summaryrefslogtreecommitdiffstats
path: root/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp')
-rw-r--r--contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp12326
1 files changed, 12326 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp b/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
new file mode 100644
index 0000000..9cfb06b
--- /dev/null
+++ b/contrib/llvm/lib/Target/ARM/ARMISelLowering.cpp
@@ -0,0 +1,12326 @@
+//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the interfaces that ARM uses to lower LLVM code into a
+// selection DAG.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ARMISelLowering.h"
+#include "ARMCallingConv.h"
+#include "ARMConstantPoolValue.h"
+#include "ARMMachineFunctionInfo.h"
+#include "ARMPerfectShuffle.h"
+#include "ARMSubtarget.h"
+#include "ARMTargetMachine.h"
+#include "ARMTargetObjectFile.h"
+#include "MCTargetDesc/ARMAddressingModes.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/CodeGen/CallingConvLower.h"
+#include "llvm/CodeGen/IntrinsicLowering.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineJumpTableInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/IR/CallingConv.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Type.h"
+#include "llvm/MC/MCSectionMachO.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetOptions.h"
+#include <utility>
+using namespace llvm;
+
+#define DEBUG_TYPE "arm-isel"
+
+STATISTIC(NumTailCalls, "Number of tail calls");
+STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
+STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
+
+static cl::opt<bool>
+ARMInterworking("arm-interworking", cl::Hidden,
+ cl::desc("Enable / disable ARM interworking (for debugging only)"),
+ cl::init(true));
+
+namespace {
+ class ARMCCState : public CCState {
+ public:
+ ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
+ SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
+ ParmContext PC)
+ : CCState(CC, isVarArg, MF, locs, C) {
+ assert(((PC == Call) || (PC == Prologue)) &&
+ "ARMCCState users must specify whether their context is call"
+ "or prologue generation.");
+ CallOrPrologue = PC;
+ }
+ };
+}
+
+// The APCS parameter registers.
+static const MCPhysReg GPRArgRegs[] = {
+ ARM::R0, ARM::R1, ARM::R2, ARM::R3
+};
+
+void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
+ MVT PromotedBitwiseVT) {
+ if (VT != PromotedLdStVT) {
+ setOperationAction(ISD::LOAD, VT, Promote);
+ AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
+
+ setOperationAction(ISD::STORE, VT, Promote);
+ AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
+ }
+
+ MVT ElemTy = VT.getVectorElementType();
+ if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
+ setOperationAction(ISD::SETCC, VT, Custom);
+ setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
+ setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
+ if (ElemTy == MVT::i32) {
+ setOperationAction(ISD::SINT_TO_FP, VT, Custom);
+ setOperationAction(ISD::UINT_TO_FP, VT, Custom);
+ setOperationAction(ISD::FP_TO_SINT, VT, Custom);
+ setOperationAction(ISD::FP_TO_UINT, VT, Custom);
+ } else {
+ setOperationAction(ISD::SINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::UINT_TO_FP, VT, Expand);
+ setOperationAction(ISD::FP_TO_SINT, VT, Expand);
+ setOperationAction(ISD::FP_TO_UINT, VT, Expand);
+ }
+ setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
+ setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
+ setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
+ setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
+ setOperationAction(ISD::SELECT, VT, Expand);
+ setOperationAction(ISD::SELECT_CC, VT, Expand);
+ setOperationAction(ISD::VSELECT, VT, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
+ if (VT.isInteger()) {
+ setOperationAction(ISD::SHL, VT, Custom);
+ setOperationAction(ISD::SRA, VT, Custom);
+ setOperationAction(ISD::SRL, VT, Custom);
+ }
+
+ // Promote all bit-wise operations.
+ if (VT.isInteger() && VT != PromotedBitwiseVT) {
+ setOperationAction(ISD::AND, VT, Promote);
+ AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
+ setOperationAction(ISD::OR, VT, Promote);
+ AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
+ setOperationAction(ISD::XOR, VT, Promote);
+ AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
+ }
+
+ // Neon does not support vector divide/remainder operations.
+ setOperationAction(ISD::SDIV, VT, Expand);
+ setOperationAction(ISD::UDIV, VT, Expand);
+ setOperationAction(ISD::FDIV, VT, Expand);
+ setOperationAction(ISD::SREM, VT, Expand);
+ setOperationAction(ISD::UREM, VT, Expand);
+ setOperationAction(ISD::FREM, VT, Expand);
+
+ if (!VT.isFloatingPoint() &&
+ VT != MVT::v2i64 && VT != MVT::v1i64)
+ for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
+ setOperationAction(Opcode, VT, Legal);
+}
+
+void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
+ addRegisterClass(VT, &ARM::DPRRegClass);
+ addTypeForNEON(VT, MVT::f64, MVT::v2i32);
+}
+
+void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
+ addRegisterClass(VT, &ARM::DPairRegClass);
+ addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
+}
+
+ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
+ const ARMSubtarget &STI)
+ : TargetLowering(TM), Subtarget(&STI) {
+ RegInfo = Subtarget->getRegisterInfo();
+ Itins = Subtarget->getInstrItineraryData();
+
+ setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
+
+ if (Subtarget->isTargetMachO()) {
+ // Uses VFP for Thumb libfuncs if available.
+ if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
+ Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
+ static const struct {
+ const RTLIB::Libcall Op;
+ const char * const Name;
+ const ISD::CondCode Cond;
+ } LibraryCalls[] = {
+ // Single-precision floating-point arithmetic.
+ { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
+ { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
+ { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
+ { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
+
+ // Double-precision floating-point arithmetic.
+ { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
+ { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
+ { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
+ { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
+
+ // Single-precision comparisons.
+ { RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE },
+ { RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE },
+ { RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE },
+ { RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE },
+ { RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE },
+ { RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE },
+ { RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE },
+ { RTLIB::O_F32, "__unordsf2vfp", ISD::SETEQ },
+
+ // Double-precision comparisons.
+ { RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE },
+ { RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE },
+ { RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE },
+ { RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE },
+ { RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE },
+ { RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE },
+ { RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE },
+ { RTLIB::O_F64, "__unorddf2vfp", ISD::SETEQ },
+
+ // Floating-point to integer conversions.
+ // i64 conversions are done via library routines even when generating VFP
+ // instructions, so use the same ones.
+ { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID },
+ { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
+ { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID },
+ { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
+
+ // Conversions between floating types.
+ { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID },
+ { RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID },
+
+ // Integer to floating-point conversions.
+ // i64 conversions are done via library routines even when generating VFP
+ // instructions, so use the same ones.
+ // FIXME: There appears to be some naming inconsistency in ARM libgcc:
+ // e.g., __floatunsidf vs. __floatunssidfvfp.
+ { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID },
+ { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
+ { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID },
+ { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
+ };
+
+ for (const auto &LC : LibraryCalls) {
+ setLibcallName(LC.Op, LC.Name);
+ if (LC.Cond != ISD::SETCC_INVALID)
+ setCmpLibcallCC(LC.Op, LC.Cond);
+ }
+ }
+
+ // Set the correct calling convention for ARMv7k WatchOS. It's just
+ // AAPCS_VFP for functions as simple as libcalls.
+ if (Subtarget->isTargetWatchOS()) {
+ for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i)
+ setLibcallCallingConv((RTLIB::Libcall)i, CallingConv::ARM_AAPCS_VFP);
+ }
+ }
+
+ // These libcalls are not available in 32-bit.
+ setLibcallName(RTLIB::SHL_I128, nullptr);
+ setLibcallName(RTLIB::SRL_I128, nullptr);
+ setLibcallName(RTLIB::SRA_I128, nullptr);
+
+ // RTLIB
+ if (Subtarget->isAAPCS_ABI() &&
+ (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
+ Subtarget->isTargetAndroid())) {
+ static const struct {
+ const RTLIB::Libcall Op;
+ const char * const Name;
+ const CallingConv::ID CC;
+ const ISD::CondCode Cond;
+ } LibraryCalls[] = {
+ // Double-precision floating-point arithmetic helper functions
+ // RTABI chapter 4.1.2, Table 2
+ { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+
+ // Double-precision floating-point comparison helper functions
+ // RTABI chapter 4.1.2, Table 3
+ { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
+ { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::O_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
+
+ // Single-precision floating-point arithmetic helper functions
+ // RTABI chapter 4.1.2, Table 4
+ { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+
+ // Single-precision floating-point comparison helper functions
+ // RTABI chapter 4.1.2, Table 5
+ { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
+ { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
+ { RTLIB::O_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
+
+ // Floating-point to integer conversions.
+ // RTABI chapter 4.1.2, Table 6
+ { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+
+ // Conversions between floating types.
+ // RTABI chapter 4.1.2, Table 7
+ { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+
+ // Integer to floating-point conversions.
+ // RTABI chapter 4.1.2, Table 8
+ { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+
+ // Long long helper functions
+ // RTABI chapter 4.2, Table 9
+ { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+
+ // Integer division functions
+ // RTABI chapter 4.3.1
+ { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ };
+
+ for (const auto &LC : LibraryCalls) {
+ setLibcallName(LC.Op, LC.Name);
+ setLibcallCallingConv(LC.Op, LC.CC);
+ if (LC.Cond != ISD::SETCC_INVALID)
+ setCmpLibcallCC(LC.Op, LC.Cond);
+ }
+
+ // EABI dependent RTLIB
+ if (TM.Options.EABIVersion == EABI::EABI4 ||
+ TM.Options.EABIVersion == EABI::EABI5) {
+ static const struct {
+ const RTLIB::Libcall Op;
+ const char *const Name;
+ const CallingConv::ID CC;
+ const ISD::CondCode Cond;
+ } MemOpsLibraryCalls[] = {
+ // Memory operations
+ // RTABI chapter 4.3.4
+ { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
+ };
+
+ for (const auto &LC : MemOpsLibraryCalls) {
+ setLibcallName(LC.Op, LC.Name);
+ setLibcallCallingConv(LC.Op, LC.CC);
+ if (LC.Cond != ISD::SETCC_INVALID)
+ setCmpLibcallCC(LC.Op, LC.Cond);
+ }
+ }
+ }
+
+ if (Subtarget->isTargetWindows()) {
+ static const struct {
+ const RTLIB::Libcall Op;
+ const char * const Name;
+ const CallingConv::ID CC;
+ } LibraryCalls[] = {
+ { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::SDIV_I32, "__rt_sdiv", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::UDIV_I32, "__rt_udiv", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::SDIV_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS_VFP },
+ { RTLIB::UDIV_I64, "__rt_udiv64", CallingConv::ARM_AAPCS_VFP },
+ };
+
+ for (const auto &LC : LibraryCalls) {
+ setLibcallName(LC.Op, LC.Name);
+ setLibcallCallingConv(LC.Op, LC.CC);
+ }
+ }
+
+ // Use divmod compiler-rt calls for iOS 5.0 and later.
+ if (Subtarget->isTargetWatchOS() ||
+ (Subtarget->isTargetIOS() &&
+ !Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
+ setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
+ setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
+ }
+
+ // The half <-> float conversion functions are always soft-float, but are
+ // needed for some targets which use a hard-float calling convention by
+ // default.
+ if (Subtarget->isAAPCS_ABI()) {
+ setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
+ } else {
+ setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
+ setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
+ setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
+ }
+
+ // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
+ // a __gnu_ prefix (which is the default).
+ if (Subtarget->isTargetAEABI()) {
+ setLibcallName(RTLIB::FPROUND_F32_F16, "__aeabi_f2h");
+ setLibcallName(RTLIB::FPROUND_F64_F16, "__aeabi_d2h");
+ setLibcallName(RTLIB::FPEXT_F16_F32, "__aeabi_h2f");
+ }
+
+ if (Subtarget->isThumb1Only())
+ addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
+ else
+ addRegisterClass(MVT::i32, &ARM::GPRRegClass);
+ if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
+ !Subtarget->isThumb1Only()) {
+ addRegisterClass(MVT::f32, &ARM::SPRRegClass);
+ addRegisterClass(MVT::f64, &ARM::DPRRegClass);
+ }
+
+ for (MVT VT : MVT::vector_valuetypes()) {
+ for (MVT InnerVT : MVT::vector_valuetypes()) {
+ setTruncStoreAction(VT, InnerVT, Expand);
+ setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
+ }
+
+ setOperationAction(ISD::MULHS, VT, Expand);
+ setOperationAction(ISD::SMUL_LOHI, VT, Expand);
+ setOperationAction(ISD::MULHU, VT, Expand);
+ setOperationAction(ISD::UMUL_LOHI, VT, Expand);
+
+ setOperationAction(ISD::BSWAP, VT, Expand);
+ }
+
+ setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
+ setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
+
+ setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
+ setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
+
+ if (Subtarget->hasNEON()) {
+ addDRTypeForNEON(MVT::v2f32);
+ addDRTypeForNEON(MVT::v8i8);
+ addDRTypeForNEON(MVT::v4i16);
+ addDRTypeForNEON(MVT::v2i32);
+ addDRTypeForNEON(MVT::v1i64);
+
+ addQRTypeForNEON(MVT::v4f32);
+ addQRTypeForNEON(MVT::v2f64);
+ addQRTypeForNEON(MVT::v16i8);
+ addQRTypeForNEON(MVT::v8i16);
+ addQRTypeForNEON(MVT::v4i32);
+ addQRTypeForNEON(MVT::v2i64);
+
+ // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
+ // neither Neon nor VFP support any arithmetic operations on it.
+ // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
+ // supported for v4f32.
+ setOperationAction(ISD::FADD, MVT::v2f64, Expand);
+ setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
+ setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
+ // FIXME: Code duplication: FDIV and FREM are expanded always, see
+ // ARMTargetLowering::addTypeForNEON method for details.
+ setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
+ setOperationAction(ISD::FREM, MVT::v2f64, Expand);
+ // FIXME: Create unittest.
+ // In another words, find a way when "copysign" appears in DAG with vector
+ // operands.
+ setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
+ // FIXME: Code duplication: SETCC has custom operation action, see
+ // ARMTargetLowering::addTypeForNEON method for details.
+ setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
+ // FIXME: Create unittest for FNEG and for FABS.
+ setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
+ setOperationAction(ISD::FABS, MVT::v2f64, Expand);
+ setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
+ setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
+ setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
+ setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
+ setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
+ setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
+ setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
+ setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
+ // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
+ setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
+ setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
+ setOperationAction(ISD::FMA, MVT::v2f64, Expand);
+
+ setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
+ setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
+ setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
+ setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
+ setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
+ setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
+ setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
+ setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
+ setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
+ setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
+ setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
+
+ // Mark v2f32 intrinsics.
+ setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
+ setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
+ setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
+ setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
+ setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
+ setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
+ setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
+ setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
+ setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
+ setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
+ setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
+
+ // Neon does not support some operations on v1i64 and v2i64 types.
+ setOperationAction(ISD::MUL, MVT::v1i64, Expand);
+ // Custom handling for some quad-vector types to detect VMULL.
+ setOperationAction(ISD::MUL, MVT::v8i16, Custom);
+ setOperationAction(ISD::MUL, MVT::v4i32, Custom);
+ setOperationAction(ISD::MUL, MVT::v2i64, Custom);
+ // Custom handling for some vector types to avoid expensive expansions
+ setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
+ setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
+ setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
+ setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
+ setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
+ setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
+ // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
+ // a destination type that is wider than the source, and nor does
+ // it have a FP_TO_[SU]INT instruction with a narrower destination than
+ // source.
+ setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
+
+ setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
+ setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
+
+ // NEON does not have single instruction CTPOP for vectors with element
+ // types wider than 8-bits. However, custom lowering can leverage the
+ // v8i8/v16i8 vcnt instruction.
+ setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
+ setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
+
+ // NEON does not have single instruction CTTZ for vectors.
+ setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
+ setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
+ setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
+ setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
+
+ setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
+ setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
+ setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
+ setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
+
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
+
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
+
+ // NEON only has FMA instructions as of VFP4.
+ if (!Subtarget->hasVFP4()) {
+ setOperationAction(ISD::FMA, MVT::v2f32, Expand);
+ setOperationAction(ISD::FMA, MVT::v4f32, Expand);
+ }
+
+ setTargetDAGCombine(ISD::INTRINSIC_VOID);
+ setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
+ setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
+ setTargetDAGCombine(ISD::SHL);
+ setTargetDAGCombine(ISD::SRL);
+ setTargetDAGCombine(ISD::SRA);
+ setTargetDAGCombine(ISD::SIGN_EXTEND);
+ setTargetDAGCombine(ISD::ZERO_EXTEND);
+ setTargetDAGCombine(ISD::ANY_EXTEND);
+ setTargetDAGCombine(ISD::BUILD_VECTOR);
+ setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
+ setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
+ setTargetDAGCombine(ISD::STORE);
+ setTargetDAGCombine(ISD::FP_TO_SINT);
+ setTargetDAGCombine(ISD::FP_TO_UINT);
+ setTargetDAGCombine(ISD::FDIV);
+ setTargetDAGCombine(ISD::LOAD);
+
+ // It is legal to extload from v4i8 to v4i16 or v4i32.
+ for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
+ MVT::v2i32}) {
+ for (MVT VT : MVT::integer_vector_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
+ setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
+ setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
+ }
+ }
+ }
+
+ // ARM and Thumb2 support UMLAL/SMLAL.
+ if (!Subtarget->isThumb1Only())
+ setTargetDAGCombine(ISD::ADDC);
+
+ if (Subtarget->isFPOnlySP()) {
+ // When targeting a floating-point unit with only single-precision
+ // operations, f64 is legal for the few double-precision instructions which
+ // are present However, no double-precision operations other than moves,
+ // loads and stores are provided by the hardware.
+ setOperationAction(ISD::FADD, MVT::f64, Expand);
+ setOperationAction(ISD::FSUB, MVT::f64, Expand);
+ setOperationAction(ISD::FMUL, MVT::f64, Expand);
+ setOperationAction(ISD::FMA, MVT::f64, Expand);
+ setOperationAction(ISD::FDIV, MVT::f64, Expand);
+ setOperationAction(ISD::FREM, MVT::f64, Expand);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FGETSIGN, MVT::f64, Expand);
+ setOperationAction(ISD::FNEG, MVT::f64, Expand);
+ setOperationAction(ISD::FABS, MVT::f64, Expand);
+ setOperationAction(ISD::FSQRT, MVT::f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::f64, Expand);
+ setOperationAction(ISD::FCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FPOWI, MVT::f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::f64, Expand);
+ setOperationAction(ISD::FLOG, MVT::f64, Expand);
+ setOperationAction(ISD::FLOG2, MVT::f64, Expand);
+ setOperationAction(ISD::FLOG10, MVT::f64, Expand);
+ setOperationAction(ISD::FEXP, MVT::f64, Expand);
+ setOperationAction(ISD::FEXP2, MVT::f64, Expand);
+ setOperationAction(ISD::FCEIL, MVT::f64, Expand);
+ setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
+ setOperationAction(ISD::FRINT, MVT::f64, Expand);
+ setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
+ setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
+ setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
+ setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
+ setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
+ setOperationAction(ISD::FP_ROUND, MVT::f32, Custom);
+ setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom);
+ }
+
+ computeRegisterProperties(Subtarget->getRegisterInfo());
+
+ // ARM does not have floating-point extending loads.
+ for (MVT VT : MVT::fp_valuetypes()) {
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
+ setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
+ }
+
+ // ... or truncating stores
+ setTruncStoreAction(MVT::f64, MVT::f32, Expand);
+ setTruncStoreAction(MVT::f32, MVT::f16, Expand);
+ setTruncStoreAction(MVT::f64, MVT::f16, Expand);
+
+ // ARM does not have i1 sign extending load.
+ for (MVT VT : MVT::integer_valuetypes())
+ setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
+
+ // ARM supports all 4 flavors of integer indexed load / store.
+ if (!Subtarget->isThumb1Only()) {
+ for (unsigned im = (unsigned)ISD::PRE_INC;
+ im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
+ setIndexedLoadAction(im, MVT::i1, Legal);
+ setIndexedLoadAction(im, MVT::i8, Legal);
+ setIndexedLoadAction(im, MVT::i16, Legal);
+ setIndexedLoadAction(im, MVT::i32, Legal);
+ setIndexedStoreAction(im, MVT::i1, Legal);
+ setIndexedStoreAction(im, MVT::i8, Legal);
+ setIndexedStoreAction(im, MVT::i16, Legal);
+ setIndexedStoreAction(im, MVT::i32, Legal);
+ }
+ }
+
+ setOperationAction(ISD::SADDO, MVT::i32, Custom);
+ setOperationAction(ISD::UADDO, MVT::i32, Custom);
+ setOperationAction(ISD::SSUBO, MVT::i32, Custom);
+ setOperationAction(ISD::USUBO, MVT::i32, Custom);
+
+ // i64 operation support.
+ setOperationAction(ISD::MUL, MVT::i64, Expand);
+ setOperationAction(ISD::MULHU, MVT::i32, Expand);
+ if (Subtarget->isThumb1Only()) {
+ setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
+ setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
+ }
+ if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
+ || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
+ setOperationAction(ISD::MULHS, MVT::i32, Expand);
+
+ setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
+ setOperationAction(ISD::SRL, MVT::i64, Custom);
+ setOperationAction(ISD::SRA, MVT::i64, Custom);
+
+ if (!Subtarget->isThumb1Only()) {
+ // FIXME: We should do this for Thumb1 as well.
+ setOperationAction(ISD::ADDC, MVT::i32, Custom);
+ setOperationAction(ISD::ADDE, MVT::i32, Custom);
+ setOperationAction(ISD::SUBC, MVT::i32, Custom);
+ setOperationAction(ISD::SUBE, MVT::i32, Custom);
+ }
+
+ if (!Subtarget->isThumb1Only())
+ setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
+
+ // ARM does not have ROTL.
+ setOperationAction(ISD::ROTL, MVT::i32, Expand);
+ for (MVT VT : MVT::vector_valuetypes()) {
+ setOperationAction(ISD::ROTL, VT, Expand);
+ setOperationAction(ISD::ROTR, VT, Expand);
+ }
+ setOperationAction(ISD::CTTZ, MVT::i32, Custom);
+ setOperationAction(ISD::CTPOP, MVT::i32, Expand);
+ if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
+ setOperationAction(ISD::CTLZ, MVT::i32, Expand);
+
+ // These just redirect to CTTZ and CTLZ on ARM.
+ setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i32 , Expand);
+ setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i32 , Expand);
+
+ // @llvm.readcyclecounter requires the Performance Monitors extension.
+ // Default to the 0 expansion on unsupported platforms.
+ // FIXME: Technically there are older ARM CPUs that have
+ // implementation-specific ways of obtaining this information.
+ if (Subtarget->hasPerfMon())
+ setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
+
+ // Only ARMv6 has BSWAP.
+ if (!Subtarget->hasV6Ops())
+ setOperationAction(ISD::BSWAP, MVT::i32, Expand);
+
+ if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
+ !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
+ // These are expanded into libcalls if the cpu doesn't have HW divider.
+ setOperationAction(ISD::SDIV, MVT::i32, LibCall);
+ setOperationAction(ISD::UDIV, MVT::i32, LibCall);
+ }
+
+ setOperationAction(ISD::SREM, MVT::i32, Expand);
+ setOperationAction(ISD::UREM, MVT::i32, Expand);
+ // Register based DivRem for AEABI (RTABI 4.2)
+ if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid()) {
+ setOperationAction(ISD::SREM, MVT::i64, Custom);
+ setOperationAction(ISD::UREM, MVT::i64, Custom);
+
+ setLibcallName(RTLIB::SDIVREM_I8, "__aeabi_idivmod");
+ setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
+ setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
+ setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
+ setLibcallName(RTLIB::UDIVREM_I8, "__aeabi_uidivmod");
+ setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
+ setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
+ setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
+
+ setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
+ setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
+
+ setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
+ } else {
+ setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
+ setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
+ }
+
+ setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
+ setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
+ setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
+ setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
+
+ setOperationAction(ISD::TRAP, MVT::Other, Legal);
+
+ // Use the default implementation.
+ setOperationAction(ISD::VASTART, MVT::Other, Custom);
+ setOperationAction(ISD::VAARG, MVT::Other, Expand);
+ setOperationAction(ISD::VACOPY, MVT::Other, Expand);
+ setOperationAction(ISD::VAEND, MVT::Other, Expand);
+ setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
+ setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
+
+ if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
+ else
+ setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
+
+ // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
+ // the default expansion. If we are targeting a single threaded system,
+ // then set them all for expand so we can lower them later into their
+ // non-atomic form.
+ if (TM.Options.ThreadModel == ThreadModel::Single)
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
+ else if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only()) {
+ // ATOMIC_FENCE needs custom lowering; the others should have been expanded
+ // to ldrex/strex loops already.
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
+
+ // On v8, we have particularly efficient implementations of atomic fences
+ // if they can be combined with nearby atomic loads and stores.
+ if (!Subtarget->hasV8Ops()) {
+ // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
+ setInsertFencesForAtomic(true);
+ }
+ } else {
+ // If there's anything we can use as a barrier, go through custom lowering
+ // for ATOMIC_FENCE.
+ setOperationAction(ISD::ATOMIC_FENCE, MVT::Other,
+ Subtarget->hasAnyDataBarrier() ? Custom : Expand);
+
+ // Set them all for expansion, which will force libcalls.
+ setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
+ setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
+ // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
+ // Unordered/Monotonic case.
+ setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
+ setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
+ }
+
+ setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
+
+ // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
+ if (!Subtarget->hasV6Ops()) {
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
+ }
+ setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
+
+ if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
+ !Subtarget->isThumb1Only()) {
+ // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
+ // iff target supports vfp2.
+ setOperationAction(ISD::BITCAST, MVT::i64, Custom);
+ setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
+ }
+
+ // We want to custom lower some of our intrinsics.
+ setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
+ setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
+ setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
+ setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
+ if (Subtarget->useSjLjEH())
+ setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
+
+ setOperationAction(ISD::SETCC, MVT::i32, Expand);
+ setOperationAction(ISD::SETCC, MVT::f32, Expand);
+ setOperationAction(ISD::SETCC, MVT::f64, Expand);
+ setOperationAction(ISD::SELECT, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT, MVT::f64, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
+ setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
+
+ setOperationAction(ISD::BRCOND, MVT::Other, Expand);
+ setOperationAction(ISD::BR_CC, MVT::i32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f32, Custom);
+ setOperationAction(ISD::BR_CC, MVT::f64, Custom);
+ setOperationAction(ISD::BR_JT, MVT::Other, Custom);
+
+ // We don't support sin/cos/fmod/copysign/pow
+ setOperationAction(ISD::FSIN, MVT::f64, Expand);
+ setOperationAction(ISD::FSIN, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
+ setOperationAction(ISD::FREM, MVT::f64, Expand);
+ setOperationAction(ISD::FREM, MVT::f32, Expand);
+ if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
+ !Subtarget->isThumb1Only()) {
+ setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
+ setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
+ }
+ setOperationAction(ISD::FPOW, MVT::f64, Expand);
+ setOperationAction(ISD::FPOW, MVT::f32, Expand);
+
+ if (!Subtarget->hasVFP4()) {
+ setOperationAction(ISD::FMA, MVT::f64, Expand);
+ setOperationAction(ISD::FMA, MVT::f32, Expand);
+ }
+
+ // Various VFP goodness
+ if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
+ // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
+ if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
+ setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
+ }
+
+ // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
+ if (!Subtarget->hasFP16()) {
+ setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
+ setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
+ }
+ }
+
+ // Combine sin / cos into one node or libcall if possible.
+ if (Subtarget->hasSinCos()) {
+ setLibcallName(RTLIB::SINCOS_F32, "sincosf");
+ setLibcallName(RTLIB::SINCOS_F64, "sincos");
+ if (Subtarget->isTargetWatchOS()) {
+ setLibcallCallingConv(RTLIB::SINCOS_F32, CallingConv::ARM_AAPCS_VFP);
+ setLibcallCallingConv(RTLIB::SINCOS_F64, CallingConv::ARM_AAPCS_VFP);
+ }
+ if (Subtarget->isTargetIOS() || Subtarget->isTargetWatchOS()) {
+ // For iOS, we don't want to the normal expansion of a libcall to
+ // sincos. We want to issue a libcall to __sincos_stret.
+ setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
+ setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
+ }
+ }
+
+ // FP-ARMv8 implements a lot of rounding-like FP operations.
+ if (Subtarget->hasFPARMv8()) {
+ setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
+ setOperationAction(ISD::FCEIL, MVT::f32, Legal);
+ setOperationAction(ISD::FROUND, MVT::f32, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
+ setOperationAction(ISD::FRINT, MVT::f32, Legal);
+ setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
+ setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
+ setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
+ setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
+ setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
+ setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
+
+ if (!Subtarget->isFPOnlySP()) {
+ setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
+ setOperationAction(ISD::FCEIL, MVT::f64, Legal);
+ setOperationAction(ISD::FROUND, MVT::f64, Legal);
+ setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
+ setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
+ setOperationAction(ISD::FRINT, MVT::f64, Legal);
+ setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
+ setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
+ }
+ }
+
+ if (Subtarget->hasNEON()) {
+ // vmin and vmax aren't available in a scalar form, so we use
+ // a NEON instruction with an undef lane instead.
+ setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
+ setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
+ setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
+ setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
+ setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
+ setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
+ }
+
+ // We have target-specific dag combine patterns for the following nodes:
+ // ARMISD::VMOVRRD - No need to call setTargetDAGCombine
+ setTargetDAGCombine(ISD::ADD);
+ setTargetDAGCombine(ISD::SUB);
+ setTargetDAGCombine(ISD::MUL);
+ setTargetDAGCombine(ISD::AND);
+ setTargetDAGCombine(ISD::OR);
+ setTargetDAGCombine(ISD::XOR);
+
+ if (Subtarget->hasV6Ops())
+ setTargetDAGCombine(ISD::SRL);
+
+ setStackPointerRegisterToSaveRestore(ARM::SP);
+
+ if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
+ !Subtarget->hasVFP2())
+ setSchedulingPreference(Sched::RegPressure);
+ else
+ setSchedulingPreference(Sched::Hybrid);
+
+ //// temporary - rewrite interface to use type
+ MaxStoresPerMemset = 8;
+ MaxStoresPerMemsetOptSize = 4;
+ MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
+ MaxStoresPerMemcpyOptSize = 2;
+ MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
+ MaxStoresPerMemmoveOptSize = 2;
+
+ // On ARM arguments smaller than 4 bytes are extended, so all arguments
+ // are at least 4 bytes aligned.
+ setMinStackArgumentAlignment(4);
+
+ // Prefer likely predicted branches to selects on out-of-order cores.
+ PredictableSelectIsExpensive = Subtarget->isLikeA9();
+
+ setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
+}
+
+bool ARMTargetLowering::useSoftFloat() const {
+ return Subtarget->useSoftFloat();
+}
+
+// FIXME: It might make sense to define the representative register class as the
+// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
+// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
+// SPR's representative would be DPR_VFP2. This should work well if register
+// pressure tracking were modified such that a register use would increment the
+// pressure of the register class's representative and all of it's super
+// classes' representatives transitively. We have not implemented this because
+// of the difficulty prior to coalescing of modeling operand register classes
+// due to the common occurrence of cross class copies and subregister insertions
+// and extractions.
+std::pair<const TargetRegisterClass *, uint8_t>
+ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
+ MVT VT) const {
+ const TargetRegisterClass *RRC = nullptr;
+ uint8_t Cost = 1;
+ switch (VT.SimpleTy) {
+ default:
+ return TargetLowering::findRepresentativeClass(TRI, VT);
+ // Use DPR as representative register class for all floating point
+ // and vector types. Since there are 32 SPR registers and 32 DPR registers so
+ // the cost is 1 for both f32 and f64.
+ case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
+ case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
+ RRC = &ARM::DPRRegClass;
+ // When NEON is used for SP, only half of the register file is available
+ // because operations that define both SP and DP results will be constrained
+ // to the VFP2 class (D0-D15). We currently model this constraint prior to
+ // coalescing by double-counting the SP regs. See the FIXME above.
+ if (Subtarget->useNEONForSinglePrecisionFP())
+ Cost = 2;
+ break;
+ case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
+ case MVT::v4f32: case MVT::v2f64:
+ RRC = &ARM::DPRRegClass;
+ Cost = 2;
+ break;
+ case MVT::v4i64:
+ RRC = &ARM::DPRRegClass;
+ Cost = 4;
+ break;
+ case MVT::v8i64:
+ RRC = &ARM::DPRRegClass;
+ Cost = 8;
+ break;
+ }
+ return std::make_pair(RRC, Cost);
+}
+
+const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
+ switch ((ARMISD::NodeType)Opcode) {
+ case ARMISD::FIRST_NUMBER: break;
+ case ARMISD::Wrapper: return "ARMISD::Wrapper";
+ case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
+ case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
+ case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
+ case ARMISD::CALL: return "ARMISD::CALL";
+ case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
+ case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
+ case ARMISD::tCALL: return "ARMISD::tCALL";
+ case ARMISD::BRCOND: return "ARMISD::BRCOND";
+ case ARMISD::BR_JT: return "ARMISD::BR_JT";
+ case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
+ case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
+ case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG";
+ case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
+ case ARMISD::CMP: return "ARMISD::CMP";
+ case ARMISD::CMN: return "ARMISD::CMN";
+ case ARMISD::CMPZ: return "ARMISD::CMPZ";
+ case ARMISD::CMPFP: return "ARMISD::CMPFP";
+ case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
+ case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
+ case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
+
+ case ARMISD::CMOV: return "ARMISD::CMOV";
+
+ case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
+ case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
+ case ARMISD::RRX: return "ARMISD::RRX";
+
+ case ARMISD::ADDC: return "ARMISD::ADDC";
+ case ARMISD::ADDE: return "ARMISD::ADDE";
+ case ARMISD::SUBC: return "ARMISD::SUBC";
+ case ARMISD::SUBE: return "ARMISD::SUBE";
+
+ case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
+ case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
+
+ case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
+ case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
+ case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
+
+ case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
+
+ case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
+
+ case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
+
+ case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
+
+ case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
+
+ case ARMISD::WIN__CHKSTK: return "ARMISD:::WIN__CHKSTK";
+ case ARMISD::WIN__DBZCHK: return "ARMISD::WIN__DBZCHK";
+
+ case ARMISD::VCEQ: return "ARMISD::VCEQ";
+ case ARMISD::VCEQZ: return "ARMISD::VCEQZ";
+ case ARMISD::VCGE: return "ARMISD::VCGE";
+ case ARMISD::VCGEZ: return "ARMISD::VCGEZ";
+ case ARMISD::VCLEZ: return "ARMISD::VCLEZ";
+ case ARMISD::VCGEU: return "ARMISD::VCGEU";
+ case ARMISD::VCGT: return "ARMISD::VCGT";
+ case ARMISD::VCGTZ: return "ARMISD::VCGTZ";
+ case ARMISD::VCLTZ: return "ARMISD::VCLTZ";
+ case ARMISD::VCGTU: return "ARMISD::VCGTU";
+ case ARMISD::VTST: return "ARMISD::VTST";
+
+ case ARMISD::VSHL: return "ARMISD::VSHL";
+ case ARMISD::VSHRs: return "ARMISD::VSHRs";
+ case ARMISD::VSHRu: return "ARMISD::VSHRu";
+ case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
+ case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
+ case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
+ case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
+ case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
+ case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
+ case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
+ case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
+ case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
+ case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
+ case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
+ case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
+ case ARMISD::VSLI: return "ARMISD::VSLI";
+ case ARMISD::VSRI: return "ARMISD::VSRI";
+ case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
+ case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
+ case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
+ case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
+ case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
+ case ARMISD::VDUP: return "ARMISD::VDUP";
+ case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
+ case ARMISD::VEXT: return "ARMISD::VEXT";
+ case ARMISD::VREV64: return "ARMISD::VREV64";
+ case ARMISD::VREV32: return "ARMISD::VREV32";
+ case ARMISD::VREV16: return "ARMISD::VREV16";
+ case ARMISD::VZIP: return "ARMISD::VZIP";
+ case ARMISD::VUZP: return "ARMISD::VUZP";
+ case ARMISD::VTRN: return "ARMISD::VTRN";
+ case ARMISD::VTBL1: return "ARMISD::VTBL1";
+ case ARMISD::VTBL2: return "ARMISD::VTBL2";
+ case ARMISD::VMULLs: return "ARMISD::VMULLs";
+ case ARMISD::VMULLu: return "ARMISD::VMULLu";
+ case ARMISD::UMLAL: return "ARMISD::UMLAL";
+ case ARMISD::SMLAL: return "ARMISD::SMLAL";
+ case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
+ case ARMISD::BFI: return "ARMISD::BFI";
+ case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
+ case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
+ case ARMISD::VBSL: return "ARMISD::VBSL";
+ case ARMISD::MEMCPY: return "ARMISD::MEMCPY";
+ case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
+ case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
+ case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
+ case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
+ case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
+ case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
+ case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
+ case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
+ case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
+ case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
+ case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
+ case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
+ case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
+ case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
+ case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
+ case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
+ case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
+ case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
+ case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
+ case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
+ }
+ return nullptr;
+}
+
+EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
+ EVT VT) const {
+ if (!VT.isVector())
+ return getPointerTy(DL);
+ return VT.changeVectorElementTypeToInteger();
+}
+
+/// getRegClassFor - Return the register class that should be used for the
+/// specified value type.
+const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
+ // Map v4i64 to QQ registers but do not make the type legal. Similarly map
+ // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
+ // load / store 4 to 8 consecutive D registers.
+ if (Subtarget->hasNEON()) {
+ if (VT == MVT::v4i64)
+ return &ARM::QQPRRegClass;
+ if (VT == MVT::v8i64)
+ return &ARM::QQQQPRRegClass;
+ }
+ return TargetLowering::getRegClassFor(VT);
+}
+
+// memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
+// source/dest is aligned and the copy size is large enough. We therefore want
+// to align such objects passed to memory intrinsics.
+bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
+ unsigned &PrefAlign) const {
+ if (!isa<MemIntrinsic>(CI))
+ return false;
+ MinSize = 8;
+ // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
+ // cycle faster than 4-byte aligned LDM.
+ PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
+ return true;
+}
+
+// Create a fast isel object.
+FastISel *
+ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
+ const TargetLibraryInfo *libInfo) const {
+ return ARM::createFastISel(funcInfo, libInfo);
+}
+
+Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
+ unsigned NumVals = N->getNumValues();
+ if (!NumVals)
+ return Sched::RegPressure;
+
+ for (unsigned i = 0; i != NumVals; ++i) {
+ EVT VT = N->getValueType(i);
+ if (VT == MVT::Glue || VT == MVT::Other)
+ continue;
+ if (VT.isFloatingPoint() || VT.isVector())
+ return Sched::ILP;
+ }
+
+ if (!N->isMachineOpcode())
+ return Sched::RegPressure;
+
+ // Load are scheduled for latency even if there instruction itinerary
+ // is not available.
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
+
+ if (MCID.getNumDefs() == 0)
+ return Sched::RegPressure;
+ if (!Itins->isEmpty() &&
+ Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
+ return Sched::ILP;
+
+ return Sched::RegPressure;
+}
+
+//===----------------------------------------------------------------------===//
+// Lowering Code
+//===----------------------------------------------------------------------===//
+
+/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
+static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
+ switch (CC) {
+ default: llvm_unreachable("Unknown condition code!");
+ case ISD::SETNE: return ARMCC::NE;
+ case ISD::SETEQ: return ARMCC::EQ;
+ case ISD::SETGT: return ARMCC::GT;
+ case ISD::SETGE: return ARMCC::GE;
+ case ISD::SETLT: return ARMCC::LT;
+ case ISD::SETLE: return ARMCC::LE;
+ case ISD::SETUGT: return ARMCC::HI;
+ case ISD::SETUGE: return ARMCC::HS;
+ case ISD::SETULT: return ARMCC::LO;
+ case ISD::SETULE: return ARMCC::LS;
+ }
+}
+
+/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
+static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
+ ARMCC::CondCodes &CondCode2) {
+ CondCode2 = ARMCC::AL;
+ switch (CC) {
+ default: llvm_unreachable("Unknown FP condition!");
+ case ISD::SETEQ:
+ case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
+ case ISD::SETGT:
+ case ISD::SETOGT: CondCode = ARMCC::GT; break;
+ case ISD::SETGE:
+ case ISD::SETOGE: CondCode = ARMCC::GE; break;
+ case ISD::SETOLT: CondCode = ARMCC::MI; break;
+ case ISD::SETOLE: CondCode = ARMCC::LS; break;
+ case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
+ case ISD::SETO: CondCode = ARMCC::VC; break;
+ case ISD::SETUO: CondCode = ARMCC::VS; break;
+ case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
+ case ISD::SETUGT: CondCode = ARMCC::HI; break;
+ case ISD::SETUGE: CondCode = ARMCC::PL; break;
+ case ISD::SETLT:
+ case ISD::SETULT: CondCode = ARMCC::LT; break;
+ case ISD::SETLE:
+ case ISD::SETULE: CondCode = ARMCC::LE; break;
+ case ISD::SETNE:
+ case ISD::SETUNE: CondCode = ARMCC::NE; break;
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Calling Convention Implementation
+//===----------------------------------------------------------------------===//
+
+#include "ARMGenCallingConv.inc"
+
+/// getEffectiveCallingConv - Get the effective calling convention, taking into
+/// account presence of floating point hardware and calling convention
+/// limitations, such as support for variadic functions.
+CallingConv::ID
+ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
+ bool isVarArg) const {
+ switch (CC) {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::ARM_AAPCS:
+ case CallingConv::ARM_APCS:
+ case CallingConv::GHC:
+ return CC;
+ case CallingConv::ARM_AAPCS_VFP:
+ return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
+ case CallingConv::C:
+ if (!Subtarget->isAAPCS_ABI())
+ return CallingConv::ARM_APCS;
+ else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
+ getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
+ !isVarArg)
+ return CallingConv::ARM_AAPCS_VFP;
+ else
+ return CallingConv::ARM_AAPCS;
+ case CallingConv::Fast:
+ if (!Subtarget->isAAPCS_ABI()) {
+ if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
+ return CallingConv::Fast;
+ return CallingConv::ARM_APCS;
+ } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
+ return CallingConv::ARM_AAPCS_VFP;
+ else
+ return CallingConv::ARM_AAPCS;
+ }
+}
+
+/// CCAssignFnForNode - Selects the correct CCAssignFn for the given
+/// CallingConvention.
+CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
+ bool Return,
+ bool isVarArg) const {
+ switch (getEffectiveCallingConv(CC, isVarArg)) {
+ default:
+ llvm_unreachable("Unsupported calling convention");
+ case CallingConv::ARM_APCS:
+ return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
+ case CallingConv::ARM_AAPCS:
+ return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
+ case CallingConv::ARM_AAPCS_VFP:
+ return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
+ case CallingConv::Fast:
+ return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
+ case CallingConv::GHC:
+ return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
+ }
+}
+
+/// LowerCallResult - Lower the result values of a call into the
+/// appropriate copies out of appropriate physical registers.
+SDValue
+ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals,
+ bool isThisReturn, SDValue ThisVal) const {
+
+ // Assign locations to each value returned by this call.
+ SmallVector<CCValAssign, 16> RVLocs;
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext(), Call);
+ CCInfo.AnalyzeCallResult(Ins,
+ CCAssignFnForNode(CallConv, /* Return*/ true,
+ isVarArg));
+
+ // Copy all of the result registers out of their specified physreg.
+ for (unsigned i = 0; i != RVLocs.size(); ++i) {
+ CCValAssign VA = RVLocs[i];
+
+ // Pass 'this' value directly from the argument to return value, to avoid
+ // reg unit interference
+ if (i == 0 && isThisReturn) {
+ assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
+ "unexpected return calling convention register assignment");
+ InVals.push_back(ThisVal);
+ continue;
+ }
+
+ SDValue Val;
+ if (VA.needsCustom()) {
+ // Handle f64 or half of a v2f64.
+ SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
+ InFlag);
+ Chain = Lo.getValue(1);
+ InFlag = Lo.getValue(2);
+ VA = RVLocs[++i]; // skip ahead to next loc
+ SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
+ InFlag);
+ Chain = Hi.getValue(1);
+ InFlag = Hi.getValue(2);
+ if (!Subtarget->isLittle())
+ std::swap (Lo, Hi);
+ Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
+
+ if (VA.getLocVT() == MVT::v2f64) {
+ SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
+ DAG.getConstant(0, dl, MVT::i32));
+
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
+ Chain = Lo.getValue(1);
+ InFlag = Lo.getValue(2);
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
+ Chain = Hi.getValue(1);
+ InFlag = Hi.getValue(2);
+ if (!Subtarget->isLittle())
+ std::swap (Lo, Hi);
+ Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
+ DAG.getConstant(1, dl, MVT::i32));
+ }
+ } else {
+ Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
+ InFlag);
+ Chain = Val.getValue(1);
+ InFlag = Val.getValue(2);
+ }
+
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::BCvt:
+ Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
+ break;
+ }
+
+ InVals.push_back(Val);
+ }
+
+ return Chain;
+}
+
+/// LowerMemOpCallTo - Store the argument to the stack.
+SDValue
+ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
+ SDValue StackPtr, SDValue Arg,
+ SDLoc dl, SelectionDAG &DAG,
+ const CCValAssign &VA,
+ ISD::ArgFlagsTy Flags) const {
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
+ PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
+ StackPtr, PtrOff);
+ return DAG.getStore(
+ Chain, dl, Arg, PtrOff,
+ MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset),
+ false, false, 0);
+}
+
+void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG,
+ SDValue Chain, SDValue &Arg,
+ RegsToPassVector &RegsToPass,
+ CCValAssign &VA, CCValAssign &NextVA,
+ SDValue &StackPtr,
+ SmallVectorImpl<SDValue> &MemOpChains,
+ ISD::ArgFlagsTy Flags) const {
+
+ SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Arg);
+ unsigned id = Subtarget->isLittle() ? 0 : 1;
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
+
+ if (NextVA.isRegLoc())
+ RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
+ else {
+ assert(NextVA.isMemLoc());
+ if (!StackPtr.getNode())
+ StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
+ getPointerTy(DAG.getDataLayout()));
+
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
+ dl, DAG, NextVA,
+ Flags));
+ }
+}
+
+/// LowerCall - Lowering a call into a callseq_start <-
+/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
+/// nodes.
+SDValue
+ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
+ SmallVectorImpl<SDValue> &InVals) const {
+ SelectionDAG &DAG = CLI.DAG;
+ SDLoc &dl = CLI.DL;
+ SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
+ SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
+ SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
+ SDValue Chain = CLI.Chain;
+ SDValue Callee = CLI.Callee;
+ bool &isTailCall = CLI.IsTailCall;
+ CallingConv::ID CallConv = CLI.CallConv;
+ bool doesNotRet = CLI.DoesNotReturn;
+ bool isVarArg = CLI.IsVarArg;
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
+ bool isThisReturn = false;
+ bool isSibCall = false;
+ auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
+
+ // Disable tail calls if they're not supported.
+ if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
+ isTailCall = false;
+
+ if (isTailCall) {
+ // Check if it's really possible to do a tail call.
+ isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
+ isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
+ Outs, OutVals, Ins, DAG);
+ if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
+ report_fatal_error("failed to perform tail call elimination on a call "
+ "site marked musttail");
+ // We don't support GuaranteedTailCallOpt for ARM, only automatically
+ // detected sibcalls.
+ if (isTailCall) {
+ ++NumTailCalls;
+ isSibCall = true;
+ }
+ }
+
+ // Analyze operands of the call, assigning locations to each operand.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext(), Call);
+ CCInfo.AnalyzeCallOperands(Outs,
+ CCAssignFnForNode(CallConv, /* Return*/ false,
+ isVarArg));
+
+ // Get a count of how many bytes are to be pushed on the stack.
+ unsigned NumBytes = CCInfo.getNextStackOffset();
+
+ // For tail calls, memory operands are available in our caller's stack.
+ if (isSibCall)
+ NumBytes = 0;
+
+ // Adjust the stack pointer for the new arguments...
+ // These operations are automatically eliminated by the prolog/epilog pass
+ if (!isSibCall)
+ Chain = DAG.getCALLSEQ_START(Chain,
+ DAG.getIntPtrConstant(NumBytes, dl, true), dl);
+
+ SDValue StackPtr =
+ DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
+
+ RegsToPassVector RegsToPass;
+ SmallVector<SDValue, 8> MemOpChains;
+
+ // Walk the register/memloc assignments, inserting copies/loads. In the case
+ // of tail call optimization, arguments are handled later.
+ for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
+ i != e;
+ ++i, ++realArgIdx) {
+ CCValAssign &VA = ArgLocs[i];
+ SDValue Arg = OutVals[realArgIdx];
+ ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
+ bool isByVal = Flags.isByVal();
+
+ // Promote the value if needed.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::SExt:
+ Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::ZExt:
+ Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::AExt:
+ Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
+ break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
+ if (VA.needsCustom()) {
+ if (VA.getLocVT() == MVT::v2f64) {
+ SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(0, dl, MVT::i32));
+ SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(1, dl, MVT::i32));
+
+ PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
+ VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
+
+ VA = ArgLocs[++i]; // skip ahead to next loc
+ if (VA.isRegLoc()) {
+ PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
+ VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
+ } else {
+ assert(VA.isMemLoc());
+
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
+ dl, DAG, VA, Flags));
+ }
+ } else {
+ PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
+ StackPtr, MemOpChains, Flags);
+ }
+ } else if (VA.isRegLoc()) {
+ if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
+ assert(VA.getLocVT() == MVT::i32 &&
+ "unexpected calling convention register assignment");
+ assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
+ "unexpected use of 'returned'");
+ isThisReturn = true;
+ }
+ RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
+ } else if (isByVal) {
+ assert(VA.isMemLoc());
+ unsigned offset = 0;
+
+ // True if this byval aggregate will be split between registers
+ // and memory.
+ unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
+ unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
+
+ if (CurByValIdx < ByValArgsCount) {
+
+ unsigned RegBegin, RegEnd;
+ CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
+
+ EVT PtrVT =
+ DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
+ unsigned int i, j;
+ for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
+ SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
+ SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
+ SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
+ MachinePointerInfo(),
+ false, false, false,
+ DAG.InferPtrAlignment(AddArg));
+ MemOpChains.push_back(Load.getValue(1));
+ RegsToPass.push_back(std::make_pair(j, Load));
+ }
+
+ // If parameter size outsides register area, "offset" value
+ // helps us to calculate stack slot for remained part properly.
+ offset = RegEnd - RegBegin;
+
+ CCInfo.nextInRegsParam();
+ }
+
+ if (Flags.getByValSize() > 4*offset) {
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ unsigned LocMemOffset = VA.getLocMemOffset();
+ SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
+ SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
+ SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
+ SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
+ SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
+ MVT::i32);
+ SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
+ MVT::i32);
+
+ SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
+ MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
+ Ops));
+ }
+ } else if (!isSibCall) {
+ assert(VA.isMemLoc());
+
+ MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
+ dl, DAG, VA, Flags));
+ }
+ }
+
+ if (!MemOpChains.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
+
+ // Build a sequence of copy-to-reg nodes chained together with token chain
+ // and flag operands which copy the outgoing args into the appropriate regs.
+ SDValue InFlag;
+ // Tail call byval lowering might overwrite argument registers so in case of
+ // tail call optimization the copies to registers are lowered later.
+ if (!isTailCall)
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+
+ // For tail calls lower the arguments to the 'real' stack slot.
+ if (isTailCall) {
+ // Force all the incoming stack arguments to be loaded from the stack
+ // before any new outgoing arguments are stored to the stack, because the
+ // outgoing stack slots may alias the incoming argument stack slots, and
+ // the alias isn't otherwise explicit. This is slightly more conservative
+ // than necessary, because it means that each store effectively depends
+ // on every argument instead of just those arguments it would clobber.
+
+ // Do not flag preceding copytoreg stuff together with the following stuff.
+ InFlag = SDValue();
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
+ Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
+ RegsToPass[i].second, InFlag);
+ InFlag = Chain.getValue(1);
+ }
+ InFlag = SDValue();
+ }
+
+ // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
+ // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
+ // node so that legalize doesn't hack it.
+ bool isDirect = false;
+ bool isARMFunc = false;
+ bool isLocalARMFunc = false;
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ auto PtrVt = getPointerTy(DAG.getDataLayout());
+
+ if (Subtarget->genLongCalls()) {
+ assert((Subtarget->isTargetWindows() ||
+ getTargetMachine().getRelocationModel() == Reloc::Static) &&
+ "long-calls with non-static relocation model!");
+ // Handle a global address or an external symbol. If it's not one of
+ // those, the target's already in a register, so we don't need to do
+ // anything extra.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ // Create a constant pool entry for the callee address
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
+
+ // Get the address of the callee into a register
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(
+ PtrVt, dl, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
+ false, false, 0);
+ } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ const char *Sym = S->getSymbol();
+
+ // Create a constant pool entry for the callee address
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
+ ARMPCLabelIndex, 0);
+ // Get the address of the callee into a register
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(
+ PtrVt, dl, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
+ false, false, 0);
+ }
+ } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ isDirect = true;
+ bool isDef = GV->isStrongDefinitionForLinker();
+ bool isStub = (!isDef && Subtarget->isTargetMachO()) &&
+ getTargetMachine().getRelocationModel() != Reloc::Static;
+ isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
+ // ARM call to a local ARM function is predicable.
+ isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
+ // tBX takes a register source operand.
+ if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
+ assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
+ Callee = DAG.getNode(
+ ARMISD::WrapperPIC, dl, PtrVt,
+ DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
+ Callee = DAG.getLoad(PtrVt, dl, DAG.getEntryNode(), Callee,
+ MachinePointerInfo::getGOT(DAG.getMachineFunction()),
+ false, false, true, 0);
+ } else if (Subtarget->isTargetCOFF()) {
+ assert(Subtarget->isTargetWindows() &&
+ "Windows is the only supported COFF target");
+ unsigned TargetFlags = GV->hasDLLImportStorageClass()
+ ? ARMII::MO_DLLIMPORT
+ : ARMII::MO_NO_FLAG;
+ Callee =
+ DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0, TargetFlags);
+ if (GV->hasDLLImportStorageClass())
+ Callee =
+ DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
+ DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
+ MachinePointerInfo::getGOT(DAG.getMachineFunction()),
+ false, false, false, 0);
+ } else {
+ // On ELF targets for PIC code, direct calls should go through the PLT
+ unsigned OpFlags = 0;
+ if (Subtarget->isTargetELF() &&
+ getTargetMachine().getRelocationModel() == Reloc::PIC_)
+ OpFlags = ARMII::MO_PLT;
+ Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, OpFlags);
+ }
+ } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
+ isDirect = true;
+ bool isStub = Subtarget->isTargetMachO() &&
+ getTargetMachine().getRelocationModel() != Reloc::Static;
+ isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
+ // tBX takes a register source operand.
+ const char *Sym = S->getSymbol();
+ if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
+ ARMPCLabelIndex, 4);
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ Callee = DAG.getLoad(
+ PtrVt, dl, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
+ false, false, 0);
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
+ Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
+ } else {
+ unsigned OpFlags = 0;
+ // On ELF targets for PIC code, direct calls should go through the PLT
+ if (Subtarget->isTargetELF() &&
+ getTargetMachine().getRelocationModel() == Reloc::PIC_)
+ OpFlags = ARMII::MO_PLT;
+ Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, OpFlags);
+ }
+ }
+
+ // FIXME: handle tail calls differently.
+ unsigned CallOpc;
+ if (Subtarget->isThumb()) {
+ if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
+ CallOpc = ARMISD::CALL_NOLINK;
+ else
+ CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
+ } else {
+ if (!isDirect && !Subtarget->hasV5TOps())
+ CallOpc = ARMISD::CALL_NOLINK;
+ else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
+ // Emit regular call when code size is the priority
+ !MF.getFunction()->optForMinSize())
+ // "mov lr, pc; b _foo" to avoid confusing the RSP
+ CallOpc = ARMISD::CALL_NOLINK;
+ else
+ CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
+ }
+
+ std::vector<SDValue> Ops;
+ Ops.push_back(Chain);
+ Ops.push_back(Callee);
+
+ // Add argument registers to the end of the list so that they are known live
+ // into the call.
+ for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
+ Ops.push_back(DAG.getRegister(RegsToPass[i].first,
+ RegsToPass[i].second.getValueType()));
+
+ // Add a register mask operand representing the call-preserved registers.
+ if (!isTailCall) {
+ const uint32_t *Mask;
+ const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
+ if (isThisReturn) {
+ // For 'this' returns, use the R0-preserving mask if applicable
+ Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
+ if (!Mask) {
+ // Set isThisReturn to false if the calling convention is not one that
+ // allows 'returned' to be modeled in this way, so LowerCallResult does
+ // not try to pass 'this' straight through
+ isThisReturn = false;
+ Mask = ARI->getCallPreservedMask(MF, CallConv);
+ }
+ } else
+ Mask = ARI->getCallPreservedMask(MF, CallConv);
+
+ assert(Mask && "Missing call preserved mask for calling convention");
+ Ops.push_back(DAG.getRegisterMask(Mask));
+ }
+
+ if (InFlag.getNode())
+ Ops.push_back(InFlag);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ if (isTailCall) {
+ MF.getFrameInfo()->setHasTailCall();
+ return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
+ }
+
+ // Returns a chain and a flag for retval copy to use.
+ Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
+ InFlag = Chain.getValue(1);
+
+ Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
+ DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
+ if (!Ins.empty())
+ InFlag = Chain.getValue(1);
+
+ // Handle result values, copying them out of physregs into vregs that we
+ // return.
+ return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
+ InVals, isThisReturn,
+ isThisReturn ? OutVals[0] : SDValue());
+}
+
+/// HandleByVal - Every parameter *after* a byval parameter is passed
+/// on the stack. Remember the next parameter register to allocate,
+/// and then confiscate the rest of the parameter registers to insure
+/// this.
+void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
+ unsigned Align) const {
+ assert((State->getCallOrPrologue() == Prologue ||
+ State->getCallOrPrologue() == Call) &&
+ "unhandled ParmContext");
+
+ // Byval (as with any stack) slots are always at least 4 byte aligned.
+ Align = std::max(Align, 4U);
+
+ unsigned Reg = State->AllocateReg(GPRArgRegs);
+ if (!Reg)
+ return;
+
+ unsigned AlignInRegs = Align / 4;
+ unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
+ for (unsigned i = 0; i < Waste; ++i)
+ Reg = State->AllocateReg(GPRArgRegs);
+
+ if (!Reg)
+ return;
+
+ unsigned Excess = 4 * (ARM::R4 - Reg);
+
+ // Special case when NSAA != SP and parameter size greater than size of
+ // all remained GPR regs. In that case we can't split parameter, we must
+ // send it to stack. We also must set NCRN to R4, so waste all
+ // remained registers.
+ const unsigned NSAAOffset = State->getNextStackOffset();
+ if (NSAAOffset != 0 && Size > Excess) {
+ while (State->AllocateReg(GPRArgRegs))
+ ;
+ return;
+ }
+
+ // First register for byval parameter is the first register that wasn't
+ // allocated before this method call, so it would be "reg".
+ // If parameter is small enough to be saved in range [reg, r4), then
+ // the end (first after last) register would be reg + param-size-in-regs,
+ // else parameter would be splitted between registers and stack,
+ // end register would be r4 in this case.
+ unsigned ByValRegBegin = Reg;
+ unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
+ State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
+ // Note, first register is allocated in the beginning of function already,
+ // allocate remained amount of registers we need.
+ for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
+ State->AllocateReg(GPRArgRegs);
+ // A byval parameter that is split between registers and memory needs its
+ // size truncated here.
+ // In the case where the entire structure fits in registers, we set the
+ // size in memory to zero.
+ Size = std::max<int>(Size - Excess, 0);
+}
+
+/// MatchingStackOffset - Return true if the given stack call argument is
+/// already available in the same position (relatively) of the caller's
+/// incoming argument stack.
+static
+bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
+ MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
+ const TargetInstrInfo *TII) {
+ unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
+ int FI = INT_MAX;
+ if (Arg.getOpcode() == ISD::CopyFromReg) {
+ unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(VR))
+ return false;
+ MachineInstr *Def = MRI->getVRegDef(VR);
+ if (!Def)
+ return false;
+ if (!Flags.isByVal()) {
+ if (!TII->isLoadFromStackSlot(Def, FI))
+ return false;
+ } else {
+ return false;
+ }
+ } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
+ if (Flags.isByVal())
+ // ByVal argument is passed in as a pointer but it's now being
+ // dereferenced. e.g.
+ // define @foo(%struct.X* %A) {
+ // tail call @bar(%struct.X* byval %A)
+ // }
+ return false;
+ SDValue Ptr = Ld->getBasePtr();
+ FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
+ if (!FINode)
+ return false;
+ FI = FINode->getIndex();
+ } else
+ return false;
+
+ assert(FI != INT_MAX);
+ if (!MFI->isFixedObjectIndex(FI))
+ return false;
+ return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
+}
+
+/// IsEligibleForTailCallOptimization - Check whether the call is eligible
+/// for tail call optimization. Targets which want to do tail call
+/// optimization should implement this function.
+bool
+ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
+ CallingConv::ID CalleeCC,
+ bool isVarArg,
+ bool isCalleeStructRet,
+ bool isCallerStructRet,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ const SmallVectorImpl<ISD::InputArg> &Ins,
+ SelectionDAG& DAG) const {
+ const Function *CallerF = DAG.getMachineFunction().getFunction();
+ CallingConv::ID CallerCC = CallerF->getCallingConv();
+ bool CCMatch = CallerCC == CalleeCC;
+
+ assert(Subtarget->supportsTailCall());
+
+ // Look for obvious safe cases to perform tail call optimization that do not
+ // require ABI changes. This is what gcc calls sibcall.
+
+ // Do not sibcall optimize vararg calls unless the call site is not passing
+ // any arguments.
+ if (isVarArg && !Outs.empty())
+ return false;
+
+ // Exception-handling functions need a special set of instructions to indicate
+ // a return to the hardware. Tail-calling another function would probably
+ // break this.
+ if (CallerF->hasFnAttribute("interrupt"))
+ return false;
+
+ // Also avoid sibcall optimization if either caller or callee uses struct
+ // return semantics.
+ if (isCalleeStructRet || isCallerStructRet)
+ return false;
+
+ // Externally-defined functions with weak linkage should not be
+ // tail-called on ARM when the OS does not support dynamic
+ // pre-emption of symbols, as the AAELF spec requires normal calls
+ // to undefined weak functions to be replaced with a NOP or jump to the
+ // next instruction. The behaviour of branch instructions in this
+ // situation (as used for tail calls) is implementation-defined, so we
+ // cannot rely on the linker replacing the tail call with a return.
+ if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
+ const GlobalValue *GV = G->getGlobal();
+ const Triple &TT = getTargetMachine().getTargetTriple();
+ if (GV->hasExternalWeakLinkage() &&
+ (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
+ return false;
+ }
+
+ // If the calling conventions do not match, then we'd better make sure the
+ // results are returned in the same way as what the caller expects.
+ if (!CCMatch) {
+ SmallVector<CCValAssign, 16> RVLocs1;
+ ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
+ *DAG.getContext(), Call);
+ CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
+
+ SmallVector<CCValAssign, 16> RVLocs2;
+ ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
+ *DAG.getContext(), Call);
+ CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
+
+ if (RVLocs1.size() != RVLocs2.size())
+ return false;
+ for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
+ if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
+ return false;
+ if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
+ return false;
+ if (RVLocs1[i].isRegLoc()) {
+ if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
+ return false;
+ } else {
+ if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
+ return false;
+ }
+ }
+ }
+
+ // If Caller's vararg or byval argument has been split between registers and
+ // stack, do not perform tail call, since part of the argument is in caller's
+ // local frame.
+ const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
+ getInfo<ARMFunctionInfo>();
+ if (AFI_Caller->getArgRegsSaveSize())
+ return false;
+
+ // If the callee takes no arguments then go on to check the results of the
+ // call.
+ if (!Outs.empty()) {
+ // Check if stack adjustment is needed. For now, do not do this if any
+ // argument is passed on the stack.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext(), Call);
+ CCInfo.AnalyzeCallOperands(Outs,
+ CCAssignFnForNode(CalleeCC, false, isVarArg));
+ if (CCInfo.getNextStackOffset()) {
+ MachineFunction &MF = DAG.getMachineFunction();
+
+ // Check if the arguments are already laid out in the right way as
+ // the caller's fixed stack objects.
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ const MachineRegisterInfo *MRI = &MF.getRegInfo();
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
+ i != e;
+ ++i, ++realArgIdx) {
+ CCValAssign &VA = ArgLocs[i];
+ EVT RegVT = VA.getLocVT();
+ SDValue Arg = OutVals[realArgIdx];
+ ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
+ if (VA.getLocInfo() == CCValAssign::Indirect)
+ return false;
+ if (VA.needsCustom()) {
+ // f64 and vector types are split into multiple registers or
+ // register/stack-slot combinations. The types will not match
+ // the registers; give up on memory f64 refs until we figure
+ // out what to do about this.
+ if (!VA.isRegLoc())
+ return false;
+ if (!ArgLocs[++i].isRegLoc())
+ return false;
+ if (RegVT == MVT::v2f64) {
+ if (!ArgLocs[++i].isRegLoc())
+ return false;
+ if (!ArgLocs[++i].isRegLoc())
+ return false;
+ }
+ } else if (!VA.isRegLoc()) {
+ if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
+ MFI, MRI, TII))
+ return false;
+ }
+ }
+ }
+ }
+
+ return true;
+}
+
+bool
+ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
+ MachineFunction &MF, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ LLVMContext &Context) const {
+ SmallVector<CCValAssign, 16> RVLocs;
+ CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
+ return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
+ isVarArg));
+}
+
+static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
+ SDLoc DL, SelectionDAG &DAG) {
+ const MachineFunction &MF = DAG.getMachineFunction();
+ const Function *F = MF.getFunction();
+
+ StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
+
+ // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
+ // version of the "preferred return address". These offsets affect the return
+ // instruction if this is a return from PL1 without hypervisor extensions.
+ // IRQ/FIQ: +4 "subs pc, lr, #4"
+ // SWI: 0 "subs pc, lr, #0"
+ // ABORT: +4 "subs pc, lr, #4"
+ // UNDEF: +4/+2 "subs pc, lr, #0"
+ // UNDEF varies depending on where the exception came from ARM or Thumb
+ // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
+
+ int64_t LROffset;
+ if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
+ IntKind == "ABORT")
+ LROffset = 4;
+ else if (IntKind == "SWI" || IntKind == "UNDEF")
+ LROffset = 0;
+ else
+ report_fatal_error("Unsupported interrupt attribute. If present, value "
+ "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
+
+ RetOps.insert(RetOps.begin() + 1,
+ DAG.getConstant(LROffset, DL, MVT::i32, false));
+
+ return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
+}
+
+SDValue
+ARMTargetLowering::LowerReturn(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::OutputArg> &Outs,
+ const SmallVectorImpl<SDValue> &OutVals,
+ SDLoc dl, SelectionDAG &DAG) const {
+
+ // CCValAssign - represent the assignment of the return value to a location.
+ SmallVector<CCValAssign, 16> RVLocs;
+
+ // CCState - Info about the registers and stack slots.
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
+ *DAG.getContext(), Call);
+
+ // Analyze outgoing return values.
+ CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
+ isVarArg));
+
+ SDValue Flag;
+ SmallVector<SDValue, 4> RetOps;
+ RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
+ bool isLittleEndian = Subtarget->isLittle();
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ AFI->setReturnRegsCount(RVLocs.size());
+
+ // Copy the result values into the output registers.
+ for (unsigned i = 0, realRVLocIdx = 0;
+ i != RVLocs.size();
+ ++i, ++realRVLocIdx) {
+ CCValAssign &VA = RVLocs[i];
+ assert(VA.isRegLoc() && "Can only return in registers!");
+
+ SDValue Arg = OutVals[realRVLocIdx];
+
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::BCvt:
+ Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
+ break;
+ }
+
+ if (VA.needsCustom()) {
+ if (VA.getLocVT() == MVT::v2f64) {
+ // Extract the first half and return it in two registers.
+ SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(0, dl, MVT::i32));
+ SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Half);
+
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
+ HalfGPRs.getValue(isLittleEndian ? 0 : 1),
+ Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
+ HalfGPRs.getValue(isLittleEndian ? 1 : 0),
+ Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ VA = RVLocs[++i]; // skip ahead to next loc
+
+ // Extract the 2nd half and fall through to handle it as an f64 value.
+ Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
+ DAG.getConstant(1, dl, MVT::i32));
+ }
+ // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
+ // available.
+ SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Arg);
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
+ fmrrd.getValue(isLittleEndian ? 0 : 1),
+ Flag);
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ VA = RVLocs[++i]; // skip ahead to next loc
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
+ fmrrd.getValue(isLittleEndian ? 1 : 0),
+ Flag);
+ } else
+ Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
+
+ // Guarantee that all emitted copies are
+ // stuck together, avoiding something bad.
+ Flag = Chain.getValue(1);
+ RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
+ }
+
+ // Update chain and glue.
+ RetOps[0] = Chain;
+ if (Flag.getNode())
+ RetOps.push_back(Flag);
+
+ // CPUs which aren't M-class use a special sequence to return from
+ // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
+ // though we use "subs pc, lr, #N").
+ //
+ // M-class CPUs actually use a normal return sequence with a special
+ // (hardware-provided) value in LR, so the normal code path works.
+ if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
+ !Subtarget->isMClass()) {
+ if (Subtarget->isThumb1Only())
+ report_fatal_error("interrupt attribute is not supported in Thumb1");
+ return LowerInterruptReturn(RetOps, dl, DAG);
+ }
+
+ return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
+}
+
+bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
+ if (N->getNumValues() != 1)
+ return false;
+ if (!N->hasNUsesOfValue(1, 0))
+ return false;
+
+ SDValue TCChain = Chain;
+ SDNode *Copy = *N->use_begin();
+ if (Copy->getOpcode() == ISD::CopyToReg) {
+ // If the copy has a glue operand, we conservatively assume it isn't safe to
+ // perform a tail call.
+ if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
+ return false;
+ TCChain = Copy->getOperand(0);
+ } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
+ SDNode *VMov = Copy;
+ // f64 returned in a pair of GPRs.
+ SmallPtrSet<SDNode*, 2> Copies;
+ for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
+ UI != UE; ++UI) {
+ if (UI->getOpcode() != ISD::CopyToReg)
+ return false;
+ Copies.insert(*UI);
+ }
+ if (Copies.size() > 2)
+ return false;
+
+ for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
+ UI != UE; ++UI) {
+ SDValue UseChain = UI->getOperand(0);
+ if (Copies.count(UseChain.getNode()))
+ // Second CopyToReg
+ Copy = *UI;
+ else {
+ // We are at the top of this chain.
+ // If the copy has a glue operand, we conservatively assume it
+ // isn't safe to perform a tail call.
+ if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
+ return false;
+ // First CopyToReg
+ TCChain = UseChain;
+ }
+ }
+ } else if (Copy->getOpcode() == ISD::BITCAST) {
+ // f32 returned in a single GPR.
+ if (!Copy->hasOneUse())
+ return false;
+ Copy = *Copy->use_begin();
+ if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
+ return false;
+ // If the copy has a glue operand, we conservatively assume it isn't safe to
+ // perform a tail call.
+ if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
+ return false;
+ TCChain = Copy->getOperand(0);
+ } else {
+ return false;
+ }
+
+ bool HasRet = false;
+ for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
+ UI != UE; ++UI) {
+ if (UI->getOpcode() != ARMISD::RET_FLAG &&
+ UI->getOpcode() != ARMISD::INTRET_FLAG)
+ return false;
+ HasRet = true;
+ }
+
+ if (!HasRet)
+ return false;
+
+ Chain = TCChain;
+ return true;
+}
+
+bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
+ if (!Subtarget->supportsTailCall())
+ return false;
+
+ auto Attr =
+ CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
+ if (!CI->isTailCall() || Attr.getValueAsString() == "true")
+ return false;
+
+ return true;
+}
+
+// Trying to write a 64 bit value so need to split into two 32 bit values first,
+// and pass the lower and high parts through.
+static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ SDValue WriteValue = Op->getOperand(2);
+
+ // This function is only supposed to be called for i64 type argument.
+ assert(WriteValue.getValueType() == MVT::i64
+ && "LowerWRITE_REGISTER called for non-i64 type argument.");
+
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
+ DAG.getConstant(0, DL, MVT::i32));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
+ DAG.getConstant(1, DL, MVT::i32));
+ SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
+ return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
+}
+
+// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
+// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
+// one of the above mentioned nodes. It has to be wrapped because otherwise
+// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
+// be used to form addressing mode. These wrapped nodes will be selected
+// into MOVi.
+static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
+ EVT PtrVT = Op.getValueType();
+ // FIXME there is no actual debug info here
+ SDLoc dl(Op);
+ ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
+ SDValue Res;
+ if (CP->isMachineConstantPoolEntry())
+ Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
+ CP->getAlignment());
+ else
+ Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
+ CP->getAlignment());
+ return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
+}
+
+unsigned ARMTargetLowering::getJumpTableEncoding() const {
+ return MachineJumpTableInfo::EK_Inline;
+}
+
+SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
+ SelectionDAG &DAG) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = 0;
+ SDLoc DL(Op);
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+ SDValue CPAddr;
+ if (RelocM == Reloc::Static) {
+ CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
+ } else {
+ unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
+ ARMCP::CPBlockAddress, PCAdj);
+ CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ }
+ CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
+ SDValue Result =
+ DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+ false, false, false, 0);
+ if (RelocM == Reloc::Static)
+ return Result;
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
+ return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
+}
+
+// Lower ISD::GlobalTLSAddress using the "general dynamic" model
+SDValue
+ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
+ SelectionDAG &DAG) const {
+ SDLoc dl(GA);
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
+ ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
+ SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
+ Argument =
+ DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
+ false, false, false, 0);
+ SDValue Chain = Argument.getValue(1);
+
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
+ Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
+
+ // call __tls_get_addr.
+ ArgListTy Args;
+ ArgListEntry Entry;
+ Entry.Node = Argument;
+ Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
+ Args.push_back(Entry);
+
+ // FIXME: is there useful debug info available here?
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(Chain)
+ .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
+ DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args),
+ 0);
+
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+ return CallResult.first;
+}
+
+// Lower ISD::GlobalTLSAddress using the "initial exec" or
+// "local exec" model.
+SDValue
+ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
+ SelectionDAG &DAG,
+ TLSModel::Model model) const {
+ const GlobalValue *GV = GA->getGlobal();
+ SDLoc dl(GA);
+ SDValue Offset;
+ SDValue Chain = DAG.getEntryNode();
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ // Get the Thread Pointer
+ SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
+
+ if (model == TLSModel::InitialExec) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ // Initial exec model.
+ unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
+ ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
+ true);
+ Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
+ Offset = DAG.getLoad(
+ PtrVT, dl, Chain, Offset,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
+ false, false, 0);
+ Chain = Offset.getValue(1);
+
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
+ Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
+
+ Offset = DAG.getLoad(
+ PtrVT, dl, Chain, Offset,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
+ false, false, 0);
+ } else {
+ // local exec model
+ assert(model == TLSModel::LocalExec);
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
+ Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
+ Offset = DAG.getLoad(
+ PtrVT, dl, Chain, Offset,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
+ false, false, 0);
+ }
+
+ // The address of the thread local variable is the add of the thread
+ // pointer with the offset of the variable.
+ return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
+}
+
+SDValue
+ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
+ // TODO: implement the "local dynamic" model
+ assert(Subtarget->isTargetELF() &&
+ "TLS not implemented for non-ELF targets");
+ GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
+ if (DAG.getTarget().Options.EmulatedTLS)
+ return LowerToTLSEmulatedModel(GA, DAG);
+
+ TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
+
+ switch (model) {
+ case TLSModel::GeneralDynamic:
+ case TLSModel::LocalDynamic:
+ return LowerToTLSGeneralDynamicModel(GA, DAG);
+ case TLSModel::InitialExec:
+ case TLSModel::LocalExec:
+ return LowerToTLSExecModels(GA, DAG, model);
+ }
+ llvm_unreachable("bogus TLS model");
+}
+
+SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ SDLoc dl(Op);
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
+ bool UseGOT_PREL =
+ !(GV->hasHiddenVisibility() || GV->hasLocalLinkage());
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ SDLoc dl(Op);
+ unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
+ ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
+ GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
+ UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
+ /*AddCurrentAddress=*/UseGOT_PREL);
+ SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ SDValue Result = DAG.getLoad(
+ PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
+ false, false, 0);
+ SDValue Chain = Result.getValue(1);
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
+ Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
+ if (UseGOT_PREL)
+ Result = DAG.getLoad(PtrVT, dl, Chain, Result,
+ MachinePointerInfo::getGOT(DAG.getMachineFunction()),
+ false, false, false, 0);
+ return Result;
+ }
+
+ // If we have T2 ops, we can materialize the address directly via movt/movw
+ // pair. This is always cheaper.
+ if (Subtarget->useMovt(DAG.getMachineFunction())) {
+ ++NumMovwMovt;
+ // FIXME: Once remat is capable of dealing with instructions with register
+ // operands, expand this into two nodes.
+ return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
+ DAG.getTargetGlobalAddress(GV, dl, PtrVT));
+ } else {
+ SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ return DAG.getLoad(
+ PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
+ false, false, 0);
+ }
+}
+
+SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
+ SelectionDAG &DAG) const {
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ SDLoc dl(Op);
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+
+ if (Subtarget->useMovt(DAG.getMachineFunction()))
+ ++NumMovwMovt;
+
+ // FIXME: Once remat is capable of dealing with instructions with register
+ // operands, expand this into multiple nodes
+ unsigned Wrapper =
+ RelocM == Reloc::PIC_ ? ARMISD::WrapperPIC : ARMISD::Wrapper;
+
+ SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
+ SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
+
+ if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
+ Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
+ MachinePointerInfo::getGOT(DAG.getMachineFunction()),
+ false, false, false, 0);
+ return Result;
+}
+
+SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
+ assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
+ "Windows on ARM expects to use movw/movt");
+
+ const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
+ const ARMII::TOF TargetFlags =
+ (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ SDValue Result;
+ SDLoc DL(Op);
+
+ ++NumMovwMovt;
+
+ // FIXME: Once remat is capable of dealing with instructions with register
+ // operands, expand this into two nodes.
+ Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
+ DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
+ TargetFlags));
+ if (GV->hasDLLImportStorageClass())
+ Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
+ MachinePointerInfo::getGOT(DAG.getMachineFunction()),
+ false, false, false, 0);
+ return Result;
+}
+
+SDValue
+ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ SDValue Val = DAG.getConstant(0, dl, MVT::i32);
+ return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
+ DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
+ Op.getOperand(1), Val);
+}
+
+SDValue
+ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
+ Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
+}
+
+SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
+ SelectionDAG &DAG) const {
+ SDLoc dl(Op);
+ return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
+ Op.getOperand(0));
+}
+
+SDValue
+ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) const {
+ unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ SDLoc dl(Op);
+ switch (IntNo) {
+ default: return SDValue(); // Don't custom lower most intrinsics.
+ case Intrinsic::arm_rbit: {
+ assert(Op.getOperand(1).getValueType() == MVT::i32 &&
+ "RBIT intrinsic must have i32 type!");
+ return DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Op.getOperand(1));
+ }
+ case Intrinsic::arm_thread_pointer: {
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
+ }
+ case Intrinsic::eh_sjlj_lsda: {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
+ EVT PtrVT = getPointerTy(DAG.getDataLayout());
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+ SDValue CPAddr;
+ unsigned PCAdj = (RelocM != Reloc::PIC_)
+ ? 0 : (Subtarget->isThumb() ? 4 : 8);
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
+ ARMCP::CPLSDA, PCAdj);
+ CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
+ CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
+ SDValue Result = DAG.getLoad(
+ PtrVT, dl, DAG.getEntryNode(), CPAddr,
+ MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
+ false, false, 0);
+
+ if (RelocM == Reloc::PIC_) {
+ SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
+ Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
+ }
+ return Result;
+ }
+ case Intrinsic::arm_neon_vmulls:
+ case Intrinsic::arm_neon_vmullu: {
+ unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
+ ? ARMISD::VMULLs : ARMISD::VMULLu;
+ return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+ }
+ case Intrinsic::arm_neon_vminnm:
+ case Intrinsic::arm_neon_vmaxnm: {
+ unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
+ ? ISD::FMINNUM : ISD::FMAXNUM;
+ return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+ }
+ case Intrinsic::arm_neon_vminu:
+ case Intrinsic::arm_neon_vmaxu: {
+ if (Op.getValueType().isFloatingPoint())
+ return SDValue();
+ unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
+ ? ISD::UMIN : ISD::UMAX;
+ return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+ }
+ case Intrinsic::arm_neon_vmins:
+ case Intrinsic::arm_neon_vmaxs: {
+ // v{min,max}s is overloaded between signed integers and floats.
+ if (!Op.getValueType().isFloatingPoint()) {
+ unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
+ ? ISD::SMIN : ISD::SMAX;
+ return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+ }
+ unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
+ ? ISD::FMINNAN : ISD::FMAXNAN;
+ return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
+ Op.getOperand(1), Op.getOperand(2));
+ }
+ }
+}
+
+static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) {
+ // FIXME: handle "fence singlethread" more efficiently.
+ SDLoc dl(Op);
+ if (!Subtarget->hasDataBarrier()) {
+ // Some ARMv6 cpus can support data barriers with an mcr instruction.
+ // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
+ // here.
+ assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
+ "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
+ return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(0, dl, MVT::i32));
+ }
+
+ ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
+ AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
+ ARM_MB::MemBOpt Domain = ARM_MB::ISH;
+ if (Subtarget->isMClass()) {
+ // Only a full system barrier exists in the M-class architectures.
+ Domain = ARM_MB::SY;
+ } else if (Subtarget->isSwift() && Ord == Release) {
+ // Swift happens to implement ISHST barriers in a way that's compatible with
+ // Release semantics but weaker than ISH so we'd be fools not to use
+ // it. Beware: other processors probably don't!
+ Domain = ARM_MB::ISHST;
+ }
+
+ return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
+ DAG.getConstant(Domain, dl, MVT::i32));
+}
+
+static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) {
+ // ARM pre v5TE and Thumb1 does not have preload instructions.
+ if (!(Subtarget->isThumb2() ||
+ (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
+ // Just preserve the chain.
+ return Op.getOperand(0);
+
+ SDLoc dl(Op);
+ unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
+ if (!isRead &&
+ (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
+ // ARMv7 with MP extension has PLDW.
+ return Op.getOperand(0);
+
+ unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
+ if (Subtarget->isThumb()) {
+ // Invert the bits.
+ isRead = ~isRead & 1;
+ isData = ~isData & 1;
+ }
+
+ return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
+ Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
+ DAG.getConstant(isData, dl, MVT::i32));
+}
+
+static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
+
+ // vastart just stores the address of the VarArgsFrameIndex slot into the
+ // memory location argument.
+ SDLoc dl(Op);
+ EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
+ SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
+ const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
+ return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
+ MachinePointerInfo(SV), false, false, 0);
+}
+
+SDValue
+ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
+ SDValue &Root, SelectionDAG &DAG,
+ SDLoc dl) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ const TargetRegisterClass *RC;
+ if (AFI->isThumb1OnlyFunction())
+ RC = &ARM::tGPRRegClass;
+ else
+ RC = &ARM::GPRRegClass;
+
+ // Transform the arguments stored in physical registers into virtual ones.
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
+
+ SDValue ArgValue2;
+ if (NextVA.isMemLoc()) {
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
+
+ // Create load node to retrieve arguments from the stack.
+ SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
+ ArgValue2 = DAG.getLoad(
+ MVT::i32, dl, Root, FIN,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
+ false, false, 0);
+ } else {
+ Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
+ ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
+ }
+ if (!Subtarget->isLittle())
+ std::swap (ArgValue, ArgValue2);
+ return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
+}
+
+// The remaining GPRs hold either the beginning of variable-argument
+// data, or the beginning of an aggregate passed by value (usually
+// byval). Either way, we allocate stack slots adjacent to the data
+// provided by our caller, and store the unallocated registers there.
+// If this is a variadic function, the va_list pointer will begin with
+// these values; otherwise, this reassembles a (byval) structure that
+// was split between registers and memory.
+// Return: The frame index registers were stored into.
+int
+ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
+ SDLoc dl, SDValue &Chain,
+ const Value *OrigArg,
+ unsigned InRegsParamRecordIdx,
+ int ArgOffset,
+ unsigned ArgSize) const {
+ // Currently, two use-cases possible:
+ // Case #1. Non-var-args function, and we meet first byval parameter.
+ // Setup first unallocated register as first byval register;
+ // eat all remained registers
+ // (these two actions are performed by HandleByVal method).
+ // Then, here, we initialize stack frame with
+ // "store-reg" instructions.
+ // Case #2. Var-args function, that doesn't contain byval parameters.
+ // The same: eat all remained unallocated registers,
+ // initialize stack frame.
+
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+ unsigned RBegin, REnd;
+ if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
+ CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
+ } else {
+ unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
+ RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
+ REnd = ARM::R4;
+ }
+
+ if (REnd != RBegin)
+ ArgOffset = -4 * (ARM::R4 - RBegin);
+
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+ int FrameIndex = MFI->CreateFixedObject(ArgSize, ArgOffset, false);
+ SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
+
+ SmallVector<SDValue, 4> MemOps;
+ const TargetRegisterClass *RC =
+ AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
+
+ for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
+ unsigned VReg = MF.addLiveIn(Reg, RC);
+ SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
+ SDValue Store =
+ DAG.getStore(Val.getValue(1), dl, Val, FIN,
+ MachinePointerInfo(OrigArg, 4 * i), false, false, 0);
+ MemOps.push_back(Store);
+ FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
+ }
+
+ if (!MemOps.empty())
+ Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
+ return FrameIndex;
+}
+
+// Setup stack frame, the va_list pointer will start from.
+void
+ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
+ SDLoc dl, SDValue &Chain,
+ unsigned ArgOffset,
+ unsigned TotalArgRegsSaveSize,
+ bool ForceMutable) const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ // Try to store any remaining integer argument regs
+ // to their spots on the stack so that they may be loaded by deferencing
+ // the result of va_next.
+ // If there is no regs to be stored, just point address after last
+ // argument passed via stack.
+ int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
+ CCInfo.getInRegsParamsCount(),
+ CCInfo.getNextStackOffset(), 4);
+ AFI->setVarArgsFrameIndex(FrameIndex);
+}
+
+SDValue
+ARMTargetLowering::LowerFormalArguments(SDValue Chain,
+ CallingConv::ID CallConv, bool isVarArg,
+ const SmallVectorImpl<ISD::InputArg>
+ &Ins,
+ SDLoc dl, SelectionDAG &DAG,
+ SmallVectorImpl<SDValue> &InVals)
+ const {
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+
+ ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
+
+ // Assign locations to all of the incoming arguments.
+ SmallVector<CCValAssign, 16> ArgLocs;
+ ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
+ *DAG.getContext(), Prologue);
+ CCInfo.AnalyzeFormalArguments(Ins,
+ CCAssignFnForNode(CallConv, /* Return*/ false,
+ isVarArg));
+
+ SmallVector<SDValue, 16> ArgValues;
+ SDValue ArgValue;
+ Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
+ unsigned CurArgIdx = 0;
+
+ // Initially ArgRegsSaveSize is zero.
+ // Then we increase this value each time we meet byval parameter.
+ // We also increase this value in case of varargs function.
+ AFI->setArgRegsSaveSize(0);
+
+ // Calculate the amount of stack space that we need to allocate to store
+ // byval and variadic arguments that are passed in registers.
+ // We need to know this before we allocate the first byval or variadic
+ // argument, as they will be allocated a stack slot below the CFA (Canonical
+ // Frame Address, the stack pointer at entry to the function).
+ unsigned ArgRegBegin = ARM::R4;
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
+ break;
+
+ CCValAssign &VA = ArgLocs[i];
+ unsigned Index = VA.getValNo();
+ ISD::ArgFlagsTy Flags = Ins[Index].Flags;
+ if (!Flags.isByVal())
+ continue;
+
+ assert(VA.isMemLoc() && "unexpected byval pointer in reg");
+ unsigned RBegin, REnd;
+ CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
+ ArgRegBegin = std::min(ArgRegBegin, RBegin);
+
+ CCInfo.nextInRegsParam();
+ }
+ CCInfo.rewindByValRegsInfo();
+
+ int lastInsIndex = -1;
+ if (isVarArg && MFI->hasVAStart()) {
+ unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
+ if (RegIdx != array_lengthof(GPRArgRegs))
+ ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
+ }
+
+ unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
+ AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+
+ for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
+ CCValAssign &VA = ArgLocs[i];
+ if (Ins[VA.getValNo()].isOrigArg()) {
+ std::advance(CurOrigArg,
+ Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
+ CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
+ }
+ // Arguments stored in registers.
+ if (VA.isRegLoc()) {
+ EVT RegVT = VA.getLocVT();
+
+ if (VA.needsCustom()) {
+ // f64 and vector types are split up into multiple registers or
+ // combinations of registers and stack slots.
+ if (VA.getLocVT() == MVT::v2f64) {
+ SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
+ Chain, DAG, dl);
+ VA = ArgLocs[++i]; // skip ahead to next loc
+ SDValue ArgValue2;
+ if (VA.isMemLoc()) {
+ int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ ArgValue2 = DAG.getLoad(
+ MVT::f64, dl, Chain, FIN,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
+ false, false, false, 0);
+ } else {
+ ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
+ Chain, DAG, dl);
+ }
+ ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
+ ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
+ ArgValue, ArgValue1,
+ DAG.getIntPtrConstant(0, dl));
+ ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
+ ArgValue, ArgValue2,
+ DAG.getIntPtrConstant(1, dl));
+ } else
+ ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
+
+ } else {
+ const TargetRegisterClass *RC;
+
+ if (RegVT == MVT::f32)
+ RC = &ARM::SPRRegClass;
+ else if (RegVT == MVT::f64)
+ RC = &ARM::DPRRegClass;
+ else if (RegVT == MVT::v2f64)
+ RC = &ARM::QPRRegClass;
+ else if (RegVT == MVT::i32)
+ RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
+ : &ARM::GPRRegClass;
+ else
+ llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
+
+ // Transform the arguments in physical registers into virtual ones.
+ unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
+ ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
+ }
+
+ // If this is an 8 or 16-bit value, it is really passed promoted
+ // to 32 bits. Insert an assert[sz]ext to capture this, then
+ // truncate to the right size.
+ switch (VA.getLocInfo()) {
+ default: llvm_unreachable("Unknown loc info!");
+ case CCValAssign::Full: break;
+ case CCValAssign::BCvt:
+ ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
+ break;
+ case CCValAssign::SExt:
+ ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+ break;
+ case CCValAssign::ZExt:
+ ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
+ DAG.getValueType(VA.getValVT()));
+ ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
+ break;
+ }
+
+ InVals.push_back(ArgValue);
+
+ } else { // VA.isRegLoc()
+
+ // sanity check
+ assert(VA.isMemLoc());
+ assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
+
+ int index = VA.getValNo();
+
+ // Some Ins[] entries become multiple ArgLoc[] entries.
+ // Process them only once.
+ if (index != lastInsIndex)
+ {
+ ISD::ArgFlagsTy Flags = Ins[index].Flags;
+ // FIXME: For now, all byval parameter objects are marked mutable.
+ // This can be changed with more analysis.
+ // In case of tail call optimization mark all arguments mutable.
+ // Since they could be overwritten by lowering of arguments in case of
+ // a tail call.
+ if (Flags.isByVal()) {
+ assert(Ins[index].isOrigArg() &&
+ "Byval arguments cannot be implicit");
+ unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
+
+ int FrameIndex = StoreByValRegs(
+ CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
+ VA.getLocMemOffset(), Flags.getByValSize());
+ InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
+ CCInfo.nextInRegsParam();
+ } else {
+ unsigned FIOffset = VA.getLocMemOffset();
+ int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
+ FIOffset, true);
+
+ // Create load nodes to retrieve arguments from the stack.
+ SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
+ InVals.push_back(DAG.getLoad(
+ VA.getValVT(), dl, Chain, FIN,
+ MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
+ false, false, false, 0));
+ }
+ lastInsIndex = index;
+ }
+ }
+ }
+
+ // varargs
+ if (isVarArg && MFI->hasVAStart())
+ VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
+ CCInfo.getNextStackOffset(),
+ TotalArgRegsSaveSize);
+
+ AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
+
+ return Chain;
+}
+
+/// isFloatingPointZero - Return true if this is +0.0.
+static bool isFloatingPointZero(SDValue Op) {
+ if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
+ return CFP->getValueAPF().isPosZero();
+ else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
+ // Maybe this has already been legalized into the constant pool?
+ if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
+ SDValue WrapperOp = Op.getOperand(1).getOperand(0);
+ if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
+ return CFP->getValueAPF().isPosZero();
+ }
+ } else if (Op->getOpcode() == ISD::BITCAST &&
+ Op->getValueType(0) == MVT::f64) {
+ // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
+ // created by LowerConstantFP().
+ SDValue BitcastOp = Op->getOperand(0);
+ if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
+ isNullConstant(BitcastOp->getOperand(0)))
+ return true;
+ }
+ return false;
+}
+
+/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
+/// the given operands.
+SDValue
+ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
+ SDValue &ARMcc, SelectionDAG &DAG,
+ SDLoc dl) const {
+ if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
+ unsigned C = RHSC->getZExtValue();
+ if (!isLegalICmpImmediate(C)) {
+ // Constant does not fit, try adjusting it by one?
+ switch (CC) {
+ default: break;
+ case ISD::SETLT:
+ case ISD::SETGE:
+ if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
+ CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
+ RHS = DAG.getConstant(C - 1, dl, MVT::i32);
+ }
+ break;
+ case ISD::SETULT:
+ case ISD::SETUGE:
+ if (C != 0 && isLegalICmpImmediate(C-1)) {
+ CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
+ RHS = DAG.getConstant(C - 1, dl, MVT::i32);
+ }
+ break;
+ case ISD::SETLE:
+ case ISD::SETGT:
+ if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
+ CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
+ RHS = DAG.getConstant(C + 1, dl, MVT::i32);
+ }
+ break;
+ case ISD::SETULE:
+ case ISD::SETUGT:
+ if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
+ CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
+ RHS = DAG.getConstant(C + 1, dl, MVT::i32);
+ }
+ break;
+ }
+ }
+ }
+
+ ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
+ ARMISD::NodeType CompareType;
+ switch (CondCode) {
+ default:
+ CompareType = ARMISD::CMP;
+ break;
+ case ARMCC::EQ:
+ case ARMCC::NE:
+ // Uses only Z Flag
+ CompareType = ARMISD::CMPZ;
+ break;
+ }
+ ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
+ return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
+}
+
+/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
+SDValue
+ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
+ SDLoc dl) const {
+ assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
+ SDValue Cmp;
+ if (!isFloatingPointZero(RHS))
+ Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
+ else
+ Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
+ return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
+}
+
+/// duplicateCmp - Glue values can have only one use, so this function
+/// duplicates a comparison node.
+SDValue
+ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
+ unsigned Opc = Cmp.getOpcode();
+ SDLoc DL(Cmp);
+ if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
+ return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
+
+ assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
+ Cmp = Cmp.getOperand(0);
+ Opc = Cmp.getOpcode();
+ if (Opc == ARMISD::CMPFP)
+ Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
+ else {
+ assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
+ Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
+ }
+ return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
+}
+
+std::pair<SDValue, SDValue>
+ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
+ SDValue &ARMcc) const {
+ assert(Op.getValueType() == MVT::i32 && "Unsupported value type");
+
+ SDValue Value, OverflowCmp;
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ SDLoc dl(Op);
+
+ // FIXME: We are currently always generating CMPs because we don't support
+ // generating CMN through the backend. This is not as good as the natural
+ // CMP case because it causes a register dependency and cannot be folded
+ // later.
+
+ switch (Op.getOpcode()) {
+ default:
+ llvm_unreachable("Unknown overflow instruction!");
+ case ISD::SADDO:
+ ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
+ Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
+ OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
+ break;
+ case ISD::UADDO:
+ ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
+ Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
+ OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
+ break;
+ case ISD::SSUBO:
+ ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
+ Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
+ OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
+ break;
+ case ISD::USUBO:
+ ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
+ Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
+ OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
+ break;
+ } // switch (...)
+
+ return std::make_pair(Value, OverflowCmp);
+}
+
+
+SDValue
+ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
+ // Let legalize expand this if it isn't a legal type yet.
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
+ return SDValue();
+
+ SDValue Value, OverflowCmp;
+ SDValue ARMcc;
+ std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDLoc dl(Op);
+ // We use 0 and 1 as false and true values.
+ SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
+ SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
+ EVT VT = Op.getValueType();
+
+ SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
+ ARMcc, CCR, OverflowCmp);
+
+ SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
+ return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
+}
+
+
+SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Cond = Op.getOperand(0);
+ SDValue SelectTrue = Op.getOperand(1);
+ SDValue SelectFalse = Op.getOperand(2);
+ SDLoc dl(Op);
+ unsigned Opc = Cond.getOpcode();
+
+ if (Cond.getResNo() == 1 &&
+ (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
+ Opc == ISD::USUBO)) {
+ if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
+ return SDValue();
+
+ SDValue Value, OverflowCmp;
+ SDValue ARMcc;
+ std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ EVT VT = Op.getValueType();
+
+ return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
+ OverflowCmp, DAG);
+ }
+
+ // Convert:
+ //
+ // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
+ // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
+ //
+ if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
+ const ConstantSDNode *CMOVTrue =
+ dyn_cast<ConstantSDNode>(Cond.getOperand(0));
+ const ConstantSDNode *CMOVFalse =
+ dyn_cast<ConstantSDNode>(Cond.getOperand(1));
+
+ if (CMOVTrue && CMOVFalse) {
+ unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
+ unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
+
+ SDValue True;
+ SDValue False;
+ if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
+ True = SelectTrue;
+ False = SelectFalse;
+ } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
+ True = SelectFalse;
+ False = SelectTrue;
+ }
+
+ if (True.getNode() && False.getNode()) {
+ EVT VT = Op.getValueType();
+ SDValue ARMcc = Cond.getOperand(2);
+ SDValue CCR = Cond.getOperand(3);
+ SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
+ assert(True.getValueType() == VT);
+ return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
+ }
+ }
+ }
+
+ // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
+ // undefined bits before doing a full-word comparison with zero.
+ Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
+ DAG.getConstant(1, dl, Cond.getValueType()));
+
+ return DAG.getSelectCC(dl, Cond,
+ DAG.getConstant(0, dl, Cond.getValueType()),
+ SelectTrue, SelectFalse, ISD::SETNE);
+}
+
+static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
+ bool &swpCmpOps, bool &swpVselOps) {
+ // Start by selecting the GE condition code for opcodes that return true for
+ // 'equality'
+ if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
+ CC == ISD::SETULE)
+ CondCode = ARMCC::GE;
+
+ // and GT for opcodes that return false for 'equality'.
+ else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
+ CC == ISD::SETULT)
+ CondCode = ARMCC::GT;
+
+ // Since we are constrained to GE/GT, if the opcode contains 'less', we need
+ // to swap the compare operands.
+ if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
+ CC == ISD::SETULT)
+ swpCmpOps = true;
+
+ // Both GT and GE are ordered comparisons, and return false for 'unordered'.
+ // If we have an unordered opcode, we need to swap the operands to the VSEL
+ // instruction (effectively negating the condition).
+ //
+ // This also has the effect of swapping which one of 'less' or 'greater'
+ // returns true, so we also swap the compare operands. It also switches
+ // whether we return true for 'equality', so we compensate by picking the
+ // opposite condition code to our original choice.
+ if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
+ CC == ISD::SETUGT) {
+ swpCmpOps = !swpCmpOps;
+ swpVselOps = !swpVselOps;
+ CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
+ }
+
+ // 'ordered' is 'anything but unordered', so use the VS condition code and
+ // swap the VSEL operands.
+ if (CC == ISD::SETO) {
+ CondCode = ARMCC::VS;
+ swpVselOps = true;
+ }
+
+ // 'unordered or not equal' is 'anything but equal', so use the EQ condition
+ // code and swap the VSEL operands.
+ if (CC == ISD::SETUNE) {
+ CondCode = ARMCC::EQ;
+ swpVselOps = true;
+ }
+}
+
+SDValue ARMTargetLowering::getCMOV(SDLoc dl, EVT VT, SDValue FalseVal,
+ SDValue TrueVal, SDValue ARMcc, SDValue CCR,
+ SDValue Cmp, SelectionDAG &DAG) const {
+ if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
+ FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
+ TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
+
+ SDValue TrueLow = TrueVal.getValue(0);
+ SDValue TrueHigh = TrueVal.getValue(1);
+ SDValue FalseLow = FalseVal.getValue(0);
+ SDValue FalseHigh = FalseVal.getValue(1);
+
+ SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
+ ARMcc, CCR, Cmp);
+ SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
+ ARMcc, CCR, duplicateCmp(Cmp, DAG));
+
+ return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
+ } else {
+ return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
+ Cmp);
+ }
+}
+
+SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ SDValue LHS = Op.getOperand(0);
+ SDValue RHS = Op.getOperand(1);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
+ SDValue TrueVal = Op.getOperand(2);
+ SDValue FalseVal = Op.getOperand(3);
+ SDLoc dl(Op);
+
+ if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
+ DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
+ dl);
+
+ // If softenSetCCOperands only returned one value, we should compare it to
+ // zero.
+ if (!RHS.getNode()) {
+ RHS = DAG.getConstant(0, dl, LHS.getValueType());
+ CC = ISD::SETNE;
+ }
+ }
+
+ if (LHS.getValueType() == MVT::i32) {
+ // Try to generate VSEL on ARMv8.
+ // The VSEL instruction can't use all the usual ARM condition
+ // codes: it only has two bits to select the condition code, so it's
+ // constrained to use only GE, GT, VS and EQ.
+ //
+ // To implement all the various ISD::SETXXX opcodes, we sometimes need to
+ // swap the operands of the previous compare instruction (effectively
+ // inverting the compare condition, swapping 'less' and 'greater') and
+ // sometimes need to swap the operands to the VSEL (which inverts the
+ // condition in the sense of firing whenever the previous condition didn't)
+ if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
+ TrueVal.getValueType() == MVT::f64)) {
+ ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
+ if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
+ CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
+ CC = ISD::getSetCCInverse(CC, true);
+ std::swap(TrueVal, FalseVal);
+ }
+ }
+
+ SDValue ARMcc;
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
+ return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
+ }
+
+ ARMCC::CondCodes CondCode, CondCode2;
+ FPCCToARMCC(CC, CondCode, CondCode2);
+
+ // Try to generate VMAXNM/VMINNM on ARMv8.
+ if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
+ TrueVal.getValueType() == MVT::f64)) {
+ bool swpCmpOps = false;
+ bool swpVselOps = false;
+ checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
+
+ if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
+ CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
+ if (swpCmpOps)
+ std::swap(LHS, RHS);
+ if (swpVselOps)
+ std::swap(TrueVal, FalseVal);
+ }
+ }
+
+ SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
+ SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
+ if (CondCode2 != ARMCC::AL) {
+ SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
+ // FIXME: Needs another CMP because flag can have but one use.
+ SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
+ Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
+ }
+ return Result;
+}
+
+/// canChangeToInt - Given the fp compare operand, return true if it is suitable
+/// to morph to an integer compare sequence.
+static bool canChangeToInt(SDValue Op, bool &SeenZero,
+ const ARMSubtarget *Subtarget) {
+ SDNode *N = Op.getNode();
+ if (!N->hasOneUse())
+ // Otherwise it requires moving the value from fp to integer registers.
+ return false;
+ if (!N->getNumValues())
+ return false;
+ EVT VT = Op.getValueType();
+ if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
+ // f32 case is generally profitable. f64 case only makes sense when vcmpe +
+ // vmrs are very slow, e.g. cortex-a8.
+ return false;
+
+ if (isFloatingPointZero(Op)) {
+ SeenZero = true;
+ return true;
+ }
+ return ISD::isNormalLoad(N);
+}
+
+static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
+ if (isFloatingPointZero(Op))
+ return DAG.getConstant(0, SDLoc(Op), MVT::i32);
+
+ if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
+ return DAG.getLoad(MVT::i32, SDLoc(Op),
+ Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(), Ld->getAlignment());
+
+ llvm_unreachable("Unknown VFP cmp argument!");
+}
+
+static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
+ SDValue &RetVal1, SDValue &RetVal2) {
+ SDLoc dl(Op);
+
+ if (isFloatingPointZero(Op)) {
+ RetVal1 = DAG.getConstant(0, dl, MVT::i32);
+ RetVal2 = DAG.getConstant(0, dl, MVT::i32);
+ return;
+ }
+
+ if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
+ SDValue Ptr = Ld->getBasePtr();
+ RetVal1 = DAG.getLoad(MVT::i32, dl,
+ Ld->getChain(), Ptr,
+ Ld->getPointerInfo(),
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(), Ld->getAlignment());
+
+ EVT PtrType = Ptr.getValueType();
+ unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
+ SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
+ PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
+ RetVal2 = DAG.getLoad(MVT::i32, dl,
+ Ld->getChain(), NewPtr,
+ Ld->getPointerInfo().getWithOffset(4),
+ Ld->isVolatile(), Ld->isNonTemporal(),
+ Ld->isInvariant(), NewAlign);
+ return;
+ }
+
+ llvm_unreachable("Unknown VFP cmp argument!");
+}
+
+/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
+/// f32 and even f64 comparisons to integer ones.
+SDValue
+ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue LHS = Op.getOperand(2);
+ SDValue RHS = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ SDLoc dl(Op);
+
+ bool LHSSeenZero = false;
+ bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
+ bool RHSSeenZero = false;
+ bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
+ if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
+ // If unsafe fp math optimization is enabled and there are no other uses of
+ // the CMP operands, and the condition code is EQ or NE, we can optimize it
+ // to an integer comparison.
+ if (CC == ISD::SETOEQ)
+ CC = ISD::SETEQ;
+ else if (CC == ISD::SETUNE)
+ CC = ISD::SETNE;
+
+ SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
+ SDValue ARMcc;
+ if (LHS.getValueType() == MVT::f32) {
+ LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
+ bitcastf32Toi32(LHS, DAG), Mask);
+ RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
+ bitcastf32Toi32(RHS, DAG), Mask);
+ SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
+ Chain, Dest, ARMcc, CCR, Cmp);
+ }
+
+ SDValue LHS1, LHS2;
+ SDValue RHS1, RHS2;
+ expandf64Toi32(LHS, DAG, LHS1, LHS2);
+ expandf64Toi32(RHS, DAG, RHS1, RHS2);
+ LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
+ RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
+ ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
+ ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
+ SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
+ return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
+ }
+
+ return SDValue();
+}
+
+SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
+ SDValue LHS = Op.getOperand(2);
+ SDValue RHS = Op.getOperand(3);
+ SDValue Dest = Op.getOperand(4);
+ SDLoc dl(Op);
+
+ if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
+ DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
+ dl);
+
+ // If softenSetCCOperands only returned one value, we should compare it to
+ // zero.
+ if (!RHS.getNode()) {
+ RHS = DAG.getConstant(0, dl, LHS.getValueType());
+ CC = ISD::SETNE;
+ }
+ }
+
+ if (LHS.getValueType() == MVT::i32) {
+ SDValue ARMcc;
+ SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
+ Chain, Dest, ARMcc, CCR, Cmp);
+ }
+
+ assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
+
+ if (getTargetMachine().Options.UnsafeFPMath &&
+ (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
+ CC == ISD::SETNE || CC == ISD::SETUNE)) {
+ SDValue Result = OptimizeVFPBrcond(Op, DAG);
+ if (Result.getNode())
+ return Result;
+ }
+
+ ARMCC::CondCodes CondCode, CondCode2;
+ FPCCToARMCC(CC, CondCode, CondCode2);
+
+ SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
+ SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
+ SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
+ SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
+ if (CondCode2 != ARMCC::AL) {
+ ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
+ SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
+ Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
+ }
+ return Res;
+}
+
+SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
+ SDValue Chain = Op.getOperand(0);
+ SDValue Table = Op.getOperand(1);
+ SDValue Index = Op.getOperand(2);
+ SDLoc dl(Op);
+
+ EVT PTy = getPointerTy(DAG.getDataLayout());
+ JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
+ SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
+ Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
+ Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
+ SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
+ if (Subtarget->isThumb2()) {
+ // Thumb2 uses a two-level jump. That is, it jumps into the jump table
+ // which does another jump to the destination. This also makes it easier
+ // to translate it to TBB / TBH later.
+ // FIXME: This might not work if the function is extremely large.
+ return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
+ Addr, Op.getOperand(2), JTI);
+ }
+ if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
+ Addr =
+ DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
+ MachinePointerInfo::getJumpTable(DAG.getMachineFunction()),
+ false, false, false, 0);
+ Chain = Addr.getValue(1);
+ Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
+ return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
+ } else {
+ Addr =
+ DAG.getLoad(PTy, dl, Chain, Addr,
+ MachinePointerInfo::getJumpTable(DAG.getMachineFunction()),
+ false, false, false, 0);
+ Chain = Addr.getValue(1);
+ return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
+ }
+}
+
+static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+
+ if (Op.getValueType().getVectorElementType() == MVT::i32) {
+ if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
+ return Op;
+ return DAG.UnrollVectorOp(Op.getNode());
+ }
+
+ assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
+ "Invalid type for custom lowering!");
+ if (VT != MVT::v4i16)
+ return DAG.UnrollVectorOp(Op.getNode());
+
+ Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
+ return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
+}
+
+SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ if (VT.isVector())
+ return LowerVectorFP_TO_INT(Op, DAG);
+ if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
+ RTLIB::Libcall LC;
+ if (Op.getOpcode() == ISD::FP_TO_SINT)
+ LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
+ Op.getValueType());
+ else
+ LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
+ Op.getValueType());
+ return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
+ /*isSigned*/ false, SDLoc(Op)).first;
+ }
+
+ return Op;
+}
+
+static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+
+ if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
+ if (VT.getVectorElementType() == MVT::f32)
+ return Op;
+ return DAG.UnrollVectorOp(Op.getNode());
+ }
+
+ assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
+ "Invalid type for custom lowering!");
+ if (VT != MVT::v4f32)
+ return DAG.UnrollVectorOp(Op.getNode());
+
+ unsigned CastOpc;
+ unsigned Opc;
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Invalid opcode!");
+ case ISD::SINT_TO_FP:
+ CastOpc = ISD::SIGN_EXTEND;
+ Opc = ISD::SINT_TO_FP;
+ break;
+ case ISD::UINT_TO_FP:
+ CastOpc = ISD::ZERO_EXTEND;
+ Opc = ISD::UINT_TO_FP;
+ break;
+ }
+
+ Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
+ return DAG.getNode(Opc, dl, VT, Op);
+}
+
+SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
+ EVT VT = Op.getValueType();
+ if (VT.isVector())
+ return LowerVectorINT_TO_FP(Op, DAG);
+ if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
+ RTLIB::Libcall LC;
+ if (Op.getOpcode() == ISD::SINT_TO_FP)
+ LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
+ Op.getValueType());
+ else
+ LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
+ Op.getValueType());
+ return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
+ /*isSigned*/ false, SDLoc(Op)).first;
+ }
+
+ return Op;
+}
+
+SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
+ // Implement fcopysign with a fabs and a conditional fneg.
+ SDValue Tmp0 = Op.getOperand(0);
+ SDValue Tmp1 = Op.getOperand(1);
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+ EVT SrcVT = Tmp1.getValueType();
+ bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
+ Tmp0.getOpcode() == ARMISD::VMOVDRR;
+ bool UseNEON = !InGPR && Subtarget->hasNEON();
+
+ if (UseNEON) {
+ // Use VBSL to copy the sign bit.
+ unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
+ SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
+ DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
+ EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
+ if (VT == MVT::f64)
+ Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
+ DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
+ DAG.getConstant(32, dl, MVT::i32));
+ else /*if (VT == MVT::f32)*/
+ Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
+ if (SrcVT == MVT::f32) {
+ Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
+ if (VT == MVT::f64)
+ Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
+ DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
+ DAG.getConstant(32, dl, MVT::i32));
+ } else if (VT == MVT::f32)
+ Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
+ DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
+ DAG.getConstant(32, dl, MVT::i32));
+ Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
+ Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
+
+ SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
+ dl, MVT::i32);
+ AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
+ SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
+ DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
+
+ SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
+ DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
+ DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
+ if (VT == MVT::f32) {
+ Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
+ Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
+ DAG.getConstant(0, dl, MVT::i32));
+ } else {
+ Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
+ }
+
+ return Res;
+ }
+
+ // Bitcast operand 1 to i32.
+ if (SrcVT == MVT::f64)
+ Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
+ Tmp1).getValue(1);
+ Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
+
+ // Or in the signbit with integer operations.
+ SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
+ SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
+ Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
+ if (VT == MVT::f32) {
+ Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
+ DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
+ return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
+ DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
+ }
+
+ // f64: Or the high part with signbit and then combine two parts.
+ Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
+ Tmp0);
+ SDValue Lo = Tmp0.getValue(0);
+ SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
+ Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
+ return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
+}
+
+SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MFI->setReturnAddressIsTaken(true);
+
+ if (verifyReturnAddressArgumentIsConstant(Op, DAG))
+ return SDValue();
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op);
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ if (Depth) {
+ SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
+ SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
+ return DAG.getLoad(VT, dl, DAG.getEntryNode(),
+ DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
+ MachinePointerInfo(), false, false, false, 0);
+ }
+
+ // Return LR, which contains the return address. Mark it an implicit live-in.
+ unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
+ return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
+}
+
+SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
+ const ARMBaseRegisterInfo &ARI =
+ *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
+ MachineFunction &MF = DAG.getMachineFunction();
+ MachineFrameInfo *MFI = MF.getFrameInfo();
+ MFI->setFrameAddressIsTaken(true);
+
+ EVT VT = Op.getValueType();
+ SDLoc dl(Op); // FIXME probably not meaningful
+ unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ unsigned FrameReg = ARI.getFrameRegister(MF);
+ SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
+ while (Depth--)
+ FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
+ MachinePointerInfo(),
+ false, false, false, 0);
+ return FrameAddr;
+}
+
+// FIXME? Maybe this could be a TableGen attribute on some registers and
+// this table could be generated automatically from RegInfo.
+unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
+ SelectionDAG &DAG) const {
+ unsigned Reg = StringSwitch<unsigned>(RegName)
+ .Case("sp", ARM::SP)
+ .Default(0);
+ if (Reg)
+ return Reg;
+ report_fatal_error(Twine("Invalid register name \""
+ + StringRef(RegName) + "\"."));
+}
+
+// Result is 64 bit value so split into two 32 bit values and return as a
+// pair of values.
+static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) {
+ SDLoc DL(N);
+
+ // This function is only supposed to be called for i64 type destination.
+ assert(N->getValueType(0) == MVT::i64
+ && "ExpandREAD_REGISTER called for non-i64 type result.");
+
+ SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
+ DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
+ N->getOperand(0),
+ N->getOperand(1));
+
+ Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
+ Read.getValue(1)));
+ Results.push_back(Read.getOperand(0));
+}
+
+/// \p BC is a bitcast that is about to be turned into a VMOVDRR.
+/// When \p DstVT, the destination type of \p BC, is on the vector
+/// register bank and the source of bitcast, \p Op, operates on the same bank,
+/// it might be possible to combine them, such that everything stays on the
+/// vector register bank.
+/// \p return The node that would replace \p BT, if the combine
+/// is possible.
+static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
+ SelectionDAG &DAG) {
+ SDValue Op = BC->getOperand(0);
+ EVT DstVT = BC->getValueType(0);
+
+ // The only vector instruction that can produce a scalar (remember,
+ // since the bitcast was about to be turned into VMOVDRR, the source
+ // type is i64) from a vector is EXTRACT_VECTOR_ELT.
+ // Moreover, we can do this combine only if there is one use.
+ // Finally, if the destination type is not a vector, there is not
+ // much point on forcing everything on the vector bank.
+ if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ !Op.hasOneUse())
+ return SDValue();
+
+ // If the index is not constant, we will introduce an additional
+ // multiply that will stick.
+ // Give up in that case.
+ ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ if (!Index)
+ return SDValue();
+ unsigned DstNumElt = DstVT.getVectorNumElements();
+
+ // Compute the new index.
+ const APInt &APIntIndex = Index->getAPIntValue();
+ APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
+ NewIndex *= APIntIndex;
+ // Check if the new constant index fits into i32.
+ if (NewIndex.getBitWidth() > 32)
+ return SDValue();
+
+ // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
+ // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
+ SDLoc dl(Op);
+ SDValue ExtractSrc = Op.getOperand(0);
+ EVT VecVT = EVT::getVectorVT(
+ *DAG.getContext(), DstVT.getScalarType(),
+ ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
+ SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
+ DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
+}
+
+/// ExpandBITCAST - If the target supports VFP, this function is called to
+/// expand a bit convert where either the source or destination type is i64 to
+/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
+/// operand type is illegal (e.g., v2f32 for a target that doesn't support
+/// vectors), since the legalizer won't know what to do with that.
+static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ SDLoc dl(N);
+ SDValue Op = N->getOperand(0);
+
+ // This function is only supposed to be called for i64 types, either as the
+ // source or destination of the bit convert.
+ EVT SrcVT = Op.getValueType();
+ EVT DstVT = N->getValueType(0);
+ assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
+ "ExpandBITCAST called for non-i64 type");
+
+ // Turn i64->f64 into VMOVDRR.
+ if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
+ // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
+ // if we can combine the bitcast with its source.
+ if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
+ return Val;
+
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
+ DAG.getConstant(0, dl, MVT::i32));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
+ DAG.getConstant(1, dl, MVT::i32));
+ return DAG.getNode(ISD::BITCAST, dl, DstVT,
+ DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
+ }
+
+ // Turn f64->i64 into VMOVRRD.
+ if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
+ SDValue Cvt;
+ if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
+ SrcVT.getVectorNumElements() > 1)
+ Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32),
+ DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
+ else
+ Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
+ DAG.getVTList(MVT::i32, MVT::i32), Op);
+ // Merge the pieces into a single i64 value.
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
+ }
+
+ return SDValue();
+}
+
+/// getZeroVector - Returns a vector of specified type with all zero elements.
+/// Zero vectors are used to represent vector negation and in those cases
+/// will be implemented with the NEON VNEG instruction. However, VNEG does
+/// not support i64 elements, so sometimes the zero vectors will need to be
+/// explicitly constructed. Regardless, use a canonical VMOV to create the
+/// zero vector.
+static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) {
+ assert(VT.isVector() && "Expected a vector type");
+ // The canonical modified immediate encoding of a zero vector is....0!
+ SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
+ EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
+ SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
+}
+
+/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
+/// i32 values and take a 2 x i32 value to shift plus a shift amount.
+SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ EVT VT = Op.getValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ SDValue ARMcc;
+ unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
+
+ assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
+
+ SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
+ DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
+ SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
+ SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
+ DAG.getConstant(VTBits, dl, MVT::i32));
+ SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
+ SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
+ SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
+
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
+ ISD::SETGE, ARMcc, DAG, dl);
+ SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
+ SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
+ CCR, Cmp);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
+/// i32 values and take a 2 x i32 value to shift plus a shift amount.
+SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getNumOperands() == 3 && "Not a double-shift!");
+ EVT VT = Op.getValueType();
+ unsigned VTBits = VT.getSizeInBits();
+ SDLoc dl(Op);
+ SDValue ShOpLo = Op.getOperand(0);
+ SDValue ShOpHi = Op.getOperand(1);
+ SDValue ShAmt = Op.getOperand(2);
+ SDValue ARMcc;
+
+ assert(Op.getOpcode() == ISD::SHL_PARTS);
+ SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
+ DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
+ SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
+ SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
+ DAG.getConstant(VTBits, dl, MVT::i32));
+ SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
+ SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
+
+ SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
+ SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
+ SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
+ ISD::SETGE, ARMcc, DAG, dl);
+ SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
+ SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
+ CCR, Cmp);
+
+ SDValue Ops[2] = { Lo, Hi };
+ return DAG.getMergeValues(Ops, dl);
+}
+
+SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
+ SelectionDAG &DAG) const {
+ // The rounding mode is in bits 23:22 of the FPSCR.
+ // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
+ // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
+ // so that the shift + and get folded into a bitfield extract.
+ SDLoc dl(Op);
+ SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
+ DAG.getConstant(Intrinsic::arm_get_fpscr, dl,
+ MVT::i32));
+ SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
+ DAG.getConstant(1U << 22, dl, MVT::i32));
+ SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
+ DAG.getConstant(22, dl, MVT::i32));
+ return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
+ DAG.getConstant(3, dl, MVT::i32));
+}
+
+static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ if (VT.isVector()) {
+ assert(ST->hasNEON());
+
+ // Compute the least significant set bit: LSB = X & -X
+ SDValue X = N->getOperand(0);
+ SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
+ SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
+
+ EVT ElemTy = VT.getVectorElementType();
+
+ if (ElemTy == MVT::i8) {
+ // Compute with: cttz(x) = ctpop(lsb - 1)
+ SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
+ DAG.getTargetConstant(1, dl, ElemTy));
+ SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
+ return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
+ }
+
+ if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
+ (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
+ // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
+ unsigned NumBits = ElemTy.getSizeInBits();
+ SDValue WidthMinus1 =
+ DAG.getNode(ARMISD::VMOVIMM, dl, VT,
+ DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
+ SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
+ return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
+ }
+
+ // Compute with: cttz(x) = ctpop(lsb - 1)
+
+ // Since we can only compute the number of bits in a byte with vcnt.8, we
+ // have to gather the result with pairwise addition (vpaddl) for i16, i32,
+ // and i64.
+
+ // Compute LSB - 1.
+ SDValue Bits;
+ if (ElemTy == MVT::i64) {
+ // Load constant 0xffff'ffff'ffff'ffff to register.
+ SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
+ DAG.getTargetConstant(0x1eff, dl, MVT::i32));
+ Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
+ } else {
+ SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
+ DAG.getTargetConstant(1, dl, ElemTy));
+ Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
+ }
+
+ // Count #bits with vcnt.8.
+ EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
+ SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
+ SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
+
+ // Gather the #bits with vpaddl (pairwise add.)
+ EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
+ SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
+ DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
+ Cnt8);
+ if (ElemTy == MVT::i16)
+ return Cnt16;
+
+ EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
+ SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
+ DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
+ Cnt16);
+ if (ElemTy == MVT::i32)
+ return Cnt32;
+
+ assert(ElemTy == MVT::i64);
+ SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
+ Cnt32);
+ return Cnt64;
+ }
+
+ if (!ST->hasV6T2Ops())
+ return SDValue();
+
+ SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
+ return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
+}
+
+/// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
+/// for each 16-bit element from operand, repeated. The basic idea is to
+/// leverage vcnt to get the 8-bit counts, gather and add the results.
+///
+/// Trace for v4i16:
+/// input = [v0 v1 v2 v3 ] (vi 16-bit element)
+/// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
+/// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
+/// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
+/// [b0 b1 b2 b3 b4 b5 b6 b7]
+/// +[b1 b0 b3 b2 b5 b4 b7 b6]
+/// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
+/// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits)
+static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
+ SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
+ SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
+ SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
+ SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
+ return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
+}
+
+/// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
+/// bit-count for each 16-bit element from the operand. We need slightly
+/// different sequencing for v4i16 and v8i16 to stay within NEON's available
+/// 64/128-bit registers.
+///
+/// Trace for v4i16:
+/// input = [v0 v1 v2 v3 ] (vi 16-bit element)
+/// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
+/// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ]
+/// v4i16:Extracted = [k0 k1 k2 k3 ]
+static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
+ if (VT.is64BitVector()) {
+ SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
+ DAG.getIntPtrConstant(0, DL));
+ } else {
+ SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
+ BitCounts, DAG.getIntPtrConstant(0, DL));
+ return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
+ }
+}
+
+/// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
+/// bit-count for each 32-bit element from the operand. The idea here is
+/// to split the vector into 16-bit elements, leverage the 16-bit count
+/// routine, and then combine the results.
+///
+/// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
+/// input = [v0 v1 ] (vi: 32-bit elements)
+/// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
+/// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
+/// vrev: N0 = [k1 k0 k3 k2 ]
+/// [k0 k1 k2 k3 ]
+/// N1 =+[k1 k0 k3 k2 ]
+/// [k0 k2 k1 k3 ]
+/// N2 =+[k1 k3 k0 k2 ]
+/// [k0 k2 k1 k3 ]
+/// Extended =+[k1 k3 k0 k2 ]
+/// [k0 k2 ]
+/// Extracted=+[k1 k3 ]
+///
+static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+
+ EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
+
+ SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
+ SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
+ SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
+ SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
+ SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
+
+ if (VT.is64BitVector()) {
+ SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
+ DAG.getIntPtrConstant(0, DL));
+ } else {
+ SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
+ DAG.getIntPtrConstant(0, DL));
+ return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
+ }
+}
+
+static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+
+ assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
+ assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
+ VT == MVT::v4i16 || VT == MVT::v8i16) &&
+ "Unexpected type for custom ctpop lowering");
+
+ if (VT.getVectorElementType() == MVT::i32)
+ return lowerCTPOP32BitElements(N, DAG);
+ else
+ return lowerCTPOP16BitElements(N, DAG);
+}
+
+static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+ SDLoc dl(N);
+
+ if (!VT.isVector())
+ return SDValue();
+
+ // Lower vector shifts on NEON to use VSHL.
+ assert(ST->hasNEON() && "unexpected vector shift");
+
+ // Left shifts translate directly to the vshiftu intrinsic.
+ if (N->getOpcode() == ISD::SHL)
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
+ MVT::i32),
+ N->getOperand(0), N->getOperand(1));
+
+ assert((N->getOpcode() == ISD::SRA ||
+ N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
+
+ // NEON uses the same intrinsics for both left and right shifts. For
+ // right shifts, the shift amounts are negative, so negate the vector of
+ // shift amounts.
+ EVT ShiftVT = N->getOperand(1).getValueType();
+ SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
+ getZeroVector(ShiftVT, DAG, dl),
+ N->getOperand(1));
+ Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
+ Intrinsic::arm_neon_vshifts :
+ Intrinsic::arm_neon_vshiftu);
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
+ DAG.getConstant(vshiftInt, dl, MVT::i32),
+ N->getOperand(0), NegatedCount);
+}
+
+static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+ SDLoc dl(N);
+
+ // We can get here for a node like i32 = ISD::SHL i32, i64
+ if (VT != MVT::i64)
+ return SDValue();
+
+ assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
+ "Unknown shift to lower!");
+
+ // We only lower SRA, SRL of 1 here, all others use generic lowering.
+ if (!isOneConstant(N->getOperand(1)))
+ return SDValue();
+
+ // If we are in thumb mode, we don't have RRX.
+ if (ST->isThumb1Only()) return SDValue();
+
+ // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
+ DAG.getConstant(0, dl, MVT::i32));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
+ DAG.getConstant(1, dl, MVT::i32));
+
+ // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
+ // captures the result into a carry flag.
+ unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
+ Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
+
+ // The low part is an ARMISD::RRX operand, which shifts the carry in.
+ Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
+
+ // Merge the pieces into a single i64 value.
+ return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
+}
+
+static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
+ SDValue TmpOp0, TmpOp1;
+ bool Invert = false;
+ bool Swap = false;
+ unsigned Opc = 0;
+
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ SDValue CC = Op.getOperand(2);
+ EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
+ EVT VT = Op.getValueType();
+ ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
+ SDLoc dl(Op);
+
+ if (CmpVT.getVectorElementType() == MVT::i64)
+ // 64-bit comparisons are not legal. We've marked SETCC as non-Custom,
+ // but it's possible that our operands are 64-bit but our result is 32-bit.
+ // Bail in this case.
+ return SDValue();
+
+ if (Op1.getValueType().isFloatingPoint()) {
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Illegal FP comparison");
+ case ISD::SETUNE:
+ case ISD::SETNE: Invert = true; // Fallthrough
+ case ISD::SETOEQ:
+ case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
+ case ISD::SETOLT:
+ case ISD::SETLT: Swap = true; // Fallthrough
+ case ISD::SETOGT:
+ case ISD::SETGT: Opc = ARMISD::VCGT; break;
+ case ISD::SETOLE:
+ case ISD::SETLE: Swap = true; // Fallthrough
+ case ISD::SETOGE:
+ case ISD::SETGE: Opc = ARMISD::VCGE; break;
+ case ISD::SETUGE: Swap = true; // Fallthrough
+ case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
+ case ISD::SETUGT: Swap = true; // Fallthrough
+ case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
+ case ISD::SETUEQ: Invert = true; // Fallthrough
+ case ISD::SETONE:
+ // Expand this to (OLT | OGT).
+ TmpOp0 = Op0;
+ TmpOp1 = Op1;
+ Opc = ISD::OR;
+ Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
+ Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
+ break;
+ case ISD::SETUO: Invert = true; // Fallthrough
+ case ISD::SETO:
+ // Expand this to (OLT | OGE).
+ TmpOp0 = Op0;
+ TmpOp1 = Op1;
+ Opc = ISD::OR;
+ Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
+ Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
+ break;
+ }
+ } else {
+ // Integer comparisons.
+ switch (SetCCOpcode) {
+ default: llvm_unreachable("Illegal integer comparison");
+ case ISD::SETNE: Invert = true;
+ case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
+ case ISD::SETLT: Swap = true;
+ case ISD::SETGT: Opc = ARMISD::VCGT; break;
+ case ISD::SETLE: Swap = true;
+ case ISD::SETGE: Opc = ARMISD::VCGE; break;
+ case ISD::SETULT: Swap = true;
+ case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
+ case ISD::SETULE: Swap = true;
+ case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
+ }
+
+ // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
+ if (Opc == ARMISD::VCEQ) {
+
+ SDValue AndOp;
+ if (ISD::isBuildVectorAllZeros(Op1.getNode()))
+ AndOp = Op0;
+ else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
+ AndOp = Op1;
+
+ // Ignore bitconvert.
+ if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
+ AndOp = AndOp.getOperand(0);
+
+ if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
+ Opc = ARMISD::VTST;
+ Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
+ Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
+ Invert = !Invert;
+ }
+ }
+ }
+
+ if (Swap)
+ std::swap(Op0, Op1);
+
+ // If one of the operands is a constant vector zero, attempt to fold the
+ // comparison to a specialized compare-against-zero form.
+ SDValue SingleOp;
+ if (ISD::isBuildVectorAllZeros(Op1.getNode()))
+ SingleOp = Op0;
+ else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
+ if (Opc == ARMISD::VCGE)
+ Opc = ARMISD::VCLEZ;
+ else if (Opc == ARMISD::VCGT)
+ Opc = ARMISD::VCLTZ;
+ SingleOp = Op1;
+ }
+
+ SDValue Result;
+ if (SingleOp.getNode()) {
+ switch (Opc) {
+ case ARMISD::VCEQ:
+ Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
+ case ARMISD::VCGE:
+ Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
+ case ARMISD::VCLEZ:
+ Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
+ case ARMISD::VCGT:
+ Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
+ case ARMISD::VCLTZ:
+ Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
+ default:
+ Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
+ }
+ } else {
+ Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
+ }
+
+ Result = DAG.getSExtOrTrunc(Result, dl, VT);
+
+ if (Invert)
+ Result = DAG.getNOT(dl, Result, VT);
+
+ return Result;
+}
+
+/// isNEONModifiedImm - Check if the specified splat value corresponds to a
+/// valid vector constant for a NEON instruction with a "modified immediate"
+/// operand (e.g., VMOV). If so, return the encoded value.
+static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
+ unsigned SplatBitSize, SelectionDAG &DAG,
+ SDLoc dl, EVT &VT, bool is128Bits,
+ NEONModImmType type) {
+ unsigned OpCmode, Imm;
+
+ // SplatBitSize is set to the smallest size that splats the vector, so a
+ // zero vector will always have SplatBitSize == 8. However, NEON modified
+ // immediate instructions others than VMOV do not support the 8-bit encoding
+ // of a zero vector, and the default encoding of zero is supposed to be the
+ // 32-bit version.
+ if (SplatBits == 0)
+ SplatBitSize = 32;
+
+ switch (SplatBitSize) {
+ case 8:
+ if (type != VMOVModImm)
+ return SDValue();
+ // Any 1-byte value is OK. Op=0, Cmode=1110.
+ assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
+ OpCmode = 0xe;
+ Imm = SplatBits;
+ VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
+ break;
+
+ case 16:
+ // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
+ VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
+ if ((SplatBits & ~0xff) == 0) {
+ // Value = 0x00nn: Op=x, Cmode=100x.
+ OpCmode = 0x8;
+ Imm = SplatBits;
+ break;
+ }
+ if ((SplatBits & ~0xff00) == 0) {
+ // Value = 0xnn00: Op=x, Cmode=101x.
+ OpCmode = 0xa;
+ Imm = SplatBits >> 8;
+ break;
+ }
+ return SDValue();
+
+ case 32:
+ // NEON's 32-bit VMOV supports splat values where:
+ // * only one byte is nonzero, or
+ // * the least significant byte is 0xff and the second byte is nonzero, or
+ // * the least significant 2 bytes are 0xff and the third is nonzero.
+ VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
+ if ((SplatBits & ~0xff) == 0) {
+ // Value = 0x000000nn: Op=x, Cmode=000x.
+ OpCmode = 0;
+ Imm = SplatBits;
+ break;
+ }
+ if ((SplatBits & ~0xff00) == 0) {
+ // Value = 0x0000nn00: Op=x, Cmode=001x.
+ OpCmode = 0x2;
+ Imm = SplatBits >> 8;
+ break;
+ }
+ if ((SplatBits & ~0xff0000) == 0) {
+ // Value = 0x00nn0000: Op=x, Cmode=010x.
+ OpCmode = 0x4;
+ Imm = SplatBits >> 16;
+ break;
+ }
+ if ((SplatBits & ~0xff000000) == 0) {
+ // Value = 0xnn000000: Op=x, Cmode=011x.
+ OpCmode = 0x6;
+ Imm = SplatBits >> 24;
+ break;
+ }
+
+ // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
+ if (type == OtherModImm) return SDValue();
+
+ if ((SplatBits & ~0xffff) == 0 &&
+ ((SplatBits | SplatUndef) & 0xff) == 0xff) {
+ // Value = 0x0000nnff: Op=x, Cmode=1100.
+ OpCmode = 0xc;
+ Imm = SplatBits >> 8;
+ break;
+ }
+
+ if ((SplatBits & ~0xffffff) == 0 &&
+ ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
+ // Value = 0x00nnffff: Op=x, Cmode=1101.
+ OpCmode = 0xd;
+ Imm = SplatBits >> 16;
+ break;
+ }
+
+ // Note: there are a few 32-bit splat values (specifically: 00ffff00,
+ // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
+ // VMOV.I32. A (very) minor optimization would be to replicate the value
+ // and fall through here to test for a valid 64-bit splat. But, then the
+ // caller would also need to check and handle the change in size.
+ return SDValue();
+
+ case 64: {
+ if (type != VMOVModImm)
+ return SDValue();
+ // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
+ uint64_t BitMask = 0xff;
+ uint64_t Val = 0;
+ unsigned ImmMask = 1;
+ Imm = 0;
+ for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
+ if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
+ Val |= BitMask;
+ Imm |= ImmMask;
+ } else if ((SplatBits & BitMask) != 0) {
+ return SDValue();
+ }
+ BitMask <<= 8;
+ ImmMask <<= 1;
+ }
+
+ if (DAG.getDataLayout().isBigEndian())
+ // swap higher and lower 32 bit word
+ Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
+
+ // Op=1, Cmode=1110.
+ OpCmode = 0x1e;
+ VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
+ break;
+ }
+
+ default:
+ llvm_unreachable("unexpected size for isNEONModifiedImm");
+ }
+
+ unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
+ return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
+}
+
+SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *ST) const {
+ if (!ST->hasVFP3())
+ return SDValue();
+
+ bool IsDouble = Op.getValueType() == MVT::f64;
+ ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
+
+ // Use the default (constant pool) lowering for double constants when we have
+ // an SP-only FPU
+ if (IsDouble && Subtarget->isFPOnlySP())
+ return SDValue();
+
+ // Try splatting with a VMOV.f32...
+ APFloat FPVal = CFP->getValueAPF();
+ int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
+
+ if (ImmVal != -1) {
+ if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
+ // We have code in place to select a valid ConstantFP already, no need to
+ // do any mangling.
+ return Op;
+ }
+
+ // It's a float and we are trying to use NEON operations where
+ // possible. Lower it to a splat followed by an extract.
+ SDLoc DL(Op);
+ SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
+ SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
+ NewVal);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
+ DAG.getConstant(0, DL, MVT::i32));
+ }
+
+ // The rest of our options are NEON only, make sure that's allowed before
+ // proceeding..
+ if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
+ return SDValue();
+
+ EVT VMovVT;
+ uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
+
+ // It wouldn't really be worth bothering for doubles except for one very
+ // important value, which does happen to match: 0.0. So make sure we don't do
+ // anything stupid.
+ if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
+ return SDValue();
+
+ // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
+ SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
+ VMovVT, false, VMOVModImm);
+ if (NewVal != SDValue()) {
+ SDLoc DL(Op);
+ SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
+ NewVal);
+ if (IsDouble)
+ return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
+
+ // It's a float: cast and extract a vector element.
+ SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
+ VecConstant);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
+ DAG.getConstant(0, DL, MVT::i32));
+ }
+
+ // Finally, try a VMVN.i32
+ NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
+ false, VMVNModImm);
+ if (NewVal != SDValue()) {
+ SDLoc DL(Op);
+ SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
+
+ if (IsDouble)
+ return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
+
+ // It's a float: cast and extract a vector element.
+ SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
+ VecConstant);
+ return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
+ DAG.getConstant(0, DL, MVT::i32));
+ }
+
+ return SDValue();
+}
+
+// check if an VEXT instruction can handle the shuffle mask when the
+// vector sources of the shuffle are the same.
+static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
+ unsigned NumElts = VT.getVectorNumElements();
+
+ // Assume that the first shuffle index is not UNDEF. Fail if it is.
+ if (M[0] < 0)
+ return false;
+
+ Imm = M[0];
+
+ // If this is a VEXT shuffle, the immediate value is the index of the first
+ // element. The other shuffle indices must be the successive elements after
+ // the first one.
+ unsigned ExpectedElt = Imm;
+ for (unsigned i = 1; i < NumElts; ++i) {
+ // Increment the expected index. If it wraps around, just follow it
+ // back to index zero and keep going.
+ ++ExpectedElt;
+ if (ExpectedElt == NumElts)
+ ExpectedElt = 0;
+
+ if (M[i] < 0) continue; // ignore UNDEF indices
+ if (ExpectedElt != static_cast<unsigned>(M[i]))
+ return false;
+ }
+
+ return true;
+}
+
+
+static bool isVEXTMask(ArrayRef<int> M, EVT VT,
+ bool &ReverseVEXT, unsigned &Imm) {
+ unsigned NumElts = VT.getVectorNumElements();
+ ReverseVEXT = false;
+
+ // Assume that the first shuffle index is not UNDEF. Fail if it is.
+ if (M[0] < 0)
+ return false;
+
+ Imm = M[0];
+
+ // If this is a VEXT shuffle, the immediate value is the index of the first
+ // element. The other shuffle indices must be the successive elements after
+ // the first one.
+ unsigned ExpectedElt = Imm;
+ for (unsigned i = 1; i < NumElts; ++i) {
+ // Increment the expected index. If it wraps around, it may still be
+ // a VEXT but the source vectors must be swapped.
+ ExpectedElt += 1;
+ if (ExpectedElt == NumElts * 2) {
+ ExpectedElt = 0;
+ ReverseVEXT = true;
+ }
+
+ if (M[i] < 0) continue; // ignore UNDEF indices
+ if (ExpectedElt != static_cast<unsigned>(M[i]))
+ return false;
+ }
+
+ // Adjust the index value if the source operands will be swapped.
+ if (ReverseVEXT)
+ Imm -= NumElts;
+
+ return true;
+}
+
+/// isVREVMask - Check if a vector shuffle corresponds to a VREV
+/// instruction with the specified blocksize. (The order of the elements
+/// within each block of the vector is reversed.)
+static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
+ assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
+ "Only possible block sizes for VREV are: 16, 32, 64");
+
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned BlockElts = M[0] + 1;
+ // If the first shuffle index is UNDEF, be optimistic.
+ if (M[0] < 0)
+ BlockElts = BlockSize / EltSz;
+
+ if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
+ return false;
+
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if (M[i] < 0) continue; // ignore UNDEF indices
+ if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
+ return false;
+ }
+
+ return true;
+}
+
+static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
+ // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
+ // range, then 0 is placed into the resulting vector. So pretty much any mask
+ // of 8 elements can work here.
+ return VT == MVT::v8i8 && M.size() == 8;
+}
+
+// Checks whether the shuffle mask represents a vector transpose (VTRN) by
+// checking that pairs of elements in the shuffle mask represent the same index
+// in each vector, incrementing the expected index by 2 at each step.
+// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
+// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
+// v2={e,f,g,h}
+// WhichResult gives the offset for each element in the mask based on which
+// of the two results it belongs to.
+//
+// The transpose can be represented either as:
+// result1 = shufflevector v1, v2, result1_shuffle_mask
+// result2 = shufflevector v1, v2, result2_shuffle_mask
+// where v1/v2 and the shuffle masks have the same number of elements
+// (here WhichResult (see below) indicates which result is being checked)
+//
+// or as:
+// results = shufflevector v1, v2, shuffle_mask
+// where both results are returned in one vector and the shuffle mask has twice
+// as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
+// want to check the low half and high half of the shuffle mask as if it were
+// the other case
+static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ if (M.size() != NumElts && M.size() != NumElts*2)
+ return false;
+
+ // If the mask is twice as long as the input vector then we need to check the
+ // upper and lower parts of the mask with a matching value for WhichResult
+ // FIXME: A mask with only even values will be rejected in case the first
+ // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
+ // M[0] is used to determine WhichResult
+ for (unsigned i = 0; i < M.size(); i += NumElts) {
+ if (M.size() == NumElts * 2)
+ WhichResult = i / NumElts;
+ else
+ WhichResult = M[i] == 0 ? 0 : 1;
+ for (unsigned j = 0; j < NumElts; j += 2) {
+ if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
+ (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
+ return false;
+ }
+ }
+
+ if (M.size() == NumElts*2)
+ WhichResult = 0;
+
+ return true;
+}
+
+/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
+static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ if (M.size() != NumElts && M.size() != NumElts*2)
+ return false;
+
+ for (unsigned i = 0; i < M.size(); i += NumElts) {
+ if (M.size() == NumElts * 2)
+ WhichResult = i / NumElts;
+ else
+ WhichResult = M[i] == 0 ? 0 : 1;
+ for (unsigned j = 0; j < NumElts; j += 2) {
+ if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
+ (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
+ return false;
+ }
+ }
+
+ if (M.size() == NumElts*2)
+ WhichResult = 0;
+
+ return true;
+}
+
+// Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
+// that the mask elements are either all even and in steps of size 2 or all odd
+// and in steps of size 2.
+// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
+// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
+// v2={e,f,g,h}
+// Requires similar checks to that of isVTRNMask with
+// respect the how results are returned.
+static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ if (M.size() != NumElts && M.size() != NumElts*2)
+ return false;
+
+ for (unsigned i = 0; i < M.size(); i += NumElts) {
+ WhichResult = M[i] == 0 ? 0 : 1;
+ for (unsigned j = 0; j < NumElts; ++j) {
+ if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
+ return false;
+ }
+ }
+
+ if (M.size() == NumElts*2)
+ WhichResult = 0;
+
+ // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
+static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ if (M.size() != NumElts && M.size() != NumElts*2)
+ return false;
+
+ unsigned Half = NumElts / 2;
+ for (unsigned i = 0; i < M.size(); i += NumElts) {
+ WhichResult = M[i] == 0 ? 0 : 1;
+ for (unsigned j = 0; j < NumElts; j += Half) {
+ unsigned Idx = WhichResult;
+ for (unsigned k = 0; k < Half; ++k) {
+ int MIdx = M[i + j + k];
+ if (MIdx >= 0 && (unsigned) MIdx != Idx)
+ return false;
+ Idx += 2;
+ }
+ }
+ }
+
+ if (M.size() == NumElts*2)
+ WhichResult = 0;
+
+ // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+// Checks whether the shuffle mask represents a vector zip (VZIP) by checking
+// that pairs of elements of the shufflemask represent the same index in each
+// vector incrementing sequentially through the vectors.
+// e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
+// v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
+// v2={e,f,g,h}
+// Requires similar checks to that of isVTRNMask with respect the how results
+// are returned.
+static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ if (M.size() != NumElts && M.size() != NumElts*2)
+ return false;
+
+ for (unsigned i = 0; i < M.size(); i += NumElts) {
+ WhichResult = M[i] == 0 ? 0 : 1;
+ unsigned Idx = WhichResult * NumElts / 2;
+ for (unsigned j = 0; j < NumElts; j += 2) {
+ if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
+ (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
+ return false;
+ Idx += 1;
+ }
+ }
+
+ if (M.size() == NumElts*2)
+ WhichResult = 0;
+
+ // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
+/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
+/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
+static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
+ unsigned EltSz = VT.getVectorElementType().getSizeInBits();
+ if (EltSz == 64)
+ return false;
+
+ unsigned NumElts = VT.getVectorNumElements();
+ if (M.size() != NumElts && M.size() != NumElts*2)
+ return false;
+
+ for (unsigned i = 0; i < M.size(); i += NumElts) {
+ WhichResult = M[i] == 0 ? 0 : 1;
+ unsigned Idx = WhichResult * NumElts / 2;
+ for (unsigned j = 0; j < NumElts; j += 2) {
+ if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
+ (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
+ return false;
+ Idx += 1;
+ }
+ }
+
+ if (M.size() == NumElts*2)
+ WhichResult = 0;
+
+ // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
+ if (VT.is64BitVector() && EltSz == 32)
+ return false;
+
+ return true;
+}
+
+/// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
+/// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
+static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
+ unsigned &WhichResult,
+ bool &isV_UNDEF) {
+ isV_UNDEF = false;
+ if (isVTRNMask(ShuffleMask, VT, WhichResult))
+ return ARMISD::VTRN;
+ if (isVUZPMask(ShuffleMask, VT, WhichResult))
+ return ARMISD::VUZP;
+ if (isVZIPMask(ShuffleMask, VT, WhichResult))
+ return ARMISD::VZIP;
+
+ isV_UNDEF = true;
+ if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
+ return ARMISD::VTRN;
+ if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
+ return ARMISD::VUZP;
+ if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
+ return ARMISD::VZIP;
+
+ return 0;
+}
+
+/// \return true if this is a reverse operation on an vector.
+static bool isReverseMask(ArrayRef<int> M, EVT VT) {
+ unsigned NumElts = VT.getVectorNumElements();
+ // Make sure the mask has the right size.
+ if (NumElts != M.size())
+ return false;
+
+ // Look for <15, ..., 3, -1, 1, 0>.
+ for (unsigned i = 0; i != NumElts; ++i)
+ if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
+ return false;
+
+ return true;
+}
+
+// If N is an integer constant that can be moved into a register in one
+// instruction, return an SDValue of such a constant (will become a MOV
+// instruction). Otherwise return null.
+static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
+ const ARMSubtarget *ST, SDLoc dl) {
+ uint64_t Val;
+ if (!isa<ConstantSDNode>(N))
+ return SDValue();
+ Val = cast<ConstantSDNode>(N)->getZExtValue();
+
+ if (ST->isThumb1Only()) {
+ if (Val <= 255 || ~Val <= 255)
+ return DAG.getConstant(Val, dl, MVT::i32);
+ } else {
+ if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
+ return DAG.getConstant(Val, dl, MVT::i32);
+ }
+ return SDValue();
+}
+
+// If this is a case we can't handle, return null and let the default
+// expansion code take care of it.
+SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
+ const ARMSubtarget *ST) const {
+ BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
+ if (SplatBitSize <= 64) {
+ // Check if an immediate VMOV works.
+ EVT VmovVT;
+ SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
+ SplatUndef.getZExtValue(), SplatBitSize,
+ DAG, dl, VmovVT, VT.is128BitVector(),
+ VMOVModImm);
+ if (Val.getNode()) {
+ SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
+ }
+
+ // Try an immediate VMVN.
+ uint64_t NegatedImm = (~SplatBits).getZExtValue();
+ Val = isNEONModifiedImm(NegatedImm,
+ SplatUndef.getZExtValue(), SplatBitSize,
+ DAG, dl, VmovVT, VT.is128BitVector(),
+ VMVNModImm);
+ if (Val.getNode()) {
+ SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
+ }
+
+ // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
+ if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
+ int ImmVal = ARM_AM::getFP32Imm(SplatBits);
+ if (ImmVal != -1) {
+ SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
+ return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
+ }
+ }
+ }
+ }
+
+ // Scan through the operands to see if only one value is used.
+ //
+ // As an optimisation, even if more than one value is used it may be more
+ // profitable to splat with one value then change some lanes.
+ //
+ // Heuristically we decide to do this if the vector has a "dominant" value,
+ // defined as splatted to more than half of the lanes.
+ unsigned NumElts = VT.getVectorNumElements();
+ bool isOnlyLowElement = true;
+ bool usesOnlyOneValue = true;
+ bool hasDominantValue = false;
+ bool isConstant = true;
+
+ // Map of the number of times a particular SDValue appears in the
+ // element list.
+ DenseMap<SDValue, unsigned> ValueCounts;
+ SDValue Value;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ if (i > 0)
+ isOnlyLowElement = false;
+ if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
+ isConstant = false;
+
+ ValueCounts.insert(std::make_pair(V, 0));
+ unsigned &Count = ValueCounts[V];
+
+ // Is this value dominant? (takes up more than half of the lanes)
+ if (++Count > (NumElts / 2)) {
+ hasDominantValue = true;
+ Value = V;
+ }
+ }
+ if (ValueCounts.size() != 1)
+ usesOnlyOneValue = false;
+ if (!Value.getNode() && ValueCounts.size() > 0)
+ Value = ValueCounts.begin()->first;
+
+ if (ValueCounts.size() == 0)
+ return DAG.getUNDEF(VT);
+
+ // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
+ // Keep going if we are hitting this case.
+ if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
+ return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
+
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+
+ // Use VDUP for non-constant splats. For f32 constant splats, reduce to
+ // i32 and try again.
+ if (hasDominantValue && EltSize <= 32) {
+ if (!isConstant) {
+ SDValue N;
+
+ // If we are VDUPing a value that comes directly from a vector, that will
+ // cause an unnecessary move to and from a GPR, where instead we could
+ // just use VDUPLANE. We can only do this if the lane being extracted
+ // is at a constant index, as the VDUP from lane instructions only have
+ // constant-index forms.
+ ConstantSDNode *constIndex;
+ if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
+ (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
+ // We need to create a new undef vector to use for the VDUPLANE if the
+ // size of the vector from which we get the value is different than the
+ // size of the vector that we need to create. We will insert the element
+ // such that the register coalescer will remove unnecessary copies.
+ if (VT != Value->getOperand(0).getValueType()) {
+ unsigned index = constIndex->getAPIntValue().getLimitedValue() %
+ VT.getVectorNumElements();
+ N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
+ DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
+ Value, DAG.getConstant(index, dl, MVT::i32)),
+ DAG.getConstant(index, dl, MVT::i32));
+ } else
+ N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
+ Value->getOperand(0), Value->getOperand(1));
+ } else
+ N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
+
+ if (!usesOnlyOneValue) {
+ // The dominant value was splatted as 'N', but we now have to insert
+ // all differing elements.
+ for (unsigned I = 0; I < NumElts; ++I) {
+ if (Op.getOperand(I) == Value)
+ continue;
+ SmallVector<SDValue, 3> Ops;
+ Ops.push_back(N);
+ Ops.push_back(Op.getOperand(I));
+ Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
+ N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
+ }
+ }
+ return N;
+ }
+ if (VT.getVectorElementType().isFloatingPoint()) {
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < NumElts; ++i)
+ Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
+ Op.getOperand(i)));
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
+ SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
+ Val = LowerBUILD_VECTOR(Val, DAG, ST);
+ if (Val.getNode())
+ return DAG.getNode(ISD::BITCAST, dl, VT, Val);
+ }
+ if (usesOnlyOneValue) {
+ SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
+ if (isConstant && Val.getNode())
+ return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
+ }
+ }
+
+ // If all elements are constants and the case above didn't get hit, fall back
+ // to the default expansion, which will generate a load from the constant
+ // pool.
+ if (isConstant)
+ return SDValue();
+
+ // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
+ if (NumElts >= 4) {
+ SDValue shuffle = ReconstructShuffle(Op, DAG);
+ if (shuffle != SDValue())
+ return shuffle;
+ }
+
+ // Vectors with 32- or 64-bit elements can be built by directly assigning
+ // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
+ // will be legalized.
+ if (EltSize >= 32) {
+ // Do the expansion with floating-point types, since that is what the VFP
+ // registers are defined to use, and since i64 is not legal.
+ EVT EltVT = EVT::getFloatingPointVT(EltSize);
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < NumElts; ++i)
+ Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
+ SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Val);
+ }
+
+ // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
+ // know the default expansion would otherwise fall back on something even
+ // worse. For a vector with one or two non-undef values, that's
+ // scalar_to_vector for the elements followed by a shuffle (provided the
+ // shuffle is valid for the target) and materialization element by element
+ // on the stack followed by a load for everything else.
+ if (!isConstant && !usesOnlyOneValue) {
+ SDValue Vec = DAG.getUNDEF(VT);
+ for (unsigned i = 0 ; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
+ }
+ return Vec;
+ }
+
+ return SDValue();
+}
+
+// Gather data to see if the operation can be modelled as a
+// shuffle in combination with VEXTs.
+SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
+ SelectionDAG &DAG) const {
+ assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+ unsigned NumElts = VT.getVectorNumElements();
+
+ struct ShuffleSourceInfo {
+ SDValue Vec;
+ unsigned MinElt;
+ unsigned MaxElt;
+
+ // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
+ // be compatible with the shuffle we intend to construct. As a result
+ // ShuffleVec will be some sliding window into the original Vec.
+ SDValue ShuffleVec;
+
+ // Code should guarantee that element i in Vec starts at element "WindowBase
+ // + i * WindowScale in ShuffleVec".
+ int WindowBase;
+ int WindowScale;
+
+ bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
+ ShuffleSourceInfo(SDValue Vec)
+ : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
+ WindowScale(1) {}
+ };
+
+ // First gather all vectors used as an immediate source for this BUILD_VECTOR
+ // node.
+ SmallVector<ShuffleSourceInfo, 2> Sources;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = Op.getOperand(i);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
+ // A shuffle can only come from building a vector from various
+ // elements of other vectors.
+ return SDValue();
+ } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
+ // Furthermore, shuffles require a constant mask, whereas extractelts
+ // accept variable indices.
+ return SDValue();
+ }
+
+ // Add this element source to the list if it's not already there.
+ SDValue SourceVec = V.getOperand(0);
+ auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
+ if (Source == Sources.end())
+ Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
+
+ // Update the minimum and maximum lane number seen.
+ unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
+ Source->MinElt = std::min(Source->MinElt, EltNo);
+ Source->MaxElt = std::max(Source->MaxElt, EltNo);
+ }
+
+ // Currently only do something sane when at most two source vectors
+ // are involved.
+ if (Sources.size() > 2)
+ return SDValue();
+
+ // Find out the smallest element size among result and two sources, and use
+ // it as element size to build the shuffle_vector.
+ EVT SmallestEltTy = VT.getVectorElementType();
+ for (auto &Source : Sources) {
+ EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
+ if (SrcEltTy.bitsLT(SmallestEltTy))
+ SmallestEltTy = SrcEltTy;
+ }
+ unsigned ResMultiplier =
+ VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
+ NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
+ EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
+
+ // If the source vector is too wide or too narrow, we may nevertheless be able
+ // to construct a compatible shuffle either by concatenating it with UNDEF or
+ // extracting a suitable range of elements.
+ for (auto &Src : Sources) {
+ EVT SrcVT = Src.ShuffleVec.getValueType();
+
+ if (SrcVT.getSizeInBits() == VT.getSizeInBits())
+ continue;
+
+ // This stage of the search produces a source with the same element type as
+ // the original, but with a total width matching the BUILD_VECTOR output.
+ EVT EltVT = SrcVT.getVectorElementType();
+ unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
+ EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
+
+ if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
+ if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
+ return SDValue();
+ // We can pad out the smaller vector for free, so if it's part of a
+ // shuffle...
+ Src.ShuffleVec =
+ DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
+ DAG.getUNDEF(Src.ShuffleVec.getValueType()));
+ continue;
+ }
+
+ if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
+ return SDValue();
+
+ if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
+ // Span too large for a VEXT to cope
+ return SDValue();
+ }
+
+ if (Src.MinElt >= NumSrcElts) {
+ // The extraction can just take the second half
+ Src.ShuffleVec =
+ DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
+ DAG.getConstant(NumSrcElts, dl, MVT::i32));
+ Src.WindowBase = -NumSrcElts;
+ } else if (Src.MaxElt < NumSrcElts) {
+ // The extraction can just take the first half
+ Src.ShuffleVec =
+ DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
+ DAG.getConstant(0, dl, MVT::i32));
+ } else {
+ // An actual VEXT is needed
+ SDValue VEXTSrc1 =
+ DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
+ DAG.getConstant(0, dl, MVT::i32));
+ SDValue VEXTSrc2 =
+ DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
+ DAG.getConstant(NumSrcElts, dl, MVT::i32));
+
+ Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
+ VEXTSrc2,
+ DAG.getConstant(Src.MinElt, dl, MVT::i32));
+ Src.WindowBase = -Src.MinElt;
+ }
+ }
+
+ // Another possible incompatibility occurs from the vector element types. We
+ // can fix this by bitcasting the source vectors to the same type we intend
+ // for the shuffle.
+ for (auto &Src : Sources) {
+ EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
+ if (SrcEltTy == SmallestEltTy)
+ continue;
+ assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
+ Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
+ Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
+ Src.WindowBase *= Src.WindowScale;
+ }
+
+ // Final sanity check before we try to actually produce a shuffle.
+ DEBUG(
+ for (auto Src : Sources)
+ assert(Src.ShuffleVec.getValueType() == ShuffleVT);
+ );
+
+ // The stars all align, our next step is to produce the mask for the shuffle.
+ SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
+ int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
+ for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
+ SDValue Entry = Op.getOperand(i);
+ if (Entry.getOpcode() == ISD::UNDEF)
+ continue;
+
+ auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
+ int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
+
+ // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
+ // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
+ // segment.
+ EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
+ int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
+ VT.getVectorElementType().getSizeInBits());
+ int LanesDefined = BitsDefined / BitsPerShuffleLane;
+
+ // This source is expected to fill ResMultiplier lanes of the final shuffle,
+ // starting at the appropriate offset.
+ int *LaneMask = &Mask[i * ResMultiplier];
+
+ int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
+ ExtractBase += NumElts * (Src - Sources.begin());
+ for (int j = 0; j < LanesDefined; ++j)
+ LaneMask[j] = ExtractBase + j;
+ }
+
+ // Final check before we try to produce nonsense...
+ if (!isShuffleMaskLegal(Mask, ShuffleVT))
+ return SDValue();
+
+ // We can't handle more than two sources. This should have already
+ // been checked before this point.
+ assert(Sources.size() <= 2 && "Too many sources!");
+
+ SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
+ for (unsigned i = 0; i < Sources.size(); ++i)
+ ShuffleOps[i] = Sources[i].ShuffleVec;
+
+ SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
+ ShuffleOps[1], &Mask[0]);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
+}
+
+/// isShuffleMaskLegal - Targets can use this to indicate that they only
+/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
+/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
+/// are assumed to be legal.
+bool
+ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
+ EVT VT) const {
+ if (VT.getVectorNumElements() == 4 &&
+ (VT.is128BitVector() || VT.is64BitVector())) {
+ unsigned PFIndexes[4];
+ for (unsigned i = 0; i != 4; ++i) {
+ if (M[i] < 0)
+ PFIndexes[i] = 8;
+ else
+ PFIndexes[i] = M[i];
+ }
+
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex =
+ PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ if (Cost <= 4)
+ return true;
+ }
+
+ bool ReverseVEXT, isV_UNDEF;
+ unsigned Imm, WhichResult;
+
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ return (EltSize >= 32 ||
+ ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
+ isVREVMask(M, VT, 64) ||
+ isVREVMask(M, VT, 32) ||
+ isVREVMask(M, VT, 16) ||
+ isVEXTMask(M, VT, ReverseVEXT, Imm) ||
+ isVTBLMask(M, VT) ||
+ isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
+ ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
+}
+
+/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
+/// the specified operations to build the shuffle.
+static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
+ SDValue RHS, SelectionDAG &DAG,
+ SDLoc dl) {
+ unsigned OpNum = (PFEntry >> 26) & 0x0F;
+ unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
+ unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
+
+ enum {
+ OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
+ OP_VREV,
+ OP_VDUP0,
+ OP_VDUP1,
+ OP_VDUP2,
+ OP_VDUP3,
+ OP_VEXT1,
+ OP_VEXT2,
+ OP_VEXT3,
+ OP_VUZPL, // VUZP, left result
+ OP_VUZPR, // VUZP, right result
+ OP_VZIPL, // VZIP, left result
+ OP_VZIPR, // VZIP, right result
+ OP_VTRNL, // VTRN, left result
+ OP_VTRNR // VTRN, right result
+ };
+
+ if (OpNum == OP_COPY) {
+ if (LHSID == (1*9+2)*9+3) return LHS;
+ assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
+ return RHS;
+ }
+
+ SDValue OpLHS, OpRHS;
+ OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
+ OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
+ EVT VT = OpLHS.getValueType();
+
+ switch (OpNum) {
+ default: llvm_unreachable("Unknown shuffle opcode!");
+ case OP_VREV:
+ // VREV divides the vector in half and swaps within the half.
+ if (VT.getVectorElementType() == MVT::i32 ||
+ VT.getVectorElementType() == MVT::f32)
+ return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
+ // vrev <4 x i16> -> VREV32
+ if (VT.getVectorElementType() == MVT::i16)
+ return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
+ // vrev <4 x i8> -> VREV16
+ assert(VT.getVectorElementType() == MVT::i8);
+ return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
+ case OP_VDUP0:
+ case OP_VDUP1:
+ case OP_VDUP2:
+ case OP_VDUP3:
+ return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
+ OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
+ case OP_VEXT1:
+ case OP_VEXT2:
+ case OP_VEXT3:
+ return DAG.getNode(ARMISD::VEXT, dl, VT,
+ OpLHS, OpRHS,
+ DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
+ case OP_VUZPL:
+ case OP_VUZPR:
+ return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
+ OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
+ case OP_VZIPL:
+ case OP_VZIPR:
+ return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
+ OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
+ case OP_VTRNL:
+ case OP_VTRNR:
+ return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
+ OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
+ }
+}
+
+static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
+ ArrayRef<int> ShuffleMask,
+ SelectionDAG &DAG) {
+ // Check to see if we can use the VTBL instruction.
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ SDLoc DL(Op);
+
+ SmallVector<SDValue, 8> VTBLMask;
+ for (ArrayRef<int>::iterator
+ I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
+ VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
+
+ if (V2.getNode()->getOpcode() == ISD::UNDEF)
+ return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
+
+ return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
+ DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
+}
+
+static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
+ SelectionDAG &DAG) {
+ SDLoc DL(Op);
+ SDValue OpLHS = Op.getOperand(0);
+ EVT VT = OpLHS.getValueType();
+
+ assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
+ "Expect an v8i16/v16i8 type");
+ OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
+ // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
+ // extract the first 8 bytes into the top double word and the last 8 bytes
+ // into the bottom double word. The v8i16 case is similar.
+ unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
+ return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
+ DAG.getConstant(ExtractNum, DL, MVT::i32));
+}
+
+static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
+ SDValue V1 = Op.getOperand(0);
+ SDValue V2 = Op.getOperand(1);
+ SDLoc dl(Op);
+ EVT VT = Op.getValueType();
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
+
+ // Convert shuffles that are directly supported on NEON to target-specific
+ // DAG nodes, instead of keeping them as shuffles and matching them again
+ // during code selection. This is more efficient and avoids the possibility
+ // of inconsistencies between legalization and selection.
+ // FIXME: floating-point vectors should be canonicalized to integer vectors
+ // of the same time so that they get CSEd properly.
+ ArrayRef<int> ShuffleMask = SVN->getMask();
+
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ if (EltSize <= 32) {
+ if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
+ int Lane = SVN->getSplatIndex();
+ // If this is undef splat, generate it via "just" vdup, if possible.
+ if (Lane == -1) Lane = 0;
+
+ // Test if V1 is a SCALAR_TO_VECTOR.
+ if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
+ return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
+ }
+ // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
+ // (and probably will turn into a SCALAR_TO_VECTOR once legalization
+ // reaches it).
+ if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
+ !isa<ConstantSDNode>(V1.getOperand(0))) {
+ bool IsScalarToVector = true;
+ for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
+ if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
+ IsScalarToVector = false;
+ break;
+ }
+ if (IsScalarToVector)
+ return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
+ }
+ return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
+ DAG.getConstant(Lane, dl, MVT::i32));
+ }
+
+ bool ReverseVEXT;
+ unsigned Imm;
+ if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
+ if (ReverseVEXT)
+ std::swap(V1, V2);
+ return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
+ DAG.getConstant(Imm, dl, MVT::i32));
+ }
+
+ if (isVREVMask(ShuffleMask, VT, 64))
+ return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
+ if (isVREVMask(ShuffleMask, VT, 32))
+ return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
+ if (isVREVMask(ShuffleMask, VT, 16))
+ return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
+
+ if (V2->getOpcode() == ISD::UNDEF &&
+ isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
+ return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
+ DAG.getConstant(Imm, dl, MVT::i32));
+ }
+
+ // Check for Neon shuffles that modify both input vectors in place.
+ // If both results are used, i.e., if there are two shuffles with the same
+ // source operands and with masks corresponding to both results of one of
+ // these operations, DAG memoization will ensure that a single node is
+ // used for both shuffles.
+ unsigned WhichResult;
+ bool isV_UNDEF;
+ if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
+ ShuffleMask, VT, WhichResult, isV_UNDEF)) {
+ if (isV_UNDEF)
+ V2 = V1;
+ return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
+ .getValue(WhichResult);
+ }
+
+ // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
+ // shuffles that produce a result larger than their operands with:
+ // shuffle(concat(v1, undef), concat(v2, undef))
+ // ->
+ // shuffle(concat(v1, v2), undef)
+ // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
+ //
+ // This is useful in the general case, but there are special cases where
+ // native shuffles produce larger results: the two-result ops.
+ //
+ // Look through the concat when lowering them:
+ // shuffle(concat(v1, v2), undef)
+ // ->
+ // concat(VZIP(v1, v2):0, :1)
+ //
+ if (V1->getOpcode() == ISD::CONCAT_VECTORS &&
+ V2->getOpcode() == ISD::UNDEF) {
+ SDValue SubV1 = V1->getOperand(0);
+ SDValue SubV2 = V1->getOperand(1);
+ EVT SubVT = SubV1.getValueType();
+
+ // We expect these to have been canonicalized to -1.
+ assert(std::all_of(ShuffleMask.begin(), ShuffleMask.end(), [&](int i) {
+ return i < (int)VT.getVectorNumElements();
+ }) && "Unexpected shuffle index into UNDEF operand!");
+
+ if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
+ ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
+ if (isV_UNDEF)
+ SubV2 = SubV1;
+ assert((WhichResult == 0) &&
+ "In-place shuffle of concat can only have one result!");
+ SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
+ SubV1, SubV2);
+ return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
+ Res.getValue(1));
+ }
+ }
+ }
+
+ // If the shuffle is not directly supported and it has 4 elements, use
+ // the PerfectShuffle-generated table to synthesize it from other shuffles.
+ unsigned NumElts = VT.getVectorNumElements();
+ if (NumElts == 4) {
+ unsigned PFIndexes[4];
+ for (unsigned i = 0; i != 4; ++i) {
+ if (ShuffleMask[i] < 0)
+ PFIndexes[i] = 8;
+ else
+ PFIndexes[i] = ShuffleMask[i];
+ }
+
+ // Compute the index in the perfect shuffle table.
+ unsigned PFTableIndex =
+ PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
+ unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
+ unsigned Cost = (PFEntry >> 30);
+
+ if (Cost <= 4)
+ return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
+ }
+
+ // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
+ if (EltSize >= 32) {
+ // Do the expansion with floating-point types, since that is what the VFP
+ // registers are defined to use, and since i64 is not legal.
+ EVT EltVT = EVT::getFloatingPointVT(EltSize);
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
+ V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
+ V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i < NumElts; ++i) {
+ if (ShuffleMask[i] < 0)
+ Ops.push_back(DAG.getUNDEF(EltVT));
+ else
+ Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
+ ShuffleMask[i] < (int)NumElts ? V1 : V2,
+ DAG.getConstant(ShuffleMask[i] & (NumElts-1),
+ dl, MVT::i32)));
+ }
+ SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Val);
+ }
+
+ if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
+ return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
+
+ if (VT == MVT::v8i8) {
+ SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
+ if (NewOp.getNode())
+ return NewOp;
+ }
+
+ return SDValue();
+}
+
+static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
+ // INSERT_VECTOR_ELT is legal only for immediate indexes.
+ SDValue Lane = Op.getOperand(2);
+ if (!isa<ConstantSDNode>(Lane))
+ return SDValue();
+
+ return Op;
+}
+
+static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
+ // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
+ SDValue Lane = Op.getOperand(1);
+ if (!isa<ConstantSDNode>(Lane))
+ return SDValue();
+
+ SDValue Vec = Op.getOperand(0);
+ if (Op.getValueType() == MVT::i32 &&
+ Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
+ SDLoc dl(Op);
+ return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
+ }
+
+ return Op;
+}
+
+static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
+ // The only time a CONCAT_VECTORS operation can have legal types is when
+ // two 64-bit vectors are concatenated to a 128-bit vector.
+ assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
+ "unexpected CONCAT_VECTORS");
+ SDLoc dl(Op);
+ SDValue Val = DAG.getUNDEF(MVT::v2f64);
+ SDValue Op0 = Op.getOperand(0);
+ SDValue Op1 = Op.getOperand(1);
+ if (Op0.getOpcode() != ISD::UNDEF)
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
+ DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
+ DAG.getIntPtrConstant(0, dl));
+ if (Op1.getOpcode() != ISD::UNDEF)
+ Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
+ DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
+ DAG.getIntPtrConstant(1, dl));
+ return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
+}
+
+/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
+/// element has been zero/sign-extended, depending on the isSigned parameter,
+/// from an integer type half its size.
+static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
+ bool isSigned) {
+ // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
+ EVT VT = N->getValueType(0);
+ if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
+ SDNode *BVN = N->getOperand(0).getNode();
+ if (BVN->getValueType(0) != MVT::v4i32 ||
+ BVN->getOpcode() != ISD::BUILD_VECTOR)
+ return false;
+ unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
+ unsigned HiElt = 1 - LoElt;
+ ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
+ ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
+ ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
+ ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
+ if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
+ return false;
+ if (isSigned) {
+ if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
+ Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
+ return true;
+ } else {
+ if (Hi0->isNullValue() && Hi1->isNullValue())
+ return true;
+ }
+ return false;
+ }
+
+ if (N->getOpcode() != ISD::BUILD_VECTOR)
+ return false;
+
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ SDNode *Elt = N->getOperand(i).getNode();
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits();
+ unsigned HalfSize = EltSize / 2;
+ if (isSigned) {
+ if (!isIntN(HalfSize, C->getSExtValue()))
+ return false;
+ } else {
+ if (!isUIntN(HalfSize, C->getZExtValue()))
+ return false;
+ }
+ continue;
+ }
+ return false;
+ }
+
+ return true;
+}
+
+/// isSignExtended - Check if a node is a vector value that is sign-extended
+/// or a constant BUILD_VECTOR with sign-extended elements.
+static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
+ if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
+ return true;
+ if (isExtendedBUILD_VECTOR(N, DAG, true))
+ return true;
+ return false;
+}
+
+/// isZeroExtended - Check if a node is a vector value that is zero-extended
+/// or a constant BUILD_VECTOR with zero-extended elements.
+static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
+ if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
+ return true;
+ if (isExtendedBUILD_VECTOR(N, DAG, false))
+ return true;
+ return false;
+}
+
+static EVT getExtensionTo64Bits(const EVT &OrigVT) {
+ if (OrigVT.getSizeInBits() >= 64)
+ return OrigVT;
+
+ assert(OrigVT.isSimple() && "Expecting a simple value type");
+
+ MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
+ switch (OrigSimpleTy) {
+ default: llvm_unreachable("Unexpected Vector Type");
+ case MVT::v2i8:
+ case MVT::v2i16:
+ return MVT::v2i32;
+ case MVT::v4i8:
+ return MVT::v4i16;
+ }
+}
+
+/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
+/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
+/// We insert the required extension here to get the vector to fill a D register.
+static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
+ const EVT &OrigTy,
+ const EVT &ExtTy,
+ unsigned ExtOpcode) {
+ // The vector originally had a size of OrigTy. It was then extended to ExtTy.
+ // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
+ // 64-bits we need to insert a new extension so that it will be 64-bits.
+ assert(ExtTy.is128BitVector() && "Unexpected extension size");
+ if (OrigTy.getSizeInBits() >= 64)
+ return N;
+
+ // Must extend size to at least 64 bits to be used as an operand for VMULL.
+ EVT NewVT = getExtensionTo64Bits(OrigTy);
+
+ return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
+}
+
+/// SkipLoadExtensionForVMULL - return a load of the original vector size that
+/// does not do any sign/zero extension. If the original vector is less
+/// than 64 bits, an appropriate extension will be added after the load to
+/// reach a total size of 64 bits. We have to add the extension separately
+/// because ARM does not have a sign/zero extending load for vectors.
+static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
+ EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
+
+ // The load already has the right type.
+ if (ExtendedTy == LD->getMemoryVT())
+ return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
+ LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
+ LD->isNonTemporal(), LD->isInvariant(),
+ LD->getAlignment());
+
+ // We need to create a zextload/sextload. We cannot just create a load
+ // followed by a zext/zext node because LowerMUL is also run during normal
+ // operation legalization where we can't create illegal types.
+ return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
+ LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
+ LD->getMemoryVT(), LD->isVolatile(), LD->isInvariant(),
+ LD->isNonTemporal(), LD->getAlignment());
+}
+
+/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
+/// extending load, or BUILD_VECTOR with extended elements, return the
+/// unextended value. The unextended vector should be 64 bits so that it can
+/// be used as an operand to a VMULL instruction. If the original vector size
+/// before extension is less than 64 bits we add a an extension to resize
+/// the vector to 64 bits.
+static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
+ if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
+ return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
+ N->getOperand(0)->getValueType(0),
+ N->getValueType(0),
+ N->getOpcode());
+
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
+ return SkipLoadExtensionForVMULL(LD, DAG);
+
+ // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
+ // have been legalized as a BITCAST from v4i32.
+ if (N->getOpcode() == ISD::BITCAST) {
+ SDNode *BVN = N->getOperand(0).getNode();
+ assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
+ BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
+ unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
+ return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32,
+ BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
+ }
+ // Construct a new BUILD_VECTOR with elements truncated to half the size.
+ assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
+ EVT VT = N->getValueType(0);
+ unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
+ unsigned NumElts = VT.getVectorNumElements();
+ MVT TruncVT = MVT::getIntegerVT(EltSize);
+ SmallVector<SDValue, 8> Ops;
+ SDLoc dl(N);
+ for (unsigned i = 0; i != NumElts; ++i) {
+ ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
+ const APInt &CInt = C->getAPIntValue();
+ // Element types smaller than 32 bits are not legal, so use i32 elements.
+ // The values are implicitly truncated so sext vs. zext doesn't matter.
+ Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
+ }
+ return DAG.getNode(ISD::BUILD_VECTOR, dl,
+ MVT::getVectorVT(TruncVT, NumElts), Ops);
+}
+
+static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
+ unsigned Opcode = N->getOpcode();
+ if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
+ SDNode *N0 = N->getOperand(0).getNode();
+ SDNode *N1 = N->getOperand(1).getNode();
+ return N0->hasOneUse() && N1->hasOneUse() &&
+ isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
+ }
+ return false;
+}
+
+static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
+ unsigned Opcode = N->getOpcode();
+ if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
+ SDNode *N0 = N->getOperand(0).getNode();
+ SDNode *N1 = N->getOperand(1).getNode();
+ return N0->hasOneUse() && N1->hasOneUse() &&
+ isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
+ }
+ return false;
+}
+
+static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
+ // Multiplications are only custom-lowered for 128-bit vectors so that
+ // VMULL can be detected. Otherwise v2i64 multiplications are not legal.
+ EVT VT = Op.getValueType();
+ assert(VT.is128BitVector() && VT.isInteger() &&
+ "unexpected type for custom-lowering ISD::MUL");
+ SDNode *N0 = Op.getOperand(0).getNode();
+ SDNode *N1 = Op.getOperand(1).getNode();
+ unsigned NewOpc = 0;
+ bool isMLA = false;
+ bool isN0SExt = isSignExtended(N0, DAG);
+ bool isN1SExt = isSignExtended(N1, DAG);
+ if (isN0SExt && isN1SExt)
+ NewOpc = ARMISD::VMULLs;
+ else {
+ bool isN0ZExt = isZeroExtended(N0, DAG);
+ bool isN1ZExt = isZeroExtended(N1, DAG);
+ if (isN0ZExt && isN1ZExt)
+ NewOpc = ARMISD::VMULLu;
+ else if (isN1SExt || isN1ZExt) {
+ // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
+ // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
+ if (isN1SExt && isAddSubSExt(N0, DAG)) {
+ NewOpc = ARMISD::VMULLs;
+ isMLA = true;
+ } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
+ NewOpc = ARMISD::VMULLu;
+ isMLA = true;
+ } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
+ std::swap(N0, N1);
+ NewOpc = ARMISD::VMULLu;
+ isMLA = true;
+ }
+ }
+
+ if (!NewOpc) {
+ if (VT == MVT::v2i64)
+ // Fall through to expand this. It is not legal.
+ return SDValue();
+ else
+ // Other vector multiplications are legal.
+ return Op;
+ }
+ }
+
+ // Legalize to a VMULL instruction.
+ SDLoc DL(Op);
+ SDValue Op0;
+ SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
+ if (!isMLA) {
+ Op0 = SkipExtensionForVMULL(N0, DAG);
+ assert(Op0.getValueType().is64BitVector() &&
+ Op1.getValueType().is64BitVector() &&
+ "unexpected types for extended operands to VMULL");
+ return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
+ }
+
+ // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
+ // isel lowering to take advantage of no-stall back to back vmul + vmla.
+ // vmull q0, d4, d6
+ // vmlal q0, d5, d6
+ // is faster than
+ // vaddl q0, d4, d5
+ // vmovl q1, d6
+ // vmul q0, q0, q1
+ SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
+ SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
+ EVT Op1VT = Op1.getValueType();
+ return DAG.getNode(N0->getOpcode(), DL, VT,
+ DAG.getNode(NewOpc, DL, VT,
+ DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
+ DAG.getNode(NewOpc, DL, VT,
+ DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
+}
+
+static SDValue
+LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) {
+ // TODO: Should this propagate fast-math-flags?
+
+ // Convert to float
+ // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
+ // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
+ X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
+ Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
+ X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
+ Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
+ // Get reciprocal estimate.
+ // float4 recip = vrecpeq_f32(yf);
+ Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
+ Y);
+ // Because char has a smaller range than uchar, we can actually get away
+ // without any newton steps. This requires that we use a weird bias
+ // of 0xb000, however (again, this has been exhaustively tested).
+ // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
+ X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
+ X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
+ Y = DAG.getConstant(0xb000, dl, MVT::i32);
+ Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
+ X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
+ X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
+ // Convert back to short.
+ X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
+ X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
+ return X;
+}
+
+static SDValue
+LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) {
+ // TODO: Should this propagate fast-math-flags?
+
+ SDValue N2;
+ // Convert to float.
+ // float4 yf = vcvt_f32_s32(vmovl_s16(y));
+ // float4 xf = vcvt_f32_s32(vmovl_s16(x));
+ N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
+ N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
+ N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
+ N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
+
+ // Use reciprocal estimate and one refinement step.
+ // float4 recip = vrecpeq_f32(yf);
+ // recip *= vrecpsq_f32(yf, recip);
+ N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
+ N1);
+ N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
+ N1, N2);
+ N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
+ // Because short has a smaller range than ushort, we can actually get away
+ // with only a single newton step. This requires that we use a weird bias
+ // of 89, however (again, this has been exhaustively tested).
+ // float4 result = as_float4(as_int4(xf*recip) + 0x89);
+ N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
+ N1 = DAG.getConstant(0x89, dl, MVT::i32);
+ N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
+ N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
+ // Convert back to integer and return.
+ // return vmovn_s32(vcvt_s32_f32(result));
+ N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
+ N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
+ return N0;
+}
+
+static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getValueType();
+ assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
+ "unexpected type for custom-lowering ISD::SDIV");
+
+ SDLoc dl(Op);
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue N2, N3;
+
+ if (VT == MVT::v8i8) {
+ N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
+ N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
+
+ N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(4, dl));
+ N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(4, dl));
+ N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(0, dl));
+ N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(0, dl));
+
+ N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
+ N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
+
+ N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
+ N0 = LowerCONCAT_VECTORS(N0, DAG);
+
+ N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
+ return N0;
+ }
+ return LowerSDIV_v4i16(N0, N1, dl, DAG);
+}
+
+static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
+ // TODO: Should this propagate fast-math-flags?
+ EVT VT = Op.getValueType();
+ assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
+ "unexpected type for custom-lowering ISD::UDIV");
+
+ SDLoc dl(Op);
+ SDValue N0 = Op.getOperand(0);
+ SDValue N1 = Op.getOperand(1);
+ SDValue N2, N3;
+
+ if (VT == MVT::v8i8) {
+ N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
+ N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
+
+ N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(4, dl));
+ N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(4, dl));
+ N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
+ DAG.getIntPtrConstant(0, dl));
+ N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
+ DAG.getIntPtrConstant(0, dl));
+
+ N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
+ N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
+
+ N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
+ N0 = LowerCONCAT_VECTORS(N0, DAG);
+
+ N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
+ DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
+ MVT::i32),
+ N0);
+ return N0;
+ }
+
+ // v4i16 sdiv ... Convert to float.
+ // float4 yf = vcvt_f32_s32(vmovl_u16(y));
+ // float4 xf = vcvt_f32_s32(vmovl_u16(x));
+ N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
+ N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
+ N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
+ SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
+
+ // Use reciprocal estimate and two refinement steps.
+ // float4 recip = vrecpeq_f32(yf);
+ // recip *= vrecpsq_f32(yf, recip);
+ // recip *= vrecpsq_f32(yf, recip);
+ N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
+ BN1);
+ N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
+ BN1, N2);
+ N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
+ N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
+ DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
+ BN1, N2);
+ N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
+ // Simply multiplying by the reciprocal estimate can leave us a few ulps
+ // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
+ // and that it will never cause us to return an answer too large).
+ // float4 result = as_float4(as_int4(xf*recip) + 2);
+ N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
+ N1 = DAG.getConstant(2, dl, MVT::i32);
+ N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
+ N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
+ N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
+ // Convert back to integer and return.
+ // return vmovn_u32(vcvt_s32_f32(result));
+ N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
+ N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
+ return N0;
+}
+
+static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
+ EVT VT = Op.getNode()->getValueType(0);
+ SDVTList VTs = DAG.getVTList(VT, MVT::i32);
+
+ unsigned Opc;
+ bool ExtraOp = false;
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Invalid code");
+ case ISD::ADDC: Opc = ARMISD::ADDC; break;
+ case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
+ case ISD::SUBC: Opc = ARMISD::SUBC; break;
+ case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
+ }
+
+ if (!ExtraOp)
+ return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
+ Op.getOperand(1));
+ return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
+ Op.getOperand(1), Op.getOperand(2));
+}
+
+SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetDarwin());
+
+ // For iOS, we want to call an alternative entry point: __sincos_stret,
+ // return values are passed via sret.
+ SDLoc dl(Op);
+ SDValue Arg = Op.getOperand(0);
+ EVT ArgVT = Arg.getValueType();
+ Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
+ auto PtrVT = getPointerTy(DAG.getDataLayout());
+
+ MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ // Pair of floats / doubles used to pass the result.
+ Type *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
+ auto &DL = DAG.getDataLayout();
+
+ ArgListTy Args;
+ bool ShouldUseSRet = Subtarget->isAPCS_ABI();
+ SDValue SRet;
+ if (ShouldUseSRet) {
+ // Create stack object for sret.
+ const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
+ const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
+ int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
+ SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
+
+ ArgListEntry Entry;
+ Entry.Node = SRet;
+ Entry.Ty = RetTy->getPointerTo();
+ Entry.isSExt = false;
+ Entry.isZExt = false;
+ Entry.isSRet = true;
+ Args.push_back(Entry);
+ RetTy = Type::getVoidTy(*DAG.getContext());
+ }
+
+ ArgListEntry Entry;
+ Entry.Node = Arg;
+ Entry.Ty = ArgTy;
+ Entry.isSExt = false;
+ Entry.isZExt = false;
+ Args.push_back(Entry);
+
+ const char *LibcallName =
+ (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
+ RTLIB::Libcall LC =
+ (ArgVT == MVT::f64) ? RTLIB::SINCOS_F64 : RTLIB::SINCOS_F32;
+ CallingConv::ID CC = getLibcallCallingConv(LC);
+ SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
+
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl)
+ .setChain(DAG.getEntryNode())
+ .setCallee(CC, RetTy, Callee, std::move(Args), 0)
+ .setDiscardResult(ShouldUseSRet);
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+
+ if (!ShouldUseSRet)
+ return CallResult.first;
+
+ SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet,
+ MachinePointerInfo(), false, false, false, 0);
+
+ // Address of cos field.
+ SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
+ DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
+ SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add,
+ MachinePointerInfo(), false, false, false, 0);
+
+ SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
+ return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
+ LoadSin.getValue(0), LoadCos.getValue(0));
+}
+
+SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
+ bool Signed,
+ SDValue &Chain) const {
+ EVT VT = Op.getValueType();
+ assert((VT == MVT::i32 || VT == MVT::i64) &&
+ "unexpected type for custom lowering DIV");
+ SDLoc dl(Op);
+
+ const auto &DL = DAG.getDataLayout();
+ const auto &TLI = DAG.getTargetLoweringInfo();
+
+ const char *Name = nullptr;
+ if (Signed)
+ Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
+ else
+ Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
+
+ SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
+
+ ARMTargetLowering::ArgListTy Args;
+
+ for (auto AI : {1, 0}) {
+ ArgListEntry Arg;
+ Arg.Node = Op.getOperand(AI);
+ Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
+ Args.push_back(Arg);
+ }
+
+ CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl)
+ .setChain(Chain)
+ .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
+ ES, std::move(Args), 0);
+
+ return LowerCallTo(CLI).first;
+}
+
+SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
+ bool Signed) const {
+ assert(Op.getValueType() == MVT::i32 &&
+ "unexpected type for custom lowering DIV");
+ SDLoc dl(Op);
+
+ SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
+ DAG.getEntryNode(), Op.getOperand(1));
+
+ return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
+}
+
+void ARMTargetLowering::ExpandDIV_Windows(
+ SDValue Op, SelectionDAG &DAG, bool Signed,
+ SmallVectorImpl<SDValue> &Results) const {
+ const auto &DL = DAG.getDataLayout();
+ const auto &TLI = DAG.getTargetLoweringInfo();
+
+ assert(Op.getValueType() == MVT::i64 &&
+ "unexpected type for custom lowering DIV");
+ SDLoc dl(Op);
+
+ SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1),
+ DAG.getConstant(0, dl, MVT::i32));
+ SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1),
+ DAG.getConstant(1, dl, MVT::i32));
+ SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i32, Lo, Hi);
+
+ SDValue DBZCHK =
+ DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other, DAG.getEntryNode(), Or);
+
+ SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
+
+ SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
+ SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
+ DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
+ Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
+
+ Results.push_back(Lower);
+ Results.push_back(Upper);
+}
+
+static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
+ // Monotonic load/store is legal for all targets
+ if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
+ return Op;
+
+ // Acquire/Release load/store is not legal for targets without a
+ // dmb or equivalent available.
+ return SDValue();
+}
+
+static void ReplaceREADCYCLECOUNTER(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) {
+ SDLoc DL(N);
+ // Under Power Management extensions, the cycle-count is:
+ // mrc p15, #0, <Rt>, c9, c13, #0
+ SDValue Ops[] = { N->getOperand(0), // Chain
+ DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
+ DAG.getConstant(15, DL, MVT::i32),
+ DAG.getConstant(0, DL, MVT::i32),
+ DAG.getConstant(9, DL, MVT::i32),
+ DAG.getConstant(13, DL, MVT::i32),
+ DAG.getConstant(0, DL, MVT::i32)
+ };
+
+ SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
+ DAG.getVTList(MVT::i32, MVT::Other), Ops);
+ Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
+ DAG.getConstant(0, DL, MVT::i32)));
+ Results.push_back(Cycles32.getValue(1));
+}
+
+SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
+ switch (Op.getOpcode()) {
+ default: llvm_unreachable("Don't know how to custom lower this!");
+ case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
+ case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
+ case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
+ case ISD::GlobalAddress:
+ switch (Subtarget->getTargetTriple().getObjectFormat()) {
+ default: llvm_unreachable("unknown object format");
+ case Triple::COFF:
+ return LowerGlobalAddressWindows(Op, DAG);
+ case Triple::ELF:
+ return LowerGlobalAddressELF(Op, DAG);
+ case Triple::MachO:
+ return LowerGlobalAddressDarwin(Op, DAG);
+ }
+ case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
+ case ISD::SELECT: return LowerSELECT(Op, DAG);
+ case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
+ case ISD::BR_CC: return LowerBR_CC(Op, DAG);
+ case ISD::BR_JT: return LowerBR_JT(Op, DAG);
+ case ISD::VASTART: return LowerVASTART(Op, DAG);
+ case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
+ case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
+ case ISD::SINT_TO_FP:
+ case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
+ case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
+ case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
+ case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
+ case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
+ case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
+ case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
+ case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
+ Subtarget);
+ case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG);
+ case ISD::SHL:
+ case ISD::SRL:
+ case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
+ case ISD::SREM: return LowerREM(Op.getNode(), DAG);
+ case ISD::UREM: return LowerREM(Op.getNode(), DAG);
+ case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
+ case ISD::SRL_PARTS:
+ case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
+ case ISD::CTTZ:
+ case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
+ case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
+ case ISD::SETCC: return LowerVSETCC(Op, DAG);
+ case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
+ case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
+ case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
+ case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
+ case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
+ case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
+ case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
+ case ISD::MUL: return LowerMUL(Op, DAG);
+ case ISD::SDIV: return LowerSDIV(Op, DAG);
+ case ISD::UDIV: return LowerUDIV(Op, DAG);
+ case ISD::ADDC:
+ case ISD::ADDE:
+ case ISD::SUBC:
+ case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
+ case ISD::SADDO:
+ case ISD::UADDO:
+ case ISD::SSUBO:
+ case ISD::USUBO:
+ return LowerXALUO(Op, DAG);
+ case ISD::ATOMIC_LOAD:
+ case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
+ case ISD::FSINCOS: return LowerFSINCOS(Op, DAG);
+ case ISD::SDIVREM:
+ case ISD::UDIVREM: return LowerDivRem(Op, DAG);
+ case ISD::DYNAMIC_STACKALLOC:
+ if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
+ return LowerDYNAMIC_STACKALLOC(Op, DAG);
+ llvm_unreachable("Don't know how to custom lower this!");
+ case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
+ case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
+ case ARMISD::WIN__DBZCHK: return SDValue();
+ }
+}
+
+/// ReplaceNodeResults - Replace the results of node with an illegal result
+/// type with new values built out of custom code.
+void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
+ SmallVectorImpl<SDValue> &Results,
+ SelectionDAG &DAG) const {
+ SDValue Res;
+ switch (N->getOpcode()) {
+ default:
+ llvm_unreachable("Don't know how to custom expand this!");
+ case ISD::READ_REGISTER:
+ ExpandREAD_REGISTER(N, Results, DAG);
+ break;
+ case ISD::BITCAST:
+ Res = ExpandBITCAST(N, DAG);
+ break;
+ case ISD::SRL:
+ case ISD::SRA:
+ Res = Expand64BitShift(N, DAG, Subtarget);
+ break;
+ case ISD::SREM:
+ case ISD::UREM:
+ Res = LowerREM(N, DAG);
+ break;
+ case ISD::READCYCLECOUNTER:
+ ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
+ return;
+ case ISD::UDIV:
+ case ISD::SDIV:
+ assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
+ return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
+ Results);
+ }
+ if (Res.getNode())
+ Results.push_back(Res);
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Scheduler Hooks
+//===----------------------------------------------------------------------===//
+
+/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
+/// registers the function context.
+void ARMTargetLowering::
+SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
+ MachineBasicBlock *DispatchBB, int FI) const {
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo *MRI = &MF->getRegInfo();
+ MachineConstantPool *MCP = MF->getConstantPool();
+ ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
+ const Function *F = MF->getFunction();
+
+ bool isThumb = Subtarget->isThumb();
+ bool isThumb2 = Subtarget->isThumb2();
+
+ unsigned PCLabelId = AFI->createPICLabelUId();
+ unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
+ ARMConstantPoolValue *CPV =
+ ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
+ unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
+
+ const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
+ : &ARM::GPRRegClass;
+
+ // Grab constant pool and fixed stack memory operands.
+ MachineMemOperand *CPMMO =
+ MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
+ MachineMemOperand::MOLoad, 4, 4);
+
+ MachineMemOperand *FIMMOSt =
+ MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
+ MachineMemOperand::MOStore, 4, 4);
+
+ // Load the address of the dispatch MBB into the jump buffer.
+ if (isThumb2) {
+ // Incoming value: jbuf
+ // ldr.n r5, LCPI1_1
+ // orr r5, r5, #1
+ // add r5, pc
+ // str r5, [$jbuf, #+4] ; &jbuf[1]
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
+ .addConstantPoolIndex(CPI)
+ .addMemOperand(CPMMO));
+ // Set the low bit because of thumb mode.
+ unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
+ AddDefaultCC(
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
+ .addReg(NewVReg1, RegState::Kill)
+ .addImm(0x01)));
+ unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
+ BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
+ .addReg(NewVReg2, RegState::Kill)
+ .addImm(PCLabelId);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
+ .addReg(NewVReg3, RegState::Kill)
+ .addFrameIndex(FI)
+ .addImm(36) // &jbuf[1] :: pc
+ .addMemOperand(FIMMOSt));
+ } else if (isThumb) {
+ // Incoming value: jbuf
+ // ldr.n r1, LCPI1_4
+ // add r1, pc
+ // mov r2, #1
+ // orrs r1, r2
+ // add r2, $jbuf, #+4 ; &jbuf[1]
+ // str r1, [r2]
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
+ .addConstantPoolIndex(CPI)
+ .addMemOperand(CPMMO));
+ unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
+ BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
+ .addReg(NewVReg1, RegState::Kill)
+ .addImm(PCLabelId);
+ // Set the low bit because of thumb mode.
+ unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
+ .addReg(ARM::CPSR, RegState::Define)
+ .addImm(1));
+ unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
+ .addReg(ARM::CPSR, RegState::Define)
+ .addReg(NewVReg2, RegState::Kill)
+ .addReg(NewVReg3, RegState::Kill));
+ unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
+ BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
+ .addFrameIndex(FI)
+ .addImm(36); // &jbuf[1] :: pc
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
+ .addReg(NewVReg4, RegState::Kill)
+ .addReg(NewVReg5, RegState::Kill)
+ .addImm(0)
+ .addMemOperand(FIMMOSt));
+ } else {
+ // Incoming value: jbuf
+ // ldr r1, LCPI1_1
+ // add r1, pc, r1
+ // str r1, [$jbuf, #+4] ; &jbuf[1]
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
+ .addConstantPoolIndex(CPI)
+ .addImm(0)
+ .addMemOperand(CPMMO));
+ unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
+ .addReg(NewVReg1, RegState::Kill)
+ .addImm(PCLabelId));
+ AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
+ .addReg(NewVReg2, RegState::Kill)
+ .addFrameIndex(FI)
+ .addImm(36) // &jbuf[1] :: pc
+ .addMemOperand(FIMMOSt));
+ }
+}
+
+void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ MachineFunction *MF = MBB->getParent();
+ MachineRegisterInfo *MRI = &MF->getRegInfo();
+ MachineFrameInfo *MFI = MF->getFrameInfo();
+ int FI = MFI->getFunctionContextIndex();
+
+ const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
+ : &ARM::GPRnopcRegClass;
+
+ // Get a mapping of the call site numbers to all of the landing pads they're
+ // associated with.
+ DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
+ unsigned MaxCSNum = 0;
+ MachineModuleInfo &MMI = MF->getMMI();
+ for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
+ ++BB) {
+ if (!BB->isEHPad()) continue;
+
+ // FIXME: We should assert that the EH_LABEL is the first MI in the landing
+ // pad.
+ for (MachineBasicBlock::iterator
+ II = BB->begin(), IE = BB->end(); II != IE; ++II) {
+ if (!II->isEHLabel()) continue;
+
+ MCSymbol *Sym = II->getOperand(0).getMCSymbol();
+ if (!MMI.hasCallSiteLandingPad(Sym)) continue;
+
+ SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
+ for (SmallVectorImpl<unsigned>::iterator
+ CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
+ CSI != CSE; ++CSI) {
+ CallSiteNumToLPad[*CSI].push_back(&*BB);
+ MaxCSNum = std::max(MaxCSNum, *CSI);
+ }
+ break;
+ }
+ }
+
+ // Get an ordered list of the machine basic blocks for the jump table.
+ std::vector<MachineBasicBlock*> LPadList;
+ SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
+ LPadList.reserve(CallSiteNumToLPad.size());
+ for (unsigned I = 1; I <= MaxCSNum; ++I) {
+ SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
+ for (SmallVectorImpl<MachineBasicBlock*>::iterator
+ II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
+ LPadList.push_back(*II);
+ InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
+ }
+ }
+
+ assert(!LPadList.empty() &&
+ "No landing pad destinations for the dispatch jump table!");
+
+ // Create the jump table and associated information.
+ MachineJumpTableInfo *JTI =
+ MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
+ unsigned MJTI = JTI->createJumpTableIndex(LPadList);
+ Reloc::Model RelocM = getTargetMachine().getRelocationModel();
+
+ // Create the MBBs for the dispatch code.
+
+ // Shove the dispatch's address into the return slot in the function context.
+ MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
+ DispatchBB->setIsEHPad();
+
+ MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
+ unsigned trap_opcode;
+ if (Subtarget->isThumb())
+ trap_opcode = ARM::tTRAP;
+ else
+ trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
+
+ BuildMI(TrapBB, dl, TII->get(trap_opcode));
+ DispatchBB->addSuccessor(TrapBB);
+
+ MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
+ DispatchBB->addSuccessor(DispContBB);
+
+ // Insert and MBBs.
+ MF->insert(MF->end(), DispatchBB);
+ MF->insert(MF->end(), DispContBB);
+ MF->insert(MF->end(), TrapBB);
+
+ // Insert code into the entry block that creates and registers the function
+ // context.
+ SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
+
+ MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(*MF, FI),
+ MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
+
+ MachineInstrBuilder MIB;
+ MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
+
+ const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
+ const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
+
+ // Add a register mask with no preserved registers. This results in all
+ // registers being marked as clobbered.
+ MIB.addRegMask(RI.getNoPreservedMask());
+
+ unsigned NumLPads = LPadList.size();
+ if (Subtarget->isThumb2()) {
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
+ .addFrameIndex(FI)
+ .addImm(4)
+ .addMemOperand(FIMMOLd));
+
+ if (NumLPads < 256) {
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
+ .addReg(NewVReg1)
+ .addImm(LPadList.size()));
+ } else {
+ unsigned VReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
+ .addImm(NumLPads & 0xFFFF));
+
+ unsigned VReg2 = VReg1;
+ if ((NumLPads & 0xFFFF0000) != 0) {
+ VReg2 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
+ .addReg(VReg1)
+ .addImm(NumLPads >> 16));
+ }
+
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
+ .addReg(NewVReg1)
+ .addReg(VReg2));
+ }
+
+ BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
+ .addMBB(TrapBB)
+ .addImm(ARMCC::HI)
+ .addReg(ARM::CPSR);
+
+ unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
+ .addJumpTableIndex(MJTI));
+
+ unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
+ AddDefaultCC(
+ AddDefaultPred(
+ BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
+ .addReg(NewVReg3, RegState::Kill)
+ .addReg(NewVReg1)
+ .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
+
+ BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
+ .addReg(NewVReg4, RegState::Kill)
+ .addReg(NewVReg1)
+ .addJumpTableIndex(MJTI);
+ } else if (Subtarget->isThumb()) {
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
+ .addFrameIndex(FI)
+ .addImm(1)
+ .addMemOperand(FIMMOLd));
+
+ if (NumLPads < 256) {
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
+ .addReg(NewVReg1)
+ .addImm(NumLPads));
+ } else {
+ MachineConstantPool *ConstantPool = MF->getConstantPool();
+ Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
+ const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
+ if (Align == 0)
+ Align = MF->getDataLayout().getTypeAllocSize(C->getType());
+ unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
+
+ unsigned VReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
+ .addReg(VReg1, RegState::Define)
+ .addConstantPoolIndex(Idx));
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
+ .addReg(NewVReg1)
+ .addReg(VReg1));
+ }
+
+ BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
+ .addMBB(TrapBB)
+ .addImm(ARMCC::HI)
+ .addReg(ARM::CPSR);
+
+ unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
+ .addReg(ARM::CPSR, RegState::Define)
+ .addReg(NewVReg1)
+ .addImm(2));
+
+ unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
+ .addJumpTableIndex(MJTI));
+
+ unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
+ .addReg(ARM::CPSR, RegState::Define)
+ .addReg(NewVReg2, RegState::Kill)
+ .addReg(NewVReg3));
+
+ MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
+ MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
+
+ unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
+ .addReg(NewVReg4, RegState::Kill)
+ .addImm(0)
+ .addMemOperand(JTMMOLd));
+
+ unsigned NewVReg6 = NewVReg5;
+ if (RelocM == Reloc::PIC_) {
+ NewVReg6 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
+ .addReg(ARM::CPSR, RegState::Define)
+ .addReg(NewVReg5, RegState::Kill)
+ .addReg(NewVReg3));
+ }
+
+ BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
+ .addReg(NewVReg6, RegState::Kill)
+ .addJumpTableIndex(MJTI);
+ } else {
+ unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
+ .addFrameIndex(FI)
+ .addImm(4)
+ .addMemOperand(FIMMOLd));
+
+ if (NumLPads < 256) {
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
+ .addReg(NewVReg1)
+ .addImm(NumLPads));
+ } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
+ unsigned VReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
+ .addImm(NumLPads & 0xFFFF));
+
+ unsigned VReg2 = VReg1;
+ if ((NumLPads & 0xFFFF0000) != 0) {
+ VReg2 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
+ .addReg(VReg1)
+ .addImm(NumLPads >> 16));
+ }
+
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
+ .addReg(NewVReg1)
+ .addReg(VReg2));
+ } else {
+ MachineConstantPool *ConstantPool = MF->getConstantPool();
+ Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
+ const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
+ if (Align == 0)
+ Align = MF->getDataLayout().getTypeAllocSize(C->getType());
+ unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
+
+ unsigned VReg1 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
+ .addReg(VReg1, RegState::Define)
+ .addConstantPoolIndex(Idx)
+ .addImm(0));
+ AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
+ .addReg(NewVReg1)
+ .addReg(VReg1, RegState::Kill));
+ }
+
+ BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
+ .addMBB(TrapBB)
+ .addImm(ARMCC::HI)
+ .addReg(ARM::CPSR);
+
+ unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
+ AddDefaultCC(
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
+ .addReg(NewVReg1)
+ .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
+ unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
+ .addJumpTableIndex(MJTI));
+
+ MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
+ MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
+ unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
+ AddDefaultPred(
+ BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
+ .addReg(NewVReg3, RegState::Kill)
+ .addReg(NewVReg4)
+ .addImm(0)
+ .addMemOperand(JTMMOLd));
+
+ if (RelocM == Reloc::PIC_) {
+ BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
+ .addReg(NewVReg5, RegState::Kill)
+ .addReg(NewVReg4)
+ .addJumpTableIndex(MJTI);
+ } else {
+ BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
+ .addReg(NewVReg5, RegState::Kill)
+ .addJumpTableIndex(MJTI);
+ }
+ }
+
+ // Add the jump table entries as successors to the MBB.
+ SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
+ for (std::vector<MachineBasicBlock*>::iterator
+ I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
+ MachineBasicBlock *CurMBB = *I;
+ if (SeenMBBs.insert(CurMBB).second)
+ DispContBB->addSuccessor(CurMBB);
+ }
+
+ // N.B. the order the invoke BBs are processed in doesn't matter here.
+ const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
+ SmallVector<MachineBasicBlock*, 64> MBBLPads;
+ for (MachineBasicBlock *BB : InvokeBBs) {
+
+ // Remove the landing pad successor from the invoke block and replace it
+ // with the new dispatch block.
+ SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
+ BB->succ_end());
+ while (!Successors.empty()) {
+ MachineBasicBlock *SMBB = Successors.pop_back_val();
+ if (SMBB->isEHPad()) {
+ BB->removeSuccessor(SMBB);
+ MBBLPads.push_back(SMBB);
+ }
+ }
+
+ BB->addSuccessor(DispatchBB, BranchProbability::getZero());
+ BB->normalizeSuccProbs();
+
+ // Find the invoke call and mark all of the callee-saved registers as
+ // 'implicit defined' so that they're spilled. This prevents code from
+ // moving instructions to before the EH block, where they will never be
+ // executed.
+ for (MachineBasicBlock::reverse_iterator
+ II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
+ if (!II->isCall()) continue;
+
+ DenseMap<unsigned, bool> DefRegs;
+ for (MachineInstr::mop_iterator
+ OI = II->operands_begin(), OE = II->operands_end();
+ OI != OE; ++OI) {
+ if (!OI->isReg()) continue;
+ DefRegs[OI->getReg()] = true;
+ }
+
+ MachineInstrBuilder MIB(*MF, &*II);
+
+ for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
+ unsigned Reg = SavedRegs[i];
+ if (Subtarget->isThumb2() &&
+ !ARM::tGPRRegClass.contains(Reg) &&
+ !ARM::hGPRRegClass.contains(Reg))
+ continue;
+ if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
+ continue;
+ if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
+ continue;
+ if (!DefRegs[Reg])
+ MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
+ }
+
+ break;
+ }
+ }
+
+ // Mark all former landing pads as non-landing pads. The dispatch is the only
+ // landing pad now.
+ for (SmallVectorImpl<MachineBasicBlock*>::iterator
+ I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
+ (*I)->setIsEHPad(false);
+
+ // The instruction is gone now.
+ MI->eraseFromParent();
+}
+
+static
+MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
+ for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
+ E = MBB->succ_end(); I != E; ++I)
+ if (*I != Succ)
+ return *I;
+ llvm_unreachable("Expecting a BB with two successors!");
+}
+
+/// Return the load opcode for a given load size. If load size >= 8,
+/// neon opcode will be returned.
+static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
+ if (LdSize >= 8)
+ return LdSize == 16 ? ARM::VLD1q32wb_fixed
+ : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
+ if (IsThumb1)
+ return LdSize == 4 ? ARM::tLDRi
+ : LdSize == 2 ? ARM::tLDRHi
+ : LdSize == 1 ? ARM::tLDRBi : 0;
+ if (IsThumb2)
+ return LdSize == 4 ? ARM::t2LDR_POST
+ : LdSize == 2 ? ARM::t2LDRH_POST
+ : LdSize == 1 ? ARM::t2LDRB_POST : 0;
+ return LdSize == 4 ? ARM::LDR_POST_IMM
+ : LdSize == 2 ? ARM::LDRH_POST
+ : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
+}
+
+/// Return the store opcode for a given store size. If store size >= 8,
+/// neon opcode will be returned.
+static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
+ if (StSize >= 8)
+ return StSize == 16 ? ARM::VST1q32wb_fixed
+ : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
+ if (IsThumb1)
+ return StSize == 4 ? ARM::tSTRi
+ : StSize == 2 ? ARM::tSTRHi
+ : StSize == 1 ? ARM::tSTRBi : 0;
+ if (IsThumb2)
+ return StSize == 4 ? ARM::t2STR_POST
+ : StSize == 2 ? ARM::t2STRH_POST
+ : StSize == 1 ? ARM::t2STRB_POST : 0;
+ return StSize == 4 ? ARM::STR_POST_IMM
+ : StSize == 2 ? ARM::STRH_POST
+ : StSize == 1 ? ARM::STRB_POST_IMM : 0;
+}
+
+/// Emit a post-increment load operation with given size. The instructions
+/// will be added to BB at Pos.
+static void emitPostLd(MachineBasicBlock *BB, MachineInstr *Pos,
+ const TargetInstrInfo *TII, DebugLoc dl,
+ unsigned LdSize, unsigned Data, unsigned AddrIn,
+ unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
+ unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
+ assert(LdOpc != 0 && "Should have a load opcode");
+ if (LdSize >= 8) {
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
+ .addReg(AddrOut, RegState::Define).addReg(AddrIn)
+ .addImm(0));
+ } else if (IsThumb1) {
+ // load + update AddrIn
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
+ .addReg(AddrIn).addImm(0));
+ MachineInstrBuilder MIB =
+ BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
+ MIB = AddDefaultT1CC(MIB);
+ MIB.addReg(AddrIn).addImm(LdSize);
+ AddDefaultPred(MIB);
+ } else if (IsThumb2) {
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
+ .addReg(AddrOut, RegState::Define).addReg(AddrIn)
+ .addImm(LdSize));
+ } else { // arm
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
+ .addReg(AddrOut, RegState::Define).addReg(AddrIn)
+ .addReg(0).addImm(LdSize));
+ }
+}
+
+/// Emit a post-increment store operation with given size. The instructions
+/// will be added to BB at Pos.
+static void emitPostSt(MachineBasicBlock *BB, MachineInstr *Pos,
+ const TargetInstrInfo *TII, DebugLoc dl,
+ unsigned StSize, unsigned Data, unsigned AddrIn,
+ unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
+ unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
+ assert(StOpc != 0 && "Should have a store opcode");
+ if (StSize >= 8) {
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
+ .addReg(AddrIn).addImm(0).addReg(Data));
+ } else if (IsThumb1) {
+ // store + update AddrIn
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data)
+ .addReg(AddrIn).addImm(0));
+ MachineInstrBuilder MIB =
+ BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
+ MIB = AddDefaultT1CC(MIB);
+ MIB.addReg(AddrIn).addImm(StSize);
+ AddDefaultPred(MIB);
+ } else if (IsThumb2) {
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
+ .addReg(Data).addReg(AddrIn).addImm(StSize));
+ } else { // arm
+ AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
+ .addReg(Data).addReg(AddrIn).addReg(0)
+ .addImm(StSize));
+ }
+}
+
+MachineBasicBlock *
+ARMTargetLowering::EmitStructByval(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ // This pseudo instruction has 3 operands: dst, src, size
+ // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
+ // Otherwise, we will generate unrolled scalar copies.
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = ++BB->getIterator();
+
+ unsigned dest = MI->getOperand(0).getReg();
+ unsigned src = MI->getOperand(1).getReg();
+ unsigned SizeVal = MI->getOperand(2).getImm();
+ unsigned Align = MI->getOperand(3).getImm();
+ DebugLoc dl = MI->getDebugLoc();
+
+ MachineFunction *MF = BB->getParent();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ unsigned UnitSize = 0;
+ const TargetRegisterClass *TRC = nullptr;
+ const TargetRegisterClass *VecTRC = nullptr;
+
+ bool IsThumb1 = Subtarget->isThumb1Only();
+ bool IsThumb2 = Subtarget->isThumb2();
+
+ if (Align & 1) {
+ UnitSize = 1;
+ } else if (Align & 2) {
+ UnitSize = 2;
+ } else {
+ // Check whether we can use NEON instructions.
+ if (!MF->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) &&
+ Subtarget->hasNEON()) {
+ if ((Align % 16 == 0) && SizeVal >= 16)
+ UnitSize = 16;
+ else if ((Align % 8 == 0) && SizeVal >= 8)
+ UnitSize = 8;
+ }
+ // Can't use NEON instructions.
+ if (UnitSize == 0)
+ UnitSize = 4;
+ }
+
+ // Select the correct opcode and register class for unit size load/store
+ bool IsNeon = UnitSize >= 8;
+ TRC = (IsThumb1 || IsThumb2) ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
+ if (IsNeon)
+ VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
+ : UnitSize == 8 ? &ARM::DPRRegClass
+ : nullptr;
+
+ unsigned BytesLeft = SizeVal % UnitSize;
+ unsigned LoopSize = SizeVal - BytesLeft;
+
+ if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
+ // Use LDR and STR to copy.
+ // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
+ // [destOut] = STR_POST(scratch, destIn, UnitSize)
+ unsigned srcIn = src;
+ unsigned destIn = dest;
+ for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
+ unsigned srcOut = MRI.createVirtualRegister(TRC);
+ unsigned destOut = MRI.createVirtualRegister(TRC);
+ unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
+ emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
+ IsThumb1, IsThumb2);
+ emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
+ IsThumb1, IsThumb2);
+ srcIn = srcOut;
+ destIn = destOut;
+ }
+
+ // Handle the leftover bytes with LDRB and STRB.
+ // [scratch, srcOut] = LDRB_POST(srcIn, 1)
+ // [destOut] = STRB_POST(scratch, destIn, 1)
+ for (unsigned i = 0; i < BytesLeft; i++) {
+ unsigned srcOut = MRI.createVirtualRegister(TRC);
+ unsigned destOut = MRI.createVirtualRegister(TRC);
+ unsigned scratch = MRI.createVirtualRegister(TRC);
+ emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
+ IsThumb1, IsThumb2);
+ emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
+ IsThumb1, IsThumb2);
+ srcIn = srcOut;
+ destIn = destOut;
+ }
+ MI->eraseFromParent(); // The instruction is gone now.
+ return BB;
+ }
+
+ // Expand the pseudo op to a loop.
+ // thisMBB:
+ // ...
+ // movw varEnd, # --> with thumb2
+ // movt varEnd, #
+ // ldrcp varEnd, idx --> without thumb2
+ // fallthrough --> loopMBB
+ // loopMBB:
+ // PHI varPhi, varEnd, varLoop
+ // PHI srcPhi, src, srcLoop
+ // PHI destPhi, dst, destLoop
+ // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
+ // [destLoop] = STR_POST(scratch, destPhi, UnitSize)
+ // subs varLoop, varPhi, #UnitSize
+ // bne loopMBB
+ // fallthrough --> exitMBB
+ // exitMBB:
+ // epilogue to handle left-over bytes
+ // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
+ // [destOut] = STRB_POST(scratch, destLoop, 1)
+ MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
+ MF->insert(It, loopMBB);
+ MF->insert(It, exitMBB);
+
+ // Transfer the remainder of BB and its successor edges to exitMBB.
+ exitMBB->splice(exitMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ exitMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ // Load an immediate to varEnd.
+ unsigned varEnd = MRI.createVirtualRegister(TRC);
+ if (Subtarget->useMovt(*MF)) {
+ unsigned Vtmp = varEnd;
+ if ((LoopSize & 0xFFFF0000) != 0)
+ Vtmp = MRI.createVirtualRegister(TRC);
+ AddDefaultPred(BuildMI(BB, dl,
+ TII->get(IsThumb2 ? ARM::t2MOVi16 : ARM::MOVi16),
+ Vtmp).addImm(LoopSize & 0xFFFF));
+
+ if ((LoopSize & 0xFFFF0000) != 0)
+ AddDefaultPred(BuildMI(BB, dl,
+ TII->get(IsThumb2 ? ARM::t2MOVTi16 : ARM::MOVTi16),
+ varEnd)
+ .addReg(Vtmp)
+ .addImm(LoopSize >> 16));
+ } else {
+ MachineConstantPool *ConstantPool = MF->getConstantPool();
+ Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
+ const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
+
+ // MachineConstantPool wants an explicit alignment.
+ unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
+ if (Align == 0)
+ Align = MF->getDataLayout().getTypeAllocSize(C->getType());
+ unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
+
+ if (IsThumb1)
+ AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg(
+ varEnd, RegState::Define).addConstantPoolIndex(Idx));
+ else
+ AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg(
+ varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0));
+ }
+ BB->addSuccessor(loopMBB);
+
+ // Generate the loop body:
+ // varPhi = PHI(varLoop, varEnd)
+ // srcPhi = PHI(srcLoop, src)
+ // destPhi = PHI(destLoop, dst)
+ MachineBasicBlock *entryBB = BB;
+ BB = loopMBB;
+ unsigned varLoop = MRI.createVirtualRegister(TRC);
+ unsigned varPhi = MRI.createVirtualRegister(TRC);
+ unsigned srcLoop = MRI.createVirtualRegister(TRC);
+ unsigned srcPhi = MRI.createVirtualRegister(TRC);
+ unsigned destLoop = MRI.createVirtualRegister(TRC);
+ unsigned destPhi = MRI.createVirtualRegister(TRC);
+
+ BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
+ .addReg(varLoop).addMBB(loopMBB)
+ .addReg(varEnd).addMBB(entryBB);
+ BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
+ .addReg(srcLoop).addMBB(loopMBB)
+ .addReg(src).addMBB(entryBB);
+ BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
+ .addReg(destLoop).addMBB(loopMBB)
+ .addReg(dest).addMBB(entryBB);
+
+ // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
+ // [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
+ unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
+ emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
+ IsThumb1, IsThumb2);
+ emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
+ IsThumb1, IsThumb2);
+
+ // Decrement loop variable by UnitSize.
+ if (IsThumb1) {
+ MachineInstrBuilder MIB =
+ BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop);
+ MIB = AddDefaultT1CC(MIB);
+ MIB.addReg(varPhi).addImm(UnitSize);
+ AddDefaultPred(MIB);
+ } else {
+ MachineInstrBuilder MIB =
+ BuildMI(*BB, BB->end(), dl,
+ TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
+ AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
+ MIB->getOperand(5).setReg(ARM::CPSR);
+ MIB->getOperand(5).setIsDef(true);
+ }
+ BuildMI(*BB, BB->end(), dl,
+ TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
+
+ // loopMBB can loop back to loopMBB or fall through to exitMBB.
+ BB->addSuccessor(loopMBB);
+ BB->addSuccessor(exitMBB);
+
+ // Add epilogue to handle BytesLeft.
+ BB = exitMBB;
+ MachineInstr *StartOfExit = exitMBB->begin();
+
+ // [scratch, srcOut] = LDRB_POST(srcLoop, 1)
+ // [destOut] = STRB_POST(scratch, destLoop, 1)
+ unsigned srcIn = srcLoop;
+ unsigned destIn = destLoop;
+ for (unsigned i = 0; i < BytesLeft; i++) {
+ unsigned srcOut = MRI.createVirtualRegister(TRC);
+ unsigned destOut = MRI.createVirtualRegister(TRC);
+ unsigned scratch = MRI.createVirtualRegister(TRC);
+ emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
+ IsThumb1, IsThumb2);
+ emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
+ IsThumb1, IsThumb2);
+ srcIn = srcOut;
+ destIn = destOut;
+ }
+
+ MI->eraseFromParent(); // The instruction is gone now.
+ return BB;
+}
+
+MachineBasicBlock *
+ARMTargetLowering::EmitLowered__chkstk(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ const TargetMachine &TM = getTargetMachine();
+ const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
+ DebugLoc DL = MI->getDebugLoc();
+
+ assert(Subtarget->isTargetWindows() &&
+ "__chkstk is only supported on Windows");
+ assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
+
+ // __chkstk takes the number of words to allocate on the stack in R4, and
+ // returns the stack adjustment in number of bytes in R4. This will not
+ // clober any other registers (other than the obvious lr).
+ //
+ // Although, technically, IP should be considered a register which may be
+ // clobbered, the call itself will not touch it. Windows on ARM is a pure
+ // thumb-2 environment, so there is no interworking required. As a result, we
+ // do not expect a veneer to be emitted by the linker, clobbering IP.
+ //
+ // Each module receives its own copy of __chkstk, so no import thunk is
+ // required, again, ensuring that IP is not clobbered.
+ //
+ // Finally, although some linkers may theoretically provide a trampoline for
+ // out of range calls (which is quite common due to a 32M range limitation of
+ // branches for Thumb), we can generate the long-call version via
+ // -mcmodel=large, alleviating the need for the trampoline which may clobber
+ // IP.
+
+ switch (TM.getCodeModel()) {
+ case CodeModel::Small:
+ case CodeModel::Medium:
+ case CodeModel::Default:
+ case CodeModel::Kernel:
+ BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
+ .addImm((unsigned)ARMCC::AL).addReg(0)
+ .addExternalSymbol("__chkstk")
+ .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
+ .addReg(ARM::R4, RegState::Implicit | RegState::Define)
+ .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
+ break;
+ case CodeModel::Large:
+ case CodeModel::JITDefault: {
+ MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+ unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
+
+ BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
+ .addExternalSymbol("__chkstk");
+ BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
+ .addImm((unsigned)ARMCC::AL).addReg(0)
+ .addReg(Reg, RegState::Kill)
+ .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
+ .addReg(ARM::R4, RegState::Implicit | RegState::Define)
+ .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
+ break;
+ }
+ }
+
+ AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr),
+ ARM::SP)
+ .addReg(ARM::SP).addReg(ARM::R4)));
+
+ MI->eraseFromParent();
+ return MBB;
+}
+
+MachineBasicBlock *
+ARMTargetLowering::EmitLowered__dbzchk(MachineInstr *MI,
+ MachineBasicBlock *MBB) const {
+ DebugLoc DL = MI->getDebugLoc();
+ MachineFunction *MF = MBB->getParent();
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+
+ MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
+ MF->push_back(ContBB);
+ ContBB->splice(ContBB->begin(), MBB,
+ std::next(MachineBasicBlock::iterator(MI)), MBB->end());
+ MBB->addSuccessor(ContBB);
+
+ MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
+ MF->push_back(TrapBB);
+ BuildMI(TrapBB, DL, TII->get(ARM::t2UDF)).addImm(249);
+ MBB->addSuccessor(TrapBB);
+
+ BuildMI(*MBB, MI, DL, TII->get(ARM::tCBZ))
+ .addReg(MI->getOperand(0).getReg())
+ .addMBB(TrapBB);
+
+ MI->eraseFromParent();
+ return ContBB;
+}
+
+MachineBasicBlock *
+ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
+ MachineBasicBlock *BB) const {
+ const TargetInstrInfo *TII = Subtarget->getInstrInfo();
+ DebugLoc dl = MI->getDebugLoc();
+ bool isThumb2 = Subtarget->isThumb2();
+ switch (MI->getOpcode()) {
+ default: {
+ MI->dump();
+ llvm_unreachable("Unexpected instr type to insert");
+ }
+ // The Thumb2 pre-indexed stores have the same MI operands, they just
+ // define them differently in the .td files from the isel patterns, so
+ // they need pseudos.
+ case ARM::t2STR_preidx:
+ MI->setDesc(TII->get(ARM::t2STR_PRE));
+ return BB;
+ case ARM::t2STRB_preidx:
+ MI->setDesc(TII->get(ARM::t2STRB_PRE));
+ return BB;
+ case ARM::t2STRH_preidx:
+ MI->setDesc(TII->get(ARM::t2STRH_PRE));
+ return BB;
+
+ case ARM::STRi_preidx:
+ case ARM::STRBi_preidx: {
+ unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
+ ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
+ // Decode the offset.
+ unsigned Offset = MI->getOperand(4).getImm();
+ bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
+ Offset = ARM_AM::getAM2Offset(Offset);
+ if (isSub)
+ Offset = -Offset;
+
+ MachineMemOperand *MMO = *MI->memoperands_begin();
+ BuildMI(*BB, MI, dl, TII->get(NewOpc))
+ .addOperand(MI->getOperand(0)) // Rn_wb
+ .addOperand(MI->getOperand(1)) // Rt
+ .addOperand(MI->getOperand(2)) // Rn
+ .addImm(Offset) // offset (skip GPR==zero_reg)
+ .addOperand(MI->getOperand(5)) // pred
+ .addOperand(MI->getOperand(6))
+ .addMemOperand(MMO);
+ MI->eraseFromParent();
+ return BB;
+ }
+ case ARM::STRr_preidx:
+ case ARM::STRBr_preidx:
+ case ARM::STRH_preidx: {
+ unsigned NewOpc;
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("unexpected opcode!");
+ case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
+ case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
+ case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
+ }
+ MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
+ for (unsigned i = 0; i < MI->getNumOperands(); ++i)
+ MIB.addOperand(MI->getOperand(i));
+ MI->eraseFromParent();
+ return BB;
+ }
+
+ case ARM::tMOVCCr_pseudo: {
+ // To "insert" a SELECT_CC instruction, we actually have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // destination vreg to set, the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator It = ++BB->getIterator();
+
+ // thisMBB:
+ // ...
+ // TrueVal = ...
+ // cmpTY ccX, r1, r2
+ // bCC copy1MBB
+ // fallthrough --> copy0MBB
+ MachineBasicBlock *thisMBB = BB;
+ MachineFunction *F = BB->getParent();
+ MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
+ F->insert(It, copy0MBB);
+ F->insert(It, sinkMBB);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ sinkMBB->splice(sinkMBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ BB->addSuccessor(copy0MBB);
+ BB->addSuccessor(sinkMBB);
+
+ BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
+ .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
+
+ // copy0MBB:
+ // %FalseValue = ...
+ // # fallthrough to sinkMBB
+ BB = copy0MBB;
+
+ // Update machine-CFG edges
+ BB->addSuccessor(sinkMBB);
+
+ // sinkMBB:
+ // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
+ // ...
+ BB = sinkMBB;
+ BuildMI(*BB, BB->begin(), dl,
+ TII->get(ARM::PHI), MI->getOperand(0).getReg())
+ .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
+ .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+ }
+
+ case ARM::BCCi64:
+ case ARM::BCCZi64: {
+ // If there is an unconditional branch to the other successor, remove it.
+ BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
+
+ // Compare both parts that make up the double comparison separately for
+ // equality.
+ bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
+
+ unsigned LHS1 = MI->getOperand(1).getReg();
+ unsigned LHS2 = MI->getOperand(2).getReg();
+ if (RHSisZero) {
+ AddDefaultPred(BuildMI(BB, dl,
+ TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
+ .addReg(LHS1).addImm(0));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
+ .addReg(LHS2).addImm(0)
+ .addImm(ARMCC::EQ).addReg(ARM::CPSR);
+ } else {
+ unsigned RHS1 = MI->getOperand(3).getReg();
+ unsigned RHS2 = MI->getOperand(4).getReg();
+ AddDefaultPred(BuildMI(BB, dl,
+ TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
+ .addReg(LHS1).addReg(RHS1));
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
+ .addReg(LHS2).addReg(RHS2)
+ .addImm(ARMCC::EQ).addReg(ARM::CPSR);
+ }
+
+ MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
+ MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
+ if (MI->getOperand(0).getImm() == ARMCC::NE)
+ std::swap(destMBB, exitMBB);
+
+ BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
+ .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
+ if (isThumb2)
+ AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
+ else
+ BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
+
+ MI->eraseFromParent(); // The pseudo instruction is gone now.
+ return BB;
+ }
+
+ case ARM::Int_eh_sjlj_setjmp:
+ case ARM::Int_eh_sjlj_setjmp_nofp:
+ case ARM::tInt_eh_sjlj_setjmp:
+ case ARM::t2Int_eh_sjlj_setjmp:
+ case ARM::t2Int_eh_sjlj_setjmp_nofp:
+ return BB;
+
+ case ARM::Int_eh_sjlj_setup_dispatch:
+ EmitSjLjDispatchBlock(MI, BB);
+ return BB;
+
+ case ARM::ABS:
+ case ARM::t2ABS: {
+ // To insert an ABS instruction, we have to insert the
+ // diamond control-flow pattern. The incoming instruction knows the
+ // source vreg to test against 0, the destination vreg to set,
+ // the condition code register to branch on, the
+ // true/false values to select between, and a branch opcode to use.
+ // It transforms
+ // V1 = ABS V0
+ // into
+ // V2 = MOVS V0
+ // BCC (branch to SinkBB if V0 >= 0)
+ // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
+ // SinkBB: V1 = PHI(V2, V3)
+ const BasicBlock *LLVM_BB = BB->getBasicBlock();
+ MachineFunction::iterator BBI = ++BB->getIterator();
+ MachineFunction *Fn = BB->getParent();
+ MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
+ MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
+ Fn->insert(BBI, RSBBB);
+ Fn->insert(BBI, SinkBB);
+
+ unsigned int ABSSrcReg = MI->getOperand(1).getReg();
+ unsigned int ABSDstReg = MI->getOperand(0).getReg();
+ bool ABSSrcKIll = MI->getOperand(1).isKill();
+ bool isThumb2 = Subtarget->isThumb2();
+ MachineRegisterInfo &MRI = Fn->getRegInfo();
+ // In Thumb mode S must not be specified if source register is the SP or
+ // PC and if destination register is the SP, so restrict register class
+ unsigned NewRsbDstReg =
+ MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
+
+ // Transfer the remainder of BB and its successor edges to sinkMBB.
+ SinkBB->splice(SinkBB->begin(), BB,
+ std::next(MachineBasicBlock::iterator(MI)), BB->end());
+ SinkBB->transferSuccessorsAndUpdatePHIs(BB);
+
+ BB->addSuccessor(RSBBB);
+ BB->addSuccessor(SinkBB);
+
+ // fall through to SinkMBB
+ RSBBB->addSuccessor(SinkBB);
+
+ // insert a cmp at the end of BB
+ AddDefaultPred(BuildMI(BB, dl,
+ TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
+ .addReg(ABSSrcReg).addImm(0));
+
+ // insert a bcc with opposite CC to ARMCC::MI at the end of BB
+ BuildMI(BB, dl,
+ TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
+ .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
+
+ // insert rsbri in RSBBB
+ // Note: BCC and rsbri will be converted into predicated rsbmi
+ // by if-conversion pass
+ BuildMI(*RSBBB, RSBBB->begin(), dl,
+ TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
+ .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
+ .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
+
+ // insert PHI in SinkBB,
+ // reuse ABSDstReg to not change uses of ABS instruction
+ BuildMI(*SinkBB, SinkBB->begin(), dl,
+ TII->get(ARM::PHI), ABSDstReg)
+ .addReg(NewRsbDstReg).addMBB(RSBBB)
+ .addReg(ABSSrcReg).addMBB(BB);
+
+ // remove ABS instruction
+ MI->eraseFromParent();
+
+ // return last added BB
+ return SinkBB;
+ }
+ case ARM::COPY_STRUCT_BYVAL_I32:
+ ++NumLoopByVals;
+ return EmitStructByval(MI, BB);
+ case ARM::WIN__CHKSTK:
+ return EmitLowered__chkstk(MI, BB);
+ case ARM::WIN__DBZCHK:
+ return EmitLowered__dbzchk(MI, BB);
+ }
+}
+
+/// \brief Attaches vregs to MEMCPY that it will use as scratch registers
+/// when it is expanded into LDM/STM. This is done as a post-isel lowering
+/// instead of as a custom inserter because we need the use list from the SDNode.
+static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
+ MachineInstr *MI, const SDNode *Node) {
+ bool isThumb1 = Subtarget->isThumb1Only();
+
+ DebugLoc DL = MI->getDebugLoc();
+ MachineFunction *MF = MI->getParent()->getParent();
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ MachineInstrBuilder MIB(*MF, MI);
+
+ // If the new dst/src is unused mark it as dead.
+ if (!Node->hasAnyUseOfValue(0)) {
+ MI->getOperand(0).setIsDead(true);
+ }
+ if (!Node->hasAnyUseOfValue(1)) {
+ MI->getOperand(1).setIsDead(true);
+ }
+
+ // The MEMCPY both defines and kills the scratch registers.
+ for (unsigned I = 0; I != MI->getOperand(4).getImm(); ++I) {
+ unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
+ : &ARM::GPRRegClass);
+ MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
+ }
+}
+
+void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
+ SDNode *Node) const {
+ if (MI->getOpcode() == ARM::MEMCPY) {
+ attachMEMCPYScratchRegs(Subtarget, MI, Node);
+ return;
+ }
+
+ const MCInstrDesc *MCID = &MI->getDesc();
+ // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
+ // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
+ // operand is still set to noreg. If needed, set the optional operand's
+ // register to CPSR, and remove the redundant implicit def.
+ //
+ // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
+
+ // Rename pseudo opcodes.
+ unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
+ if (NewOpc) {
+ const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
+ MCID = &TII->get(NewOpc);
+
+ assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
+ "converted opcode should be the same except for cc_out");
+
+ MI->setDesc(*MCID);
+
+ // Add the optional cc_out operand
+ MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
+ }
+ unsigned ccOutIdx = MCID->getNumOperands() - 1;
+
+ // Any ARM instruction that sets the 's' bit should specify an optional
+ // "cc_out" operand in the last operand position.
+ if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
+ assert(!NewOpc && "Optional cc_out operand required");
+ return;
+ }
+ // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
+ // since we already have an optional CPSR def.
+ bool definesCPSR = false;
+ bool deadCPSR = false;
+ for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
+ i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
+ definesCPSR = true;
+ if (MO.isDead())
+ deadCPSR = true;
+ MI->RemoveOperand(i);
+ break;
+ }
+ }
+ if (!definesCPSR) {
+ assert(!NewOpc && "Optional cc_out operand required");
+ return;
+ }
+ assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
+ if (deadCPSR) {
+ assert(!MI->getOperand(ccOutIdx).getReg() &&
+ "expect uninitialized optional cc_out operand");
+ return;
+ }
+
+ // If this instruction was defined with an optional CPSR def and its dag node
+ // had a live implicit CPSR def, then activate the optional CPSR def.
+ MachineOperand &MO = MI->getOperand(ccOutIdx);
+ MO.setReg(ARM::CPSR);
+ MO.setIsDef(true);
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Optimization Hooks
+//===----------------------------------------------------------------------===//
+
+// Helper function that checks if N is a null or all ones constant.
+static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
+ return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
+}
+
+// Return true if N is conditionally 0 or all ones.
+// Detects these expressions where cc is an i1 value:
+//
+// (select cc 0, y) [AllOnes=0]
+// (select cc y, 0) [AllOnes=0]
+// (zext cc) [AllOnes=0]
+// (sext cc) [AllOnes=0/1]
+// (select cc -1, y) [AllOnes=1]
+// (select cc y, -1) [AllOnes=1]
+//
+// Invert is set when N is the null/all ones constant when CC is false.
+// OtherOp is set to the alternative value of N.
+static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
+ SDValue &CC, bool &Invert,
+ SDValue &OtherOp,
+ SelectionDAG &DAG) {
+ switch (N->getOpcode()) {
+ default: return false;
+ case ISD::SELECT: {
+ CC = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ SDValue N2 = N->getOperand(2);
+ if (isZeroOrAllOnes(N1, AllOnes)) {
+ Invert = false;
+ OtherOp = N2;
+ return true;
+ }
+ if (isZeroOrAllOnes(N2, AllOnes)) {
+ Invert = true;
+ OtherOp = N1;
+ return true;
+ }
+ return false;
+ }
+ case ISD::ZERO_EXTEND:
+ // (zext cc) can never be the all ones value.
+ if (AllOnes)
+ return false;
+ // Fall through.
+ case ISD::SIGN_EXTEND: {
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ CC = N->getOperand(0);
+ if (CC.getValueType() != MVT::i1)
+ return false;
+ Invert = !AllOnes;
+ if (AllOnes)
+ // When looking for an AllOnes constant, N is an sext, and the 'other'
+ // value is 0.
+ OtherOp = DAG.getConstant(0, dl, VT);
+ else if (N->getOpcode() == ISD::ZERO_EXTEND)
+ // When looking for a 0 constant, N can be zext or sext.
+ OtherOp = DAG.getConstant(1, dl, VT);
+ else
+ OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
+ VT);
+ return true;
+ }
+ }
+}
+
+// Combine a constant select operand into its use:
+//
+// (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
+// (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
+// (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
+// (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
+// (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
+//
+// The transform is rejected if the select doesn't have a constant operand that
+// is null, or all ones when AllOnes is set.
+//
+// Also recognize sext/zext from i1:
+//
+// (add (zext cc), x) -> (select cc (add x, 1), x)
+// (add (sext cc), x) -> (select cc (add x, -1), x)
+//
+// These transformations eventually create predicated instructions.
+//
+// @param N The node to transform.
+// @param Slct The N operand that is a select.
+// @param OtherOp The other N operand (x above).
+// @param DCI Context.
+// @param AllOnes Require the select constant to be all ones instead of null.
+// @returns The new node, or SDValue() on failure.
+static
+SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
+ TargetLowering::DAGCombinerInfo &DCI,
+ bool AllOnes = false) {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+ SDValue NonConstantVal;
+ SDValue CCOp;
+ bool SwapSelectOps;
+ if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
+ NonConstantVal, DAG))
+ return SDValue();
+
+ // Slct is now know to be the desired identity constant when CC is true.
+ SDValue TrueVal = OtherOp;
+ SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
+ OtherOp, NonConstantVal);
+ // Unless SwapSelectOps says CC should be false.
+ if (SwapSelectOps)
+ std::swap(TrueVal, FalseVal);
+
+ return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
+ CCOp, TrueVal, FalseVal);
+}
+
+// Attempt combineSelectAndUse on each operand of a commutative operator N.
+static
+SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ if (N0.getNode()->hasOneUse()) {
+ SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
+ if (Result.getNode())
+ return Result;
+ }
+ if (N1.getNode()->hasOneUse()) {
+ SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
+ if (Result.getNode())
+ return Result;
+ }
+ return SDValue();
+}
+
+// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
+// (only after legalization).
+static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+
+ // Only perform optimization if after legalize, and if NEON is available. We
+ // also expected both operands to be BUILD_VECTORs.
+ if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
+ || N0.getOpcode() != ISD::BUILD_VECTOR
+ || N1.getOpcode() != ISD::BUILD_VECTOR)
+ return SDValue();
+
+ // Check output type since VPADDL operand elements can only be 8, 16, or 32.
+ EVT VT = N->getValueType(0);
+ if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
+ return SDValue();
+
+ // Check that the vector operands are of the right form.
+ // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
+ // operands, where N is the size of the formed vector.
+ // Each EXTRACT_VECTOR should have the same input vector and odd or even
+ // index such that we have a pair wise add pattern.
+
+ // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
+ if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
+ return SDValue();
+ SDValue Vec = N0->getOperand(0)->getOperand(0);
+ SDNode *V = Vec.getNode();
+ unsigned nextIndex = 0;
+
+ // For each operands to the ADD which are BUILD_VECTORs,
+ // check to see if each of their operands are an EXTRACT_VECTOR with
+ // the same vector and appropriate index.
+ for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
+ if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
+ && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+
+ SDValue ExtVec0 = N0->getOperand(i);
+ SDValue ExtVec1 = N1->getOperand(i);
+
+ // First operand is the vector, verify its the same.
+ if (V != ExtVec0->getOperand(0).getNode() ||
+ V != ExtVec1->getOperand(0).getNode())
+ return SDValue();
+
+ // Second is the constant, verify its correct.
+ ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
+ ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
+
+ // For the constant, we want to see all the even or all the odd.
+ if (!C0 || !C1 || C0->getZExtValue() != nextIndex
+ || C1->getZExtValue() != nextIndex+1)
+ return SDValue();
+
+ // Increment index.
+ nextIndex+=2;
+ } else
+ return SDValue();
+ }
+
+ // Create VPADDL node.
+ SelectionDAG &DAG = DCI.DAG;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ SDLoc dl(N);
+
+ // Build operand list.
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
+ TLI.getPointerTy(DAG.getDataLayout())));
+
+ // Input is the vector.
+ Ops.push_back(Vec);
+
+ // Get widened type and narrowed type.
+ MVT widenType;
+ unsigned numElem = VT.getVectorNumElements();
+
+ EVT inputLaneType = Vec.getValueType().getVectorElementType();
+ switch (inputLaneType.getSimpleVT().SimpleTy) {
+ case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
+ case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
+ case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
+ default:
+ llvm_unreachable("Invalid vector element type for padd optimization.");
+ }
+
+ SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
+ unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
+ return DAG.getNode(ExtOp, dl, VT, tmp);
+}
+
+static SDValue findMUL_LOHI(SDValue V) {
+ if (V->getOpcode() == ISD::UMUL_LOHI ||
+ V->getOpcode() == ISD::SMUL_LOHI)
+ return V;
+ return SDValue();
+}
+
+static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+
+ if (Subtarget->isThumb1Only()) return SDValue();
+
+ // Only perform the checks after legalize when the pattern is available.
+ if (DCI.isBeforeLegalize()) return SDValue();
+
+ // Look for multiply add opportunities.
+ // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
+ // each add nodes consumes a value from ISD::UMUL_LOHI and there is
+ // a glue link from the first add to the second add.
+ // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
+ // a S/UMLAL instruction.
+ // UMUL_LOHI
+ // / :lo \ :hi
+ // / \ [no multiline comment]
+ // loAdd -> ADDE |
+ // \ :glue /
+ // \ /
+ // ADDC <- hiAdd
+ //
+ assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
+ SDValue AddcOp0 = AddcNode->getOperand(0);
+ SDValue AddcOp1 = AddcNode->getOperand(1);
+
+ // Check if the two operands are from the same mul_lohi node.
+ if (AddcOp0.getNode() == AddcOp1.getNode())
+ return SDValue();
+
+ assert(AddcNode->getNumValues() == 2 &&
+ AddcNode->getValueType(0) == MVT::i32 &&
+ "Expect ADDC with two result values. First: i32");
+
+ // Check that we have a glued ADDC node.
+ if (AddcNode->getValueType(1) != MVT::Glue)
+ return SDValue();
+
+ // Check that the ADDC adds the low result of the S/UMUL_LOHI.
+ if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
+ AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
+ AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
+ AddcOp1->getOpcode() != ISD::SMUL_LOHI)
+ return SDValue();
+
+ // Look for the glued ADDE.
+ SDNode* AddeNode = AddcNode->getGluedUser();
+ if (!AddeNode)
+ return SDValue();
+
+ // Make sure it is really an ADDE.
+ if (AddeNode->getOpcode() != ISD::ADDE)
+ return SDValue();
+
+ assert(AddeNode->getNumOperands() == 3 &&
+ AddeNode->getOperand(2).getValueType() == MVT::Glue &&
+ "ADDE node has the wrong inputs");
+
+ // Check for the triangle shape.
+ SDValue AddeOp0 = AddeNode->getOperand(0);
+ SDValue AddeOp1 = AddeNode->getOperand(1);
+
+ // Make sure that the ADDE operands are not coming from the same node.
+ if (AddeOp0.getNode() == AddeOp1.getNode())
+ return SDValue();
+
+ // Find the MUL_LOHI node walking up ADDE's operands.
+ bool IsLeftOperandMUL = false;
+ SDValue MULOp = findMUL_LOHI(AddeOp0);
+ if (MULOp == SDValue())
+ MULOp = findMUL_LOHI(AddeOp1);
+ else
+ IsLeftOperandMUL = true;
+ if (MULOp == SDValue())
+ return SDValue();
+
+ // Figure out the right opcode.
+ unsigned Opc = MULOp->getOpcode();
+ unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
+
+ // Figure out the high and low input values to the MLAL node.
+ SDValue* HiAdd = nullptr;
+ SDValue* LoMul = nullptr;
+ SDValue* LowAdd = nullptr;
+
+ // Ensure that ADDE is from high result of ISD::SMUL_LOHI.
+ if ((AddeOp0 != MULOp.getValue(1)) && (AddeOp1 != MULOp.getValue(1)))
+ return SDValue();
+
+ if (IsLeftOperandMUL)
+ HiAdd = &AddeOp1;
+ else
+ HiAdd = &AddeOp0;
+
+
+ // Ensure that LoMul and LowAdd are taken from correct ISD::SMUL_LOHI node
+ // whose low result is fed to the ADDC we are checking.
+
+ if (AddcOp0 == MULOp.getValue(0)) {
+ LoMul = &AddcOp0;
+ LowAdd = &AddcOp1;
+ }
+ if (AddcOp1 == MULOp.getValue(0)) {
+ LoMul = &AddcOp1;
+ LowAdd = &AddcOp0;
+ }
+
+ if (!LoMul)
+ return SDValue();
+
+ // Create the merged node.
+ SelectionDAG &DAG = DCI.DAG;
+
+ // Build operand list.
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(LoMul->getOperand(0));
+ Ops.push_back(LoMul->getOperand(1));
+ Ops.push_back(*LowAdd);
+ Ops.push_back(*HiAdd);
+
+ SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcNode),
+ DAG.getVTList(MVT::i32, MVT::i32), Ops);
+
+ // Replace the ADDs' nodes uses by the MLA node's values.
+ SDValue HiMLALResult(MLALNode.getNode(), 1);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
+
+ SDValue LoMLALResult(MLALNode.getNode(), 0);
+ DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
+
+ // Return original node to notify the driver to stop replacing.
+ SDValue resNode(AddcNode, 0);
+ return resNode;
+}
+
+/// PerformADDCCombine - Target-specific dag combine transform from
+/// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
+static SDValue PerformADDCCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+
+ return AddCombineTo64bitMLAL(N, DCI, Subtarget);
+
+}
+
+/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
+/// operands N0 and N1. This is a helper for PerformADDCombine that is
+/// called with the default operands, and if that fails, with commuted
+/// operands.
+static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget){
+
+ // Attempt to create vpaddl for this add.
+ SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
+ if (Result.getNode())
+ return Result;
+
+ // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
+ if (N0.getNode()->hasOneUse()) {
+ SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
+ if (Result.getNode()) return Result;
+ }
+ return SDValue();
+}
+
+/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
+///
+static SDValue PerformADDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // First try with the default operand order.
+ SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
+ if (Result.getNode())
+ return Result;
+
+ // If that didn't work, try again with the operands commuted.
+ return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
+}
+
+/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
+///
+static SDValue PerformSUBCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+
+ // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
+ if (N1.getNode()->hasOneUse()) {
+ SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
+ if (Result.getNode()) return Result;
+ }
+
+ return SDValue();
+}
+
+/// PerformVMULCombine
+/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
+/// special multiplier accumulator forwarding.
+/// vmul d3, d0, d2
+/// vmla d3, d1, d2
+/// is faster than
+/// vadd d3, d0, d1
+/// vmul d3, d3, d2
+// However, for (A + B) * (A + B),
+// vadd d2, d0, d1
+// vmul d3, d0, d2
+// vmla d3, d1, d2
+// is slower than
+// vadd d2, d0, d1
+// vmul d3, d2, d2
+static SDValue PerformVMULCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ if (!Subtarget->hasVMLxForwarding())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDValue N0 = N->getOperand(0);
+ SDValue N1 = N->getOperand(1);
+ unsigned Opcode = N0.getOpcode();
+ if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
+ Opcode != ISD::FADD && Opcode != ISD::FSUB) {
+ Opcode = N1.getOpcode();
+ if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
+ Opcode != ISD::FADD && Opcode != ISD::FSUB)
+ return SDValue();
+ std::swap(N0, N1);
+ }
+
+ if (N0 == N1)
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ SDLoc DL(N);
+ SDValue N00 = N0->getOperand(0);
+ SDValue N01 = N0->getOperand(1);
+ return DAG.getNode(Opcode, DL, VT,
+ DAG.getNode(ISD::MUL, DL, VT, N00, N1),
+ DAG.getNode(ISD::MUL, DL, VT, N01, N1));
+}
+
+static SDValue PerformMULCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ SelectionDAG &DAG = DCI.DAG;
+
+ if (Subtarget->isThumb1Only())
+ return SDValue();
+
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ if (VT.is64BitVector() || VT.is128BitVector())
+ return PerformVMULCombine(N, DCI, Subtarget);
+ if (VT != MVT::i32)
+ return SDValue();
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!C)
+ return SDValue();
+
+ int64_t MulAmt = C->getSExtValue();
+ unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
+
+ ShiftAmt = ShiftAmt & (32 - 1);
+ SDValue V = N->getOperand(0);
+ SDLoc DL(N);
+
+ SDValue Res;
+ MulAmt >>= ShiftAmt;
+
+ if (MulAmt >= 0) {
+ if (isPowerOf2_32(MulAmt - 1)) {
+ // (mul x, 2^N + 1) => (add (shl x, N), x)
+ Res = DAG.getNode(ISD::ADD, DL, VT,
+ V,
+ DAG.getNode(ISD::SHL, DL, VT,
+ V,
+ DAG.getConstant(Log2_32(MulAmt - 1), DL,
+ MVT::i32)));
+ } else if (isPowerOf2_32(MulAmt + 1)) {
+ // (mul x, 2^N - 1) => (sub (shl x, N), x)
+ Res = DAG.getNode(ISD::SUB, DL, VT,
+ DAG.getNode(ISD::SHL, DL, VT,
+ V,
+ DAG.getConstant(Log2_32(MulAmt + 1), DL,
+ MVT::i32)),
+ V);
+ } else
+ return SDValue();
+ } else {
+ uint64_t MulAmtAbs = -MulAmt;
+ if (isPowerOf2_32(MulAmtAbs + 1)) {
+ // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
+ Res = DAG.getNode(ISD::SUB, DL, VT,
+ V,
+ DAG.getNode(ISD::SHL, DL, VT,
+ V,
+ DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
+ MVT::i32)));
+ } else if (isPowerOf2_32(MulAmtAbs - 1)) {
+ // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
+ Res = DAG.getNode(ISD::ADD, DL, VT,
+ V,
+ DAG.getNode(ISD::SHL, DL, VT,
+ V,
+ DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
+ MVT::i32)));
+ Res = DAG.getNode(ISD::SUB, DL, VT,
+ DAG.getConstant(0, DL, MVT::i32), Res);
+
+ } else
+ return SDValue();
+ }
+
+ if (ShiftAmt != 0)
+ Res = DAG.getNode(ISD::SHL, DL, VT,
+ Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ return SDValue();
+}
+
+static SDValue PerformANDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+
+ // Attempt to use immediate-form VBIC
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SelectionDAG &DAG = DCI.DAG;
+
+ if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (BVN &&
+ BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
+ if (SplatBitSize <= 64) {
+ EVT VbicVT;
+ SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
+ SplatUndef.getZExtValue(), SplatBitSize,
+ DAG, dl, VbicVT, VT.is128BitVector(),
+ OtherModImm);
+ if (Val.getNode()) {
+ SDValue Input =
+ DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
+ SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
+ }
+ }
+ }
+
+ if (!Subtarget->isThumb1Only()) {
+ // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
+ SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
+ if (Result.getNode())
+ return Result;
+ }
+
+ return SDValue();
+}
+
+/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
+static SDValue PerformORCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ // Attempt to use immediate-form VORR
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
+ SDLoc dl(N);
+ EVT VT = N->getValueType(0);
+ SelectionDAG &DAG = DCI.DAG;
+
+ if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (BVN && Subtarget->hasNEON() &&
+ BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
+ if (SplatBitSize <= 64) {
+ EVT VorrVT;
+ SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
+ SplatUndef.getZExtValue(), SplatBitSize,
+ DAG, dl, VorrVT, VT.is128BitVector(),
+ OtherModImm);
+ if (Val.getNode()) {
+ SDValue Input =
+ DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
+ SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
+ return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
+ }
+ }
+ }
+
+ if (!Subtarget->isThumb1Only()) {
+ // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
+ SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
+ if (Result.getNode())
+ return Result;
+ }
+
+ // The code below optimizes (or (and X, Y), Z).
+ // The AND operand needs to have a single user to make these optimizations
+ // profitable.
+ SDValue N0 = N->getOperand(0);
+ if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
+ return SDValue();
+ SDValue N1 = N->getOperand(1);
+
+ // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
+ if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
+ DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
+ APInt SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+
+ APInt SplatBits0, SplatBits1;
+ BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
+ BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
+ // Ensure that the second operand of both ands are constants
+ if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
+ HasAnyUndefs) && !HasAnyUndefs) {
+ if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
+ HasAnyUndefs) && !HasAnyUndefs) {
+ // Ensure that the bit width of the constants are the same and that
+ // the splat arguments are logical inverses as per the pattern we
+ // are trying to simplify.
+ if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
+ SplatBits0 == ~SplatBits1) {
+ // Canonicalize the vector type to make instruction selection
+ // simpler.
+ EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
+ SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
+ N0->getOperand(1),
+ N0->getOperand(0),
+ N1->getOperand(0));
+ return DAG.getNode(ISD::BITCAST, dl, VT, Result);
+ }
+ }
+ }
+ }
+
+ // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
+ // reasonable.
+
+ // BFI is only available on V6T2+
+ if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
+ return SDValue();
+
+ SDLoc DL(N);
+ // 1) or (and A, mask), val => ARMbfi A, val, mask
+ // iff (val & mask) == val
+ //
+ // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
+ // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
+ // && mask == ~mask2
+ // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
+ // && ~mask == mask2
+ // (i.e., copy a bitfield value into another bitfield of the same width)
+
+ if (VT != MVT::i32)
+ return SDValue();
+
+ SDValue N00 = N0.getOperand(0);
+
+ // The value and the mask need to be constants so we can verify this is
+ // actually a bitfield set. If the mask is 0xffff, we can do better
+ // via a movt instruction, so don't use BFI in that case.
+ SDValue MaskOp = N0.getOperand(1);
+ ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
+ if (!MaskC)
+ return SDValue();
+ unsigned Mask = MaskC->getZExtValue();
+ if (Mask == 0xffff)
+ return SDValue();
+ SDValue Res;
+ // Case (1): or (and A, mask), val => ARMbfi A, val, mask
+ ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
+ if (N1C) {
+ unsigned Val = N1C->getZExtValue();
+ if ((Val & ~Mask) != Val)
+ return SDValue();
+
+ if (ARM::isBitFieldInvertedMask(Mask)) {
+ Val >>= countTrailingZeros(~Mask);
+
+ Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
+ DAG.getConstant(Val, DL, MVT::i32),
+ DAG.getConstant(Mask, DL, MVT::i32));
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ return SDValue();
+ }
+ } else if (N1.getOpcode() == ISD::AND) {
+ // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
+ ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
+ if (!N11C)
+ return SDValue();
+ unsigned Mask2 = N11C->getZExtValue();
+
+ // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
+ // as is to match.
+ if (ARM::isBitFieldInvertedMask(Mask) &&
+ (Mask == ~Mask2)) {
+ // The pack halfword instruction works better for masks that fit it,
+ // so use that when it's available.
+ if (Subtarget->hasT2ExtractPack() &&
+ (Mask == 0xffff || Mask == 0xffff0000))
+ return SDValue();
+ // 2a
+ unsigned amt = countTrailingZeros(Mask2);
+ Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
+ DAG.getConstant(amt, DL, MVT::i32));
+ Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
+ DAG.getConstant(Mask, DL, MVT::i32));
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ return SDValue();
+ } else if (ARM::isBitFieldInvertedMask(~Mask) &&
+ (~Mask == Mask2)) {
+ // The pack halfword instruction works better for masks that fit it,
+ // so use that when it's available.
+ if (Subtarget->hasT2ExtractPack() &&
+ (Mask2 == 0xffff || Mask2 == 0xffff0000))
+ return SDValue();
+ // 2b
+ unsigned lsb = countTrailingZeros(Mask);
+ Res = DAG.getNode(ISD::SRL, DL, VT, N00,
+ DAG.getConstant(lsb, DL, MVT::i32));
+ Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
+ DAG.getConstant(Mask2, DL, MVT::i32));
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ return SDValue();
+ }
+ }
+
+ if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
+ N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
+ ARM::isBitFieldInvertedMask(~Mask)) {
+ // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
+ // where lsb(mask) == #shamt and masked bits of B are known zero.
+ SDValue ShAmt = N00.getOperand(1);
+ unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
+ unsigned LSB = countTrailingZeros(Mask);
+ if (ShAmtC != LSB)
+ return SDValue();
+
+ Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
+ DAG.getConstant(~Mask, DL, MVT::i32));
+
+ // Do not add new nodes to DAG combiner worklist.
+ DCI.CombineTo(N, Res, false);
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformXORCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ EVT VT = N->getValueType(0);
+ SelectionDAG &DAG = DCI.DAG;
+
+ if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return SDValue();
+
+ if (!Subtarget->isThumb1Only()) {
+ // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
+ SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
+ if (Result.getNode())
+ return Result;
+ }
+
+ return SDValue();
+}
+
+// ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
+// and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
+// their position in "to" (Rd).
+static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
+ assert(N->getOpcode() == ARMISD::BFI);
+
+ SDValue From = N->getOperand(1);
+ ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
+ FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
+
+ // If the Base came from a SHR #C, we can deduce that it is really testing bit
+ // #C in the base of the SHR.
+ if (From->getOpcode() == ISD::SRL &&
+ isa<ConstantSDNode>(From->getOperand(1))) {
+ APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
+ assert(Shift.getLimitedValue() < 32 && "Shift too large!");
+ FromMask <<= Shift.getLimitedValue(31);
+ From = From->getOperand(0);
+ }
+
+ return From;
+}
+
+// If A and B contain one contiguous set of bits, does A | B == A . B?
+//
+// Neither A nor B must be zero.
+static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
+ unsigned LastActiveBitInA = A.countTrailingZeros();
+ unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
+ return LastActiveBitInA - 1 == FirstActiveBitInB;
+}
+
+static SDValue FindBFIToCombineWith(SDNode *N) {
+ // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
+ // if one exists.
+ APInt ToMask, FromMask;
+ SDValue From = ParseBFI(N, ToMask, FromMask);
+ SDValue To = N->getOperand(0);
+
+ // Now check for a compatible BFI to merge with. We can pass through BFIs that
+ // aren't compatible, but not if they set the same bit in their destination as
+ // we do (or that of any BFI we're going to combine with).
+ SDValue V = To;
+ APInt CombinedToMask = ToMask;
+ while (V.getOpcode() == ARMISD::BFI) {
+ APInt NewToMask, NewFromMask;
+ SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
+ if (NewFrom != From) {
+ // This BFI has a different base. Keep going.
+ CombinedToMask |= NewToMask;
+ V = V.getOperand(0);
+ continue;
+ }
+
+ // Do the written bits conflict with any we've seen so far?
+ if ((NewToMask & CombinedToMask).getBoolValue())
+ // Conflicting bits - bail out because going further is unsafe.
+ return SDValue();
+
+ // Are the new bits contiguous when combined with the old bits?
+ if (BitsProperlyConcatenate(ToMask, NewToMask) &&
+ BitsProperlyConcatenate(FromMask, NewFromMask))
+ return V;
+ if (BitsProperlyConcatenate(NewToMask, ToMask) &&
+ BitsProperlyConcatenate(NewFromMask, FromMask))
+ return V;
+
+ // We've seen a write to some bits, so track it.
+ CombinedToMask |= NewToMask;
+ // Keep going...
+ V = V.getOperand(0);
+ }
+
+ return SDValue();
+}
+
+static SDValue PerformBFICombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue N1 = N->getOperand(1);
+ if (N1.getOpcode() == ISD::AND) {
+ // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
+ // the bits being cleared by the AND are not demanded by the BFI.
+ ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
+ if (!N11C)
+ return SDValue();
+ unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
+ unsigned LSB = countTrailingZeros(~InvMask);
+ unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
+ assert(Width <
+ static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
+ "undefined behavior");
+ unsigned Mask = (1u << Width) - 1;
+ unsigned Mask2 = N11C->getZExtValue();
+ if ((Mask & (~Mask2)) == 0)
+ return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
+ N->getOperand(0), N1.getOperand(0),
+ N->getOperand(2));
+ } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
+ // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
+ // Keep track of any consecutive bits set that all come from the same base
+ // value. We can combine these together into a single BFI.
+ SDValue CombineBFI = FindBFIToCombineWith(N);
+ if (CombineBFI == SDValue())
+ return SDValue();
+
+ // We've found a BFI.
+ APInt ToMask1, FromMask1;
+ SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
+
+ APInt ToMask2, FromMask2;
+ SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
+ assert(From1 == From2);
+ (void)From2;
+
+ // First, unlink CombineBFI.
+ DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
+ // Then create a new BFI, combining the two together.
+ APInt NewFromMask = FromMask1 | FromMask2;
+ APInt NewToMask = ToMask1 | ToMask2;
+
+ EVT VT = N->getValueType(0);
+ SDLoc dl(N);
+
+ if (NewFromMask[0] == 0)
+ From1 = DCI.DAG.getNode(
+ ISD::SRL, dl, VT, From1,
+ DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
+ return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
+ DCI.DAG.getConstant(~NewToMask, dl, VT));
+ }
+ return SDValue();
+}
+
+/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
+/// ARMISD::VMOVRRD.
+static SDValue PerformVMOVRRDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ // vmovrrd(vmovdrr x, y) -> x,y
+ SDValue InDouble = N->getOperand(0);
+ if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
+ return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
+
+ // vmovrrd(load f64) -> (load i32), (load i32)
+ SDNode *InNode = InDouble.getNode();
+ if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
+ InNode->getValueType(0) == MVT::f64 &&
+ InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
+ !cast<LoadSDNode>(InNode)->isVolatile()) {
+ // TODO: Should this be done for non-FrameIndex operands?
+ LoadSDNode *LD = cast<LoadSDNode>(InNode);
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc DL(LD);
+ SDValue BasePtr = LD->getBasePtr();
+ SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
+ LD->getPointerInfo(), LD->isVolatile(),
+ LD->isNonTemporal(), LD->isInvariant(),
+ LD->getAlignment());
+
+ SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
+ DAG.getConstant(4, DL, MVT::i32));
+ SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
+ LD->getPointerInfo(), LD->isVolatile(),
+ LD->isNonTemporal(), LD->isInvariant(),
+ std::min(4U, LD->getAlignment() / 2));
+
+ DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
+ if (DCI.DAG.getDataLayout().isBigEndian())
+ std::swap (NewLD1, NewLD2);
+ SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
+ return Result;
+ }
+
+ return SDValue();
+}
+
+/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
+/// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
+static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
+ // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ if (Op0.getOpcode() == ISD::BITCAST)
+ Op0 = Op0.getOperand(0);
+ if (Op1.getOpcode() == ISD::BITCAST)
+ Op1 = Op1.getOperand(0);
+ if (Op0.getOpcode() == ARMISD::VMOVRRD &&
+ Op0.getNode() == Op1.getNode() &&
+ Op0.getResNo() == 0 && Op1.getResNo() == 1)
+ return DAG.getNode(ISD::BITCAST, SDLoc(N),
+ N->getValueType(0), Op0.getOperand(0));
+ return SDValue();
+}
+
+/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
+/// are normal, non-volatile loads. If so, it is profitable to bitcast an
+/// i64 vector to have f64 elements, since the value can then be loaded
+/// directly into a VFP register.
+static bool hasNormalLoadOperand(SDNode *N) {
+ unsigned NumElts = N->getValueType(0).getVectorNumElements();
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDNode *Elt = N->getOperand(i).getNode();
+ if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
+ return true;
+ }
+ return false;
+}
+
+/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
+/// ISD::BUILD_VECTOR.
+static SDValue PerformBUILD_VECTORCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI,
+ const ARMSubtarget *Subtarget) {
+ // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
+ // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
+ // into a pair of GPRs, which is fine when the value is used as a scalar,
+ // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
+ SelectionDAG &DAG = DCI.DAG;
+ if (N->getNumOperands() == 2) {
+ SDValue RV = PerformVMOVDRRCombine(N, DAG);
+ if (RV.getNode())
+ return RV;
+ }
+
+ // Load i64 elements as f64 values so that type legalization does not split
+ // them up into i32 values.
+ EVT VT = N->getValueType(0);
+ if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
+ return SDValue();
+ SDLoc dl(N);
+ SmallVector<SDValue, 8> Ops;
+ unsigned NumElts = VT.getVectorNumElements();
+ for (unsigned i = 0; i < NumElts; ++i) {
+ SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
+ Ops.push_back(V);
+ // Make the DAGCombiner fold the bitcast.
+ DCI.AddToWorklist(V.getNode());
+ }
+ EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
+ SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops);
+ return DAG.getNode(ISD::BITCAST, dl, VT, BV);
+}
+
+/// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
+static SDValue
+PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
+ // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
+ // At that time, we may have inserted bitcasts from integer to float.
+ // If these bitcasts have survived DAGCombine, change the lowering of this
+ // BUILD_VECTOR in something more vector friendly, i.e., that does not
+ // force to use floating point types.
+
+ // Make sure we can change the type of the vector.
+ // This is possible iff:
+ // 1. The vector is only used in a bitcast to a integer type. I.e.,
+ // 1.1. Vector is used only once.
+ // 1.2. Use is a bit convert to an integer type.
+ // 2. The size of its operands are 32-bits (64-bits are not legal).
+ EVT VT = N->getValueType(0);
+ EVT EltVT = VT.getVectorElementType();
+
+ // Check 1.1. and 2.
+ if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
+ return SDValue();
+
+ // By construction, the input type must be float.
+ assert(EltVT == MVT::f32 && "Unexpected type!");
+
+ // Check 1.2.
+ SDNode *Use = *N->use_begin();
+ if (Use->getOpcode() != ISD::BITCAST ||
+ Use->getValueType(0).isFloatingPoint())
+ return SDValue();
+
+ // Check profitability.
+ // Model is, if more than half of the relevant operands are bitcast from
+ // i32, turn the build_vector into a sequence of insert_vector_elt.
+ // Relevant operands are everything that is not statically
+ // (i.e., at compile time) bitcasted.
+ unsigned NumOfBitCastedElts = 0;
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned NumOfRelevantElts = NumElts;
+ for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
+ SDValue Elt = N->getOperand(Idx);
+ if (Elt->getOpcode() == ISD::BITCAST) {
+ // Assume only bit cast to i32 will go away.
+ if (Elt->getOperand(0).getValueType() == MVT::i32)
+ ++NumOfBitCastedElts;
+ } else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt))
+ // Constants are statically casted, thus do not count them as
+ // relevant operands.
+ --NumOfRelevantElts;
+ }
+
+ // Check if more than half of the elements require a non-free bitcast.
+ if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ // Create the new vector type.
+ EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
+ // Check if the type is legal.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!TLI.isTypeLegal(VecVT))
+ return SDValue();
+
+ // Combine:
+ // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
+ // => BITCAST INSERT_VECTOR_ELT
+ // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
+ // (BITCAST EN), N.
+ SDValue Vec = DAG.getUNDEF(VecVT);
+ SDLoc dl(N);
+ for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
+ SDValue V = N->getOperand(Idx);
+ if (V.getOpcode() == ISD::UNDEF)
+ continue;
+ if (V.getOpcode() == ISD::BITCAST &&
+ V->getOperand(0).getValueType() == MVT::i32)
+ // Fold obvious case.
+ V = V.getOperand(0);
+ else {
+ V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
+ // Make the DAGCombiner fold the bitcasts.
+ DCI.AddToWorklist(V.getNode());
+ }
+ SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
+ Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
+ }
+ Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
+ // Make the DAGCombiner fold the bitcasts.
+ DCI.AddToWorklist(Vec.getNode());
+ return Vec;
+}
+
+/// PerformInsertEltCombine - Target-specific dag combine xforms for
+/// ISD::INSERT_VECTOR_ELT.
+static SDValue PerformInsertEltCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ // Bitcast an i64 load inserted into a vector to f64.
+ // Otherwise, the i64 value will be legalized to a pair of i32 values.
+ EVT VT = N->getValueType(0);
+ SDNode *Elt = N->getOperand(1).getNode();
+ if (VT.getVectorElementType() != MVT::i64 ||
+ !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
+ return SDValue();
+
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(N);
+ EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
+ VT.getVectorNumElements());
+ SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
+ SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
+ // Make the DAGCombiner fold the bitcasts.
+ DCI.AddToWorklist(Vec.getNode());
+ DCI.AddToWorklist(V.getNode());
+ SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
+ Vec, V, N->getOperand(2));
+ return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
+}
+
+/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
+/// ISD::VECTOR_SHUFFLE.
+static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
+ // The LLVM shufflevector instruction does not require the shuffle mask
+ // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
+ // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
+ // operands do not match the mask length, they are extended by concatenating
+ // them with undef vectors. That is probably the right thing for other
+ // targets, but for NEON it is better to concatenate two double-register
+ // size vector operands into a single quad-register size vector. Do that
+ // transformation here:
+ // shuffle(concat(v1, undef), concat(v2, undef)) ->
+ // shuffle(concat(v1, v2), undef)
+ SDValue Op0 = N->getOperand(0);
+ SDValue Op1 = N->getOperand(1);
+ if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
+ Op1.getOpcode() != ISD::CONCAT_VECTORS ||
+ Op0.getNumOperands() != 2 ||
+ Op1.getNumOperands() != 2)
+ return SDValue();
+ SDValue Concat0Op1 = Op0.getOperand(1);
+ SDValue Concat1Op1 = Op1.getOperand(1);
+ if (Concat0Op1.getOpcode() != ISD::UNDEF ||
+ Concat1Op1.getOpcode() != ISD::UNDEF)
+ return SDValue();
+ // Skip the transformation if any of the types are illegal.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT VT = N->getValueType(0);
+ if (!TLI.isTypeLegal(VT) ||
+ !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
+ !TLI.isTypeLegal(Concat1Op1.getValueType()))
+ return SDValue();
+
+ SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
+ Op0.getOperand(0), Op1.getOperand(0));
+ // Translate the shuffle mask.
+ SmallVector<int, 16> NewMask;
+ unsigned NumElts = VT.getVectorNumElements();
+ unsigned HalfElts = NumElts/2;
+ ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
+ for (unsigned n = 0; n < NumElts; ++n) {
+ int MaskElt = SVN->getMaskElt(n);
+ int NewElt = -1;
+ if (MaskElt < (int)HalfElts)
+ NewElt = MaskElt;
+ else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
+ NewElt = HalfElts + MaskElt - NumElts;
+ NewMask.push_back(NewElt);
+ }
+ return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
+ DAG.getUNDEF(VT), NewMask.data());
+}
+
+/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
+/// NEON load/store intrinsics, and generic vector load/stores, to merge
+/// base address updates.
+/// For generic load/stores, the memory type is assumed to be a vector.
+/// The caller is assumed to have checked legality.
+static SDValue CombineBaseUpdate(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SelectionDAG &DAG = DCI.DAG;
+ const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
+ N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
+ const bool isStore = N->getOpcode() == ISD::STORE;
+ const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
+ SDValue Addr = N->getOperand(AddrOpIdx);
+ MemSDNode *MemN = cast<MemSDNode>(N);
+ SDLoc dl(N);
+
+ // Search for a use of the address operand that is an increment.
+ for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
+ UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
+ SDNode *User = *UI;
+ if (User->getOpcode() != ISD::ADD ||
+ UI.getUse().getResNo() != Addr.getResNo())
+ continue;
+
+ // Check that the add is independent of the load/store. Otherwise, folding
+ // it would create a cycle.
+ if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
+ continue;
+
+ // Find the new opcode for the updating load/store.
+ bool isLoadOp = true;
+ bool isLaneOp = false;
+ unsigned NewOpc = 0;
+ unsigned NumVecs = 0;
+ if (isIntrinsic) {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
+ switch (IntNo) {
+ default: llvm_unreachable("unexpected intrinsic for Neon base update");
+ case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
+ NumVecs = 1; break;
+ case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
+ NumVecs = 2; break;
+ case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
+ NumVecs = 3; break;
+ case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
+ NumVecs = 4; break;
+ case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
+ NumVecs = 2; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
+ NumVecs = 3; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
+ NumVecs = 4; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
+ NumVecs = 1; isLoadOp = false; break;
+ case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
+ NumVecs = 2; isLoadOp = false; break;
+ case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
+ NumVecs = 3; isLoadOp = false; break;
+ case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
+ NumVecs = 4; isLoadOp = false; break;
+ case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
+ NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
+ NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
+ case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
+ NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
+ }
+ } else {
+ isLaneOp = true;
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("unexpected opcode for Neon base update");
+ case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
+ case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
+ case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
+ case ISD::LOAD: NewOpc = ARMISD::VLD1_UPD;
+ NumVecs = 1; isLaneOp = false; break;
+ case ISD::STORE: NewOpc = ARMISD::VST1_UPD;
+ NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
+ }
+ }
+
+ // Find the size of memory referenced by the load/store.
+ EVT VecTy;
+ if (isLoadOp) {
+ VecTy = N->getValueType(0);
+ } else if (isIntrinsic) {
+ VecTy = N->getOperand(AddrOpIdx+1).getValueType();
+ } else {
+ assert(isStore && "Node has to be a load, a store, or an intrinsic!");
+ VecTy = N->getOperand(1).getValueType();
+ }
+
+ unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
+ if (isLaneOp)
+ NumBytes /= VecTy.getVectorNumElements();
+
+ // If the increment is a constant, it must match the memory ref size.
+ SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
+ if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
+ uint64_t IncVal = CInc->getZExtValue();
+ if (IncVal != NumBytes)
+ continue;
+ } else if (NumBytes >= 3 * 16) {
+ // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
+ // separate instructions that make it harder to use a non-constant update.
+ continue;
+ }
+
+ // OK, we found an ADD we can fold into the base update.
+ // Now, create a _UPD node, taking care of not breaking alignment.
+
+ EVT AlignedVecTy = VecTy;
+ unsigned Alignment = MemN->getAlignment();
+
+ // If this is a less-than-standard-aligned load/store, change the type to
+ // match the standard alignment.
+ // The alignment is overlooked when selecting _UPD variants; and it's
+ // easier to introduce bitcasts here than fix that.
+ // There are 3 ways to get to this base-update combine:
+ // - intrinsics: they are assumed to be properly aligned (to the standard
+ // alignment of the memory type), so we don't need to do anything.
+ // - ARMISD::VLDx nodes: they are only generated from the aforementioned
+ // intrinsics, so, likewise, there's nothing to do.
+ // - generic load/store instructions: the alignment is specified as an
+ // explicit operand, rather than implicitly as the standard alignment
+ // of the memory type (like the intrisics). We need to change the
+ // memory type to match the explicit alignment. That way, we don't
+ // generate non-standard-aligned ARMISD::VLDx nodes.
+ if (isa<LSBaseSDNode>(N)) {
+ if (Alignment == 0)
+ Alignment = 1;
+ if (Alignment < VecTy.getScalarSizeInBits() / 8) {
+ MVT EltTy = MVT::getIntegerVT(Alignment * 8);
+ assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
+ assert(!isLaneOp && "Unexpected generic load/store lane.");
+ unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
+ AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
+ }
+ // Don't set an explicit alignment on regular load/stores that we want
+ // to transform to VLD/VST 1_UPD nodes.
+ // This matches the behavior of regular load/stores, which only get an
+ // explicit alignment if the MMO alignment is larger than the standard
+ // alignment of the memory type.
+ // Intrinsics, however, always get an explicit alignment, set to the
+ // alignment of the MMO.
+ Alignment = 1;
+ }
+
+ // Create the new updating load/store node.
+ // First, create an SDVTList for the new updating node's results.
+ EVT Tys[6];
+ unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
+ unsigned n;
+ for (n = 0; n < NumResultVecs; ++n)
+ Tys[n] = AlignedVecTy;
+ Tys[n++] = MVT::i32;
+ Tys[n] = MVT::Other;
+ SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
+
+ // Then, gather the new node's operands.
+ SmallVector<SDValue, 8> Ops;
+ Ops.push_back(N->getOperand(0)); // incoming chain
+ Ops.push_back(N->getOperand(AddrOpIdx));
+ Ops.push_back(Inc);
+
+ if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
+ // Try to match the intrinsic's signature
+ Ops.push_back(StN->getValue());
+ } else {
+ // Loads (and of course intrinsics) match the intrinsics' signature,
+ // so just add all but the alignment operand.
+ for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
+ Ops.push_back(N->getOperand(i));
+ }
+
+ // For all node types, the alignment operand is always the last one.
+ Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
+
+ // If this is a non-standard-aligned STORE, the penultimate operand is the
+ // stored value. Bitcast it to the aligned type.
+ if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
+ SDValue &StVal = Ops[Ops.size()-2];
+ StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
+ }
+
+ SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys,
+ Ops, AlignedVecTy,
+ MemN->getMemOperand());
+
+ // Update the uses.
+ SmallVector<SDValue, 5> NewResults;
+ for (unsigned i = 0; i < NumResultVecs; ++i)
+ NewResults.push_back(SDValue(UpdN.getNode(), i));
+
+ // If this is an non-standard-aligned LOAD, the first result is the loaded
+ // value. Bitcast it to the expected result type.
+ if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
+ SDValue &LdVal = NewResults[0];
+ LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
+ }
+
+ NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
+ DCI.CombineTo(N, NewResults);
+ DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
+
+ break;
+ }
+ return SDValue();
+}
+
+static SDValue PerformVLDCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
+ return SDValue();
+
+ return CombineBaseUpdate(N, DCI);
+}
+
+/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
+/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
+/// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
+/// return true.
+static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
+ SelectionDAG &DAG = DCI.DAG;
+ EVT VT = N->getValueType(0);
+ // vldN-dup instructions only support 64-bit vectors for N > 1.
+ if (!VT.is64BitVector())
+ return false;
+
+ // Check if the VDUPLANE operand is a vldN-dup intrinsic.
+ SDNode *VLD = N->getOperand(0).getNode();
+ if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
+ return false;
+ unsigned NumVecs = 0;
+ unsigned NewOpc = 0;
+ unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
+ if (IntNo == Intrinsic::arm_neon_vld2lane) {
+ NumVecs = 2;
+ NewOpc = ARMISD::VLD2DUP;
+ } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
+ NumVecs = 3;
+ NewOpc = ARMISD::VLD3DUP;
+ } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
+ NumVecs = 4;
+ NewOpc = ARMISD::VLD4DUP;
+ } else {
+ return false;
+ }
+
+ // First check that all the vldN-lane uses are VDUPLANEs and that the lane
+ // numbers match the load.
+ unsigned VLDLaneNo =
+ cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
+ for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
+ UI != UE; ++UI) {
+ // Ignore uses of the chain result.
+ if (UI.getUse().getResNo() == NumVecs)
+ continue;
+ SDNode *User = *UI;
+ if (User->getOpcode() != ARMISD::VDUPLANE ||
+ VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
+ return false;
+ }
+
+ // Create the vldN-dup node.
+ EVT Tys[5];
+ unsigned n;
+ for (n = 0; n < NumVecs; ++n)
+ Tys[n] = VT;
+ Tys[n] = MVT::Other;
+ SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
+ SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
+ MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
+ SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
+ Ops, VLDMemInt->getMemoryVT(),
+ VLDMemInt->getMemOperand());
+
+ // Update the uses.
+ for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
+ UI != UE; ++UI) {
+ unsigned ResNo = UI.getUse().getResNo();
+ // Ignore uses of the chain result.
+ if (ResNo == NumVecs)
+ continue;
+ SDNode *User = *UI;
+ DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
+ }
+
+ // Now the vldN-lane intrinsic is dead except for its chain result.
+ // Update uses of the chain.
+ std::vector<SDValue> VLDDupResults;
+ for (unsigned n = 0; n < NumVecs; ++n)
+ VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
+ VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
+ DCI.CombineTo(VLD, VLDDupResults);
+
+ return true;
+}
+
+/// PerformVDUPLANECombine - Target-specific dag combine xforms for
+/// ARMISD::VDUPLANE.
+static SDValue PerformVDUPLANECombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ SDValue Op = N->getOperand(0);
+
+ // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
+ // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
+ if (CombineVLDDUP(N, DCI))
+ return SDValue(N, 0);
+
+ // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
+ // redundant. Ignore bit_converts for now; element sizes are checked below.
+ while (Op.getOpcode() == ISD::BITCAST)
+ Op = Op.getOperand(0);
+ if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
+ return SDValue();
+
+ // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
+ unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
+ // The canonical VMOV for a zero vector uses a 32-bit element size.
+ unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
+ unsigned EltBits;
+ if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
+ EltSize = 8;
+ EVT VT = N->getValueType(0);
+ if (EltSize > VT.getVectorElementType().getSizeInBits())
+ return SDValue();
+
+ return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
+}
+
+static SDValue PerformLOADCombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ EVT VT = N->getValueType(0);
+
+ // If this is a legal vector load, try to combine it into a VLD1_UPD.
+ if (ISD::isNormalLoad(N) && VT.isVector() &&
+ DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return CombineBaseUpdate(N, DCI);
+
+ return SDValue();
+}
+
+/// PerformSTORECombine - Target-specific dag combine xforms for
+/// ISD::STORE.
+static SDValue PerformSTORECombine(SDNode *N,
+ TargetLowering::DAGCombinerInfo &DCI) {
+ StoreSDNode *St = cast<StoreSDNode>(N);
+ if (St->isVolatile())
+ return SDValue();
+
+ // Optimize trunc store (of multiple scalars) to shuffle and store. First,
+ // pack all of the elements in one place. Next, store to memory in fewer
+ // chunks.
+ SDValue StVal = St->getValue();
+ EVT VT = StVal.getValueType();
+ if (St->isTruncatingStore() && VT.isVector()) {
+ SelectionDAG &DAG = DCI.DAG;
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ EVT StVT = St->getMemoryVT();
+ unsigned NumElems = VT.getVectorNumElements();
+ assert(StVT != VT && "Cannot truncate to the same type");
+ unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
+ unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
+
+ // From, To sizes and ElemCount must be pow of two
+ if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
+
+ // We are going to use the original vector elt for storing.
+ // Accumulated smaller vector elements must be a multiple of the store size.
+ if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
+
+ unsigned SizeRatio = FromEltSz / ToEltSz;
+ assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
+
+ // Create a type on which we perform the shuffle.
+ EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
+ NumElems*SizeRatio);
+ assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
+
+ SDLoc DL(St);
+ SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
+ SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
+ for (unsigned i = 0; i < NumElems; ++i)
+ ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
+ ? (i + 1) * SizeRatio - 1
+ : i * SizeRatio;
+
+ // Can't shuffle using an illegal type.
+ if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
+
+ SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
+ DAG.getUNDEF(WideVec.getValueType()),
+ ShuffleVec.data());
+ // At this point all of the data is stored at the bottom of the
+ // register. We now need to save it to mem.
+
+ // Find the largest store unit
+ MVT StoreType = MVT::i8;
+ for (MVT Tp : MVT::integer_valuetypes()) {
+ if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
+ StoreType = Tp;
+ }
+ // Didn't find a legal store type.
+ if (!TLI.isTypeLegal(StoreType))
+ return SDValue();
+
+ // Bitcast the original vector into a vector of store-size units
+ EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
+ StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
+ assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
+ SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
+ SmallVector<SDValue, 8> Chains;
+ SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
+ TLI.getPointerTy(DAG.getDataLayout()));
+ SDValue BasePtr = St->getBasePtr();
+
+ // Perform one or more big stores into memory.
+ unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
+ for (unsigned I = 0; I < E; I++) {
+ SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
+ StoreType, ShuffWide,
+ DAG.getIntPtrConstant(I, DL));
+ SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment());
+ BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
+ Increment);
+ Chains.push_back(Ch);
+ }
+ return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
+ }
+
+ if (!ISD::isNormalStore(St))
+ return SDValue();
+
+ // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
+ // ARM stores of arguments in the same cache line.
+ if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
+ StVal.getNode()->hasOneUse()) {
+ SelectionDAG &DAG = DCI.DAG;
+ bool isBigEndian = DAG.getDataLayout().isBigEndian();
+ SDLoc DL(St);
+ SDValue BasePtr = St->getBasePtr();
+ SDValue NewST1 = DAG.getStore(St->getChain(), DL,
+ StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ),
+ BasePtr, St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment());
+
+ SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
+ DAG.getConstant(4, DL, MVT::i32));
+ return DAG.getStore(NewST1.getValue(0), DL,
+ StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
+ OffsetPtr, St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(),
+ std::min(4U, St->getAlignment() / 2));
+ }
+
+ if (StVal.getValueType() == MVT::i64 &&
+ StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+
+ // Bitcast an i64 store extracted from a vector to f64.
+ // Otherwise, the i64 value will be legalized to a pair of i32 values.
+ SelectionDAG &DAG = DCI.DAG;
+ SDLoc dl(StVal);
+ SDValue IntVec = StVal.getOperand(0);
+ EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
+ IntVec.getValueType().getVectorNumElements());
+ SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
+ SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
+ Vec, StVal.getOperand(1));
+ dl = SDLoc(N);
+ SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
+ // Make the DAGCombiner fold the bitcasts.
+ DCI.AddToWorklist(Vec.getNode());
+ DCI.AddToWorklist(ExtElt.getNode());
+ DCI.AddToWorklist(V.getNode());
+ return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
+ St->getPointerInfo(), St->isVolatile(),
+ St->isNonTemporal(), St->getAlignment(),
+ St->getAAInfo());
+ }
+
+ // If this is a legal vector store, try to combine it into a VST1_UPD.
+ if (ISD::isNormalStore(N) && VT.isVector() &&
+ DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
+ return CombineBaseUpdate(N, DCI);
+
+ return SDValue();
+}
+
+/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
+/// can replace combinations of VMUL and VCVT (floating-point to integer)
+/// when the VMUL has a constant operand that is a power of 2.
+///
+/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
+/// vmul.f32 d16, d17, d16
+/// vcvt.s32.f32 d16, d16
+/// becomes:
+/// vcvt.s32.f32 d16, d16, #3
+static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) {
+ if (!Subtarget->hasNEON())
+ return SDValue();
+
+ SDValue Op = N->getOperand(0);
+ if (!Op.getValueType().isVector() || Op.getOpcode() != ISD::FMUL)
+ return SDValue();
+
+ SDValue ConstVec = Op->getOperand(1);
+ if (!isa<BuildVectorSDNode>(ConstVec))
+ return SDValue();
+
+ MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
+ uint32_t FloatBits = FloatTy.getSizeInBits();
+ MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
+ uint32_t IntBits = IntTy.getSizeInBits();
+ unsigned NumLanes = Op.getValueType().getVectorNumElements();
+ if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
+ // These instructions only exist converting from f32 to i32. We can handle
+ // smaller integers by generating an extra truncate, but larger ones would
+ // be lossy. We also can't handle more then 4 lanes, since these intructions
+ // only support v2i32/v4i32 types.
+ return SDValue();
+ }
+
+ BitVector UndefElements;
+ BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
+ int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
+ if (C == -1 || C == 0 || C > 32)
+ return SDValue();
+
+ SDLoc dl(N);
+ bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
+ unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
+ Intrinsic::arm_neon_vcvtfp2fxu;
+ SDValue FixConv = DAG.getNode(
+ ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
+ DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
+ DAG.getConstant(C, dl, MVT::i32));
+
+ if (IntBits < FloatBits)
+ FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
+
+ return FixConv;
+}
+
+/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
+/// can replace combinations of VCVT (integer to floating-point) and VDIV
+/// when the VDIV has a constant operand that is a power of 2.
+///
+/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
+/// vcvt.f32.s32 d16, d16
+/// vdiv.f32 d16, d17, d16
+/// becomes:
+/// vcvt.f32.s32 d16, d16, #3
+static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *Subtarget) {
+ if (!Subtarget->hasNEON())
+ return SDValue();
+
+ SDValue Op = N->getOperand(0);
+ unsigned OpOpcode = Op.getNode()->getOpcode();
+ if (!N->getValueType(0).isVector() ||
+ (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
+ return SDValue();
+
+ SDValue ConstVec = N->getOperand(1);
+ if (!isa<BuildVectorSDNode>(ConstVec))
+ return SDValue();
+
+ MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
+ uint32_t FloatBits = FloatTy.getSizeInBits();
+ MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
+ uint32_t IntBits = IntTy.getSizeInBits();
+ unsigned NumLanes = Op.getValueType().getVectorNumElements();
+ if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
+ // These instructions only exist converting from i32 to f32. We can handle
+ // smaller integers by generating an extra extend, but larger ones would
+ // be lossy. We also can't handle more then 4 lanes, since these intructions
+ // only support v2i32/v4i32 types.
+ return SDValue();
+ }
+
+ BitVector UndefElements;
+ BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
+ int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
+ if (C == -1 || C == 0 || C > 32)
+ return SDValue();
+
+ SDLoc dl(N);
+ bool isSigned = OpOpcode == ISD::SINT_TO_FP;
+ SDValue ConvInput = Op.getOperand(0);
+ if (IntBits < FloatBits)
+ ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
+ dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
+ ConvInput);
+
+ unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
+ Intrinsic::arm_neon_vcvtfxu2fp;
+ return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
+ Op.getValueType(),
+ DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
+ ConvInput, DAG.getConstant(C, dl, MVT::i32));
+}
+
+/// Getvshiftimm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift operation, where all the elements of the
+/// build_vector must have the same constant integer value.
+static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
+ // Ignore bit_converts.
+ while (Op.getOpcode() == ISD::BITCAST)
+ Op = Op.getOperand(0);
+ BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
+ APInt SplatBits, SplatUndef;
+ unsigned SplatBitSize;
+ bool HasAnyUndefs;
+ if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
+ HasAnyUndefs, ElementBits) ||
+ SplatBitSize > ElementBits)
+ return false;
+ Cnt = SplatBits.getSExtValue();
+ return true;
+}
+
+/// isVShiftLImm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift left operation. That value must be in the range:
+/// 0 <= Value < ElementBits for a left shift; or
+/// 0 <= Value <= ElementBits for a long left shift.
+static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
+ assert(VT.isVector() && "vector shift count is not a vector type");
+ int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
+ if (! getVShiftImm(Op, ElementBits, Cnt))
+ return false;
+ return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
+}
+
+/// isVShiftRImm - Check if this is a valid build_vector for the immediate
+/// operand of a vector shift right operation. For a shift opcode, the value
+/// is positive, but for an intrinsic the value count must be negative. The
+/// absolute value must be in the range:
+/// 1 <= |Value| <= ElementBits for a right shift; or
+/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
+static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
+ int64_t &Cnt) {
+ assert(VT.isVector() && "vector shift count is not a vector type");
+ int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
+ if (! getVShiftImm(Op, ElementBits, Cnt))
+ return false;
+ if (!isIntrinsic)
+ return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
+ if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
+ Cnt = -Cnt;
+ return true;
+ }
+ return false;
+}
+
+/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
+static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
+ unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
+ switch (IntNo) {
+ default:
+ // Don't do anything for most intrinsics.
+ break;
+
+ // Vector shifts: check for immediate versions and lower them.
+ // Note: This is done during DAG combining instead of DAG legalizing because
+ // the build_vectors for 64-bit vector element shift counts are generally
+ // not legal, and it is hard to see their values after they get legalized to
+ // loads from a constant pool.
+ case Intrinsic::arm_neon_vshifts:
+ case Intrinsic::arm_neon_vshiftu:
+ case Intrinsic::arm_neon_vrshifts:
+ case Intrinsic::arm_neon_vrshiftu:
+ case Intrinsic::arm_neon_vrshiftn:
+ case Intrinsic::arm_neon_vqshifts:
+ case Intrinsic::arm_neon_vqshiftu:
+ case Intrinsic::arm_neon_vqshiftsu:
+ case Intrinsic::arm_neon_vqshiftns:
+ case Intrinsic::arm_neon_vqshiftnu:
+ case Intrinsic::arm_neon_vqshiftnsu:
+ case Intrinsic::arm_neon_vqrshiftns:
+ case Intrinsic::arm_neon_vqrshiftnu:
+ case Intrinsic::arm_neon_vqrshiftnsu: {
+ EVT VT = N->getOperand(1).getValueType();
+ int64_t Cnt;
+ unsigned VShiftOpc = 0;
+
+ switch (IntNo) {
+ case Intrinsic::arm_neon_vshifts:
+ case Intrinsic::arm_neon_vshiftu:
+ if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
+ VShiftOpc = ARMISD::VSHL;
+ break;
+ }
+ if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
+ VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
+ ARMISD::VSHRs : ARMISD::VSHRu);
+ break;
+ }
+ return SDValue();
+
+ case Intrinsic::arm_neon_vrshifts:
+ case Intrinsic::arm_neon_vrshiftu:
+ if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
+ break;
+ return SDValue();
+
+ case Intrinsic::arm_neon_vqshifts:
+ case Intrinsic::arm_neon_vqshiftu:
+ if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
+ break;
+ return SDValue();
+
+ case Intrinsic::arm_neon_vqshiftsu:
+ if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
+ break;
+ llvm_unreachable("invalid shift count for vqshlu intrinsic");
+
+ case Intrinsic::arm_neon_vrshiftn:
+ case Intrinsic::arm_neon_vqshiftns:
+ case Intrinsic::arm_neon_vqshiftnu:
+ case Intrinsic::arm_neon_vqshiftnsu:
+ case Intrinsic::arm_neon_vqrshiftns:
+ case Intrinsic::arm_neon_vqrshiftnu:
+ case Intrinsic::arm_neon_vqrshiftnsu:
+ // Narrowing shifts require an immediate right shift.
+ if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
+ break;
+ llvm_unreachable("invalid shift count for narrowing vector shift "
+ "intrinsic");
+
+ default:
+ llvm_unreachable("unhandled vector shift");
+ }
+
+ switch (IntNo) {
+ case Intrinsic::arm_neon_vshifts:
+ case Intrinsic::arm_neon_vshiftu:
+ // Opcode already set above.
+ break;
+ case Intrinsic::arm_neon_vrshifts:
+ VShiftOpc = ARMISD::VRSHRs; break;
+ case Intrinsic::arm_neon_vrshiftu:
+ VShiftOpc = ARMISD::VRSHRu; break;
+ case Intrinsic::arm_neon_vrshiftn:
+ VShiftOpc = ARMISD::VRSHRN; break;
+ case Intrinsic::arm_neon_vqshifts:
+ VShiftOpc = ARMISD::VQSHLs; break;
+ case Intrinsic::arm_neon_vqshiftu:
+ VShiftOpc = ARMISD::VQSHLu; break;
+ case Intrinsic::arm_neon_vqshiftsu:
+ VShiftOpc = ARMISD::VQSHLsu; break;
+ case Intrinsic::arm_neon_vqshiftns:
+ VShiftOpc = ARMISD::VQSHRNs; break;
+ case Intrinsic::arm_neon_vqshiftnu:
+ VShiftOpc = ARMISD::VQSHRNu; break;
+ case Intrinsic::arm_neon_vqshiftnsu:
+ VShiftOpc = ARMISD::VQSHRNsu; break;
+ case Intrinsic::arm_neon_vqrshiftns:
+ VShiftOpc = ARMISD::VQRSHRNs; break;
+ case Intrinsic::arm_neon_vqrshiftnu:
+ VShiftOpc = ARMISD::VQRSHRNu; break;
+ case Intrinsic::arm_neon_vqrshiftnsu:
+ VShiftOpc = ARMISD::VQRSHRNsu; break;
+ }
+
+ SDLoc dl(N);
+ return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
+ N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
+ }
+
+ case Intrinsic::arm_neon_vshiftins: {
+ EVT VT = N->getOperand(1).getValueType();
+ int64_t Cnt;
+ unsigned VShiftOpc = 0;
+
+ if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
+ VShiftOpc = ARMISD::VSLI;
+ else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
+ VShiftOpc = ARMISD::VSRI;
+ else {
+ llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
+ }
+
+ SDLoc dl(N);
+ return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
+ N->getOperand(1), N->getOperand(2),
+ DAG.getConstant(Cnt, dl, MVT::i32));
+ }
+
+ case Intrinsic::arm_neon_vqrshifts:
+ case Intrinsic::arm_neon_vqrshiftu:
+ // No immediate versions of these to check for.
+ break;
+ }
+
+ return SDValue();
+}
+
+/// PerformShiftCombine - Checks for immediate versions of vector shifts and
+/// lowers them. As with the vector shift intrinsics, this is done during DAG
+/// combining instead of DAG legalizing because the build_vectors for 64-bit
+/// vector element shift counts are generally not legal, and it is hard to see
+/// their values after they get legalized to loads from a constant pool.
+static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ EVT VT = N->getValueType(0);
+ if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
+ // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
+ // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
+ SDValue N1 = N->getOperand(1);
+ if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
+ SDValue N0 = N->getOperand(0);
+ if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
+ DAG.MaskedValueIsZero(N0.getOperand(0),
+ APInt::getHighBitsSet(32, 16)))
+ return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
+ }
+ }
+
+ // Nothing to be done for scalar shifts.
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+ if (!VT.isVector() || !TLI.isTypeLegal(VT))
+ return SDValue();
+
+ assert(ST->hasNEON() && "unexpected vector shift");
+ int64_t Cnt;
+
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("unexpected shift opcode");
+
+ case ISD::SHL:
+ if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
+ SDLoc dl(N);
+ return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
+ DAG.getConstant(Cnt, dl, MVT::i32));
+ }
+ break;
+
+ case ISD::SRA:
+ case ISD::SRL:
+ if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
+ unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
+ ARMISD::VSHRs : ARMISD::VSHRu);
+ SDLoc dl(N);
+ return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
+ DAG.getConstant(Cnt, dl, MVT::i32));
+ }
+ }
+ return SDValue();
+}
+
+/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
+/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
+static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
+ const ARMSubtarget *ST) {
+ SDValue N0 = N->getOperand(0);
+
+ // Check for sign- and zero-extensions of vector extract operations of 8-
+ // and 16-bit vector elements. NEON supports these directly. They are
+ // handled during DAG combining because type legalization will promote them
+ // to 32-bit types and it is messy to recognize the operations after that.
+ if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
+ SDValue Vec = N0.getOperand(0);
+ SDValue Lane = N0.getOperand(1);
+ EVT VT = N->getValueType(0);
+ EVT EltVT = N0.getValueType();
+ const TargetLowering &TLI = DAG.getTargetLoweringInfo();
+
+ if (VT == MVT::i32 &&
+ (EltVT == MVT::i8 || EltVT == MVT::i16) &&
+ TLI.isTypeLegal(Vec.getValueType()) &&
+ isa<ConstantSDNode>(Lane)) {
+
+ unsigned Opc = 0;
+ switch (N->getOpcode()) {
+ default: llvm_unreachable("unexpected opcode");
+ case ISD::SIGN_EXTEND:
+ Opc = ARMISD::VGETLANEs;
+ break;
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND:
+ Opc = ARMISD::VGETLANEu;
+ break;
+ }
+ return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
+ }
+ }
+
+ return SDValue();
+}
+
+static void computeKnownBits(SelectionDAG &DAG, SDValue Op, APInt &KnownZero,
+ APInt &KnownOne) {
+ if (Op.getOpcode() == ARMISD::BFI) {
+ // Conservatively, we can recurse down the first operand
+ // and just mask out all affected bits.
+ computeKnownBits(DAG, Op.getOperand(0), KnownZero, KnownOne);
+
+ // The operand to BFI is already a mask suitable for removing the bits it
+ // sets.
+ ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
+ APInt Mask = CI->getAPIntValue();
+ KnownZero &= Mask;
+ KnownOne &= Mask;
+ return;
+ }
+ if (Op.getOpcode() == ARMISD::CMOV) {
+ APInt KZ2(KnownZero.getBitWidth(), 0);
+ APInt KO2(KnownOne.getBitWidth(), 0);
+ computeKnownBits(DAG, Op.getOperand(1), KnownZero, KnownOne);
+ computeKnownBits(DAG, Op.getOperand(2), KZ2, KO2);
+
+ KnownZero &= KZ2;
+ KnownOne &= KO2;
+ return;
+ }
+ return DAG.computeKnownBits(Op, KnownZero, KnownOne);
+}
+
+SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
+ // If we have a CMOV, OR and AND combination such as:
+ // if (x & CN)
+ // y |= CM;
+ //
+ // And:
+ // * CN is a single bit;
+ // * All bits covered by CM are known zero in y
+ //
+ // Then we can convert this into a sequence of BFI instructions. This will
+ // always be a win if CM is a single bit, will always be no worse than the
+ // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
+ // three bits (due to the extra IT instruction).
+
+ SDValue Op0 = CMOV->getOperand(0);
+ SDValue Op1 = CMOV->getOperand(1);
+ auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
+ auto CC = CCNode->getAPIntValue().getLimitedValue();
+ SDValue CmpZ = CMOV->getOperand(4);
+
+ // The compare must be against zero.
+ if (!isNullConstant(CmpZ->getOperand(1)))
+ return SDValue();
+
+ assert(CmpZ->getOpcode() == ARMISD::CMPZ);
+ SDValue And = CmpZ->getOperand(0);
+ if (And->getOpcode() != ISD::AND)
+ return SDValue();
+ ConstantSDNode *AndC = dyn_cast<ConstantSDNode>(And->getOperand(1));
+ if (!AndC || !AndC->getAPIntValue().isPowerOf2())
+ return SDValue();
+ SDValue X = And->getOperand(0);
+
+ if (CC == ARMCC::EQ) {
+ // We're performing an "equal to zero" compare. Swap the operands so we
+ // canonicalize on a "not equal to zero" compare.
+ std::swap(Op0, Op1);
+ } else {
+ assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
+ }
+
+ if (Op1->getOpcode() != ISD::OR)
+ return SDValue();
+
+ ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
+ if (!OrC)
+ return SDValue();
+ SDValue Y = Op1->getOperand(0);
+
+ if (Op0 != Y)
+ return SDValue();
+
+ // Now, is it profitable to continue?
+ APInt OrCI = OrC->getAPIntValue();
+ unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
+ if (OrCI.countPopulation() > Heuristic)
+ return SDValue();
+
+ // Lastly, can we determine that the bits defined by OrCI
+ // are zero in Y?
+ APInt KnownZero, KnownOne;
+ computeKnownBits(DAG, Y, KnownZero, KnownOne);
+ if ((OrCI & KnownZero) != OrCI)
+ return SDValue();
+
+ // OK, we can do the combine.
+ SDValue V = Y;
+ SDLoc dl(X);
+ EVT VT = X.getValueType();
+ unsigned BitInX = AndC->getAPIntValue().logBase2();
+
+ if (BitInX != 0) {
+ // We must shift X first.
+ X = DAG.getNode(ISD::SRL, dl, VT, X,
+ DAG.getConstant(BitInX, dl, VT));
+ }
+
+ for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
+ BitInY < NumActiveBits; ++BitInY) {
+ if (OrCI[BitInY] == 0)
+ continue;
+ APInt Mask(VT.getSizeInBits(), 0);
+ Mask.setBit(BitInY);
+ V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
+ // Confusingly, the operand is an *inverted* mask.
+ DAG.getConstant(~Mask, dl, VT));
+ }
+
+ return V;
+}
+
+/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
+SDValue
+ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
+ SDValue Cmp = N->getOperand(4);
+ if (Cmp.getOpcode() != ARMISD::CMPZ)
+ // Only looking at EQ and NE cases.
+ return SDValue();
+
+ EVT VT = N->getValueType(0);
+ SDLoc dl(N);
+ SDValue LHS = Cmp.getOperand(0);
+ SDValue RHS = Cmp.getOperand(1);
+ SDValue FalseVal = N->getOperand(0);
+ SDValue TrueVal = N->getOperand(1);
+ SDValue ARMcc = N->getOperand(2);
+ ARMCC::CondCodes CC =
+ (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
+
+ // BFI is only available on V6T2+.
+ if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
+ SDValue R = PerformCMOVToBFICombine(N, DAG);
+ if (R)
+ return R;
+ }
+
+ // Simplify
+ // mov r1, r0
+ // cmp r1, x
+ // mov r0, y
+ // moveq r0, x
+ // to
+ // cmp r0, x
+ // movne r0, y
+ //
+ // mov r1, r0
+ // cmp r1, x
+ // mov r0, x
+ // movne r0, y
+ // to
+ // cmp r0, x
+ // movne r0, y
+ /// FIXME: Turn this into a target neutral optimization?
+ SDValue Res;
+ if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
+ Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
+ N->getOperand(3), Cmp);
+ } else if (CC == ARMCC::EQ && TrueVal == RHS) {
+ SDValue ARMcc;
+ SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
+ Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
+ N->getOperand(3), NewCmp);
+ }
+
+ if (Res.getNode()) {
+ APInt KnownZero, KnownOne;
+ DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne);
+ // Capture demanded bits information that would be otherwise lost.
+ if (KnownZero == 0xfffffffe)
+ Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
+ DAG.getValueType(MVT::i1));
+ else if (KnownZero == 0xffffff00)
+ Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
+ DAG.getValueType(MVT::i8));
+ else if (KnownZero == 0xffff0000)
+ Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
+ DAG.getValueType(MVT::i16));
+ }
+
+ return Res;
+}
+
+SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
+ DAGCombinerInfo &DCI) const {
+ switch (N->getOpcode()) {
+ default: break;
+ case ISD::ADDC: return PerformADDCCombine(N, DCI, Subtarget);
+ case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
+ case ISD::SUB: return PerformSUBCombine(N, DCI);
+ case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
+ case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
+ case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
+ case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
+ case ARMISD::BFI: return PerformBFICombine(N, DCI);
+ case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
+ case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
+ case ISD::STORE: return PerformSTORECombine(N, DCI);
+ case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
+ case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
+ case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
+ case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
+ case ISD::FP_TO_SINT:
+ case ISD::FP_TO_UINT:
+ return PerformVCVTCombine(N, DCI.DAG, Subtarget);
+ case ISD::FDIV:
+ return PerformVDIVCombine(N, DCI.DAG, Subtarget);
+ case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
+ case ISD::SHL:
+ case ISD::SRA:
+ case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
+ case ISD::SIGN_EXTEND:
+ case ISD::ZERO_EXTEND:
+ case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
+ case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
+ case ISD::LOAD: return PerformLOADCombine(N, DCI);
+ case ARMISD::VLD2DUP:
+ case ARMISD::VLD3DUP:
+ case ARMISD::VLD4DUP:
+ return PerformVLDCombine(N, DCI);
+ case ARMISD::BUILD_VECTOR:
+ return PerformARMBUILD_VECTORCombine(N, DCI);
+ case ISD::INTRINSIC_VOID:
+ case ISD::INTRINSIC_W_CHAIN:
+ switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
+ case Intrinsic::arm_neon_vld1:
+ case Intrinsic::arm_neon_vld2:
+ case Intrinsic::arm_neon_vld3:
+ case Intrinsic::arm_neon_vld4:
+ case Intrinsic::arm_neon_vld2lane:
+ case Intrinsic::arm_neon_vld3lane:
+ case Intrinsic::arm_neon_vld4lane:
+ case Intrinsic::arm_neon_vst1:
+ case Intrinsic::arm_neon_vst2:
+ case Intrinsic::arm_neon_vst3:
+ case Intrinsic::arm_neon_vst4:
+ case Intrinsic::arm_neon_vst2lane:
+ case Intrinsic::arm_neon_vst3lane:
+ case Intrinsic::arm_neon_vst4lane:
+ return PerformVLDCombine(N, DCI);
+ default: break;
+ }
+ break;
+ }
+ return SDValue();
+}
+
+bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
+ EVT VT) const {
+ return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
+}
+
+bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
+ unsigned,
+ unsigned,
+ bool *Fast) const {
+ // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
+ bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default:
+ return false;
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32: {
+ // Unaligned access can use (for example) LRDB, LRDH, LDR
+ if (AllowsUnaligned) {
+ if (Fast)
+ *Fast = Subtarget->hasV7Ops();
+ return true;
+ }
+ return false;
+ }
+ case MVT::f64:
+ case MVT::v2f64: {
+ // For any little-endian targets with neon, we can support unaligned ld/st
+ // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
+ // A big-endian target may also explicitly support unaligned accesses
+ if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
+ if (Fast)
+ *Fast = true;
+ return true;
+ }
+ return false;
+ }
+ }
+}
+
+static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
+ unsigned AlignCheck) {
+ return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
+ (DstAlign == 0 || DstAlign % AlignCheck == 0));
+}
+
+EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
+ unsigned DstAlign, unsigned SrcAlign,
+ bool IsMemset, bool ZeroMemset,
+ bool MemcpyStrSrc,
+ MachineFunction &MF) const {
+ const Function *F = MF.getFunction();
+
+ // See if we can use NEON instructions for this...
+ if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
+ !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
+ bool Fast;
+ if (Size >= 16 &&
+ (memOpAlign(SrcAlign, DstAlign, 16) ||
+ (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
+ return MVT::v2f64;
+ } else if (Size >= 8 &&
+ (memOpAlign(SrcAlign, DstAlign, 8) ||
+ (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
+ Fast))) {
+ return MVT::f64;
+ }
+ }
+
+ // Lowering to i32/i16 if the size permits.
+ if (Size >= 4)
+ return MVT::i32;
+ else if (Size >= 2)
+ return MVT::i16;
+
+ // Let the target-independent logic figure it out.
+ return MVT::Other;
+}
+
+bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
+ if (Val.getOpcode() != ISD::LOAD)
+ return false;
+
+ EVT VT1 = Val.getValueType();
+ if (!VT1.isSimple() || !VT1.isInteger() ||
+ !VT2.isSimple() || !VT2.isInteger())
+ return false;
+
+ switch (VT1.getSimpleVT().SimpleTy) {
+ default: break;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
+ return true;
+ }
+
+ return false;
+}
+
+bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
+ EVT VT = ExtVal.getValueType();
+
+ if (!isTypeLegal(VT))
+ return false;
+
+ // Don't create a loadext if we can fold the extension into a wide/long
+ // instruction.
+ // If there's more than one user instruction, the loadext is desirable no
+ // matter what. There can be two uses by the same instruction.
+ if (ExtVal->use_empty() ||
+ !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
+ return true;
+
+ SDNode *U = *ExtVal->use_begin();
+ if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
+ U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
+ return false;
+
+ return true;
+}
+
+bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
+ if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
+ return false;
+
+ if (!isTypeLegal(EVT::getEVT(Ty1)))
+ return false;
+
+ assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
+
+ // Assuming the caller doesn't have a zeroext or signext return parameter,
+ // truncation all the way down to i1 is valid.
+ return true;
+}
+
+
+static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
+ if (V < 0)
+ return false;
+
+ unsigned Scale = 1;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ // Scale == 1;
+ break;
+ case MVT::i16:
+ // Scale == 2;
+ Scale = 2;
+ break;
+ case MVT::i32:
+ // Scale == 4;
+ Scale = 4;
+ break;
+ }
+
+ if ((V & (Scale - 1)) != 0)
+ return false;
+ V /= Scale;
+ return V == (V & ((1LL << 5) - 1));
+}
+
+static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
+ const ARMSubtarget *Subtarget) {
+ bool isNeg = false;
+ if (V < 0) {
+ isNeg = true;
+ V = - V;
+ }
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ // + imm12 or - imm8
+ if (isNeg)
+ return V == (V & ((1LL << 8) - 1));
+ return V == (V & ((1LL << 12) - 1));
+ case MVT::f32:
+ case MVT::f64:
+ // Same as ARM mode. FIXME: NEON?
+ if (!Subtarget->hasVFP2())
+ return false;
+ if ((V & 3) != 0)
+ return false;
+ V >>= 2;
+ return V == (V & ((1LL << 8) - 1));
+ }
+}
+
+/// isLegalAddressImmediate - Return true if the integer value can be used
+/// as the offset of the target addressing mode for load / store of the
+/// given type.
+static bool isLegalAddressImmediate(int64_t V, EVT VT,
+ const ARMSubtarget *Subtarget) {
+ if (V == 0)
+ return true;
+
+ if (!VT.isSimple())
+ return false;
+
+ if (Subtarget->isThumb1Only())
+ return isLegalT1AddressImmediate(V, VT);
+ else if (Subtarget->isThumb2())
+ return isLegalT2AddressImmediate(V, VT, Subtarget);
+
+ // ARM mode.
+ if (V < 0)
+ V = - V;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i32:
+ // +- imm12
+ return V == (V & ((1LL << 12) - 1));
+ case MVT::i16:
+ // +- imm8
+ return V == (V & ((1LL << 8) - 1));
+ case MVT::f32:
+ case MVT::f64:
+ if (!Subtarget->hasVFP2()) // FIXME: NEON?
+ return false;
+ if ((V & 3) != 0)
+ return false;
+ V >>= 2;
+ return V == (V & ((1LL << 8) - 1));
+ }
+}
+
+bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
+ EVT VT) const {
+ int Scale = AM.Scale;
+ if (Scale < 0)
+ return false;
+
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i16:
+ case MVT::i32:
+ if (Scale == 1)
+ return true;
+ // r + r << imm
+ Scale = Scale & ~1;
+ return Scale == 2 || Scale == 4 || Scale == 8;
+ case MVT::i64:
+ // r + r
+ if (((unsigned)AM.HasBaseReg + Scale) <= 2)
+ return true;
+ return false;
+ case MVT::isVoid:
+ // Note, we allow "void" uses (basically, uses that aren't loads or
+ // stores), because arm allows folding a scale into many arithmetic
+ // operations. This should be made more precise and revisited later.
+
+ // Allow r << imm, but the imm has to be a multiple of two.
+ if (Scale & 1) return false;
+ return isPowerOf2_32(Scale);
+ }
+}
+
+/// isLegalAddressingMode - Return true if the addressing mode represented
+/// by AM is legal for this target, for a load/store of the specified type.
+bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
+ const AddrMode &AM, Type *Ty,
+ unsigned AS) const {
+ EVT VT = getValueType(DL, Ty, true);
+ if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
+ return false;
+
+ // Can never fold addr of global into load/store.
+ if (AM.BaseGV)
+ return false;
+
+ switch (AM.Scale) {
+ case 0: // no scale reg, must be "r+i" or "r", or "i".
+ break;
+ case 1:
+ if (Subtarget->isThumb1Only())
+ return false;
+ // FALL THROUGH.
+ default:
+ // ARM doesn't support any R+R*scale+imm addr modes.
+ if (AM.BaseOffs)
+ return false;
+
+ if (!VT.isSimple())
+ return false;
+
+ if (Subtarget->isThumb2())
+ return isLegalT2ScaledAddressingMode(AM, VT);
+
+ int Scale = AM.Scale;
+ switch (VT.getSimpleVT().SimpleTy) {
+ default: return false;
+ case MVT::i1:
+ case MVT::i8:
+ case MVT::i32:
+ if (Scale < 0) Scale = -Scale;
+ if (Scale == 1)
+ return true;
+ // r + r << imm
+ return isPowerOf2_32(Scale & ~1);
+ case MVT::i16:
+ case MVT::i64:
+ // r + r
+ if (((unsigned)AM.HasBaseReg + Scale) <= 2)
+ return true;
+ return false;
+
+ case MVT::isVoid:
+ // Note, we allow "void" uses (basically, uses that aren't loads or
+ // stores), because arm allows folding a scale into many arithmetic
+ // operations. This should be made more precise and revisited later.
+
+ // Allow r << imm, but the imm has to be a multiple of two.
+ if (Scale & 1) return false;
+ return isPowerOf2_32(Scale);
+ }
+ }
+ return true;
+}
+
+/// isLegalICmpImmediate - Return true if the specified immediate is legal
+/// icmp immediate, that is the target has icmp instructions which can compare
+/// a register against the immediate without having to materialize the
+/// immediate into a register.
+bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
+ // Thumb2 and ARM modes can use cmn for negative immediates.
+ if (!Subtarget->isThumb())
+ return ARM_AM::getSOImmVal(std::abs(Imm)) != -1;
+ if (Subtarget->isThumb2())
+ return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1;
+ // Thumb1 doesn't have cmn, and only 8-bit immediates.
+ return Imm >= 0 && Imm <= 255;
+}
+
+/// isLegalAddImmediate - Return true if the specified immediate is a legal add
+/// *or sub* immediate, that is the target has add or sub instructions which can
+/// add a register with the immediate without having to materialize the
+/// immediate into a register.
+bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
+ // Same encoding for add/sub, just flip the sign.
+ int64_t AbsImm = std::abs(Imm);
+ if (!Subtarget->isThumb())
+ return ARM_AM::getSOImmVal(AbsImm) != -1;
+ if (Subtarget->isThumb2())
+ return ARM_AM::getT2SOImmVal(AbsImm) != -1;
+ // Thumb1 only has 8-bit unsigned immediate.
+ return AbsImm >= 0 && AbsImm <= 255;
+}
+
+static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
+ bool isSEXTLoad, SDValue &Base,
+ SDValue &Offset, bool &isInc,
+ SelectionDAG &DAG) {
+ if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
+ return false;
+
+ if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
+ // AddressingMode 3
+ Base = Ptr->getOperand(0);
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC < 0 && RHSC > -256) {
+ assert(Ptr->getOpcode() == ISD::ADD);
+ isInc = false;
+ Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
+ return true;
+ }
+ }
+ isInc = (Ptr->getOpcode() == ISD::ADD);
+ Offset = Ptr->getOperand(1);
+ return true;
+ } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
+ // AddressingMode 2
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC < 0 && RHSC > -0x1000) {
+ assert(Ptr->getOpcode() == ISD::ADD);
+ isInc = false;
+ Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
+ Base = Ptr->getOperand(0);
+ return true;
+ }
+ }
+
+ if (Ptr->getOpcode() == ISD::ADD) {
+ isInc = true;
+ ARM_AM::ShiftOpc ShOpcVal=
+ ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
+ if (ShOpcVal != ARM_AM::no_shift) {
+ Base = Ptr->getOperand(1);
+ Offset = Ptr->getOperand(0);
+ } else {
+ Base = Ptr->getOperand(0);
+ Offset = Ptr->getOperand(1);
+ }
+ return true;
+ }
+
+ isInc = (Ptr->getOpcode() == ISD::ADD);
+ Base = Ptr->getOperand(0);
+ Offset = Ptr->getOperand(1);
+ return true;
+ }
+
+ // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
+ return false;
+}
+
+static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
+ bool isSEXTLoad, SDValue &Base,
+ SDValue &Offset, bool &isInc,
+ SelectionDAG &DAG) {
+ if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
+ return false;
+
+ Base = Ptr->getOperand(0);
+ if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
+ int RHSC = (int)RHS->getZExtValue();
+ if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
+ assert(Ptr->getOpcode() == ISD::ADD);
+ isInc = false;
+ Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
+ return true;
+ } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
+ isInc = Ptr->getOpcode() == ISD::ADD;
+ Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/// getPreIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if the node's address
+/// can be legally represented as pre-indexed load / store address.
+bool
+ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ if (Subtarget->isThumb1Only())
+ return false;
+
+ EVT VT;
+ SDValue Ptr;
+ bool isSEXTLoad = false;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ Ptr = LD->getBasePtr();
+ VT = LD->getMemoryVT();
+ isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ Ptr = ST->getBasePtr();
+ VT = ST->getMemoryVT();
+ } else
+ return false;
+
+ bool isInc;
+ bool isLegal = false;
+ if (Subtarget->isThumb2())
+ isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
+ Offset, isInc, DAG);
+ else
+ isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
+ Offset, isInc, DAG);
+ if (!isLegal)
+ return false;
+
+ AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
+ return true;
+}
+
+/// getPostIndexedAddressParts - returns true by value, base pointer and
+/// offset pointer and addressing mode by reference if this node can be
+/// combined with a load / store to form a post-indexed load / store.
+bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
+ SDValue &Base,
+ SDValue &Offset,
+ ISD::MemIndexedMode &AM,
+ SelectionDAG &DAG) const {
+ if (Subtarget->isThumb1Only())
+ return false;
+
+ EVT VT;
+ SDValue Ptr;
+ bool isSEXTLoad = false;
+ if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
+ VT = LD->getMemoryVT();
+ Ptr = LD->getBasePtr();
+ isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
+ } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
+ VT = ST->getMemoryVT();
+ Ptr = ST->getBasePtr();
+ } else
+ return false;
+
+ bool isInc;
+ bool isLegal = false;
+ if (Subtarget->isThumb2())
+ isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
+ isInc, DAG);
+ else
+ isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
+ isInc, DAG);
+ if (!isLegal)
+ return false;
+
+ if (Ptr != Base) {
+ // Swap base ptr and offset to catch more post-index load / store when
+ // it's legal. In Thumb2 mode, offset must be an immediate.
+ if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
+ !Subtarget->isThumb2())
+ std::swap(Base, Offset);
+
+ // Post-indexed load / store update the base pointer.
+ if (Ptr != Base)
+ return false;
+ }
+
+ AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
+ return true;
+}
+
+void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
+ APInt &KnownZero,
+ APInt &KnownOne,
+ const SelectionDAG &DAG,
+ unsigned Depth) const {
+ unsigned BitWidth = KnownOne.getBitWidth();
+ KnownZero = KnownOne = APInt(BitWidth, 0);
+ switch (Op.getOpcode()) {
+ default: break;
+ case ARMISD::ADDC:
+ case ARMISD::ADDE:
+ case ARMISD::SUBC:
+ case ARMISD::SUBE:
+ // These nodes' second result is a boolean
+ if (Op.getResNo() == 0)
+ break;
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
+ break;
+ case ARMISD::CMOV: {
+ // Bits are known zero/one if known on the LHS and RHS.
+ DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
+ if (KnownZero == 0 && KnownOne == 0) return;
+
+ APInt KnownZeroRHS, KnownOneRHS;
+ DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
+ KnownZero &= KnownZeroRHS;
+ KnownOne &= KnownOneRHS;
+ return;
+ }
+ case ISD::INTRINSIC_W_CHAIN: {
+ ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
+ Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
+ switch (IntID) {
+ default: return;
+ case Intrinsic::arm_ldaex:
+ case Intrinsic::arm_ldrex: {
+ EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
+ unsigned MemBits = VT.getScalarType().getSizeInBits();
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
+ return;
+ }
+ }
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// ARM Inline Assembly Support
+//===----------------------------------------------------------------------===//
+
+bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
+ // Looking for "rev" which is V6+.
+ if (!Subtarget->hasV6Ops())
+ return false;
+
+ InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
+ std::string AsmStr = IA->getAsmString();
+ SmallVector<StringRef, 4> AsmPieces;
+ SplitString(AsmStr, AsmPieces, ";\n");
+
+ switch (AsmPieces.size()) {
+ default: return false;
+ case 1:
+ AsmStr = AsmPieces[0];
+ AsmPieces.clear();
+ SplitString(AsmStr, AsmPieces, " \t,");
+
+ // rev $0, $1
+ if (AsmPieces.size() == 3 &&
+ AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
+ IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
+ IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
+ if (Ty && Ty->getBitWidth() == 32)
+ return IntrinsicLowering::LowerToByteSwap(CI);
+ }
+ break;
+ }
+
+ return false;
+}
+
+/// getConstraintType - Given a constraint letter, return the type of
+/// constraint it is for this target.
+ARMTargetLowering::ConstraintType
+ARMTargetLowering::getConstraintType(StringRef Constraint) const {
+ if (Constraint.size() == 1) {
+ switch (Constraint[0]) {
+ default: break;
+ case 'l': return C_RegisterClass;
+ case 'w': return C_RegisterClass;
+ case 'h': return C_RegisterClass;
+ case 'x': return C_RegisterClass;
+ case 't': return C_RegisterClass;
+ case 'j': return C_Other; // Constant for movw.
+ // An address with a single base register. Due to the way we
+ // currently handle addresses it is the same as an 'r' memory constraint.
+ case 'Q': return C_Memory;
+ }
+ } else if (Constraint.size() == 2) {
+ switch (Constraint[0]) {
+ default: break;
+ // All 'U+' constraints are addresses.
+ case 'U': return C_Memory;
+ }
+ }
+ return TargetLowering::getConstraintType(Constraint);
+}
+
+/// Examine constraint type and operand type and determine a weight value.
+/// This object must already have been set up with the operand type
+/// and the current alternative constraint selected.
+TargetLowering::ConstraintWeight
+ARMTargetLowering::getSingleConstraintMatchWeight(
+ AsmOperandInfo &info, const char *constraint) const {
+ ConstraintWeight weight = CW_Invalid;
+ Value *CallOperandVal = info.CallOperandVal;
+ // If we don't have a value, we can't do a match,
+ // but allow it at the lowest weight.
+ if (!CallOperandVal)
+ return CW_Default;
+ Type *type = CallOperandVal->getType();
+ // Look at the constraint type.
+ switch (*constraint) {
+ default:
+ weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
+ break;
+ case 'l':
+ if (type->isIntegerTy()) {
+ if (Subtarget->isThumb())
+ weight = CW_SpecificReg;
+ else
+ weight = CW_Register;
+ }
+ break;
+ case 'w':
+ if (type->isFloatingPointTy())
+ weight = CW_Register;
+ break;
+ }
+ return weight;
+}
+
+typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
+RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
+ const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
+ if (Constraint.size() == 1) {
+ // GCC ARM Constraint Letters
+ switch (Constraint[0]) {
+ case 'l': // Low regs or general regs.
+ if (Subtarget->isThumb())
+ return RCPair(0U, &ARM::tGPRRegClass);
+ return RCPair(0U, &ARM::GPRRegClass);
+ case 'h': // High regs or no regs.
+ if (Subtarget->isThumb())
+ return RCPair(0U, &ARM::hGPRRegClass);
+ break;
+ case 'r':
+ if (Subtarget->isThumb1Only())
+ return RCPair(0U, &ARM::tGPRRegClass);
+ return RCPair(0U, &ARM::GPRRegClass);
+ case 'w':
+ if (VT == MVT::Other)
+ break;
+ if (VT == MVT::f32)
+ return RCPair(0U, &ARM::SPRRegClass);
+ if (VT.getSizeInBits() == 64)
+ return RCPair(0U, &ARM::DPRRegClass);
+ if (VT.getSizeInBits() == 128)
+ return RCPair(0U, &ARM::QPRRegClass);
+ break;
+ case 'x':
+ if (VT == MVT::Other)
+ break;
+ if (VT == MVT::f32)
+ return RCPair(0U, &ARM::SPR_8RegClass);
+ if (VT.getSizeInBits() == 64)
+ return RCPair(0U, &ARM::DPR_8RegClass);
+ if (VT.getSizeInBits() == 128)
+ return RCPair(0U, &ARM::QPR_8RegClass);
+ break;
+ case 't':
+ if (VT == MVT::f32)
+ return RCPair(0U, &ARM::SPRRegClass);
+ break;
+ }
+ }
+ if (StringRef("{cc}").equals_lower(Constraint))
+ return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
+
+ return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
+}
+
+/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
+/// vector. If it is invalid, don't add anything to Ops.
+void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
+ std::string &Constraint,
+ std::vector<SDValue>&Ops,
+ SelectionDAG &DAG) const {
+ SDValue Result;
+
+ // Currently only support length 1 constraints.
+ if (Constraint.length() != 1) return;
+
+ char ConstraintLetter = Constraint[0];
+ switch (ConstraintLetter) {
+ default: break;
+ case 'j':
+ case 'I': case 'J': case 'K': case 'L':
+ case 'M': case 'N': case 'O':
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
+ if (!C)
+ return;
+
+ int64_t CVal64 = C->getSExtValue();
+ int CVal = (int) CVal64;
+ // None of these constraints allow values larger than 32 bits. Check
+ // that the value fits in an int.
+ if (CVal != CVal64)
+ return;
+
+ switch (ConstraintLetter) {
+ case 'j':
+ // Constant suitable for movw, must be between 0 and
+ // 65535.
+ if (Subtarget->hasV6T2Ops())
+ if (CVal >= 0 && CVal <= 65535)
+ break;
+ return;
+ case 'I':
+ if (Subtarget->isThumb1Only()) {
+ // This must be a constant between 0 and 255, for ADD
+ // immediates.
+ if (CVal >= 0 && CVal <= 255)
+ break;
+ } else if (Subtarget->isThumb2()) {
+ // A constant that can be used as an immediate value in a
+ // data-processing instruction.
+ if (ARM_AM::getT2SOImmVal(CVal) != -1)
+ break;
+ } else {
+ // A constant that can be used as an immediate value in a
+ // data-processing instruction.
+ if (ARM_AM::getSOImmVal(CVal) != -1)
+ break;
+ }
+ return;
+
+ case 'J':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a constant between -255 and -1, for negated ADD
+ // immediates. This can be used in GCC with an "n" modifier that
+ // prints the negated value, for use with SUB instructions. It is
+ // not useful otherwise but is implemented for compatibility.
+ if (CVal >= -255 && CVal <= -1)
+ break;
+ } else {
+ // This must be a constant between -4095 and 4095. It is not clear
+ // what this constraint is intended for. Implemented for
+ // compatibility with GCC.
+ if (CVal >= -4095 && CVal <= 4095)
+ break;
+ }
+ return;
+
+ case 'K':
+ if (Subtarget->isThumb1Only()) {
+ // A 32-bit value where only one byte has a nonzero value. Exclude
+ // zero to match GCC. This constraint is used by GCC internally for
+ // constants that can be loaded with a move/shift combination.
+ // It is not useful otherwise but is implemented for compatibility.
+ if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
+ break;
+ } else if (Subtarget->isThumb2()) {
+ // A constant whose bitwise inverse can be used as an immediate
+ // value in a data-processing instruction. This can be used in GCC
+ // with a "B" modifier that prints the inverted value, for use with
+ // BIC and MVN instructions. It is not useful otherwise but is
+ // implemented for compatibility.
+ if (ARM_AM::getT2SOImmVal(~CVal) != -1)
+ break;
+ } else {
+ // A constant whose bitwise inverse can be used as an immediate
+ // value in a data-processing instruction. This can be used in GCC
+ // with a "B" modifier that prints the inverted value, for use with
+ // BIC and MVN instructions. It is not useful otherwise but is
+ // implemented for compatibility.
+ if (ARM_AM::getSOImmVal(~CVal) != -1)
+ break;
+ }
+ return;
+
+ case 'L':
+ if (Subtarget->isThumb1Only()) {
+ // This must be a constant between -7 and 7,
+ // for 3-operand ADD/SUB immediate instructions.
+ if (CVal >= -7 && CVal < 7)
+ break;
+ } else if (Subtarget->isThumb2()) {
+ // A constant whose negation can be used as an immediate value in a
+ // data-processing instruction. This can be used in GCC with an "n"
+ // modifier that prints the negated value, for use with SUB
+ // instructions. It is not useful otherwise but is implemented for
+ // compatibility.
+ if (ARM_AM::getT2SOImmVal(-CVal) != -1)
+ break;
+ } else {
+ // A constant whose negation can be used as an immediate value in a
+ // data-processing instruction. This can be used in GCC with an "n"
+ // modifier that prints the negated value, for use with SUB
+ // instructions. It is not useful otherwise but is implemented for
+ // compatibility.
+ if (ARM_AM::getSOImmVal(-CVal) != -1)
+ break;
+ }
+ return;
+
+ case 'M':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a multiple of 4 between 0 and 1020, for
+ // ADD sp + immediate.
+ if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
+ break;
+ } else {
+ // A power of two or a constant between 0 and 32. This is used in
+ // GCC for the shift amount on shifted register operands, but it is
+ // useful in general for any shift amounts.
+ if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
+ break;
+ }
+ return;
+
+ case 'N':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a constant between 0 and 31, for shift amounts.
+ if (CVal >= 0 && CVal <= 31)
+ break;
+ }
+ return;
+
+ case 'O':
+ if (Subtarget->isThumb()) { // FIXME thumb2
+ // This must be a multiple of 4 between -508 and 508, for
+ // ADD/SUB sp = sp + immediate.
+ if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
+ break;
+ }
+ return;
+ }
+ Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
+ break;
+ }
+
+ if (Result.getNode()) {
+ Ops.push_back(Result);
+ return;
+ }
+ return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
+}
+
+static RTLIB::Libcall getDivRemLibcall(
+ const SDNode *N, MVT::SimpleValueType SVT) {
+ assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
+ N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
+ "Unhandled Opcode in getDivRemLibcall");
+ bool isSigned = N->getOpcode() == ISD::SDIVREM ||
+ N->getOpcode() == ISD::SREM;
+ RTLIB::Libcall LC;
+ switch (SVT) {
+ default: llvm_unreachable("Unexpected request for libcall!");
+ case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
+ case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
+ case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
+ case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
+ }
+ return LC;
+}
+
+static TargetLowering::ArgListTy getDivRemArgList(
+ const SDNode *N, LLVMContext *Context) {
+ assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
+ N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) &&
+ "Unhandled Opcode in getDivRemArgList");
+ bool isSigned = N->getOpcode() == ISD::SDIVREM ||
+ N->getOpcode() == ISD::SREM;
+ TargetLowering::ArgListTy Args;
+ TargetLowering::ArgListEntry Entry;
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ EVT ArgVT = N->getOperand(i).getValueType();
+ Type *ArgTy = ArgVT.getTypeForEVT(*Context);
+ Entry.Node = N->getOperand(i);
+ Entry.Ty = ArgTy;
+ Entry.isSExt = isSigned;
+ Entry.isZExt = !isSigned;
+ Args.push_back(Entry);
+ }
+ return Args;
+}
+
+SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
+ assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid()) &&
+ "Register-based DivRem lowering only");
+ unsigned Opcode = Op->getOpcode();
+ assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
+ "Invalid opcode for Div/Rem lowering");
+ bool isSigned = (Opcode == ISD::SDIVREM);
+ EVT VT = Op->getValueType(0);
+ Type *Ty = VT.getTypeForEVT(*DAG.getContext());
+
+ RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
+ VT.getSimpleVT().SimpleTy);
+ SDValue InChain = DAG.getEntryNode();
+
+ TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
+ DAG.getContext());
+
+ SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
+ getPointerTy(DAG.getDataLayout()));
+
+ Type *RetTy = (Type*)StructType::get(Ty, Ty, nullptr);
+
+ SDLoc dl(Op);
+ TargetLowering::CallLoweringInfo CLI(DAG);
+ CLI.setDebugLoc(dl).setChain(InChain)
+ .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
+ .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
+
+ std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
+ return CallInfo.first;
+}
+
+// Lowers REM using divmod helpers
+// see RTABI section 4.2/4.3
+SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
+ // Build return types (div and rem)
+ std::vector<Type*> RetTyParams;
+ Type *RetTyElement;
+
+ switch (N->getValueType(0).getSimpleVT().SimpleTy) {
+ default: llvm_unreachable("Unexpected request for libcall!");
+ case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break;
+ case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
+ case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
+ case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
+ }
+
+ RetTyParams.push_back(RetTyElement);
+ RetTyParams.push_back(RetTyElement);
+ ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
+ Type *RetTy = StructType::get(*DAG.getContext(), ret);
+
+ RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
+ SimpleTy);
+ SDValue InChain = DAG.getEntryNode();
+ TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext());
+ bool isSigned = N->getOpcode() == ISD::SREM;
+ SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
+ getPointerTy(DAG.getDataLayout()));
+
+ // Lower call
+ CallLoweringInfo CLI(DAG);
+ CLI.setChain(InChain)
+ .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args), 0)
+ .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
+ std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
+
+ // Return second (rem) result operand (first contains div)
+ SDNode *ResNode = CallResult.first.getNode();
+ assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
+ return ResNode->getOperand(1);
+}
+
+SDValue
+ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
+ assert(Subtarget->isTargetWindows() && "unsupported target platform");
+ SDLoc DL(Op);
+
+ // Get the inputs.
+ SDValue Chain = Op.getOperand(0);
+ SDValue Size = Op.getOperand(1);
+
+ SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
+ DAG.getConstant(2, DL, MVT::i32));
+
+ SDValue Flag;
+ Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
+ Flag = Chain.getValue(1);
+
+ SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
+ Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
+
+ SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
+ Chain = NewSP.getValue(1);
+
+ SDValue Ops[2] = { NewSP, Chain };
+ return DAG.getMergeValues(Ops, DL);
+}
+
+SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
+ assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
+ "Unexpected type for custom-lowering FP_EXTEND");
+
+ RTLIB::Libcall LC;
+ LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ SDValue SrcVal = Op.getOperand(0);
+ return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
+ SDLoc(Op)).first;
+}
+
+SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
+ assert(Op.getOperand(0).getValueType() == MVT::f64 &&
+ Subtarget->isFPOnlySP() &&
+ "Unexpected type for custom-lowering FP_ROUND");
+
+ RTLIB::Libcall LC;
+ LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
+
+ SDValue SrcVal = Op.getOperand(0);
+ return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
+ SDLoc(Op)).first;
+}
+
+bool
+ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
+ // The ARM target isn't yet aware of offsets.
+ return false;
+}
+
+bool ARM::isBitFieldInvertedMask(unsigned v) {
+ if (v == 0xffffffff)
+ return false;
+
+ // there can be 1's on either or both "outsides", all the "inside"
+ // bits must be 0's
+ return isShiftedMask_32(~v);
+}
+
+/// isFPImmLegal - Returns true if the target can instruction select the
+/// specified FP immediate natively. If false, the legalizer will
+/// materialize the FP immediate as a load from a constant pool.
+bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
+ if (!Subtarget->hasVFP3())
+ return false;
+ if (VT == MVT::f32)
+ return ARM_AM::getFP32Imm(Imm) != -1;
+ if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
+ return ARM_AM::getFP64Imm(Imm) != -1;
+ return false;
+}
+
+/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
+/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
+/// specified in the intrinsic calls.
+bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
+ const CallInst &I,
+ unsigned Intrinsic) const {
+ switch (Intrinsic) {
+ case Intrinsic::arm_neon_vld1:
+ case Intrinsic::arm_neon_vld2:
+ case Intrinsic::arm_neon_vld3:
+ case Intrinsic::arm_neon_vld4:
+ case Intrinsic::arm_neon_vld2lane:
+ case Intrinsic::arm_neon_vld3lane:
+ case Intrinsic::arm_neon_vld4lane: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ // Conservatively set memVT to the entire set of vectors loaded.
+ auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
+ uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
+ Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
+ Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
+ Info.vol = false; // volatile loads with NEON intrinsics not supported
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ case Intrinsic::arm_neon_vst1:
+ case Intrinsic::arm_neon_vst2:
+ case Intrinsic::arm_neon_vst3:
+ case Intrinsic::arm_neon_vst4:
+ case Intrinsic::arm_neon_vst2lane:
+ case Intrinsic::arm_neon_vst3lane:
+ case Intrinsic::arm_neon_vst4lane: {
+ Info.opc = ISD::INTRINSIC_VOID;
+ // Conservatively set memVT to the entire set of vectors stored.
+ auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
+ unsigned NumElts = 0;
+ for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
+ Type *ArgTy = I.getArgOperand(ArgI)->getType();
+ if (!ArgTy->isVectorTy())
+ break;
+ NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
+ }
+ Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
+ Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
+ Info.vol = false; // volatile stores with NEON intrinsics not supported
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ case Intrinsic::arm_ldaex:
+ case Intrinsic::arm_ldrex: {
+ auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
+ PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::getVT(PtrTy->getElementType());
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
+ Info.vol = true;
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ case Intrinsic::arm_stlex:
+ case Intrinsic::arm_strex: {
+ auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
+ PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::getVT(PtrTy->getElementType());
+ Info.ptrVal = I.getArgOperand(1);
+ Info.offset = 0;
+ Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
+ Info.vol = true;
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ case Intrinsic::arm_stlexd:
+ case Intrinsic::arm_strexd: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::i64;
+ Info.ptrVal = I.getArgOperand(2);
+ Info.offset = 0;
+ Info.align = 8;
+ Info.vol = true;
+ Info.readMem = false;
+ Info.writeMem = true;
+ return true;
+ }
+ case Intrinsic::arm_ldaexd:
+ case Intrinsic::arm_ldrexd: {
+ Info.opc = ISD::INTRINSIC_W_CHAIN;
+ Info.memVT = MVT::i64;
+ Info.ptrVal = I.getArgOperand(0);
+ Info.offset = 0;
+ Info.align = 8;
+ Info.vol = true;
+ Info.readMem = true;
+ Info.writeMem = false;
+ return true;
+ }
+ default:
+ break;
+ }
+
+ return false;
+}
+
+/// \brief Returns true if it is beneficial to convert a load of a constant
+/// to just the constant itself.
+bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
+ Type *Ty) const {
+ assert(Ty->isIntegerTy());
+
+ unsigned Bits = Ty->getPrimitiveSizeInBits();
+ if (Bits == 0 || Bits > 32)
+ return false;
+ return true;
+}
+
+Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
+ ARM_MB::MemBOpt Domain) const {
+ Module *M = Builder.GetInsertBlock()->getParent()->getParent();
+
+ // First, if the target has no DMB, see what fallback we can use.
+ if (!Subtarget->hasDataBarrier()) {
+ // Some ARMv6 cpus can support data barriers with an mcr instruction.
+ // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
+ // here.
+ if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
+ Function *MCR = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
+ Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
+ Builder.getInt32(0), Builder.getInt32(7),
+ Builder.getInt32(10), Builder.getInt32(5)};
+ return Builder.CreateCall(MCR, args);
+ } else {
+ // Instead of using barriers, atomic accesses on these subtargets use
+ // libcalls.
+ llvm_unreachable("makeDMB on a target so old that it has no barriers");
+ }
+ } else {
+ Function *DMB = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
+ // Only a full system barrier exists in the M-class architectures.
+ Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
+ Constant *CDomain = Builder.getInt32(Domain);
+ return Builder.CreateCall(DMB, CDomain);
+ }
+}
+
+// Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
+Instruction* ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
+ AtomicOrdering Ord, bool IsStore,
+ bool IsLoad) const {
+ if (!getInsertFencesForAtomic())
+ return nullptr;
+
+ switch (Ord) {
+ case NotAtomic:
+ case Unordered:
+ llvm_unreachable("Invalid fence: unordered/non-atomic");
+ case Monotonic:
+ case Acquire:
+ return nullptr; // Nothing to do
+ case SequentiallyConsistent:
+ if (!IsStore)
+ return nullptr; // Nothing to do
+ /*FALLTHROUGH*/
+ case Release:
+ case AcquireRelease:
+ if (Subtarget->isSwift())
+ return makeDMB(Builder, ARM_MB::ISHST);
+ // FIXME: add a comment with a link to documentation justifying this.
+ else
+ return makeDMB(Builder, ARM_MB::ISH);
+ }
+ llvm_unreachable("Unknown fence ordering in emitLeadingFence");
+}
+
+Instruction* ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
+ AtomicOrdering Ord, bool IsStore,
+ bool IsLoad) const {
+ if (!getInsertFencesForAtomic())
+ return nullptr;
+
+ switch (Ord) {
+ case NotAtomic:
+ case Unordered:
+ llvm_unreachable("Invalid fence: unordered/not-atomic");
+ case Monotonic:
+ case Release:
+ return nullptr; // Nothing to do
+ case Acquire:
+ case AcquireRelease:
+ case SequentiallyConsistent:
+ return makeDMB(Builder, ARM_MB::ISH);
+ }
+ llvm_unreachable("Unknown fence ordering in emitTrailingFence");
+}
+
+// Loads and stores less than 64-bits are already atomic; ones above that
+// are doomed anyway, so defer to the default libcall and blame the OS when
+// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
+// anything for those.
+bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
+ unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
+ return (Size == 64) && !Subtarget->isMClass();
+}
+
+// Loads and stores less than 64-bits are already atomic; ones above that
+// are doomed anyway, so defer to the default libcall and blame the OS when
+// things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
+// anything for those.
+// FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
+// guarantee, see DDI0406C ARM architecture reference manual,
+// sections A8.8.72-74 LDRD)
+TargetLowering::AtomicExpansionKind
+ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
+ unsigned Size = LI->getType()->getPrimitiveSizeInBits();
+ return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
+ : AtomicExpansionKind::None;
+}
+
+// For the real atomic operations, we have ldrex/strex up to 32 bits,
+// and up to 64 bits on the non-M profiles
+TargetLowering::AtomicExpansionKind
+ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
+ unsigned Size = AI->getType()->getPrimitiveSizeInBits();
+ return (Size <= (Subtarget->isMClass() ? 32U : 64U))
+ ? AtomicExpansionKind::LLSC
+ : AtomicExpansionKind::None;
+}
+
+bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(
+ AtomicCmpXchgInst *AI) const {
+ return true;
+}
+
+// This has so far only been implemented for MachO.
+bool ARMTargetLowering::useLoadStackGuardNode() const {
+ return Subtarget->isTargetMachO();
+}
+
+bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
+ unsigned &Cost) const {
+ // If we do not have NEON, vector types are not natively supported.
+ if (!Subtarget->hasNEON())
+ return false;
+
+ // Floating point values and vector values map to the same register file.
+ // Therefore, although we could do a store extract of a vector type, this is
+ // better to leave at float as we have more freedom in the addressing mode for
+ // those.
+ if (VectorTy->isFPOrFPVectorTy())
+ return false;
+
+ // If the index is unknown at compile time, this is very expensive to lower
+ // and it is not possible to combine the store with the extract.
+ if (!isa<ConstantInt>(Idx))
+ return false;
+
+ assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
+ unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
+ // We can do a store + vector extract on any vector that fits perfectly in a D
+ // or Q register.
+ if (BitWidth == 64 || BitWidth == 128) {
+ Cost = 0;
+ return true;
+ }
+ return false;
+}
+
+bool ARMTargetLowering::isCheapToSpeculateCttz() const {
+ return Subtarget->hasV6T2Ops();
+}
+
+bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
+ return Subtarget->hasV6T2Ops();
+}
+
+Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
+ AtomicOrdering Ord) const {
+ Module *M = Builder.GetInsertBlock()->getParent()->getParent();
+ Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
+ bool IsAcquire = isAtLeastAcquire(Ord);
+
+ // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
+ // intrinsic must return {i32, i32} and we have to recombine them into a
+ // single i64 here.
+ if (ValTy->getPrimitiveSizeInBits() == 64) {
+ Intrinsic::ID Int =
+ IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
+ Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
+
+ Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
+ Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
+
+ Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
+ Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
+ if (!Subtarget->isLittle())
+ std::swap (Lo, Hi);
+ Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
+ Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
+ return Builder.CreateOr(
+ Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
+ }
+
+ Type *Tys[] = { Addr->getType() };
+ Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
+ Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
+
+ return Builder.CreateTruncOrBitCast(
+ Builder.CreateCall(Ldrex, Addr),
+ cast<PointerType>(Addr->getType())->getElementType());
+}
+
+void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
+ IRBuilder<> &Builder) const {
+ if (!Subtarget->hasV7Ops())
+ return;
+ Module *M = Builder.GetInsertBlock()->getParent()->getParent();
+ Builder.CreateCall(llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
+}
+
+Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
+ Value *Addr,
+ AtomicOrdering Ord) const {
+ Module *M = Builder.GetInsertBlock()->getParent()->getParent();
+ bool IsRelease = isAtLeastRelease(Ord);
+
+ // Since the intrinsics must have legal type, the i64 intrinsics take two
+ // parameters: "i32, i32". We must marshal Val into the appropriate form
+ // before the call.
+ if (Val->getType()->getPrimitiveSizeInBits() == 64) {
+ Intrinsic::ID Int =
+ IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
+ Function *Strex = Intrinsic::getDeclaration(M, Int);
+ Type *Int32Ty = Type::getInt32Ty(M->getContext());
+
+ Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
+ Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
+ if (!Subtarget->isLittle())
+ std::swap (Lo, Hi);
+ Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
+ return Builder.CreateCall(Strex, {Lo, Hi, Addr});
+ }
+
+ Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
+ Type *Tys[] = { Addr->getType() };
+ Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
+
+ return Builder.CreateCall(
+ Strex, {Builder.CreateZExtOrBitCast(
+ Val, Strex->getFunctionType()->getParamType(0)),
+ Addr});
+}
+
+/// \brief Lower an interleaved load into a vldN intrinsic.
+///
+/// E.g. Lower an interleaved load (Factor = 2):
+/// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
+/// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements
+/// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements
+///
+/// Into:
+/// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
+/// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
+/// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
+bool ARMTargetLowering::lowerInterleavedLoad(
+ LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
+ ArrayRef<unsigned> Indices, unsigned Factor) const {
+ assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
+ "Invalid interleave factor");
+ assert(!Shuffles.empty() && "Empty shufflevector input");
+ assert(Shuffles.size() == Indices.size() &&
+ "Unmatched number of shufflevectors and indices");
+
+ VectorType *VecTy = Shuffles[0]->getType();
+ Type *EltTy = VecTy->getVectorElementType();
+
+ const DataLayout &DL = LI->getModule()->getDataLayout();
+ unsigned VecSize = DL.getTypeSizeInBits(VecTy);
+ bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
+
+ // Skip if we do not have NEON and skip illegal vector types and vector types
+ // with i64/f64 elements (vldN doesn't support i64/f64 elements).
+ if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128) || EltIs64Bits)
+ return false;
+
+ // A pointer vector can not be the return type of the ldN intrinsics. Need to
+ // load integer vectors first and then convert to pointer vectors.
+ if (EltTy->isPointerTy())
+ VecTy =
+ VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
+
+ static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
+ Intrinsic::arm_neon_vld3,
+ Intrinsic::arm_neon_vld4};
+
+ IRBuilder<> Builder(LI);
+ SmallVector<Value *, 2> Ops;
+
+ Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
+ Ops.push_back(Builder.CreateBitCast(LI->getPointerOperand(), Int8Ptr));
+ Ops.push_back(Builder.getInt32(LI->getAlignment()));
+
+ Type *Tys[] = { VecTy, Int8Ptr };
+ Function *VldnFunc =
+ Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
+ CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
+
+ // Replace uses of each shufflevector with the corresponding vector loaded
+ // by ldN.
+ for (unsigned i = 0; i < Shuffles.size(); i++) {
+ ShuffleVectorInst *SV = Shuffles[i];
+ unsigned Index = Indices[i];
+
+ Value *SubVec = Builder.CreateExtractValue(VldN, Index);
+
+ // Convert the integer vector to pointer vector if the element is pointer.
+ if (EltTy->isPointerTy())
+ SubVec = Builder.CreateIntToPtr(SubVec, SV->getType());
+
+ SV->replaceAllUsesWith(SubVec);
+ }
+
+ return true;
+}
+
+/// \brief Get a mask consisting of sequential integers starting from \p Start.
+///
+/// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
+static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
+ unsigned NumElts) {
+ SmallVector<Constant *, 16> Mask;
+ for (unsigned i = 0; i < NumElts; i++)
+ Mask.push_back(Builder.getInt32(Start + i));
+
+ return ConstantVector::get(Mask);
+}
+
+/// \brief Lower an interleaved store into a vstN intrinsic.
+///
+/// E.g. Lower an interleaved store (Factor = 3):
+/// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
+/// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
+/// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
+///
+/// Into:
+/// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
+/// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
+/// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
+/// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
+///
+/// Note that the new shufflevectors will be removed and we'll only generate one
+/// vst3 instruction in CodeGen.
+bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
+ ShuffleVectorInst *SVI,
+ unsigned Factor) const {
+ assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
+ "Invalid interleave factor");
+
+ VectorType *VecTy = SVI->getType();
+ assert(VecTy->getVectorNumElements() % Factor == 0 &&
+ "Invalid interleaved store");
+
+ unsigned NumSubElts = VecTy->getVectorNumElements() / Factor;
+ Type *EltTy = VecTy->getVectorElementType();
+ VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts);
+
+ const DataLayout &DL = SI->getModule()->getDataLayout();
+ unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
+ bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
+
+ // Skip if we do not have NEON and skip illegal vector types and vector types
+ // with i64/f64 elements (vstN doesn't support i64/f64 elements).
+ if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128) ||
+ EltIs64Bits)
+ return false;
+
+ Value *Op0 = SVI->getOperand(0);
+ Value *Op1 = SVI->getOperand(1);
+ IRBuilder<> Builder(SI);
+
+ // StN intrinsics don't support pointer vectors as arguments. Convert pointer
+ // vectors to integer vectors.
+ if (EltTy->isPointerTy()) {
+ Type *IntTy = DL.getIntPtrType(EltTy);
+
+ // Convert to the corresponding integer vector.
+ Type *IntVecTy =
+ VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
+ Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
+ Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
+
+ SubVecTy = VectorType::get(IntTy, NumSubElts);
+ }
+
+ static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
+ Intrinsic::arm_neon_vst3,
+ Intrinsic::arm_neon_vst4};
+ SmallVector<Value *, 6> Ops;
+
+ Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
+ Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), Int8Ptr));
+
+ Type *Tys[] = { Int8Ptr, SubVecTy };
+ Function *VstNFunc = Intrinsic::getDeclaration(
+ SI->getModule(), StoreInts[Factor - 2], Tys);
+
+ // Split the shufflevector operands into sub vectors for the new vstN call.
+ for (unsigned i = 0; i < Factor; i++)
+ Ops.push_back(Builder.CreateShuffleVector(
+ Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts)));
+
+ Ops.push_back(Builder.getInt32(SI->getAlignment()));
+ Builder.CreateCall(VstNFunc, Ops);
+ return true;
+}
+
+enum HABaseType {
+ HA_UNKNOWN = 0,
+ HA_FLOAT,
+ HA_DOUBLE,
+ HA_VECT64,
+ HA_VECT128
+};
+
+static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
+ uint64_t &Members) {
+ if (auto *ST = dyn_cast<StructType>(Ty)) {
+ for (unsigned i = 0; i < ST->getNumElements(); ++i) {
+ uint64_t SubMembers = 0;
+ if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
+ return false;
+ Members += SubMembers;
+ }
+ } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
+ uint64_t SubMembers = 0;
+ if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
+ return false;
+ Members += SubMembers * AT->getNumElements();
+ } else if (Ty->isFloatTy()) {
+ if (Base != HA_UNKNOWN && Base != HA_FLOAT)
+ return false;
+ Members = 1;
+ Base = HA_FLOAT;
+ } else if (Ty->isDoubleTy()) {
+ if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
+ return false;
+ Members = 1;
+ Base = HA_DOUBLE;
+ } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
+ Members = 1;
+ switch (Base) {
+ case HA_FLOAT:
+ case HA_DOUBLE:
+ return false;
+ case HA_VECT64:
+ return VT->getBitWidth() == 64;
+ case HA_VECT128:
+ return VT->getBitWidth() == 128;
+ case HA_UNKNOWN:
+ switch (VT->getBitWidth()) {
+ case 64:
+ Base = HA_VECT64;
+ return true;
+ case 128:
+ Base = HA_VECT128;
+ return true;
+ default:
+ return false;
+ }
+ }
+ }
+
+ return (Members > 0 && Members <= 4);
+}
+
+/// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
+/// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
+/// passing according to AAPCS rules.
+bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
+ Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
+ if (getEffectiveCallingConv(CallConv, isVarArg) !=
+ CallingConv::ARM_AAPCS_VFP)
+ return false;
+
+ HABaseType Base = HA_UNKNOWN;
+ uint64_t Members = 0;
+ bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
+ DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
+
+ bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
+ return IsHA || IsIntArray;
+}
+
+unsigned ARMTargetLowering::getExceptionPointerRegister(
+ const Constant *PersonalityFn) const {
+ // Platforms which do not use SjLj EH may return values in these registers
+ // via the personality function.
+ return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
+}
+
+unsigned ARMTargetLowering::getExceptionSelectorRegister(
+ const Constant *PersonalityFn) const {
+ // Platforms which do not use SjLj EH may return values in these registers
+ // via the personality function.
+ return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
+}
OpenPOWER on IntegriCloud