diff options
Diffstat (limited to 'contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp')
-rw-r--r-- | contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp | 495 |
1 files changed, 495 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp b/contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp new file mode 100644 index 0000000..c152011 --- /dev/null +++ b/contrib/llvm/lib/Target/ARM/ARMTargetTransformInfo.cpp @@ -0,0 +1,495 @@ +//===-- ARMTargetTransformInfo.cpp - ARM specific TTI ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// + +#include "ARMTargetTransformInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Target/CostTable.h" +#include "llvm/Target/TargetLowering.h" +using namespace llvm; + +#define DEBUG_TYPE "armtti" + +int ARMTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty) { + assert(Ty->isIntegerTy()); + + unsigned Bits = Ty->getPrimitiveSizeInBits(); + if (Bits == 0 || Bits > 32) + return 4; + + int32_t SImmVal = Imm.getSExtValue(); + uint32_t ZImmVal = Imm.getZExtValue(); + if (!ST->isThumb()) { + if ((SImmVal >= 0 && SImmVal < 65536) || + (ARM_AM::getSOImmVal(ZImmVal) != -1) || + (ARM_AM::getSOImmVal(~ZImmVal) != -1)) + return 1; + return ST->hasV6T2Ops() ? 2 : 3; + } + if (ST->isThumb2()) { + if ((SImmVal >= 0 && SImmVal < 65536) || + (ARM_AM::getT2SOImmVal(ZImmVal) != -1) || + (ARM_AM::getT2SOImmVal(~ZImmVal) != -1)) + return 1; + return ST->hasV6T2Ops() ? 2 : 3; + } + // Thumb1. + if (SImmVal >= 0 && SImmVal < 256) + return 1; + if ((~ZImmVal < 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal)) + return 2; + // Load from constantpool. + return 3; +} + +int ARMTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) { + int ISD = TLI->InstructionOpcodeToISD(Opcode); + assert(ISD && "Invalid opcode"); + + // Single to/from double precision conversions. + static const CostTblEntry NEONFltDblTbl[] = { + // Vector fptrunc/fpext conversions. + { ISD::FP_ROUND, MVT::v2f64, 2 }, + { ISD::FP_EXTEND, MVT::v2f32, 2 }, + { ISD::FP_EXTEND, MVT::v4f32, 4 } + }; + + if (Src->isVectorTy() && ST->hasNEON() && (ISD == ISD::FP_ROUND || + ISD == ISD::FP_EXTEND)) { + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); + if (const auto *Entry = CostTableLookup(NEONFltDblTbl, ISD, LT.second)) + return LT.first * Entry->Cost; + } + + EVT SrcTy = TLI->getValueType(DL, Src); + EVT DstTy = TLI->getValueType(DL, Dst); + + if (!SrcTy.isSimple() || !DstTy.isSimple()) + return BaseT::getCastInstrCost(Opcode, Dst, Src); + + // Some arithmetic, load and store operations have specific instructions + // to cast up/down their types automatically at no extra cost. + // TODO: Get these tables to know at least what the related operations are. + static const TypeConversionCostTblEntry NEONVectorConversionTbl[] = { + { ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, + { ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i16, 0 }, + { ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, + { ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i32, 1 }, + { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 0 }, + { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32, 1 }, + + // The number of vmovl instructions for the extension. + { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, + { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16, 3 }, + { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, + { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i8, 3 }, + { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, + { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 7 }, + { ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, + { ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 6 }, + { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, + { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 }, + + // Operations that we legalize using splitting. + { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 }, + { ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 3 }, + + // Vector float <-> i32 conversions. + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 }, + + { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, + { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8, 3 }, + { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, + { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 2 }, + { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, + { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8, 3 }, + { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, + { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 }, + { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 }, + { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, + { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 }, + { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, + { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 8 }, + { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, + { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 4 }, + + { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 }, + { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 }, + { ISD::FP_TO_SINT, MVT::v4i8, MVT::v4f32, 3 }, + { ISD::FP_TO_UINT, MVT::v4i8, MVT::v4f32, 3 }, + { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 }, + { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 }, + + // Vector double <-> i32 conversions. + { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, + + { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8, 4 }, + { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 3 }, + { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, + { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 }, + + { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 }, + { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 }, + { ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 4 }, + { ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 4 }, + { ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f32, 8 }, + { ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 8 } + }; + + if (SrcTy.isVector() && ST->hasNEON()) { + if (const auto *Entry = ConvertCostTableLookup(NEONVectorConversionTbl, ISD, + DstTy.getSimpleVT(), + SrcTy.getSimpleVT())) + return Entry->Cost; + } + + // Scalar float to integer conversions. + static const TypeConversionCostTblEntry NEONFloatConversionTbl[] = { + { ISD::FP_TO_SINT, MVT::i1, MVT::f32, 2 }, + { ISD::FP_TO_UINT, MVT::i1, MVT::f32, 2 }, + { ISD::FP_TO_SINT, MVT::i1, MVT::f64, 2 }, + { ISD::FP_TO_UINT, MVT::i1, MVT::f64, 2 }, + { ISD::FP_TO_SINT, MVT::i8, MVT::f32, 2 }, + { ISD::FP_TO_UINT, MVT::i8, MVT::f32, 2 }, + { ISD::FP_TO_SINT, MVT::i8, MVT::f64, 2 }, + { ISD::FP_TO_UINT, MVT::i8, MVT::f64, 2 }, + { ISD::FP_TO_SINT, MVT::i16, MVT::f32, 2 }, + { ISD::FP_TO_UINT, MVT::i16, MVT::f32, 2 }, + { ISD::FP_TO_SINT, MVT::i16, MVT::f64, 2 }, + { ISD::FP_TO_UINT, MVT::i16, MVT::f64, 2 }, + { ISD::FP_TO_SINT, MVT::i32, MVT::f32, 2 }, + { ISD::FP_TO_UINT, MVT::i32, MVT::f32, 2 }, + { ISD::FP_TO_SINT, MVT::i32, MVT::f64, 2 }, + { ISD::FP_TO_UINT, MVT::i32, MVT::f64, 2 }, + { ISD::FP_TO_SINT, MVT::i64, MVT::f32, 10 }, + { ISD::FP_TO_UINT, MVT::i64, MVT::f32, 10 }, + { ISD::FP_TO_SINT, MVT::i64, MVT::f64, 10 }, + { ISD::FP_TO_UINT, MVT::i64, MVT::f64, 10 } + }; + if (SrcTy.isFloatingPoint() && ST->hasNEON()) { + if (const auto *Entry = ConvertCostTableLookup(NEONFloatConversionTbl, ISD, + DstTy.getSimpleVT(), + SrcTy.getSimpleVT())) + return Entry->Cost; + } + + // Scalar integer to float conversions. + static const TypeConversionCostTblEntry NEONIntegerConversionTbl[] = { + { ISD::SINT_TO_FP, MVT::f32, MVT::i1, 2 }, + { ISD::UINT_TO_FP, MVT::f32, MVT::i1, 2 }, + { ISD::SINT_TO_FP, MVT::f64, MVT::i1, 2 }, + { ISD::UINT_TO_FP, MVT::f64, MVT::i1, 2 }, + { ISD::SINT_TO_FP, MVT::f32, MVT::i8, 2 }, + { ISD::UINT_TO_FP, MVT::f32, MVT::i8, 2 }, + { ISD::SINT_TO_FP, MVT::f64, MVT::i8, 2 }, + { ISD::UINT_TO_FP, MVT::f64, MVT::i8, 2 }, + { ISD::SINT_TO_FP, MVT::f32, MVT::i16, 2 }, + { ISD::UINT_TO_FP, MVT::f32, MVT::i16, 2 }, + { ISD::SINT_TO_FP, MVT::f64, MVT::i16, 2 }, + { ISD::UINT_TO_FP, MVT::f64, MVT::i16, 2 }, + { ISD::SINT_TO_FP, MVT::f32, MVT::i32, 2 }, + { ISD::UINT_TO_FP, MVT::f32, MVT::i32, 2 }, + { ISD::SINT_TO_FP, MVT::f64, MVT::i32, 2 }, + { ISD::UINT_TO_FP, MVT::f64, MVT::i32, 2 }, + { ISD::SINT_TO_FP, MVT::f32, MVT::i64, 10 }, + { ISD::UINT_TO_FP, MVT::f32, MVT::i64, 10 }, + { ISD::SINT_TO_FP, MVT::f64, MVT::i64, 10 }, + { ISD::UINT_TO_FP, MVT::f64, MVT::i64, 10 } + }; + + if (SrcTy.isInteger() && ST->hasNEON()) { + if (const auto *Entry = ConvertCostTableLookup(NEONIntegerConversionTbl, + ISD, DstTy.getSimpleVT(), + SrcTy.getSimpleVT())) + return Entry->Cost; + } + + // Scalar integer conversion costs. + static const TypeConversionCostTblEntry ARMIntegerConversionTbl[] = { + // i16 -> i64 requires two dependent operations. + { ISD::SIGN_EXTEND, MVT::i64, MVT::i16, 2 }, + + // Truncates on i64 are assumed to be free. + { ISD::TRUNCATE, MVT::i32, MVT::i64, 0 }, + { ISD::TRUNCATE, MVT::i16, MVT::i64, 0 }, + { ISD::TRUNCATE, MVT::i8, MVT::i64, 0 }, + { ISD::TRUNCATE, MVT::i1, MVT::i64, 0 } + }; + + if (SrcTy.isInteger()) { + if (const auto *Entry = ConvertCostTableLookup(ARMIntegerConversionTbl, ISD, + DstTy.getSimpleVT(), + SrcTy.getSimpleVT())) + return Entry->Cost; + } + + return BaseT::getCastInstrCost(Opcode, Dst, Src); +} + +int ARMTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, + unsigned Index) { + // Penalize inserting into an D-subregister. We end up with a three times + // lower estimated throughput on swift. + if (ST->isSwift() && + Opcode == Instruction::InsertElement && + ValTy->isVectorTy() && + ValTy->getScalarSizeInBits() <= 32) + return 3; + + if ((Opcode == Instruction::InsertElement || + Opcode == Instruction::ExtractElement)) { + // Cross-class copies are expensive on many microarchitectures, + // so assume they are expensive by default. + if (ValTy->getVectorElementType()->isIntegerTy()) + return 3; + + // Even if it's not a cross class copy, this likely leads to mixing + // of NEON and VFP code and should be therefore penalized. + if (ValTy->isVectorTy() && + ValTy->getScalarSizeInBits() <= 32) + return std::max(BaseT::getVectorInstrCost(Opcode, ValTy, Index), 2U); + } + + return BaseT::getVectorInstrCost(Opcode, ValTy, Index); +} + +int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy) { + + int ISD = TLI->InstructionOpcodeToISD(Opcode); + // On NEON a a vector select gets lowered to vbsl. + if (ST->hasNEON() && ValTy->isVectorTy() && ISD == ISD::SELECT) { + // Lowering of some vector selects is currently far from perfect. + static const TypeConversionCostTblEntry NEONVectorSelectTbl[] = { + { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4*4 + 1*2 + 1 }, + { ISD::SELECT, MVT::v8i1, MVT::v8i64, 50 }, + { ISD::SELECT, MVT::v16i1, MVT::v16i64, 100 } + }; + + EVT SelCondTy = TLI->getValueType(DL, CondTy); + EVT SelValTy = TLI->getValueType(DL, ValTy); + if (SelCondTy.isSimple() && SelValTy.isSimple()) { + if (const auto *Entry = ConvertCostTableLookup(NEONVectorSelectTbl, ISD, + SelCondTy.getSimpleVT(), + SelValTy.getSimpleVT())) + return Entry->Cost; + } + + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); + return LT.first; + } + + return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy); +} + +int ARMTTIImpl::getAddressComputationCost(Type *Ty, bool IsComplex) { + // Address computations in vectorized code with non-consecutive addresses will + // likely result in more instructions compared to scalar code where the + // computation can more often be merged into the index mode. The resulting + // extra micro-ops can significantly decrease throughput. + unsigned NumVectorInstToHideOverhead = 10; + + if (Ty->isVectorTy() && IsComplex) + return NumVectorInstToHideOverhead; + + // In many cases the address computation is not merged into the instruction + // addressing mode. + return 1; +} + +int ARMTTIImpl::getFPOpCost(Type *Ty) { + // Use similar logic that's in ARMISelLowering: + // Any ARM CPU with VFP2 has floating point, but Thumb1 didn't have access + // to VFP. + + if (ST->hasVFP2() && !ST->isThumb1Only()) { + if (Ty->isFloatTy()) { + return TargetTransformInfo::TCC_Basic; + } + + if (Ty->isDoubleTy()) { + return ST->isFPOnlySP() ? TargetTransformInfo::TCC_Expensive : + TargetTransformInfo::TCC_Basic; + } + } + + return TargetTransformInfo::TCC_Expensive; +} + +int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, + Type *SubTp) { + // We only handle costs of reverse and alternate shuffles for now. + if (Kind != TTI::SK_Reverse && Kind != TTI::SK_Alternate) + return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); + + if (Kind == TTI::SK_Reverse) { + static const CostTblEntry NEONShuffleTbl[] = { + // Reverse shuffle cost one instruction if we are shuffling within a + // double word (vrev) or two if we shuffle a quad word (vrev, vext). + {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, + + {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, + {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, + {ISD::VECTOR_SHUFFLE, MVT::v8i16, 2}, + {ISD::VECTOR_SHUFFLE, MVT::v16i8, 2}}; + + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); + + if (const auto *Entry = CostTableLookup(NEONShuffleTbl, ISD::VECTOR_SHUFFLE, + LT.second)) + return LT.first * Entry->Cost; + + return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); + } + if (Kind == TTI::SK_Alternate) { + static const CostTblEntry NEONAltShuffleTbl[] = { + // Alt shuffle cost table for ARM. Cost is the number of instructions + // required to create the shuffled vector. + + {ISD::VECTOR_SHUFFLE, MVT::v2f32, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1}, + {ISD::VECTOR_SHUFFLE, MVT::v2i32, 1}, + + {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, + {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, + {ISD::VECTOR_SHUFFLE, MVT::v4i16, 2}, + + {ISD::VECTOR_SHUFFLE, MVT::v8i16, 16}, + + {ISD::VECTOR_SHUFFLE, MVT::v16i8, 32}}; + + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp); + if (const auto *Entry = CostTableLookup(NEONAltShuffleTbl, + ISD::VECTOR_SHUFFLE, LT.second)) + return LT.first * Entry->Cost; + return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); + } + return BaseT::getShuffleCost(Kind, Tp, Index, SubTp); +} + +int ARMTTIImpl::getArithmeticInstrCost( + unsigned Opcode, Type *Ty, TTI::OperandValueKind Op1Info, + TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo, + TTI::OperandValueProperties Opd2PropInfo) { + + int ISDOpcode = TLI->InstructionOpcodeToISD(Opcode); + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); + + const unsigned FunctionCallDivCost = 20; + const unsigned ReciprocalDivCost = 10; + static const CostTblEntry CostTbl[] = { + // Division. + // These costs are somewhat random. Choose a cost of 20 to indicate that + // vectorizing devision (added function call) is going to be very expensive. + // Double registers types. + { ISD::SDIV, MVT::v1i64, 1 * FunctionCallDivCost}, + { ISD::UDIV, MVT::v1i64, 1 * FunctionCallDivCost}, + { ISD::SREM, MVT::v1i64, 1 * FunctionCallDivCost}, + { ISD::UREM, MVT::v1i64, 1 * FunctionCallDivCost}, + { ISD::SDIV, MVT::v2i32, 2 * FunctionCallDivCost}, + { ISD::UDIV, MVT::v2i32, 2 * FunctionCallDivCost}, + { ISD::SREM, MVT::v2i32, 2 * FunctionCallDivCost}, + { ISD::UREM, MVT::v2i32, 2 * FunctionCallDivCost}, + { ISD::SDIV, MVT::v4i16, ReciprocalDivCost}, + { ISD::UDIV, MVT::v4i16, ReciprocalDivCost}, + { ISD::SREM, MVT::v4i16, 4 * FunctionCallDivCost}, + { ISD::UREM, MVT::v4i16, 4 * FunctionCallDivCost}, + { ISD::SDIV, MVT::v8i8, ReciprocalDivCost}, + { ISD::UDIV, MVT::v8i8, ReciprocalDivCost}, + { ISD::SREM, MVT::v8i8, 8 * FunctionCallDivCost}, + { ISD::UREM, MVT::v8i8, 8 * FunctionCallDivCost}, + // Quad register types. + { ISD::SDIV, MVT::v2i64, 2 * FunctionCallDivCost}, + { ISD::UDIV, MVT::v2i64, 2 * FunctionCallDivCost}, + { ISD::SREM, MVT::v2i64, 2 * FunctionCallDivCost}, + { ISD::UREM, MVT::v2i64, 2 * FunctionCallDivCost}, + { ISD::SDIV, MVT::v4i32, 4 * FunctionCallDivCost}, + { ISD::UDIV, MVT::v4i32, 4 * FunctionCallDivCost}, + { ISD::SREM, MVT::v4i32, 4 * FunctionCallDivCost}, + { ISD::UREM, MVT::v4i32, 4 * FunctionCallDivCost}, + { ISD::SDIV, MVT::v8i16, 8 * FunctionCallDivCost}, + { ISD::UDIV, MVT::v8i16, 8 * FunctionCallDivCost}, + { ISD::SREM, MVT::v8i16, 8 * FunctionCallDivCost}, + { ISD::UREM, MVT::v8i16, 8 * FunctionCallDivCost}, + { ISD::SDIV, MVT::v16i8, 16 * FunctionCallDivCost}, + { ISD::UDIV, MVT::v16i8, 16 * FunctionCallDivCost}, + { ISD::SREM, MVT::v16i8, 16 * FunctionCallDivCost}, + { ISD::UREM, MVT::v16i8, 16 * FunctionCallDivCost}, + // Multiplication. + }; + + if (ST->hasNEON()) + if (const auto *Entry = CostTableLookup(CostTbl, ISDOpcode, LT.second)) + return LT.first * Entry->Cost; + + int Cost = BaseT::getArithmeticInstrCost(Opcode, Ty, Op1Info, Op2Info, + Opd1PropInfo, Opd2PropInfo); + + // This is somewhat of a hack. The problem that we are facing is that SROA + // creates a sequence of shift, and, or instructions to construct values. + // These sequences are recognized by the ISel and have zero-cost. Not so for + // the vectorized code. Because we have support for v2i64 but not i64 those + // sequences look particularly beneficial to vectorize. + // To work around this we increase the cost of v2i64 operations to make them + // seem less beneficial. + if (LT.second == MVT::v2i64 && + Op2Info == TargetTransformInfo::OK_UniformConstantValue) + Cost += 4; + + return Cost; +} + +int ARMTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, + unsigned AddressSpace) { + std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src); + + if (Src->isVectorTy() && Alignment != 16 && + Src->getVectorElementType()->isDoubleTy()) { + // Unaligned loads/stores are extremely inefficient. + // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr. + return LT.first * 4; + } + return LT.first; +} + +int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, + unsigned Factor, + ArrayRef<unsigned> Indices, + unsigned Alignment, + unsigned AddressSpace) { + assert(Factor >= 2 && "Invalid interleave factor"); + assert(isa<VectorType>(VecTy) && "Expect a vector type"); + + // vldN/vstN doesn't support vector types of i64/f64 element. + bool EltIs64Bits = DL.getTypeSizeInBits(VecTy->getScalarType()) == 64; + + if (Factor <= TLI->getMaxSupportedInterleaveFactor() && !EltIs64Bits) { + unsigned NumElts = VecTy->getVectorNumElements(); + Type *SubVecTy = VectorType::get(VecTy->getScalarType(), NumElts / Factor); + unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy); + + // vldN/vstN only support legal vector types of size 64 or 128 in bits. + if (NumElts % Factor == 0 && (SubVecSize == 64 || SubVecSize == 128)) + return Factor; + } + + return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices, + Alignment, AddressSpace); +} |