, R32C:$rB)),
+ bb:$dest)>;
+}
+
+defm BRCONDuge : BranchCondLGTEQ<setuge, ORr16, BRHNZr16, ORr32, BRNZr32>;
+defm BRCONDult : BranchCondLGTEQ<setult, ORr16, BRHZr16, ORr32, BRZr32>;
+
+multiclass BranchCondGT<PatFrag cond, SPUInstr brinst16, SPUInstr brinst32>
+{
+ def r16imm : Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
+ (brinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
+
+ def r16 : Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
+ (brinst16 (CGTHr16 R16C:$rA, R16:$rB), bb:$dest)>;
+
+ def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
+ (brinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val), bb:$dest)>;
+
+ def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
+ (brinst32 (CGTr32 R32C:$rA, R32C:$rB), bb:$dest)>;
+}
+
+defm BRCONDgt : BranchCondGT<setgt, BRHNZr16, BRNZr32>;
+defm BRCONDle : BranchCondGT<setle, BRHZr16, BRZr32>;
+
+multiclass BranchCondGTEQ<PatFrag cond, SPUInstr orinst16, SPUInstr brinst16,
+ SPUInstr orinst32, SPUInstr brinst32>
+{
+ def r16imm: Pat<(brcond (i16 (cond R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
+ (brinst16 (orinst16 (CGTHIr16 R16C:$rA, i16ImmSExt10:$val),
+ (CEQHIr16 R16C:$rA, i16ImmSExt10:$val)),
+ bb:$dest)>;
+
+ def r16: Pat<(brcond (i16 (cond R16C:$rA, R16C:$rB)), bb:$dest),
+ (brinst16 (orinst16 (CGTHr16 R16C:$rA, R16:$rB),
+ (CEQHr16 R16C:$rA, R16:$rB)),
+ bb:$dest)>;
+
+ def r32imm : Pat<(brcond (i32 (cond R32C:$rA, i32ImmSExt10:$val)), bb:$dest),
+ (brinst32 (orinst32 (CGTIr32 R32C:$rA, i32ImmSExt10:$val),
+ (CEQIr32 R32C:$rA, i32ImmSExt10:$val)),
+ bb:$dest)>;
+
+ def r32 : Pat<(brcond (i32 (cond R32C:$rA, R32C:$rB)), bb:$dest),
+ (brinst32 (orinst32 (CGTr32 R32C:$rA, R32C:$rB),
+ (CEQr32 R32C:$rA, R32C:$rB)),
+ bb:$dest)>;
+}
+
+defm BRCONDge : BranchCondGTEQ<setge, ORr16, BRHNZr16, ORr32, BRNZr32>;
+defm BRCONDlt : BranchCondGTEQ<setlt, ORr16, BRHZr16, ORr32, BRZr32>;
+
+let isTerminator = 1, isBarrier = 1 in {
+ let isReturn = 1 in {
+ def RET:
+ RETForm<"bi\t$$lr", [(retflag)]>;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Single precision floating point instructions
+//===----------------------------------------------------------------------===//
+
+class FAInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b01011000100, OOL, IOL, "fa\t$rT, $rA, $rB",
+ SPrecFP, pattern>;
+
+class FAVecInst<ValueType vectype>:
+ FAInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT),
+ (fadd (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;
+
+multiclass SFPAdd
+{
+ def v4f32: FAVecInst<v4f32>;
+ def f32: FAInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
+ [(set R32FP:$rT, (fadd R32FP:$rA, R32FP:$rB))]>;
+}
+
+defm FA : SFPAdd;
+
+class FSInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b01011000100, OOL, IOL, "fs\t$rT, $rA, $rB",
+ SPrecFP, pattern>;
+
+class FSVecInst<ValueType vectype>:
+ FSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (vectype VECREG:$rT),
+ (fsub (vectype VECREG:$rA), (vectype VECREG:$rB)))]>;
+
+multiclass SFPSub
+{
+ def v4f32: FSVecInst<v4f32>;
+ def f32: FSInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
+ [(set R32FP:$rT, (fsub R32FP:$rA, R32FP:$rB))]>;
+}
+
+defm FS : SFPSub;
+
+class FMInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b01100011010, OOL, IOL,
+ "fm\t$rT, $rA, $rB", SPrecFP,
+ pattern>;
+
+class FMVecInst<ValueType type>:
+ FMInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ [(set (type VECREG:$rT),
+ (fmul (type VECREG:$rA), (type VECREG:$rB)))]>;
+
+multiclass SFPMul
+{
+ def v4f32: FMVecInst<v4f32>;
+ def f32: FMInst<(outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
+ [(set R32FP:$rT, (fmul R32FP:$rA, R32FP:$rB))]>;
+}
+
+defm FM : SFPMul;
+
+// Floating point multiply and add
+// e.g. d = c + (a * b)
+def FMAv4f32:
+ RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
+ "fma\t$rT, $rA, $rB, $rC", SPrecFP,
+ [(set (v4f32 VECREG:$rT),
+ (fadd (v4f32 VECREG:$rC),
+ (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>;
+
+def FMAf32:
+ RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
+ "fma\t$rT, $rA, $rB, $rC", SPrecFP,
+ [(set R32FP:$rT, (fadd R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
+
+// FP multiply and subtract
+// Subtracts value in rC from product
+// res = a * b - c
+def FMSv4f32 :
+ RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
+ "fms\t$rT, $rA, $rB, $rC", SPrecFP,
+ [(set (v4f32 VECREG:$rT),
+ (fsub (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)),
+ (v4f32 VECREG:$rC)))]>;
+
+def FMSf32 :
+ RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
+ "fms\t$rT, $rA, $rB, $rC", SPrecFP,
+ [(set R32FP:$rT,
+ (fsub (fmul R32FP:$rA, R32FP:$rB), R32FP:$rC))]>;
+
+// Floating Negative Mulitply and Subtract
+// Subtracts product from value in rC
+// res = fneg(fms a b c)
+// = - (a * b - c)
+// = c - a * b
+// NOTE: subtraction order
+// fsub a b = a - b
+// fs a b = b - a?
+def FNMSf32 :
+ RRRForm<0b1101, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
+ "fnms\t$rT, $rA, $rB, $rC", SPrecFP,
+ [(set R32FP:$rT, (fsub R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
+
+def FNMSv4f32 :
+ RRRForm<0b1101, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
+ "fnms\t$rT, $rA, $rB, $rC", SPrecFP,
+ [(set (v4f32 VECREG:$rT),
+ (fsub (v4f32 VECREG:$rC),
+ (fmul (v4f32 VECREG:$rA),
+ (v4f32 VECREG:$rB))))]>;
+
+
+
+
+// Floating point reciprocal estimate
+
+class FRESTInst<dag OOL, dag IOL>:
+ RRForm_1<0b00110111000, OOL, IOL,
+ "frest\t$rT, $rA", SPrecFP,
+ [/* no pattern */]>;
+
+def FRESTv4f32 :
+ FRESTInst<(outs VECREG:$rT), (ins VECREG:$rA)>;
+
+def FRESTf32 :
+ FRESTInst<(outs R32FP:$rT), (ins R32FP:$rA)>;
+
+// Floating point interpolate (used in conjunction with reciprocal estimate)
+def FIv4f32 :
+ RRForm<0b00101011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ "fi\t$rT, $rA, $rB", SPrecFP,
+ [/* no pattern */]>;
+
+def FIf32 :
+ RRForm<0b00101011110, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
+ "fi\t$rT, $rA, $rB", SPrecFP,
+ [/* no pattern */]>;
+
+//--------------------------------------------------------------------------
+// Basic single precision floating point comparisons:
+//
+// Note: There is no support on SPU for single precision NaN. Consequently,
+// ordered and unordered comparisons are the same.
+//--------------------------------------------------------------------------
+
+def FCEQf32 :
+ RRForm<0b01000011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
+ "fceq\t$rT, $rA, $rB", SPrecFP,
+ [(set R32C:$rT, (setueq R32FP:$rA, R32FP:$rB))]>;
+
+def : Pat<(setoeq R32FP:$rA, R32FP:$rB),
+ (FCEQf32 R32FP:$rA, R32FP:$rB)>;
+
+def FCMEQf32 :
+ RRForm<0b01010011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
+ "fcmeq\t$rT, $rA, $rB", SPrecFP,
+ [(set R32C:$rT, (setueq (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
+
+def : Pat<(setoeq (fabs R32FP:$rA), (fabs R32FP:$rB)),
+ (FCMEQf32 R32FP:$rA, R32FP:$rB)>;
+
+def FCGTf32 :
+ RRForm<0b01000011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
+ "fcgt\t$rT, $rA, $rB", SPrecFP,
+ [(set R32C:$rT, (setugt R32FP:$rA, R32FP:$rB))]>;
+
+def : Pat<(setogt R32FP:$rA, R32FP:$rB),
+ (FCGTf32 R32FP:$rA, R32FP:$rB)>;
+
+def FCMGTf32 :
+ RRForm<0b01010011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
+ "fcmgt\t$rT, $rA, $rB", SPrecFP,
+ [(set R32C:$rT, (setugt (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
+
+def : Pat<(setogt (fabs R32FP:$rA), (fabs R32FP:$rB)),
+ (FCMGTf32 R32FP:$rA, R32FP:$rB)>;
+
+//--------------------------------------------------------------------------
+// Single precision floating point comparisons and SETCC equivalents:
+//--------------------------------------------------------------------------
+
+def : SETCCNegCondReg<setune, R32FP, i32, XORIr32, FCEQf32>;
+def : SETCCNegCondReg<setone, R32FP, i32, XORIr32, FCEQf32>;
+
+def : SETCCBinOpReg<setuge, R32FP, ORr32, FCGTf32, FCEQf32>;
+def : SETCCBinOpReg<setoge, R32FP, ORr32, FCGTf32, FCEQf32>;
+
+def : SETCCBinOpReg<setult, R32FP, NORr32, FCGTf32, FCEQf32>;
+def : SETCCBinOpReg<setolt, R32FP, NORr32, FCGTf32, FCEQf32>;
+
+def : Pat<(setule R32FP:$rA, R32FP:$rB),
+ (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>;
+def : Pat<(setole R32FP:$rA, R32FP:$rB),
+ (XORIr32 (FCGTf32 R32FP:$rA, R32FP:$rB), 0xffffffff)>;
+
+// FP Status and Control Register Write
+// Why isn't rT a don't care in the ISA?
+// Should we create a special RRForm_3 for this guy and zero out the rT?
+def FSCRWf32 :
+ RRForm_1<0b01011101110, (outs R32FP:$rT), (ins R32FP:$rA),
+ "fscrwr\t$rA", SPrecFP,
+ [/* This instruction requires an intrinsic. Note: rT is unused. */]>;
+
+// FP Status and Control Register Read
+def FSCRRf32 :
+ RRForm_2<0b01011101110, (outs R32FP:$rT), (ins),
+ "fscrrd\t$rT", SPrecFP,
+ [/* This instruction requires an intrinsic */]>;
+
+// llvm instruction space
+// How do these map onto cell instructions?
+// fdiv rA rB
+// frest rC rB # c = 1/b (both lines)
+// fi rC rB rC
+// fm rD rA rC # d = a * 1/b
+// fnms rB rD rB rA # b = - (d * b - a) --should == 0 in a perfect world
+// fma rB rB rC rD # b = b * c + d
+// = -(d *b -a) * c + d
+// = a * c - c ( a *b *c - a)
+
+// fcopysign (???)
+
+// Library calls:
+// These llvm instructions will actually map to library calls.
+// All that's needed, then, is to check that the appropriate library is
+// imported and do a brsl to the proper function name.
+// frem # fmod(x, y): x - (x/y) * y
+// (Note: fmod(double, double), fmodf(float,float)
+// fsqrt?
+// fsin?
+// fcos?
+// Unimplemented SPU instruction space
+// floating reciprocal absolute square root estimate (frsqest)
+
+// The following are probably just intrinsics
+// status and control register write
+// status and control register read
+
+//--------------------------------------
+// Floating Point Conversions
+// Signed conversions:
+def CSiFv4f32:
+ CVTIntFPForm<0b0101101110, (outs VECREG:$rT), (ins VECREG:$rA),
+ "csflt\t$rT, $rA, 0", SPrecFP,
+ [(set (v4f32 VECREG:$rT), (sint_to_fp (v4i32 VECREG:$rA)))]>;
+
+// Convert signed integer to floating point
+def CSiFf32 :
+ CVTIntFPForm<0b0101101110, (outs R32FP:$rT), (ins R32C:$rA),
+ "csflt\t$rT, $rA, 0", SPrecFP,
+ [(set R32FP:$rT, (sint_to_fp R32C:$rA))]>;
+
+// Convert unsigned into to float
+def CUiFv4f32 :
+ CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
+ "cuflt\t$rT, $rA, 0", SPrecFP,
+ [(set (v4f32 VECREG:$rT), (uint_to_fp (v4i32 VECREG:$rA)))]>;
+
+def CUiFf32 :
+ CVTIntFPForm<0b1101101110, (outs R32FP:$rT), (ins R32C:$rA),
+ "cuflt\t$rT, $rA, 0", SPrecFP,
+ [(set R32FP:$rT, (uint_to_fp R32C:$rA))]>;
+
+// Convert float to unsigned int
+// Assume that scale = 0
+
+def CFUiv4f32 :
+ CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
+ "cfltu\t$rT, $rA, 0", SPrecFP,
+ [(set (v4i32 VECREG:$rT), (fp_to_uint (v4f32 VECREG:$rA)))]>;
+
+def CFUif32 :
+ CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
+ "cfltu\t$rT, $rA, 0", SPrecFP,
+ [(set R32C:$rT, (fp_to_uint R32FP:$rA))]>;
+
+// Convert float to signed int
+// Assume that scale = 0
+
+def CFSiv4f32 :
+ CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
+ "cflts\t$rT, $rA, 0", SPrecFP,
+ [(set (v4i32 VECREG:$rT), (fp_to_sint (v4f32 VECREG:$rA)))]>;
+
+def CFSif32 :
+ CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
+ "cflts\t$rT, $rA, 0", SPrecFP,
+ [(set R32C:$rT, (fp_to_sint R32FP:$rA))]>;
+
+//===----------------------------------------------------------------------==//
+// Single<->Double precision conversions
+//===----------------------------------------------------------------------==//
+
+// NOTE: We use "vec" name suffix here to avoid confusion (e.g. input is a
+// v4f32, output is v2f64--which goes in the name?)
+
+// Floating point extend single to double
+// NOTE: Not sure if passing in v4f32 to FESDvec is correct since it
+// operates on two double-word slots (i.e. 1st and 3rd fp numbers
+// are ignored).
+def FESDvec :
+ RRForm_1<0b00011101110, (outs VECREG:$rT), (ins VECREG:$rA),
+ "fesd\t$rT, $rA", SPrecFP,
+ [/*(set (v2f64 VECREG:$rT), (fextend (v4f32 VECREG:$rA)))*/]>;
+
+def FESDf32 :
+ RRForm_1<0b00011101110, (outs R64FP:$rT), (ins R32FP:$rA),
+ "fesd\t$rT, $rA", SPrecFP,
+ [(set R64FP:$rT, (fextend R32FP:$rA))]>;
+
+// Floating point round double to single
+//def FRDSvec :
+// RRForm_1<0b10011101110, (outs VECREG:$rT), (ins VECREG:$rA),
+// "frds\t$rT, $rA,", SPrecFP,
+// [(set (v4f32 R32FP:$rT), (fround (v2f64 R64FP:$rA)))]>;
+
+def FRDSf64 :
+ RRForm_1<0b10011101110, (outs R32FP:$rT), (ins R64FP:$rA),
+ "frds\t$rT, $rA", SPrecFP,
+ [(set R32FP:$rT, (fround R64FP:$rA))]>;
+
+//ToDo include anyextend?
+
+//===----------------------------------------------------------------------==//
+// Double precision floating point instructions
+//===----------------------------------------------------------------------==//
+def FAf64 :
+ RRForm<0b00110011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
+ "dfa\t$rT, $rA, $rB", DPrecFP,
+ [(set R64FP:$rT, (fadd R64FP:$rA, R64FP:$rB))]>;
+
+def FAv2f64 :
+ RRForm<0b00110011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ "dfa\t$rT, $rA, $rB", DPrecFP,
+ [(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
+
+def FSf64 :
+ RRForm<0b10100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
+ "dfs\t$rT, $rA, $rB", DPrecFP,
+ [(set R64FP:$rT, (fsub R64FP:$rA, R64FP:$rB))]>;
+
+def FSv2f64 :
+ RRForm<0b10100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ "dfs\t$rT, $rA, $rB", DPrecFP,
+ [(set (v2f64 VECREG:$rT),
+ (fsub (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
+
+def FMf64 :
+ RRForm<0b01100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
+ "dfm\t$rT, $rA, $rB", DPrecFP,
+ [(set R64FP:$rT, (fmul R64FP:$rA, R64FP:$rB))]>;
+
+def FMv2f64:
+ RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
+ "dfm\t$rT, $rA, $rB", DPrecFP,
+ [(set (v2f64 VECREG:$rT),
+ (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
+
+def FMAf64:
+ RRForm<0b00111010110, (outs R64FP:$rT),
+ (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
+ "dfma\t$rT, $rA, $rB", DPrecFP,
+ [(set R64FP:$rT, (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>,
+ RegConstraint<"$rC = $rT">,
+ NoEncode<"$rC">;
+
+def FMAv2f64:
+ RRForm<0b00111010110, (outs VECREG:$rT),
+ (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
+ "dfma\t$rT, $rA, $rB", DPrecFP,
+ [(set (v2f64 VECREG:$rT),
+ (fadd (v2f64 VECREG:$rC),
+ (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>,
+ RegConstraint<"$rC = $rT">,
+ NoEncode<"$rC">;
+
+def FMSf64 :
+ RRForm<0b10111010110, (outs R64FP:$rT),
+ (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
+ "dfms\t$rT, $rA, $rB", DPrecFP,
+ [(set R64FP:$rT, (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))]>,
+ RegConstraint<"$rC = $rT">,
+ NoEncode<"$rC">;
+
+def FMSv2f64 :
+ RRForm<0b10111010110, (outs VECREG:$rT),
+ (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
+ "dfms\t$rT, $rA, $rB", DPrecFP,
+ [(set (v2f64 VECREG:$rT),
+ (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)),
+ (v2f64 VECREG:$rC)))]>;
+
+// DFNMS: - (a * b - c)
+// - (a * b) + c => c - (a * b)
+
+class DFNMSInst<dag OOL, dag IOL, list<dag> pattern>:
+ RRForm<0b01111010110, OOL, IOL, "dfnms\t$rT, $rA, $rB",
+ DPrecFP, pattern>,
+ RegConstraint<"$rC = $rT">,
+ NoEncode<"$rC">;
+
+class DFNMSVecInst<list<dag> pattern>:
+ DFNMSInst<(outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
+ pattern>;
+
+class DFNMSRegInst<list<dag> pattern>:
+ DFNMSInst<(outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
+ pattern>;
+
+multiclass DFMultiplySubtract
+{
+ def v2f64 : DFNMSVecInst<[(set (v2f64 VECREG:$rT),
+ (fsub (v2f64 VECREG:$rC),
+ (fmul (v2f64 VECREG:$rA),
+ (v2f64 VECREG:$rB))))]>;
+
+ def f64 : DFNMSRegInst<[(set R64FP:$rT,
+ (fsub R64FP:$rC,
+ (fmul R64FP:$rA, R64FP:$rB)))]>;
+}
+
+defm DFNMS : DFMultiplySubtract;
+
+// - (a * b + c)
+// - (a * b) - c
+def FNMAf64 :
+ RRForm<0b11111010110, (outs R64FP:$rT),
+ (ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
+ "dfnma\t$rT, $rA, $rB", DPrecFP,
+ [(set R64FP:$rT, (fneg (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB))))]>,
+ RegConstraint<"$rC = $rT">,
+ NoEncode<"$rC">;
+
+def FNMAv2f64 :
+ RRForm<0b11111010110, (outs VECREG:$rT),
+ (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
+ "dfnma\t$rT, $rA, $rB", DPrecFP,
+ [(set (v2f64 VECREG:$rT),
+ (fneg (fadd (v2f64 VECREG:$rC),
+ (fmul (v2f64 VECREG:$rA),
+ (v2f64 VECREG:$rB)))))]>,
+ RegConstraint<"$rC = $rT">,
+ NoEncode<"$rC">;
+
+//===----------------------------------------------------------------------==//
+// Floating point negation and absolute value
+//===----------------------------------------------------------------------==//
+
+def : Pat<(fneg (v4f32 VECREG:$rA)),
+ (XORfnegvec (v4f32 VECREG:$rA),
+ (v4f32 (ILHUv4i32 0x8000)))>;
+
+def : Pat<(fneg R32FP:$rA),
+ (XORfneg32 R32FP:$rA, (ILHUr32 0x8000))>;
+
+// Floating point absolute value
+// Note: f64 fabs is custom-selected.
+
+def : Pat<(fabs R32FP:$rA),
+ (ANDfabs32 R32FP:$rA, (IOHLr32 (ILHUr32 0x7fff), 0xffff))>;
+
+def : Pat<(fabs (v4f32 VECREG:$rA)),
+ (ANDfabsvec (v4f32 VECREG:$rA),
+ (IOHLv4i32 (ILHUv4i32 0x7fff), 0xffff))>;
+
+//===----------------------------------------------------------------------===//
+// Hint for branch instructions:
+//===----------------------------------------------------------------------===//
+def HBRA :
+ HBI16Form<0b0001001,(ins hbrtarget:$brinst, brtarget:$btarg), "hbra\t$brinst, $btarg">;
+
+//===----------------------------------------------------------------------===//
+// Execution, Load NOP (execute NOPs belong in even pipeline, load NOPs belong
+// in the odd pipeline)
+//===----------------------------------------------------------------------===//
+
+def ENOP : SPUInstr<(outs), (ins), "nop", ExecNOP> {
+ let Pattern = [];
+
+ let Inst{0-10} = 0b10000000010;
+ let Inst{11-17} = 0;
+ let Inst{18-24} = 0;
+ let Inst{25-31} = 0;
+}
+
+def LNOP : SPUInstr<(outs), (ins), "lnop", LoadNOP> {
+ let Pattern = [];
+
+ let Inst{0-10} = 0b10000000000;
+ let Inst{11-17} = 0;
+ let Inst{18-24} = 0;
+ let Inst{25-31} = 0;
+}
+
+//===----------------------------------------------------------------------===//
+// Bit conversions (type conversions between vector/packed types)
+// NOTE: Promotions are handled using the XS* instructions.
+//===----------------------------------------------------------------------===//
+def : Pat<(v16i8 (bitconvert (v8i16 VECREG:$src))), (v16i8 VECREG:$src)>;
+def : Pat<(v16i8 (bitconvert (v4i32 VECREG:$src))), (v16i8 VECREG:$src)>;
+def : Pat<(v16i8 (bitconvert (v2i64 VECREG:$src))), (v16i8 VECREG:$src)>;
+def : Pat<(v16i8 (bitconvert (v4f32 VECREG:$src))), (v16i8 VECREG:$src)>;
+def : Pat<(v16i8 (bitconvert (v2f64 VECREG:$src))), (v16i8 VECREG:$src)>;
+
+def : Pat<(v8i16 (bitconvert (v16i8 VECREG:$src))), (v8i16 VECREG:$src)>;
+def : Pat<(v8i16 (bitconvert (v4i32 VECREG:$src))), (v8i16 VECREG:$src)>;
+def : Pat<(v8i16 (bitconvert (v2i64 VECREG:$src))), (v8i16 VECREG:$src)>;
+def : Pat<(v8i16 (bitconvert (v4f32 VECREG:$src))), (v8i16 VECREG:$src)>;
+def : Pat<(v8i16 (bitconvert (v2f64 VECREG:$src))), (v8i16 VECREG:$src)>;
+
+def : Pat<(v4i32 (bitconvert (v16i8 VECREG:$src))), (v4i32 VECREG:$src)>;
+def : Pat<(v4i32 (bitconvert (v8i16 VECREG:$src))), (v4i32 VECREG:$src)>;
+def : Pat<(v4i32 (bitconvert (v2i64 VECREG:$src))), (v4i32 VECREG:$src)>;
+def : Pat<(v4i32 (bitconvert (v4f32 VECREG:$src))), (v4i32 VECREG:$src)>;
+def : Pat<(v4i32 (bitconvert (v2f64 VECREG:$src))), (v4i32 VECREG:$src)>;
+
+def : Pat<(v2i64 (bitconvert (v16i8 VECREG:$src))), (v2i64 VECREG:$src)>;
+def : Pat<(v2i64 (bitconvert (v8i16 VECREG:$src))), (v2i64 VECREG:$src)>;
+def : Pat<(v2i64 (bitconvert (v4i32 VECREG:$src))), (v2i64 VECREG:$src)>;
+def : Pat<(v2i64 (bitconvert (v4f32 VECREG:$src))), (v2i64 VECREG:$src)>;
+def : Pat<(v2i64 (bitconvert (v2f64 VECREG:$src))), (v2i64 VECREG:$src)>;
+
+def : Pat<(v4f32 (bitconvert (v16i8 VECREG:$src))), (v4f32 VECREG:$src)>;
+def : Pat<(v4f32 (bitconvert (v8i16 VECREG:$src))), (v4f32 VECREG:$src)>;
+def : Pat<(v4f32 (bitconvert (v2i64 VECREG:$src))), (v4f32 VECREG:$src)>;
+def : Pat<(v4f32 (bitconvert (v4i32 VECREG:$src))), (v4f32 VECREG:$src)>;
+def : Pat<(v4f32 (bitconvert (v2f64 VECREG:$src))), (v4f32 VECREG:$src)>;
+
+def : Pat<(v2f64 (bitconvert (v16i8 VECREG:$src))), (v2f64 VECREG:$src)>;
+def : Pat<(v2f64 (bitconvert (v8i16 VECREG:$src))), (v2f64 VECREG:$src)>;
+def : Pat<(v2f64 (bitconvert (v4i32 VECREG:$src))), (v2f64 VECREG:$src)>;
+def : Pat<(v2f64 (bitconvert (v2i64 VECREG:$src))), (v2f64 VECREG:$src)>;
+def : Pat<(v2f64 (bitconvert (v4f32 VECREG:$src))), (v2f64 VECREG:$src)>;
+
+def : Pat<(i128 (bitconvert (v16i8 VECREG:$src))),
+ (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
+def : Pat<(i128 (bitconvert (v8i16 VECREG:$src))),
+ (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
+def : Pat<(i128 (bitconvert (v4i32 VECREG:$src))),
+ (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
+def : Pat<(i128 (bitconvert (v2i64 VECREG:$src))),
+ (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
+def : Pat<(i128 (bitconvert (v4f32 VECREG:$src))),
+ (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
+def : Pat<(i128 (bitconvert (v2f64 VECREG:$src))),
+ (COPY_TO_REGCLASS VECREG:$src, GPRC)>;
+
+def : Pat<(v16i8 (bitconvert (i128 GPRC:$src))),
+ (v16i8 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
+def : Pat<(v8i16 (bitconvert (i128 GPRC:$src))),
+ (v8i16 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
+def : Pat<(v4i32 (bitconvert (i128 GPRC:$src))),
+ (v4i32 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
+def : Pat<(v2i64 (bitconvert (i128 GPRC:$src))),
+ (v2i64 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
+def : Pat<(v4f32 (bitconvert (i128 GPRC:$src))),
+ (v4f32 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
+def : Pat<(v2f64 (bitconvert (i128 GPRC:$src))),
+ (v2f64 (COPY_TO_REGCLASS GPRC:$src, VECREG))>;
+
+def : Pat<(i32 (bitconvert R32FP:$rA)),
+ (COPY_TO_REGCLASS R32FP:$rA, R32C)>;
+
+def : Pat<(f32 (bitconvert R32C:$rA)),
+ (COPY_TO_REGCLASS R32C:$rA, R32FP)>;
+
+def : Pat<(i64 (bitconvert R64FP:$rA)),
+ (COPY_TO_REGCLASS R64FP:$rA, R64C)>;
+
+def : Pat<(f64 (bitconvert R64C:$rA)),
+ (COPY_TO_REGCLASS R64C:$rA, R64FP)>;
+
+
+//===----------------------------------------------------------------------===//
+// Instruction patterns:
+//===----------------------------------------------------------------------===//
+
+// General 32-bit constants:
+def : Pat<(i32 imm:$imm),
+ (IOHLr32 (ILHUr32 (HI16 imm:$imm)), (LO16 imm:$imm))>;
+
+// Single precision float constants:
+def : Pat<(f32 fpimm:$imm),
+ (IOHLf32 (ILHUf32 (HI16_f32 fpimm:$imm)), (LO16_f32 fpimm:$imm))>;
+
+// General constant 32-bit vectors
+def : Pat<(v4i32 v4i32Imm:$imm),
+ (IOHLv4i32 (v4i32 (ILHUv4i32 (HI16_vec v4i32Imm:$imm))),
+ (LO16_vec v4i32Imm:$imm))>;
+
+// 8-bit constants
+def : Pat<(i8 imm:$imm),
+ (ILHr8 imm:$imm)>;
+
+//===----------------------------------------------------------------------===//
+// Zero/Any/Sign extensions
+//===----------------------------------------------------------------------===//
+
+// sext 8->32: Sign extend bytes to words
+def : Pat<(sext_inreg R32C:$rSrc, i8),
+ (XSHWr32 (XSBHr32 R32C:$rSrc))>;
+
+def : Pat<(i32 (sext R8C:$rSrc)),
+ (XSHWr16 (XSBHr8 R8C:$rSrc))>;
+
+// sext 8->64: Sign extend bytes to double word
+def : Pat<(sext_inreg R64C:$rSrc, i8),
+ (XSWDr64_inreg (XSHWr64 (XSBHr64 R64C:$rSrc)))>;
+
+def : Pat<(i64 (sext R8C:$rSrc)),
+ (XSWDr64 (XSHWr16 (XSBHr8 R8C:$rSrc)))>;
+
+// zext 8->16: Zero extend bytes to halfwords
+def : Pat<(i16 (zext R8C:$rSrc)),
+ (ANDHIi8i16 R8C:$rSrc, 0xff)>;
+
+// zext 8->32: Zero extend bytes to words
+def : Pat<(i32 (zext R8C:$rSrc)),
+ (ANDIi8i32 R8C:$rSrc, 0xff)>;
+
+// zext 8->64: Zero extend bytes to double words
+def : Pat<(i64 (zext R8C:$rSrc)),
+ (COPY_TO_REGCLASS (SELBv4i32 (ROTQMBYv4i32
+ (COPY_TO_REGCLASS
+ (ANDIi8i32 R8C:$rSrc,0xff), VECREG),
+ 0x4),
+ (ILv4i32 0x0),
+ (FSMBIv4i32 0x0f0f)), R64C)>;
+
+// anyext 8->16: Extend 8->16 bits, irrespective of sign, preserves high bits
+def : Pat<(i16 (anyext R8C:$rSrc)),
+ (ORHIi8i16 R8C:$rSrc, 0)>;
+
+// anyext 8->32: Extend 8->32 bits, irrespective of sign, preserves high bits
+def : Pat<(i32 (anyext R8C:$rSrc)),
+ (COPY_TO_REGCLASS R8C:$rSrc, R32C)>;
+
+// sext 16->64: Sign extend halfword to double word
+def : Pat<(sext_inreg R64C:$rSrc, i16),
+ (XSWDr64_inreg (XSHWr64 R64C:$rSrc))>;
+
+def : Pat<(sext R16C:$rSrc),
+ (XSWDr64 (XSHWr16 R16C:$rSrc))>;
+
+// zext 16->32: Zero extend halfwords to words
+def : Pat<(i32 (zext R16C:$rSrc)),
+ (ANDi16i32 R16C:$rSrc, (ILAr32 0xffff))>;
+
+def : Pat<(i32 (zext (and R16C:$rSrc, 0xf))),
+ (ANDIi16i32 R16C:$rSrc, 0xf)>;
+
+def : Pat<(i32 (zext (and R16C:$rSrc, 0xff))),
+ (ANDIi16i32 R16C:$rSrc, 0xff)>;
+
+def : Pat<(i32 (zext (and R16C:$rSrc, 0xfff))),
+ (ANDIi16i32 R16C:$rSrc, 0xfff)>;
+
+// anyext 16->32: Extend 16->32 bits, irrespective of sign
+def : Pat<(i32 (anyext R16C:$rSrc)),
+ (COPY_TO_REGCLASS R16C:$rSrc, R32C)>;
+
+//===----------------------------------------------------------------------===//
+// Truncates:
+// These truncates are for the SPU's supported types (i8, i16, i32). i64 and
+// above are custom lowered.
+//===----------------------------------------------------------------------===//
+
+def : Pat<(i8 (trunc GPRC:$src)),
+ (COPY_TO_REGCLASS
+ (SHUFBgprc GPRC:$src, GPRC:$src,
+ (IOHLv4i32 (ILHUv4i32 0x0f0f), 0x0f0f)), R8C)>;
+
+def : Pat<(i8 (trunc R64C:$src)),
+ (COPY_TO_REGCLASS
+ (SHUFBv2i64_m32
+ (COPY_TO_REGCLASS R64C:$src, VECREG),
+ (COPY_TO_REGCLASS R64C:$src, VECREG),
+ (IOHLv4i32 (ILHUv4i32 0x0707), 0x0707)), R8C)>;
+
+def : Pat<(i8 (trunc R32C:$src)),
+ (COPY_TO_REGCLASS
+ (SHUFBv4i32_m32
+ (COPY_TO_REGCLASS R32C:$src, VECREG),
+ (COPY_TO_REGCLASS R32C:$src, VECREG),
+ (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)), R8C)>;
+
+def : Pat<(i8 (trunc R16C:$src)),
+ (COPY_TO_REGCLASS
+ (SHUFBv4i32_m32
+ (COPY_TO_REGCLASS R16C:$src, VECREG),
+ (COPY_TO_REGCLASS R16C:$src, VECREG),
+ (IOHLv4i32 (ILHUv4i32 0x0303), 0x0303)), R8C)>;
+
+def : Pat<(i16 (trunc GPRC:$src)),
+ (COPY_TO_REGCLASS
+ (SHUFBgprc GPRC:$src, GPRC:$src,
+ (IOHLv4i32 (ILHUv4i32 0x0e0f), 0x0e0f)), R16C)>;
+
+def : Pat<(i16 (trunc R64C:$src)),
+ (COPY_TO_REGCLASS
+ (SHUFBv2i64_m32
+ (COPY_TO_REGCLASS R64C:$src, VECREG),
+ (COPY_TO_REGCLASS R64C:$src, VECREG),
+ (IOHLv4i32 (ILHUv4i32 0x0607), 0x0607)), R16C)>;
+
+def : Pat<(i16 (trunc R32C:$src)),
+ (COPY_TO_REGCLASS
+ (SHUFBv4i32_m32
+ (COPY_TO_REGCLASS R32C:$src, VECREG),
+ (COPY_TO_REGCLASS R32C:$src, VECREG),
+ (IOHLv4i32 (ILHUv4i32 0x0203), 0x0203)), R16C)>;
+
+def : Pat<(i32 (trunc GPRC:$src)),
+ (COPY_TO_REGCLASS
+ (SHUFBgprc GPRC:$src, GPRC:$src,
+ (IOHLv4i32 (ILHUv4i32 0x0c0d), 0x0e0f)), R32C)>;
+
+def : Pat<(i32 (trunc R64C:$src)),
+ (COPY_TO_REGCLASS
+ (SHUFBv2i64_m32
+ (COPY_TO_REGCLASS R64C:$src, VECREG),
+ (COPY_TO_REGCLASS R64C:$src, VECREG),
+ (IOHLv4i32 (ILHUv4i32 0x0405), 0x0607)), R32C)>;
+
+//===----------------------------------------------------------------------===//
+// Address generation: SPU, like PPC, has to split addresses into high and
+// low parts in order to load them into a register.
+//===----------------------------------------------------------------------===//
+
+def : Pat<(SPUaform tglobaladdr:$in, 0), (ILAlsa tglobaladdr:$in)>;
+def : Pat<(SPUaform texternalsym:$in, 0), (ILAlsa texternalsym:$in)>;
+def : Pat<(SPUaform tjumptable:$in, 0), (ILAlsa tjumptable:$in)>;
+def : Pat<(SPUaform tconstpool:$in, 0), (ILAlsa tconstpool:$in)>;
+
+def : Pat<(SPUindirect (SPUhi tglobaladdr:$in, 0),
+ (SPUlo tglobaladdr:$in, 0)),
+ (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;
+
+def : Pat<(SPUindirect (SPUhi texternalsym:$in, 0),
+ (SPUlo texternalsym:$in, 0)),
+ (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;
+
+def : Pat<(SPUindirect (SPUhi tjumptable:$in, 0),
+ (SPUlo tjumptable:$in, 0)),
+ (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;
+
+def : Pat<(SPUindirect (SPUhi tconstpool:$in, 0),
+ (SPUlo tconstpool:$in, 0)),
+ (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;
+
+def : Pat<(add (SPUhi tglobaladdr:$in, 0), (SPUlo tglobaladdr:$in, 0)),
+ (IOHLlo (ILHUhi tglobaladdr:$in), tglobaladdr:$in)>;
+
+def : Pat<(add (SPUhi texternalsym:$in, 0), (SPUlo texternalsym:$in, 0)),
+ (IOHLlo (ILHUhi texternalsym:$in), texternalsym:$in)>;
+
+def : Pat<(add (SPUhi tjumptable:$in, 0), (SPUlo tjumptable:$in, 0)),
+ (IOHLlo (ILHUhi tjumptable:$in), tjumptable:$in)>;
+
+def : Pat<(add (SPUhi tconstpool:$in, 0), (SPUlo tconstpool:$in, 0)),
+ (IOHLlo (ILHUhi tconstpool:$in), tconstpool:$in)>;
+
+// Intrinsics:
+include "CellSDKIntrinsics.td"
+// Various math operator instruction sequences
+include "SPUMathInstr.td"
+// 64-bit "instructions"/support
+include "SPU64InstrInfo.td"
+// 128-bit "instructions"/support
+include "SPU128InstrInfo.td"
OpenPOWER on IntegriCloud