summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp495
1 files changed, 495 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp
new file mode 100644
index 0000000..c152011
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp
@@ -0,0 +1,495 @@
+//===-- ARMTargetTransformInfo.cpp - ARM specific TTI ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMTargetTransformInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Target/CostTable.h"
+#include "llvm/Target/TargetLowering.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "armtti"
+
+int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) {
+ assert(Ty->isIntegerTy());
+
+ unsigned Bits = Ty->getPrimitiveSizeInBits();
+ if (Bits == 0 || Bits > 32)
+ return 4;
+
+ int32_t SImmVal = Imm.getSExtValue();
+ uint32_t ZImmVal = Imm.getZExtValue();
+ if (!ST->isThumb()) {
+ if ((SImmVal >= 0 && SImmVal < 65536) ||
+ (ARM_AM::getSOImmVal(ZImmVal) != -1) ||
+ (ARM_AM::getSOImmVal(~ZImmVal) != -1))
+ return 1;
+ return ST->hasV6T2Ops() ? 2 : 3;
+ }
+ if (ST->isThumb2()) {
+ if ((SImmVal >= 0 && SImmVal < 65536) ||
+ (ARM_AM::getT2SOImmVal(ZImmVal) != -1) ||
+ (ARM_AM::getT2SOImmVal(~ZImmVal) != -1))
+ return 1;
+ return ST->hasV6T2Ops() ? 2 : 3;
+ }
+ // Thumb1.
+ if (SImmVal >= 0 && SImmVal < 256)
+ return 1;
+ if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal))
+ return 2;
+ // Load from constantpool.
+ return 3;
+}
+
+int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) {
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ // Single to/from double precision conversions.
+ static const CostTblEntry NEONFltDblTbl[] = {
+ // Vector fptrunc/fpext conversions.
+ { ISD::FP_ROUND, MVT::v2f64, 2 },
+ { ISD::FP_EXTEND, MVT::v2f32, 2 },
+ { ISD::FP_EXTEND, MVT::v4f32, 4 }
+ };
+
+ if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND ||
+ ISD == ISD::FP_EXTEND)) {
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
+ if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second))
+ return LT.first * Entry->Cost;
+ }
+
+ EVT SrcTy = TLI->getValueType(DL, Src);
+ EVT DstTy = TLI->getValueType(DL, Dst);
+
+ if (!SrcTy.isSimple() || !DstTy.isSimple())
+ return BaseT::getCastInstrCost(Opcode, Dst, Src);
+
+ // Some arithmetic, load and store operations have specific instructions
+ // to cast up/down their types automatically at no extra cost.
+ // TODO: Get these tables to know at least what the related operations are.
+ static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = {
+ { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
+ { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 },
+ { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
+ { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 },
+ { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 },
+ { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 },
+
+ // The number of vmovl instructions for the extension.
+ { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 },
+ { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
+ { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 },
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 },
+ { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
+ { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 },
+ { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
+ { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
+
+ // Operations that we legalize using splitting.
+ { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
+ { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 },
+
+ // Vector float <-> i32 conversions.
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
+
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 },
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 },
+ { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
+ { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 },
+ { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
+ { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
+ { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
+ { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
+ { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 },
+ { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
+ { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 },
+
+ { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
+ { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
+ { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 },
+ { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 },
+ { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
+ { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
+
+ // Vector double <-> i32 conversions.
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
+
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 },
+ { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
+ { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
+
+ { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
+ { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
+ { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 },
+ { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 },
+ { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 },
+ { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 }
+ };
+
+ if (SrcTy.isVector() && ST->hasNEON()) {
+ if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD,
+ DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT()))
+ return Entry->Cost;
+ }
+
+ // Scalar float to integer conversions.
+ static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = {
+ { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 },
+ { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 },
+ { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 },
+ { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 },
+ { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 },
+ { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 },
+ { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 },
+ { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 },
+ { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 },
+ { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 },
+ { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 },
+ { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 },
+ { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 },
+ { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 },
+ { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 },
+ { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 },
+ { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 },
+ { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 },
+ { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 },
+ { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 }
+ };
+ if (SrcTy.isFloatingPoint() && ST->hasNEON()) {
+ if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD,
+ DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT()))
+ return Entry->Cost;
+ }
+
+ // Scalar integer to float conversions.
+ static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = {
+ { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 },
+ { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 },
+ { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 },
+ { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 },
+ { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 },
+ { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 },
+ { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 },
+ { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 },
+ { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 },
+ { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 },
+ { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 },
+ { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 },
+ { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 },
+ { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 },
+ { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 },
+ { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 },
+ { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 },
+ { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 },
+ { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 },
+ { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 }
+ };
+
+ if (SrcTy.isInteger() && ST->hasNEON()) {
+ if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl,
+ ISD, DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT()))
+ return Entry->Cost;
+ }
+
+ // Scalar integer conversion costs.
+ static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = {
+ // i16 -> i64 requires two dependent operations.
+ { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 },
+
+ // Truncates on i64 are assumed to be free.
+ { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 },
+ { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 },
+ { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 },
+ { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 }
+ };
+
+ if (SrcTy.isInteger()) {
+ if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD,
+ DstTy.getSimpleVT(),
+ SrcTy.getSimpleVT()))
+ return Entry->Cost;
+ }
+
+ return BaseT::getCastInstrCost(Opcode, Dst, Src);
+}
+
+int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
+ unsigned Index) {
+ // Penalize inserting into an D-subregister. We end up with a three times
+ // lower estimated throughput on swift.
+ if (ST->isSwift() &&
+ Opcode == Instruction::InsertElement &&
+ ValTy->isVectorTy() &&
+ ValTy->getScalarSizeInBits() <= 32)
+ return 3;
+
+ if ((Opcode == Instruction::InsertElement ||
+ Opcode == Instruction::ExtractElement)) {
+ // Cross-class copies are expensive on many microarchitectures,
+ // so assume they are expensive by default.
+ if (ValTy->getVectorElementType()->isIntegerTy())
+ return 3;
+
+ // Even if it's not a cross class copy, this likely leads to mixing
+ // of NEON and VFP code and should be therefore penalized.
+ if (ValTy->isVectorTy() &&
+ ValTy->getScalarSizeInBits() <= 32)
+ return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U);
+ }
+
+ return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
+}
+
+int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) {
+
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ // On NEON a a vector select gets lowered to vbsl.
+ if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) {
+ // Lowering of some vector selects is currently far from perfect.
+ static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = {
+ { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 },
+ { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 },
+ { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 }
+ };
+
+ EVT SelCondTy = TLI->getValueType(DL, CondTy);
+ EVT SelValTy = TLI->getValueType(DL, ValTy);
+ if (SelCondTy.isSimple() && SelValTy.isSimple()) {
+ if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD,
+ SelCondTy.getSimpleVT(),
+ SelValTy.getSimpleVT()))
+ return Entry->Cost;
+ }
+
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
+ return LT.first;
+ }
+
+ return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy);
+}
+
+int ARMTTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) {
+ // Address computations in vectorized code with non-consecutive addresses will
+ // likely result in more instructions compared to scalar code where the
+ // computation can more often be merged into the index mode. The resulting
+ // extra micro-ops can significantly decrease throughput.
+ unsigned NumVectorInstToHideOverhead = 10;
+
+ if (Ty->isVectorTy() && IsComplex)
+ return NumVectorInstToHideOverhead;
+
+ // In many cases the address computation is not merged into the instruction
+ // addressing mode.
+ return 1;
+}
+
+int ARMTTIImpl::getFPOpCost(Type *Ty) {
+ // Use similar logic that's in ARMISelLowering:
+ // Any ARM CPU with VFP2 has floating point, but Thumb1 didn't have access
+ // to VFP.
+
+ if (ST->hasVFP2() && !ST->isThumb1Only()) {
+ if (Ty->isFloatTy()) {
+ return TargetTransformInfo::TCC_Basic;
+ }
+
+ if (Ty->isDoubleTy()) {
+ return ST->isFPOnlySP() ? TargetTransformInfo::TCC_Expensive :
+ TargetTransformInfo::TCC_Basic;
+ }
+ }
+
+ return TargetTransformInfo::TCC_Expensive;
+}
+
+int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
+ Type *SubTp) {
+ // We only handle costs of reverse and alternate shuffles for now.
+ if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate)
+ return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
+
+ if (Kind == TTI::SK_Reverse) {
+ static const CostTblEntry NEONShuffleTbl[] = {
+ // Reverse shuffle cost one instruction if we are shuffling within a
+ // double word (vrev) or two if we shuffle a quad word (vrev, vext).
+ {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
+
+ {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
+ {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
+ {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2},
+ {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}};
+
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
+
+ if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE,
+ LT.second))
+ return LT.first * Entry->Cost;
+
+ return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
+ }
+ if (Kind == TTI::SK_Alternate) {
+ static const CostTblEntry NEONAltShuffleTbl[] = {
+ // Alt shuffle cost table for ARM. Cost is the number of instructions
+ // required to create the shuffled vector.
+
+ {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
+ {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1},
+
+ {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
+ {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
+ {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2},
+
+ {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16},
+
+ {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}};
+
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
+ if (const auto *Entry = CostTableLookup(NEONAltShuffleTbl,
+ ISD::VECTOR_SHUFFLE, LT.second))
+ return LT.first * Entry->Cost;
+ return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
+ }
+ return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
+}
+
+int ARMTTIImpl::getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info,
+ TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
+ TTI::OperandValueProperties Opd2PropInfo) {
+
+ int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode);
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
+
+ const unsigned FunctionCallDivCost = 20;
+ const unsigned ReciprocalDivCost = 10;
+ static const CostTblEntry CostTbl[] = {
+ // Division.
+ // These costs are somewhat random. Choose a cost of 20 to indicate that
+ // vectorizing devision (added function call) is going to be very expensive.
+ // Double registers types.
+ { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost},
+ { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost},
+ { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost},
+ { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost},
+ { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost},
+ { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost},
+ { ISD::SDIV, MVT::v4i16, ReciprocalDivCost},
+ { ISD::UDIV, MVT::v4i16, ReciprocalDivCost},
+ { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost},
+ { ISD::SDIV, MVT::v8i8, ReciprocalDivCost},
+ { ISD::UDIV, MVT::v8i8, ReciprocalDivCost},
+ { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost},
+ // Quad register types.
+ { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost},
+ { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost},
+ { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost},
+ { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost},
+ { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost},
+ { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost},
+ { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost},
+ { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost},
+ { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost},
+ { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost},
+ { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost},
+ { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost},
+ { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost},
+ // Multiplication.
+ };
+
+ if (ST->hasNEON())
+ if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second))
+ return LT.first * Entry->Cost;
+
+ int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info,
+ Opd1PropInfo, Opd2PropInfo);
+
+ // This is somewhat of a hack. The problem that we are facing is that SROA
+ // creates a sequence of shift, and, or instructions to construct values.
+ // These sequences are recognized by the ISel and have zero-cost. Not so for
+ // the vectorized code. Because we have support for v2i64 but not i64 those
+ // sequences look particularly beneficial to vectorize.
+ // To work around this we increase the cost of v2i64 operations to make them
+ // seem less beneficial.
+ if (LT.second == MVT::v2i64 &&
+ Op2Info == TargetTransformInfo::OK_UniformConstantValue)
+ Cost += 4;
+
+ return Cost;
+}
+
+int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
+ unsigned AddressSpace) {
+ std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
+
+ if (Src->isVectorTy() && Alignment != 16 &&
+ Src->getVectorElementType()->isDoubleTy()) {
+ // Unaligned loads/stores are extremely inefficient.
+ // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
+ return LT.first * 4;
+ }
+ return LT.first;
+}
+
+int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
+ unsigned Factor,
+ ArrayRef<unsigned> Indices,
+ unsigned Alignment,
+ unsigned AddressSpace) {
+ assert(Factor >= 2 && "Invalid interleave factor");
+ assert(isa<VectorType>(VecTy) && "Expect a vector type");
+
+ // vldN/vstN doesn't support vector types of i64/f64 element.
+ bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64;
+
+ if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits) {
+ unsigned NumElts = VecTy->getVectorNumElements();
+ Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor);
+ unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
+
+ // vldN/vstN only support legal vector types of size 64 or 128 in bits.
+ if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128))
+ return Factor;
+ }
+
+ return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
+ Alignment, AddressSpace);
+}
OpenPOWER on IntegriCloud